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1 Introduction  

1.1 The evolution of plant genome size 

125 Mbp to 110.000 Mbp represent the range of nuclear genome size, which has been 

observed among Angiosperms. Between these estimates for Arabidopsis thaliana and 

Fritillaria assyriaca (Lily family), a wide range of genome sizes and chromosome 

numbers are found among flowering plants (reviewed in Bennett et al., 2000). The 

variations are mainly due to different amounts of repetitive DNA sequences in these 

genomes. The abundance of repetitive sequences has been reported to be positively 

correlated with genome size (Bennetzen, 2000a; Bennetzen, 2000b). Polyploidy appears to 

be widespread in the plant kingdom, but it does not account for the large variations in 

genome sizes which are observed in higher plants. 

The Brassicaceae family lends itself particularly well to comparative genome analysis 

studies. Small size of mature plants, a short generation time, prolific seed production from 

single plants and diploidy make Arabidopsis thaliana ideally suited for genetic and 

mutation analysis. For there reasons and due its small genome size, this crucifer has been 

chosen as model organism  for molecular genetic studies in plants. The genome of  

Arabidopsis thaliana is the best-studied genome of higher plants and has been sequenced 

completely (The Arabidopsis Genome Initiative, 2000). The genomic sequence offers the 

raw material for comprehensive analysis of gene function in plants, and will provide 

further powerful opportunities for comparing genetic information with other plant species, 

prokaryotes, fungi and animals in future (Bennetzen, 2001). The Arabidopsis genome 

seems to have experienced many small genetic rearrangements far beyond that seen in any 

other sequenced genome. Small inversions, translocations, duplications or deletions of one 

or a few genes occurred with high frequency and mostly within the last millions years 

(O'Neill and Bancroft, 2000; Acarkan  et. al., 2000). The six periods of large segmental 

duplications or the generation of polyploidy in the history of Arabidopsis lineage seem to 
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have occurred at discrete times between 200 and 50 millions years ago. (Vision et. al., 

2000). Probably the numerous small rearrangements (particularly genic deletion) are 

tolerated because of the extensive genetic duplication present in the genome (Bennetzen, 

2001). As the Arabidopsis genome is so small (125 Mbp)  after the duplications, ample 

amount of DNA must have been lost during the recent evolution. Recently programmed 

sequence elimination in the first generations after allopolypolydiztion of wheat has been 

reported (Ozkan et. al., 2001; Shaked et. al., 2001), but further species-specific sequence 

loss over longer evolutionary time periods has to be postulated (Petrov, 2001). Indications 

for species-specific deletions were first found in insects. Studies of non coding 

retrotransposon-like sequences of insects indicated that DNA is lost at high rates from the 

Drosophila genome (Petrov, 1996). Indeed, the rate of deletions differed drastically 

between different insect genomes. The Hawaiian cricket (Laupala), which has a 11 times 

larger genome than Drosophila, has a 40-fold lower rate of DNA loss than Drosophila. 

This applies for the number as well as the size of the deletions. These findings lead to the 

suggestion of a hypothesis that there is an inverse correlation between genome size and 

deletions size (Petrov et. al., 2000). 

But what kind of process might be responsible for these deletions? Deletions may occur by 

different mechanisms: by replication slippage (as suggested by Capy, 2000), by unequal 

crossover (as suggested by Smith, 1976) or by double-strand break (DSB) repair.  

Recently DSB-induced deletions, that result in a loss of function of a marker gene were 

compared between the two related dicotyledonous plant species Arabidopsis and tobacco. 

Whereas the mechanism of junction formation by illegitimate recombination itself was not 

different between the two species, the size classes of deletions in Arabidopsis and tobacco 

differed remarkably. In average the deletions were one third larger in Arabidopsis than in 

tobacco (Kirik et. al., 2000). In the same time it was not possible to find insertions 
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associated with deletions in Arabidopsis whereas this was the case in almost half of the 

repair events analysed in tobacco (Salomon and Puchta, 1998). 

It was postulated that the loss of DNA by illegitimate recombination is the driving force 

for decreasing genome size of Arabidopsis. Devos et. al. (2002) in their study sustained 

this hypothesis by an “in silico” study which determined that at least fivefold more DNA is 

removed by illegitimate recombination then by unequal homologous recombination events 

during  elimination of transposable elements (TEs). This study is based on the analysis of 

long terminal repeats (LTR)-retrotransposon families on the basis of homology of the 

LTRs  rather than the open reading frames. Compared were not only complete elements 

but also solo LTRs and elements that underwent a variety of deletions. The presence of 

highly degraded retroelements also suggests that retrotransposon amplification has not 

been confined to the last 4 million years, as is indicated by dating of intact retroelements.      

