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Preface

This is the 3T
AP handbook. 3T

AP (Three-valued Tableau-based Automated Theorem Prover) is
a many-valued tableau-based theorem prover developed at the University of Karlsruhe. Despite

its name, 3T
AP is capable of handling arbitrary �nitely-valued �rst-order logics (and, of course,

classical two-valued logic as well).

The handbook serves a triple purpose: �rst, it documents the history and development of the

prover 3T
AP ; second, it provides a user's manual, and third it is intended as a reference manual

for future developers, including porting hints.

The decision to include all this in a single document was based on the observation that all three
parts have a considerable amount of intersection and we can minimize the costs for preparation
and printing this way. We hope to deviate the main disadvantage of this form of presentation,
the danger of becoming unhandy, with a clear structure of the chapters, generously placed cross
references and a subject index.

In Chapter 1 we give a detailed description of 3T
AP 's history and that of the projects as part of

which 3T
AP was developed and is still being maintained, and we summarize the ensuing problems

and how they were solved. In Chapter 2 we provide the theoretical background which is needed
for a deepened understanding of the way the prover works. In particular we discuss the calculus
which is used in the prover. In Chapter 3 the formal syntax of the input to the prover is given

and discussed. Chapter 4 provides a general overview of 3T
AP 's architecture. Its modularization

and the interplay between the modules are discussed. The modules are described in detail in
Chapter 5. Together with the documentation in the source code itself these descriptions aim to

give a future implementor enough information for successfully making changes to 3T
AP . Several

utility programs which are not part of the source code of 3T
AP itself and which are therefore

not required for running it are described in Chapter 6. These concern exclusively the inspection

of formal tableau proofs generated by 3T
AP . Chapter 7 presents a tutorial for using 3T

AP in
form of a sample session in the course of which all relevant features are used and discussed.

Chapter 8 is dedicated to the evaluation of 3T
AP . Part of the 3T

AP -package is a batch of test
problems for classical and many-valued logic on the propositional as well as on the �rst-order
level. We explain how to use these test problems, give statistical �gures for the latest version

and discuss evidence of these tests. 3T
AP is capable of dealing with arbitrary logics with �nitely

many truth values. Chapter 9 lists the changes that have to be made in order to adapt 3T
AP

to a new logic. Appendixes A and B serve as references for available commands and switches,

respectively. Finally, Appendix C shows how to install 3T
AP on a computer and what has to be

changed, when it is to be ported to a di�erent con�guration than the supported ones.1

The aforementioned triple purpose of this report implies that not all parts are equally relevant for
all potential readers. Therefore, we make a suggestion which readers should read what chapters:

The reader who quickly wants to get a general impression of the prover 3T
AP should

read Chapters 1, 4, 6.1, 8.1.1, and 8.1.2. If he or she is interested in the theoretical aspects,

Chapter 2 is adequate additional reading, while readers who want to get a feeling of how 3T
AP

behaves in reality should also consult Chapter 7.

1 These are currently: Quintus Prolog 3.0/3.1 and SICStus Prolog 2.1 on SUN Sparc under SunOS 4.1.x.

1
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The reader who wants to use 3T
AP should read Chapters 1, 3, 6.1, 6.2, 6.4, 6.5, 7, 8.1, 8.2

and Appendices A, B. If he or she wants to use the many-valued version, Chapters 2 and 9
should be at least skimmed.

The reader who wishes to change or port 3T
AP should read anything recommended for

the user plus Chapter 4 and the sections of Chapters 5, 6, 9 and Appendix C that match his
purposes. Since many of the modules are closely interacting, however, a complete reading of the
whole report is recommended.

The reader who wants to install 3T
AP may read|in addition to Appendix C|Sections 3.2,

3.4 and 5.15, and for testing Chapter 7 or Chapter 8.

The reader who is particularly interested in the handling of equality should read
Sections 2.6, 5.5.7, 5.13, and 5.14.5.

To our best knowledge 3T
AP is the �rst and only automated theorem prover capable of dealing

with arbitrary many-valued logics. Moreover, the statistical �gures in Chapter 8 suggest that its
two-valued version (and therefore also the many-valued version, for reasons that become clear in
Chapter 2) does perform not too bad if compared to conventional theorem provers.

This version of the handbook describes 3T
AP Version 3.0 as of September 30, 1994.

What's New in Version 3.0?

The major changes that have been made (as compared to Version 2.1) are:

� 3T
AP now uses a completion-based method for equality handling (instead of the old method,

that was based on computing equivalence classes).2

� 3T
AP has been ported to SICStus Prolog. It now runs under SICStus Prolog 2.1 (and

Quintus Prolog 3.0/3.1).

� The compiler, that translates knowledge bases into 3T
AP 's internal representation, has been

re-implemented.

Besides that, there have been a lot of small improvements.

Sections Taken from Other Publications

With the authors' permission, substantial parts of Chapter 2 have been taken from (H�ahnle,
1992c), Section 2.5 has been taken from (Beckert & H�ahnle, 1992; Beckert & Posegga, 1994b),
and Section 2.6 from (Beckert, 1994b) and (Beckert, 1994a).
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1 Introduction

1.1 History and Development of 3T
A
P

1.1.1 The TCG Project

In June 1989 IBM Germany launched ILFA1, a joint project together with the Universities of
Duisburg and Karlsruhe with the aim of developing an integrated environment that provides
tools for knowledge-based inference systems. In July 1990 the subprojects of IKBS at IBM
Germany in Heidelberg and University of Karlsruhe were separated from the mainstream and
labelled TCG2.

The task of the Karlsruhe part of TCG was to develop a many-valued theorem proving system,
suitable at least for a certain three-valued logic that occurred in connection with natural language
processing (Fenstad et al., 1985; Schmitt, 1989). The area of natural language processing was
the initial motivation for building a many-valued theorem prover, but it has been later given up
in favour of hardware veri�cation. Since no serious implementations of a many-valued theorem
prover have ever been reported, the �rst goal of the project was to lay the theoretical foundations
for a way to do that e�ciently. The project tasks (in updated form from July 1990) were thus:

1. Speci�cation of the theoretical foundations of a three-valued inference engine.

2. Speci�cation of the theorem prover.

3. Implementation of a prototype.

4. Integration of the prototype with TC3 and LEU4

5. Evaluation of the prototype (a) on module level and (b) within LEU.

6. Speci�cation of the theoretical foundations of an inference engine for a temporal logic.

The basic tasks 1, 2, 3, 4, 5(a) have been fully accomplished. Tasks 5(b) and 6 proved to be not
fully accomplishable under the given organizational and time constraints. The input language
speci�cation, the �rst version of the compiler5, the index generator and most of the integration
work with TC and LEU was done by TCG Heidelberg. The other parts were done in Karlsruhe.

Another measure of the project's success is the scienti�c progress that was made during its
lifetime. Five scienti�c papers, three technical reports, �ve Studienarbeiten, two Diplomarbeiten
and one dissertation have been produced in connection with it (see Section 1.4). The theoretical

1
Integrated Logical Functions for Advanced Applications.

2
Tableau Calculus mit Gleichheit.

3 A system that has been developed at IKBS in Heidelberg
4
Logik Entwicklungsumgebung.

5 Later, in 1994, the compiler was re-implemented in Karlsruhe.

4
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advances made during the course of the project reach far beyond many-valued logics and will be
further developed at the University of Karlsruhe and other places after the end of TCG.

It is our opinion that both the �elds of many-valued logic and of tableau-based theorem proving
have received interesting stimuli by TCG.

The people who were chie
y concerned with design and implementation in Heidelberg are Wolf-

gang Sch�onfeld and Wolfgang Wernecke for TC and in Karlsruhe Reiner H�ahnle for 3T
AP . Peter

Schmitt supervised TCG Karlsruhe.

1.1.2 The DFG Schwerpunktprogramm \Deduction Systems"

Since June 1992, after the end of the TCG project, 3T
AP has been maintained and is still being

improved as part of a new project at the University of Karlsruhe, that is funded by the Deutsche
Forschungsgemeinschaft (DFG) as part of the Schwerpunktprogramm \Deduction Systems". Ob-
jective of this project is to re�ne proof methods based on semantic tableaux, i.e., to add new

features and to increase their e�ciency. In this context 3T
AP is used as a platform for experiments

and for testing new methods.

The people mainly involved with the project are Reiner H�ahnle (executive until July 1993), Bern-
hard Beckert (executive since July 1993), Joachim Posegga, and Prof. Peter Schmitt (supervisor).

1.1.3 Chronology of 3T
AP 's Development

In the following table we give a chronological history of 3T
AP 's development.

June 1989 TCG Karlsruhe was launched, then under the name of ILFA.
October 1989 Since this date several possible scenarios for an application oriented eva-

luation were considered.

November 1989 Overall design of 3T
AP completed.

December 1989 The theoretical basis of 3T
AP emerged. The concept of sets-as-signs was

developed and later published (H�ahnle, 1990a; H�ahnle, 1990b; H�ahnle,
1991). It became clear that the restriction to three truth values is unne-
cessary and it was dropped henceforth.

February 1990 Start of implementation of uncritical modules.
May 1990 Theoretical foundations completed.
June 1990 Speci�cation completed.
July 1991 Separation from ILFA. As a consequence, the prover TC developed in

Heidelberg and 3T
AP had to be merged.

September 1990 Theoretical foundations and speci�cation published as (H�ahnle, 1990a).

October 1990 International presentation of the theoretical concepts of 3T
AP at CSL'90;

published in (H�ahnle, 1990b).
January 1991 First prototype ready for classical �rst-order logic.
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February 1991 Speci�cation of common core with TC and interface to LEU. It was
decided to take the input syntax from TC which is a subset of the LEU
syntax as a common basis. Compiler and preprocessing modules are
taken from TC while the prover and internal data structures come from

3T
AP which is also the name of the common system. Since TC was

capable of handling order-sorted logic 3T
AP was extended accordingly.

March 1991 Many-Valued prototype ready. This prototype is evaluated in a scenario
from decision support. The results are documented in (Sch�opke, 1991).

April 1991 Integration of TC and 3T
AP completed.

May 1991 International presentation of further theoretical results; published in
(H�ahnle, 1991).

July 1991 It was decided that the main evaluation of 3T
AP should be done in the

area of hardware veri�cation and as a stand alone system, i.e. not as a
part of LEU.6

July 1991 Hardware scenario is prepared.
July 1991 Two-Valued equality handling implemented. It is documented in (Bec-

kert, 1992). The approach marks a substantial advance in tableau-based
equality proving and will be internationally presented in (Beckert &
H�ahnle, 1992).

December 1991 Successful evaluation of 3T
AP with a three-valued �rst-order logic in the

domain of interval arithmetic; documented in (Gerberding, 1991).

March 1992 3T
AP is integrated in LEU.

March 1992 Signi�cant new developments of the tableau framework reaching beyond

the current 3T
AP implementationare presented on an international works-

hop (H�ahnle, 1992a). These imply the possibility of building an e�cient
prover for temporal logics.

April 1992 As a possible means of enhancing the performance of 3T
AP , the disso-

lution rule is added to the two-valued version and tests are performed;
documented in (Kreidler, 1992).

May 1992 Successful evaluation of 3T
AP with a seven-valued propositional logic in

the domain of hardware veri�cation; documented in (Kernig, 1992).

May 1992 Compilation of this report and handing over the �nal version of 3T
AP to

IBM. End of the TCG project.

June 1992 The DFG project begins.

February 1993 The 2nd edition of the 3T
AP handbook is completed.

June 1993 The new completion-based equality handling replaces the old method,
that was based on computing equivalence classes.

December 1993 3T
AP is ported to SICStus Prolog.

April 1994 The compiler module that translates knowledge bases into 3T
AP 's internal

representation is re-implemented.

August 1994 Completion of 3T
AP Version 3.0 and of this version of the handbook.

6 There are two reasons for this decision: �rst, the interest in linguistic applications had ceased at IKBS; since

LEU is part of a natural language processing system, it would have made no longer sense to evaluate 3T
AP

within LEU. Second, the machines provided by IBM for the Karlsruhe TCG project were too small to run
LEU.
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1.2 3T
A
P 's Main Features

The implementation language of 3T
AP is Prolog (there are versions for Quintus Prolog and for

SICStus Prolog) with a small amount of portable C. Parts of 3T
AP 's compiler module and of

the utilities for visualizing proofs are written using the Unix tools Lex and Yacc (resp. Flex and
Bison).

It is easy to install 3TAP on a Unix machine with Quintus Prolog Version 3.0 (or later) or SICStus
Version 2.1 (or later) and a C compiler available. To achieve acceptable performance, at least
8MB main memory and 20MB swap space should be con�gured.

The design of 3T
AP is as modular as possible. Thus, it should be easy to port it to other

architectures than the one described above and to add new features.

3T
AP Version 3.0 as of September 30, 1994 includes the following features:

� Full two-valued �rst-order logic with equality and sorted terms.

� Many-valued �rst-order logic with quasi-classical quanti�ers. The prover is adaptable to
any �nitely-valued logic involving arbitrary connectives within a few hours, provided the
truth tables of the connectives are given. The process is described in detail in Chapter 9.

Sorted terms and two-valued equality are still available with many-valued logics.

� Various strategies that may shorten proofs such as lemma generation are implemented and
may optionally be switched on in all versions.

� In the two-valued version a restricted version of the dissolution inference rule of Murray
& Rosenthal (Murray & Rosenthal, 1987) is implemented and may optionally be switched
on.

3T
AP is able to prove benchmark problems for (two-valued) theorem provers in reasonable time,

see Chapter 8. Response times for problems which are not too di�cult are typically under 500ms.

The user interface of 3T
AP is the Prolog shell enriched with certain predicates for proving theo-

rems, loading databases etc. This has the advantage that the user can quickly write his own
predicates on top of these to accomplish specialized tasks. Moreover, it is very easy to integrate

3T
AP into any existing system via its interface predicates.7

The syntax of databases is based on that of �rst-order predicate logic in a very natural notation.
No normal form is required. In particular, equalities may occur in arbitrary places within a
formula, see Chapter 3 for examples and details.

1.3 Theoretical Advances

Starting point for TCG Karlsruhe has been the requirement to use analytic tableaux as a general
framework and a theoretical paper by Carnielli (Carnielli, 1987) describing a way to axiomatize
every �nitely-valued logic with analytic tableaux. This approach proved to be intractable in
practice even for very small examples.

The solution was a consequent generalization of the sign language in analytic tableaux. It has the
advantage that a kind of semantic structure sharing can automatically be achieved as depicted
in Figure 1.1. For the technical details we refer to Chapter 2. The result was �rst published in

7 Currently, an X-Windows based interface is under development. It will be part of 3TAP 's next release.
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Figure 1.1: Schema of semantic structure sharing using sets-as-signs.

(H�ahnle, 1990b). The signi�cance of the technique is backed up by the fact that in the meantime
it has (independently) been rediscovered for special cases by other researchers (Doherty, 1991).

We will call the approach of (H�ahnle, 1990b) which is crucial for 3T
AP 's e�ciency the sets-as-

signs approach to many-valued reasoning, since it operates by using subsets of the set of truth
values as signs in tableaux.

Starting from the sets-as-signs approach we were able to identify many-valued logics that have
particularly simple tableau proof systems if Smullyan's uniform notation (Smullyan, 1968) is
adapted. Moreover, we were able to give very simple quanti�er rules for the many-valued gene-
ralizations of 8 and 9 (H�ahnle, 1991) under mild restrictions.

As a byproduct of the project a new liberal version of the classical �-rule for �rst-order tableaux
which was �rst mentioned in (Schmitt, 1987) could be proven to be sound (H�ahnle & Schmitt,
1993). Later, an even more liberalized version was developed (Beckert et al., 1993).

The investigations made for implementation of equality (Beckert, 1992) have also proved to be

fruitful and were internationally acknowledged (Beckert & H�ahnle, 1992; Beckert, 1994b). 3T
AP

is the �rst working tableau-based prover that is able to solve problems with equality beyond the
scope of textbook examples.

A further generalization of the sets-as-signs approach (H�ahnle, 1992a) resulted in a new trans-
lation from (many-valued) deduction problems into the domain of mixed integer programming.
Immediate consequences are simple NP-containment proofs for various many-valued logics that
have been di�cult before and, for the �rst time, the possibility to e�ciently perform theorem
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proving in in�nitely-valued logics. Other consequences of this new technique whose presentation
is well beyond the scope of this report cannot fully be foreseen yet. They will be investigated in
the future.

Finally, the evaluation scenario within hardware veri�cation (Kernig, 1992; Beckert et al., 1994)
for the �rst time accomplished formal veri�cation of switch-level speci�cations with deductive
methods. These have up to now been handled by mere simulation tools.

A multitude of statistical �gures will be given in Chapter 8. Here, we provide some �gures to back
up our claim that an e�ciency jump in many-valued theorem proving could be achieved using
the sets-as-signs technique. In Table 1.1 we give numbers of closed branches (these resemble
approximately the size of the proof) and run times for a couple of problems using the na��ve
approach and the sets-as-signs approach. The second column indicates whether the problem is
satis�able.

problem sat na��ve sets-as-signs
Time[s] Branches Time[s] Branches

thhornor1 Y 8.00 1334 0.27 36
thvernor1 Y 5.13 806 0.15 17
thvernor3 N 25.47 4487 2.93 518

Lem. 5.1 Y 1.18 206 0.17 7
Fig. 5.17 Y 1 1 1.37 36

Table 1.1: Comparing na��ve and sets-as-signs approaches.

The �rst three problems are taken from (Kernig, 1992) and are about hardware veri�cation. They
are formulated in a propositional seven-valued logic. The other problems from (Gerberding, 1991)
are about interval arithmetic and formulated in a three-valued �rst-order logic. The gain of the
sets-as-signs approach is in both cases considerable. The last problem could only be solved with
sets-as-signs.

3T
AP can be seen|to a certain extent|as the parent of the leanTAP prover (Beckert & Posegga,

1994c; Beckert & Posegga, 1994b). leanTAP is an instance of lean deduction. It is written in
Prolog and implements a complete and sound theorem prover for classical �rst-order logic based

on free-variable semantic tableaux. The unique thing about leanTAP is that it is probably the
smallest theorem prover around. The idea of lean deduction is to achieve maximal e�ciency
from minimal means. Every possible e�ort is made to eliminate overhead; based on experience

in implementing (complex) deduction systems|namely 3T
AP|, only the most important and

e�cient techniques and methods are implemented.

1.4 Documentation

We summarize the papers and reports written in connection with 3T
AP , or as part of the TCG

project or the DFG Schwerpunkt, and give their type and purpose.
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Reference Type Purpose/Remarks
(H�ahnle, 1990a) IWBS Report Overall design and coarse speci�cation of

3T
AP . Sketch of sets-as-signs concept. Par-

tially outdated now. In German.
(H�ahnle, 1990b) In proceedings Sets-as-signs concept in full detail.
(Mock, 1990) Studienarbeit Investigation into and implementation of

many-valued function minimization algo-
rithms, cf. (H�ahnle, 1992c). In German.

(Kernig, 1990) Studienarbeit Proving theorems about bilattices with
OTTER. In German.

(Gerberding, 1990) Studienarbeit Exploring the C interface of Quintus Pro-
log. In German.

(H�ahnle, 1991) In proceedings Uniform notation for many-valued logics
and many-valued �rst-order logic.

(Wernecke, 1991) Internal paper TCG input language speci�cation of inte-
grated system.

(Beckert, 1991) Studienarbeit Building equality into 3T
AP . In German.

(Gerberding, 1991) Diploma thesis Axiomatizing interval arithmetic with mul-

tiple-valued logic and evaluating 3T
AP with

it. In German.
(Beckert & H�ahnle, 1992) In proceedings Building equality into a tableau-based pro-

ver.
(Sch�opke, 1991) IWBS Report Study of potential application areas for a

many-valued theorem prover.

(Beckert, 1992) IWBS Report Building equality into 3T
AP . In German.

(Kernig, 1992) Diploma thesis Using many-valued logic for hardware ve-

ri�cation and evaluating 3T
AP with it. In

German.

(Kreidler, 1992) Studienarbeit Building dissolution into 3T
AP . In German.

(H�ahnle, 1992a) In proceedings Short version of (H�ahnle, 1992b).
(H�ahnle, 1992b) In proceedings Translation from semantic tableaux to in-

teger programming.
(H�ahnle, 1992c) PhD thesis Theory of multiple-valued tableau-based

theorem proving.
(H�ahnle & Schmitt, 1993) Article Liberalized �-rule in classical tableaux. To

appear.
(H�ahnle & Kernig, 1993) In proceedings Using many-valued logic for hardware ve-

ri�cation.
(Beckert et al., 1993) In proceedings The even more liberalized �-rule in free va-

riable tableaux.
(H�ahnle, 1993a) Book Monograph on automated proof search in

multiple-valued logics. Includes an exten-
sive bibliography.

(H�ahnle, 1993c) In proceedings Short normal forms for arbitrary �nitely-
valued logics.
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Reference Type Purpose/Remarks
(Beckert, 1993a) In proceedings Completion-based handling of equality in

semantic tableaux.
(H�ahnle, 1993b) In proceedings E�cient deduction in many-valued logics.
(Beckert, 1993b) Diploma thesis Completion-based handling of equality in

semantic tableaux. In German.
(H�ahnle, 1994a) In proceedings E�cient deduction in many-valued logics.

(Beckert & Posegga, 1994c) In proceedings Description of the leanTAP prover. Short
version of (Beckert & Posegga, 1994b).

(Beckert, 1994b) In proceedings A completion-based method for solving mi-
xed E-uni�cation problems.

(H�ahnle, 1994b) Article Short conjunctive normal forms in �nitely-
valued logics. To appear.

(Beckert, 1994a) In proceedings Overview: Adding equality to semantic
tableaux.

(Beckert & Posegga, 1994a) In proceedings Position paper on lean deduction.
(Beckert, 1994c) In proceedings Using E-uni�cation to handle equality in

universal formula semantic tableaux.
(Beckert et al., 1994) In proceedings Description of the concept of \anti-links".

(Beckert & Posegga, 1994b) Article Description of the leanTAP prover. To
appear.

Remark 1.1 (Wernecke, 1991) and (Sch�opke, 1991) were contributed by TCG Heidelberg. The
latter paper was written during a guest scholarship of Dr. Sch�opke at IBM Heidelberg.

1.5 Getting 3T
A
P and the Documentation

1.5.1 Copyright

3T
AP Version 3.0 is copyrighted c
 1994 by the University of Karlsruhe, Institute for Logic,

Complexity and Deduction Systems.

Permission to use, copy, and distribute this software and its documentation is hereby granted,
subject to the following conditions:

1. Permission to modify 3T
AP is granted, but not the right to distribute the modi�ed code.

2. If 3T
AP is distributed|in whole or part|, the above copyright notice must appear in all

copies, and both that copyright notice and this permission notice must appear in supporting
documentation.

3. Distributors must not demand a fee for distributing 3T
AP .

4. 3T
AP must not be used for commercial purposes without the written consent of the authors.

3T
AP is provided \as is" without express or implied warranty.

1.5.2 How to Get 3T
AP via the Word Wide Web

The easiest (and most fashionable) way to get 3T
AP 's source code and most of the documents

listed in Section 1.4 is opening the page
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http://i12www.ira.uka.de/~threetap

on the World Wide Web (WWW). With this document you can retrieve the program and the
documentation online.

Once you have got hold of the �le threetap.tar.gz, which is a compressed TAR �le, and

contains both the source code and the 3T
AP Handbook, use the shell command

gunzip threetap.tar.gz

to uncompress threetap.tar.gz. Then unpack the TAR �le threetap.tar using the command

tar -xf threetap.tar

A directory threetap containing the 3T
AP source code and the Handbook will be generated.

For those who have no access to the WWW, we describe the access by anonymous FTP in
the following section. If you should not have FTP access, either, contact the authors (see
Section 1.5.4).

1.5.3 How to Get 3T
AP via Anonymous FTP

3T
AP 's source code and the documentation is also available via anonymous FTP on Internet from

sonja.ira.uka.de [129.13.31.3]

Open this host with an FTP program, log in as \anonymous" and type your e-mail address as
password. Change (cd) to the directory pub/threetap and switch to binary �le transfer mode.
This is usually done by typing \binary" in your FTP program.

Then get the �le threetap.tar.gz, and proceed to uncompress and unpack this �le as described
in the previous section.

1.5.4 Please Contact Us

If you are interested in getting the 3T
AP source code or some of the documents, and you do not

have access to the WWW or FTP, if you have any questions or suggestions concerning 3T
AP , or if

you wish to be on an e-mail list to receive updates, bug �xes, information on new releases, etc.,
then please contact us (preferably by e-mail). We appreciate feedback! The contact address is:

Institute for Logic, Complexity and Deduction Systems
Department of Computer Science
University of Karlsruhe
Kaiserstra�e 12
76128 Karlsruhe
Germany

Email: beckert@ira.uka.de, reiner@ira.uka.de
WWW: http://i12www.ira.uka.de/



2 Theoretical Background

2.1 Analytic Tableaux

Semantic (or analytic) tableaux have been introduced by E. W. Beth (Beth, 1986) and K. J. J.
Hintikka (Hintikka, 1955) in the 1950s, its ancestors being Gentzen systems. R. Smullyan (Smul-
lyan, 1968) gave a particular elegant version of tableaux which increased their popularity largely
and most tableaux systems used today are based on the formulation he gave. Tableaux systems
come in two versions, namely signed and unsigned, from which we will always be using the
former.

In the classical case our set of signs (sometimes also called pre�xes) will be fF;Tg where F of
course corresponds to the truth value 0 and T to 1.

De�nition 2.1 (Signed Formula) A signed formula is a string of the form S �, where � is a
(propositional or �rst-order) formula and S is either F or T. If L is the set of formulae in a
logic, the set of signed formulae will be denoted with L�.

Following Smullyan we may divide the set of signed formulae into four classes: � for propositional
formulae of conjunctive type, � for propositional formulae of disjunctive type, 
 for quanti�ed
formulae of universal type and �nally � for quanti�ed formulae of existential type. Smullyan
called this uniform notation. It simpli�es presentation and proofs considerably.

� � 
 �

�1 �1 �2 
1(t) �1(c)
�2

where t is an arbi-
trary term.

where c is a Skolem
constant that is not

occurring on the cur-

rent branch.

Table 2.1: Tableaux rule schemas for di�erent formula types.

This classi�cation is motivated by the tableau expansion rules which are associated with each
signed formula. The rules characterize the assertion of a truth value (corresponding to its sign)
to a formula by means of asserting truth values to its direct subformulae. For example, T (� ^ )
holds if and only if T � and T  hold. In Table 2.1 the rule schemes for the various combinations
of signs and formula types are given schematically. Premises and conclusions are separated by a
horizontal bar, while vertical bars in the conclusion denote di�erent extensions which are to be
thought as disjunctions. In Table 2.2 the correspondence between formulae and formula types is
shown.

13



14 CHAPTER 2. THEORETICAL BACKGROUND

� �1 �2

T (� ^  ) T � T  

F (� _  ) F � F  

T :� F � F �

F :� T � T �

� �1 �2

T (� _  ) T � T  

F (� ^  ) F � F  


 
1(t)

T (8x)�(x) T �(t)
F (9x)�(x) F �(t)

� �1(c)

F (8x)�(x) T �(c)
T (9x)�(x) F �(c)

Table 2.2: Correspondence between rule types and formulae.

For our purposes it is su�cient to visualize a tableau proof as a �nite labelled binary tree, whose
node labels are signed formulae, constructed as follows:

De�nition 2.2 (Classical Tableaux) Let L� be a language of signed formulae. The set T (L�)
of all tableaux over L� is de�ned as the set of trees that can be constructed by �nitely many
applications of the following rules:

(T1) A �nite linear tree whose nodes are signed formulae taken from a set � � L� is a tableau
over L�.

(T2) If T is a tableau over L� and � is a node label from T then a new tableau T0 is constructed
by extending all branches of T that contain � by as many new linear subtrees as the rule1

corresponding to � has extensions, the nodes of the new subtrees being labelled with the
formulae in the extensions.

If T is a tableau and � is the set in step (T1) above, then T will also be called a tableau for �.

De�nition 2.3 (Branch) Let T be a tableau. A branch BT of T is a maximal path in T.

Usually, when no confusion can arise, we omit the subscript from BT. Sometimes, when we
speak of a branch B, we actually mean the set of node labels (signed formulae) on B, but we
still use the symbol B.

De�nition 2.4 (Complementary Signs and Formulae) Two signs S1; S2 are complemen-
tary i� S1 6= S2. Let S1�; S2 be two formulae on a tableau branch B. They are called comple-
mentary formulae i� S1; S2 are complementary signs and � =  .

De�nition 2.5 (Closed and Open Branch) A tableau branch is closed i� it contains a pair
of complementary formulae. Otherwise it is called open.

1 It is obtained by looking up the subformulae corresponding to � in Table 2.2 and instantiating the matching
rule schema in Table 2.1.
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To prove tautologyhood of a formula � we begin with a tree whose single node is labelled by
F �, that is we assume that � is false in some model. A tableau proof represents a systematic
search for such a model. Every tableau branch corresponds to a partial possible model in which
the formulae on the branch are assigned the truth value corresponding to their sign. Therefore,
a complementary pair of formulae, and thus a closed branch, denotes an explicit contradiction,
since in every model each formula has a unique truth value.

De�nition 2.6 (Closed Tableau, Tableau Provable) A tableau is closed i� all of its bran-
ches are closed. An L-formula � is classically tableau provable, in symbols `c �, i� there exists
a closed classical tableau for fF �g.

De�nition 2.7 (Complete Branch, Complete Tableau) A tableau branch is complete i� it
is either closed or no rule application to a formula on the branch produces a formula that was
not already present. A tableau is complete i� each of its branches is.

A tableau proof tree represents a proof of the negated root formula when all branches in the
tree can be closed simultaneously, in other words, when every attempt to construct a model that
makes the root formula false leads to a contradiction.

At this point a few remarks are in order:

Remark 2.8 (Closure of Branches)

� If 0-ary propositional connectives such as t (which evaluates constantly to 1) and f (which
evaluates constantly to 0) are present additional closure conditions for branches become
necessary. The constant operators t; f are handled by letting branches also be closed when
they contain one of the formulae T f ,F t.

� Thus the following alternate de�nition of branch closure, which will prove useful in the
following, is motivated.

Alternate De�nition of Branch Closure:

Let Contrc = ffT �;F �gj � 2 Lg [ ffT fg; fF tgg be the contradiction set for classical

tableaux. Then a tableau branch B is closed i� 2B \ Contrc 6= ;.

� From now on we will use this de�nition. In all tableau systems for the various logics that
we will consider, what will change besides the formula syntax are the tableau expansion
rules and the choice of the contradiction set.

� Finally, it is su�cient to consider complementary pairs of formulae on the atomic level.

Theorem 2.9 (Soundness, Completeness) Let L be a classical �rst-order logic and let � be
any L-sentence. Then there is a closed classical tableau for fF �g over L� i� � is a �rst-order
classical tautology. In symbols

�L � i� `c �:

Proof: See, for example, (Fitting, 1990).

Remark 2.10 (Deletion of used formulae) It is is su�cient for completeness to apply �-,
�- and �-rules only once to every formula in each branch. Consequently, formulae of these types
may be deleted locally to the current branch after rule application. Note, however, that 
-formulae
must be used repeatedly sometimes and hence may not be removed.
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Remark 2.11 (Systematic Tableaux and Fairness) Tableau construction for a set of for-
mulae � is a highly non-deterministic procedure. We did not specify, for example, in which order
the tableau rules should be applied to the formulae on a branch, in which order newly generated
branches should be processed, or what terms in which order should be \guessed" by the 
-rules.
Somewhere on the way to an actual implementation, however, these questions have to be ad-
dressed, since any real program on a real machine behaves deterministically. Our completeness
result, on the other hand, does not exhibit anything of the order in which the tableau is built up.

If one wishes to extend the completeness result toward a concrete implementation the notion of
systematic tableaux (Smullyan, 1968) usually is introduced. The main issue to be paid attention
to are the 
-rule applications. If the 
-rule is repeatedly applied to the same formula every term
in the language �nally must occur in the conclusion. Moreover, the order of rule applications
to 
-formulae is to be \fair". Basically, this means that a tableau construction is carried out in
such a way that to every 
-formula the corresponding rule is applied arbitrarily often. Depending
on the rules that are used, fairness conditions can grow quite complex, in particular when other
optimizations, like indexing of formulae (see Section 5.12.3) or free variables (see the following
remark) are implemented.

Fairness strategies in 3T
AP are discussed in Sections 5.3.1.1, 5.4.2, 2.6.6.3, 2.6.6.4 and 5.11.4.

Remark 2.12 (Ground vs. Free Variable Tableaux) One of the most important optimiza-
tions in tableau-based theorem proving deals with the 
-rules. Instead of guessing an arbitrary
ground term, as it is done in the 
-rule we are using here, one does mark the quanti�ed variable
in the conclusion as free and it is instantiated only later with a term that is actually needed
for a branch closure. Of course something has to be done then also with the �-rules in order to
preserve soundness. For obvious reasons we speak of a free variable tableau system when rules
of this kind are used and of a ground tableau system when the present rules are used.

In recent papers by H�ahnle & Schmitt (H�ahnle & Schmitt, 1993) and Beckert, H�ahnle & Schmitt
(Beckert et al., 1993) the earlier result of (Fitting, 1990) has been improved.

We give the free quanti�er rules for classical logic from (H�ahnle & Schmitt, 1993) in Table 2.3.
The results carry over to the many-valued case without any restrictions or modi�cations.


 �


(x) �(f(x1; : : : ; xn))

where x is a free variable. where x1; : : : ; xn are the free variables oc-
curring in � and f is a new function sym-

bol.

Table 2.3: Liberalized free tableau rules for quanti�ed formulae.

The proviso of the �-rule ensures that the introduced Skolem term preserves satis�ability of the
current branch, even when the free variables become instantiated later during the proof.

In (Beckert et al., 1993) it has been shown that in two-valued logic the �-rule can be even more
liberalized: if the �-rule is applied to formulae that are identical up to variable renaming, the
same Skolem function symbol can be used multiply.
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Remark 2.13 (Strong Soundness and Completeness) In classical logics, strong soundness
as well as completeness can easily be proved by observing that for all classical logics L and all
�rst-order sentences �1; : : : ; �n;  

f�1; : : : ; �ng �L � i� �L (�1 ^ : : :^ �n) � �

holds. This fact, which is a kind of deduction theorem, does not hold in most many-valued logics,
and worse, consequence is not necessarily characterizable by �nite logics at all. We will, therefore,
in the following mostly be not concerned with consequences, but only with tautologies. For some
many-valued logics, however, deduction theorems can be formulated.

We conclude this section with two small examples which have merely the purpose to introduce
our notation for tableau proof trees.

Example 2.14 With the tree drawn on the left we prove that

`c (9x)(8y)r(x; y) � (8y)(9x)r(x; y) ;

while the tree on the right proves
`c p � (q � p) :

Formulae marked with an asterisk are being removed during the construction.

The formulae on the trees are numbered in the order of their appearance, starting with (1). These
numbers are enclosed by round brackets. The numbers in square brackets indicate the number
of the parent formula. Beneath each closed branch the numbers of the formulae which led to the
closure are given.

� (1) [�] F (9x)(8y)r(x; y) � (8y)(9x)r(x; y)

� (2) [1] T (9x)(8y)r(x; y)

� (3) [1] F (8y)(9x)r(x; y)

(4) [2] T (8y)r(c; y)

(5) [3] F (9x)r(x; d)

(6) [4] T r(c; d)

(7) [5] F r(c; d)

closed with (6; 7)

� (1) [�] F p � (q � p)

(2) [1] T p

� (3) [1] F q � p

(4) [3] T q

(5) [3] F p

closed with (2; 5)

On the left side, in (4) a new Skolem constant c has been introduced via a �-rule application to
(2), while (6) was inferred from (4) by a 
-rule application, whereby y was instantiated with d.
Similarly, (7) was inferred from (5) and (5) in turn from (3). The �rst rule applied to the tree
was the �-rule on (1), corresponding to F and implication, thus generating formulae (2) and (3).

The example on the right should be obvious enough.

For some more sophisticated examples of classical proof trees, see (Smullyan, 1968).
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2.2 Dissolution

Dissolution is a sound and complete inference rule for classical �rst-order logic that has been
introduced in 1986 by Murray & Rosenthal (Murray & Rosenthal, 1986; Murray & Rosenthal,
1987), see (Murray & Rosenthal, 1990a; Murray & Rosenthal, 1993) for a detailed description. It
operates on formulae in prenex negation normal form that are built up from n-ary conjunctions
and disjunctions. It has some similarity with Bibel's connection method (Bibel, 1987) in that
the focus is on maximal conjunctive paths through the formula tree. It can also be seen as a
re�nement of a proof method by Prawitz (Prawitz, 1970).

In order to keep things simple, we constrain our exposition to the propositional case. Consider
a formula built up from ^;_ and : in NNF, which is represented as a graph, where nodes are
formulae and edges are either of conjunctive or disjunctive type.

In the left part of Figure 2.1 we have drawn the graph for � = D^(A_B)^(A_C). Conjunctive
connections are drawn vertically, while disjunctive connections are drawn horizontally.

A _ C

^

A _ B

^

D

C

^

A _ B

_

A

^

B

^

D

Figure 2.1: Dissolution for classical propositional logic.

Now consider maximal sets of conjunctively connected literals, so-called c-paths2 in �. For the
present example, these are

ffD;A;Ag; fD;A;Cg; fD;B;Ag; fD;B;Cgg:

A pair of complementary literals lying on the same c-path is called a link. The dissolution rule
operates always on a link in focus.3 The central idea behind dissolution is to restructure a
formula in such a way that exactly the c-paths containing the link in focus are removed. The
right part in Figure 2.1 shows � after dissolving on the link (A;A), which is highlighted on the
left hand side. One observes that the set of c-paths now is

ffD;A;Cg; fD;B;Ag; fD;B;Cgg;

where the one path containing (A;A) has been removed. The completeness of the method now
follows from the fact that after a �nite number of steps there can be no more c-paths left that
contain any links. Since in an unsatis�able formula each c-path must contain at least one link,

2 We will not de�ne formally the graph-based notions that are used in the following. The intuitive reading
should be clear and we refer the reader to (Murray & Rosenthal, 1990a) for the exact de�nitions.

3 In practice, that is. In general, a multiple-link dissolution rule can be de�ned. The multiple-link rule represents
also an alternative approach to many-valued dissolution. It turns out, however, that implementation and
control of multiple-link rules is not feasible in practice and hence will not be considered here.
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the empty graph must be produced after a �nite number of dissolution steps if and only if the
starting formula was unsatis�able.

In (Murray & Rosenthal, 1990b) it was shown that already in the propositional case the restricted
application of dissolution to tableau situations (that is, the input formulae containing the link
must be on the same branch) can yield substantially shorter tableau proofs.

The dissolution rule built into 3T
AP does also function for �rst-order formulae. In that case the

dissolution step involves uni�cation of the complementary link literals and, as a consequence,
possible instantiations of free variables.

The version of dissolution for tableaux which is used in 3T
AP is described in Section 5.11. For

a deepened discussion of dissolution and tableaux, see (Murray & Rosenthal, 1990b; Kreidler,
1992).

2.3 Many-Valued Logic

The formal language of many-valued logic is essentially the same as that for classical logic. The
only di�erence is that now and then some additional unary or binary propositional connectives
will occur.

Very much as in classical logic, we can specify the semantics of a many-valued logic with either
truth tables or by recursive de�nition of a meaning function vM which assigns for every model
M to each formula a truth value. The only di�erence is that the set of truth values does no
longer consist of only two elements, but any �nite number.4 We will take for the set of truth
values N natural numbers, that is N = f0; 1; 2; : : :; n� 1g for an n-valued logic.

As an example take three-valued conjunction. The truth table

^ 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

and

vM(� ^  ) := minfvM(�); vM( )g where 0 < 1 < 2

de�ne exactly the same three-valued connective.

A subset D of the set of truth values will be called designated. The truth values in D play the
role of true in the classical case and support validity.

A model is simply a mapping from atomic formulae into N , in other words the determination of
vM on atoms which is uniquely extended to all formulae. A formula � is satis�able i� vM(�) 2 D
for some M. If a formula � is satis�ed by any model it is called tautology.

We sketch a somewhat na��ve method of extending tableaux to handle any �nitely-valued �rst-
order logic. The method is due to S. Surma who presented it on the International Symposium on
Multiple-Valued Logic in 1974 (Surma, 1984). Some years later, W. Carnielli (Carnielli, 1987)
�lled the gaps in Surma's somewhat sketchy presentation and extended the treatment to a broad
class of many-valued quanti�ers, including the standard ones that we consider.

4 Or even an in�nite number of truth values. 3T
AP can handle only �nitely many truth values, however.
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Assume for the moment that we are working in a three-valued logic. Then, obviously, saying
that a formula � is not true is not equivalent to saying that it is false, or more precisely saying
that � has not truth value 2 is not equivalent to saying that it has truth value 0. Yet another
formulation of this fact, with respect to signed tableaux, is that not T � is not the same as F �.
But being able to express this fact, that not T �, is crucial for the tableau method to work, since
this is what we must put in the initial tableau if the tautologyhood of � is to be established.

The solution is to introduce other signs than T and F , namely as many as there are truth values
in a logic. Let us �x

SL = f0; 1; : : :; n � 1g

as the set of signs for an n-valued logic in this section. Each sign corresponds to a truth value in
an obvious way. We use the same symbols for signs and truth values, only the former are printed
in Sans Serif typeface and understand this convention as an implicit type conversion function.
We are now able to express invalidity of a formula in the following way:

not 2 � i� 0 � or 1 � (2.1)

So far, so good|but how does one compute the tableau rules corresponding to a certain sign
and connective in this new setting? Assume that we wanted to compute the rule corresponding
to 1 and conjunction for n = 3. If we take a look at the truth table above we see that there are
three entries that are equal to 1 (which corresponds to 1 ). From these entries we can extract the
necessary and su�cient conditions on the direct subformulae of a formula �^ that characterize
the assertion 1 (� ^  ). More precisely, we have that

1 (� ^ ) i� (1 � and 2  ) or (1 � and 1  ) or (2 � and 1  ):

Transforming this into a tableau rule, we get

1 (� ^  )
1 � 1 � 2 �

2  1 1  

With the same method one can compute rules for all combinations of signs and connectives,
provided the truth tables are known and the sign does occur in the truth table of the connective.
If it does not the current branch can be closed at once, since an assertion of that kind can never
be satis�ed. A convenient method to handle these cases is to include them in the contradiction
set of a tableau system.

Let us collect some immediate observations:

1. The rules in general fall neither into the �- nor into the �-schema.

2. The number of extensions generated by a rule for a formula S� can be equal to the number
of entries corresponding to S in the truth table of the leading connective of �. For n truth
values and k-ary connectives the worst case is a branching factor of nk � n with k(nk � n)
formulae in the conclusion. Since every entry in the truth table has to be analyzed in
exactly one of the rules corresponding to the connective, the number of extensions in all
rules for a connectives is but in rare cases, when simpli�cations are possible, equal to nk.
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� 0 1 2

0 2 2 2
1 2 2 2
2 0 1 2

: �

0 2 2
1 1 2
2 0 0

Table 2.4: Truth tables of propositional connectives for n = 3.