Arabidopsis thaliana and Nicotiana tabaccum are two related dicotyledonous plant 

species, which differ about 30 time in genome size. Arabidopsis with one of the smallest 

genomes among higher plants and the 2C DNA content has been determined at ≈0.30 pg 

(Arumuganathan and Earle, 1991). A much higher value of 8.7 pg has been determined for 

tobacco (Bennetzen et. al., 1997). The Arabidopsis thaliana genome contains a low amount 

of repetitive DNA (Meyerowitz and Somerville, 1994), in contrast, the tobacco genome 

contains about 55% repetitive sequences.  

The possible reason for different deletion sizes during DSB repair could be due to 

dissimilar processing of DNA ends in both species.  This question was addressed in the 

current study. 
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1.2  DNA Recombination  

In generally, recombination involves the cutting and covalent joining of DNA sequences 

which results in the new combination of genetic information.  

A number of models have been put forth over the years to explain how DNA                 

recombination occurs. In principle, there are two different kinds of DNA-recombination 

(Leach, 1996; Hoffmann, 1994). 

Homologous recombination (HR is the exchange of covalent linkage of DNA molecules 

that are  identical or very similar in sequence) is classically thought to be a mechanism for 

promoting genetic diversity. For example, in diploid cell, meiotic recombination switches 

allele combinations along a linear chromosome, thereby producing a novel haploid for 

subsequent generation (Shinohara and Ogawa, 1995; Stahl, 1996).  

It is commonly considered that homologous recombination is downregulated in somatic 

eukaryotic cells in preference to another recombination pathway, namely illegitimate 

recombination or non-homologous end-joining (NHEJ). NHEJ is the main mechanism 

in somatic cells for repairing of DNA double-strand breaks caused by surroundings 

physical and chemical reagents (Roth et. al., 1985; Lehman et. al., 1994; Mayerhofer et. 

al.,1991). 

 

1.2.1 Homologous  recombination 

For all organisms, homologous recombination is important to ensure exchange of genetic 

material within a species, and is also a major pathway for the repair of DNA lesions, at 

least for lower eukaryotes and bacteria. Whereas many of the proteins and pathways 

involved in DNA repair and recombination are known in prokaryotes (bacteria), simple 

eukaryotes (yeast) and higher animal cells (West, 1997; Mosig, 1998; Haber, 2000; Wood 

et. al., 2001), comparably little is known about these components in plants. The ongoing 

sequence analysis of plant genomes revealed the presence of many genes similar to already 
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characterized recombination and repair genes from other organisms. This homology-based 

gene identification has several drawbacks: even if a plant gene is similar to a well-studied 

counterpart from a different organism, the exact biological function encoded protein might  

differ. In addition, plant-specific factors involved in DNA repair and recombination can 

not be identified by this approach. 

Homologous recombination, in contrast to NHEJ,  repairs damage precisely and thus the 

end products of this reaction are predictable. Because of this, one of the powerful uses of 

homologous  recombination has been exploited for the modification of chromosomal genes 

-  "gene targeting".  

Gene targeting signifies the integration of foreign (transfected) DNA molecules into 

homologous sequences of genomic DNA, thus allows the integration of DNA at 

predetermined positions. Therefore gene targeting is an important technology to study gene 

function. This technique has proved to be highly successful in yeast (Leung et. al., 1997) 

and mouse embryonic stem cells (Capecchi, 1989), but has been, so far, only of limited use 

in plants (Vergunst and Hooykaas, 1999; Mengiste and Paszkowski, 1999; Puchta, 2002; 

Hohn and Puchta, 2003; Britt and May, 2003), except in the moss, Physcomitrella 

(Schaefer, 2001). There are only several reports of successful targeting of endogenous 

natural genes in Arabidopsis (Kempin et. al., 1997; Hanin et. al., 2001) and rice (Terada et. 

al., 2002). The frequency of gene targeting in higher plants is too low (10-3-10-5) for 

practical application.    

 

1.2.2 Illegitimate recombination or non-homologous end joining (NHEJ). 

Illegitimate recombination or NHEJ is able to rejoin DNA ends in the absence of 

significant homology (Weaver, 1995; Lehman et. al., 1994). The pathway of NHEJ is 

conserved in eukaryotes as distantly related in S. cerevisiae and humans, and a similar 



1. Introduction                                                                                                                      6  

pathway is found in plants (Mayerhofer et. al., 1991; Gheysen et. al., 1991; Takano et.al , 

1997; Salomon and Puchta, 1998). 

First reports on NHEJ date back to the early eighties (Pellicer, 1980 ; Perucho et.al., 1980). 

In the following years, the mechanism of NHEJ was studied in detail in mammalian cells 

(Wilson et. al., 1982; Roth et. al., 1985), in extracts from Xenopus eggs (Pfeiffer, 1988;  

Thode et. al, 1990) and later in yeast (Goedecke et. al., 1994; Kramer et. al., 1994).  

In yeast at least three different non-homologous end joining processes were characterised. 

One pathway is the precise joining of short overhanging, complementary ends, such as 

those produced by site-specific endonucleases. This is a highly efficient process, where 

most ends are successfully religated. However, when the ends are not complementary or 

when the presence of an endonuclease precludes precise re-ligation, there are two 

additional, but much less efficient, NHEJ processes. One, involving misalignment of 

overhanging ends,  apparently occurs by pairing of one or a few base pairs, followed by 

filing-in by a DNA polymerase, and resulting in the ligation of ends with the insertion of a 

few base pairs. This process is strongly cell cycle regulated. Alternatively, annealing of 

microhomologies of two to a few base pair and removal of single-stranded tails, leads to 

the formation of deletions ranging from a few base pairs to several kb (Haber, 2000). 

NHEJ, rather than homologous recombination, is the major pathway for DSB repair in 

plant somatic cells (Gorbunova and Levy, 1999). Characterisation of NHEJ in plants 

include the use of short homologies for rejoining, the occurrence of a short deletions at the 

broken site, and the presence of filler DNAs as well as direct or inverted repeats of nuclear 

sequences at the rejoined site. In plants NHEJ was characterized at the rejoined sites of 

restriction enzyme-digested plasmids in tobacco protoplasts (Gorbunova and Levy, 1997), 

at the rejoined sites of an integrated marker gene in tobacco cells that was cut before with 

I-SceI (Salomon and Puchta, 1998 ), at the integration site or rearranged sites in transgenic 

rice and Arabidopsis after direct gene transfer (Takano et. al., 1997 ; Sawasaki et. al., 
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1998; Kohli et. al., 1999), and at the border of T-DNA insertion sites (Gheysen et. al., 

1991; Mayerhofer et. al., 1991; Laufs et. al., 1999 ).  

 

1.3 The repair of  DNA double-strand breaks – role in genome stability 

and genome evolution 

The genomes of all living organisms are constantly subject to damage and decay. DNA 

double-strand breaks (DSB) may be induced by γ-irradiation, radio-mimetic chemicals or 

by breaks in single-stranded regions of DNA created during DNA replication (Kuzminov, 

2001). DNA damage, in the form of DSBs, poses a considerable threat to genomic integrity 

and cell survival.  

In early 80’s classic model for the DNA double-strand break repair (DSBR) was postulated 

(Resnick, 1976; Szostak et. al.,1983), and since that time it has been applied as a general 

mechanisms of homologous recombination in all organisms examined (see Figure 1.1.). 

Nevertheless, beside DSBR model in last two decades alternative models were developed, 

recently namely single-strand annealing (SSA) (Lin et. al, 1984, 1990; Maryon and Carroll, 

1991a, 1991b; Fishman-Lobell et. al., 1992), synthesis-dependent strand annealing (SDSA) 

(Richardson et.al.,1998) and one side invasion (OSI) (Belmaaza and Chartrand, 1994) model 

of recombination supplemented with new details and specified depending from object of 

study (Belmaaza and Chartrand, 1994; Nassif et. al., 1994; Puchta et. al., 1996; Holmes and 

Haber, 1999).  
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+

+

Double-strand breaks

Strand Resection.

Strand Invasion, Annealing and Synthesis

Holliday Junction. 

Resolution of Holliday junctions  and Crossing over

One strand of the duplex is degraded by a nuclease starting from 
the DSB.

. The single    
stranded tail searches for a homologous sequence elsewhere in 
the genome. If it finds a homologous sequence it will invade the 
duplex and form a heteroduplex DNA. Strand  synthesis initiates 
from the 3' ends. The other single-tranded tail can anneal to the 
displaced strand

DNA synthesis and strand displacement 
leads to  formation of a second crossover structure called  
Holliday Junction.

. 
Cleavage of the  Holliday junctions can occur via  nucleases in 
two ways. Cleavage of both junctions along different axes will 
lead to a crossover of the distal arms. On the other hand, 
cleavage along the same axes will leave the distal arms 
unchanged.

 

 

Figure 1.1. The double-strand break repair (DSBR) model (Resnick, 1976; Szostak et. 

al.,1983).  