3. The rules themselves are uniquely determined up to the ordering of the extensions in the
conclusion and the formulae within each extension.

4. With equation (2.1) we can express the assertion that a formula is not satis�able. The price,
however, is that the construction of two tableaux is required. In general, when n > 3, as
many tableaux as there are non-designated truth values are required.

Example 2.15 In Figure 2.2 the proof trees corresponding to the proof of the three-valued tau-
tology :p � (� p ^:p) are shown. The truth tables of �; : and � are given in Table 2.4. Note
that we need two proof trees in order to refute the two non-designated truth values 0 and 1 .
Formulae in the left tree correspond to formulae with same numbers in the right tree.

For �rst-order logic we de�ne many-valued generalizations of the usual quanti�ers 9 and 8 by
treating them as in�nitary disjunctions and conjunctions, resp.:

1. v�((8y)�) = minfv�uy (�)ju 2 Ug, where min is interpreted naturally on N .

2. v�((9y)�) = maxfv�uy (�)ju 2 Ug, where max is interpreted naturally on N .

� is a variable assignment and �uy is the same as �, but with the value of y changed to u. The
notation is completely analogous to classical logic, cf. (Fitting, 1990).

First-order logic is handled as well by Carnielli's approach, but the resulting tableau rules are
rather bulky. We do not give them here.

2.4 Lemma Generation

Consider the application of a (symmetric) �-rule to a formula on the current branch, say to
F (� ^  ). One has to make a decision which branch is put into focus for the next rule application.
This decision generally is based on some heuristics. We are not interested right now on which, but
it is clear that a decision has to be made somehow. So one of the newly generated branches will
be closed �rst, say the left one. Obviously it would have been better then to use an asymmetric
rule, namely the one in the middle in Table 2.5 which gives us more information about the still
open branch. And this is exactly what we do: Before actually applying a �-rule, decide which
branch is put into focus next. Then apply an asymmetric version of the rule which provides more
information on the branch processed last.

We call this technique Lemma Generation, because if we interpret the additional formula in
an asymmetric rule as a lemma the branch that is closed �rst can be seen as a proof for that
lemma. Lemma generation is not merely an ad hoc e�ciency hack, rather it lifts classical analytic
tableaux to a better proof length complexity class.

In 3T
AP lemma generation can be switched on with two di�erent priorities. It works also in

many-valued logics, but then it is not easy to compute adequate lemmata. See (H�ahnle, 1992c,
p. 103�) for the details. Technically, lemma generation can be achieved by changing the rule set
and the heuristics for rule selection, see Section 5.8.2.
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(1) [�] 0 (:p � (� p ^ :p))

(2) [1] 2 :p

(3) [1] 0 (� p ^ :p)

(4) [2] 0 p

(5) [3] 0 � p

(7) [5] 2 p

closed with (4; 7)

�
�� @

@@
(12) [3] 0 :p

(13) [12] 2 p

closed with (4; 13)

(1) [�] 1 (:p � (� p ^ :p))

(2) [1] 2 :p

(3) [1] 1 (� p ^ :p)

(4) [2] 0 p

(5) [3] 1 � p

(6) [3] 2 :p

(7) [6] 0 p

closed with (5)

!!
!!

!! aaaaaa
(11) [3] 1 � p

(12) [3] 1 :p

(13) [12] 1 p

closed with (4; 13)

(8) [3] 2 � p

(9) [3] 1 :p

(10) [9] 1 p

(14) [8] 0 p

closed with (4; 10)

,
,, l

ll
(15) [8] 1 p

closed with (4; 10)

Figure 2.2: Tableau proof of :p � (� p ^ :p) using the method of Surma and Carnielli.

F (� ^  )
F � F  

F (� ^  )
F � F  

T �

F (� ^  )
F � F  

T  

Table 2.5: Symmetric and asymmetric tableau rules.

Note that in �rst-order logics lemma generation is not always advantageous, since it may enlarge
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the search space.

2.5 Universal Formulae

Formulae, and in particular equalities, have often to be applied more than once in order to close a
branch, each time with di�erent substitutions for the free variables occurring in them. A typical
example is the associativity axiomAs = (8x)(8y)(8z)[(x �y) �z � x � (y �z)] from group theory. In
most cases it has to be applied several times with di�erent instantiations of x, y and z to prove
even simple theorems of group theory.

In semantic tableaux the mechanism to do so usually is to apply the 
-rule more than once to
As and thus generate several instances of As, each with di�erent free variables substituted for
x, y and z.

Consequently, to prove a theorem the 
-limit q has to be at least as high as the maximal number
of necessary applications of the same formula with di�erent substitutions for the free variables it
contains. However, the higher the limit q is, the more branches have to be closed and the bigger
the tableau becomes. Moreover, it is quite di�cult to choose the limit q appropriately, because
one does not know how many instances of 
-formulae will be needed.

For equalities, the problem could be avoided if they were not allowed to occur nested in other for-
mulae, but appeared only on the top-level. We did, however, not want to employ this restriction
in order to allow for a natural formulation of problems. Nevertheless, the problem can at least
partly be solved if one is able to recognize formulae (and in particular equalities) whose universal
closure is strongly implied by the formulae on the branch. These are \locally universal"; they
can be used repeatedly with di�erent substitutions for the variables they contain.

De�nition 2.16 (Strong Consequence Relation) Let �;  be �rst-order formulae;

� j=�  

if for all interpretations I and for all variable assignments �:

if valI;�(�) = true then valI;�( ) = true

Remark 2.17 Note, that for example p(x) 6j=� (8xp(x)), but p(x) j= (8xp(x)), where \ j=" deno-
tes the weak consequence relation.

De�nition 2.18 (Universal Formula) Suppose � is a formula on some tableau branch B. � is
universal on B with respect to the variable x if

B j=� (8x�) :5

Now, we can use a new rule for closing branches that takes this de�nition into account:

De�nition 2.19 (Closed Tableau with Universal Formulae) A tableau consisting of the k
branches B1; : : : ; Bk is closed if there are

1. a substitution �,

2. literals li; �li 2 Bi, and

5 In the sequel, we will often refer to a formula � which is universal on a branch B w.r.t. a variable x just by
\the universal formula �", and to the variable x by \the universal variable x" (if the context is clear).
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3. substitutions �i, such that

(a) li�i and �li�i are complementary, and

(b) if �i(x) 6= �(x) then both li and �li are universal on Bi w.r.t. x.

With this de�nition of closed tableaux it is possible that a tableau is closed after less applications
of expansion rules than in the standard free-variable tableau calculus. Thus, the calculus is
strengthened.

The problem of recognizing universal formulae is of course undecidable in general. However, a
wide and important class can be recognized quite easily: assume there is a sequence of tableau
rule applications that does not contain a disjunctive rule (i.e., the tableau does not branch). All
formulae that are generated by this sequence are universal w.r.t. the free variables introduced by
the sequence. Substitutions for these variables can be ignored, since the corresponding inference
steps could be repeated arbitrarily often to generate new instances of the universal variables
(without generating new branches).

More formally, we use the following theorem:

Theorem 2.20 A formula � on a branch B is universal w.r.t. x if � was put on B by either

1. applying a 
-rule and x is the free variable introduced by the application of this rule, or

2. applications of non-branching rules to a formula  2 B, where  is universal on B w.r.t. x.

Recognizing the above subset of universal formulae is implemented in 3T
AP by keeping a list of

in this sense universal variables for each formula.

2.6 Equality Handling

2.6.1 Introduction

One of the main goals of Automated Deduction is to e�ciently handle �rst-order logic with
equality. In this section we describe how \mixed" E-uni�cation (Beckert, 1994b), a combination
of the classical \universal" E-uni�cation and \rigid" E-uni�cation (Gallier et al., 1992), can be
used to e�ciently handle equality in free variable and in universal formula semantic tableaux
(see Section 2.5).

A more detailed description of this new approach can be found in (Beckert, 1993b), including
proofs for its soundness and completeness, examples, and an analysis of the shortcomings in
previous approaches (the important results, but without proofs, can be found in (Beckert, 1994b;
Beckert, 1994a), too).

2.6.2 Syntax and Semantics of Equality

Let us assume that the set R of predicate symbols of the �rst-order language L contains a binary
predicate symbol for equality which we denote by � such that no confusion with the meta-level
equality predicate = can arise. We stress that there is no restriction where equalities can occur
in formulae.

We use sequences of natural numbers to denote positions in terms; tp is the subterm at position p
in the term t (e.g. f(a; b)h2i = b).
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For the sake of simplicity and without any loss of generality, we use a slightly non-standard
notion of substitutions: They have to be idempotent and of �nite domain; Subst is the set of
these substitutions. id is the empty substitution. The application of a substitution � to a term t

is denoted by t�; if a substitution is applied to a quanti�ed rule, equality, or term, the bound
variables are never instantiated. � denotes the specialization relation on substitutions: � � � i�
there is a �0 such that �0 � � = � .

A model M = hD; Ii (with domainD and interpretation I) is called normal i� �I is the identity
relation on D. A model is called canonical if, moreover, for every d 2D there is a term t in L

such that tI = d. The following theorem shows that canonical models are analogous to Herbrand
models.

Theorem 2.21 If a set S of universal sentences is satis�ed by a normal model, then there is
also a canonical model that satis�es S.

2.6.3 Equality Handling by Mixed E-Uni�cation

Constructing a tableau for a �rst-order formula � can be considered a search for a model of �.
Therefore, as part of the tableau calculus, methods have to be employed for: (i) adding formulae
that are valid in a model M of � to the tableau branch that corresponds to M (i.e., that is a
partial de�nition of M), and (ii) recognizing formulae or sets of formulae that are unsatis�able;
these formulae close branches on which they occur.

In canonical models, on the one hand, additional formulae are valid and, thus, have to be added
to a branch: If P (a) and a � b are true in a canonical model M, then M is a model of P (b),
too. On the other hand, there are additional inconsistencies: :(a � a) is false in all canonical
models.

Accordingly, there are two techniques for handling equality in semantic tableaux: The �rst and
more straightforward method is to de�ne additional tableau rules for expanding branches by all
the formulae valid in the canonical models they (partially) de�ne; then very simple additional
closure rules can be used (Je�rey, 1967; Reeves, 1987; Fitting, 1990). The second possibility is
to use a more complicated notion of closed tableaux: E-uni�cation is used to decide whether a
tableau branch is unsatis�able in canonical models and, therefore, closed. Then, no additional
expansion rules are needed.

The common problem of all the methods for handling equality, that are based on additional
tableau expansion rules, is that there are virtually no restrictions on the \application" of equa-
lities. This leads to a very large search space; even very simple problems cannot be solved in
reasonable time.

It is di�cult to employ more elaborate and e�cient methods for handling equality in semantic
tableaux, such as completion-based approaches, because it is nearly impossible to transform
these methods into (su�ciently) simple tableau expansion rules. Contrary to that, arbitrary
algorithms can be used, if the handling of equality is reduced to solving E-uni�cation problems.

2.6.4 Universal, Rigid and Mixed E-Uni�cation

The intention of de�ning di�erent versions of E-uni�cation is to allow equalities to be used
di�erently in a proof: in the universal case the equalities can be \applied" several times with
di�erent instantiations for the variables they contain; in the rigid case they can be \applied"
more than once but with only one instantiation for each variable they contain; in the mixed case
there are both types of variables. To distinguish the di�erent types of variables syntactically,
equalities can be explicitly quanti�ed:
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De�nition 2.22 A mixed E-uni�cation problem

hE; s; ti

consists of a �nite set E of equalities of the form (8x1) � � � (8xn)(l � r) and terms s and t.6

A substitution � is a solution to the problem, i�

E� j= (s� � t�) ;

where the free variables in E� are \held rigid", i.e. treated as constants.7

A mixed E-uni�cation problem hE; s; ti is called purely universal if there are no free variables
in E, and purely rigid if there are no bound variables in E.

The major di�erences between this de�nition and that generally given in the (extensive) literature
on (universal) E-uni�cation are:

1. The equalities in E are explicitly quanti�ed (instead of considering all the variables in E

to be implicitly universally quanti�ed).

2. In di�erence to the \normal" notion of logical consequence, free variables in E� are \held
rigid".

3. The substitution � is applied not only to the terms s und t but as well to the set E.

Example 2.23 All substitutions are solutions to the purely universal problem

hf(8x)(f(x) � x)g; g(f(a); f(b)); g(a; b)i :

The (very similar) purely rigid problem

hf(f(x) � x)g; g(f(a); f(b)); g(a; b)i

has no solution.
fy=bg is a solution to the mixed problem

hf(8x)(f(x; y) � f(y; x))g; f(a; b); f(b; a)i ;

since the variable x is quanti�ed, it does not have to be instantiated by the uni�er.

For handling equality in semantic tableaux, several E-uni�cation problems have to be solved
simultaneously (one for each branch):

De�nition 2.24 A �nite set

fhE1; s1; t1i; : : : ; hEn; sn; tnig (n � 1)

of mixed E-uni�cation problems is called simultaneous E-uni�cation problem.

A substitution � is a solution to the simultaneous problem i� it is a solution to every component
hEk; sk; tki (1 � k � n).

Since purely universal E-uni�cation is already undecidable, (simultaneous) mixed E-uni�cation
is|in general|undecidable as well. Is is, however, possible to enumerate a complete set of
most general uni�ers. (Simultaneous) purely rigid E-uni�cation is decidable (Gallier et al., 1992;
Goubault, 1993).8

6 Without making a real restriction, we require the sets of bound and free variables in the problem to be disjoint.
7 This is equivalent to E� j=� (s� � t�).
8 Purely rigid E-uni�cation is NP-complete (Gallier et al., 1992); simultaneous purely rigid E-uni�cation is
NEXPTIME-complete (Goubault, 1993).
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2.6.5 Extracting E-Uni�cation Problems from Tableaux

The equality theory de�ned by a tableau branch B consists of the equalities on B; they are (ex-
plicitly) quanti�ed w.r.t. to the variables w.r.t. which they can be recognized as being universal:

De�nition 2.25 Let B be a tableau branch. The set E(B) of equalities consists of the equalities

(8x1) � � � (8xn)(s � t)

such that

1. T (s � t) is formula on B,

2. T (s � t) is recognized as being universal w.r.t. fx1; : : : ; xng on B.
9

There are uni�cation problems for each inequality on a branch B and each pair of atoms that
potentially close B, i.e., atoms with the same predicate sign and complementary truth value
signs:

De�nition 2.26 Let B be a tableau branch. The set P(B) of uni�cation problems consists
exactly of the sets of term pairs:

fhs1�; t1�i; : : : ; hsn�; tn�ig

for each pair
T P (s1; : : : ; sn);F P (t1; : : : ; tn) 2 B

of (potentially closing) atoms such that P 6= �, and

fhs�; t�ig

for each inequality
F (s � t) 2 B :

The substitution � = fx1=y1; : : : ; xm=ymg renames all the variables x1; : : : ; xm w.r.t. which both
T P (s1; : : : ; sn) and F P (t1; : : : ; tn) are recognized as being universal (resp. w.r.t. which F (s � t)
is recognized as being universal); y1; : : : ; ym are new variables.

If one of the problems in the set P(B) of uni�cation problems of a branch B has a solution �

(w.r.t. the equalities E(B)), B� is unsatis�able in canonical models; therefore the branch B

is closed under the substitution �. The pair of potentially closing atoms corresponding to the
solved uni�cation problem has been proven to actually be complementary; or the corresponding
inequality has been proven to be inconsistent (provided the uni�er is applied to the tableau).

The following is a formal de�nition of the simultaneous mixed E-uni�cation problems that have
to be solved to close a tableau:

De�nition 2.27 A universal formula tableau T with branches B1; : : : ; Bk is closed i� in the sets
of uni�cation problems P(Bi) there are elements

fhsi1; ti1i; : : : ; hsini ; tiniig 2 P(Bi)

(1 � i � k) such that there is a solution to the simultaneous mixed E-uni�cation problem

f hE(B1); s11; t11i; : : : ; hE(B1); s1n1; t1n1i;
...

...
...

hE(Bk); sk1; tk1i; : : : ; hE(Bk); sknk; tknki g

(see De�nitions 2.25 and 2.26).

9 An arbitrarymethod for recognizing universal formulaemay be used; 3TAP uses the method from Theorem 2.20.
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Actually, it is not necessary to split pairs

T P (s1; : : : ; sn) and F P (t1; : : : ; tn)

of potentially complementary atoms into n term pairs

hs1; t1i; : : : ; hsn; tni

that have to be uni�ed. Instead the single problem

hP (s1; : : : ; sn); P (t1; : : : ; tn)i

could be used. That, however, is ine�cient, because the n simpler problems can be solved
independently.

Example 2.28 As an example we use the tableau from Figure 2.3. Its left branch is deno-
ted by B1 and its right branch by B2. If the method for recognizing universal formulae from
Theorem 2.20 is used, E(B2) contains the equalities

b � c and (8x)(g(f(x)) � x) :

E(B1) contains in addition the equality

g(x2) � f(x2) :

Both P(B1) and P(B2) contain the set

fhg(g(a)); ai; hb; cig :

P(B2) contains in addition the set
fhx2; aig :

The tableau is closed (De�nition 2.27), because the substitution � = fx2=ag is a solution to the
simultaneous mixed E-uni�cation problem

fhE(B1); g(g(a)); ai;
hE(B1); b; ci;

hE(B2); x2; aig :

2.6.6 Solving Mixed E-Uni�cation Problems

The Unfailing Knuth-Bendix-Algorithm (UKBA) (Knuth & Bendix, 1970; Bachmair et al., 1989)
with narrowing (Nutt et al., 1989), that is generally considered to be the best algorithm for uni-
versal E-uni�cation and has often been implemented, cannot be used to solve rigid or mixed
problems. Completion-based methods for rigid E-uni�cation have been described in (Gallier
et al., 1992; Goubault, 1993). These, however, are non-deterministic and unsuited for implemen-
tation (they have, in fact, never been implemented). In (Beckert & H�ahnle, 1992) a method for
solving mixed E-uni�cation problems has been introduced that does not use completion but is
based on computing equivalence classes.10

The basic idea of our approach|and the main di�erence to the classical unfailing completion
procedure|is that during the completion process free variables are never renamed, even if equa-
lities that have variables in common are applied to each other. In addition, constraints consisting
of a substitution and an order condition are attached to the reduction rules and terms.11

10 This method has been used in all earlier versions of 3T
AP , but it is now substituted by the method described

in the following.
11 In (Chabin et al., 1993) a similar type of constraints is used for E-uni�cation|but only for its purely universal

version. In (Beckert & H�ahnle, 1992) substitutions are used to restrict the validity of terms. For a completion-
based approach, however, this is not su�cient because the validity of reduction rules depends on the ordering
on terms.
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(1) T (8x)((g(x) � f(x)) _ :(x � a))

(2) T (8x)(g(f(x)) � x)

(3) T (b � c)

(4) T P (g(g(a)); b)

(5) T :P (a; c)

(6) F P (a; c)

(7) T (g(f(x1)) � x1)

(8) T ((g(x2) � f(x2)) _ :(x2 � a))

(9) T (g(x2) � f(x2))
"
"
"" b

b
bb

(10) T :(x2 � a)

(11) F (x2 � a)

Figure 2.3: A free variable tableau for the given formulae (1) to (5). By applying the stan-

dard free variable tableau rules, formula (6) is derived from (5), (7) from (2), (8) from (1),

(9) and (10) from (8), and (11) from (10). Formula (7) is recognized as being universal
w.r.t. x by the method from Theorem 2.20.
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2.6.6.1 Constraints

For di�erent substitutions �, the completion of E� contains di�erent reduction rules. Ne-
vertheless, a single completion can be computed for all E�, if constraints are attached to the
rules to restrict their validity to certain (sets of) substitutions.

The �rst part of the constraints we attach to reduction rules and terms is an order condition; it
expresses a restriction on the ordering of terms w.r.t. the reduction ordering �LPO.

The reduction ordering �LPO on terms is an arbitrary but �xed lexicographic path ordering
(LPO) (Dershowitz, 1987) that is total on ground terms.

De�nition 2.29 (Lexicographic Path Ordering) A total ordering >F on the set of function
symbols induces a lexicographic path ordering on terms: s �LPO t, where s = f(s1; : : : ; sm) and
t = g(t1; : : : ; tn), i�

1. si �LPO t or si = t for some 1 � i � m, or

2. f >F g and s �LPO tj for all 1 � j � n, or

3. f = g, (s1; : : : ; sn) ��LPO (tn; : : : ; tn) and s �LPO ti for all 1 � i � n.

��LPO is the lexicographic ordering on term tupels induced by �LPO, i.e.,

hs1; : : : ; sni ��LPO ht1; : : : ; tni

there is an 1 � i � n, such that sj = tj for all 1 � j < i and si �LPO ti.

Example 2.30 A reduction system equivalent to E� = fx � yg� either consists of the rule
(x! y)� or the rule (y ! x)�, depending on which of the terms �(x) and �(y) is greater w.r.t.
the LPO used.

The expression x � y is the natural choice for a restriction such as \the term substituted for x
has to be greater than that substituted for y":

De�nition 2.31 Order conditions are composed of the atomic order conditions s � t (s and t
are terms) using the logical connectives :, ^, _ and �, and the constants true and false.

Ground order conditions, i.e., order conditions that contain no variables, are assigned a truth
value by interpreting the (predicate) symbol � by a (�xed) LPO.

A (non-ground) order condition O is true i� O� is true for all ground substitutions �, false (or
inconsistent) i� its negation :O is true, and consistent i� it is not false.

Since LPOs are total on ground terms, the truth value of ground order conditions is well de�ned;
non-ground order conditions are (similar to �rst order formulae) either consistent or inconsistent,
and may be true or false.

Example 2.32 The order condition f(a) � a is true; (x � y) ^ (y � x) is false; and x � y is
consistent. The truth value of a � b depends on the LPO used to interpret �.

In some cases, order conditions are not su�cient for describing the set of substitutions for which
a reduction rule is valid:

Example 2.33 Suppose E = ff(b) � a; f(x) � cg; the reduction rule c! a is part of the com-
pletion of E� i� �(x) = b (then the equalities are a critical pair).
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One could use the formula x � t to express conditions of the form \x has to be substituted by
(an instance of) t", if the predicate symbol � were allowed in order conditions. That, however,
would make the handling of conditions unnecessarily complicated. Instead the substitution fx=tg
itself becomes part of the constraint:

De�nition 2.34 A constraint c = h�;Oi consists of a substitution � and an order condition O
such that the variables in the domain of � do not occur in O, i.e. O = O�.

A substitution � satis�es a constraint c = h�;Oi i� � is a specialization of � and O� is true.
� satis�es a set C of constraints i� there is a c 2 C satis�ed by � .

Sat(c) (resp. Sat(C)) is the set of substitutions satisfying the constraint c (resp. the set C of
constraints).

Note, that sets of constraints implicitly represent disjunctions. To simplify the handling of
constraints, we give some additional de�nitions and notations:

De�nition 2.35 A constraint c1 subsumes a constraint c2 i� the substitutions satisfying c2
satisfy as well c1: Sat(c2) � Sat(c1).

A constraint c�1 that is satis�ed by the substitutions not satisfying c is called negation of c:
Sat(c�1) = Subst n Sat(c).

A constraint c1 u c2 that is satis�ed by the constraints satisfying both c1 and c2 is called a
combination of c1 and c2: Sat(c1 u c2) = Sat(c1) \ Sat(c2).

The empty constraint � = hid; truei consists of the empty substitution id and the order condi-
tion true; it is satis�ed by all substitutions.

There are e�cient algorithms for computing negations and combinations of constraints. Since
a constraint c1 subsumes a constraint c2 i� c�11 u c2 is inconsistent, these are an important
part of the implementation. Deciding whether a constraint is satis�able is NP-hard (Comon,
1990). The problem can however simpli�ed considerably: The order condition (s � x) ^ (x � t)
is inconsistent if there is no term between s and t (w.r.t. the LPO used). Without causing any
harm, we can do without checking for such inconsistencies, that are very di�cult to detect (see
Section 5.13.10).

2.6.6.2 Constrained Terms and Reduction Rules

Since|syntactically|constrained reduction rules can be considered to be constrained terms,12

it su�ces to de�ne the latter:

De�nition 2.36 A constrained term t = (8�x)(t� c) is a term t with a constraint c = h�;Oi
attached to it such that t� = t.13 It can be universally quanti�ed w.r.t. some or all of the variables
it contains (the quanti�cation includes the constraint).

On �rst sight quanti�ed terms may look strange, but, later on, a constrained term t is used to
express the fact that it can be derived from another term t0. Therefore, it is important to be
able to make a distinction between rigid and non-rigid (quanti�ed) variables.

Using constraints, for every equality an equivalent set of reduction rules can be constructed; even
for those that cannot be oriented without constraints.

12 Over a di�erent signature that contains! as a function symbol.
13 The symbol� means \if".
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Example 2.37 The equality f(x) � g(y) cannot be oriented without constraints, since (i) its
instance f(g(a)) � g(a) has to be oriented from left to right, while (ii) its instance f(a) � g(f(a))
has to be oriented from right to left. The constrained rules f(x) ! g(y) � hid; f(x) � g(y)i and
g(y) ! f(x)� hid; g(y) � f(x)i, however, de�ne the same derivability relation as the equality
f(x) � g(y).

Other typical examples are the constrained rules x! y � hid; x � yi and y ! x� hid; y � xi,
that correspond to the equality x � y; and the constrained rule

(8x)(8y)(f(x; y) ! f(y; x) � hid; f(x; y) � f(y; x)i) ;

that is equivalent to

(8x)(8y)(f(x; y) � f(y; x)) :

The possibility to orient every equality justi�es the following de�nition, that assigns to each set
of equalities a constrained reduction system. Since it will be the starting point of the completion
process, it is called the initial system:

De�nition 2.38 Let E be a set of equalities. Then

f(8�x)(s! t� hid; s � ti) j (8�x)(s � t) 2 E or (8�x)(t � s) 2 Eg

is the initial constrained reduction system assigned to E.

A constrained reduction system R de�nes derivability relations )
R

and V
R

on the set of con-
strained terms:

De�nition 2.39 Let R be a constrained reduction system and t = (8�x)(t� ct) a constrained
term. I� there is a rule r = (8�y)(l ! r� cr) in R, such that

1. fx1; : : : ; xng \Var(r) = ; and fy1; : : : ; ymg \Var(t) = ;,14

2. p is a position in t where tjp is not a variable unless tjp = l = xi,

3. tjp and l are (syntactically) uni�able with an MGU �,

4. the combination cnew = h�;Onewi = ct u cr u h�; truei is consistent,

then t)
R
t0, where t0 = (8�x)(8�y)((t[p=r])�� cnew).15

I� in addition (i) tjp = l�, and (ii) cnew subsumes ct, then tV
R

t0. We call the triple hr; p; �i
a justi�cation for t)

R
t0 (resp. tV

R

t0).

The intuitive meaning of (8�x)(s� cs))R
(8�y)(t� ct) is: there is a substitution � such that

t� can be derived from s� using a rule from R, and � satis�es the constraints cs, ct and that
attached to the rule.

The main di�erence between the two derivability relations )
R

and V
R

(which is a sub-relation
of )

R
) is that the derivation tV

R

t0 is \reversible", if the order on terms is not taken into
concern. The derived term t0 can|in combination with the rules in R|take on the functions
of t. In contrary to that, a derivation t)

R
t0 is \irreversible" (provided t 6V

R

t0).

14 This is not a real restriction, since the bound variables can be renamed.
15 If the constraint cnew expresses restrictions on bound variables that do not occur in t[p=r], these restrictions

can be omitted. For example, (8x)(a! b� hid; x � ci) can be reduced to a! b� �.
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Example 2.40 Some examples for derivations and their justi�cation:

(g(a; c)� �) V (g(a; b)� �) { h(c! b� �); h2i; idi
(f(c) � �) V (c� �) { h((8x)(f(x) ! x� �); hi; idi

(a� �) ) (y � hfx=ag; a � yi) { h(x! y � hid; x � yi); hi; fx=agi
(f(c) � �) ) (c� hfx=cg; truei) { h(f(x) ! x� �); hi; fx=cgi

It is useful to de�ne a subsumption relation on constrained terms. It is similar to the relation
between a term (without constraint) and its instances:

De�nition 2.41 Let t1 = (8�x)(t1 � c1) and t2 = (8�y)(t2 � c2) be constrained terms. t1 sub-
sumes t2 i� (i) t2 is an instance of t1, and (ii) the combination c1 u h�; truei subsumes the
constraint c2 (Def. 2.35).

Example 2.42 The constrained term a� � subsumes a� hfx ag; truei. If b �LPO a, then
the constrained rule x! a� hid; x � ai subsumes the rule b! a� hfx=bg; truei.

2.6.6.3 Completion of Constrained Reduction Systems

Goal of the Completion The following transformation rules de�ne a method for completing
constrained reduction systems. If these rules are applied repeatedly (in a fair way) to an initial
system R = R0, a system R1 is approximated. It represents the (classical) completions of all
the di�erent instances of E.

In general, the instances ofR1 will not be irreducible and, therefore, not canonical. Nevertheless,
the relation)

R

1 will be con
uent (in a sense clari�ed in Lemma 2.57), and thus have the feature
crucial for computing normal forms of constrained terms and solving E-uni�cation problems.

The following example shows that it would not make sense to expect the instances to be canonical:

Example 2.43 None of the transformation rules introduced in the next section can be applied
to the reduction system R1 = ff(x)! c� �; a! b� �g. Its instance ff(a)! c; a! bg is,
nevertheless, not canonical, since it can be simpli�ed to ff(b)! c; a! bg.

The Transformation Rules The rules that have to be applied to complete a reduction system
are presented in form of transformation rules.16

Deletion: A rule that has an inconsistent constraint attached to it can be removed, because it
cannot be applied anyway:

(Del)
R [ f(8�x)(s ! t� c)g

R
c inconsistent

Example 2.44 The rule x! f(x) � hid; x � f(x)i can be deleted, because its constraint
is inconsistent.

Subsumption: A constrained rule that is subsumed by another rule (Def. 2.41) can be removed:

(Sub)
R [ fr; r0g

R [ frg
r subsumes r0

16 The set of constrained rules below the line can be derived from the set above the line if the conditions on the
right are met.
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Equivalence Transformation: A constraint c attached to a reduction rule can be replaced
by a set fc1; : : : ; cng of constraints that|disjunctively connected|are equivalent to c (i.e.
Sat(c) =

S
1�i�n Sat(ci)). Since only a single constraint can be attached to a rule, n copies

of the original rule are generated:

(Equ)
R [ f(8�x)(l ! r � c)g

R [ f(8�x)(l� ! r�� h�;Oi) j h�;Oi 2 Cg

Sat(c) = Sat(C),
C �nite

Though this equivalence rule is not necessary for the completeness of our method, it is
very useful; it allows to transform constraints into a normal form, and thus simplify their
handling signi�cantly.

Example 2.45 The rule f(x; y)! f(a; b)� hid; f(x; y) � f(a; b)i can be replaced by the
two rules f(x; y) ! f(a; b)� hid; x � ai and f(a; y) ! f(a; b)� hfx=ag; y � bi.

Critical Pair Rule, Combination, Simpli�cation: The transformation rules described so
far allow to delete rules or to replace them by new ones without using the derivability
relation )

R
. But, to complete a reduction system, )

R
has to be taken into concern

by applying one rule r2 2 R to another rule r1 2 R. Suppose r1 = (8�x)(s! t� c1),
r2 = (8�y)(l ! r � c2), and the rule r2 can be applied to r1 to derive the rule
r01 = (8�x)(8�y)(snew ! tnew � cnew), i.e., r1 ) r01 with a justi�cation hr2; p; �i. We cannot
just add the new rule r01 to R: Firstly, instances of r01 may be oriented di�erently; we
therefore have to use the two symmetrical versions

rnew1 = (8�x)(8�y)(snew ! tnew � cnew u hid; snew � tnewi)

rnew2 = (8�x)(8�y)(tnew ! snew � cnew u hid; tnew � snewi) :

Secondly, the form of the transformation rule depends on whether (i) r1 V r01 (besides
r1 ) r01) or not,17 and (ii) which side of r1 the rule r2 has been applied to, i.e., whether p
is a position in s or in t.

If r1 V r01, then rnew1 and rnew2 allow|together with r2|all the derivations possible
with r1. If, in addition, r2 has been applied to the right side of r1, one can conclude that
the constraint attached to rnew2 is inconsistent. In that case the transformation is called
simpli�cation (Sim), since r1 can be replaced by the single new rule rnew1:

(Sim)
R

(R n fr1g) [ frnew1g
p in t, r1 VR

r01

Else, if r2 has been applied to the left side of r1, the rule rnew2 cannot be left out, be-
cause the constraint attached to it may be consistent. Such a transformation is called
composition (Com).

(Com)
R

(R n fr1g) [ frnew1; rnew2g
p in s, r1 VR

r01

If r1 6V r01, the new rules cannot replace the old rule r1; it cannot be removed. Nevertheless,
the transformation has to be carried out provided r2 has been applied to the left side of
r1. Then r1 and r2 are a critical pair , and the new rules are needed to make the reduction
system con
uent:

(CP)
R

R [ frnew1; rnew2g
p in s, r1 6VR

r01

In di�erence to the critical pair rule de�ned in (Gallier et al., 1992) the uni�er � is only
applied locally to the new rules (not to the whole system R).

17 That is, r1V r
0

1
with the same justi�cation as r1 ) r

0

1
; whether r1 V r

0

1
with a di�erent justi�cation is not

relevant.
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Example 2.46 Suppose f �LPO c �LPO b �LPO a, and R contains the constrained reduction
rules

r1 = f(c) ! b� �

r2 = b! a� �

r3 = (8x)(f(x)! y � hid; f(x) � yi)
r4 = f(x)! y � hid; f(x) � yi

The simpli�cation rule (Sim) can be applied to r1 and r2 to replace r1 by the single new
rule f(c) ! a� �.

The composition rule (Com) can be applied to r1 and r3 to replace r1 by

y ! b� hid; (f(c) � y ^ y � b)i and b! y � hid; (f(c) � y ^ b � y)i :

The critical pair rule (CP) can be applied to r1 and r4 (note, that in r4 the variable x is
not quanti�ed); the new rules

y ! b� hfx=cg; (f(c) � y ^ y � b)i and b! y � hfx=cg; (f(c) � y ^ b � y)i

have to be added.

Fair Completion Procedures In general, an in�nite number of transformation steps can be
necessary to complete a reduction system. But even if the computation does not terminate, a
completion R1 is approximated, consisting of the persistent reduction rules, that occur in all
but a �nite number of the resulting system. To generate a con
uent reduction systems, certain
fairness conditions have to be met:

De�nition 2.47 R j� R0 means that the constrained reduction system R0 can be derived from R
by applying one of the transformation rules from Section 2.6.6.3.

A transformation procedure speci�es, when supplied with an initial reduction system R0, in
which way (in particular: in which order) the transformation rules are to be applied to generate
a sequence R0 j� R1 j� R2 j� � � � of reduction systems. Then, the reduction system

R1 =

�
Rm if the sequence is of length mS
k�0

T
m�kR

m if the sequence is in�nite

is called the completion of R = R0, and the completion of the set E of equalities if R is the
initial system for E.

A transformation procedure is fair provided:

1. There is no in�nite sequence (ri)i�0 �
S
m�kR

m such that for all i � 0 the rule ri+1 has
been derived from ri by an equivalence transformation.

2. There is no in�nite sequence (ri)i�0 �
S
m�kR

m such for all i � 0 the rule ri+1 subsumes
ri, and ri has therefore been removed.

3. For every persistent critical pair r1; r2 2 R
1 there is an i � 0 such that Ri+1 has been

derived by applying the critical pair transformation rule to r1; r2 2 R
i.

The �rst two fairness conditions are of a more technical nature: Condition 1 avoids in�nite
sequences of equivalence transformations. Condition 2 assures that, if there is an in�nite sequence
of rules subsuming each other, at least one of them is in the completion R1.

Condition 3 is the most important: it assures the application of the critical pair transformation
rule to all persistent critical pairs. It is essential for achieving con
uence of the completion.

Provided, the above fairness conditions are met, arbitrary heuristics can be used to choose the
next transformation rule to apply.
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2.6.6.4 Computing Normal Forms

Normalization Rules Using constrained reduction systems and terms, a term has more than
one normal form|in general an in�nite number of them.

Example 2.48 With R1 = fb! a� �; d! c� �g the constrained term x� � has three nor-
mal forms: a� hfx=bg; truei, c� hfx=dg; truei, and x� � itself.

The above example shows that there can be redundancies in a set of normal forms: the validity
of x� � is not restricted to substitutions � such that �(x) 6= a and �(x) 6= b.

The computation of normal forms is|similar to the completion procedure|presented in form
of transformation rules operating on sets of constrained terms:

De�nition 2.49 To compute the normal forms of a set T of constrained terms, the rules de-
letion (Del), equivalence (Equ), subsumption (Sub), simpli�cation (Sim), and deduc-

tion (Ded) can be applied to T ; the rules depend on a constrained reduction system R:

(Del)
T [ f(8�x)(t� c)g

T
c inconsistent

(Equ)
T [ f(8�x)(t� c)g

T [ f(8�x)(t� � h�;Oi) j h�;Oi 2 Cg

Sat(c) = Sat(C),
C �nite

(Sub)
T [ ft; t0g

T [ ftg
t subsumes t0

(Sim)
T [ ftg

T [ ft0g
tV

R
t0

(Ded)
T [ ftg

T [ ft; t0g
t)

R
t0; t 6V

R

t0

Fair Normalization Procedures As for completion, an in�nite number of normalization steps
can be necessary; similar fairness conditions have to be met. A set T 1 of normal forms is
approximated, consisting of the persistent terms, that occur in all but a �nite number of the sets.

De�nition 2.50 T j� T 0 means that the set T 0 of constrained terms can be derived from T by
applying one of the normalization rules from De�nition 2.49.

A normalization procedure speci�es, when supplied with an initial set T 0 of constrained terms
and a reduction system R, in which way the rules are to be applied to generate a sequence
T 0 j� T 1 j� T 2 j� � � � of sets of constrained terms. Then, the set

T 1 =

�
T m if the sequence is of length mS
k�0

T
m�k T

m if the sequence is in�nite

is called the set of normal forms of T = T 0 (w.r.t. R).

A normalization procedure is fair provided:

1. There is no in�nite sequence (ti)i�0 �
S
m�k T

m such that for all i � 0 the term ti+1 has
been derived from ti by an application of equivalence (Equ).
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2. There is no in�nite sequence (ti)i�0 �
S
m�k T

m such that for all i � 0 the term ti+1
subsumes ti, and ti has therefore been removed.

3. For every persistent term t 2 T 1 that a rule r 2 R can be applied to, there is an i � 0
such that T i+1 has been derived by applying r to t 2 T i.

The �rst two fairness conditions are similar to that of fair completion procedures (Def. 2.47).
Condition 3 assures that whenever possible deduction and simpli�cation are applied to persistent
terms.

Combining Completion and Normalization Although a completion R1 may be in�nite, one
has to abandon the computation of further reduction rules at a certain point, if completion and
normalization of terms are separated. It is very di�cult to decide when this point is reached.
Therefore, it is better to combine the completion and the normalization process:

De�nition 2.51 A completion and normalization sequence (hRi; T ii)i�0 consists of constrained
reduction systems Ri and sets T i of constrained terms, where (for i � 0) either (i) Ri+1 has been
derived from Ri by applying a transformation rule (Sec. 2.6.6.3) and T i = T i+1; or (ii) T i+1

has been derived from T i by applying a normalization rule (Def. 2.49) and Ri = Ri+1.

Of course, when completion and normalization are combined, the fairness conditions (Def. 2.47
and 2.50) still have to be met.

2.6.6.5 Solving an E-Uni�cation Problem

Now we can solve an arbitrary mixed E-uni�cation problem hE; s; ti by completing the initial
reduction system R0 for E and computing the sets of normal forms of the constrained terms
s� � and t� �. Using these normal forms, sets Ci of constraints can be computed that are
satis�ed by solutions to the uni�cation problem. These approximate a set C such that Sat(C) is
a complete set of uni�ers:

De�nition 2.52 Let hE; s; ti be a mixed E-uni�cation problem, R0 the initial system for E,
S0 = fs� �g, T 0 = ft� �g, and (hRi;Sii)i�0 and (hRi; T ii)i�0 fair completion and normali-
zation procedures. Then, for (i = 0; 1; 2; : : :;1) the sets Ci(hE; s; ti) consist of the constraints

fc1 u c2 u h�; truei j (8�x)(r1 � c1) 2 Si, (8�y)(r2 � c2) 2 T i,
r1 and r2 are (syntactically) uni�able with an MGU � g

C(hE; s; ti) denotes their union
S
i�0 C

i(hE; s; ti).

2.6.6.6 Soundness, Completeness, Con
uence

In this section we state soundness and completeness results for our method. Due to space
restrictions the proofs are omitted; they can be found in (Beckert, 1993b).

Theorem 2.53 (Soundness) Let hE; s; ti be a mixed E-uni�cation problem. A substitution �
satisfying one of the constraints in C(hE; s; ti) (Def. 2.52) is a solution to hE; s; ti.

Since our aim is to �nd most general uni�ers (MGUs), a subsumption relation on substitutions has
to be de�ned. One could use the specialization relation �. But, for solving mixed E-uni�cation
problems, the subsumption relation �E is better suited:18

18 A similar subsumption relation|for purely rigid problems|has been de�ned in (Gallier et al., 1992).
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De�nition 2.54 Let E be a set of equalities. The subsumption relation �E is de�ned on the set
of substitutions by: � �E � i� there is a substitution �0 such that E� j= (�0 � �)(x)Gl(� )(x) for
all variables x, where the free variables in E� are held rigid.

Theorem 2.55 (Completeness) Let hE; s; ti be a mixed E-uni�cation problem. The set

Sat(C(hE; s; ti))

of uni�ers is ground-complete w.r.t. the subsumption relation �E (Def. 2.54), i.e., for every
ground uni�er � of hE; s; ti there is a substitution � 2 Sat(C(hE; s; ti)) such that � �E �.

A ground-complete set of uni�ers w.r.t. the relation � can be computed by inverting the con-
strained rules in a completion R1 for E (i.e., by changing their orientation, not the validity
of their constraints), and applying the inversion to the uni�ers in Sat(C(hE; s; ti)). Computing
these additional solutions can be necessary|in theory|to �nd solutions to a simultaneous E-
uni�cation problem by combining solutions to its components. Fortunately, in practice this turns
out to be very rarely the case, in particular in the semantic tableau framework.
�
)
R

1 is in general not well founded. Therefore, our method is only a semi-deciding procedure
for uni�ability|even if the completionR1 is �nite (it is an open problem, whether

�
)
R

1 is well
founded for purely rigid E-uni�cation problems). The following example shows that, in addition,
�
)
R

1 cannot be expected to be con
uent:

Example 2.56 Supposed there are rules f(a) ! a� � and f(b) ! b� � in R1. Then from
the constrained term s = f(x) � � terms t1 = a� hfx=ag; truei and t2 = b� hfx=bg; truei can
be derived (i.e. s)

R

1 t1 and s)R

1 t2).

If )
R

1 were con
uent, there would have to be a term derivable from both t1 and t2. That would
not make any sense but contradicts soundness.

However, the derivability relation
�
)
R

1 can be proven to be \weak" con
uent (the proof of
Theorem 2.55 is based upon that):

Lemma 2.57 If R1 is a fair completion, s, t1 and t2 are constrained terms such that

1. s
�
)
R

1 t1 and s
�
)
R

1 t2,

2. the combination c1 u c2 is consistent,

then there are constrained terms u1 and u2, such that

1. t1
�
)
R

1 u1 and t2
�
)
R

1 u2,

2. u1 and u2 have a common instance.

2.7 Many-Valued Tableaux Using Sets-As-Signs

A closer inspection of the proof trees in Figure 2.2 reveals that all unsigned formulae in the tree
on the left occur also in the tree on the right and at the same position: the tree on the left is
isomorphic to a subtree of the tree on the right. Inspection of other examples shows that there is
always a very high degree of redundancy in the trees corresponding to the various non-designated
truth values.
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Consider, for example, the signed formula 2 � �. Application of the corresponding tableau
rule after Surma and Carnielli yields two new branches containing the formulae 0 � and 1 �

respectively. Encounter of such a formula during a proof, however, does not give rise to any
logical reason to split the proof tree at once into the two cases determined by the extensions of
the rule. If we were able to express the more complex assertion � has either truth value 0 or truth
value 1 with a single signed formula we could avoid the splitting. Hence, our idea is to increase
the expressivity of the sign language in order to be able to state more complex conditions like
that. Perhaps the most natural thing to do is to admit subsets of the set of truth values as signs.

De�nition 2.58 (Base Set of Signs) Let �S = ffk1; : : : ; kmgj fk1; : : : ; kmg � Ng = 2N be the
base set of signs.

Here we assume that the set of signs SL in a logic L always obeys

ff1g; : : :; fkgg � SL � �S (2.2)

We need the left part of equation (2.2), because otherwise unsound rules can be stated. In
(H�ahnle, 1992c) a more general condition that is su�cient for soundness is given.

Example 2.59 Let us �x the set of signs as

S = ff0 g; f1 g; f2 g; f0; 1g ; f1; 2g g

We can express the assertion that � has either truth value 0 or truth value 1 with the signed
formula f0; 1g �. An equivalent formulation would be to say that � cannot take on truth value 2,
hence we need to build only one tableau proof tree for each proof.

To compute the tableau rules corresponding to signed formulae of the form S � we must, similar
as before, �nd a cover for all entries in the truth table of F that are a member of S and then
minimize the resulting expression. The di�erence to the former approach is that extensions in
which formulae with generalized signs do occur cover more than one entry in general.

For example, to compute the rule with premise f0; 1g (� ^  ) we have to cover all entries in the
truth table of ^. The minimal rule that does the job would be

f0; 1g (� ^  )
f0; 1g � f0; 1g 

The rule for f1g (� ^  ) would be

f1g (� ^  )
f1; 2g � f1g �

f1g f1; 2g 

which is much simpler than Carnielli's rule for the same premise on page 20.

Example 2.60 We show that `S :p � (� p ^ :p) holds in the tableau system corresponding to
the signs from Example 2.59 (it is an instructive exercise to compute the missing tableau rules).
The same fact was proven in Example 2.15. Note that the single tree required now has exactly
the size of the smaller of the two trees before.
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(1) [�] f0; 1g (:p � (� p ^ :p))

(2) [1] f2g :p

(3) [1] f0; 1g (� p ^ :p)

(4) [2] f0g p

(5) [3] f0; 1g � p

(6) [5] f2g p

closed with (4; 6)

�
�
�� Q

Q
QQ

(7) [3] f0; 1g :p

(8) [7] f1; 2g p

closed with (4; 8)

Note, however, that minimal tableau rules using sets-as-signs need not to be unique (see (H�ahnle,
1992c) for examples).

Quanti�er rules for many-valued logic are surprisingly simple if only certain signs are used. We
de�ne the following abbreviations for signs:

<i = f0 ; : : : ; i� 1g for i 2 N

>i = fi + 1; : : : ; n� 1g for i 2 N

For these signs we get the usual 
- and �-rules, with the component rules as stated in Table 2.7.

If we ask for singleton sets-as-signs we get the rules from Table 2.6. Note, however, that both
rules for singleton signs must be applied an inde�nite number of times to its premise in order to
guarantee completeness. In this sense, they have a 
-
avour, although they are not of 
 shape.

fig (8x)�(x)

>i�1 �(t)

fig �(c)

fig (9x)�(x)

<i+1 �(t)

fig �(c)

Where c is a new parameter and t is any term.

Table 2.6: Tableau rules for quanti�ers with singleton signs.

Summary

Theorem 2.61 (Completeness) Let � be a �rst-order formula. If � is a tautology then there
is a closed tableau with root N� D�, provided for the set of signs S used in the tableau rules holds

that N �D 2 S �
S
i2Nf >i ; <i ;figg and (2.2). If � is propositional we need only condition

(2.2).
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(t)

>i (8x)�(x) >i �(t)

<i (9x)�(x) <i �(t)

� �(t)

<i (8x)�(x) <i �(c)

>i (9x)�(x) >i �(c)

Table 2.7: 
 and � component rules.

Theorem 2.62 (Soundness) Let � be a �rst-order formula. If there is a closed tableau with
root N� D� then � is a tautology, provided (2.2) holds for the set of signs S used in the tableau
rules.



3 Syntax of Knowledge Bases

3.1 Parts of a Knowledge Base

3T
AP 's input �les (called knowledge bases) consist of four major parts: the sort declarations,

signature de�nitions, the axioms, and the theorems. These are described in the following section.
Comments (Section 3.5) may be inserted at any place into an input �le.

A formal de�nition of 3TAP 's input language is given in Table 3.1. For ease of understanding it is
presented by a mixture of regular expressions and a context-free grammar (similar to extended
Backus-Naur-form). Lowercase words denote lexems (terminals) and upper case words are used
for non-terminals. Characters in quotes, e.g. '<', stand for themselves. Anything within square
brackets [: : :] is optional. The operator � is the Kleene-hull, i.e. a� could be expanded to the
empty word or any �nite sequence of as.

3.2 Sorts and Sort Declarations

The sort declaration may be omitted in the propositional case. For one-sorted �rst-order problems
at least one sort has to be de�ned, e.g. top. The top sort is recommended for that case since

the output utilities, which may be used to visualize a 3T
AP proof, supply an option to omit that

sort.

Remark 3.1 Please note, that the top sort is not prede�ned. It has to be declared like any
other sort.

The <-notation is used to de�ne a sort hierarchy. The symbol < may be read as \is subsort of".
The sortname on the left side of < must not already be de�ned, the sortname on the right side
must be de�ned. Otherwise the compiler will print an error message.

From a theoretical point of view it would be possible to use a �nite meet-semilattice of sorts since

a unique most general uni�er exists for such hierarchies. In 3T
AP , however, we are restricted to

tree-shaped sort hierarchies.

Example 3.2 The following declaration de�nes the sort hierarchy shown in Figure 3.1.

sort fields.

sort real < fields.

sort complex < fields.

sort rational < real.

42
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KNOWLEDGE BASE ::= ( DECLARATION )�

( AXIOMS AND THEOREMS )�

DECLARATION ::= SORT DECLARATION
j PREDICATE DECLARATION
j CONSTANT DECLARATION
j FUNCTION DECLARATION
j VARIABLE DECLARATION
j COMMENT

SORT DECLARATION ::= 'sort' SORTNAME ( ',' SORTNAME )�

[ '<' SORTNAME ] '.'
SORTNAME ::= 'top' j NAME

PREDICATE DECLARATION ::= 'predicate' NAME ( ',' NAME )� [ ':' DOMAIN ]'.'
DOMAIN ::= SORTNAME ( 'x' SORTNAME )� '.'

CONSTANT DECLARATION ::= 'constant' NAME ( ',' NAME )� : SORTNAME '.'

FUNCTION DECLARATION ::= 'function' NAME ( ',' NAME )� : DOMAIN
'->' SORTNAME '.'

VARIABLE DECLARATION ::= 'variable' NAME ( ',' NAME )� : SORTNAME '.'

AXIOMS AND THEOREMS ::= 'axiom' NAME ';' FORMULA '.'
j 'theorem' NAME ';' FORMULA '.'
j COMMENT

FORMULA ::= ATOMIC FMA
j FORMULA BINOP FORMULA
j UNOP FORMULA
j '(' FORMULA ')'
j QUANTIFIER VARIABLES '(' FORMULA ')'

ATOMIC FMA ::= NAME [ '(' TERM ( ',' TERM )� ')' ]
j TERM '=' TERM j TERM '==' TERM

TERM ::= NAME [ '(' TERM ( ',' TERM )� ')' ]
VARIABLES ::= NAME ( ',' NAME )� [ ':' SORTNAME ]
QUANTIFIER ::= 'forall' j 'exists'
BINOP ::= '&' j 'v' j '<=' j '<=>' j '=>'

j '<-' j '<->' j '->' j '<�' j '<�>' j '�>' j '#'
UNOP ::= '-' j '�' j 'jt' j 'jf' j 'ju' j 'jt' j 'a�' j 'nabla'

COMMENT ::= '%' ALPHANUM�

NAME ::= LOWERCASE ALPHANUM�

LOWERCASE ::= 'a' j : : : j 'z'
UPPERCASE ::= 'A' j : : : j 'Z'
OTHER CHAR ::= '0' j : : : j '9' j ' '
ALPHANUM ::= LOWERCASE j UPPERCASE j OTHER CHAR

Table 3.1: De�nition of 3T
AP 's input language.
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�elds

real

rational

�
�� \

\\
complex

Figure 3.1: The sort hierarchy from Example 3.2.

3.3 Signature De�nition

Every predicate, function, constant or variable symbol used in some axiom or theorem has to be
de�ned �rst to establish its domain and|in the function case|its range.

Example 3.3 sort top.

predicate p.

predicate q1, q2 : top.

predicate r : top x top.

function f,g : top x top -> top.

constant c : top.

variable x : top.

The above de�nition declares p as propositional variable (predicate of arity 0); q1 and q2 are
predicates with one argument of sort top; and r is a predicate of arity 2 with both arguments of
sort top. f and g are declared as top-valued functions with two arguments of the same sort. c is
a constant of sort top and x is a top-valued variable.

Remark 3.4 It is not possible to declare functions of arity 0. That is what constants are for.
If you try this, the compiler will respond with an error message such as

ERROR: line 10 near '->' : parse error

Remark 3.5 3T
AP is not able to distinguish functions by their arity, i.e., you must not declare

functions of di�erent arity with the same name. If you do, the compiler will print an error
message:

ERROR: Redeclaration of 'f'! 'f' is already declared as a function!

The same is true for predicate declarations.

In addition, it is not allowed to give the same name to di�erent types of symbols (e.g. a variable
and a sort).

A symbol has to be de�ned before it is used. There is no other restriction on the order of the
declarations.

The declaration of variables is an exception: Variables must either be de�ned by a variable
declaration (as described above) or in the variable list following the quanti�er. For example,
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v disjunction
& conjunction
=> material implication
<= reverse material implication
<=> equivalence
- negation

Table 3.2: Two-Valued connectives.

: : :forall x:top: : :

has the same e�ect as

variable x:top.

: : :forall x: : :

However, something like

variable x:top.

: : :forall x:bottom: : :

and even

variable x:top.

: : :forall x:top: : :

is not allowed. If you try this, the compiler will respond with

ERROR: Redeclaration of 'x'! 'x' is already declared as a variable !

3.4 Axioms and Theorems

3.4.1 Names

Similar to signature declarations, axiom and theorem names have to be unique. The axiom and
theorem names may be identical to names of sorts, predicates, functions, constants or variables;
but this should be avoided because it is no good style.

3.4.2 Connectives

In the (standard) two-valued version of 3T
AP the connectives in Table 3.2 are available. For the

three-valued version the connectives from Table 3.3 may be used. Those connectives listed in the
grammar but not listed in some of the tables have no prede�ned semantics. They may be freely
de�ned to have any desired semantics. How to de�ne operators is described in Section 9.3.

The connectives' priorities are de�ned in Table 3.4. Symbols in one box have the same priority.
Please note that a higher priority means a lower precedence. For example, implication has a
higher priority than disjunction (the precedence of disjunction is greater), i.e., the meaning of
a v b => c is (a _ b)! c.
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v disjunction
& conjunction
=> weak implication
<= reverse weak implication
<=> weak equivalence
#  Lukasiewicz implication
- strong negation
~ weak negation

nabla (r) nabla operator
jt a�rmation
aff partial a�rmation
ju partial a�rmation
jf falsi�cation

Table 3.3: Three-valued connectives.

max. priority

<=>

#

~> <~> <~

-> <-> <-

=> <=

v

&

- ~

aff jf ju jt nabla

= ==

min. priority

Table 3.4: Priority of the connectives.
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3.4.3 Equality

As indicated by the grammar in Table 3.1, the equality sign = is a prede�ned in�x predicate
symbol. It must not be declared.

Make sure that the two sides of an equality have compatible sorts. In the following example
theorem t1 is illegal (in the scope of the sort declaration from Example 3.2), while theorem t2

is correct:

variable x : real.

variable y : complex.

variable r : rational.

theorem t1; x = y.

theorem t2; x = r.

Remark 3.6 If incompatible sorts are used in an equality, the compiler will print an error
message. For the above example the error message is the following:

ERROR: The terms 'x:[real,fields|_5001]' and 'y:[complex,fields|_5002]'

have incompatible types!

Operator: =

The demodulator sign == may appear anywhere where an equality sign is allowed. The same
restrictions concerning sort compatibility apply. More on demodulators can be found in Sec-
tion 5.13.

3.5 Comments

Comments may be inserted into input �les between any lexems. As indicated by the grammar,
anything following the %-sign in a line is a comment.

To preserve readability, only two comment-rules are present in the grammar of Table 3.1. The
non-terminal \COMMENT" may be inserted between any two symbols in the grammar. To
preserve the readability of the input �le, you should not make use of the additional places allowed
for comments. It is a better style to comment formulae immediately before their de�nitions.
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An Overview of the System
Architecture

In this chapter we want to give the reader an idea of the general architecture of 3T
AP and of how

the modules interact.

We have already mentioned that 3T
AP is mainly written in Quintus (resp. SICStus) Prolog with

small pieces of C for e�cient management of global variables.

Theorem proving in 3T
AP is essentially a two stage process. One or more problems are collected

into knowledge bases (see Chapter 3 for the syntax). In a �rst step these are compiled. The

result is a representation of the problem in terms of 3TAP 's internal data structures together with
static link information. This is written to a separate �le and thus needs to be computed only
once. The second step is the actual proof.

The design of 3TAP tries to provide as much modularity as possible. The main tasks of the prover
have been identi�ed and were distributed in various modules. To understand their structure it
will be helpful to look at the slightly simpli�ed algorithm corresponding to the main predicate
for producing a closed tableau (see Section 5.2 for more details):1

Algorithm of close multiple

input: the current branch B and the conclusion C produced from the last rule application.
output: success i� all extensions Ei in C can be closed with B, fail else.

if B [E1 can be closed immediately
then success

else fetch one or more new formulae � from the knowledge base;
if B [E1 [� can be closed immediately
then success

elseif B [E1 [� is exhausted
then if B [E1 [� can be closed with equality

then success

else fail

else if switched on, try to dissolve;
choose a formula �;
apply rule to �;
reorder conclusion �C;
call close multiple recursively with B [E1 [� and �C

fi

fi;
call close multiple recursively with B and E2; : : :En.

The initial tableau is treated as an empty branch with a conclusion that consists of a single
extension, namely the initial branch. Note that not all formulae in the current knowledge base

1 The if-then-else constructs represent choice points, i.e., the else-part of a construct is not only executed if the
condition evaluates to false, but also if the then-part fails.
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need to reside on the initial branch, rather they are fetched on demand during the proof. This
is advantageous when the knowledge base is large, but loosely connected.

From the algorithm shown above it is clear that several tasks can be separated. The predicate
close multiple itself resides in the module main. Immediate closure between atomic formulae
is checked in closure, possibly using unification if sorted terms occur. Since there may be
several candidate pairs for a closure, heuristics is needed. The heuristics module is needed
in the next step as well to determine which formula to retrieve next from the current knowledge
base. It uses static indexing information for this. Since the knowledge base may be empty or
contain merely atomic formulae a branch can become exhausted at this point. If the problem
contained equalities, the branch is tried to be closed with the equality theory available at this
point. If the branch is neither closed nor exhausted the expansion process is continued. The
module choice selects the next formula in focus, while inference contains the predicates that
perform a rule application. Obviously, the information from rules is needed here. Another
predicate from inference reorders the newly generated conclusion to achieve fairness.

We emphasize that all relevant data structures are encapsulated in the module datastructures
and can only be accessed through the interface predicates of that module. This information
hiding technique proved to be helpful several times when the internal representation underwent
re�nements and changes. Similarly, all output predicates and error message texts are collected
in separate modules.

Uni�cation with occur check is not provided as a built-in in Quintus Prolog resp. SICStus Prolog
and thus is programmed in Prolog. An attempt to gain a speed-up by using a C implementation
proved to be in vain. The reason was the very rudimentary C interface of Quintus Prolog
(Gerberding, 1990).

The modules which together form the core of 3T
AP are thus:

choice complete equality inference

rules closure dissolve heuristics

main unification

The following modules provide general services or have a technical nature:

datastructures msg tap sysdep globalvars quintus.c

declarations output globalvars.c globalvars sicstus.c

These are the modules which form the shell:

boot index information interface

makekbx preproc proveall

The following modules form the compiler:

scanner.l grammar.y output.c output.h

The following table summarizes 3T
AP 's modules:
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Module Name Short Description
boot Loads and compiles all required modules; initializes various

variables.
choice Predicates for choosing the next formula in focus on the current

branch.
closure Predicates to check the current branch for closure with the current

extension.
complete Predicates for implementing completion-based equality reasoning.
datastructures Predicates that implement the main data structures. All main

data structures can solely be accessed via this module.
declarations Global declarations concerning defaults for switches, initial sig-

ning, �le names, operator names etc.
dissolve Predicates for implementing the dissolution rule.
equality Predicates for implementing equality reasoning.
heuristics Representation of heuristics for selection of closure pairs and next

formula to retrieve from knowledge base.
index Generation of static indexing information stored in compiled

knowledge bases.
inference Application of tableau rules and construction of conclusion in a

fair order from information in the rules module.
information Predicates and texts of on-line help.
interface Provides top-level predicates for compiling knowledge bases, doing

proofs in various manners etc. Calls the compiler.
main Provides the predicate close multiple which implements the

main loop of the prover.
makekbx Predicates for handling the compiler output and adding index and

control information and for loading a thus preprocessed KB into
the workspace. Adds index and control information.

msg tap Contains error message texts. Not a module in the sense of Quin-
tus (resp. SICStus) Prolog.

output Predicates for writing formatted output information to streams.
All output to the user is handled via this module.

preproc Predicates for preprocessing formulae.
proveall Predicates for testing a complete suite of problems and generating

statistics.
rules Representation of the tableau rules.
sysdep Contains all predicates that are not conforming to DEC-10 Prolog,

Unix speci�c predicates and C interface predicates.
unification Predicates for uni�cation of sorted terms.
globalvars.c C program for global variable management.
globalvars quintus.c C program which is needed in addition to globalvars.c if Quin-

tus Prolog is used.
globalvars sicstus.c C program which is needed in addition to globalvars.c if SIC-

Stus Prolog is used.
scanner.l Contains the rules for the syntax-analysis. This �le is the input

for the Unix tool Lex (or Flex) to generate the scanner.
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Module Name Short Description
grammar.y Contains the grammar rules. This �le is the input for the Unix

tool Yacc (or Bison) to generate the parser.
output.c Contains the output procedures for the parser. This �le is written

in C.
output.h Header-File for output.c.

We give the call dependency graph for the modules of the core and the shell in Figure 4.1. For
sake of simplicity we did not include dissolve which is called only optionally and heuristics

which is called by a number of modules. Finally, Table 4.1 gives some statistics of 3T
AP 's source

code (incl. comments).
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Figure 4.1: Dependency graph for the modules of 3T
AP 's core.

Language No. of lines KByte
Prover Prolog 23,600 799

C 1,200 30
Compiler C 1,600 46

Yacc/Bison 500 14
Lex/Flex 200 5

Utilities C 2,400 89
Lex/Flex 400 11

Total 29,900 994

Table 4.1: Statistics of 3T
AP 's source code (incl. comments).



5
System Description by
Modules

5.1 Proveall, Information, Boot, Interface

5.1.1 The User Interface

The descriptions of these modules are collected in one section because these four modules together

provide the user interface for the prover 3T
AP .

With the module boot, the whole system is compiled and loaded into the workspace of Prolog.
information supports several help pages and proveall can be used to compile and prove whole
sets of problems. interface contains the predicates for starting a proof. The following four
sections describe each module in detail.

5.1.2 Proveall

This module provides predicates proveall/1,2,3 and compall/1; they have the following form:

� proveall( +What to prove )

� proveall( +What to prove,+Format )

� proveall( +What to prove,+Parameter )

� proveall( +What to prove,+Format,+Parameter )

� compall( +What to prove )

With the predicates proveall/1,2,3, sets of problems can be proved, and a �le statistics can
be generated containing statistics on the proof length, time etc. With the predicate compall/1,
sets of problems can be compiled.

The prede�ned problems are subdivided into groups as shown in Table 5.1. For a detailed
description, see Section 8.1.

tests dagostino mr

cr meta pl pigeon

pig alt kalish ps

groups pel prop pel pred

pel eq phi three valued

Table 5.1: Groups of test problems for 3T
AP .

The �rst argument of proveall/1,2,3 and compall/1 can be either
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� the name of a problem set,

� a list of problem set names,

� the keyword pelletier to prove or compile the three sets pel prop, pel pred and pel eq,
or

� the keyword all to prove or compile all the problem sets.

Example 5.1 Some examples for the usage of proveall/1:

� proveall( pel prop ).

proves the set pel prop which contains 17 propositional problems from (Pelletier, 1986).

� proveall( [pel prop,pel pred] ).

proves the sets pel prop and pel pred which contain 17 propositional and 28 �rst-order
problems from (Pelletier, 1986).

� proveall( pelletier ).

proves the sets pel prop, pel pred and pel eq which contain 62 problems from (Pelletier,
1986).

Remark 5.2 As indicated by its name, the problem set three valued can be proved (resp. com-

piled) only with the three-valued version of 3T
AP . In the two-valued version, all does not include

the problem set three valued.

If proveall/1 is used or anything but the keyword tex is used as the second argument of
proveall/2 or the third argument of proveall/3 the statistics �le is written as a standard text
�le, else the statistical informations are formatted such that they can be included into a LaTEX
�le.

Example 5.3 Some examples for the usage of proveall/1 and proveall/2 with the formatting
option:

� proveall( all ).

proves all problem sets and writes the statistic information as a text �le.

� proveall( all,ascii ).

does exactly the same.

� proveall( all,tex ).

proves all problem sets and generates a LaTEX �le.

The problems are proved using the command proveinc (but note the exception in Remark 5.5),
i.e., either the parameter maxcounter or the parameter maxbranchlength is increased until a proof
is found. By default maxcounter is used. maxbranchlength is increased if one of the keywords
maxbranchlength and mbr is used as the second argument of proveall/2,3. The command
proveinc is described in Section 5.1.5.

Each problem in a problem set is written in form of a list containing three members. The �rst
member is the name of the problem, the second member is a list containing the theorems to be
proved and the third member is also a list, containing the setting of the switches that should be
used. If this list is empty, the proof is tried with the default settings.
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Example 5.4 Two problems from the problem set pel pred:

� [pel23,[pel23],[]] means: Prove the theorem pel23 from the problem pel23 and use
the default settings.

� [pel34,[pel34],[set_maxcounter(1)]] means: Prove the theorem pel34 from the pro-
blem pel34 and set maxcounter to 1.

Remark 5.5 If a command set maxcounter(n) (resp. set maxbranchlength(n)) is contained
in the list of settings associated with a problem, and maxcounter (resp. maxbranchlength) is the
parameter to be increased, the problem is proved by calling prove using the value n for maxcounter
(resp. maxbranchlength) instead of using proveinc.

5.1.3 Information

The information module is a module providing on-line help. It gives information about the
available commands.

It provides two predicates, info/0 and info/1. If you call info/0, you get an overview over
the available information pages concerning the following topics: compiler, prover, equality, diss,
(dissolution), maintain (maintaining the workspace), variables, output (tableau output), unix,
info, all.

With the call

info( +What_information )

where What information is one of the keywords listed above, you can get further information
concerning these topics, that is, hints for the setting of global variables, the current settings, a
description of the equality strategy or an overview over the available unix commands etc.

Example 5.6 info. shows a list of the available information pages.

info( prover ). shows a list of available commands for proving a problem.

info( all ). prints all available information pages. It is recommended to select an output
stream other than the screen if you want to read all information. See also Section 5.14.

5.1.4 Boot

The boot module is the access to 3T
AP . After invoking Prolog, you have to type

| ?- compile( boot ).

to build the 3T
AP system. The following actions take place:

1. Compile the modules.

2. Initialize the prover.

3. Initialize the settings.

4. Print the information overview page.

After that, the whole user interface can be used in order to work with 3T
AP .
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5.1.5 Interface

The module interface contains predicates to compile, read, check and delete knowledge bases
as well as to start the prover. The predicates can be classi�ed as follows:

5.1.5.1 Predicates Concerning Knowledge Bases

The following predicates are used to create, manipulate, use and delete a knowledge base (KB)
and extract information about a selected KB:

� compkbx( +File ).

Calls the compiler for parsing the formulae in File and generates the static index. As the
result of the call, a �le file.kbx is created and written to the current working directory.
This �le is in the format direct input as a KB.

� readkbx( +File )

Use a *.kbx �le and read it as a KB into the workspace.

� usekbx( +File )

Compile a �le and load it as a KB into the workspace. The e�ect is the same as executing
�rst compkbx( File ) and then readkbx( File ) for some �le.

� delkbs

Delete all KBs from the workspace.

� delkb

delkb( +KB )

Delete the speci�ed (or by default the current) KB from the workspace. If afterwards the
workspace is not empty, the current KB is set to an arbitrary one available.

� writekb

writekb( +KB )

Write all formulae of the speci�ed (or by default the current) KB to the current output
stream.

� writeidx

writeidx( +KB )

Write all indexing information of the speci�ed (or by default the current) KB to the current
output stream.

� writesort

writesort( +KB )

Write all information on sorts of the speci�ed (or by default the current) KB to the current
output stream.

� writekbx

writekbx( +KB )

Write all formulae, index entries and sorts of the speci�ed (or by default the current) KB
to the current output stream.

Example 5.7 Suppose we have a �le test that contains a problem to be proved.

� usekbx( test ).

compiles the �le test , creates a �le test.kbx and loads test.kbx into the workspace of
Prolog. A list with theorems available is sent to the current output stream.
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� readkbx( test ). and
compkbx( test ).

in combination have exactly the same e�ect.

� delkb( test ).

removes test.kbx from the workspace of Prolog. If you have only one *.kbx �le in the
workspace or test.kbx is the current KB, delkb. has the same e�ect.

5.1.5.2 Predicates Concerning the Proof

The following predicates are used to prove something from a KB:

� prove

prove( +Theorem index )

prove( +Theorem index,+KB )

Call the prover to prove the theorem indicated by Theorem index. The default KB is the
current one and if no theorem index is speci�ed, it is assumed that the current KB is
checked for consistency.

� proveinc

proveinc( +Theorem index )

proveinc( +Parameter )

proveinc( +Theorem index,+KB )

proveinc( +Parameter,+Init )

proveinc( +Theorem index,+Parameter,+Init )

proveinc( +Theorem index,+KB,+Parameter )

proveinc( +Theorem index,+KB,+Parameter,+Init )

Call the prover to prove the theorem indicated by Theorem index. The default KB is
the current one and if no theorem index is speci�ed, it is assumed that the current KB
is checked for consistency. Either the parameter maxcounter (default) or the parameter
maxbranchlength (if Parameter is maxbranchlength or mbr) is increased until a proof is
found or a limit is reached. Init is the initial value for the parameter to be increased. If
no value is given, 0 is used for maxcounter and 1 for maxbranchlength. The limit is given
by the parameters inc limit mc and inc limit mbr.

� proveinc return mc( +Parameter,-Value )

proveinc return mc( +Theorem index,+Parameter,-Value )

These predicates do exactly the same as proveinc/1 and proveinc/2. In addition they
give back the smallest maxcounter (resp. maxbranchlength su�cient for the proof.

� protprove

protprove( +Theorem index )

protprove( +Theorem index,+KB )

Prove a theorem from a speci�ed (or by default the current) KB and protocol the proof in
a previously speci�ed output �le. With protprove/0, a consistency check is tried.

� inconsistent

inconsistent( +KB )

These predicates try to close a tableau initially consisting of only the axioms contained in
KB, i.e. they try to prove the inconsistency of a KB.

Example 5.8 Let us continue the example from above. Suppose is a theorem th test in the
knowledge base. Then
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� prove( th test ). and
prove( th test,test ).

do the same, namely to prove the theorem th test using the default parameter maxcounter.

� proveinc( th test ). and
proveinc( th test,test ).

also do the same, that is, they prove th test, starting with maxcounter = 0, increment
maxcounter every time the proof fails and start the whole proof procedure again with a
higher value.

� Respectively,
prove. and
proveinc.

try to prove the inconsistency of the axioms of test.

� inconsistent. and
inconsistent( test ).

do exactly the same as prove and prove/1.

5.1.5.3 Help and Information Predicates

There are two more predicates exported by this module:

� lookup

This predicate shows the current settings of all switches and parameters.

� stepcontrol

Checks whether step mode is on and if so waits for a command to be entered before
continuing. Possible input commands are:

{ c : continue

{ a : abort

{ h : help

{ l : set step mode o�

{ d : set the debug level to 0

{ e : set the equality debug level to 0

{ All other commands print the information page concerning step modes.

5.1.5.4 How Does It Work?

The predicates concerning the proof di�er in various settings and in the proof strategy, but
have in common that they all call the central predicate of the interface module which is the
predicate

tap( +KB,+Theorem_index,+Idcs )

This predicate calls 3T
AP to prove the theorem with the index indicated by Theorem index from

the denoted KB and ignore those which are listed in Idcs. The predicate works as follows:

1. Set and reset global variables.
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2. Select the desired output stream.

3. Initialize the branch according to the desired proof, i.e. put the theorem on the branch
if this was desired and put further axioms on the branch according to the setting of the
switch grepall. grepall controls the initialization of the branch as follows:

� If grepall is on (the default), then all formulae from the workspace which have an
atomic link to the theorem are \grepped" onto the branch. This is done using the
predicate add th connected fmae to branch/5.

� If grepall is o�, all atoms (and only atoms) from the workspace which have an atomic
link to the theorem are \grepped" onto the branch. This is done using the predicate
add th connected atom to branch/5.

4. If no theorem is to be proved, an arbitrary axiom is \grepped" from the workspace and is
used for the initialization of the branch.

5. Then it is checked if you actually use sort information for the proof (i.e. if you use more
than one sort).

6. Finally, prove it: this is done via the close multiple/4 predicate in the main module, for
further details see Section 5.2.

7. When the proof search terminates, statistics are print and a message that tells whether a
proof has been found.

5.2 Main

This module contains the central predicate

� close branch/3

This is the implementationof the basic algorithm of (H�ahnle, 1990a) for a multi-valued automated
theorem prover based on the tableau method.

close branch/3 works as as follows:

First a signed formula (sformula) is selected via the choose sformula/4 predicate from the
choice module, which is described in Section 5.4.1.

Due to the possibility that choose sformula/4 could result in grepping some new sformulae
from the workspace on the branch, we have to examine immediately whether the branch can be
closed with the selected sformula (treated as an extension). In that case, nothing else is done
and the predicate succeeds. Otherwise, there are several possibilities:

1. The 
ag dissolution is set to on. Then it is tried to close the branch via dissolution. If
this succeeds, nothing else is done and close branch/3 succeeds.
If dissolution = off or no closure is possible with dissolution, then there are three more
possibilities:

2. The branch is not exhausted. This is the most common case. The branch then is ex-
panded via the apply rules/4 predicate in the inference module and the resulting new
branch(es) is (are) tried to be closed by the close multiple/4 predicate, which represents
the transitive closure of close branch/3 (see below).
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3. The branch is exhausted and it is possible to fetch new formulae from the workspace. One
new formula is put onto the branch and close branch/3 is called recursively.

4. The branch is exhausted and there is no formula in the workspace that can be put on the
branch:

� If the 
ag equality is set to on, the branch is tried to be closed via equality. This is
done by the predicate close branch with completion/1 from the complete module,
see Section 5.13.

� In all other cases, the predicate handle exhausted branch/1 is called and
close branch/3 fails. Prolog then tries to �nd a proof with backtracking.

The other predicate of the main module,

� close multiple/4

is both the entry into the whole proof procedure as well as the controlling predicate for the
closure of the whole tableau. close multiple/4 tries to close the current branch together with
the �rst extension of the current conclusion.

� This conclusion is in the initial step created by the tap/3 predicate from the interface

module and is either the theorem to be proven or an arbitrary formula in the case of an
inconsistency proof.

� Afterwards the current conclusion is the result of the apply rules/4 predicate applied on
a selected sformula of the current branch.

If it is possible to close the branch with the �rst extension, close multiple/4 is called recursively
with the remaining extensions of the current conclusion, otherwise close branch/3 is called with
the �rst extension added to the branch. If the branch|together with one of the extensions|gets
longer than maxbranchlength (cf. Appendix app-switches), close multiple fails.

Interaction schema:

The predicate close multiple/4 has the following structure:

� Entry:
close multiple( Branch,Conclusion,Diss info,No ) :-

: : :

check closure( +Branch, ,+First extension, , ),: : :

� If check closure/5 fails
close branch( New branch,Diss info,No ),

: : :

close multiple( New branch,Remaining extensions,Diss info,No ),: : :

The predicate close branch/3 has the following structure:

� Entry:
close branch( Branch,Diss info,No ) :-

choose sformula( Branch,Sformula,Temporary branch,Added formula ),

check closure( Branch, ,First extension, , ),: : :
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� If check closure/5 fails, but choose sformula/4 has found a new sformula:
treat dissolution/10

� If the branch is still not closed
apply rules/4,

close multiple/3,: : :

� If no new sformula has been found to expand but there are still unused sformulae in the
workspace, then grep one new formula, put it on the branch and call

close branch/3

� If no new expandable sformula has been found and no more sformulae are in the workspace
and the equality 
ag is set:

close branch with completion/1

� Otherwise:
handle exhausted branch/1,

fail.

5.3 Closure, Heuristics

We describe these two modules in the same section, because the heuristics module contains
the predicate select complementary atoms/2 that represents the heuristic according to which
a branch will be closed, in particular, when there are two or more possibilities for a closure.

5.3.1 Heuristics

This module contains the predicates for representation of the heuristics for proof search used in

3T
AP . These are heuristics concerning the closure of a branch as well as the selection of sformulae

or atoms from the KBs for putting them on a branch.

5.3.1.1 Heuristic for Closure

The central predicate is:

� select complementary atoms( +Complementary atoms list,-Selected pair )

Complementary atoms list is a list of pairs of atoms, which have complementary1 signs (accor-
ding to the corresponding predicate in the declaration module) and can be uni�ed. This list
is generated in the closure module, see Section 5.3.2.

The predicate selects the \best" complementary pair of all potential pairs. Therefore, two help
predicates are needed:

� construct heuristic list( +Complementary atoms list,-Heuristics list )

This predicate orders the potential pairs according to the following heuristic:

{ Pairs whose uni�cation does not lead to variable instantiations are selected primary.

1 In the many-valued case signs correspond to sets of truth values and these are thought to be complementary
i� they are inconsistent i� they have an empty intersection.
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{ The secondary ordering is by the number of former usages in closures (to assure
fairness).

{ Finally pairs are ordered by the number of variable instantiations necessary to unify
them.

Concisely: We choose the pair which does not lead to variable instantiations. If there is no
such pair, we use the pair with the atoms which have been used fewest for closure so far. If
this is not unequivocal we order the pairs according to the least instantiations of variables
necessary by the uni�cation of the atoms.

A pair (a1; a2) is treated as if it had been used to close a branch B if B has been closed
using atoms (a01; a

0
2) and

1. a1 and a01 are identical up to variable renaming,

2. a0
2

is an instance of a2.

� construct pair list( +Heuristic list,+Acc,-Pair list )

This predicate transforms the heuristic list from the previous predicate into a list of pairs
of atoms by stripping o� the additional heuristic information.

Via the sysdep member/2 predicate, we now select a pair of atoms and use this pair for the
closure of the branch. This is in the �rst case the �rst pair of the list, but it represents also a
choice point, and if backtracking does occur we run all over the list.

5.3.1.2 Heuristic for Sformula Selection

There are several predicates which control which sformula or atom to fetch from the KB. These
are:

� grep connected formula( +Sign,+Atfma,+KB,+Idcs,-Signed fma,-Idx )

This predicate is used for fetching a signed formula (and its index) from KB which contains
the atomic formula Atfma with a complementary polarity as indicated by Sign, but only
if its index Idx is not yet contained in the indices list Idcs of the branch. (For additional
information on indexing and related topics see Section 5.12). If there is no new sformula
in KB connected to Sign and Atfma this predicate fails.

� grep atom( +Sign,+Atfma,+KB,+Idcs,-Signed fma,-Idx )

Fetch an atom (and its index Idx) from KB but only if Idx is not yet contained in Idcs.

Note: The �rst two arguments Sign and Atfma are not used in this version of 3T
AP .

� grep unconnected formula( +Idcs,+KB,-Signed fma,-Idx )

Returns a signed formula not on the current branch so far (as indicated by Idcs and its
index Idx. If there is no such formula in KB, this predicate fails.

� grep formulae( +Branch,+Branch no,-New branch,-Closed )

This predicate adds formulae from the workspace to the branch before a rule is applied.
All cases in which this has to be done are combined in this predicate. The cases are:

1. It is possible to grep a formula by a new atomic link

(a) It is possible to close the branch with the new formula. Nothing else has to be
done, the 
ag Closed is set to true.



62 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES

(b) It is not possible to close the branch with the new formula and the new formula
is an atom. The predicate calls recursively itself. This recursion is continued as
long as it is possible to grep atoms by new atomic links and as long as these new
atoms do not close the branch.

(c) The new formula is not an atom. Nothing else is done, the 
ag Closed is set to
fail.

2. There is no new formula on the branch and there are still new formulae in the work-
space. One new formula from the workspace is added to the branch, Closed indicates,
whether the new formula closes the branch.

3. In all other cases nothing is done and the 
ag Closed is set to fail.

Note: The predicate never fails.

� new grep formulae( +Branch,-New branch,-Added formulae )

This predicate adds formulae from the workspace to the branch before a rule is applied.
This is done only if no unused sformulae are on the branch. All cases in which this has to
be done are combined in this predicate. The cases are:

1. It is possible to grep a formula by a new atomic link.

(a) The new formula is an atom. The predicate then calls itself recursively. This
recursion is continued as long as it is possible to grep atoms by new atomic links.

(b) The new formula is not an atom. Nothing else is done.

2. There are new formulae on the branch and there are still new formulae in the work-
space. One new formula from the workspace is added to the branch.

3. In all other cases nothing is done.

The last two predicates both use a predicate grep new formula/3 which is only used within the
heuristics module.

� grep new formula( +Branch,-New Formula,-New Index )

Get some formula from the workspace unused on the branch so far. If a theorem is to be
proved the choice is restricted to a connected formula; if consistency is to be proven also
an unconnected formula may be chosen.

Note: The formula returned is ready to be added to the list of new formulae on the branch.

As mentioned above, the formulae grepped preferably from the workspace are the ones that have
a new atomic link. This is tried via the following predicate:

� grep formula by new atomic link( +Branch,-New Branch,-New sformula )

If there is an unused atom on the branch with a link to a formula not yet marked, this
formula is grepped from the workspace and added to the branch. If there is no such formula,
the predicate fails.

Finally, there are two predicates which handle grepping of formulae in connection with the
equality strategy (See Section 5.13 for more details).

� grep formula for exhausted branch( +Branch,-New branch )

This predicate adds a formula from the workspace to an exhausted branch. In this version,
a formula that contains an equality is added. If there are no such formulae in the workspace
or the 
ag equality is o�, the predicate fails.
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� grep equality without link( +Branch,-New Branch )

If there is a formula in the workspace that has a link to an inequality or a negated demo-
dulator, it is added to the branch.

The predicates stated so far control grepping of formulae and atoms on the current branch.
They are mainly used during initialization of a branch and in the case when there are no more
expandable sformulae on a branch.

There is one more (help) predicate in this module:

� get free vars( +Fma,-Var list )

Gives back a list of the free variables in the formula Fma.

5.3.2 Closure

This module contains the predicates which check a branch together with an extension for a
possible closure. The central predicate is:

� check closure( +Branch,+Branch no,+Extension,-Updated branch,-Flag )

It works as follows:

� check closure/5 is called. If Branch together with Extension can be closed Flag is set
to 1. Updated branch contains the modi�ed branch, that is, some variables may have
been instantiated and the counter of an atom may have been increased. The argument
Branch no is used for statistical and output purposes.

In order to check for a closure,

� close extension( +Branch,+Branch No,+Extension,-Close flag,-New branch )

is the �rst predicate called. It tries to close Branch together with Extension. If a closure
is possible, New branch is the updated version of Branch.

The separation between check closure/5 and close extension/5 has historical reasons.

In an older version of 3T
AP we examined all extensions we got back from a rule application

for a possible closure with Branch. Therefore, check closure/5 was the control predicate
and worked with a list of extensions rather than only one. close extension/5 was called
by it for each of these extensions.

close extension/5 uses the following predicates:

� collect_atoms_of_extension( +Extension,+Atm_list,-Close_flag,

Branch,Branch_No )

This predicate has two functions: First, it collects all atoms of the extension and second, if
during the search for atoms a sformula is found, it is checked here, whether a tableau rule
is de�ned for it. In the two-valued version, this is always the case, but in the three-valued
version, e.g. for [ , , ,wneg(Fma),uSign] no rule is de�ned and the branch in which it
does occur is closed.

If we have found atoms or the branch is not already closed,

� search complementary atoms of extension( +Atm list,-Compl atoms list )

is called. It checks, whether the extension itself contains complementary atoms. If we have
found some,
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� add flag to pairs( +Pair list,ext,-Triple list )

is called to record that this complementary pair was found in the extension (ext is the
keyword for extension).

Next, via get all atoms of branch/2 from the datastructuresmodule and the predicate

� search_complementary_atoms( +Ext_atms_list,+Branch_atms_list,

-Comp_atms_list )

we check, whether there are atoms on the branch being complementary to the atom(s) in
the extension. Again we record this fact via

� add flag to pairs( +Pair list,branch,-Triple list ).