The DSBR model was first proposed to explain plasmid gap repair and is the most accepted 

mechanism to explain the genetic relationship between gene conversion and crossover in 

meiotic recombination (Szostak et. al. 1983). Recombination is initiated by a DSB (Sun et. al., 

1989; Cao et. al., 1990) and the 5’ ends at each side of the DSB are resected, exposing long 

3’-ended single-stranded tails (Sun et. al., 1991), which invade the homologous double-strand 

DNA (dsDNA) and prime DNA synthesis. After pairing of the invading single-strand DNA 
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(ssDNA) and the invaded dsDNA, the reaction is followed by strand exchange. This generates 

a DNA heteroduplex (Goyon and Lichten, 1993; Nag and Petes, 1993), which is a key feature 

for gene conversion in all recombination reactions. The double-strand exchange leads to the 

formation of two four-stranded intermediates, termed Holliday junctions (Schwacha and 

Kleckner, 1994). The cleavage of these two Holliday junctions in either the same or the 

opposite direction results in non-crossover or crossover products, respectively. 

It has been shown that, from yeast to animal cells, many mitotic gene conversion events are 

not always associated with crossovers (Gloor et. al., 1991; Nassif et. al., 1994; Puchta, 1999; 

Johnson and Jasin, 2000). Such findings led to an alternative model, termed synthesis-

dependent strand annealing SDSA (Hastings, 1988; McGill et. al., 1989), in which, after 3’ 

end invasion, the newly synthesized DNA strands are released from the invaded DNA 

template and returned to the acceptor molecule. Consequently, the only possible 

recombination product is a gene conversion not associated with crossover. SDSA is an 

important mechanism of mitotic recombination and it can also participate in the formation of 

meiotic gene conversions (Allers and Lichten, 2001). The SDSA model explains best the 

occurrence of gene conversion, a complex process ubiquitous in all organisms. This 

process maintains the integrity of eukaryotic genomes in somatic cells (Jasin, 2000) and 

reinitiates DNA replication after the replication fork passes through a single-strand nick in 

the DNA (Kuzminov, 1999). Furthermore, gene conversion is responsible for repairing the 

majority of DNA double-strand breaks that occur in the G2 phase of the cell cycle (e.g., in 

vertebrate cells, Takata et. al., 1998). Data suggest, that SDSA is the predominant 

mechanism in somatic cells (Nassif et. al., 1994; Chiurazzi et. al., 1996; Ray and Langer, 

2002, Rubin and Levy, 1997; Puchta, 1998a). In the SDSA model (Figure 1.2 ), a broken 

DNA end invades a homologous template and primes DNA synthesis, producing long, 3' 

single-strand extensions. Since the template is homologous, the sequence of the 3' extension is 

complementary to the other broken end and therefore, after synthesis, strands from both ends 
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of the break may anneal together. Subsequent sequence trimming and/or gap filling, followed 

by ligation, complete the repair of the break. In somatic plant cells SDSA was also studied 

(Chiurazzi et al., 1996; Puchta, 1998a; Gorbunova and Levy, 1999). If the two 3’ ends are 

not homologous the break will closed via illegitimate recombination, which lead to a 

change  in genetic information (Figure1.2).  SDSA model can be used for the description 

of repair processes that cannot easily be explained by the DSBR model (Puchta, 1999a).   

 

Do ub le - s tra nd b re a k  is  g e ne ra te d  
in o ne  o f  DN A  duple x .

5 ’  to  3 ’ e x o nuc le a s e  a tta c k s  the  
e x po s e d  5 ’  o v e rha ng s

D- lo o p  f o rm a tio n. A   f re e  3 ’  e nd  is  
u s e d  a s  a  p r im e r f o r DNA  s y nthe s is  
u s ing  the  ho m o lo g ue s  s e q ue nc e  a s   
te m p la te

The   re s u l ting  inte rm e d ia te

If  e lo ng a te d  3 ’  e nd o f  o f  the  re c ip ie nt 
m o le c u le s  do e s  no t f ind  
c o m p lim e nta ry  a t the  3 ’  e nd  o f  the  
DS B  the  g a p  is  f i l le d  a nd  the  b re a k  
w i l l  b e   re pa ire d  v ia  il l e g i tim a te  
re c o m b ina tio n in  a  c ha ng e  o f  
inf o rm a tio n 

 re s u l ting  

If the 3’ of the recipient molecule is 
elongated up to homology of second 3’ 
end of the DSB and single strands anneal, 
the molecule can be repaired, resulting in 
a gene conversion without loosing 
information  

 