If we have found complementary atoms, we use the predicate select complementary atoms/2

from the heuristics module to select the best one.

Now we do some statistics, instantiate the necessary variables by uni�cation and eventually up-
date the branch and set Close flag. Some help predicates of close extension/5 are explained
now:

� check if no rule defined( +Branch,+Sfma,-Close flag,-New branch )

This predicate checks if a closure of the branch is possible because there is no rule de�ned
for the sformula Sfma, see above.

� search complementary pairs( +Atom,+Atom list,-Pair list )

This predicate looks, whether in Atom list one or more atoms exist which are complemen-
tary to Atom. Each complementary pair is added to Pair list. If Atom is an equality or a
demodulator and equality is switched on the results is the empty list.

Two more predicates are in closure are related to closure checking:

� check_closure_by_sformula_from_kb( +Branch,+No,+New_sfm,

-New_branch,-Closed )

Checks, whether the branch can be closed with the help of New sfm, which is taken from
the workspace. This predicate is used in association with the grep * predicates from the
heuristics module and simply interprets New sfm as an extension and then calls
check closure/5.

� handle exhausted branch( +Branch )

This predicate does everything what has to be done when a branch is exhausted, in par-
ticular the updating of statistical information. It is normally called before backtracking
starts.

Finally,

� substitute_univ_vars_sorted( +Atm,+Univ_var_list,

-New_atm,-New_univ_var_list )

is included in this module which substitutes the variables in Atm with respect to which it
is universal by new ones which have the same sort as the old ones.

5.4 Choice, Inference

During the proof procedure the predicate choose sformula/4 in the choice module usually
supplies the next sformula to be expanded via apply rules/4 in the inference module. A
detailed description of these two modules is given in the following two sections.
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5.4.1 Choice

This module contains predicates for the selection of sformulae. During a proof, two kinds of
sformulae have to be chosen from the branch:

1. If the branch has to be expanded, we need a sformula to serve as premise for a tableau rule
application.

2. If we look for a possible closure of a branch, we need an atom from the branch which is
able, together with an atom from the current extension, to close the branch.

The two associated predicates are

1. choose sformula( +Branch,-Sformula,-New branch,-Added formulae )

This predicate selects the next sformula to be expanded. If the chosen sformula

� is not linked to another sformula on the branch or

� is not linked to an axiom in the workspace and or

� does not contain an (in)equality.

and removeunlinked is switched on, it is removed and another sformula is chosen.

The selection of the sformula proceeds in the following precedence:

(a) Look for an unused2 sformula on the branch. If there is no such sformula,

(b) look for an unused sformula in the workspace. If there is no such sformula,

(c) look for an already used sformula from the branch (this must be a 
-formula!). If
there is no such sformula,

(d) no sformula has been found to be expanded next.

New branch can contain more or fewer sformulae than Branch. The list Added formulae

contains the formulae added to the branch.

Note: choose sformula/4 never fails. If no sformula can be chosen, the atom none is
returned as value of the Prolog variable Sformula.

2. choose atom( +Branch,-Atomic fma )

This predicate selects an atom from the branch. First it looks for atoms which have not
been used for a closure, and if all unused atoms are examined, the already used atoms are se-
lected. This is done via the get best atom of branch/2 predicate in the datastructures

module.

The other predicates in this module are used to judge the usefulness of the chosen sformula.
These are:

� can be removed from branch( +Sformula,+Branch )

Succeeds, if Sformula can be removed from the branch, i.e.

{ it is not linked to a formula on the branch or

{ it is not linked to an axiom in the workspace or

{ it does not contain an equality (only if equality is set to on).

2 That is, it has not been used before as a premise for rule application.
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� contains an equality( +Sformula,+KB )

Succeeds, if Sformula contains an equality or an inequality. We need the current KB,
because this information has already been computed and is stored in the associated lookup
table of KB.

� is linked to branch( +Sformula,+Branch,+KB )

Succeeds, if Sformula is linked to one of the sformulae on Branch.

� is linked to axiom not on branch( +Sformula,+Branch,+KB )

Succeeds, if Sformula is linked to one of the axioms in the workspace not on the branch
yet.

� are linked sformulae( +Sformula 1,+Sformula 2,+KB )

Succeeds, if the two sformulae are linked.

5.4.2 Inference

This module contains the predicates for the application of tableau rules and the construction of
appropriate conclusions.

The main predicate is

apply_rules( +Branch,+Sformula,+Maxcounter,

-Conclusion,-Updated_branch )

It applies the proper tableau rule (fetched via the rule/8 predicate of the rules module) to
Sformula. For further details regarding rule application, see Section 5.10.

The conclusion is constructed using the appropriate predicates in the datastructures module.
This conclusion is then rearranged via juggle conclusion/2, which is used to achieve fairness.
For fairness the labels associated with each operator in each sformula are used. With each label
a global counter is associated (see Section 5.5).

Then, if the 
ag uselemmata is either alpha or on, the predicates add lemmata alpha/8, respecti-
vely add lemmata/8 are used to generate lemmata which are added to the conclusion. For a
description of lemma generation, see Section 2.4, as well as 5.10 and 5.5.

5.5 Data Structures

All data structures used by the 3T
AP system are de�ned in the module datastructures. Access

to data structures is provided through the access predicates de�ned in that module. The data
structures and the access predicates are discussed in the following subsections. The system
dependent parts of the module datastructures are hidden in the module which is described

in Subsection 5.6. Some of 3T
AP 's data structures need global variables; these are implemented

using the C programming language and the foreign language interface of Quintus (resp. SICStus)
Prolog. The semantics of the interface and the implementation of the global variables in the
module globalvars are described in Subsection 5.7.
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5.5.1 Representation of Terms

The basic data structures for manipulating tableaux are terms and formulae. The representation
of the former is discussed in this subsection, the latter are handled in Section 5.5.2.

As stated in Chapter 3 every term in the 3T
AP -system has some speci�c sort. The sort information

is speci�ed as a list which determines the complete path from the root of the sort hierarchy3 to
that sort plus an additional variable tail. Consider the sort declaration from Example 3.2:

sort fields.

sort real < fields.

sort complex < fields.

sort rational < real.

The sort information for a term of sort fields is [fields|_]. The sort rational is represented
by [fields,real,rational|_]. Please note the variable tail albeit rational does not have any
subsort. The variable tails for the same sorts need not to be the same.

A term is a constant or variable symbol or a function application followed by a colon and the list
which represents the term's sort. For example, in the scope of the above sort declaration and

constant a,b : real.

function f : real x real -> rational.

the term f(a,b) is represented by the following Prolog term (white space has been added to
achieve readability):

f( a:[fields,real|_ ], b:[fields,real|_ ] ) : [fields,real,rational|_ ].

Here are the predicates supplied by the module datastructures to access the data structures
associated with terms and sorts:

� get term of sorted term/2

Determine the (unsorted) term of a sorted term, i.e. the part to the left of the colon.

� get sort of sorted term/2

Determine the sort of a sorted term, i.e. the list to the right of the colon.

� split sorted term/3

This predicate splits the sorted term (hence the name) into two parts: The (unsorted) term
as returned by get term of sorted term/2 and the list returned by
get sort of sorted term/2.

� get simple sort/2

As stated above, the sort information is represented by a list with an uninstantiated tail.
The list represents the path from the root of the sort hierarchy to the sort which is to be
represented. This predicate determines the last instantiated element of that list.

� get incomplete sort/2

Returns the uninstantiated tail of the list described above.

� get simple and incomplete sort/3

Does the same as get simple sort/2 and get incomplete sort/2 together.

3 Which indeed is a tree.
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5.5.2 Representation of Formulae

Formulae are represented by special Prolog terms. The form of these terms is discussed in the
following subsections.

5.5.2.1 Labels

Every formula in the 3T
AP -system has a label attached to it. The label is used to identify this

formula throughout the whole tableau construction and to index a special data structure as

described in Section 5.7. In the current version of the 3T
AP -system labels are built from Prolog

atoms starting with the character l followed by some integer (e.g. l17). New labels are generated
by the genlabel/1 predicate. The predicate is label/1 may be used to test a given atom for
labelhood.

5.5.2.2 Atomic Formulae

The simplest formula is an atomic formula, which is a propositional variable or a predicate.
Atomic formulae are represented by Prolog terms whose leading functor is atfma/2 (which is
an abbreviation of atomic formula). The term's �rst argument is the predicate or propositio-
nal variable and the second argument is a label. For example, the atomic formula p(a,b) is
represented by the Prolog term atfma( p( : : :,: : : ), l1 ). Terms have been omitted for ease
of reading. l1 is a label. The predicate is atomic fma/1 may be used to test, whether a for-
mula is atomic. To extract the formula part of an atomic formula from the Prolog term use
get atom of formula/2. That predicate simply returns the �rst argument of the atfma/2 term.

5.5.2.3 Compound Formulae

Like atomic formulae compound formulae are represented by certain Prolog terms. There is a
Prolog functor for every connective in the given logic. The arity of that functor is one plus the
arity of the connective. The additional argument is used to attach a label to every subformula.
The label is always the last argument of the functor. Table 5.2 lists the functors associated with

the connectives of the two-valued version of 3TAP and table 5.3 does the same for the three-valued
version. The connectives not used in the standard version of the 3T

AP system are associated with
functors of the same name, e.g. the functor for the connective �> is �>/3.

connective functor/arity

v dis/3

& con/3

=> imp/3

<= pmi/3

<=> equi/3

- sneg/2

Table 5.2: Two-Valued connectives and associated functors.

Quanti�ed formulae are represented in the same way as simple compound formulae. The functor
used for an existential quanti�ed formula is ex/3 and for an universal quanti�ed formula all/3.
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connective functor/arity

v dis/3

& con/3

=> imp/3

<= pmi/3

<=> equi/3

# reg/3

- sneg/2

~ wneg/2

nabla nabla/2

jt jt/2

aff partaffirm/2

ju ju/2

jf jf/2

Table 5.3: Three-valued connectives and associated functors.

Example 5.9 Consider the following declaration:
sort top.

predicate p,q : top.

variable x : top.

The formula forall x (p(x) v q(x)) is represented by the Prolog term
all( x:[top| ], dis( atfma(p(x:[top| ]),l1),

atfma(q(x:[top| ]),l2),l3),l4).
The variable declaration for x is not necessary (cf. Section 3).

The following list shows the access predicates for formulae.

� mk formula/2

This predicate constructs a formula from a list which consists of an operator and one or
two subformulae and a label.

� get op of formula/2

Determine the leading connective or quanti�er of the given formula.

� get fma1 of formula/2

Determine the left subformula of the given compound formula.

� get fma2 of formula/2

Determine the right subformula of the given compound formula.

� get var of formula/2

Return the variable list of the given quanti�ed formula.

� get arity of formula/2

Return the arity of the leading operator of the given formula. Please note that the arity
of the Prolog functor is relevant here.

� get label of formula/2

Return the top level label of the given formula.
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5.5.3 Representation of Signed Formulae

Signed formulae are represented as Prolog terms with the leading functor sformula/8. The
arguments of sformula are

1. a usage counter for the number of rule applications to the formula,

2. the branching factor of the formula if a rule is applied to it,

3. the number of extensions a rule application will yield,

4. the term representing the formula, cf. Section 5.5.2,

5. the sign,

6. an index which is used to access some indexing data structure,

7. the name of the knowledge base it stems from,

8. the list of variables with respect to which the formula is universal.

Remark 5.10 Please note that the branching factor and the number of extensions may be un-
instantiated. These arguments are instantiated when the formula is considered �rst for a rule
application. If an instantiation is necessary the values may be obtained by the rule/8 predicate,
cf. Section 5.10.

Signs are represented as Prolog atoms whose names end in \sign" (e.g., the sign for \false" is
represented by fSign and that for \unknown or true" is written as utSign).

The following predicates may be used to access the various parts of this data structure:

� mk sformula/9

This predicate builds a term consisting of the functor sformula/8 and the �rst eight
arguments. The term is returned using the ninth argument.

� get counter of sformula/2

Return the counter of the given signed formula.

� get branch number of sformula/2

Return the branching factor of the given signed formula.

� get successor number of sformula/2

Return the number of extensions generated by a rule application to the given signed for-
mula.

� get sign of sformula/2

Determine the sign of the given signed formula.

� get fma of sformula/2

Extract the term representing the formula from the given signed formula.

� get kb of sformula/2

Return the name of the formula's knowledge base.

� get univ vars of sformula/2

Return the list of variables with respect to which the given signed formula is universal.

� increase counter of sformula/2

Increase the counter associated with the given signed formula by one.
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5.5.4 Representation of Extensions

An extension is represented as a Prolog list of signed formulae. The predicates below may be
used to construct or access extensions:

� mk empty extension/1

Return an empty extension, i.e. an extension containing no formulae.

� get sformula of extension/3

Returns the �rst formula from the extension and removes that formula from the extension.

� add sformula to extension/3

Adds the given signed formula to the extension. The result is the updated extension.

5.5.5 Representation of Conclusions

A conclusion is a collection of extensions. It is represented as a Prolog list of extensions, i.e. as
a list of lists of signed formulae. Use the following predicates to build or access conclusions:

� mk empty conclusion/1

Return an empty conclusion, i.e. a conclusion containing no extensions.

� is empty conclusion/1

This predicate succeeds if and only if the conclusion is empty.

� get extension of conclusion/3

Extract the �rst extension from the conclusion and remove it from that conclusion.

� add extension to conclusion/3

Adds the given extension to the given conclusion.

5.5.6 Representation of Branches

In this section the representation of branches is explained. Not the whole tableau is constructed
explicitly. Only the branch in focus is held in a special data structure which is described below.
The information on the remaining structure of the tableau constructed so far is represented
implicitly by the choice points of the Prolog system.

Branches are represented as Prolog terms with the principal functor branch/6. The argument
positions of branch/6 are used as follows (arguments from left to right):

1. The list of new4 signed formulae on the branch. This is a Prolog list of terms. Every term
represents a signed formula as described in Section 5.5.3. No rule has been applied to any
of these formulae. The list does not contain any atomic formula.

2. The list of used signed formulae on the branch. This list is similar to the one above, but
the formulae here have been used at least once for a rule application.

3. The list of new atoms on the branch. This list is similar to the list in Section 1, but the
formulae here are atomic. No atom of this list has been used for branch closure.

4 That is, no rule has been applied yet to that formula, cf. Section 5.5.3.
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4. The list of used atoms on the branch. The atoms in this list have been used for branch
closure at least once.

5. The list of indices of formulae on the branch, cf. Section 5.5.3.

6. The Dewey Number of the branch. The branch's Dewey Number is represented by a list
of integers. An example is given below.

The lists in the branch data structure are sorted w.r.t. lexicographic ordering. This means that
these lists of signed formulae are ordered by increasing usage counters.

Remark 5.11 There is a problem with the lexicographic ordering. \10" is less than \2". This
means if the 
-limit maxcounter exceeds ten then the ordering is no longer by increasing usage
counters. In that case the get best sformula of branch/2 described below will not return the
\best" formula. This is a known bug.

If two formulae have equal usage counters they are ordered w.r.t. their branching factor since the
branching factor �lls slot two of the data structure for signed formulae. The problem described

above does not occur here because 3T
AP 's logics so far do not include rules with a branching factor

greater than ten. For equal branching factors the ordering is w.r.t. the number of extensions a
rule application to that formula will yield.

To access branches the following predicates are used:

� mk empty branch/1

Return an empty branch, i.e. a branch without any formulae.

� get new sformula of branch/2

This predicate returns an unused signed formula from the given branch. Like in the
member/2 predicate a di�erent formula is chosen after each fail. The predicate fails if
no formula is left.

� get used sformula of branch/2

Similar to the previous predicate, this one returns a formula from the branch which has
been used already.

� get best sformula of branch/2

This predicate will return the best signed formula on the branch w.r.t. the following heuri-
stic. An unused formula is better than a used one. If there are no unused formulae on the
branch, the formula with the least usage counter is the best. This heuristic is implemented
by fetching the �rst element of the list of new formulae (if any) or else the �rst element of
the list of used formulae. There is a bug in this predicate, cf. Remark 5.11.

� get new atom of branch/2

Return an unused signed atomic formula from the branch. Like the member/2 predicate a
di�erent atomic formula is chosen after each fail. The predicate fails if no new atom is left.

� get used atom of branch/2

Similar to the previous predicate, this one returns an atom from the branch which has been
used already.

� get index list of branch/2

Return the list of indices of formulae on the branch. Cf. item 5 in the above enumeration
of the arguments.
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� add index to index list/3

Add an index to the index list of the branch. The result is the branch with the extended
index list.

� get path/2

Return the Dewey Number of the branch.

� add sformula to branch/3

The predicate adds a signed formula (which may be atomic) to a branch. I.e. the formula
is inserted in the appropriate list.

� add extension to branch/4

This predicate adds an extension to the given branch. The result is the updated branch
which contains the signed formulae from the extension. The branch's Dewey Number is
extended by the extension's number which is passed as an argument to this predicate5.

� update branch/4

This predicate is called with a branch and a signed formula as arguments. The result is an
updated version of the branch. There are three cases depending on the type of the formula,
say �:

1. If � is a 
-formula and its usage counter is equal to the 
-limit (maxcounter), it is
removed. Otherwise �'s counter is increased and � is possibly (if the counter was 0)
moved from the list of unused formulae to the list of used formulae.

2. If � is an atomic formula its counter is increased. If � is an element of the list of
unused atoms it is moved from that list to the list of used atoms.

3. Otherwise � is a non atomic non-
 formula. Formulae of that type may be used only
once. Therefore, � is removed from the branch.

� remove sformula from branch/3

Remove the given signed formula from the branch. The result is the updated branch
without that formula. The formula may be used or new.

The following example shows how the Dewey Numbers are attached to the branches of a tableau.

Example 5.12 A node of the tableau in �gure 5.1 is marked with the Dewey Numbers of the
branch which has that node as leaf. The Dewey Numbers are written as a list in Prolog syntax.

5.5.7 Data Structures for Equality Handling

There are several data structures de�ned in datastructures that are solely used by the modules
complete and equality: constraint, cterm, possibility, sterm, inequality, disjunction,
equality, inst and add inf. In the following we describe only the predicates

facc;getg part of datastructure(+Datastructure,-Value)

that allow to access the value of the various parts of the data structures, or, if a part is an
uninstantiated Prolog variable, to instantiate that variable. Although not mentioned, for most
of these predicates their counterpart set part of datastructure/3 is de�ned as well, which allows
to assign a new value to a part of a data structure, even if that part has been instantiated before.

5 It is assumed that the extension is part of a larger conclusion. Each extension of the conclusion will result in
a di�erent subbranch. The extensions in the conclusion are numbered from left to right. The number which
has to be passed to add extension to branch/4 is simply the position of the extension in the conclusion.
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Figure 5.1: Dewey Numbers in a tableau.

5.5.7.1 Representation of Constraints

The data structure constraint represents a constraint (Def. 2.34), that can be attached to terms
and reduction rules.

The predicates giving access to the parts of the data structure constraint are:

� get subst of constraint

The substitution � that is part of a constraint c = h�;Oi.

� get oc of constraint

The order condition that is part of a constraint c = h�;Oi.

5.5.7.2 Representation of Constrained Terms

The data structure cterm represents a constrained term or reduction rule (Def. 2.36).

The predicates giving access to the parts of the data structure cterm are:

� get prec of cterm

The precedence according to which lists of cterms are ordered.

� get term of cterm

The term (without constraint).

� get constraint of cterm

The constraint.

� get univ vars of cterm

The list of variables w.r.t. which the constrained term is universally quanti�ed.

� get derived from of cterm

The number of the term or rule the cterm has been derived from.

� get number of cterm

The number of the cterm.
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� get type of cterm

The type (rule or term) of the cterm.

� get weight of cterm

The weight of the cterm (see Section 5.13.5).

5.5.7.3 Representation of a Possible Rule Application

The data structure possibility represents a possibility to apply a constrained reduction rule
to a constrained term (which might be a rule too); see Section 5.13.3 and De�nition 2.39.

The predicates giving access to the parts of the data structure possibility are:

� get prec of possibility

The precedence of the possibility (see Section 5.13.4).

� get rule of possibility

The rule r that is to be applied.

� get cterm of possibility

The constrained term t the rule r is to be applied to.

� get position of possibility

The position l in t at which r is to be applied.

� get type of possibility

The type of the possible application (critical pair, composition, simplification,
term simplification, or non simplification).

� get unifier of possibility

The uni�er � that has to be applied.

� get new cterms of possibility

The list of new constrained terms that are the result of the rule application.

5.5.7.4 Representation of Terms with an Attached Substitution

The data structure sterm represents a term with a substitution attached to it.6 The parts of
the data structure sterm and the predicates giving access to them are:

� acc term of sterm/2

The term s.

� acc inst of sterm/2

The substitution �.

� acc univ vars of sterm/2

The set of variables w.r.t. which s can be seen to be universal.

6 In this version of 3T
AP some of the parts of the data structure sterm have become obsolete and are not described

here (see the footnote on Page 94).
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5.5.7.5 Representation of Uni�cation Problems (Inequalities)

The main parts of the data structure inequality are the sets of normal forms for the two sides of
an inequality (resp. uni�cation problem) computed so far, and a list of the substitutions already
found that allow to solve the problem.

The predicates giving access to the parts of the data structure inequality are:

� acc left side of inequality, acc right side of inequality

The sets of normal forms for the left hand side and the right hand side of the inequality.
The sets are implemented as Prolog lists.

� acc closings of inequality

The set of substitutions computed so far that allow to close the inequality (implemented
as a list).

� acc number of inequality

The number of the inequality. Actually this is a pair of numbers that includes the number
of the disjunction (simultaneous problem) the inequality belongs to.

� acc left counter of inequality, acc right counter of inequality

The number of terms that have already been added to left side and right side. These
counters are needed to generate unambiguous numbers for new terms.

5.5.7.6 Representation of Simultaneous Uni�cation Problems

The data structure disjunction represents a disjunction of inequalities (a simultaneous E-
uni�cation problem). The parts of disjunction and the predicates giving access to them are:

� acc expdbl ineq of disjunction

The list of inequalities (single uni�cation problems) in the disjunction that are expandable,
i.e., that contain a term that an equality can be applied to.

� acc inexpdbl ineq of disjunction

The list of inequalities in the disjunction that are not expandable.

� acc number of disjunction

The disjunction's number.

5.5.7.7 Representation of Equalities and Demodulators

The data structure equality represents equalities and demodulators. If a demodulator is repre-
sented, it is oriented from left to right.

The parts of equality and the predicates giving access to them are:

� acc left side of equality

The term on the left hand side of the equality or the demodulator.

� acc right side of equality

The term on the right hand side of the equality or the demodulator.

� acc universal vars of equality

The list of variables with respect to which the equality or the demodulator is universal.

� acc number of equality

The number of the equality or the demodulator.
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5.5.7.8 Representation of Substitutions

The data structure inst represents variable instantiations. It is represented as a Prolog term of
the form variable = term, e.g. X=f(a). A substitution is represented by a list of such instantia-
tions.

The predicates acc_term_of_inst and acc_var_of_inst give access to the parts of an instan-
tiation. In addition, the predicate make_inst can be used to build a new instantiation.

5.5.7.9 Representation of Additional Information

The data structure add inf represents information that has to be available in many of the
predicates of the module equality, and that does not change while a branch is closed. There
is only one instantiation of this data structure called Ai that is a parameter of most of the
predicates. In a way this data structure is an implementation of global variables (relative to
equality).

The parts of the data structure add inf and the predicates giving access to them are:

� acc_debug_level_of_add_inf

The value of the 3T
AP parameter eqdebuglevel.

� acc_equalities_of_add_inf

The list of all equalities on the current branch.

� acc_demodulators_of_add_inf

The list of all demodulators on the current branch.

� acc_univ_vars_of_add_inf

The list of all variables with respect to which one of the atoms on the branch is universal.

� acc_branch_symbol_of_add_inf

An atom identifying the branch. These atoms are of the form bn, where n is increased by
one whenever a new branch is to be closed.

5.5.8 Data Structures for Achieving Fairness

There are a few predicates gathering information needed for fairness. Here they are:

� get label from conclusion/2

Returns a list of pairs of all the labels at the top level of the formulae with the corresponding
signs in the given conclusion. No labels of subformulae of these formulae appear in the list.

� get labels from extension/3

Does the same for an extension (the additional argument is used as accumulator).

� get counters from labels/2

As described in Section 5.7 a counter is attached to every pair of label and sign. This
predicate returns the list of counters corresponding to the list of pairs of labels and signs.

� get extension according to labels/4

Returns the extension which has to be expanded �rst w.r.t. to the fairness strategy and
the remaining conclusion. The decision is based on the list of counters corresponding to
the signed formulae in the conclusion.
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5.6 Sysdep

The main purpose of the sysdep module is to hide system dependent features from the 3T
AP

modules. For example, the append/3 predicate is a built-in in some Prolog implementations,
while in others it is a library predicate. Table 5.4 gives an overview of the system dependent
predicates handled by the sysdep module. These predicates are exported by sysdep, their names
being pre�xed with the string sysdep . For the semantics of these predicates look at the source
of the sysdep module or your Prolog documentation.

append/3 ask file/3 change path arg/4

contains term/2 copy term/2 concat atom/2

contains var/2 correspond/4 delete/3

delete file/1 file exists/1 flush output/1

free of var/2 genarg/3 gensym/2

is endfile/1 is set/1 last/2

list to ord set/2 member/2 merge/4

midstring/4 nth1/3 ord add element/3

ord intersect/2 ord subset/2 ord union/3

path arg/3 pwd/1 remove dups/2

rev/2 select/3 setof/3

unify/2 union/3 yesno/1

Table 5.4: System dependent predicates.

Other tasks of the sysdep module are:

� Importing necessary libraries and exporting the library predicates.

� De�nition of the interface predicates to the C foreign language interface and the initializa-
tion of the foreign language modules. Cf. your Prolog manual for details.

� Implementation of some low-level predicates, e.g. reset/0 which resets the prover.

� Implementation of some predicates to access the UNIX environment. Examples are cp/2

or ls/0 which simulate their UNIX counterparts.

5.7 Global Variable Management

The modules globalvars.c, globalvars quintus.c and globalvars sicstus.c are implemen-
ted using the C programming language. globalvars.c contains functions to manipulate global
counters, 
ags, switches and other global data structures which would be too expensive to imple-
ment in Prolog (via assert and retract). Its functions are being called through the interface
predicates de�ned in the sysdep module. It can be made suitable for di�erent Prolog versions
by de�ning the system dependent constants. globalvars quintus.c includes globalvars.c

and de�nes the constants which make the globalvars.c module suitable for all of the Quintus
Prolog Versions 3.x. globalvars sicstus.c includes globalvars.c and de�nes the constants
which make the globalvars.c module suitable for the SICStus Prolog Versions 2.1.

In the case of a 
ag, a switch or a counter there is one global variable de�ned at the beginning of
globalvars.c and some functions to read, set or manipulate that variable are implemented. For
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example, a global variable named maxcounter is de�ned and the functions set maxcounter()

and get maxcounter() are supplied to access that variable. For some counters there are addi-
tional functions to increment or reset the counter, etc. The implementation of these functions is
straightforward, look at the source code of globalvars.c for details.

For fairness a counter for each pair of a formula and a sign is needed. globalvars.c implements
the data structure for these counters. Every subformula may be identi�ed by a unique label, cf.
Section 5.5.2.1. These labels are of the form lxxx where xxx is a positive integer. This integer
is used as the �rst index into an array of dimension 2 which contains the counters. The second
index is the sign, the function signstring2index() maps the string representation of the sign
onto the index range, [0; : : : ; s� 1] where s is the number of signs used in the logic. The size of
the array is extended automatically if an access to a not existing label happens. The counters
may be read, set or incremented. If the array is extended during a read access the counter is
initialized to 0, if the extension takes place during an increment operation the counter is set to 1,
otherwise it is set to the value supplied by the appropriate argument of the set label counter()

function.

Remark 5.13 As a matter of fact the index range of the array's second dimension is

0; : : : ; 2(s� 1)

because there are two counters for each pair of formula and sign. The second counter is used to
achieve fairness in the dissolution module.

5.8 Uni�cation

There are two uni�cation predicates implemented in the 3T
AP system. One is for unsorted

uni�cation the other for sorted uni�cation. The former predicate, unify terms/3, is implemented
in the sysdep module the latter, sorted unify/2, in the unification module. Of course, both
predicates implement a sound uni�cation with occur check.

5.8.1 Unsorted Uni�cation

The unify terms/3 predicate in sysdep tries to unify copies of its �rst two arguments. If this is
possible the third argument is bound to the unifying substitution. Otherwise, the predicate fails.
Uni�cation is done by sysdep unify/2 which in the Quintus Prolog version uses the Quintus
Prolog library predicate unify/2 for sound uni�cation. In the SICStus Prolog version a copy of
the Quintus Prolog library predicate unify/2 is used.

5.8.2 Sorted Uni�cation

The predicate sorted unify/2 may be used to unify two sorted terms. The additional predicates
sorted unify check/3 and sorted unify check/4 may be used to check for sorted uni�ability.
With the latter predicate it is possible to specify an ambiguity 
ag which|if set to yes|says
that the sort hierarchy is a tree or|if set to no|says that the sort hierarchy is a directed
acyclic graph. If the sort hierarchy is known to be a tree the test for subsorts is easier, Prolog
uni�cation of the sorts in the representation described in Section 5.5.1 su�ces. Otherwise a more
elaborated|but simple|test for sort compatibility has to be done, cf. the source of unification
for details.
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Example 5.14 Consider the following sort hierarchy:
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Albeit a and b are not subsorts of one another they are compatible because there is a common
subsort, namely d.

Except for the subsort test sorted uni�cation is implemented in much the same way as the library
predicate, which is a straightforward implementation of Robinson's algorithm with occur check.

5.8.3 Special Treatment of Universal Formulae

Some special care must be taken when terms are to be uni�ed that contain \universal variables"
(see Section 2.5. The terms f(x) and f(g(x)), that are both universal with respect to x, are
uni�able albeit the occur check fails. This is true, because any of the terms may be regenerated
with di�erent variables, say y, and f(y) and f(g(x)) or f(x) and f(g(y)) unify.

5.9 Declarations

The main purpose of the declarations module is the declaration of the logic's signature. In
this module the representation of signs and connectives is speci�ed. Also, the signs' seman-
tics is de�ned here by declaring which signs are complementary and which is the axiom and
query (theorem) sign. Likewise, some declarative aspects of the rules module are handled by
declarations. These are the de�nition of the pairs of connectives and sign which are self-
contradictory, i.e. where no rules are de�ned. Finally, some internal declarations, e.g. which
symbol should be used for the equality sign and initializations are implemented in this module.

5.9.1 Declaration of the Signature Used in a Logic

5.9.1.1 Connectives and Quanti�ers

Some facts and predicates in declarations specify the internal and the external representation
of the logic's connectives and quanti�ers. The symbols used for the external representation of
connectives are supplied by the get ext op list/1 fact. The argument position is �lled by a list
of these; e.g., get_ext_op_list([v,&,-,=>,<=>,all,ex,<=]) de�nes the external symbols for

the two-valued version of 3TAP , cf. Table 3.2. The list of the corresponding internal representation
of the connectives is given by get int op list/1. For the above example declarations contains
get int op list([dis,con,sneg,imp,equi,all,ex,pmi]), cf. Table 5.2.

Remark 5.15 The correspondence between the internal and the external representation of the
connectives is given by the position of the symbols in the lists. I.e. the �rst symbol in the external
connectives list is internally represented by the �rst symbol in the internal connectives list and
so on.
The predicate get corresponding operator/2 implements this correspondence.
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Remark 5.16 Please note that the external symbol for the universal and existential quanti�er
is de�ned as all, ex resp., although the syntax de�nition in Chapter 3 says that they are written
as forall, exists resp. This is no error!

The type of the connective is identi�ed by the following predicates.

� get ops with a left fma/1

This predicate speci�es that the connective has a left subformula. In the above example
declarations will contain get ops with a let fma([dis,con,sneg,imp,equi,pmi]).

No quanti�ers are listed here!

� get ops with two fmas/1

The connectives which have a right subformula are in this list, too. Again, no quanti�er is
allowed here.

� get unary ops/1

De�ne the unary connectives. The symbol atfma is included here, see Section 5.5.2.2. The
two-valued declarations contain get unary ops([atfma,sneg]).

� get int quantor list/1

This predicate de�nes which internal symbols are quanti�ers.

� get ext quantor list/1

This predicate de�nes which external symbols are quanti�ers.

5.9.1.2 Signing

The list of signs used by 3T
AP is de�ned by the get int sign list/1 predicate. Its argument

is the list of signs used by 3T
AP . For example, the two-valued version of declarations contains

the fact get int sign list( [tSign,fSign] ).

5.9.2 Declaration of Complementary Signs

There are a couple of facts in declarations which de�ne complementary signs. There is one
fact of the is complementary sign/2 predicate for each ordered pair of signs.

Remark 5.17 The predicate has to be explicitly de�ned as symmetric by including two clau-
ses for each unordered pair of signs!

There are just two clauses for the two-valued version of 3T
AP :

is complementary sign(tSign,fSign) and is complementary sign(fSign,tSign).

The predicate is linking sign/2 succeeds if and only if any two complementary atoms with
these signs imply a link. For the classical two-valued logic and the three-valued logic used in the

three-valued version of 3T
AP this predicate is identical to is complementary sign/2.

The signing of axioms and the theorem is de�ned by get signing/2. The �rst argument speci�es
the axiom sign and the second argument is the query sign, i.e. the sign of the theorem which

has to be proved (e.g. get signing(tSign,fSign) for the two-valued 3T
AP ). If the set of truth

values is partitioned into the set of designated and non-designated truth values, i.e. if there
aren't any truth values which are neither designated nor non-designated, then the axiom sign
is the sign representing the union of all designated signs and the query sign is the union of all
non-designated signs which is the complement of the former set.
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5.9.3 No Rule de�ned

The predicate no rule defined/2 succeeds only for pairs of connectives and signs which are self-
contradictory. The module rules exports a dummy-rule for those cases, see below. For example,

the range of the weak negation7 of the logic implemented in the three-valued version of 3T
AP

does not include the truth value corresponding to uSign, hence no rule defined( wneg,uSign

) :- !. is included into the declarations module for that logic. As with any rule, see below,
a cut is added to the clause to ensure determinism and to eliminate unnecessary choice points.

5.9.4 
-Formulae

is gamma formula/2 de�nes which formulae are to be treated as 
-formulae. For example, the
two-valued version of declarations contains the following clauses:

is_gamma_formula(tSign,all).

is_gamma_formula(fSign,ex).

In the many-valued case all quanti�er rules that generate a free variable in some extension have
to be classi�ed as 
-formulae, since they must be applied an inde�nite number of times in order
to guarantee completeness.

5.9.5 Output-Utility Support

There are two predicates in the declarations module for support of the 3T
AP utility which

translates a proof protocol into LaTEX syntax.

� get LaTeX op list/1

The only argument position is �lled by the list of LaTEX symbols which should be used
when a connective is translated. For example

get_LaTeX_op_list([vee,wedge,-,supset,

leftrightarrow,forall,exists,subset]).

speci�es that the symbol \supset" (�) should be used to translate imp. The correspondence
is by position.

� get LaTeX sign list/1

Speci�es the translation of the signs.

5.9.6 Internal Declarations

� get sort op(':')

de�nes the colon to be the sort operator, i.e. the symbol separating a term from its sort,
cf. Section 5.5.1 for details.

� get equals(=)

de�nes the equality sign to be the symbol for the equality predicate.

� get demodulates('==')

de�nes the symbol == to be the name of the demodulator predicate.

7 The connective is seen here as a mapping from the set of truth values into itself.
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5.9.7 Initialization

The predicates initialize prover/3 and initialize variables/0 may be used to reset 3T
AP .

The global counters are reset here and the variables and switches are set to their default values.

5.10 Rules

The rules module de�nes the semantics of the logic it carries out proofs in. The most important
predicate implemented in this module is rules/8. There is a clause for each pair of operator
� (logical connective or quanti�er) and sign � specifying the rule which may be applied if a
formula p � q is encountered with sign �. The remaining parts of rules are concerned with
the substitution mechanism and support of lemma generation. The auxiliary predicates are not
discussed in detail. Their straightforward implementation is documented in the source of the
rules module.

5.10.1 The Rules Predicate

The arguments of rules/8 are as follows:

1. The internal representation of the operator (connective or quanti�er), e.g. con.

2. The sign of the formula. I.e. tSign or fSign in the classical two-valued case or any other
sign declared in Declarations.

3. The branching factor of the rule. The branching factor is the number of subbranches which
are generated by an application of that rule, i.e. the number of extensions in the conclusion.

4. The total number of formulae generated by an application of the rule.

5. The formula to apply the rule to. The only purpose of this argument is to identify the
subformulae. In the example from Item 1 this argument would be con( Fma1,Fma2, ).
Now the extension can refer to the left subformula as Fma1 and to the right subformula as
Fma2, see below.

6. The list of variables with respect to which the formula is universal (before rule application).

7. The list of variables with respect to which the formula is universal after rule application.
For non-branching rules these lists are generally equal. For branching rules the former list
is anonymous in most cases while the latter is empty. 
-rules are exceptions to that.

8. The conclusion of the rule. As usual the conclusion is represented as a list of extensions,
cf. Section 5.5.5. The extension is a list of pairs consisting of a sign and a formula. The
pair is implemented as a list of two elements. See Examples 5.18, 5.19 for details.

The rules have to be deterministic, i.e. there is only one rule de�ned for each pair of sign and
formula and every clause of rules/8 is terminated by a cut. To achieve better readability of the
rules each extension is in an extra line. It is a good idea to adopt this style when editing the
rules module.

The following examples are taken from the conjunctive rules of the two-valued version of the

3T
AP system.
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Example 5.18 The rule is of type �, i.e. branching. There are two extensions (2nd argument)
with one formula each, which results in a total of two formulae (3rd argument). The rule destroys
any \universal variables" (7th argument is []).
rule(con,fSign,2,2,con(Fma1,Fma2, ), ,[],

[[[fSign,Fma1]],

[[fSign,Fma2]]]) :- !.

Example 5.19 The rule is of type �, i.e. non-branching. There is one extension (2nd argument)
with two formulae (3rd argument). The set of \universal variables" for the formula remains
unchanged (6th and 7th argument).
rule(con,tSign,1,2,con(Fma1,Fma2, ),Univ vars,Univ vars,

[[[tSign,Fma1],[tSign,Fma2]]]) :- !.

5.10.1.1 Dummy Rules

In many-valued logics8 it is possible that no rule is de�ned for an operator � and a sign � because
v(a � b) = v� or v(�a) = v� does not occur where v� is the truth value corresponding to � and v
is a valuation. Such signed formulae are self-contradictory and there is no rule de�ned for those.
Nevertheless, the rules/8 predicate needs a dummy rule for them.

Example 5.20 The truth-value corresponding to uSign is not in the range of the ju operator 9

(partial a�rmation, ju in 3T
AP notation). Therefore no rule is de�ned for fUgjua. The dummy

rule in the rules module of the three-valued version of 3T
AP looks like this:

rule(ju,uSign,0,0,ju( , ),[ ]) :- !.

5.10.1.2 Quanti�er Rules

The quanti�er rules are of two types: 
- or �-rules. In the case of an application of a 
-rule to
a formula � the quanti�ed object variable is replaced by a Prolog variable. A �-rule application
yields a formula where the former quanti�ed object variable is substituted by a Skolem function.
In the two-valued version the liberalized �-rule from (Beckert et al., 1993) is used. Instead of

generating a new Skolem function symbol for each �-rule application, 3TAP uses function symbols
sko n, where n is the label of the �-formula to be Skolemized. The 
-type formulae may be
identi�ed by the is gamma formula/2 predicate in the declarations module.

Example 5.21 The signed formula fTg8x� is of type 
. The rules module contains the fol-
lowing clauses:
rule( all,tSign,1,1,all( VarList,Fma, ),Univ vars,New univ vars,Conclusion ) :-

nonvar( Fma ),

do gamma( VarList,tSign,Fma,Add univ vars,Extension ),

Conclusion = [Extension],

sysdep append(Add univ vars,Univ vars,New univ vars),

!.

rule(all,tSign,1,1, , , , ) :- !.

The substitution is performed by the do gamma/5 predicate where Varlist is the list of object
variables bound by the universal quanti�er. The sign (2nd argument to do gamma/5) is used to
sign the formula in the resulting extension.

8 If 0-ary operators are present this may already happen in two-valued logic.
9 ju is seen here as a mapping from the set of truth values into itself.
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An example for a �-rule is similar and may be obtained from the source code of the rules module.

The above distinction between 
- and �-type formulae is not unique. There are formulae which
are as well of type 
 as of type �. Quanti�ed uSigned formulae in the three-valued logic used

by 3T
AP are examples. There is a variant of the do delta/4 and do gamma/4 predicate for

those, do delta u/6, which combines the actions taken by the former predicates. do delta u/6

generates a two-element extension.

Remark 5.22 The signed formulae of this hybrid type must be declared as 
-type formulae by
the is gamma formula/2 predicate in the declarations module, cf. Section 5.9.4.

Remark 5.23 In the many-valued versions of 3T
AP the mechanism of universal formulae is not

used. The rules/8 predicate is only an interface to rules/6 in the many-valued Rules modules
and do gamma or do delta are of arity four.

5.10.2 Supporting Lemma Generation

The predicate get lemmata/6 is used to decide which formulae may be added to an extension as
lemmata. The usage of that predicate is discussed using the following example.
get lemmata(con,uSign,con( ,Fma2, ),[1],2,[[tSign,Fma2]]) :- !.

The meaning of the clause is: If we are expanding the tableau using the rule for uSign, con
and the �rst extension has been closed already ([1] at the 4th argument position) the lemma
[[tSign,Fma2]] may be added to the second extension (2 in the 5th argument position). Cases
not considered by the get lemmata/6 clauses are covered by the dummy lemma predicate
get lemmata( , , , , ,[]) which is always included.

To remove lemmata causing a branching of the tableau the predicates get lemmata alpha/6 and
remove branching lemmata/2 are supplied. Cf. the source of rules for details.

5.11 Dissolution

The module dissolve is an implementation of the dissolution rule for restricted to tableau-
based theorem-proving (Murray & Rosenthal, 1990b). The general dissolution rule is described
in Section 2.2 and, in greater detail, in (Murray & Rosenthal, 1990a). See also the following
section.

The module dissolve exports the following two predicates:

1. treat_dissolution_part

which is called by close branch. It calls in turn the predicate dissolve_branch which controls
the whole dissolution module, and afterwards distinguishes di�erent cases depending on the result
of dissolution application (and non-dissolution application respectively). The second predicate

2. check_dissolution_result

is called by close_branch in order to shorten the module main and is relatively unimportant.
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5.11.1 The Dissolution Rule

In (Murray & Rosenthal, 1990a; Murray & Rosenthal, 1993) Murray & Rosenthal stated a
specialized dissolution rule suitable for the method of analytic tableaux. This rule10 (shown

below) is implemented in 3T
AP , but only usable in the two-valued version because it is only

de�ned for classical logic.11

A

^ _ W

U W A

^ ^

j �! �A
W

U

^ _ S ^
�A R S

^ _ S

R

A and �A are literals, U , W , R and S are subformulae of arbitrary type. During dissolution
application the two formulae on the left, which are to be thought on the same branch, are
replaced by the dissolvent on the right.

One can easily see that dissolution takes place in the two outermost (syntactic) levels of a formula.

There are several special cases of this dissolution rule:

1. If W (or S, by symmetry) is the empty formula (i.e. does not exist), then the subformula
on the right containing W (S) vanishes (this will be called simple dissolution rule).

2. If both, W and S are empty formulae, dissolution will close the current branch.

3. If A and �A are literals within the same formula (note that they must occur in the two
outermost levels to be detectable), a modi�cation of the above rule is applied. Very often,
application of this special rule leads to a closure of the current branch.

5.11.2 Passes

The module dissolve is divided into six passes in order to facilitate its understanding and to
give it structure.

Pass 0 converts the 3T
AP data structure sformula (cf. Section 5.5.3) into list representation.

This conversion only takes place in the outer two levels sformula, because dissolution does
not need to look at more deeply nested formulae (see Section 5.11.1).

Pass 1 tries to split all sformulae into the form

(A ^ U ) _ W

Pass 2 computes all possible links (see Section 5.11.3).

Pass 3 additional uni�cation check for preservation of �rst-order soundness. (see Section 5.11.3)

Pass 4 treats dissolution fairness handling (see Section 5.11.4).

Pass 5 selects the \best" link according to the implemented heuristics (see Section 5.11.6) and
applies dissolution rule on it.

10 We mean that rule when speaking of the dissolution rule from now on.
11 A generalization to many-valued logics is possible along the lines sketched in (H�ahnle, 1992c).
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5.11.3 Computation of Links

This part, containing Passes 1 and 2 as described above, is relatively expensive and one of the

main reasons for the slowness of 3T
AP with dissolution. It is controlled by the following two

predicates:

get_all_candidates_for_dissolution

get_all_links

The �rst one contains Pass 1 and is the only part of the whole dissolution module using back-
tracking, i.e., there exists one predicate check_lformula that always fails in order to initiate
backtracking. The resulting splitted sformulae are stored in a dynamic list.

The second predicate tries to \combine" every link candidate with each other using a double
recursion. It is important to note that in this pass all possible literals A and �A are checked for
uni�ability but this is only a weak uni�cation check due to the internal Prolog dynamic data
structure handling. It is theoretically possible that in this pass links (A ; �A) are found whereby
A and �A are weakly but not strongly uni�able. Such unsound links are removed in Pass 3 (strong
uni�cation check).

5.11.4 Fairness Handling

Some �rst-order proofs, as for example that of Pelletier's 38th and 46th problem, demand fair-
ness considerations within the dissolution module. Two predicates were implemented to handle
fairness:

5.11.4.1 Choice of the \Fairest" Link

If the analysis part in the dissolution module found several candidates for dissolution (i.e. more
than one possible link) those link must be chosen which is the fairest one, that is, whose literals
have least been dissolved upon.

This is a heuristic problem because up to this point every literal of a link (A ; �A) may have been
dissolved with several others. To solve this problem every atom is provided with a special label
(these are managed in a global hash table implemented in C) which refers to a counter that can
be incremented during a tableau proof.

In particular for longer proofs the combination of the following two heuristics proved to yield
good results (short runtimes due to fair selection):

1. add to each label counter of A and �A two and multiply the results. The fairest candidates
are those with the lowest product.

2. when dissolving upon a link (A ; �A) increment only the smaller label counter of A and �A.

5.11.4.2 Consideration of Dissolved Links

Keeping track of the already dissolved upon links on the current branch is very important for
preservation of strict �rst-order completeness. To achieve this a special list Dissolved_links is
maintained in the predicate close_branch (module main). The module dissolve receives this
list as a parameter when called by close_branch. If dissolve performs at least one dissolution
step, say upon a link (A ; �A) , two possible modi�cations can be made on Dissolved_links:
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1. the link (A ; �A) has not been dissolved upon, yet. Then it is added to Dissolved_links

and a counter associated with it is set to one.

2. the link (A ; �A) already exists in Dissolved_links. Then its counter is increased by one.

Now these old links are used as follows: Before performing a dissolution step all links whose
counter is equal to the global variable dissbound are removed. That means on the current branch
every link can only be dissolved upon a certain number of times. This is important for links
stemming from former 
-formulae. Hence, dissbound is relatively mighty and its analogy to the
global variable maxcounter is easy to see (cf. Appendix B).

5.11.5 Facilitation of Understanding

Due to the synthetic nature of the dissolution rule12 the utility moreTab has di�culties in dealing
with it (see also Section 6.4).

Therefore, a support predicate mark_sformula is implemented in dissolve that shows the atoms
A and �A of the currently dissolved link marked with ** and ##, respectively. This can be seen
when setting the global variable dissdebuglevel to a value of greater than three.

Then both literals of the dissolved link are shown with their marks, as well as the two signed
formulae where they come from and the new, synthesized formula. With the help of these marks
the dissolution step can more easily be recognized. The marks are only added for output and
will not appear in the internal representation of formulae later on in the proof.

When the global switch disscomplexity is set to on (see Section 5.11.7.1) and a dissolution pair
has been cycled the reasons and the result are nice to see in the marked formulae.

5.11.6 Dissolution Heuristics

As described in Section 5.11.1 there are some special cases of the dissolution rule. If the analysis
part of dissolve found several possibilities to dissolve upon there must be chosen one of them.
It is selected according to the following priority among the implemented rules in order to close
and reduce the actual branch more quickly:

1. Try closing the current branch by dissolution.

2. Apply dissolution within the same sformula.

3. Look for a \simple" (W or S empty) dissolution.

4. Apply the \full" dissolution rule.

5.11.7 Optimizations

At this point two further optimizations of dissolution shall be presented and discussed. Both are
switched, i.e. one can choose between a proof using one (or both) of these optimizations or none
of them. Thereby, the in
uence of either on any proofs can easily be seen.

12 The formula resulting in its application is in general not a subformula of the problem to be proved.
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5.11.7.1 Complexity Check

As can be seen in Section 5.11.1 the dissolution rule is asymmetric, i.e., 
ipping the input formulae
to apply dissolution upon in general leads to a di�erent dissolved formula. The subformula W
appears in the new dissolved formula two times while S is included only once.

If disscomplexity is activated, dissolve will check the selected pair and|if necessary|cycle
them in order to get the simplest possible new synthesized formula. Hence, the two subformulae
(above called) W and S are tested for complexity wrt \normal" tableau rules, that is, the size of
their tableau expansion to the atomic level is measured. In �rst-order logic there is the possibility
to produce 
-formulae, i.e., here the complexity can only be guessed. For a complexity check
here it is assumed that every 
-formula is applied at once.

The complexity check is only useful for long formulae, i.e., formulae which are given in one long
expression instead of a theorem with several (short) axioms. Especially during proofs of hard
propositional formulae such as pigeon3 or phi4 (cf. Murray & Rosenthal) this check yields a
noticeable speed-up.

5.11.7.2 Rule Priority

A rather awkward side e�ect of the \full" dissolution rule is the fact that the resulting dissolved
formula is of �-type, i.e., splitting this formula by \normal" tableau rules will yield two extensions
(notice: dissolution only works in classical two-valued logic). On the other hand, performing a
\simple" dissolution step ends in a formula of �-type.

In order to deal with this problem one can change the priorities of the dissolution and the

�-rule by setting the switch disspriority from diss to alpha. If it is set to diss, 3T
AP will

apply the dissolution rule as soon and as often as possible (and legal by fairness handling,
see Section 5.11.4). Otherwise, the �-rule is given the higher priority and dissolution will|if
applicable|only take place if no �-rule is present on the current branch.

5.12 Index, Makekbx, Preproc

5.12.1 Generating a Compiled Knowledge Base

The modules index and makekbx contain the predicates for generating and handling knowledge
bases. makekbx exports the predicate makekbx, that builds a compiled knowledge base �le.kbx
from the compiler's output �le.kb; it also exports the predicate readkbx for reading compiled
knowledge bases into the workspace.

The command compkbx13 �rst calls the compiler (see Section 5.15), that generates the internal
representation of the formulae in a knowledge base. Its output is written to the temporary �le
�le.kb.

compkbx then calls the predicate makekbx, that generates the compiled knowledge base �le.kbx,
i.e., it

1. reads all axioms, theorems and sort declarations from �le.kb;

2. adds the \axiom sign" to the axioms and the \denial sign" to the theorems (the signing
strategy is de�ned in the module declarations);

3. sorts the axioms according to a heuristic de�ned in the module heuristics;

13 And, therefore, as well the command usekbx, which is a combination of compkbx and readkbx.
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4. computes the index and the link information;

5. writes the completed knowledge base to �le.kbx.

Finally, compkbx deletes the temporary �le �le.kb.

To carry out the �rst three of its tasks, i.e., reading the formulae and sort declarations, adding
the signs, and sorting the axioms, makekbx calls the predicate readtcplus.

The axioms are sorted by the alphabetical order of the pre�xes that are computed for each axiom
by the predicate heuristics:get_fma_sort_prefix.

These pre�xes are of the form branch number-succ number (0-0 for atoms). Based in that, the
following heuristic is implemented: Prefer axioms that have

1. a smaller branching factor;

2. a smaller number of successor formulae.

readtcplus uses the predicate internal_set to write the sorted axioms and theorems and the
sort information to the workspace.

After that the predicate genindices is called by makekbx to compute the index and the link
information and to add it to the workspace (cf. Section 5.12.3).

Then the computed knowledge base, consisting of all axioms, theorems, the index and the link
information, and the list of formulae that contain the equality predicate, is written to �le.kbx
by the predicate savekbx. Finally, the knowledge base is deleted from the workspace.

5.12.2 Reading Compiled Knowledge Bases

The predicate makekbx:readkbx is the implementation of the command readkbx.

First, an older version of the knowledge base to be loaded that might be in the workspace is
removed. Then, the �le �le.kbx is opened, and the predicate readkbx_loop is called to read the
knowledge base into the workspace.

readkbx_loop reads a line from �le.kbx, and, unless the end of the �le is reached, calls itself
recursively. Since each line contains only one entry whose type is denoted by its leading function
symbol, the entries can easily be recognized and then be written to the workspace using the
predicate sysdep:internal_set.

When the knowledge base has been read, the predicate assert_sort_ambiguity is called to
check the sort declarations for ambiguity.14

5.12.3 Computing the Link Information

5.12.3.1 Theoretical Aspects of Using Links

Obviously, it would be of great advantage, if it were possible, to realize that certain formulae on
a branch are of no use for closing the branch, and therefore can be deleted. Fortunately, at least
some such formulae can be recognized, namely those that are neither linked to another formula
on the branch, nor to a formula in the knowledge base, that might be put on the branch later
on, nor contain the equality predicate. They can never participate in the closure of a branch.

14 If the sort declarations are not ambiguous, i.e., if from each sort there is only one path to the sort top, a
simpler|and faster|uni�cation algorithm can be used.
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De�nition 5.24 A signed formula S0�0 is called an immediate descendant of a signed formula
S� if it can be derived from S� by a single application of a tableau rule|including lemma
generation.

S0�0 is called a descendant of S� if there are signed formulae

S0�0 = S0�0; S1�1; : : : ; Sn�n = S�; (n � 0)

such that Si�i is an immediate descendant of Si+1�i+1 (0 � i � n� 1).

Remark 5.25 The \is descendant of" relation is the re
exive and transitive closure of the \is
immediate descendant of" relation.

De�nition 5.26 Two signed formulae S1�1 and S2�2 are linked if there are atomic formulae
S01p(t) and S02p(s) that are descendants of S1�1 and S2�2 respectively and that have the same
predicate symbols and complementary signs (i.e., S01 \ S

0
2 = ;).

To check, whether a knowledge base has a link, all atoms have to be computed that can be
generated by the application of tableau rules to it. The information about links can be pre-
compiled, thus, it has only to be done once, whereas, if information about links is not present,
tableau rules may be applied to a useless formula on every branch on which it occurs, and this
is much more expensive.

5.12.3.2 The Index and the Link Information

There are two di�erent ways of taking advantage of the knowledge about links between formulae:

1. impose a restriction on the formulae that are put onto a branch;

2. remove unlinked formulae from a branch.

3T
AP always employs Method 1. To use it, only the relation \is descendant of" between formulae

in the knowledge base, i.e., axioms and theorems, and their atomic descendants must be known.
This \partial" link information, called index, is included in every compiled knowledge base.

Since, for large knowledge bases, it may take very long to compute the complete link information
that is necessary to employ Method 2, it is only pre-compiled if removeunlinked is switched on.
Then, a list of all existing links between all the descendants of all formulae in the knowledge
base is computed and included in the compiled knowledge base. Since formulae containing an
equality or the demodulator predicate must not be deleted if equality is switched on, a list of all
such formulae is computed as well.

5.12.3.3 Implementation

The predicate genindices computes the index and, if removeunlinked is on, the complete link
information.

To do this, �rst, the predicate datastructures:get_all_indices is called, that returns a list
of the names of all axioms and theorems in the knowledge base. This list is handed to genidx.

genidx recursively computes all descendants of all axioms and theorems by applying the tableau
rules de�ned in the module rules. While doing this it computes
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1. a complete list of all occurring \is immediate descendant of" relations;

2. all index entries, i.e., the \is descendant of" relation between axioms and theorems and
their atomic descendants.

genidx cannot generate the complete link information, because at each level of the recursion
only the immediate parent formula and the name of the initial signed formula (i.e., the axiom or
theorem that was the starting point of the recursion) are known. The former is used to generate
a \is immediate descendant of" entry, the latter to generate an index entry whenever the atomic
level is reached.

Since the tableau rules as well as the lemma generation rules are analytical, i.e., only yield new
formulae that are subformulae of formulae already on the branch15, and since subformulae are
marked with a label, all occurring \is immediate descendant of" relations can be represented by
two label/sign pairs.

genidx keeps a list of all label/sign pairs (and hence, implicitly of all subformulae) that a tableau
rule has already been applied to. This list is updated and passed on when genidx calls itself
recursively. It is used to avoid processing a label/sign pair more than once that occurs multiply
in a conclusion of a tableau rule. Therefore, the complexity of the computation depends on the
size of the tree representing the structure of the processed formula and not on the size of the
tree that is generated by applying to each subformula once the corresponding tableau rule.16

Nevertheless, index entries can be generated multiply, since a formula might contain identical
subformulae in di�erent places (with di�erent labels). Therefore, the lists of index and \is
immediate descendant of" entries are treated as sets, i.e., duplicates are not included.

The complete lists are written to the workspace with predicates assert_idx, assert_subform.

Then, the predicate assert_links_and_cont_eq is called to compute the complete link informa-
tion and a list of all occurring formulae that contain the equality or the demodulator predicate
sign.17

The implementation of assert_links_and_cont_eq is based on the enumeration predicates
assert_all_links and assert_all_cont_eq, that always fail. They use Prolog's backtracking
to assert a list of all links and all formulae containing the equality predicate to the workspace.

Starting from the links between atomic formulae (that can be found using the index entries
written to the workspace by genidx) and the formulae at hand from which a given formula can
be derived (these have been written to the workspace by genidx, too), all links can be e�ciently
computed.

In a similar way, all formulae containing the equality or the demodulator predicate symbol can
be computed starting from the atomic formulae that are equalities or demodulators.

Remark 5.27 The dissolution rule is not analytical. It can generate completely new formulae.
Information about links of such new formulae is not computed and not included into a compi-
led knowledge base. These new formulae are, therefore, never deleted from a branch, even if
removeunlinked is switched on.

15 Of course, there is no restriction on the truth value signs of new formulae.
16 In classical two-valued logic, both are of the same size; but in certain multiple-valued logics, the latter can

grow exponentially in the length of the formula.
17 This additional information is only computed when removeunlinked is switched on.
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5.12.4 Syntax of Compiled Knowledge Bases

Each line of a compiled knowledge base �le.kbx contains one entry consisting of a single Prolog
term, whose leading function symbol denotes its type:

sf(name,sign,formula) A \signed formula", i.e., an axiom or a theorem. name is the name,
sign the truth value sign, and formula the formula itself (in internal representation).

th(theorems) A list of the names of those \signed formulae" that are theorems.

i(atom,sign,name) An index entry with the meaning: the atom atom with sign sign is a de-
scendant of the \signed formula" name.

s(sortpath) sortpath is a list of sorts representing a sort path.

link(label 1,sign 1,label 2,sign 2) A link entry with the meaning: the formula labelled label 1
with sign sign 1 is linked to the formula labelled label 2 with sign sign 2.

cont eq(label) This entry means that the formula labelled label contains the equality or the
demodulator predicate symbol.

In addition, a compiled knowledge base contains comment lines starting with %.

The temporary �les �le.kb generated by the compiler have a similar syntax. However, they
contain no link information and the formulae are not signed. There are three di�erent entry
types:

a(name,formula) The axiom named name; formula is its internal representation.

t(name,formula) The theorem named name; formula is its internal representation.

s(sortpath) sortpath is a list of sorts representing a sort path.

5.12.5 Pre-processing Formulae

The module preproc exports predicates for pre-processing formulae; it uses a method based on

removing \anti-links" (Beckert et al., 1994). In Version 3.0 of 3T
AP this is an \undocumented

feature"; it is only prototypically implemented, and only experienced users should set the switches

attenformulas and removeantilinks to on, that control pre-processing.

If, despite this warning, you want to use the module preproc, please consult the comments in
the source code for a description.

5.13 Complete, Equality

5.13.1 Overall Structure of Equality Handling

The module complete is an implementation of the method for handling equality in tableaux
described in Section 2.6, based on the completion-based algorithm from Section 2.6.6 for solving
mixed E-Uni�cation problems.18 It exports the main predicate

close_branch_with_completion(+Branch)

18 The module complete can be used stand-alone for solving mixed E-uni�cation problems; see Section C.7.
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that is called by close branch if a branch is exhausted and could not be closed yet (provided
equality is switched on).

The module equality provides additional predicates which are called by the module complete,
in particular those for extracting equalities and uni�cation problems from a branch.

If complete succeeds to close the branch using equality, the necessary free variable substitutions
are applied. When backtracking occurs, further substitutions are searched for that allow to close
the branch.

After the predicate close_branch_with_completion has been called with a branch B, �rst
the set E(B) of equalities and the set P(B) of uni�cation problems are extracted from B (see
Section 5.13.2).

After that, the predicate try_to_close_at_once_else_eq_appl_for_closing is called. This
predicate contains a choice point. It uses all closing substitutions to close the branch B that
can be found without equality applications. Such substitutions � exist if there are inequali-
ties F (t � s) on the branch such that � is an MGU of t and s.

If no (or, after backtracking, no further) such immediately closing substitutions exist, the main
loop of complete is started; it computes the completion of E(B) and normalizes the terms
in P(B) (see Section 5.13.3). The completion process and the normalization process are combined
(see Section 2.6.6.4). The two processes can be separated by switching on complete �rst; in that
case, �rst a complete set of reduction rules is computed, and after that the complete set is applied
to compute normal forms.

If none of the computed uni�ers in the ground-completeset Sat(C(hE; s; ti)) (Theorem 2.55), can
be used to close the tableau, the orientation of rules in the completion R1 for E is changed, and
the inversion is applied to the uni�ers computed to far. However, additional solutions are only
computed, provided the switch compute additional solutions is on (default: o�).

The search for solutions is limited by several parameters; see Section 5.13.6.

5.13.2 Extracting Equalities and Uni�cation Problems

The sets E(B) (Def. 2.25) and P(B) (Def. 2.26) are extracted from the branch B by the predicate

extract_disjunctions_and_equalities(+Branch,-Disjunctions,

-Closing_inst,-Ai)

in module equality.

First, the predicate

extract_pos_neg_eq_univ_vars_from_branch

is called, that extracts a lists of all positive atoms (that are no equalities or demodulators),
negative atoms (that are no inequalities), equalities, demodulators and inequalities from the
branch, and, in addition, a list of all variables with respect to which one of these atoms is
universal. All sort information is removed at this point.

Then, the predicates build_equalities, which computes E(B), and build_disjunctions are
called. For historical reasons, �rst the data structure \disjunctions of inequalities" consisting of
stermss is used to represent the uni�cation problems.19 The predicate problems_to_cterm_prob
is used to transform them into cterms.

19 In the earlier versions of 3T
AP a method based on computing equivalence classes was used to solve E-uni�cation

problems. This method represented terms by sterm. Therefore, sterm is still used by the part of module
equality, that extracts equalities and uni�cation problems, and that has not been changed.
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For each equality T (t � s) on a branch B that is universal with respect to variables x1; : : : ; xn,
both (8x1) : : : (8xn)(t � s) and (8x1) : : : (8xn)(s � t) are added to E(B).

extract_disjunctions_and_equalities returns, in addition to E(B) and P(B), a list of those
substitutions that allow to close the branch without any equality applications (for example
fx ag if the branch contains the inequality F (f(x) � f(a))).

5.13.3 Complete's Main Loop

The predicate

cycle(+System,+Possibilities,+Problems,+Solutions_so_far)

implements complete's main loop. It executes one completion or normalization step and then
calls itself recursively.

For e�ciency it is very important which (fair) completion and normalization procedure is used to

solve E-uni�cation problems. 3T
AP uses a heuristic that compares all possible rule applications

(both completion and normalization steps). The possible applications of the critical pair rule, the
deduction rule, the composition rule, and the simpli�cations rules (Sections 2.6.6.3 and 2.6.6.4)
kept in a list Possibilities sorted according to their precedence (see the next section). There
is only one list for all completion and normalization sequences computed to solve the di�erent
E-uni�cation problems derived from a tableau branch.

System is the set of reduction rules computed so far; Problems contains the normal forms of the
terms in the uni�cation problems that have been computed; Solutions_so_far is a list of the
closing substitutions already found.

If no rule application is possible, or if the best possibility exceeds a limit (see Section 5.13.6),
generate_further_solutions is called to apply the inversion of the system of reduction rules
to Solutions_so_far.

Else, the best possibility is chosen, and according to its type the new rules or terms are computed.
After that,

1. the constraints of the new terms or rules are transformed into normal form, such that they
only contain simple order conditions (see Section 5.13.10);

2. if possible, i.e., if the rule application is a simpli�cation, the old rule or term is removed;

3. subsumed terms and rules and those with an inconsistent constraint are removed;

4. the new possibilities to apply a completion or normalization rule are computed, their pre-
cedence is determined, and they are added to the list of possible applications;

5. possibilities that ceased to exist, because one of the involved terms or rules has been
removed, are deleted from the list.

5.13.4 Precedence of Possible Rule Applications

The precedence of possible rule applications is computed by the predicate

compute_precedence_of_possibility
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Suppose Mi (i = 1; 2) is the possibility to apply the rule ri to the term ti (which might be a
rule as well), and, thus, to derive the new terms t1i ; : : : ; t

k
i (that are already in normal form).

G(t) is the weight of the term t (see Section 5.13.5); Index(t) is the index of a term or rule, i.e., if
Index(t) = n, then t is the nth term added to the completion or normalization sequence. Using
this notation, the implemented heuristic can be formulated in the following way: the possibility
M1 ist better than M2 if20

1. max(Index(r1); Index(t1)) �max(Index(r2); Index(t2)) > d.

2. M1 is a simpli�cation or composition, whereas M2 is an application of the critical pair or
the deduction rule.

3. max(G(t11); : : : ; G(tk1)) < max(G(t12); : : : ; G(tk2)).

4. max(G(r1); G(t1)) < max(G(r2); G(t2)).

5. min(G(r1); G(t1)) < min(G(r2); G(t2)).

6. max(Index(r1); Index(t1)) < max(Index(r2); Index(t2)).

7. min(Index(r1); Index(t1)) < min(Index(r2); Index(t2)).

The �rst criterion assures fairness of the procedure (Def. 2.47 and 2.50) for all computed comple-
tion and normalization sequences. The value of d is chosen high enough, such that the criterion
applies only very rarely in practice (by default: d = 300).

The second criterion keeps the number of rules and terms small, because after simpli�cations
and compositions, the old term (resp. rule) is removed.

It is essential to take the term weight into concern in some way or the other. However, many
experiments were necessary to develop Criteria 3 to 5.

5.13.5 Term Weight

By default, the weight of a constrainted term t is the number of function symbols, constant
symbols, variables, and logical operators occurring in t (including its constraint).

If the switch weight left only is on (default: o�), the weight of a constrained rule does not include
its right side, i.e., only the symbols in the left side and in the constraint of the rule are counted.

A di�erent term weight can be de�ned by changing the predicate weight in module complete.

5.13.6 Parameters Limiting Completion and Normalization

There are four parameters that limit the completion and normalization process and thus the
search for solutions of E-uni�cation problems:

max solutions per branch
The maximal number of closing substitutions that are computed for a branch using equality
(default: 10).

max rule cr number
The maximal number of applications of the critical pair rule per branch (default: 10000).

20 The criteria are listed according to their importance. Only if a criterion does not distinguish two possibilities,
the next one is taken into concern.
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max rule simp number
The maximal number of applications of the composition and the simpli�cation rule per
branch (default: 10000).

max term number
The maximal number of new constrained terms that are derived during the computation
for closing a single branch (default: 10000).

These parameters have similar e�ects as the parameters maxcounter and maxbranchlength, that
limit the expansion of tableaux. On the one hand, their value has to be su�ciently high to prove
theorems; on the other other hand, lower values reduce the size of the search space.

5.13.7 The Lexicographic Path Ordering Used

Module complete uses a lexicographic path ordering on terms, that is induced by the ordering >F

on function and constant symbols (resp. its transitive closure). By default, >F is de�ned by:
g >F f i�

1. the arity21 of g is greater than that of f , or

2. g and f have the same arity, and g is behind f in the alphabetical order.

This ordering turned out to be suitable for most problems. But, since there are exceptions, the
user can change the ordering on function symbols by adding Prolog facts such as

precedence(f,g).

to the module complete. Symbols that are not comparable in the transitive closure of the order
de�ned by precedence remain ordered according to the default ordering de�ned above.

5.13.8 Computing Additional Solutions

If no further solutions to the E-uni�cation problems extracted from a tableau branch can be
found, or if one of the limits max rule cr number, max rule simp number, or max term number

(see Section 5.13.6) is reached, the predicate

generate_further_solutions(+Reduction_system,+Solutions)

is invoked, to compute additional solutions.

This is done by changing the orientation of the rules in Reduction_system and applying them
to the uni�ers in Solutions. Each new solution is used to close the branch. If no (additional)
solution can be found or max solutions per branch is reached, generate_further_solutions

fails.

In theory, computing additional solutions is necessary for completeness of the method (see Sec-
tion 2.6.6.6). Fortunately, in practice generate_further_solutions has to be called only very
rarely to prove a theorem. Therefore, this is only done if compute additional solutions is on.

21 Here, constants are treated as functions of arity 0.
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5.13.9 Handling Substitutions

5.13.9.1 Canonical Representation

Two uni�able terms s and s0 always have an MGU � that is canonical, i.e., that meets the
following condition:

De�nition 5.28 (Canonical Substitution) A substitution

� = fx1  t1; : : : ; xn tng;

is called canonical, if the variables xi do not occur in any of the terms tj (1 � i; j � n).

Since all substitutions that occur during equality applications are either the MGU of two terms
or are a specialization of an MGU, it is possible to impose the general restriction on substitutions
that they have to be canonical. As a result, simpler and faster algorithms can be used for handling
substitutions.

The predicate test_unify_and_give_subst is used to compute a canonical MGU. It is based
on the predicate unify_terms exported by the module unification. Even if this predicate
generates an MGU in an incorrect form, such as [X=Y,f(a)=Y], test_unify_and_give_subst
computes the correct canonical equivalent [X=f(a),Y=f(a)]. To do this it uses the predicates
condense_substitution and orientate_substitution.

5.13.9.2 Combining Substitutions

The predicate combine_instantiations computes for two given substitutions � and �0 their
combination, i.e., a substitution � such that

1. � and �0 are both more general than � ,

2. � is more general than all substitutions having Property 1.

If no such substitution � exists, combine_instantiations fails. A predicate combine_inst_2

is used, that implements the recursive algorithm shown in Figure 5.2 using an accumulator �
to iteratively compute the substitution � . The substitutions � and �0 have to be canonical
(De�nition 5.28).

Remark 5.29 The notation fx1  t1; : : : ; xn  tng�, i.e., the application of one substitution
to another, is de�ned as fx1  t1�; : : : ; xn tn�g.

5.13.10 Checking Consistency of Constraints

To implement the completion based method from Section 2.6.6.3, the algorithm for checking con-
sistency of constraints could be used, that has been described in (Comon, 1990). This algorithm,
however, is quite complex, which is no surprise because the problem is NP-hard. The reason is,
that inconsistencies have to be taken into concern that, for example, stem from the fact that the
order condition (b � x) ^ (x � a) is only satis�able, provided there is a constant symbol between
a and b (w.r.t. to LPO used).

Since consistency of constraints has to be tested very often, in particular for all subsumption
checks, Comon's algorithm is too ine�cient for implementation.
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combination(�; �0):

� := ;

WHILE �0

6= id

IF � = ;

THEN Choose x such that �0 = fx tg [ �0

Rest

�0 := �0

n fx tg

� := fx tg [ �fx tg

ELSE Choose x such that � = fx tg [ �Rest

IF �0 = fx t0g [ �0

Rest

THEN IF t and t0 are uni�able with MGU � and
combination(�; (�0

n fx t0g)) exists

THEN �0 := combination(�; �0

n fx t0g)

� := � n fx tg

� := fx t�g [ �

ELSE FAIL: Combination does not exist

ELSE �0 := �0

fx tg

� := � n fx tg

� := � [ fx tg

Output: � [ �

Figure 5.2: The algorithm for computing the combination of two substitutions.

The following pragmatic approach is more suitable. It is based on the assumption, that adding
new constant symbols to the signature does not do any harm. The advantage of an expansion of
the signature is, that a new symbol can|for example|be de�ned to be between a and b. Instead
of really adding new symbols, one can instead ignore inconsistencies such as (b � x) ^ (x � a),
and check order conditions only for \weak" consistency.

It is comparatively easy to decide, whether an order condition O or, based upon that, a con-
straint h�;Oi is weakly consistent, i.e., consistent if the signature is expanded appropriately.

Example 5.30 Supposed, a and b are the only constant symbols, and b �LPO a; f is a minimal
function symbol w.r.t. �LPO. Then the order conditions

(b � x) ^ (x � a); (f(a) � x) ^ (x � b); (a � x)

are weakly consistent, but not consistent. The conditions

x � x; (x � y) ^ (y � z) ^ (z � x); x � f(x)

are neither weakly consistent nor consistent.

De�nition 5.31 (Simple Order Condition) An order condition O is simple, if it is identical
to true or false, or of the form

(s1 � t1) ^ : : :^ (sn � tn) (n � 1) ;

and for all (s � t) 2 O (where O is treated as an implicitly conjunctive set):

1. s � t is neither true nor false.

2. s or t is a variable.
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3. There is no (s � u) 2 O, such t is a subterm of u.

4. There is no (u � t) 2 O, such that u is a subterm of s.

5. If (u � v[s]) 2 O, then (u � v[t]) 2 O.

A simple order condition is|provided it is not identical to true or false|consistent on the
atomic level (Condition 1); at least one side is a variable (Condition 2); it does not contain
any inconsistencies induced by the monotonicity of � w.r.t. to the term structure (Conditions 3
and 4); and it is (in a certain sense) transitively closed (Condition 5).

To check whether an order condition is weakly consistent, it is su�cient, to transform it into an
equivalent simple order condition (or a set of disjunctively connected simple order conditions,
see Lemma 5.32). The reason is that a simple order condition is weakly consistent if and only if
it is not identical to false.

In addition, simple order conditions are easier to handle; in particular it is easy to compute the
negation and conjunction of simple order conditions.

Lemma 5.32 For each constraint c there is a set

C = fh�1; O1i; : : : ; h�m; Omig (m � 0)

of constraints, such that
Sat(C) = Sat(c) ;

and the order conditions Oi (1 � i � m) are simple.

The following algorithm can be used to compute a set C of simple order conditions equivalent
to a given order condition c = h�;Oi:

1. First, the order condition O is transformed into disjunctive normal form (DNF) by logical
transformations, i.e., into the form

(O1;1 ^ : : :^O1;l1) _ : : :_ (Ok;1 ^ : : :^Ok;lk) (k; l1; : : : ; lk � 1) ;

where the Oij are atomic order conditions.

2. Then, the set

C0 = fc01; : : : ; c
0
kg

= fh�; (O1;1 ^ : : :^O1;l1)i; : : : ; h�; (Ok;1 ^ : : :^Ok;lk)i

that is equivalent to c is generated.

3. The constraints c0i (1 � i � k) that only contain the logical operator ^, can be transformed
into simple order conditions by applying Condition 5 in the de�nition of simple order
conditions (Def. 5.31) and Conditions 1 to 3 in the de�nition of lexicographic path orderings
(Def. 2.29) as transformation rules. The transformation terminates, if either a simple order
condition is generated, or an obvious inconsistency is found, i.e., an inconsistent atomic
condition or a violation of Conditions 1 to 4 in the de�nition of simple order conditions.

All occurring constraints are immediately transformed in this way. Therefore, at no time there
are order conditions that are more complex than those that are negations, conjunctions, or
instances of simple order conditions.
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5.13.11 Applying Demodulators to a Term

The predicate demodulate_term applies the demodulators present on the current branch to
demodulate a term. If the demodulators form an equality theory that is not noetherian, the
algorithm may fail to terminate.

The demodulators are applied in the order they occur on the branch. A demodulator is preferably
applied to the whole term; only if that is not possible, it is applied to the term's subterms. If the
term has been changed by a demodulator application, the process is started all over and the �rst
demodulator is tried again. This goes on until no further demodulator applications are possible.

A demodulator is not applied if that requires the instantiation of a free variable with respect to
which the demodulator is not universal.

5.14 Output, Msg tap

The module output exports the predicates x_write and x_nl, that are used by all other modules

for writing information to the current output stream, predicates for writing most of 3T
AP 's data

structures, and for displaying error messages. The data structures are stripped of all irrelevant
information and typeset in such a way that they can be easily read and understood.

In msg tap 3T
AP 's error messages are de�ned. It is, actually, not a module, but a �le included

by means of the consult predicate.

Mainly, output's predicates are used by the other modules to display debug information.22 For
debugging the modules completion and equality, predicates are de�ned that|depending on
the value of eqdebuglevel|are called at certain points, provided eqdebuglevel is set to a value
greater than 0.

In addition, output contains the predicates for generating a protocol �le that can be read by
the programs moreTab and tabTEX. These predicates do|in contrary to all other predicates in
output|not use the predicate x_write, but write directly to the protocol �le denoted by the
parameter tableauout�le. They are called at certain points of a proof provided tableau output
is switched on, e.g. the predicate write_branch_closed is called whenever a branch has been
closed and writes the path of the closed branch to the protocol �le. The structure of the protocol
information and its syntax is described in Sections 6.3 and 6.6.

Some of the predicates in output, such as the predicate proof that displays the message \proof
found", are called by other modules even if debuglevel is set to 0.

x_readchar(-Char) is the only input predicate in output. It prompts the user for a single
character; the character is read from the current input stream.

5.14.1 The Predicates X write and X nl

The predicate x_write/2 is used for displaying all material that is supposed to be written to the
standard output23 (with the exception of error messages, cf. Section 5.14.3). This feature makes

it possible to easily redirect 3T
AP 's output in whole or in part.

x_write's �rst argument is the text to be displayed. It is either a single atom or a list of atoms.
These atoms are displayed separated by blanks and followed by a newline. The second argument
is one of the atoms listed in Table 5.5; it denotes the type of information that is to be displayed.

22 Debug information is displayed if the parameterdebuglevel (resp. dissdebuglevel and eqdebuglevel) is set to a
value greater than 0, cf. Appendix B.

23 I.e., all output that is not written to proveall's statistic �le or the protocol �le used by moreTab and tabTEX.
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Type Displayed Material of that Type
result The message that a proof has been or couldn't be found, and the

statistical information provided with that message.
lookup The information that is being displayed by the predicates lookup,

writekb, writekbx, writeidx and writesort.
debug All debug information displayed if one of the parameters debugle-

vel, eqdebuglevel or dissdebuglevel is set to a value di�erent from 0.
help The help pages displayed by the info command.
info Miscellaneous messages (e.g. \Generating index for KB").

Table 5.5: The di�erent types of information displayed by x write.

If 3TAP is running under IBM's LILOG{KR user interface24, x_write uses the predicate w_writel

exported by LILOG{KR's module iw inout to write the text to the appropriate LILOG{KR win-

dow. Otherwise, if 3T
AP is running standalone, x_write uses the predicate subst_w_writel to

write the text to the current output stream.

If protmode is switched on, x_write writes all output to the �le denoted by output�le.

x_nl(Where) displays an empty line. It is an abbreviation for x_write('', Where).

5.14.2 Auxiliary Output Predicates

The following list contains the predicates in the module output that are merely auxiliary to
other output predicates, or that are not for the output of certain data structures.

write list Writes an arbitrary Prolog list; a newline is inserted after each item.

write clist Writes an arbitrary Prolog list.

write remark Writes text marked as a comment by a leading %.

5.14.3 Error Messages

output exports the predicate error_message/1,2. The �rst argument (and single argument
of error_message/1) is an atom denoting the message to be displayed. The second argument
is either a single or a list of up to three parameters, that are to be substituted for variables
occurring in the de�nition of the error message.

The messages are de�ned in tap msg in a LILOG{KR speci�c format (see the comments in tap msg

for a description of that format). Since the messages are not spread all over 3T
AP 's modules, they

can easily be changed and new messages can be added.

If 3T
AP is running under LILOG{KR, error_message is implemented by display_message/1,2

which is exported by one of the LILOG{KR modules, namely i displ; else error_message uses
the predicate subst_display_message/1,2 de�ned in module output for formatting the message
and displaying it.

24 For testing, whether 3T
AP is running under LILOG{KR or not, a fact is lilog version(yes) (respectively,

is lilog version(no)) is asserted in boot.
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5.14.4 Predicates for Displaying Data Structures

Predicates exist for most of the data structures described in Section 5.5 to write them in a
simpli�ed and more readable form to the output stream. For examples see the following section
and Section 7.3.

write branch Writes the used and unused formulae and atoms and the branch's path to the
output stream.

write extension Writes a list of the formulae in an extension to the output stream.

write sformula Writes an sformula in the form

(counter) . simpli�ed formula << index

to the output stream. simpli�ed formula is the result of applying the the predicate
simplify_sorted_sformula, that substitutes sort paths by the corresponding speci�c
sorts. counter is the number of 
-rule applications to the formula.

write conclusion Writes a list of all the extensions in a conclusion to the output stream.

write new sterm list Writes a list of sterms.

write equality list Writes a list of equalities or demodulators to the output stream. The nth

equality (8u1) : : : (8uj)(t � s) is displayed in the form

n: [_u1,: : :,_uj] t = s

write disjunction list Writes a list of disjunctions of inequalities to the output stream.

write inequality list Writes a list of inequalities to the output stream.

write constraint list Writes a list of constraints to the output stream.

write cterm list Writes a list of constrained terms to the output stream.

write possibility list Writes a list of possible completion and normalization rule applicati-
ons to the output stream.

5.14.5 Output of Complete

If the parameter eqdebuglevel is di�erent from 0, complete displays informationon the completion
and normalization (the higher the value of eqdebuglevel the more). The information is sent to
the current output stream.

As an example, we describe the information displayed if

E(A) = f(8x)(8y)(p(x; y) � p(x; x))g

P(A) = ffhp(c; a); p(c; b)igg :

First, the set of equalities E(A) on the tableau branch and the set P(A) of E-uni�cation problems
to be solved are displayed. Quanti�cations such as (8x)(8y) are represented by [X,Y]. The
symbol \= means that this is an uni�cation problem to be solved (only one in the example):
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Beginning search for closure with equality of branch b1

Equalities extracted from Branch:

1: [X,Y] p(X,Y) = p(X,X)

2: [X,Y] p(X,X) = p(X,Y)

Problems extracted from Branch:

(1,1): p(c,a) \= p(c,b)

The initial rule system is displayed. Rules with inconsistent constraints have already been
removed:

Initial System:

1: [X,Y] p(X,Y)=>p(X,X) << <[] and [gr(Y,X)]>

2: [X,Y] p(X,X)=>p(X,Y) << <[] and [gr(X,Y)]>

Now, the completion and normalization starts. \0 left" means that there is only one possible
rules application (which is chosen); no other possibilities are left.

Chosen possibility (0 left):

critical_pair:

2: [X,Y] p(X,X)=>p(X,Y) << <[] and [gr(X,Y)]>

--- 2: [X,Y] p(X,X)=>p(X,Y) << <[] and [gr(X,Y)]> at [1] --->

[X,Y,Z,U] p(Z,Y)=>p(Z,U) << <[] and [gr(Z,U),gr(Z,Y)]>

The above output means that the rule

r2 = (8x)(8y)(p(x; x)! p(x; y)� hid; x � yi)

can b applied to itself at position h1i.

Critical pair rule applies

New Rules:

3: [X,Y,Z] p(Y,X)=>p(Y,Z) << <[] and [gr(Y,Z),gr(Y,X),gr(X,Z)]>

4: [X,Y,Z] p(Y,Z)=>p(Y,X) << <[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]>

The application of the critical pair rule results in to new rules, which are displayed. Their
constraints have already been transformed into normal form.

3: [X,Y,Z] p(Y,X)=>p(Y,Z) << <[] and [gr(Y,Z),gr(Y,X),gr(X,Z)]>

subsumed by

4: [X,Y,Z] p(Y,Z)=>p(Y,X) << <[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]>

The �rst of the new rules is subsumed by the second and therefore removed. Thus, the new
reduction system is:

System:

1: [X,Y] p(X,Y)=>p(X,X) << <[] and [gr(Y,X)]>

2: [X,Y] p(X,X)=>p(X,Y) << <[] and [gr(X,Y)]>

4: [X,Y,Z] p(Y,Z)=>p(Y,X) << <[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]>

0 possibilities left
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\0 possibilities left" shows, that the completion terminates at this point.

Next, a normalization step is executed. The new rule r4 is applied to the term p(c; a). A
\non-simpli�cation rule" can either be the critical pair rule or the derivation rule (as in this
case).

Chosen possibility (2 left):

non_simplification:

[1,1,l,0]: [] p(c,a) << <[] and []>

--- 4: [X,Y,Z] p(Y,Z)=>p(Y,X) <<

<[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]> at [] --->

[X,Y,Z] p(c,X) << <[] and [gr(a,X),gr(c,X)]>

Non-simplification rule applies

New Terms:

[1,1,l,1]: [X] p(c,X) << <[] and [gr(a,X),gr(c,X)]>

Terms:

[1,1,l,0]: [] p(c,a) << <[] and []>

[1,1,l,1]: [X] p(c,X) << <[] and [gr(a,X),gr(c,X)]>

2 possibilities left

The label [1,1,l,1] of the new term (which is universal w.r.t. the variable x) means that this
is normal form No. 1 of the term which is the left side of the �rst part of the �rst simultaneous
uni�cation problem.