Figure 1.2.   Model for the repair of genomic DSB  based on the synthesis-dependent strand 

annealing (SDSA) model of recombination. 
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The single-strand annealing (SSA) model was first suggested for extrachromosomal 

recombination between plasmids in mammalian cells (Lin et. al., 1984; 1990). After 

induction of a DSB (Figure 1.3), the free double-stranded ends are resected by a single-

strand specific exonuclease, leaving behind 3’-single-stranded overhangs. These single 

strands can anneal with each other at regions of complementarity, overhanging non-

homologous sequences are digested or alternatively single stranded gaps could also be 

refilled by repair synthesis, and in a last step the double-strand is restored by religation of 

the remaining nicks. As a result a deletion occurs, the sequence information between the 

repeated sequences is lost. The model has been applied for describing extrachromosomal 

recombination in Xenopus oocytes  (Maryon and Carroll, 1991a, 1991b) and yeast 

(Fishman-Lobell et. al., 1992). In plants it could be demonstrated that extrachromosomal 

recombination proceeds efficiently via single-strand annealing (Puchta and Hohn, 1991; 

Bilang et. al., 1992; de Groot et. al., 1992; Puchta and Meier, 1994). 

 

Double-strand breaks are  induced in both 
recombination partners

5’ to 3’ exonuclease reset  the  5’ ends of both 
duplexes

Free 3’ ends anneal forming a chimeric molecule

Only the chimeric molecule is recovered
Unpaired overhangs are removed and single-stranded 
gaps are repaired by DNA synthesis. 
Unpaired overhangs are removed and information is 
lost 

Figure 1.3.  Single Strand Annealing (SSA) mechanism as models for the repair of DSBs  
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The repair of DNA double-strand breaks by homologous recombination requires that the 

two interacting DNA molecules have very similar sequences. The amount of homology 

required for repair has been studied in two main contexts. One focuses on the fraction of 

sequence identity shared between the recipient and donor DNA sequences. The frequency of 

gene conversion is greatest when the two sequences are identical and declines as the 

percentage identity between the two sequences decreases. In E. coli and S. cerevisiae, and 

presumably also in other organisms, two different systems evaluate the sequence identity 

between the interacting molecules (Kuzminov, 1999; Paques and Haber, 1999). During the 

search for homology the initial match made by the recA/RAD51 protein is promoted (at least 

in vitro) between sequences with about 10% sequence difference (Bazemore et. al., 1997). 

The mismatch repair system then tests for sequence matching and rejects those that contain 

mismatched base pairs (Modrich and Lahue, 1996; Evans and Alani, 2000). Thus, the 

mismatch repair system is responsible for most of the sequence specificity during double-

strand-break repair by gene conversion. 

The homology requirements for DSB repair have also been examined in the context of the 

extent of donor sequence homology. This is often expressed in terms of the minimal efficient 

processing segment (MEPS). This is the smallest amount of contiguous identical sequence 

between the donor and recipient sites that are required to initiate efficient double-strand-break 

repair by gene conversion. The MEPS varies from 25–50 bp in E. coli and bacteriophage T4 

to 200 bp in eukaryotic systems (Singer et. al. 1982; Rubnitz and Subramani, 1984; Shen and 

Huang, 1986; Liskay et. al. 1987; Thaler and Noordewier, 1992; Jinks-Robertson et. al., 

1993). In these analyses various heterologous sequences were used as markers for the 

occurrence of gene conversion, but the size and sequence of the heterologous sequences were 

not systematically varied.  

Using transposable elements or highly specific restriction endonucleases for induction of 

breaks at specific loci within eukaryotic genomes (for general reviews on endonucleases 
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induced repair see Paques and Haber, 1999; Jasin, 2000) it has been possible to characterize 

DSB-induced homologous recombination in somatic plant cells (for review see Gorbunova 

and Levy, 1999). In previous studies besides enhancing integration of T-DNAs at 

homologous loci (Puchta et. al., 1996; Puchta, 1998b; Reiss et. al., 2000), repair of a DSB 

with homologous sequences close to the break (Chiurazzi et al., 1996; Xiao and Peterson, 

2000; Siebert and Puchta, 2002) or at an ectopic position in the genome (Shalev and Levi, 

1997; Puchta, 1999a) were analyzed. Recently it was shown that a DSBs can also be 

repaired by homologous recombination using transgenic allelic sequences on the 

homologous chromosome with a frequency about 10-4  (Gisler et. al., 2002).  

In general, NHEJ seems to be the main mode of DNA repair also in somatic plant cells 

(Salomon and Puchta, 1998; Kirik et. al., 2000).  

 

1.4 Proteins involved in the processing of chromosomal DSBs 

Non-homologous end joining and homologous recombination pathways appear to compete  

with one another. Because of the fundamental differences in their enzymology, it is likely 

that at some step each DSB repair pathway becomes irreversible committed after early 

steps, that are common to both pathways.  