Chosen possibility (2 left):

non_simplification:

[1,1,r,0]: [] p(c,b) << <[] and []>

--- 4: [X,Y,Z] p(Y,Z)=>p(Y,X) <<

<[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]> at [] --->

[X,Y,Z] p(c,X) << <[] and [gr(b,X),gr(c,X)]>

Non-simplification rule applies

New Terms:

[1,1,r,1]: [X] p(c,X) << <[] and [gr(b,X),gr(c,X)]>

Terms:

[1,1,r,0]: [] p(c,b) << <[] and []>

[1,1,r,1]: [X] p(c,X) << <[] and [gr(b,X),gr(c,X)]>

2 possibilities left

After a second derivation, the uni�cation problem can be solved, and the tableau branch can be
closed. The constraints hid; (a � x) ^ (b � x) ^ (c � x)i and � are found to de�ne solutions of
the simultaneous E-uni�cation problem.

[1,1] closed with constraint(s)

<[] and [gr(a,X),gr(b,X),gr(c,X)]>

by combination of the normal forms

[1,1,r,1]: [X] p(c,X) << <[] and [gr(b,X),gr(c,X)]>
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[1,1,l,1]: [X] p(c,X) << <[] and [gr(a,X),gr(c,X)]>

[1,1] closed with constraint(s)

<[] and []>

by combination of the normal forms

[1,1,r,1]: [X] p(c,X) << <[] and [gr(b,X),gr(c,X)]>

[1,1,l,0]: [] p(c,a) << <[] and []>

The empty constraint � is a solution, because (8x)(p(c; x)� hid; (b � x) ^ (c � x)i) is universal
w.r.t. x, and it is, thus, not necessary to instantiate x with a.

The simpler constraint � and the empty substitution satisfying it are chosen to close the branch.

Branch closed with instantiation []

-------------------- PROOF --------------------

5.15 The Compiler

5.15.1 Calling the Compiler

The compiler is used for transforming knowledge bases from their external into their internal
representation25. It is called by the predicate parse which is part of the interface.pl module.
parse succeeds if the compiler does not �nd any errors in the input �le. In that case the output
is written to the same directory where the input �le is read from. Error messages are written to
the standard error stream (usually the shell).

The name of the output �le is composed from the name of the input �le and an extension. This
extension is de�ned in the sysdep module within the predicate internal reset. To check, which
extension is pre-de�ned, use the predicate get tcplus extension/1.

The name of the compiler directory must either be de�ned in module sysdep in the variable
compdir, or contained in the environment variable THREETAP COMPILER DIR. To read the name
of compiler directory, the predicate get compiler directory/1 can be used.

5.15.2 Implementation Language

The compiler is implemented using the Unix tools Lex and Yacc (resp. Flex and Bison). The
name of the executable �le is parser. The additional functions necessary for checking the input
and generating the output are written in C.

If you want to change the parts of the compiler concerning the operators of the input language
read Section 9.4.

25 See Chapter 3 for the external representation and Chapter 5.5 for the internal representation of knowledge
bases.
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5.15.3 Scanner.l

The �le scanner.l contains the main function of the parser �le. It is the lexicographical analyzer
of the compiler. Part of it is written in the Lex (resp. Flex) input syntax, and part of it is written
in C. scanner.l contains the scanning rules for recognizing keywords and keycharacters of the
grammar (see Table 3.1).

If no errors are detected, the message

no errors detected - compiling knowledge base

is printed to the standard error stream and the program exits with status 0. Else the program
exits with status 1 after calling the function yyerror.

For changing the syntax of knowledge bases it might is useful to see what keywords and keycha-
racters are recognized. For that, an executable �le debug can be generated. Use the shell
command

debug < knowledgebase

to get a list of the recognized keywords and keycharacters.

5.15.4 Grammar.y

grammar.y contains the parsing rules which are given in Table 3.1. They are written in the Yacc
(resp. Bison) input syntax. For checking the input and composing the output some additional
C code is used. The more complex C functions have been put into the extra �le output.c.

5.15.5 Output.c, Output.h

In output.c the functions which are necessary for checking the input and generating the output
are located. output.h is the header�le for output.c. The global datastructures of the compiler
are de�ned here. In addition, the global functions of the output.c module are declared in the
output.h header�le.
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6.1 Visualizing Proofs

All the output utilities supplied with 3T
AP operate on a special �le which is generated by 3T

AP

during tableau construction if tableau output is switched on. By default it is switched o� for
e�ciency. The command

set tableau output( on ).

enables the tableau output mode. Its counterpart

set tableau output( off ).

disables tableau output. Now let us assume tableau output mode is enabled and some theorem has
been proved using some of the prove/n predicates. You will �nd a new �le named tableau.out

in the current directory|which is the directory you started 3T
AP from or the one you changed

to via cd/1. Although this �le is more readable than the protocol output it is not easy to
understand for a human. To overcome this de�ciency two utilities are supplied: moreTab and
tabTEX.

Remark 6.1 Please note that all characters in the command names moreTab and tabTEX are
typed lower case!

6.1.1 Navigate Through Tableaux Using moreTab

moreTab is similar to the UNIX more utility. You may navigate through your tableau in a similar
way you move through any UNIX text �le. The tableau is indented, so you can see the branching
structure of the proof.1 moreTab has several options to suppress useless information, e.g. the
sort top, or to display additional information, e.g. Dewey numbers of the branches. To invoke
moreTab to display the prove in the �le tableau.out simply type

moretab tableau.out

in your shell. To get a list of available commands type the ?-key. moreTab's options are discussed
below.

6.1.2 Typesetting Tableaux Using tabTEX

The second utility, tabTEX, may be used to typeset the proofs found by 3T
AP . As moreTab it reads

the tableau output �le generated by 3T
AP , but tabTEX has to read one more �le, which is called

declarations.pl. It is placed in the directory where all the 3T
AP sources live. There tabTEX

1 Since dissolution e�ects a branch in a more complicated way than other tableau rules do, moreTab might fail
to display the results of a dissolution rule application properly.
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�nds the TEX-symbols which are used to typeset the formulae in the tableau. Assume we are in

the directory problems, which is one level below the directory which contains the 3T
AP sources

(and, most important, the �le declarations.pl) and assume further, the �le tableau.out is
also placed here. Now type

tabtex -s -d../declarations.pl

This will produce a �le named tap.sty, a so called LaTEX style �le. If you want to include
any tableau generated by tabTEX in one of your LaTEX documents you have to add tap to your
document styles, e.g. \documentstyle[tap]farticleg. The style �le needs not to be generated
before typesetting every proof, you must reproduce it only when the operators had been changed.
For details see below. -d../declarations.pl tells tabTEX to search for the declarations �le in
the parent directory. If not speci�ed otherwise tabTEX searches that �le in the current directory.

tabtex tableau.out test.tex -d../declarations.pl

produces the �le test.tex which may be included in your LaTEX document and which contains
the LaTEX-code of the tableau. As in moreTab the tableau is indented to visualize the structure
of the proof tree. There are more options which will be described below.

6.2 3T
A
P 's Commands to Generate Tableau Output

Only few commands (predicates) are necessary to generate tableau output. Most of them have
been introduced in the previous section. By default|for e�ciency reasons|no output is gene-

rated by 3T
AP . set tableau output(on) tells 3T

AP to redirect the output of the prover to some
�le. set tableau output(off) switches the tableau output o� again. If not speci�ed otherwise
the tableau output �le is located in the current directory and named tableau.out. You may use
the set tableauoutfile(�lename) predicate to specify a di�erent location or another �lename.
The active setting may be obtained by get tableauoutfile(F), the name of the current output
�le is returned in the Prolog-variable F. There is nothing else to do to achieve tableau output

from 3T
AP .

Remark 6.2 Please note that the tableau output �le will be overwritten if you do not specify a
new �lename between two proofs.

Online information concerning the output is available, type

info( output ).

Another way to look at the tableau output �lename is to call the lookup/0 predicate.

6.3 The Overall Structure of the Output

The output of moreTab or tabTEX is organized in so called nodes. A node consists of one or
more lines of text, e.g. the three lines

The following extension(s) have been added:

ffgp(a)

ftgp(b)

constitute one node. There are a nine di�erent kind of nodes in the tableau displayed by moreTab
or typeset by tabTEX. These are
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Tableau for A headline for the proof. The only location for this kind of node is the beginning
of the �le.

Rule applied to This node indicates a rule application.

Extension added The extension which has been generated by the above rule application is
contained in this node.

Axiom added This node says that an axiom has been added to the tableau.

Branching point The previous rule generated at least two extensions. Thus the tableau bran-
ches here.

New subbranch This node indicates the beginning of a new subbranch.

Branch closed A subbranch is closed here.

Branch closed with equality Dito, but the closure has been achieved using equality reaso-
ning.

Backtracking The current subbranch is exhausted and backtracking has been initiated.

6.4 moreTab

Here is a more detailed description of moreTab's features. In the �rst subsection the options
(switches) are discussed. The second subsection deals with the available commands. An overview
is given by two tables, one for the options the other for the commands.

6.4.1 Options

You may call moreTab from your shell by

moretab �lename options

where �lename is the name of the input �le, i.e. the name you speci�ed in 3T
AP using the predicate

set tableauoutfile( �lename ) or the default �lename tableau.out. Options is a sequence
of some of the following available options:

Output dimensions To set the output height use the -hn switch where n is the number of
output lines. In a similar way -wm sets the output width to m columns.

indentation -in Sets the indentation factor to n characters. A subbranch is indented by n

characters w.r.t. its parent branch.

Dewey numbers Use +b to enable the output of the Dewey numbers, i.e. the paths to the
formulae in the branches. -b disables this option. It is disabled by default.

Top-sort +t causes moreTab to display the sort top. If -t is speci�ed this is suppressed. The
latter is the default behaviour.

Scroll portions By default the scroll portion is half a screenful of text. +s changes that to one
screenful. -s speci�es a scroll portion of half a screenful again.

Marks By default ten marks are available. With -mn you may set the maximum number of
marks to any other value.
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Version -v prints the version number of moreTab and the last changes to the program.

Batch mode The -ofilename option switches moreTab in non interactive mode, i.e. the in-
dented tableau is written to the speci�ed output �le instead to the standard output (your
terminal by default). The 
ags and the indentation factor have their usual e�ects.

Table 6.1 contains an overview of available options.

switch action switch action

-wn set output width to n columns -hn set output height to n lines
-in set indentation factor to n -mn use n marks
+b display the Dewey numbers -b don't display Dewey numbers
+s scroll by one screenfuls -s scroll by half screenful
+t print top sort info -t suppress top sort
-v version number -o�le batch mode

Table 6.1: moreTab options (n integer).

A call of moreTab without any argument will print out a short description of the options and
the defaults.

6.4.2 Commands

moreTab knows �ve types of commands: commands for navigating through the tableau, com-
mands associated with marks which may be used to remember special lines in the proof, com-
mands to change 
ags, commands to customize the output and miscellaneous commands.

Navigation Commands

Moving up and down by lines

Type n to proceed one line (next line) and p to go back one line (previous line). Please note
that the lines are counted w.r.t. to the nodes which have been described in Section 6.3. I.e.
the two lines of output

Tableau for

ffg p(a)

are counted as one (logical) line because they belong to the same node. Nodes are never
split when displayed, therefore nothing will change if the above two lines of text are the
last visible lines and you type n, but the next n will show the next node.

Moving up and down by pages

One page is a screenful or half a screenful of lines (nodes) where a screenful is the number
of lines speci�ed with the -h option or the h command. Whether one resp. a half screenful
of text is scrolled is controlled by the +s resp. -s option or command as described in
Section 6.4.1.
To scroll forward use the f command or the space bar (as with UNIX more). To scroll
back type b.

Moving up and down in the proof tree

The last method of navigating through the tableau is tree oriented. The u command brings
you up to the next branching point in the tableau which is above your current position.
The d command moves you down to the next branching point below, i.e. the next leftmost
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branching point of the tableau. l moves one branch to the left and r one branch to the
right if possible, i.e. if there are any branches to the left or to the right.
Remark: If your current position is near the end of your �le, moving up or left is relatively
expensive on machines with poor performance.

Jumping to special positions

The percentage of text above the visible screenfull is displayed in the status line. It is
possible to jump to a position with p% of text above, simply type the number p and the
%-sign.
To move to the nth line type the number n directly followed by g.

Marks

moreTab manages ten marks, which may be set to lines you want to remember. As described in
Section 6.4.1 the maximum number of marks may be changed. By nm mark number n is set to
the �rst line in the display. Type n# to return to that position.

Flags

There are three 
ags which may be set or cleared by the following commands.

Dewey numbers +b activates the Dewey numbering and -b suppresses the display of Dewey
numbers. By default Dewey numbers are not printed.

top sort If you are working in a domain with a single sort|whose sort is usually called top in

3T
AP|it may be useful to get rid of the sort information which is attached to every term.

This is the default. The -t switch prevents the display of the top sort information. With
+t you will get the top sort back.

Scroll portions The scroll commands scroll by one screenful of text or by half a screenful. The
+s command tells moreTab to scroll by one screenful, this is the default behaviour. Use -s

to scroll by half a screenful of text.

Remark 6.3 Please note that numeric arguments have to appear before a command but behind
a switch.

Customize Output

moreTab will probably assume wrong dimensions of your shell window. To correct this, use the
nh and mw commands. The former sets the output height to n lines while the latter sets the
output width to m columns2. A better method to achieve correct output dimensions would be
to use the appropriate switches with the current window geometry in an alias command of your
shell. To adjust the indentation level of the proof subbranches to your personal style use the
ni command. The command sets the indentation factor to n characters, i.e. each subbranch is
indented n characters more than it's parent branch.

Miscellaneous

There are only two commands left. ? shows the help page which contains a short command
reference and q exits moreTab.

Table 6.2 shows an overview of the available commands for moreTab.
2 Assuming a non-proportional font.
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key action key action

n go to the next line p go to the previous line
f scroll forward b scroll backward
space

d go down to u go up to
leftmost next branching point previous branching point

l move one branch to the left r move one branch to the right
n% move to the n% position ng go to line n
nm set mark n n# return to mark n
+b display the Dewey numbers -b don't display Dewey numbers
+s scroll by one screenfuls -s scroll by half screenful
+t print top sort info -t suppress top sort
nh set screen height to n lines nw set screen width to n columns
ni set indentation factor to n characters
q exit moreTab ? Print the help page

A missing number is alway treated as 0.
If a command is pre�xed by a number n it is executed n times.
(Of course this does not work for a command like g which starts with a number anyway.)

Table 6.2: moreTab commands (n integer).

6.5 tabTEX

In this section tabTEX is described in detail. The �rst subsection deals with the available options.
In the second subsection the format of the style �le is discussed and then an overview is given
of how to customize the symbols used by LaTEX for the logic's connectives.

6.5.1 Options

You may call tabTEX from your shell by

tabtex tableau �lename LaTeX �lename options

or

tabtex -s [style �lename] options

The second alternative will generate the style �le while the �rst one typesets your tableau.

tableau-�lename is the name of the input �le, i.e. the name you speci�ed in 3T
AP by

set tableauoutfile( �lename )

LaTeX-�lename is the name of the output �le generated by tabTEX. Options is a sequence of
some of the following available options:

Declarations By default tabTEX searches the current directory for the �le declarations.pl.
It is not very likely that this �le is in your working directory since declarations.pl is a

part of the 3T
AP -source. The -d option tells tabTEX where to look for the declarations �le.

The path speci�cation must directly follow -d.

Remark: tabTEX needs the declarations �le to get the operators used by 3T
AP and to read

the default symbols for use with LaTEX.
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Style �le If you want to include a tableau constructed by 3T
AP into one of your LaTEXdocuments

then you must add the 3T
AP style to your \documentstyleoptions list, an example is given

in Section 6.1. To generate the style �le use the -s option. The �lename is optional, if
speci�ed it must directly follow the -s. If the �lename is missing the style �le is named
tap.sty.
Remark: The extension of your �lename should be .sty to make LaTEX happy.

Indentation As in moreTab, each subbranch of the tableau is indented. By default the inden-
tation factor, i.e., the amount of space the subbranch is indented w.r.t. to it's parent, is
10mm. You may set the indentation factor to any valid LaTEXmeasure by simply adding
-imeasure, e.g. -15ex will set the indentation factor to 15ex3.

Dewey numbers As with moreTab you may add the Dewey numbers to the branches of your
tableau. This is done by the -b option.

Top-sort Again as with moreTab you may suppress the top sort information which may be
useless. Use the -t switch for that purpose.

Symbols To get a list of available operators and their LaTEX equivalents call tabTEX with the
-o option. This will print such a list to your standard output.

If you call tabTEX without any argument a short usage information is printed. Table 6.3 contains
an overview of the available options.

switch action

-dfilename set path to declarations �le
-s generate style �le named tap.sty

-sfilename generate style �le with the speci�ed name
-imeasure set indentation factor to measure
-b print Dewey numbers
-t suppress the top sort

-o print the operator symbols for 3T
AP and LaTEX

Table 6.3: tabTEX options (filename is any valid UNIX �lename).

6.5.2 The Style File

The style �le which must be included as a document style option contains de�nitions for se-
veral macros and some length-registers. Here is the style �le generated by tabTEX using the

declarations �le from the two-valued version of 3T
AP :

\typeout{Document Style 'tap'. Generated by tabtex.}

\newcommand{\TAPOPdis }{\mbox{$\vee$}}

\newcommand{\TAPOPcon }{\mbox{$\wedge$}}

\newcommand{\TAPOPsneg }{\mbox{$-$}}

\newcommand{\TAPOPimp }{\mbox{$\supset$}}

\newcommand{\TAPOPequi }{\mbox{$\leftrightarrow$}}

\newcommand{\TAPOPall }{\mbox{$\forall$}}

\newcommand{\TAPOPex }{\mbox{$\exists$}}

3 One ex is the height of the character x in the active font.
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\newcommand{\TAPOPpmi }{\mbox{$\subset$}}

\newlength{\TAPindent}

\newlength{\TAPrest}

\newlength{\TAPparbackskip}

The �rst line is simply an identi�cation which is printed whenever your LaTEX �le is translated.
The last three lines declare registers for lengths, these are used internally for the indentation of
subbranches. The remaining lines of the style �le introduce macros. There is one macro for every
operator of the logic. The macro's name is \TAPOP followed by the internal name of the operator,
e.g. \TAPOPdis for the disjunction. The macro's body is a mbox containing a math environment
containing a backslash followed by the name speci�ed through the get LaTeX op list/1 predi-
cate in the declarations module. In the above example this is \mbox{$\vee$}, where vee is
the name given by get LaTeX op list/1 which corresponds to dis.

Using the above mechanism it is not possible to create operator names like _3 for the LaTEX
output, since Prolog names must not contain the c�ar�et-sign `^'. Nevertheless such names are
possible. For the above example simply replace the vee in the get LaTeX op list/1 by my macro

and add a de�nition like
\newcommand{\my_macro }{\mbox{$\vee^3$}}

to your LaTEX �le.

6.6 Syntax of moreTab's or tabTEX's Input

moreTab and tabTEX make the following assumptions concerning the input �le's format:

1. Every line starts with a keyword (see below) except lines containing parts of an extension
enclosed by `<' and `>'.

2. There is never a newline-character `\n' in any formula.

3. Every CLOSED-node is directly followed by a PROCEEDING-node or the end of �le.

The syntax for the various kinds of nodes is given in Table 6.4. There, n is some integer, path is
a list of integers separated by commata and enclosed in square brackets, e.g. [1,2,3], this is the
notation used for Dewey numbers. sign and formula are treated as text and simply echoed by
moreTab or tabTEX. Anything within square brackets is optional and (a)� says that a may be
repeated any number of times. Texts in quotes stand for themselves.
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`TABLEAU FOR' sign formula `\n'
`RULE APPLICATION' sign formula `TO' branch `\n'
`ADD EXTENSION < \n' ( formula `\n')� formula `>\n'
`PROCEEDING' branch `REMAINING SUBBRANCHES (incl.)' n `\n'
`FORMULA(E)' sign formula [ `AND' sign formula ] `\n'
`CLOSED' branch `\n'
`EQUALITY CLOSURE BY AN INEQUALITY \n' path `\n'
`EQUALITY CLOSURE WITH' sign formula [ `AND' sign formula ] `\n' path `\n'
`BACKTRACKING \n'

Table 6.4: moreTab's and tabTEX's input syntax



7
Getting Started |
A Tutorial

7.1 Preliminary Remarks

This chapter tries to introduce you to 3T
AP via a sample session. All the important concepts of

3T
AP and the various settings and kinds of proofs will be mentioned.

We suppose that you have a ready installed version of 3TAP including all sources and some sample
problems (see Appendix C). In the next section we describe the directory structure recommended

for the installation of 3T
AP . Section 7.3 describes a typical session with 3T

AP and introduces the
various settings and features which are available. See also Section C.2.

7.2 Directory Structure

We recommend the following directory structure on your station and refer during the following
to this structure.

1. The main directory for the installation of 3T
AP is called tap. There are several subdirecto-

ries:

2. A subdirectory Compiler which contains the newest version of the compiler and related
modules.

3. A subdirectory 2version which contains the various modules of 3T
AP .

4. A subdirectory of =tap=2version called problems which contains the various problem �les
to be proven.

7.3 A Sample Session

We go to the tap=2version= directory and invoke Prolog. At the Prolog prompt we type in:

| ?- compile( boot ).

Now it will take several minutes (depending on your machine) to compile the various modules
and the Prolog library predicates. After the compiling is �nished, an information page is shown.
If you are interested in some topics, e.g. information about the possible unix commands, type

| ?- info( unix ).

and the available information is shown. The available information pages are listed in Section 5.1.3.

Now we want to prove a problem. We choose Pelletier's 24th problem, which looks as follows:

117
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axiom 1: :(9x(s(x) ^ q(x)))
axiom 2: (8x(p(x)! (q(x) _ r(x))))
axiom 3: (�(9x(p(x)))! (9y(q(y))))
axiom 4: (8x((q(x) _ r(x))! s(x)))
theorem: (9x(p(x) ^ r(x)))

We assume that we already have encoded it into the input syntax for the compiler and that it is
stored in tap=2version=problems under the name pel24.

The problem in the correct input syntax for the compiler looks as follows:

sort top.

predicate p : top.

predicate q : top.

predicate r : top.

predicate s : top.

axiom pel24_1; -(exists x:top (s(x) & q(x))).

axiom pel24_2; (forall x:top (p(x) => (q(x) v r(x)))).

axiom pel24_3; (-(exists x:top (p(x))) => (exists y:top (q(y)))).

axiom pel24_4; (forall x:top ((q(x) v r(x)) => s(x))).

theorem pel24; (exists x:top (p(x) & r(x))).

Now we type at the Prolog prompt the following command:

| ?- cd( 'problems' ).

to change into the subdirectory problems.1

We now want to make a knowledge base (KB) from our problem pel24 for the use with 3T
AP .

There are two possibilities:

1. We create only the KB corresponding to our problem, this is done via

| ?- compkbx( pel24 ).

and read it afterwards into the workspace of Prolog via

| ?- readkbx( pel24 ).

As you probably noticed, you can use the same �le name both for your encoded problem and for

the generated KB. 3T
AP recognizes the \correct" �le by the �le name extension.

The output looks as follows:

no errors detected - compiling knowledge base

Reading compiler output : pel24.kb into pel24

Asserting : pel24

Generating indices for : pel24

Writing knowledgebase : pel24 into pel24.kbx

1 You can omit the quotes in the command above if the argument contains only letters and numbers and does
not start with a number.
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Deleting knowledgebase : pel24

Reading knowledgebase : pel24

The following theorems are defined: [pel24]

yes

| ?-

The straightforward of way of proving pel24 now is to type

| ?- prove( pel24 ).

and you will receive the following result:

Evaluation took 0.3 sec.

41 tableau rule applications

0 equality applications.

17 branches have been closed.

Backtracking has been tried 0 times.

-------------------- PROOF --------------------

yes

| ?-

If you are interested in a detailed protocol of the proof, you can do the following:

1. Select another output stream than screen

| ?- set_tableau_output( on ).

2. If you do not want to send the output to the default output �le tableau.out, then type
for example

| ?- set_tableauoutfile( 'pel24.out' ).

3. Start the proof again:

| ?- prove( pel24 ).

4. Now you have a �le pel24.out which you can examine in peace, for example via the
moretab utility program. See Chapter 6 for a detailed description of the possibility to
visualize proofs.

To continue our sample session, type now

| ?- set_tableau_output( off ).

to redirect the output stream to the screen.

If you are interested in some details about the proof, but you do not want to create an extra �le,
you can increase the numeric value of the global variable debuglevel to see more information
on the proof derivation. Type for example
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| ?- set_debuglevel( 2 ).

and start the proof again and look what happens. If this still does not satisfy your curiosity,
you can choose a number between 1 and 5 for debuglevel to regain more and more extensive
information.

Normally, the information which is shown when debuglevel is greater than 1 rushes so quickly
over the screen that we recommend to redirect the output stream rather than to get the infor-

mation via the debuglevel. Another possibility is to start 3T
AP in an Emacs window running the

Prolog shell.

If you have played a bit around with debuglevel, type

| ?- set_debuglevel( 0 ).

and look at further possibilities of 3T
AP .

Perhaps you have the feeling that you can achieve a more e�cient proof of the same problem, or
your own problem is even not provable with the default settings. Then you can use a di�erent
prove predicate or you can change various settings of the prover, for a complete description see
Section 5.1.5 and Appendixes A and B.

First we show a di�erent possibility to prove your problem. Instead of using the prove/1 predi-
cate we can also use proveinc/1. Type

| ?- proveinc( pel24 ).

This tries to �nd a proof with a successively higher bound on the number of 
 rule applications
starting with 1 (corresponding to set maxcounter(0)). It stops as soon as a proof has been
found on some level. With our example, there is no di�erence between the two possibilities,
but there are examples where you can get much faster proofs (because of avoiding extensive
backtracking) by using the proveinc/* predicates.

From the various possibilities to change global variables, we will demonstrate here only one; type

| ?- set_uselemmata( off ).

and afterwards

| ?- prove( pel24 ).

and you will receive the following result:

Evaluation took 0.3 sec.

51 tableau rule applications

0 equality applications.

22 branches have been closed.

Backtracking has been tried 0 times.

-------------------- PROOF --------------------

yes

| ?-
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As you can see, the number of closed branches is greater than before. Therefore, the value alpha
(the default) for uselemmata is the better choice.

If you type

| ?- set_uselemmata( on ).

and afterwards

| ?- prove( pel24 ).

you will receive the same result as with uselemmata set to alpha. You have to play around with
these settings.

If you are done with a special problem, you can either delete it from the workspace via

| ?- delkb( pel24 ).

or you can just load another problem, say pel41. Type

| ?- usekbx( pel41 ).

and play around with it in the same manner as with pel24.

If you have not deleted pel24 from the workspace, you can again make it the current knowledge
base via

| ?- readkbx( pel24 ).

As you can see, it is possible to maintain several problems simultaneously in the workspace and

ip from one to another.2

If you are not sure which the current knowledge base is or even which knowledge bases are in
the workspace, you can use the lookup/0 predicate to gain this information.

Please remember that besides the additionally available 3T
AP predicates you are working in a

standard Prolog shell. In particular, it is possible to exit the 3T
AP system, for instance, by typing

| ?- halt.

We hope that this tutorial will help you to get a quick access to the famous 3T
AP system and

that you have as much fun with it as we did.

2 If you change something in your input �le, you must reload it in any case.
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8.1 Problem Sets for Testing 3T
A
P

8.1.1 The Statistical Information

In this section the problem sets are described, that have been used for testing and evaluating

3T
AP .1

For each problem the statistical information includes

� the name of the knowledge base containing the problem (column KB);

� the name of the proved theorem2 (Theorem);

� the time in seconds 3T
AP needs to �nd a proof running on a SUN-4 SPARC SLC work

station (Time);

� the number of tableau rule applications3 (RA);

� the number of equality applications to terms4 (ERA);

� the length of the longest branch3 (LBR);

� the number of closed branches3 (CB);

� the number of backtracking occurrences, i.e., of parts of the proof being dismissed, (BT);

� the value of the parameter maxcounter used for the proof5 (MC);

� the value of the parameter maxbranchlength used for the proof (MBR);

� the commands used to assign the switches and parameters values di�ering from their default
values (Settings).

If no other settings are explicitly listed in the statistics, the switches and parameters have been
set to their default values6 (cf. Appendix B).

1 These are the prede�ned problem sets that can be proved automatically using proveall (cf. Appendix A).
The statistical information in this chapter has been generated by the command proveall(all,tex).

2 none if the inconsistency of the set of axioms is proved.
3 Including those that are not part of the proof found, because they have been dismissed when backtracking
occurred.

4 Including those that lead nowhere or that are not part of the proof found, because they have been dismissed

when backtracking occurred.
5 That is the smallest value of maxcounter for which a proof can be found, unless it has been assigned to

maxcounter by one of the commands listed in the column \Settings".
6 However, equality is switched o�, unless the problem to be proved is formulated using equality.
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8.1.2 Simple Test Problems

The problem set tests consists of simple problems that demonstrate the e�ect that some of

3T
AP 's features have on proofs: handling of equality, demodulators, removing unlinked formulae,

and universal formulae. The problems as well as their proofs are easy to understand and should
therefore be consulted to get an idea of how these features work.

For statistical information see Table 8.1.

tests

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

eqtest t1 0.017 2 1 4 1 0 0 0 equality: on

eqtest t2 0.083 2 31 3 1 0 0 0 equality: on

eqtest t3 0.050 6 2 7 2 0 0 0 equality: on

eqtest eq1 0.033 1 0 2 1 0 0 0 equality: on

eqtest eq2 0.050 2 1 4 1 0 0 0 equality: on

eqtest eq3 0.034 3 2 5 1 0 0 0 equality: on

demod demod 1 0.166 9 0 10 1 0 0 0 equality: on

demod demod 2 0.467 10 0 11 1 0 0 0 equality: on

demod demod 3 0.150 11 0 12 1 0 0 0 equality: on

nested terms t1 0.383 12 0 10 16 11 1 0

removetest t 0.033 6 0 6 2 0 0 0 removeunlinked:
on,

uselemmata: on,

equality: on

removetest t 0.050 9 0 7 3 0 0 0 removeunlinked:

o�,
uselemmata: on,

equality: on

univ t1 0.033 4 0 6 3 0 0 0 equality: on

univ t2 0.117 17 0 9 9 0 1 0 equality: on

Table 8.1: Statistics for the problem set tests.

8.1.3 D'Agostino's Problems

The problem class given by D'Agostino ((D'Agostino, 1990), page 69) is a sequence of unsatis-
�able propositional formulae An (n � 1), where An is the conjunction of the 2n di�erent clauses
in

f(L1 _ : : :_ Ln) : Li = pi or Li = :pi; i = 1; : : : ; ng:

The formulae An are of length k = O(n2n). D'Agostino claims that tableau proofs for the An

are of length O(2k).

If the mechanism of lemma generation is used, the complexity of the proofs goes down to
O((n� 1)2n) = O(k log k), because there is a closed tableau for An (n � 1) with 1 + (n � 1)2n

closed branches.

If uselemmata is switched on, the proofs generated by 3T
AP are of approximately twice the length

of these shortest proofs. Without lemma generation only A2 and A3 can be proved (to prove A4

about 30,000 branches would have to be closed).

For statistical information see Table 8.2.
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dagostino

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

dagostino2 none 0.050 9 0 7 5 0 0 0 uselemmata: on

dagostino2 none 0.067 11 0 8 7 0 0 0 uselemmata: o�

dagostino3 none 0.183 43 0 17 21 0 0 0 uselemmata: on

dagostino3 none 0.867 149 0 23 101 0 0 0 uselemmata: o�

dagostino4 none 0.666 148 0 37 73 0 0 0 uselemmata: on

dagostino5 none 3.050 450 0 77 225 0 0 0 uselemmata: on

dagostino6 none 13.416 1266 0 157 641 0 0 0 uselemmata: on

Table 8.2: Statistics for the problem set dagostino.

8.1.4 Murray & Rosenthal's Problems

The problems MRn (n � 1) proposed by Murray and Rosenthal (Murray & Rosenthal, 1987)
are of the form

(p11 _ : : :_ p1n) ^ : : :^ (pn1 _ : : :_ pnn)
^

((:p11 ^ : : :^ :p1n) _ : : :_ (:pn1 ^ : : :^ :pnn)):

The problems are of length k = O(n2). Murray and Rosenthal claimed the complexity of tableau
proofs for the unsatis�ability of the MRn (n � 1) to be exponential in n, but this result holds
only for Murray and Rosenthal's de�nition of semantic tableaux, that di�ers from ours. In the
meantime, they do no more use this particular class of formulae as a counter example.

Using our de�nition for semantic tableaux one can �nd tableau proofs for MRn with n2 = O(k)

closed branches. 3T
AP �nds these short proofs if (and only if) grepall is switched o�.

For statistical information see Table 8.3.

mr

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

mr2 mr2 0.100 10 0 8 4 0 0 0 grepall: o�

mr3 mr3 0.100 24 0 12 9 0 0 0 grepall: o�

mr4 mr4 0.150 44 0 16 16 0 0 0 grepall: o�

mr5 mr5 0.250 70 0 20 25 0 0 0 grepall: o�

Table 8.3: Statistics for the problem set mr.

8.1.5 Cook & Reckhow's Problems

The problems CRn (n � 1) given by Cook and Reckhow (Cook & Reckhow, 1974) are conjunc-
tions of the 2n clauses

L1 _ L2i2 _ : : :_ L
n
in
;

where Ljij is either pjij or :pjij and the Index ij is the sequence of the signs of the L1; : : : ; Lj�1ij�1
.

These conjunctions are to be proved to be unsatis�able.

Cook and Reckhow's problems are in some way very similar to D'Agostino's. They, too, are of
length k = O(2n), the complexity of their tableau proofs is O(2k), and if lemma generation is
used, much shorter tableau proofs with 1 + (n� 1)2n closed branches and complexity O(k log k)
can be found.

For statistical information see Table 8.4.
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cr

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

cr2 none 0.067 10 0 7 5 0 0 0 uselemmata: on

cr2 none 0.067 13 0 6 7 0 0 0 uselemmata: o�

cr3 none 0.217 56 0 17 29 0 0 0 uselemmata: on

cr3 none 0.800 247 0 18 121 0 0 0 uselemmata: o�

cr4 none 3.567 601 0 37 302 0 0 0 uselemmata: on

Table 8.4: Statistics for the problem set cr.

8.1.6 Kalish & Montague's Problems

The problem set kalish consists of 22 problems taken from (Kalish & Montague, 1964). The
problems have been numbered in the same way as in that book, e.g. kalish201 is problem T201
in (Kalish & Montague, 1964).

All of the kalish problems consist of a single theorem and have no axioms. Most of them are

very easy to prove|except for kalish265, which cannot be proved by 3T
AP . kalish317 uses

equality and can only be proved with maxcounter set to 1.

For statistical information see Table 8.5.

kalish

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

kalish201 kalish201 0.116 6 0 8 2 0 0 0

kalish202 kalish202 0.100 6 0 8 2 0 0 0

kalish203 kalish203 0.100 9 0 6 2 0 0 0

kalish204 kalish204 0.133 9 0 6 2 0 0 0

kalish215 kalish215 0.116 9 0 7 4 0 0 0

kalish223 kalish223 0.117 7 0 6 4 0 0 0

kalish227 kalish227 0.084 3 0 3 2 0 0 0

kalish229 kalish229 0.083 3 0 4 1 0 0 0

kalish230 kalish230 0.100 3 0 4 1 0 0 0

kalish234 kalish234 0.083 6 0 8 3 0 0 0

kalish238 kalish238 0.100 3 0 4 1 0 0 0

kalish239 kalish239 0.100 6 0 8 2 0 0 0

kalish240 kalish240 0.100 8 0 10 3 0 0 0

kalish241 kalish241 0.100 9 0 11 4 0 0 0

kalish244 kalish244 0.100 5 0 7 1 0 0 0

kalish246 kalish246 0.134 9 0 7 3 0 0 0

kalish249 kalish249 0.100 5 0 6 1 0 0 0

kalish250 kalish250 0.117 17 0 10 2 0 0 0

kalish255 kalish255 0.100 6 0 6 2 0 0 0

kalish256 kalish256 0.184 17 0 11 7 4 0 0

kalish317 kalish317 0.433 51 5 26 20 0 1 0 equality: on,

maxcounter: 1

Table 8.5: Statistics for the problem set kalish.

8.1.7 Problems Constructed according to Morgan

These four problems are constructed by means of Morgan's method (Morgan, 1976) of encoding
problems from propositional logic in predicate logic. By encoding very simple tautologies from



126 CHAPTER 8. EVALUATION

propositional logic, �rst-order problems have been generated that are very di�cult to prove.

For statistical information see Table 8.6.

meta pl

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

meta pl t1 4.317 24 0 23 28 19 3 0 maxcounter: 3,

equality: on

Table 8.6: Statistics for the problem set meta pl.

8.1.8 The \Pigeonhole" Problems

The pigeonhole problems are propositional theorems de�ned for each n � 1. In English:

There are n+ 1 pigeons and n pigeonholes. Each pigeon is in one hole. Therefore, it
is not possible, that in each hole there is exactly one pigeon.

There are two di�erent formulations of this problem in propositional logic. The �rst one (problem
set pigeon) is the conjunction of the n+ 1 disjunctions

pi1 _ : : :_ pin; 1 � i � n+ 1

implies the disjunction of the 1

2
(n3 + n2) conjunctions

pik ^ pjk; 1 � i < j � n + 1; 1 � k � n:

The second formulation (problem set pig alt) is that the conjunction of the 1

2
(n3 + n2) clauses

pik � :pjk; 1 � i < j � n+ 1; 1 � k � n:

and the n+ 1 clauses

pi1 _ : : :_ pin; 1 � i � n+ 1

which has to be unsatis�able.

The second formulation is much more suitable for proving the \pigeonhole" problems using 3T
AP .

The reason is, yet, unknown.

Both formulations are of length k = O(n3). In theory the length of the tableau proofs grows
exponentially in k. Probably, the complexity cannot be reduced by using lemma generation.
This assumption is enforced by the statistics, although there is no proof yet.

For statistical information see Tables 8.7 and 8.8.

pigeon

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

pigeon2 pig2 0.333 47 0 19 40 0 0 0 uselemmata: on

pigeon2 pig2 1.000 175 0 18 168 0 0 0 uselemmata: o�

pigeon3 pig3 9.500 749 0 49 714 0 0 0 uselemmata: on

pigeon3 pig3 76.300 629 0 70 102 0 0 0 uselemmata: on,

dissolution: on

Table 8.7: Statistics for the problem set pigeon.
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pig alt

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

pig alt2 none 0.183 21 0 11 14 0 0 0 uselemmata: on

pig alt2 none 0.150 20 0 9 14 0 0 0 uselemmata: o�

pig alt3 none 1.183 162 0 27 90 0 0 0 uselemmata: on

pig alt3 none 1.350 166 0 22 106 0 0 0 uselemmata: o�

pig alt4 none 9.717 949 0 48 536 0 0 0 uselemmata: on

pig alt4 none 7.800 1088 0 37 692 0 0 0 uselemmata: o�

pig alt5 none 92.683 5697 0 73 3266 0 0 0 uselemmata: on

pig alt5 none 67.117 7370 0 56 4730 0 0 0 uselemmata: o�

Table 8.8: Statistics for the problem set pig alt.

8.1.9 Problems from Group Theory

The following two problems from group theory are mainly for testing the handling of equality.
The tableau proofs for both of them consist of one branch. All formulae are universal with
respect to all free variables.

The �rst problem gr1 is to prove that from the axioms

(8x)(e � x � x)
(8x)(x � x�1 � e)
(8x)(x�1 � x � e)
(8x)(8y)(8z)(x � (y � z) � (x � y) � z)

the additional axiom
(8x)(x � e � x)

can be derived. The second problem gr2 is to prove, now using the additional axiom as well,
that

(8x)(8y)(8z)(x � y � z � y � x � z)

is a theorem from group theory.

For statistical information see Table 8.9.

groups

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

gr1 gr1 2.933 5 124 6 1 0 0 0 equality: on

gr2 gr2 146.034 7 1281 9 1 0 0 0 equality: on

Table 8.9: Statistics for the problems set groups.

8.1.10 Pelletier's Problems

In (Pelletier, 1986) Pelletier gives a collection of a lot of di�erent problems for testing automatic

theorem provers. This is the problem set most often used for testing 3T
AP . It has been divided

into three subsets: problems from propositional logic (pel prop), problems from predicate logic
(pel pred), and problems formulated with equality (pel eq).

Pelletier used a scale from 1 (easiest) to 10 (most di�cult) points to denote the di�culty of the
problems (from his point of view). His judgement has been included in the statistics (Tables 8.10,
8.12 and 8.11).

Pelletier's 47th (Schubert's Steamroller) and 51st{54th problem could, yet, not be proved.
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pel prop

KB Theorem Diff. Time[s] RA ERA LBR CB BT MC MBR Settings

pel1 pel1 2 0.083 9 0 7 4 0 0 0

pel2 pel2 2 0.083 5 0 4 2 0 0 0

pel3 pel3 1 0.067 4 0 6 1 0 0 0

pel4 pel4 2 0.083 9 0 6 4 0 0 0

pel5 pel5 4 0.100 6 0 7 3 0 0 0

pel6 pel6 2 0.083 2 0 3 1 0 0 0

pel7 pel7 3 0.083 4 0 5 1 0 0 0

pel8 pel8 5 0.083 3 0 5 2 0 0 0

pel9 pel9 6 0.134 14 0 12 6 0 0 0

pel9 pel9 6 0.366 7 0 9 1 0 0 0 dissolution: on

pel10 pel10 4 0.150 15 0 7 14 0 0 0

pel11 pel11 1 0.083 1 0 3 2 0 0 0

pel12 pel12 7 0.217 23 0 7 24 0 0 0

pel13 pel13 5 0.150 14 0 8 9 0 0 0

pel14 pel14 6 0.150 18 0 9 10 0 0 0

pel15 pel15 5 0.100 7 0 6 4 0 0 0

pel16 pel16 4 0.067 3 0 5 1 0 0 0

pel17 pel17 6 0.167 28 0 14 12 0 0 0

pel17 pel17 6 0.617 22 0 13 4 0 0 0 dissolution: on

Table 8.10: Statistics for the problem set pel prop.

pel eq

KB Theorem Diff. Time[s] RA ERA LBR CB BT MC MBR Settings

pel48 pel48 3 0.167 4 24 5 4 0 0 0 equality: on

pel49 pel49 5 0.367 21 92 11 10 2 2 0 equality: on,
uselemmata: o�,

maxcounter: 2

pel50 pel50 4 0.117 6 0 7 2 0 0 0 equality: on

pel56 pel56 4 0.134 13 2 9 5 0 0 0 equality: on

pel57 pel57 2 0.117 3 0 5 3 0 1 0 equality: on,

maxcounter: 1

pel58 pel58 3 0.100 2 2 3 1 0 0 0 equality: on

pel59 pel59 3 0.200 17 0 12 8 2 1 0 equality: on

pel60 pel60 4 0.116 10 0 8 4 0 0 0 equality: on

pel61 pel61 6 0.150 2 4 3 1 0 0 0 equality: on

pel62 pel62 5 0.150 17 0 13 6 0 0 0 equality: on

Table 8.11: Statistics for the problem set pel eq.

8.1.11 Other Two-Valued Problems

The set ps is a class of very hard challenge problems proposed by P. H. Schmitt. The formulae
PSn are corollaries of the well known fact that an injective function f : M !M that operates
on a �nite set M has to be surjective.

(8x)(x 6� a1 ^ : : :^ x 6� an � f(x) � x)
(8x)(8y)(f(x) � f(y) � x � y)

(8x)(9y)(x � f(y))

The problems PSn can be seen as a formulation of the \pigeonhole" problems using equality (if
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pel pred

KB Theorem Diff. Time[s] RA ERA LBR CB BT MC MBR Settings

pel18 pel18 1 0.100 3 0 5 1 0 0 0

pel19 pel19 3 0.116 6 0 8 2 0 0 0

pel20 pel20 4 0.133 14 0 15 3 0 0 0

pel21 pel21 5 0.134 10 0 10 7 0 1 0

pel22 pel22 3 0.100 7 0 6 4 0 0 0

pel23 pel23 4 0.116 9 0 7 4 0 0 0

pel24 pel24 6 0.267 41 0 17 17 0 0 0

pel24 pel24 6 0.850 38 0 18 5 0 0 0 dissolution: on

pel25 pel25 7 0.167 18 0 16 7 0 0 0

pel26 pel26 7 0.233 40 0 15 12 0 0 0

pel27 pel27 6 0.350 57 0 15 22 7 0 0 uselemmata: o�

pel28 pel28 8 0.167 20 0 14 5 0 0 0

pel29 pel29 7 0.333 50 0 20 19 0 1 0 maxcounter: 1

pel30 pel30 6 0.117 10 0 9 3 0 0 0

pel31 pel31 5 0.117 11 0 13 4 0 0 0

pel32 pel32 6 0.166 16 0 14 9 0 0 0

pel33 pel33 4 0.184 26 0 13 9 0 0 0

pel34 pel34 10 1.233 219 0 22 76 0 1 0 maxcounter: 1

pel35 pel35 2 0.117 5 0 6 1 0 0 0

pel36 pel36 3 0.133 13 0 11 3 0 0 0 uselemmata: o�

pel37 pel37 3 0.183 23 0 19 5 0 0 0

pel38 pel38 4 67.900 1343 0 46 1671 1011 1 0 uselemmata: o�

pel39 pel39 3 0.133 6 0 6 2 0 0 0

pel40 pel40 5 0.133 13 0 11 5 1 0 0

pel41 pel41 6 0.150 14 0 10 6 3 0 0

pel42 pel42 6 0.133 15 0 14 5 0 2 0 maxcounter: 2

pel43 pel43 5 1.833 165 0 31 135 38 1 0 uselemmata: o�,

maxcounter: 1

pel44 pel44 3 0.150 15 0 16 5 1 0 0 uselemmata: o�

pel45 pel45 5 0.300 46 0 38 15 0 1 0 uselemmata: o�,

maxcounter: 1

pel45 pel45 5 0.817 33 0 23 4 0 1 0 uselemmata: o�,

dissolution: on,

maxcounter: 1

pel46 pel46 6 0.200 26 0 20 10 0 4 0 uselemmata: o�,

maxcounter: 4

Table 8.12: Statistics for the problem set pel pred.

one assumes f to be the function that assigns each pigeon a pigeonhole). 3T
AP can only prove

them for n = 1. For statistical information see Table 8.13.

ps

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

ps1 ps1 0.633 64 51 16 17 1 1 0 uselemmata: o�,

maxcounter: 1,

equality: on

Table 8.13: Statistics for the problem set ps.

The formula �4 (problem set phi) from (Murray & Rosenthal, 1993) is constructed in such a
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way that it demonstrates the advantages of dissolution (Table 8.14).

phi

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

phi4 phi4 21.333 6021 0 28 1024 0 0 0

phi4 phi4 10.267 121 0 29 18 0 0 0 dissolution: on

phi4 phi4 3.800 27 0 22 4 0 0 0 dissolution: on,

disscomplexity: on

Table 8.14: Statistics for the problem set phi.

8.1.12 Problems from Three-Valued Logic

The three-valued problems are taken from (Gerberding, 1991), where an axiomatization for
natural interval arithmetic7 using a three-valued logic which assembles parts of the  Lukasiewicz
logic  L3 and the three-valued G�odel system G3.

The problems are as follows:8

eq4 eq4 states the symmetry of the three-valued equality predicate for intervals. It directly
follows from fig5 14 and fig5 17 (see below). Although the axioms and the theorem of
eq4 are �rst-order formulae, the problem is of the form

j1a$ j1b

j 1
2
a$ j 1

2
b

a$ b

3T
AP is able to prove eq4 from the axioms given in (Gerberding, 1991), without using

fig5 14 and fig5 17 as lemmata.

l5 9 This theorem says that the two-valued equality of intervals, i.e., their set-theoretic equality,
may be stated using the three-valued equality predicate eq.

�g5 14 fig5 14 states that the above equality predicate is symmetrical w.r.t. the truth value
1

2
, i.e.,

j 1
2
eq(a; b)$ j 1

2
eq(b; a)

for any two intervals a; b.

�g5 17 fig5 17 is similar to fig5 14. It states the symmetry of eq wrt the truth value 1, i.e.,

j1eq(a; b)$ j1eq(b; a)

for any two intervals a; b.

l5 1 This problem states the antisymmetry of the order relation de�ned in (Gerberding, 1991)
wrt the truth value 1

2
.

th5 3 This is the antisymmetry of the above ordering.

For statistical information see Table 8.15. A more detailed discussion concerning the problems
of proving these theorems with an automated theorem prover may be found in Chapter 7 of
(Gerberding, 1991). More three-valued problems may be found there, too.

7 This is the arithmetic of intervals with positive integer bounds. It is some kind of generalization of the Peano
arithmetic for naturals.

8 Names starting with l are lemmata from (Gerberding, 1991), e.g. l5 1 is Lemma 5.1, names starting with th

are theorems and names starting with fig are formulae whose proof may be found in a �gure in (Gerberding,
1991). eq4 is axiom MVEQ4.
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three valued

KB Theorem Time[s] RA ERA LBR CB BT MC MBR Settings

eq4 eq4 0.583 94 0 23 28 0 0 0

fig5 14 fig5 14 8.117 566 0 55 371 128 4 0 maxcounter: 4

fig5 17 fig5 17 0.250 58 0 25 8 0 1 0 grepall: o�

l5 1 l5 1 0.250 46 0 17 25 0 0 0

th5 3 th5 3 0.850 216 0 24 65 0 0 0

Table 8.15: Statistics for the problems set three valued.

8.2 Shortcomings and Strengths

Among the major merits of using tableaux as a logical basis for mechanical theorem proving
are, �rst, that they do not commit one to the usage of normal forms; second, that, therefore,
the proofs generated are relatively easy to understand; and, third, that they can be extended to

cover many of the nonclassical logics. All these advantages apply to 3T
AP :

+ No normal form is required.

+ In contrary to other automated theorem provers (in particular resolution-based theorem

provers) 3T
AP generates proofs that are relatively easy to examine (using the tools moreTab

and tabTEX).

+ An equality theory that may be part of a problem does not have to be speci�ed explicitly.
Equalities may occur arbitrarily nested in formulae.

+ 3T
AP can handle every multiple-valued logic that can be de�ned by means of truth-tables.

To adopt a new logic one has only to describe the operators and tableau rules of that logic.

3T
AP 's proof procedure does not have to be changed.

The main disadvantage of 3TAP in comparison to state-of-the-art resolution-based theorem provers
for predicate logic is its

� lower performance.

The reason is mainly that 3T
AP is implemented in Prolog. If one compares the number of inference

steps, 3T
AP can compete with state-of-the-art theorem provers. The fact that resolution-based

theorem provers are in a better proof complexity class is in practice not harmful|due to lemma

generation and other sophisticated tableau proving techniques 3T
AP makes use of.

+ 3T
AP is able to prove problems from propositional logic in a rather short time. It takes

only between 0.04s and 0.27s9 to prove the propositional problems given in (Pelletier,
1986). Propositional challenge problems (e.g. the Pigeonhole Problems) can be proved in
relatively short time, too.

+ Certain problems can be proved very fast because no normal form has to be generated, e.g.
Andrew's Challenge (Pelletier's 34th problem) can be proved in 2.4s9.

� As long as no bracktracking occurs problems from predicate logic can as well be proved in
rather short time. Most of Pelletier's problems from predicate logic can be proved in less
than one second9. Di�culties arise if extensive backtracking is necessary, i.e., if there are

9 On a SUN-4 SPARC SLC work station.
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often several possibilities to close a branch leading to di�erent free variable instantiations.
This is the reason why, for example, Schubert's Steamroller (Pelletier's 47th problem)
cannot be proved.

� Although performance cannot compete with completion based theorem provers or resolu-

tion systems using paramodulation, 3TAP 's performance in proving problems with equality
is approximately the same as in proving problems from predicate logic without equality.
However, if too many equality applications are necessary to prove two terms to be equal,
and if these applications are di�cult to �nd because there are a lot of di�erent equalities

that can be applied to each term, 3T
AP may fail to �nd a proof. 3T

AP will, for example,
only succeed in proving a theorem from group theory, if not more than about �ve equality
applications are necessary to show two terms to be equal.

The advantages and disadvantages of 3T
AP 's user interface (especially of using the Prolog shell)

are:

+ The user can quickly write his own predicates to accomplish specialized tasks (e.g., abbre-
viations for certain command sequences).

� Since the user interface is command line oriented, learning to use ist is not as easy as, for
example, a window-based system.

+ It is very easy to include 3T
AP in any existing system via its interface predicates.

+ Several knowledge bases can be loaded into the work space at the same time, and it is
possible to switch between these knowledge bases.

+ 3T
AP provides various switches and parameters having an in
uence on the prove procedure.

Though it might sometimes be di�cult to �nd the best settings for the switches, the default
settings work very well in most cases.

8.3 Settings of Switches and Parameters

In this section we give some hints on how to use 3T
AP 's various switches and parameters. Some

of these are easy to explain, others are merely empirical results.

8.3.1 Settings of Switches that Might Help if No Proof is Found

The following list contains settings of switches and parameters you should try if 3T
AP fails to �nd

a proof.

� Increase maxcounter or use the command proveinc if 3T
AP fails to �nd a proof for a problem

from predicate logic (maxcounter has no in
uence on propositional logic proofs).

� Set maxbranchlength to a higher value or to 0, or us the command proveinc.

� Set maxcounter to a very high value (e.g. 1000), such that no backtracking occurs, if you

think too much backtracking is the reason why 3T
AP doesn't �nd a proof.

� Set max solutions per branch to a smaller value if backtracking occurs and the problem
contains equalities.
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� Switch 
ipconclusion on if the problem consists of asymmetric formulae, especially if it
contains implications.

� Switch grepall o� if the knowledge base contains a relatively large number of axioms (be-
cause it might be not necessary to put all axioms on all branches).

� Switch uselemmata o� (that works for some problems from predicate logic).

8.3.2 Settings of Switches that Might Shorten the Proof Found

Of course, the settings given in the previous section may not only help to �nd a proof at all, but
may also shorten the proof found. There are some other settings that usually lead to a shorter

proof, though they might increase the time 3T
AP needs to �nd it,

� Try to set maxcounter to s amaller value. Even if that means that backtracking occurs,
the proof found will be shorter.

� Switch removeunlinked on.

� Use dissolution. To further decrease the proof length switch disscomplexity on.



9 Using Di�erent Logics

9.1 3T
A
P 's Logics

The logic used by 3T
AP is de�ned in the modules declarations and rules. In most cases it

is su�cient to change these to add a new logic or change an old one. declarations has to be
adjusted to the signature of the logic, and rules represents the logic's semantics1. Only to add
new operators, or to change their names, arity, or priority, some �les of the compiler have to be
edited, in addition.

The standard distribution of 3T
AP comes with the following pre-de�ned logics:

� The classical two-valued predicate logic (de�ned in the directory 2version).

� The three-valued  Lukasiewicz logic  L3 (de�ned in 3version/declarations_std.pl and
3version/rules_std.pl).

� The three-valued logic introduced in (Gerberding, 1991); it assembles parts of the  Luka-
siewicz logic  L3 and the G�odel system G3. Besides the de�nition in declarations_sg.pl

and rules_sg.pl, the directory 3version contains the Carnielli version of this logic
(declarations_sg_car.pl and rules_sg_car.pl), where signs represent only a single
truth value, and a version (declarations_sg_as.pl and rules_sg_as.pl), that uses all
possible combinations of truth values signs2.

� The seven-valued logic introduced in (Kernig, 1992) (de�ned in the directory 7version).

To switch between the di�erent three-valued logics, copy the declarations and rules modules
de�ning the logic you want to use to 3version/declarations.pl resp. 3version/rules.pl.
Then re-compile the prover (see Appendix C).

9.2 Changes to the Declarations Module

The following predicates have to be adjusted to the signature of your logic:

� get int op list

� get ext op list

� get LaTeX op list (only necessary if the tabTEX utility is going to be used)

� get ops with two fmas

� get unary ops

1 Some aspects of the semantics are represented in declarations, e.g. for any self-contradictory combination of
a connective and a sign there is an appropriate fact in declarations.

2 Note, that 3T
AP is not complete for this versions of the logic.
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� get int quantor

� get ext quantor

You cannot use arbitrary internal and external names for the connectives, but only those known
to the compiler.

If a rule must be applied more than once to a signed formula in order to achieve completeness
(cf. Sections 2.7, 5.9.4) then the formula is of type 
 and a clause of the is gamma formula/2

predicate has to be added for that formula, see Section 5.9.4.

If a sign � does not appear in the truth table of a connective c then any signed formula
� c(� � �) is self-contradictory and there is no rule de�ned for that combination. Hence, the fact
no rule defined( �,c ) must be present in declarations. See Section 5.9.3 for details.

For every pair of complementary signs a clause of the is complementary sign/2 predicate has
to be created. See Section 5.9.2 for details.

9.3 Changes to the Rules Module

After the tableau rules have been extracted from a connective's truth table it is quite easy to
change the rules module. For every connective and for every sign a clause of the rules/8

predicate must be supplied. The format of these clauses is described in Section 5.10. If no rule
is de�ned for a pair of sign and operator a dummy rule has to be added, see Section 5.10.1.1.

If the universal formula mechanism (Section 2.5) is not to be used you should use a rules/6

predicate instead of rules/8 and the following interface clause:

rule( A,B,C,D,E,_,[],F ) :- rule( A,B,C,D,E,F ).

The rules module of the many-valued versions of 3T
AP are written in that way, since they do

not make use of the universal formula mechanism.3

To use the lemma generation mechanism some clauses must be created for the get lemmata/6

or get lemmata alpha/6 predicates. Their format is discussed in Section 5.10.2. Additional
information, may be gathered form the source of the rules module. For the many-valued case
it is not easy, although well possible, to compute the required lemmata. See (H�ahnle, 1992c) for
some hints.

9.4 Changes to the Compiler

9.4.1 De�ning New Operators

For adding operators there are three things to think about: The external and the internal
representation, the priority and the arity of the new operator. Whether you only have to change
the representation or whether you even have to change the priority or the arity depends on
how your new operator di�ers from the so far given. The priority of the pre-de�ned operators
for two-valued and three-valued logics is listed in Table 9.1 (all of these operators are unary or
binary). There are several markers in the modules of the compiler which indicate the locations
that must be edited. The next sections describe in detail how these locations must be modi�ed.

3 There is no principal reason speaking against it. However, in the many-valued case few rules have singleton
conclusions and, therefore, universal formulae are not so frequent.
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<=> EQUI
#

>, < >, < BINOP
->, <->, <-

=>, <=
v DIS OR V
& CON

-, UNOP
aff, jf, ju, jt, nabla

max. priority

��

min. priority

Table 9.1: Priority classes of the operators.

9.4.2 External and Internal Representation

The �rst step is to decide on the external and internal representation of a new operator. Make
sure that the external representation is not a single letter, a single number, or the character '_',
and of course none of the keywords or keycharacters which are already used in the grammar (see
Table 3.1).

The internal representation must be unique, too. See Tables 5.2 and 5.3 for what internal
representations are already used.

If the new operator does not belong to one of the given priority classes (except the DIS OR V

class), see Table 9.1, or if it is neither unary nor binary, then you have to add a new priority
class (see section 9.4.3).

To add the new operator, you have to edit the �le scanner.l. At the position marked by
CHANGE_REPRESENTATION_HERE you will �nd the scanning rules for operators. Every line in the
marked block contains the data for one operator. For example, the line

"=>" { yylval="imp"; return token(BINOP); }

de�nes the implication operator: => is the entry for the external representation, yylval="imp";
links the external to the internal representation imp, and return token(BINOP); de�nes the
priority class of the implication operator.

Insert a line with the data for your new operator. If you have added a new priority class, you
also have to change some locations concerning the priority of operators (see Section 9.4.3).

9.4.3 Priority

There are three locations in concerning the priority of operators. These locations are indicated
by the marker CHANGE PRIORITY HERE.

One of these locations is in the �le scanner.l at the list of scanning rules, where each operator
is linked to a priority class (as already mentioned in Section 9.4.2). In Table 9.1 you can see the
priority classes of the prede�ned operators.

To change the priorities, you also have to edit the �le grammar.y (at the positions marked by
CHANGE PRIORITY HERE marker). Here, you will �nd the de�nition of tokens for the operators
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in order of decreasing priority. All priority classes used in the �le scanner.l must appear here.
The order of the entries in the list de�nes the priority of the priority classes. Entries in the same
line have the same priority.

The second location at which you �nd the CHANGE PRIORITY HERE marker in grammar.y are the
parsing rules for operators. For a new priority class you have to add a new parsing rule. If
the new operator is not unary or binary you have to add a function make n-ary formula. See
Section 9.4.4 for further explanations.

For example, the parsing rule for the BINOP priority class is:

| FORMULA BINOP FORMULA

{ strings = make_binary_formula($2,$1,$3,strings);

$$=(YYSTYPE)(*strings).entry; }

`| FORMULA BINOP FORMULA' is the grammar rule for the BINOP priority class. The C-function
make binary formula generates the output syntax and stores it in the list strings. $1,$2,$3

refer to the �rst, the second and the third word of the grammar rule (i.e. $1 means FORMULA).
$$=(YYSTYPE)(*strings).entry; must appear in the parsing rule of every priority class.

To compose a parsing rule for an n-ary priority class you need the grammar rule and the C-
function make n-ary formula. The grammar rule consists of the token for the priority class,
n appearances of FORMULA and, if necessary, brackets. The �rst argument of make n-ary formula

must be the $-symbol which refers to the token for the priority class. The last argument must
be strings. The other arguments are the $-symbols which refer to the appearances of FORMULA.

9.4.4 Arity

The locations concerning the arity of operators are indicated by the marker CHANGE ARITY HERE.

As already mentioned in Section 9.4.3 one occurrence is in the �le grammar.y. Here every parsing
rule for an n-ary operator calls a C-function make n-ary formula.

You also �nd the CHANGE ARITY HERE marker in the �le output.c in the functions for composing
formulae from the operators and subformulae. The functions di�er in their number of arguments
and in the lines

str = (char *)malloc(: : :);

and

sprintf(: : :);

A function make n-ary formula looks like this:

struct string_list *make_binary_formula(op,fma_1,...,fma_n,strings)

char *op;

char *fma_1;

...

char *fma_n;

struct string_list *strings;

{

char *str;



138 CHAPTER 9. USING DIFFERENT LOGICS

str = (char *)malloc(5 + strlen(op) +

strlen(fma_1) + ... + strlen(fma_n) + 10);

sprintf(str,"%s(%s,...,%s,l%d)",op,fma_1,...,fma_n,get_label());

strings = insert_in_string_list(str,strings);

free(str);

return(strings);

}

Finally, you have to edit the header�le output.h, �nd the CHANGE ARITY HERE marker, and add
the line

extern struct string_list *make_n-ary_formula();



A Commands Reference
Manual

This appendix describes brie
y all 3TAP commands. More technical descriptions can be found in
Section 5.1. Additional references are given when appropriate in the \Description" parts below.

The syntax of commands is indicated in a form such as:

prove [(theorem [, KB ])].

Everything in a typewriter font represents those parts of commands that appear in the input
exactly as shown. The italicized parts represent parts that vary; the command's description
explains their function. Arguments enclosed in square brackets [ ] are optional; they may be
omitted, so the command prove can also have the form \prove(theorem)." or, when all argu-
ments are omitted, \prove.".

For all optional arguments their default values are given.

As usual, parameters that contain characters such as / or .., e.g. path names, have to be enclosed
in single quotation marks ' '.

cd

Syntax cd [(directory)].

Purpose Changes the working directory.

Argument(s) directory: The new directory (default: the login directory).

compall

Syntax compall(what to prove).

Purpose Compiles prede�ned problem sets.

Argument(s) what to prove: The problem set(s) to be compiled.

Description This command proves either one prede�ned problem set or even all prede�ned
problem sets.
The command compkbx is used for compiling.
The prede�ned problem sets are listed in Table A.3 (they are described in detail
in Chapter 8).
Valid instantiations of the argument what to prove are:

� the name of a problem set (e.g. tests),

� the atom all as an abbreviation for the list of all prede�ned problem sets.

See also compkbx

Example compall(all).

Compiles all problem sets.

139
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compkbx

Syntax compkbx(�le).

Purpose Compiles a knowledge base.

Argument(s) �le: The name of the �le containing the knowledge base to be compiled.

Description The compiler is invoked to parse the formulae in �le. The partial and (if the
switch remove unlinked is on the complete) information about links is computed
(cf. Section 5.12).
The compiled knowledge base is written to the �le �le.kbx. The command
readkbx can then be used to load it into the workspace.
If �le does not contain a valid knowledge base (cf. Chapter 3), the compiler fails
to parse it and an error message is displayed.
Note that it might take very long to compute the complete information about
links for complex knowledge bases.

See also readkbx, usekbx

Example compkbx('problems/pel23').

Compiles the knowledge base in the �le problems/pel23 and writes the result
to the �le problems/pel23.kbx.

cp

Syntax cp(old�le,new�le).

Purpose Copies a �le.

Argument(s) old�le: The source �le.

new�le: The target �le.

Description cp copies the contents of old�le to new�le.

See also mv

date

Syntax date.

Purpose Displays the date.

See also time

delkb

Syntax delkb [(KB)].

Purpose Deletes a knowledge base from the workspace.

Argument(s) KB: The knowledge base to be deleted (default: the current knowledge base).

See also delkbs

Example delkb(pel23).

Deletes the knowledge base pel23 from the workspace.

delkbs
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Syntax delkbs.

Purpose Deletes all knowledge bases from the workspace.

See also delkb

edit

Syntax edit(�le).

Purpose Calls the editor.

Argument(s) �le: The �le to be edited.

Description The editor speci�ed by the parameter editor is called to edit the �le �le.

See also edopen

edopen

Syntax edit(�le).

Purpose Opens a new window, starts the editor in this window.

Argument(s) �le: The �le to be edited.

Description First the UNIX command open is used to open a new window, then the editor
speci�ed by the parameter editor is started in this window to edit the �le �le.
Note that the open command is not available on all systems.

See also edit

get varname

Syntax get varname(variable).

Purpose Returns the current value of one of 3T
AP 's switches and parameters.

Argument(s) varname: The name of the switch of parameter to be read (this is not an argu-
ment in the strict sense since it is part of the command's name).

variable: A Prolog variable that is to be instantiated with the value of the switch
or parameter.

Description These commands can be used to read the value of one of 3T
AP 's switches or

parameters (Table A); but, in most cases, it might be easier to use the command
lookup.
variable has to be an uninstantiated Prolog variable.

See also set varname, lookup

Example get maxcounter(MC).

Instantiates the Prolog variable MC with the current value of the parameter max-
counter.

inconsistent

Syntax inconsistent [(KB)].

1 equality is by default switched on in the two-valued version and switched o� in the many-valued versions.
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Switch/Parameter Type Range Default

complete �rst atomic on, o� o�

compute additional solutions atomic on, o� o�

current kb alphanumeric loaded knowledge bases none

debuglevel numeric 0; 1; : : : ; 6 0

dissbound numeric 0; 1; 2; : : : 3

disscomplexity atomic on, o� o�

dissdebuglevel numeric 0; 1; : : : ; 6 0

dissolution atomic on, o� o�

disspriority atomic diss, alpha diss

editor alphanumeric vi, emacs, : : : vi

eqdebuglevel numeric 0; 1; : : : ; 6 0

equality atomic on, o� on/o�1


attenformulas atomic on, o� o�


ipconclusion atomic on, o� o�

grepall atomic on, o� on

inc limit mbr numeric 0; 1; 2; : : : 2

inc limit mc numeric 0; 1; 2; : : : 2

kbx extension alphanumeric valid extensions kbx

maxbranchlength numeric 0; 1; 2; : : : 20

maxcounter numeric 0; 1; 2; : : : 2

max rule cr number numeric 0; 1; 2; : : : 10000

max rule simp number numeric 0; 1; 2; : : : 10000

max solutions per branch numeric 0; 1; 2; : : : 10

max term number numeric 0; 1; 2; : : : 10000

output�le alphanumeric valid paths user

protmode atomic on, o� o�

stepmode atomic on, o� o�

tableau output atomic on, o� o�

tableauout�le alphanumeric valid paths tableau.out

tcplus extension alphanumeric valid extensions kb

removeantilinks atomic on, o� o�

removeunlinked atomic on, o� o�

uselemmata atomic alpha, on, o� alpha

weight left only atomic on, o� o�

Table A.1: 3T
AP 's switches and parameters, their ranges and default values.

Purpose Tries to prove the inconsistency of a set of axioms.

Argument(s) KB: The knowledge base containing the axiom set (default: the current know-
ledge base).

Description The command inconsistent has the same e�ect as the command prove if no
theorem is speci�ed, i.e., it tries to prove the inconsistency of the axiom set.
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See Section 5.2 for a detailed description of the proof procedure. The in
u-

ence of 3T
AP 's various switches and parameters on the proof is summarized in

Appendix B.

See also prove, protprove, proveinc, proveall

info

Syntax info [(topic)].

Purpose Provides online information.

Argument(s) topic: The topic about which information is to be displayed (default: information
about the info command).

Description info provides information on the topics listed in Table A. The argument topic
may be chosen from one of these topics; or the atom all may be used to get all
available information.
info uses the current output stream to display the information.

See also lookup

Example info(equality).

Provides information about the handling of equality.

Topic Information about

compiler The compiler and the commands for compiling knowledge bases.
diss The dissolution rule.
equality The equality predicate.
info The available information.
maintain Commands for workspace maintenance.
output Tableau output for moreTab and tabTEX.
prover Commands for proving theorems (resp. inconsistency of an axiom

set).
unix UNIX-like commands.
variables Switches and parameters.

Table A.2: The topics info provides information about.

init

Syntax init.

Purpose Initializes the prover.

Description The prover is reset to its initial state, i.e., all switches and parameters are set
to their default values (Appendix B), and all knowledge bases are removed from
the workspace.

See also initialize variables

initialize variables
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Syntax initialize variables.

Purpose Resets all switches and parameters to their default values.

Description All of 3T
AP 's switches and parameters are reset to their default values (cf. Ap-

pendix B).

See also init

lookup

Syntax lookup.

Purpose Displays the current values of 3T
AP 's switches and parameters.

Description This command shows the current values of 3T
AP 's switches and parameters (Ap-

pendix B). In addition, the names of all loaded knowledge bases are listed.
lookup sends its output to the current stream.

See also info

ls

Syntax ls [(directory)].

Purpose Lists the contents of a directory.

Argument(s) directory: The directory to be listed (default: the current working directory).

mv

Syntax mv(oldpath,newpath).

Purpose Moves or renames a �le.

Argument(s) oldpath: The old path of the �le to be moved.

newpath: The path the �le is to be moved to.

See also cp

protprove

Syntax protprove [(theorem [, KB ])].

Purpose Tries to prove a speci�ed theorem or the inconsistency of a set of axioms; redi-
rects all output to the �le speci�ed by output�le.

Argument(s) theorem: The name of the theorem to be proved (default: prove the inconsistency
of the axiom set).

KB: The knowledge base containing theorem and the axiom set to be used (de-
fault: the current knowledge base).

Description protprove tries to �nd a prove in exactly the same way as the command prove.
The di�erence is that protprove writes all output to the �le speci�ed by the
parameter output�le, whereas prove uses the current output stream.
Before any output is sent to the �le, it is initialized and all information it may
contain is lost. Therefore, the old �le has to be saved, or another �lename must
be taken by changing the parameter output�le before protprove is called again.
To redirect the output of the commands proveinc or inconsistent one may
use the analogue to the sequence of commands
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set protmode(on), prove([theorem],[KB ]), set protmode(off).

of which the command protprove is an abbreviation.
See Section 5.2 for a detailed description of the proof procedure. The in
u-

ence of 3T
AP 's various switches and parameters on the proof is summarized in

Appendix B.

See also proveinc, prove, inconsistent, proveall

prove

Syntax prove [(theorem [, KB ])].

Purpose Tries to prove a speci�ed theorem or the inconsistency of a set of axioms.

Argument(s) theorem: The name of the theorem to be proved (default: prove the inconsistency
of the axiom set).

KB: The knowledge base containing theorem and the axiom set to be used (de-
fault: the current knowledge base).

Description This command starts the proof procedure. If no theorem is speci�ed, 3T
AP tries

to prove the axiom set of the current knowledge base to be inconsistent.
See Section 5.2 for a detailed description of the prove procedure. The in
u-

ence of 3T
AP 's various switches and parameters on the proof is summarized in

Appendix B.

See also proveinc, protprove, inconsistent, proveall

Example prove(pel23).

Tries to prove the theorem pel23 (using the axiom set of the current knowledge
base).

proveall

Syntax proveall(what to prove [, parameter ] [, format ]).

Purpose Proves prede�ned problem sets; generates a �le containing proof statistics.

Argument(s) what to prove: The problem set(s) to be proved.

parameter: The parameter to be increased (either maxcounter or maxbranch-

length); the abbreviations mc and mbr can be used (default: maxcounter).

format: The format of the statistics �le (default: ascii).

Description This command is quite useful for testing 3T
AP . Prede�ned problem sets are

proved automatically; the user neither has to load the knowledge bases, nor set
the switches and parameters, nor start the proofs.
The command proveinc is used for proving.
The prede�ned problem sets are listed in Table A.3 (they are described in detail
in Chapter 8).
Valid instantiations of the argument what to prove are:

� the name of a problem set (e.g. tests),

� a list of problem sets (e.g. [pel prop,pel pred]),

� the atom pelletier as an abbreviation for [pel prop,pel pred,pel eq],

� the atom all as an abbreviation for the list of all prede�ned problem sets.
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The statistical information is written to the �le statistics in the current di-
rectory. Before any output is sent to this �le, it is initialized and all information
it may contain is lost. Therefore it has to be copied before proveall is called
again.
The format of the statistics �le is denoted by the argument format. Two formats
are available:

ascii: No special format, easy to read.

tex: A LaTEX-like format that can easily be included into LaTEX documents.

Unless the switch removeunlinked is on, the knowledge bases are read using
the command readkbx (else using usekbx). The compiled versions, i.e., the
�les *.kbx, have therefore to be existent (in the directory de�ned in module
proveall).
The problem sets and the settings for the switches and parameters are de�ned in
the module proveall. See Section 5.1 for a description of how to change these
de�nitions and examples for the usage of proveall.

See also prove, proveinc

Example proveall(all,mbr,tex).

Proves all problem sets incrementing maxbranchlength and generates a statistics
�le in LaTEX format.

Name

tests Simple problems for testing some of 3T
AP 's features.

dagostino The problem class given by D'Agostino (D'Agostino, 1990, p. 69).
mr The problem class given by Murray and Rosenthal (Murray &

Rosenthal, 1987).
cr The problem class given by Cook and Reckhow (Cook & Reckhow,

1974).
kalish Problems from (Kalish & Montague, 1964).
meta pl Four problems constructed by means of Morgan's method (Mor-

gan, 1976) of encoding problems from propositional logic in pre-
dicate logic.

pigeon The \pigeonhole" problems.
pig alt An alternate formulation of the \pigeonhole" problems.
groups Two problems from group theory formulated with equality.
pel prop The problems from propositional logic given by Pelletier (Pelletier,

1986).
pel pred The problems from predicate logic given by Pelletier (Pelletier,

1986).
pel eq The problems with equality given by Pelletier (Pelletier, 1986).
ps A class of problems proposed by P. Schmitt.
phi A formula given by Murray & Rosenthal (Murray & Rosenthal,

1993) demonstrating the advantages of dissolution.

Table A.3: The prede�ned problem sets for the commands proveall and compall.

proveinc
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Syntax proveinc(theorem [, KB ] [, parameter [, init ]]).
proveinc [(parameter [, init ])].

Purpose Tries to prove a speci�ed theorem or the inconsistency of a set of axioms by
incrementing the speci�ed parameter after each try. The parameter can be
either maxcounter or maxbranchlength.

Argument(s) theorem: The name of the theorem to be proved (default: prove the inconsistency
of the axiom set).

KB: The knowledge base containing theorem and the axiom set to be used (de-
fault: the current knowledge base).

parameter: The name of the parameter to be increased (either maxcounter or
maxbranchlength; the abbreviations mc and mbr can be used (default: maxcoun-
ter.

init: The initial value for the speci�ed parameter (default: 0 if the parameter is
maxcounter, 1 if the parameter is maxbranchlength).

Description 3T
AP 's proof procedure is not complete in the strict sense. It might fail to prove

a valid theorem if one of the parameters maxcounter and maxbranchlength is too
low. This problem can be overcome by using the command proveinc.
proveinc �rst sets maxcounter (resp. maxbranchlength) to the initial value init
and then iteratively tries to prove the theorem (resp. the inconsistency of the
axiom set). After each futile try maxcounter or maxbranchlength is increased by
one.
This process goes on until either a proof is found, maxcounter or exceeds the
value of inc limit mc, or maxbranchlength exceeds inc limit mbr.
proveinc should not be used to increment maxcounter if all formulae in the
knowledge base are solely propositional, since maxcounter has no e�ect on pro-
positional logic proofs.

See also prove, protprove, inconsistent, proveall

Example proveinc(pel23,pel23,maxcounter,1).

Tries to prove the theorem pel23 using the axiom set of the knowledge base
pel23, starting with maxcounter = 1.

pwd

Syntax pwd.

Purpose Displays the pathname of the current working directory.

readkbx

Syntax readkbx(�le).

Purpose Loads a knowledge base into the workspace.

Argument(s) �le: The name of the �le containing the knowledge base to be loaded.

Description The compiled knowledge base in the �le �le.kbx is read into the workspace.
The names of the theorems the knowledge base contains are displayed.

See also compkbx, usekbx

Example readkbx(pel23).

Loads the knowledge base contained in pel23.kbx into the workspace.
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rm

Syntax rm(�le).

Purpose Removes a �le from the �le system.

Argument(s) �le: The �le to be removed.

set varname

Syntax set varname(value).

Purpose Assigns a new value to one of 3T
AP 's switches or parameters.

Argument(s) varname: The name of the switch or parameter to be set (this is not an argument
in the strict sense since it is part of the command's name).

value: The value to be assigned to the switch or parameter.

Description The value value is assigned to the switch or parameter varname. Table A con-
tains a list of all switches and parameters, their ranges and their default values.
Consult Appendix B for a detailed description.

See also get varname

Example set maxcounter(2).

Assigns the value 2 to the parameter maxcounter.

time

Syntax time.

Purpose Displays the time.

See also date

usekbx

Syntax usekbx(�le).

Purpose Compiles a knowledge base and loads it into the workspace.

Argument(s) �le: The name of the �le containing the knowledge base to be compiled and
loaded.

Description The command usekbx is a combination of the commands compkbx and readkbx,
i.e., it �rst compiles a knowledge base and then loads it into the workspace (for
further information consult the descriptions of compkbx and readkbx).

See also compkbx, readkbx

Example usekbx(test).

Compiles the knowledge base contained in the �le test, writes it to the �le
test.kbx, and loads it into the workspace.

writeidx

Syntax writeidx [(KB)].

Purpose Writes all index entries of a knowledge base to the current output stream.
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Argument(s) KB: A knowledge base (default: the current knowledge base).

Description The index entries, i.e., the partial link information (cf. Section 5.12), of the
speci�ed knowledge base is sent to the current output stream.

See also writekb, writekbx, writesort

writekb

Syntax writekb [(KB)].

Purpose Writes all formulae of a knowledge base to the current output stream.

Argument(s) KB: A knowledge base (default: the current knowledge base).

Description A list of all formulae of the speci�ed knowledge base is sent to the current output
stream (in their internal representation, cf. Section 5.5.2).

See also writeidx, writekbx, writesort

writekbx

Syntax writekbx [(KB)].

Purpose Writes all formulae, index entries and sort declarations of a knowledge base to
the current output stream.

Argument(s) KB: A knowledge base (default: the current knowledge base).

Description writekbx is a combination of the commands writekb, writeidx, writesort. It
sends a list of all formulae, all index entries, i.e., the partial link information, and
sort declarations of the speci�ed knowledge base to the current output stream.

See also writekb, writeidx, writesort

writesort

Syntax writesort [(KB)].

Purpose Writes all sort entries of a knowledge base to the current output stream.

Argument(s) KB: A knowledge base (default: the current knowledge base).

Description A list of all sorts declared in the speci�ed knowledge base (cf. Section 3.2) is
sent to the current output stream.

See also writekb, writekbx, writeidx



B Switches and Parameters

In this appendix all of 3T
AP 's switches and parameters are summarized. More technical descrip-

tions can be found in Chapter 5.

compiler directory

Purpose The name of the directory the compiler is located in. This parameter is read
only.

Type alphanumeric

Range valid name

Default Compiler

complete �rst

Purpose If on, the completion of reduction rules and the normalization of terms are not
combined.

Description If complete �rst is o�, the completion of a reduction system and the norma-
lization of terms are combined (Section 2.6.6.4). In most cases, this is more
e�cient, then �rst computing a complete reduction system and then using this
completion to compute normal forms.
This switch is meaningful only if the switch equality is on, i.e. E-uni�cation
problems are solved to close branches.

Type atomic

Range on, o�

Default o�

See also equality

compute additional solutions

Purpose If on, the rules in a complete reduction system are reversed to compute additional
solutions to E-uni�cation problems.

Description If compute additional solutions is on, and if none of the computed uni�ers in the
ground-complete set Sat(C(hE; s; ti)) (Theorem 2.55), can be used to close the
tableau, the orientation of rules in the completion R1 for E is changed, and the
inversion is applied to the uni�ers computed so far.
This switch is meaningful only if the switch equality is on, i.e. E-uni�cation
problems are solved to close branches.

Type atomic

150
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Range on, o�

Default o�

See also equality, max rule cr number, max rule simp number,
max solutions per branch, max term number

current kb

Purpose The knowledge base used as default for all commands.

Description The current knowledge base is used by default for all commands that have a
knowledge base as an optional argument if this argument is omitted (prove,
protprove, proveinc, inconsistent, delkb, writekb, writesort, writeidx
and writekbx).
If current kb is set by set current kb to a knowledge base not in the workspace,
these commands will either fail or have no e�ect.
current kb is set by readkbx and usekbx to the name of the last knowledge base
loaded into the workspace.

Type alphanumeric

Range loaded knowledge bases

Default none

debuglevel

Purpose Controls the amount of debug information displayed during proofs.

Description This parameter is for debugging 3T
AP . If it is set to a value di�erent from 0,

debug information is displayed (the higher the value of debuglevel the more).
The information is sent to the current output stream.

In addition, if stepmode is on and debuglevel is greater than 0, 3T
AP will inter-

rupt the proof when a branch has been closed and prompt the user to continue
the proof, abort the proof, or change certain parameters (for details see the
description of stepmode).
Debug information is not displayed for parts of a proof that are handled by the
modules dissolution and equality. To get information about dissolution or
the closure of branches with the help of equality the parameters dissdebuglevel
and eqdebuglevel, respectively, have to be set to a value di�erent from 0.
Since the displayed material is mostly in internal format, the user might prefer

using the program moreTab to take a closer look at 3T
AP 's proofs.

Type numeric

Range 0; 1; : : : ; 6

Default 0

See also dissdebuglevel, eqdebuglevel, stepmode

dissbound

Purpose The maximal number of dissolution rule applications on each branch that are
based on the same link with respect to their signs.
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Description dissbound solves the problem of unfair rule application sequences containing at
least one dissolution and one 
-rule application. dissbound is a very mighty
switch. Its meaning to the module dissolve is nearly the same as that of
maxcounter to the other modules.

Type numerical

Range 0; 1; 2; : : :

Default 3

See also disscomplexity, dissolution, disspriority, maxcounter

disscomplexity

Purpose If on, it is checked which of the two mirror image versions of the dissolution rule
yields a less complex new formula.

Description Since the dissolution rule is asymmetrical, two versions exist that are mirror
images of each other. Their application can result in di�erent new formulae
with di�erent complexities (cf. Section 5.11.7.1).
If complexity is on, it is checked which of these two version will probably yield
the less complex formula before the dissolution rule is applied (in �rst-order logic
the complexity can only be estimated due to multiple 
-rule applications).
Proof times tend to be much longer when this switch is on even if the proofs
actually found are short, since the check is quite expensive.

Type atomic

Range on, o�

Default o�

See also dissolution, dissbound, disspriority

dissdebuglevel

Purpose Controls the amount of debug information displayed by dissolution.

Description dissdebuglevel provides the possibility to debug the application of the dissolution
rule separately. It controls the amount of debug information displayed about the
application of the dissolution rule.
If dissdebuglevel is set to a value di�erent from 0, debug information is displayed
(the higher the value of dissdebuglevel the more). The information is sent to the
current output stream.

Type numeric

Range 0; 1; : : : ; 6

Default 0

See also debuglevel, eqdebuglevel

dissolution

Purpose If on, the dissolution rule is available during the proof.
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Description If dissolution is switched on, the dissolution rule can be applied to expand or, if
possible, close the current branch (cf. Section 5.11.1).
As the dissolution rule is only de�ned for the classical two-valued logic, it can
only be used in the two-valued version. In addition, it has only been proved to

be complete for propositional logic. Therefore, 3T
AP might fail to prove theorems

from predicate logic if dissolution is switched on.
Since the dissolution rule is not analytical, and links of totally new formulae
are not pre-computed, formulae that have been generated by the application of
the dissolution rule are, when removeunlinked is switched on, though they might
have no link, never removed from the branch.
In general, if the dissolution rule is applied, much shorter proofs are generated,
however, it takes relatively long to test, whether the dissolution rule can be
applied due to sformula data structure conversion, so it usually does take longer
to �nd a proof if dissolution is switched on.

Type atomic

Range on, o�

Default o�

See also disscomplexity, dissbound, disspriority

disspriority

Purpose Controls the priority of dissolution and �-rule application.

Description If the switch disspriority is set to diss, the dissolution rule is applied, whenever
legal. If disspriority is set to alpha, �-rules are applied �rst.