In yeast DSB can provide a substrate for at least two multiple-enzyme complexes in the 

pathways to HR: the Rad50-Mre11-Xrs2 and the Rad51-Rad54-Rad55-Rad57 complex 

(Paques and Haber, 1999). The Rad50-Mre11-Xrs2 (RMX) complex has an end-tethering 

function and clear, although variable, defects in both HR and NHEJ pathways (Petrini, 

1999; De Jager et al., 2001). The RMX complex first assembles on the DNA ends and 

resects the ends by exonuclease activity to expose single strands. Concomitant with 

resection, the complex is thought to interact with Rad52, the defining member of the 

required epistatis group of genes, encodes a multimeric protein that possesses DNA-end-

binding function (Van Dyck et. a1., 1999; Stasiak et. al., 2000). Rad52 assembles the 
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Rad51-Rad54-Rad55-Rad57 complex, which leads to the DNA-sequence-homology-

dependent pathways. SDSA requires continued participation of Mre11 and Xrs2 (Moore 

and Haber, 1996) but DSBR is more dependent on Rad51 (Rattray and Symington, 1994). 

Rad52 and Rad59 can also act to  catalyze the direct annealing of the two 3' nucleoprotein 

filaments independently of the other epistasis group members, to ultimately create a 

deletion in a pathway known as single-strand annealing (Ivanov et. al., 1996; Shinohara et. 

al., 1998; Sugawara et. al., 2000). 

In yeast, Rad52 is essential for any repair by HR and presumably has functions in addition to 

recruiting the Rad51 complex. (Van Dyck et. al., 1999). If Rad52 is unavailable, then a 

Ku70-Ku80 complex binds the ends and helps to recruit the DNA-depended protein kinase. 

Rad52 is thought to compete with Ku70-Ku80 for DNA binding. There seems to be no 

strong Rad52 homologous in plants, although there are recognizable homologs of most 

other members of the Rad52-epistasis group of proteins. The function of Rad52, thought to 

be involved in the regulation between HR and NHEJ, is probably accomplished by an 

unknown component in plants. It was postulated that the absence of the Rad52 homolog is 

related to low levels of HR in mitotic plant cells (Ray and Langer; 2002). Ku70-Ku80 

association of DNA ends triggers mitotic check-point arrest by signalling though DNA-

dependent protein kinase (Lee et. al., 1998) and allows the recruitment of at least two other 

proteins that are essential for NHEJ: DNA ligase IV (DnL4) and its accessory cofactor 

LIF1(XRCC4) (Chen et. al., 2001). NHEJ in mammalian cells has an analogous 

requirement: Ku70-Ku80, DNA ligase IV and XRCC4 (Van Dyck et a1., 1999). In meiotic 

cells of mice, the levels of Ku70-Ku80 are much lower then those in somatic cells are 

(Goedecke et. al., 1999). This implies that HR, which repairs the chromosomal breaks during 

early meiosis require for efficient processing a downregulation of the NHEJ activity. In 

meiosis-competent yeast cells, LIF1 expression is reduced, again suggesting that the yeast 

NHEJ is low when HR is high (Valencia et. al., 2001). Certain alleles of rad50 in yeast 
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display mitotic hyper-recombination and reduced NHEJ, suggesting that the yeast NHEJ 

pathway is more sensitive to detect in the initial  Rad50-Mre11-Xrs2 complex than the HR 

pathway (Moore and Haber, 1996; Malone et. al., 1990). Analogously, an Arabidopsis 

rad50 mutant display somatic hyper-recombination (Gherbi et. al., 2001), but it is not 

known whether this  has reduced levels of NHEJ. Plant DnL4 and XRCC4 homologs are 

functionally similar to the corresponding sequence homologous yeast proteins (West et. al., 

2000), confirming the existence of a conserved NHEJ mechanisms in plant,  yeast and 

mammals. 
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1.5 Aims of the current work 

In the current study two different, but related topics about DSBR processes in plants were 

investigated.   

 

1. Species-specific differences in the processing of double-strand breaks by NHEJ in 

Arabidopsis and tobacco. 

 

Recently species-specific differences in non-homologous end-joining (NHEJ) of genomic 

double-strand breaks (DSBs) were reported for the two dicotyledonous plants Arabidopsis 

thaliana and Nicotiana tabacum (Kirik et. al., 2000). In Arabidopsis deletions were on 

average larger than in tobacco and not associated with insertions. This was postulated to be 

due to differences in the processing of DNA ends in both species.  

The specific aim of the study was to analyse and compare the processing of free DNA ends 

in both plant species by biolistic transformation of leaf tissue with linearized plasmid 

molecules. 

 

2. Different pathways of homologous recombination are used for the repair of double-

strand breaks within tandemly arranged sequences in the plant genome. 