Type atomic

Range diss, alpha

Default diss

See also disscomplexity, dissolution, dissbound

editor

Purpose The editor invoked by the edit command.

Type alphanumeric

Range vi, emacs, : : :

Default vi

eqdebuglevel

Purpose Controls the amount of debug information displayed by the modules complete
and equality.

Description eqdebuglevel provides the possibility to debug the handling of equality separa-
tely. It controls the amount of debug information displayed about the closure of
branches using equality.
If eqdebuglevel is set to a value di�erent from 0, debug information is displayed
(the higher the value of eqdebuglevel the more). The information is sent to the
current output stream.
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Type numeric

Range 0; 1; : : : ; 6

Default 0

See also debuglevel, dissdebuglevel

equality

Purpose If on, equality is used to close branches.

Description If equality is switched on, the complete module is invoked if a branch is exhau-
sted and cannot be closed without equality applications.
In that case the equality predicate = is interpreted as the identity relation. The-
refore, if a proof is found, one can conclude that the proved theorem is valid in
all normal models (not necessarily in all models).
Demodulators, i.e., formulae of the form t == s, that are present on a branch,
are applied from left to right to all terms they can be applied to. It is left to the
user to de�ne demodulators in such a way that completeness is preserved.
If equality is switched o�, the predicates = and == are treated as ordinary binary
predicates.
The switch equality in
uences the handling of links (cf. the description of the
parameter removeunlinked).
Since the semantics of a multiple-valued equality predicate is not clear, equality
is by default switched o� in the many-valued versions.
The modules complete and equality ignore all sort information. Therefore,
equality should be switches o� if more than one sort is de�ned; otherwise, incor-
rect proofs may be generated.

Type atomic

Range on, o�

Default on (two-valued version), o� (many-valued versions)


attenformulas

Purpose Controls pre-processing of formulae.

Description Only experienced users should switch 
attenformulas on; see Section 5.12.5.

Type atomic

Range on, o�

Default o�

See also removeantilinks


ipconclusion

Purpose If on, the processing order of newly generated subbranches is reversed.

Description If 
ipconclusion is switched o�, branches are closed in the order that is de�ned
by the tableau rules in the module rules, i.e., the branches of the tableau built
using these rules are closed from left to right.
If 
ipconclusion is switched on, the branches are closed in to reverse order, i.e.,
from right to left.
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ipconclusion can have an in
uence on the tableau built as well as on the time
needed to �nd a proof. The reason is that backtracking can be avoided if those
branches that are more di�cult to close are closed �rst.

Type atomic

Range on, o�

Default o�

grepall

Purpose If on, all formulae that are linked to the negation of the theorem to be proved
are put on the initial tableau.

Description If grepall is on and a theorem is to be proved, not only the negated theorem
is put on the initial tableau but in addition all formulae in the knowledge base
that are linked to the negated theorem.

Type atomic

Range on, o�

Default on

inc limit mbr

Purpose The maximal value that is used by the command proveinc for the parameter
maxbranchlength.

Description The command proveinc iteratively tries to �nd a proof and increases either
maxcounter or maxbranchlength by one after each futile try until either a proof is
found or maxbranchlength exceeds the limit inc limit mbr (or maxcounter exceeds
inc limit mc).
See Appendix A for a description of the command proveinc.

Type numeric

Range 0; 1; : : :

Default 20

See also maxbranchlength, inc limit mc

inc limit mc

Purpose The maximal value that is used by the command proveinc for the parameter
maxcounter.

Description The command proveinc iteratively tries to �nd a proof and increases either
maxcounter or maxbranchlength by one after each futile try until either a proof is
found or maxcounter exceeds the limit inc limit mc (or maxbranchlength exceeds
inc limit mbr).
See Appendix A for a description of the command proveinc.

Type numeric

Range 0; 1; : : :

Default 2

See also maxcounter, inc limit mbr
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kbx extension

Purpose The �le name extension used for compiled knowledge bases.

Description This extension is used by the commands compkbx and usekbx for �les containing
compiled knowledge bases.

Type alphanumeric

Range valid extensions

Default kbx

max rule cr number

Purpose The maximal number of applications of the critical pair rule per branch.

Description This parameter is meaningful only if the switch equality is on, i.e. E-uni�cation
problems are solved to close branches (see Section 5.13.6).

Type numeric

Range 0; 1; : : :

Default 10000

See also equality, max rule simp number, max solutions per branch, max term number

max rule simp number

Purpose The maximal number of applications of the composition and the simpli�cation
rule per branch.

Description This parameter is meaningful only if the switch equality is on, i.e. E-uni�cation
problems are solved to close branches (see Section 5.13.6).

Type numeric

Range 0; 1; : : :

Default 10000

See also equality, max rule cr number, max solutions per branch, max term number

max solutions per branch

Purpose The maximal number of closing substitutions that are computed for a branch
using equality.

Description This switch is meaningful only if the switch equality is on, i.e. E-uni�cation
problems are solved to close branches (see Section 5.13.6).

Type numeric

Range 0; 1; : : :

Default 10

See also equality, max rule cr number, max rule simp number, max term number

max term number
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Purpose The maximal number of new constrained terms that are derived during the
computation for closing a single branch.

Description This switch is meaningful only if the switch equality is on, i.e. E-uni�cation
problems are solved to close branches (see Section 5.13.6).

Type numeric

Range 0; 1; : : :

Default 10000

See also equality, max rule cr number, max rule simp number,
max solutions per branch

maxbranchlength

Purpose maxbranchlength restricts the maximal length of the branches. If maxbranch-
length is set to 0, there is no restriction.

Description maxbranchlength restricts the length of the branches. Branches that are longer
than maxbranchlength are not further expanded.
maxbranchlength = 0 means that the restriction is switched o�.

If the length of branches is restricted, 3T
AP 's proof procedure is not complete

in the strict sense. It might fail to prove a valid theorem if the parameter
maxbranchlength is too low. To overcome this problem, the command proveinc

may be used.
The length of branches might slightly exceed maxbranchlength. In fact, the
maximal length of branches is

maxbranchlength + maximal length of extensions � 1 :1

Type numeric

Range 0; 1; : : :

Default 0

See also maxcounter, inc limit mbr

maxcounter

Purpose The maximal number of 
-rule applications to a 
-formula minus one.

Description maxcounter is the maximal number minus one of 
-rule applications to a 
-
formula on each branch it occurs on, i.e., if maxcounter is set to 0, the corre-
sponding 
-rule is applied exactly once to each 
-formula on each branch.

Because of this restriction 3T
AP 's prove procedure is not complete in the strict

sense. It might fail to prove a valid theorem if the parameter maxcounter is
too low. To overcome this problem the command proveinc may be used (cf.
Appendix A).

Keep in mind that maxcounter is probably 3T
AP 's most important parameter. In

most cases, the length of predicate logic proofs as well as the time 3T
AP needs to

�nd them decreases drastically if maxcounter is set to a smaller value (provided
a proof exists for that smaller value); in particular, if backtracking occurs or

1 That is maxbranchlength + 1 in two-valued logic.
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equality is involved, there is usually a considerable e�ect on the time needed to
�nd a proof.
One should, therefore, try smaller values for maxcounter �rst (this can be done
automatically by using the command proveinc).
maxcounter has no e�ect on propositional logic proofs.

Type numeric

Range 0; 1; : : :

Default 2

See also maxbranchlength, inc limit mc

output�le

Purpose The name of the �le 3T
AP 's output is redirected to if protmode is on.

Description If protmode is switched on all output that is usually sent to the current output
stream is redirected to the �le speci�ed by output�le.
The �le is initialized and any information it may contain is lost when protmode
is switched on; it is closed by switching protmode o�.
This �le is also used by the command protprove, that automatically switches
protmode on and o�.
Note that output�le is di�erent from tableauout�le (the proof protocol that can
be used as an input for the utility programs moreTab and tabTEX).

Type alphanumeric

Range valid paths

Default user

See also protmode, tableau output, tableauout�le

protmode

Purpose If on, 3T
AP 's output is redirected to the �le speci�ed by output�le.

Description If protmode is switched on all output that is usually sent to the current output
stream is redirected to the �le speci�ed by output�le.
The �le is initialized and any information it may contain is lost when protmode

is switched on; it is closed by switching protmode o�.
protmode is automatically switched on and o� by the command protprove.
Note that protmode is di�erent from tableau output (a proof protocol that can
be used as an input for the utility programs moreTab and tabTEX is generated
if tableau output is on).

Type atomic

Range on, o�

Default o�

See also output�le, tableau output, tableauout�le

removeantilinks

Purpose Controls pre-processing of formulae.



159

Description Only experienced users should switch removeantilinks on; see Section 5.12.5.

Type atomic

Range on, o�

Default o�

See also 
attenformulas

removeunlinked

Purpose If on, formulae on a branch that do not have a link are removed.

Description If the switch removeunlinked is on, formulae F are removed that are not poten-
tially involved in the closure of the current branch, i.e., that do neither

� have a link to a formula on the current branch (including the formula F
itself), nor

� have a link to a formula in the knowledge base that, up to that point, has
not been put on the branch, nor

� contain the equality predicate or the demodulator predicate (this last point
is only taken into concern if the switch equality is on).

Formulae are actually not checked for links and, if possible, removed when they
are put on a branch, but, what is more e�ective, when they have been chosen
for rule application (cf. Section 5.4).
The information about links is pre-compiled, i.e., if (and only if) removeunlinked
is on, a complete list of all existing links is generated when the knowledge base
is compiled by compkbx or usekbx. This list is included in the generated .kbx

�le (cf. Section 5.12).
Since it may take very long to generate the complete list of links for more com-
plex knowledge bases, this is only done if removeunlinked is on. Therefore, a
knowledge base that has been compiled with removeunlinked switched o� has to
be recompiled using usekbx before a proof with removeunlinked switched on is
started.
In general switching removeunlinked on shortens proofs but, since it is quite
expensive to check formulae for links, it then usually takes longer to �nd a
proof.
Since the dissolution rule is not analytical, and links of totally new formulae
are not pre-computed, formulae that have been generated by the application of
the dissolution rule are, when removeunlinked is switched on, though they might
have no link, never removed from the branch.
See Section 5.12.3.1 for a discussion of the theoretical aspects of using links.

Type atomic

Range on, o�

Default o�

stepmode

Purpose If on and debuglevel is greater than 0, proofs are interrupted at certain points.

Description If stepmode is on and debuglevel is greater than 0, 3T
AP will interrupt a proof

when a branch has been closed, and, if debuglevel is greater than 2, when a
formula has been chosen for rule application.
The user is then prompted for an input. The following commands are available:
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c Continue Continue the proof.
a Abort Abort the proof.
h Help List the available commands.
l Leap Switch stepmode o�.
o Dissolution o� Switch dissolution o�.
d Debugging o� Set debuglevel to 0.
e Equality debugging o� Set eqdebuglevel to 0.
n Dissolution debugging o� Set dissdebuglevel to 0.

Type atomic

Range on, o�

Default o�

See also debuglevel

tableauout�le

Purpose The name of the �le a proof protocol is written to if tableau output is on.

Description If tableauout�le is switched on, a proof protocol is written to the �le speci�ed
by tableauout�le. This �le can be used as an input �le for the utility programs
moreTab and tabTEX (cf. Chapter 6).
The �le is initialized (and all information the �le may contain is lost), when
tableau output is switched on and every time a new proof is started.
The �le is closed when a proof is found. If the search for a proof has been
interrupted by the user, the proof protocol might be incorrect.
Note that tableauout�le is di�erent from output�le (the output usually sent to
the current stream is redirected to the �le speci�ed by output�le if protmode is
on).

Type alphanumeric

Range valid paths

Default tableau.out

See also tableau output, output�le, protmode

tableau output

Purpose If on, a proof protocol is written to the �le speci�ed by tableauout�le that can
be used as an input for moreTab and tabTEX.

Description If tableau output is switched on, a proof protocol is written to the �le speci�ed
by tableauout�le. This protocol �le can be used as an input �le for the utility
programs moreTab and tabTEX (cf. Chapter 6).
The �le is initialized (and all information the �le may contain is lost), when
tableau output is switched on and every time a new proof is started.
The �le is closed when a proof is found. If the search for a proof has been
interrupted by the user, the proof protocol might be incorrect.
Note that tableau output is di�erent from protmode (the output usually sent to
the current stream is redirected to the �le speci�ed by output�le if protmode is
on).

Type atomic

Range on, o�
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Default o�

See also tableauout�le, protmode, output�le

tcplus extension

Purpose The �le name extension used by the compiler for temporary �les.

Type alphanumeric

Range valid extensions

Default kb

uselemmata

Purpose Controls the generation of lemmata.

Description If an extension B0 of a branch B has been closed and is thus not satis�able,
one can take advantage of that knowledge by generating lemmata and adding
those lemmata to other extensions B00 of B. For a discussion of the theoretical
background of lemma generation see Section 2.4.
The lemmata to be added to a branch are de�ned by the predicate get lemmata

in the module rules (cf. Section 5.10).
The three possible values alpha, on and o� have the following meanings:

alpha: Only those lemmata are added to a branch that do not immediately
result in several subbranches if a tableau rule is applied to them, e.g. in the
two-valued version lemmata are added that are not a �-formula.

on: All lemmata de�ned by get lemmata are added.

o�: No lemmata are added.

In most cases the value alpha brings the best results. To set uselemmata to on or
to o� will only rarely lead to shorter proofs. Despite of that, some problems from
predicate logic can only be proved with uselemmata switched o� (e.g. Pelletier's
46th problem, cf. Section 8.1.10).
Also in some of the currently available many-valued versions of the rules module
lemma generating information is present.

Type atomic

Range alpha, on, o�

Default alpha

weight left only

Purpose If on, the weight of a constrained rule does not include the weight of its right
side.

Description The weight of a constrainted term is the number of function symbols, constant
symbols, variables, and logical operators occurring in it (including its constraint).
If weight left only is on, only the symbols in the left side and in the constraint
of a rule are counted. See Section 5.13.5 on how to change the de�nition of the
term weight.
This switch is meaningful only if the switch equality is on, i.e. E-uni�cation
problems are solved to close branches.
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Type atomic

Range on, o�

Default o�

See also equality



C Installation

C.1 3T
A
P 's Main Parts

3T
AP consists of the following main parts that have to be installed separately (there is a makefile

that allows to install alls parts automatically, see Section C.3):

� The prover itself (Section C.4),

� the compiler (Section C.5),

� utilities for visualizing proofs (Section C.6),

� prede�ned problem sets.

This chapter supplies a guide for installing the 3T
AP system as a stand-alone system1 in a Quintus

Prolog or SICStus Prolog environment on a supported machine and operating system2 and gives

some hints to port 3T
AP to other machines and/or di�erent Prolog environments.

C.2 3T
A
P 's Various Files

No special directory structure is assumed by the 3T
AP system. The only constraint is that all

the 3T
AP sources are placed in the same directory and that all the compiler sources are in one

directory, too. They need not be located in the same directory. But if you want work with 3T
AP

on various logics it is better to place these parts of the system in di�erent locations since the
compiler may be used for all your logics and thus some disk space is saved.

Table C.1 shows the default directory structure for a 3T
AP system that is used for classical two-

valued logic (subdirectory 2version), for three-valued logics (subdirectory 3version), and for a
seven-valued logic (subdirectory 7version). The problems subdirectories may be used to hold

the problems in 3T
AP 's input syntax.

Table C.2 lists the necessary �les which would have been placed in threetap/2version and with
some modi�cations in declarations and rules concerning the logic in threetap/3version and
threetap/7version.3 The �les in the compiler directory are shown in Table C.3. The sources
�les for the utilities moreTab and tabTEX are listed in Tables C.4 and C.5.

The location of the compiler has to be made known to the prover; there are two possibilities for
this (no modi�cations are necessary if the default directory structure is used):

1 If 3T
AP is to be installed as a part of LILOG{KR, the only change to be made is that boot tcg has to be used

for compiling 3T
AP from Prolog, instead of boot. Please refer to the LILOG{KR manuals for the proper place

of calling boot tcg.
2 These are currently: Quintus Prolog 3.0, Quintus Prolog 3.1 and SICStus Prolog 2.1 on SUN Sparc under
SunOS 4.1.x.

3 In addition, the directory 2version contains the �les eqinterf.pl and comset.pl, which are necessary for
using the equality handling method stand-alone (see Section C.7).
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threetap

xxpp
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sshhh
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// Compiler

2version

��

3version

��

7version

��

Moretab

problems problems problems Tabtex

Table C.1: The default directory structure of the 3T
AP system.

boot.pl boot tcg.pl choice.pl
closure.pl complete.pl datastructures.pl
declarations.pl dissolve.pl equality.pl
globalvars.c globalvars quintus.c globalvars sicstus.c
heuristics.pl index.pl inference.pl
information.pl interface.pl main.pl
makekbx.pl msg tap.pl output.pl
preproc.pl proveall.pl rules.pl
sysdep.pl uni�cation.pl

Table C.2: 3T
AP sources (contents of 2version, 3version etc.).

grammar.y output.c output.h
scanner.l

Table C.3: Source �les in the compiler directory.

moretab.c moretab.x token.h

Table C.4: moreTab sources.

tabtex.c tabtex.h tabtex.x

Table C.5: tabTEX sources.
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� Setting the variable compdir in the module globalvars.c accordingly (its pre-de�ned
value is ../Compiler; it is, however, better to use an absolute �lename).

� Making the compiler directory part of the Unix shell's search path.

C.3 Installing 3T
A
P Using the Make�le

A makefile is provided for compiling and installing all parts of 3T
AP automatically. The

makefile should be (and usually is) placed in the parent directory threetap of the directo-
ries 2version, 3version, Compiler, etc. (see Table C.1).

You probably will have to edit the makefile before using it, in particular, if you are not using
SICStus Prolog (which is the default) but Quintus Prolog. The following macros have to be
de�ned according to the installation of your local Prolog system:

PROLOG TYPE has to be set to either QUINTUS or SICSTUS.

PROLOG CMD has to be set to the command for calling the Prolog compiler (usually sicstus for
SICStus and prolog for Quintus Prolog).

PROLOG NAME has to be set to either quintus or sicstus.

HEADER FILE PATH has to be set to the name of the path containing the header�le quintus.h

(resp. sicstus.h). These header �les are part of the Quintus Prolog and SICStus Prolog
distributions, respectively.

If you are not using the default directory structure (Table C.1), you have to change the de�nitions
of the macros TWODIR, THREEDIR, SEVENDIR, COMPDIR, MORETABDIR, and TABTEXDIR as well.

Once the macros are de�ned appropriately, the complete 3T
AP system can be installed by just

typing the shell command:

[~] > make

Besides that, you can use the commands

make 2version to install the two-valued version separately.

make 3version to install the three-valued version separately.

make 7version to install the seven-valued version separately.

make compiler to install the compiler separately.

make moretab to install the moreTab utility separately.

make tabtex to install the tabTEX utility separately.

make clean to remove all temporary �les not needed for running 3T
AP .

make xclean to remove all �les (including the executables) generated by the make�le.
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C.4 Installing the Prover

First, the C-object �les globalvars quintus.o and globalvars sicstus.o have to be genera-
ted. They are included by sysdep.pl when initializing the C foreign language interface. With
most C compilers this may be achieved by switching to the directory 2version (resp. 3version
or 7version) and typing

[~/2version] > cc -c -Iquintus header �le path globalvars_quintus.c

resp.

[~/2version] > cc -c -Isicstus header �le path globalvars_sicstus.c

cc is the name of the default C compiler on most machines. The -c switch prevents a call to the
system linker, thus only the object �les globalvars quintus.o resp. globalvars sicstus.o

are generated. quintus header �le path (resp. sicstus header �le path) is the path containing the
header�le quintus.h (resp. sicstus.h). These header �les are part of the Quintus Prolog and
SICStus Prolog distributions, respectively.

Now, the prover may be compiled by consulting (or compiling) boot.pl after the Prolog system
has been started. For example:

[~/2version] > prolog

Quintus Prolog Release 3.0 (Sun-4, SunOS 4.1)

Copyright (C) 1990, Quintus Computer Systems, Inc. All rights reserved.

1310 Villa Street, Mountain View, California U.S.A. (415) 965-7700

| ?- compile(boot).

After a few seconds (or a few minutes on machines with lower performance) 3T
AP will be ready:

Available Information Pages:

Compiler: see info(compiler)

Prover: see info(prover)

Equality: see info(equality)

Dissolution: see info(diss)

Maintain Workspace: see info(maintain)

Variables: see info(variables)

Tableau output: see info(output)

Unix: see info(unix)

Info: see info for this help

All: info(all) prints all available info pages

% boot.pl compiled in module user, 78.850 sec 530,812 bytes

yes

| ?-
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Possibly you got some warnings saying that the clauses for the predicates lookup/n (where
n = 2; : : : ; 6) are not together in the source �le, and that the predicates cd and ls have already
been imported into the module sysdep. These warnings can safely be ignored.

Quintus Prolog users may now produce an executable image of 3T
AP by the call

save_program(tap).

and SICStus users by the call

save(tap).

After that you can start the prover from your favourite shell by calling tap from the appropriate
directory (2version in the above example) without compiling boot.pl or anything else.

C.5 Installing the Compiler

The compiler, i.e. the executable �le parser, is generated by using the Unix tools Lex and Yacc
(or by using Flex and Bison4).

Switch to the directory Compiler, and use the shell commands

[~/Compiler] > lex scanner.l

[~/Compiler] > yacc -d grammar.y

[~/Compiler] > cc y.tab.c lex.yy.c output.c -ll -o parser

to compile scanner.l using Lex, to compile grammar.y using Yacc, and �nally to generate
parser using the C-compiler.

To generate the executable �le debug (see Section 5.15.3) use the shell command

[~/Compiler] > cc -D DEBUG lex.yy.c -ll -o debug

(after compiling scanner.l).

Note, that the name of the directory containing the executable parser has to be made known
to the prover (see Section C.2).

C.6 Installing the Utilities for Visualizing Proofs

You need the Unix tool Flex to compile the tools for visualizing proofs: moreTab is compiled by
changing to the directory containing the moreTab �les (Table C.4) and typing:

[~/Moretab] > flex moretab.x

[~/Moretab] > cc moretab.c lex.yy.c -ll -o moretab

A �le moretab will appear in the directory which is the executable moreTab.

tabTEX is (analogously) compiled by changing to the directory containing the tabTEX �les (Ta-
ble C.5) and typing

[~/Tabtex] > flex tabtex.x

[~/Tabtex] > cc tabtex.c lex.yy.c -ll -o tabtex

A �le tabtex will appear in the directory which is the executable tabTEX.

4 You can use \flex -l" instead of \lex" and \bison -y" instead of \yacc".



168 APPENDIX C. INSTALLATION

C.7 Using the Equality Handling Method Stand-alone

It is possible to use 3T
AP 's completion-based method for solving mixed and rigid E-uni�cation

problems stand-alone. It can, thus, be used to add equality to other implementations of Gentzen-
type calculi.

For that purpose eqinterf.pl provides an interface to module complete. It implements the
predicate

close_conjunctive_path(+Equalities,+Pos_literals,+Neg_literals,

+Inequalities,+Univ_vars)

This predicate searches for solutions to the simultaneous mixed E-uni�cation problems, that
would be extracted from a branch containing:5

� the equalities in the list Equalities, where a single equality is represented by [s=t,Univ];
Univ is a list of the variables with respect to which the equality is universal;

� the (positive) literals in the list Pos_literals (in addition to the equalities);

� the negation of the literals in the list Neg_literals (in addition to the inequalities);

� the negation of the equalities in the list Inequalities.

Positive and negative literals and inequalities are simple Prolog terms (without signing and
without sorts). Univ_vars is the list of all universal variables occurring in the problem.

If a solution is found, close_conjunctive_path applies the necessary instantiations and suc-
ceeds; backtracking is possible.

The values of the 3T
AP parameters that in
uence the handling of equality, namely complete �rst,

compute additional solutions, weight left only, max rule cr number, max rule simp number, so-
lutions per branch, and max term number, are de�ned in comset.pl if the equality handling
method is used stand-alone.

5 Which E-uni�cationproblems are extracted is described in Section 2.6.5, the method for solving these problems
in Section 2.6.6, and its implementation in Section 5.13.
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#, see implication,  Lukasiewicz
&, see conjunction
-, see negation
<=, see implication, reverse
<=>, see equivalence
�, see equality, symbol
�, see substitution, specialization
==, see demodulator
), see derivability relation
V, see derivability relation
j=, see consequence relation, weak
j=�, see consequence relation, strong
=>, see implication
~, see negation, weak
2version, 163
3version, 163
7version, 163

aff, see a�rmation, partial
a�rmation

partial (aff), 46, 69
partial (ju), 46, 69

a�rmation (jt), 46, 69
all, 53, 54, see also quanti�er, universal
alpha, 89, 161
�-formula, 13
�-rule, priority, 89
Andrew's Challenge, 131
apply_rules, 66
assert_idx, 92
assert_links_and_cont_eq, 92
assert_subform, 92
atom, complementary, 60, 64
atomic link, 61
axiom, declaration, 45{47

backtracking, 59, 92, 94, 132
�-formula, 13
Bison, 106, 167
boot (module), 54
boot tcg (module), 163
branch, 14

closed, 14, 15
closure, 63{64, 65
complete, 15
data structure, 71{73

displaying, 103
exhausted, treatment, 59, 62
in focus, 21
initial, 49
open, 14, 58
updating, 73

build_disjunctions, 94
build_equalities, 94

C, 78, 166
c-path, 18
cd (command), 78, 139
check_closure, 63
check_dissolution_result, 85
choice (module), 65{66
choose_sformula, 58, 65
close_branch, 58{60
close_branch_with_completion, 93
close_conjunctive_path, 168
close_multiple, 48, 58{59
closure (module), 63{64
combine_instantiations, 98
commands, 139{149
comments, 47
compall (command), 139
compiler, 89, 106{107, 140, 164

directory, 163
installation, 167
temporary �le, 89, 93

compiler directory (parameter), 150
compkbx (command), 55, 89{90, 140
complete (module), 93{101

main loop, 95
output, 103{106

complete �rst (switch), 94, 150
completeness, 15, 40

of completion, 37{38
strong, 16
with dissolution, 18, 87
with equality, 24

completion, 33{35
combining with normalization, 37
fair, 35
implementation, 93{101
limits, 96{97
rules, 33{35
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combination, 34
critical pair, 34
deletion, 33
equivalence, 34
simpli�cation, 34
subsumption, 33

compute additional solutions (sw.), 97, 150
compute_precedence_of_possibility, 95
con, see conjunction
conclusion, 83

construction, 66
data structure, 71

displaying, 103
conjunction

three-valued (&), 46, 69
two-valued (&), 45, 68

connection method, 18
connective, 83

declaration, 80{81
priority, 45
three-valued, 46
two-valued, 45

consequence, 17
consequence relation

strong, 23
weak, 23

constrained
reduction rule, 31{33
term, 31{33

data structure, 74{75
displaying, 103
subsumption, 33

constraint, 30{31
checking consistency, 98{100
combination of, 31
data structure, 74

displaying, 103
empty, 31
weakly consistent, 99

contacting us, 12
contradiction set, 15, 20
Cook & Reckhow's problems, 124
copyright, 11
cp (command), 78, 140
cr (problem set), 124
critical pair, 34
cterm (data structure), 74{75

displaying, 103
current kb (parameter), 151
cycle, 95

D'Agostino's problems, 123

dagostino (problem set), 123
data structures, 66{77

displaying, 103
datastructures (module), 66{77
date (command), 140
debug (executable, 107
debug (executable), 167
debuglevel (parameter), 151
declarations (module), 80{83

changing, 134{135
declarations_sg.pl (�le), 134
declarations_sg_as.pl (�le), 134
declarations_sg_car.pl (�le), 134
declarations_std.pl (�le), 134
deduction theorem, 17
delkb (command), 55, 140
delkbs (command), 55, 141
�-formula, 13
�-rule

declaration, 84{85
even more liberalized, 16, 84
liberalized, 16

demod (knowledge base), 123
demodulate_term, 101
demodulator, 94, 154

application, 101
data structure, 76
declaration, 47
symbol (==)

declaration, 82
test problems, 123

derivability relation, 32
descendant, 90, 92
Dewey number, 72, 73
DFG Schwerpunkt, 5
directory structure, 163
dis, see disjunction
disjunction

three-valued (v), 46, 69
two-valued (v), 45, 68

disjunction of inequalities
data structure, 76

displaying, 103
diss, 89
dissbound (parameter), 88, 151
disscomplexity (switch), 89, 133, 152
dissdebuglevel (parameter), 152
dissolution, 18{19

complexity check, 89
fairness, 87{88
implementation, 85{89

passes, 86
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optimizations, 88{89
priority, 89
rule, 18, 86
test problems, 130

dissolution (switch), 58, 133, 152
dissolve (module), 85{89
disspriority (switch), 89, 153
documentation, 9{11
Duisburg, University of, 4

E(B), see equalities, set of
E-uni�cation

additional solutions, 38, 97
extracting problems, 27{28, 94{95
implementation, 93{101
mixed, 25{26
rigid, 25{26
simultaneous, 26
solving, 28{38
universal, 25{26

edit (command), 78, 141
editor (parameter), 153
edopen (command), 78, 141
�, see constraint, empty
eq4 (knowledge base), 130
eqdebuglevel (parameter), 103, 153
eqinterf.pl (�le), 168
eqtest (knowledge base), 123
equalities, set of (E(B)), 27

extracting, 94{95
equality, 24{38, 65

data structure, 76
displaying, 103

declaration, 47
implementation, 93{101

using stand-alone, 168
semantics, 24{25
symbol (�), 24
symbol (=)

declaration, 82
syntax, 24{25
test problems, 123

equality (module), 93{101
equality (switch), 59, 91, 154
equi, see equivalence
equivalence

two-valued (<=>), 45, 68
weak (<=>), 46, 69

error messages, 102
ex, see quanti�er, existential
extension

data structure, 71

displaying, 103

fairness, 16, 61, 66
data structures, 77
of completion, 35, 96
of normalization, 36{37, 96
with dissolution, 152

falsi�cation (jf), 46, 69
fig5 14 (knowledge base), 130
fig5 17 (knowledge base), 130
�les, 163{165

attenformulas (switch), 154
Flex, 106, 167

ipconclusion (switch), 133, 154
formula

adding to branch, 61{63
�-, 13
atomic, 15

data structure, 68
�-, 13
branching factor, 70
complementary, 14, 15
counter, 66
data structure, 68{69
�-, 13

-, 13
linked, 91
pre-processing, 93
removing unlinked, 65, 91, 159

test problems, 123
selection, 65
signed, 13

data structure (sformula), 70
tableau provable, 15
universal, 23{24, 64, 70, 83, 94

recognizing, 24
test problems, 123
uni�cation, 80

unused, 65
used, 15

FTP, 12
function

de�nition, 44
unique name, 44


-formula, 13
declaration, 82


-limit, 72

-rule, declaration, 84{85
generate_further_solutions, 97
genidx, 91{92
genindices, 91{92
get_all_indices, 91
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get varname (command), 141
globalvars (module), 78{79

compilation, 166
globalvars quintus (module)

compilation, 166
globalvars sicstus (module)

compilation, 166
grn (knowledge bases), 127
grammar.y (�le), 107, 136{138
grammar.y (�le), 167
grepall (switch), 58, 133, 155
group theory, 127
groups (problem set), 127

hardware veri�cation, 9
help pages, 143
heuristic

for completion, 95{96
for dissolution, 88
for formula selection, 61{63
for selecting closing atoms, 60{61
for sorting axioms, 90

heuristics (module), 60{63

history of 3T
AP , 4{6

chronological, 5{6

IBM Germany, 4
id, see substitution, empty
IKBS, 4
ILFA, 4
imp, see implication
implication

 Lukasiewicz (#), 46, 69
material (=>), 45, 68
reverse material (<=), 45, 68
reverse weak (<=), 46, 69
weak (=>), 46, 69

inconsistent (command), 56, 57, 141
inc limit (parameter), 155
index, 61, 90{92
index (module), 90{92
inequality

data structure, 76
displaying, 103

inference (module), 66
info (command), 54, 143
information (module), 54
information pages, 143
init (command), 143
initialize variables (command), 83, 144
input language

syntax, 42{47

installation, 163{168
compiler, 167
moreTab, 167
prover, 166{167
tabTEX, 167
with makefile, 165

interface (module), 55{58
internal_set, 90
interval arithmetic, 9

jf, see falsi�cation
jt, see a�rmation (jt)
ju, see a�rmation, partial

kalish (problem set), 125
Kalish & Montague's problems, 125
Karlsruhe, University of, 4
KB, see knowledge base
.kb (�le extension), 89, 93
.kbx (�le extension), 55, 89, 90, 93, 140
kbx extension (parameter), 156
knowledge base

compiled, syntax, 93
compiling, 89{90
reading, 90
syntax, 42{47

Knuth-Bendix-Algorithm
Unfailing, 28

l5 1 (knowledge base), 130
l5 9 (knowledge base), 130
labels, 68, 69, 77

counter, 77
implementation, 79

LaTEX, 53, 109
style �le, 109, 114

lean deduction, 9

leanTAP , 9
lemma generation, 21{23, 161

declaration of lemmata, 85
many-valued, 21

LEU, 4
Lex, 106, 167
lex.yy.c (�le), 167
lexicographic path ordering, 30, 97
library predicates, 78
LILOG{KR

installation under, 163
message format, 102
user interface, 102

linking signs, 81
links, 18, 87, 90{92

computation, 91{92



178 INDEX

logic
changing, 134{138
de�nition, 80
many-valued, 19{21
seven-valued, 134
three-valued, 134

lookup (command), 57, 144
LPO, see lexicographic path ordering
ls (command), 78, 144

main (module), 58{60
makefile, 165
makekbx (module), 89{90
makekbx, 89
max rule cr number (parameter), 96, 156
max rule simp number (parameter), 97, 156
max solutions per branch (param.), 96, 132,

156
max term number (parameter), 97, 156
maxbranchlength (parameter), 53, 132, 157
maxbranchlength (keyword), 53
maxcounter (parameter), 53, 72, 132, 133,

157
mbr (keyword), 53
meaning function, 19
meta pl (problem set), 125{126
MGU, see uni�er, most general
mixed E-uni�cation, 25{26
model, 19

canonical, 25
normal, 25

modularity, 48
modules, 49

compiler, 49
dependency, 51

forming 3T
AP 's core, 49

forming 3T
AP 's shell, 49

providing services, 49
moreTab, 101

and dissolution, 88
commands, 111{112

overview, 113
help page, 112
input

structure, 109{110
syntax, 115

installation, 167
invocation, 108
navigating through output, 111{112
options, 110{111
setting marks, 112

moretab (executable), 167

moretab.c (�le), 167
moretab.x (�le), 167
Morgan's method, 125{126
mr (problem set), 124
Murray & Rosenthal's problems, 124
mv (command), 78, 144

nabla, see nabla operator
nabla operator (nabla), 46, 69
narrowing, 28
negation

strong (-), 46, 69
two-valued (-), 45, 68
weak (~), 46, 69

negation normal form, 18
nested terms (knowledge base), 123
NNF, see negation normal form
normalization, 36{37

combining with completion, 37
fair, 36{37
limits, 96{97
rules, 36

occur check, 79
operator

adding new, 135{138
attributes, 135
changing

arity, 137{138
priority, 136{137
representation, 136

order
condition, 30

simple, 99
weakly consistent, 99

on terms, 97
output (module), 101{106
output redirection, 144, 158
output.c (�le), 107, 137, 138, 167
output.h (�le), 107, 167
output�le (parameter), 102, 158

P(B), see uni�cation, problems, set of
parameters, 150{162
paramodulation, 132
parser (executable), 167
parser (executable), 106
partaffirm, see a�rmation, partial
pel eq (problem set), 127
pel pred (problem set), 127
pel prop (problem set), 127
pelletier (problem sets), 53, 127
Pelletier's
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24th problem, 117
problems, 127

phi (problem set), 129{130
pig alt (problem set), 126
pigeon (problem set), 126
Pigeonhole formulae, 126
pmi, see implication, reverse
position, 24
possibility (data structure), 75, 103
precedence, 97
predicate

de�nition, 44
interface to C, 78
library, 78
system dependent, 78
unique name, 44

preproc (module), 93
problem sets, 122{130

Cook & Reckhow's problems, 124
D'Agostino's problems, 123
group theory, 127
Kalish & Montague's problems, 125
meta predicate logic, 125{126
Murray & Rosenthal's problems, 124
Pelletier's problems, 127
Pigeonhole formulae, 126
prede�ned, 146
proving, 139, 145
simple tests, 123
three-valued, 130

Prolog, 48
proof

failure to �nd, 132{133
shortening, 133
strategy, 57{58
tableau, 15
visualization, 108{115

overview, 108{109
protmode (switch), 102, 158
protprove (command), 56, 144
prove (command), 56, 57, 145
proveall (command), 52{54, 145
proveall (module), 52{54
proveinc (command), 56, 57, 132, 147
ps (problem set), 128{129
pwd (command), 78, 147

quanti�er, 83
declaration, 80{81
existential, 68
many-valued, 16, 19, 21
rule, declaration, 84{85

universal, 68
Quintus Prolog, 48

library predicates, 78

readkbx (command), 55, 90, 147
readkbx_loop, 90
readtcplus, 90
reduction

ordering, 97
rule, 31{33
system, 31{33

completion, 33{35
initial, 32
inversion, 97

reg, see implication,  Lukasiewicz
removeantilinks (switch), 158
removetest (knowledge base), 123
removeunlinked (switch), 65, 91, 133, 159
representation

external, 80
internal, 80, 89

reset (command), 78
rigid E-uni�cation, 25{26
rm (command), 78, 148
rule, see tableau rule
rules (module), 83{85

changing, 135
rules, 135
rules_sg.pl (�le), 134
rules_sg_car.pl (�le), 134
rules_std.pl (�le), 134
rules_sg_as.pl (�le), 134

Sat(C), see substitution, satisfying
satis�able, 19
scanner.l (�le), 107, 136{138, 167
Schubert's Steamroller, 127
set varname (command), 148
sets-as-signs, 38{41
7version, 163
sformula (data structure), 70

displaying, 103
SICStus Prolog, 48

library predicates, 78
sign, 39

axiom, 89
base set of, 39
classical, 13
complementary, 14

declaration, 81
declaration, 81
denial, 89
generalized, 39
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many-valued, 20
representation, 70

signature
changing, 134
declaration, 44{45, 80{81

simultaneous, uni�cation problem, 26
Skolem

symbol, 13
term, 16

sneg, see negation
solution

to uni�cation problem, 26
sort

ambiguity, 79, 90
and equality, 94
declaration, 42
hierarchy, 42, 79
operator, 82
representation, 67
uni�cation, 79

soundness, 15, 41
of completion, 37{38
strong, 16
with equality, 24

standard output, 101
statistics, 122{130
statistics (�le), 52, 146
stepmode (switch), 57, 159
cterm (data structure), 94
sterm (data structure), 94
sterm (data structure), 75

displaying, 103
Subst, 25
substitution, 25

application, 25
canonical, 98
closing, 95
combination of, 98
data structure, 77
empty, 25
free variable, 23
handling, 98
satisfying, 31
specialization, 25

subsumption
completion rule, 33
constraints, 31
of constrained terms, 33

switches, 150{162
default settings, 142

sysdep (module), 78

tableau
analytic, 13{17
branch, 14

closed, 14, 15
closure, 63{64, 65
complete, 15
in focus, 21
open, 14

classical, 14
closed, 15

with universal formulae, 23
complete, 15
construction, 14
dissolution rule, 86
equality in, 24{38
free variable, 16
ground, 16
initial, 155
number of trees, 21
output, 108{109

generation, 109
redirection, 144
structure, 109{110
syntax, 115

proof, 15
redundancy in, 38

rule
application, 66
asymmetric, 21
branching factor, 20
changing, 135
declaration, 82{85
for quanti�ed formulae, 40, 41
liberalized, 16
many-valued, 20
minimal, 40
number of extensions, 20
proviso, 16

satis�able, 16
semantic, see tableau, analytic
systematic, 16

tableau proveable, 15
tableau.out (�le), 108, 109, 160
tableau output (switch), 108, 109
tableauout�le (parameter), 109, 160
tabTEX, 101

input
structure, 109{110
syntax, 115

installation, 167
invocation, 108{109
operator list, 82
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options, 113{114
style �le, 114{115

tabtex (executable), 167
tabtex.c (�le), 167
tabtex.h (�le), 167
tabtex.x (�le), 167
tap (executable), 167
tap.sty (style �le), 109, 114{115
tap msg (module), 102
tautology, 15, 17, 19
TC, 4
TCG project, 4{5

contributions, 4
tasks, 4

tcplus extension (parameter), 161
term

constrained, 31{33
data structure, 74{75
displaying, 103
subsumption, 33

data structure, 67
position in, 24
sorted, 67
weight, 96
with substitution (sterm)

data structure, 75
tests (problem set), 123
TEX, 109
tex (keyword), 53
theorem, declaration, 45{47
theoretical achievements, 7{9
three valued (problem set), 130

3T
AP , 1

commands, 139{149
copyright, 11
directories, 163{165
documentation, 9{11
evaluation, 122{133
features, 7
�les, 163{165
history, 4{6

chronological, 5{6
installation, 163{168

with makefile, 165
logics, 134{138
main features, 7
modules, 49
parameters, 150{162

hints for setting, 132{133
programming language, 48
sample session, 117{121
starting, 166{167

strengths, 131{132
switches, 150{162

default settings, 142
hints for setting, 132{133

system architecture, 48{51
tutorial, 117{121
via FTP, 12
via the World Wide Web, 11{12

3version, 163
time (command), 78, 148
token.h (�le), 167
top (sort), 42
treat_dissolution_part, 85
truth table, 19
truth value

declaration, 81
designated, 19

tutorial, 117{121
2version, 163

UKBA, see Knuth-Bendix-Algorithm
uni�cation

E-
additional solutions, 38, 97
extracting problems, 27{28, 94{95
implementation, 93{101
mixed, 25{26
rigid, 25{26
simultaneous, 26
solving, 28{38
universal, 25{26

problems
extracting, 94{95

sorted, 79
universal formulae, 80
unsorted, 79

unification (module), 79{80
uni�cation problems

set of (P(B)), 27
uni�er, most general, 42, 79{80, 98
uniform notation, 13, 14, 20
unify_terms, 79
univ (knowledge base), 123
universal

E-uni�cation, 25{26
formula, 23{24

recognizing, 24
uni�cation, 80

University of
Duisburg, 4
Karlsruhe, 4

usekbx (command), 55, 148
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uselemmata (switch), 66, 133, 161

v, see disjunction
variable

de�nition, 44
free, 16
global, 78{79
instantiation

data structure, 77
universal, see formula, universal

weight, 96
weight, of terms, 96
weight left only (switch), 96, 161
wneg, see negation, weak
World Wide Web, 11{12
writeidx (command), 55, 148
writekb (command), 55, 149
writekbx (command), 55, 149
writesort (command), 55, 149
WWW, see World Wide Web

x_nl, 102
x_readchar, 101
x_write, 101{102

y.tab.c (�le), 167
Yacc, 106, 167