 

Beside the NHEJ (Salomon and Puchta, 1998; Gorbunova and Levy, 1999;  Kirik et. al., 

2000; Ray and Langer, 2002) homologous recombination can be used  for repair DSBs in 

somatic plant cells (Shalev and Levy, 1998; Puchta, 1999a; Gisler et. al., 2002). The 

fraction of homologous repair events in relation to NHEJ rises if homology close to the 

break is available (intrachromosomal recombination) (Siebert and Puchta, 2002; Xiao and 

Peterson, 2000). Depending on the structure of the respective chromosomal locus at least 

two different kinds of pathways could be used to repair the break. One pathway results in 
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the formation of a deletion between the repeats (as described by SSA model) and the other 

is a gene conversion event (as described by the SDSA model) (Fischman-Lobell et. al., 

1992). Recent results indicated that deletion formation is highly efficient pathway in plants 

that can be used in up to a third of the cases for the repair of a DSB in proximity to 

homologies (Siebert and Puchta, 2002; Kirik, doctoral thesis, 2001). It was important to 

find out under comparable conditions to which extent the gene conversion pathway could 

be used for the repair for DSBs in somatic plant cells.  
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2. Materials 

2.1. Chemicals and reagents 

Most of the chemicals and reagents were purchased from Roth (Karlsruhe), Serva 

(Heidelberg), Fluka (Deisenhofen), Merk (Darmstadt), Sigma (München), Duchefa 

(Haarlem, NL). Chemicals or reagents obtained from other companies are listed below: 

  Bacto-Agar, Beef extract  Difco, Detroit MI, USA 

  Yeast extract, Pepton , EDTA Gibco-BRL, Eggenstein 

  SephadexTM  G-25 Amersham Pharmacia Biotech UK  

  Fe-sulphate Riedel-de-Haen, Seelze 

  Natrium-EDTA UD, Cleveland, USA 

  Silwet L-77 Lehle Seeds, Round Rock, USA 

  Tris-(hydroxymethyl)-aminometan (Tris), Tris-    

  (hydroxymethyl)-aminometan - HCl (Tris-HCl),    

  SDS 

USB, USA 

 

Solution were prepared with deionised, destilated and sterile water. Medias, buffers and 

solutions were sterilized per autoclaving at 120˚C/ 20 min . 

 

2.2 Enzymes used in molecular  biology experiments 

  Exonuclease-free Klenow  USB, USA 

  Restriction endonucleases BioLabs, Amersham  

  Ribonuclease A (RNase A)            Sigma, München 

  DNA-Polymerase TaKaRa ExTaq TaKaRa, Japan 

  T4 DNA-ligase 

  Shrimp Alkaline Phosphatase 

Gibco-BRL 

USB, USA 
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  2.3 Kits         

High Pure PCR Purification Kit Roche, Mannheim 

Quiagen Midiprep     Qiagen 

QIAEX Gel Extraction kit Qiagen 

Qiagen Plasmid Isolation kit Qiagen 

Plant DNA Mini kit Peqlab, Erlangen 

Salmon Sperm  DNA kit 

Megaprime DNA Labelling system 

Stratagene 

Amersham-Pharmacia 

Biotech UK 

2.4 Disposables  

GB58 Blotting paper     Heinemann Labortechnik  

Nylon membrane Hybond-N+   Amersham-Pharmacia Biotech UK 

Rapture Disks,  1,100 psi BioRad, USA 

Macrocarriers BioRad, USA 

Stopping Screens BioRad, USA 

1 μm gold Microcarriers BioRad, USA 

                                       

2.5 Equipment 

 

Biolistic PDS-1000/Helium Particle Delivery System BioRad, USA 

Centrifuge 5415C, 5415, 5417 Eppendorf, Hamburg 

GeneAmp PCR System 2400 Perkin Elmer, Langen 

Electroporator EasyjecT Prima, EquiBio 

Electrophoresis power supply Power Pac 3000 BioRad, München 

Electrophoresis horizontal system EASYCAST Owl Scientific, Inc. USA 

Freezer (-80˚C) Froilabo, France 
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Hybridization ovens Biometra, Götingen 

Incubators Heraeus, Hanau 

Laminar Kendro 

Microscopes Zeiss, Germany  

Megafuge 1.OR Heraeus, Hanau 

pH-meter, HI 9321 Schütt, Goettingen 

Phosphor screens Fujifilm 

Shaker GFL, Germany  

Spectrophotometer Spectronic 1201 Milton Roy, Rochester, USA 

Sterilisator Varioclav 400 H+P Labortechnik, Oberschisheim 

Thermomixers 5436, 5437 Eppendorf, Hamburg 

Waterbath-thermostat D1 

 

Haake, Karlsruhe 

2.6 Electronic data management  

Software 

Adobe Photoshop 6.0 

DNASTAR 

Tina 2.09g 

Chromas 1.45 

Microsoft Excel 2000 

Microsoft Word 2000 

Microsoft PowerPoint 

Netscape Communicator 

CorelDRAW 9 

 

Adobe System 

Lasergene 

 

 

Microsoft Corporation  

Microsoft Corporation 

Microsoft Corporation 

Netscape 
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2.7 WWW-sites 

National Center for Biotechnology Information 

http://www.ncbi.nlm.nih.gov:80/  

Biochemistry and Molecular Biology Journals 

http://www.geocities.com/~jrbeasley/biochem/journals.html#P  

The Arabidopsis Information Resource (TAIR) 

http://www.arabidopsis.org  

 

  

2.8 Biological material  

2.8.1 Bacteria strains  

Escherichia coli strain:  

DH5α Gibco BRL, Eggenstein 

(Sambrook et. al., 1989) 

Agrobacterium  tumefaciens strain:  

C58 Cl Rf pGV 2260 in C58C1 

(Deblaere et. al., 1985) 

 

2.8.2 Plants 

The Arabidopsis thaliana ecotype Colambia  and Nicotiana tabacum SR1 were used for 

plant transformation and bombardment. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/
http://www.geocities.com/~jrbeasley/biochem/journals.html#P
http://www.arabidopsis.org/
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2.9  Plasmids 

pGUS23 Puchta and Hohn, 1991 

DGU.US Orel et.al., 2003b 

pZpp-ISceI Kirik A., Ph.D thesis, 2001  

pPM6000k Rossi et al., 1993 

pCH23 

pGEM-T Easy Vector system 

 

 

 

Puchta, unpublished   

Promega 

2.10 Oligonucleotide primers 

The oligonucleotide primers were designed on the basis of sequence information and synthesis from 

Metabion company. 

231S  5'-gtacagcatgcgggcccttaattaaccgcggaggcctgttaacatccataccggttctaga-3'  

231AS  5'-gtacttctagaaccggtatcgatgttaacaggcctccgcggttaattaaggggcccgcatgc-3' 

Chrisoben 

Chrisunten 

p35SX  

pTH 

pHZD 

pRZD 

pGUSR 

GUSHIN2 

 

 

 

 

 

 

 

 

 

5’-ctcgagattaccctgttatccctagtcgac-3’ 

5’-gtcgactagggataacagggtaatctcgag-3’ 

5’-gccgtctagaggagtcaaagattcaaatagaggacc-3’ 

5’-gccgaagcttattccgatctagtaacatagatagcagg-3’ 

5’-gccgggtaccgcggccgccgcgaaaactgtggaattgatcagcg-3’ 

5’-gccgggtaccgctctttaatcgcctgtaagtgcg-3’ 

5’-gcgttaattaattcgagctcggtagcaatttcgaggc-3’ 

5’cggaagcttctcagactaagcaggtgacgaacg-3’ 
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2.11 Media, buffers and solutions  

2.11.1 Bacteria media  

Luria-Bertani (LB) medium 

(Sambrook  et. al., 1989) 

Bactotrypton - 10g/l 

Yeast extract - 5g/l 

NaCl - 10 g/l 

pH 7,0 with NaOH        

 for plates, medium was supplemented with 15 g/l agar and appropriate antibiotics 

 

 Yeast-broth (YEB) medium Beef extract - 5 g/l 

Peptone - 5 g/l 

Sucrose - 5 g/l 

Yeast extract - 1 g/l 

MgSO4٠7H2O – 0.5 g/l 

pH 7,2 with NaOH 

for plates, medium was supplemented with 15 g/l agar and antibiotics 

SOC  Bactotrypton - 20 g/l 

Yeast extract - 5 g/l 

NaCl - 0,58 g/l 

KCl - 0,186 g/l 

Glucose -20mM 

pH 7,4 with NaOH 
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2.11.2 Plant media 

Germination medium (GM) B5 Basal salt mix 

B5-vitamins 

Fe-EDTA – 74,6 mg/l 

MES - 1g/l 

Sucrose - 10 g/l 

pH 5,7 with KOH 

   for plates, medium was supplemented with 8 g/l agar  

 

Callus  induction medium (CIM)  

 

B5 Basal salt mix 

B5-vitamins 

Glucose - 20 g/l  

MES - 1g/l 

pH 5,74 with KOH 

after autoclaving 

2,4-D - 1 mg/l, kinetin - 0,2 mg/l, NAA - 1 mg/l, 

biotin -1 mg/l,   

BAP - 1mg/l 

 

Selection medium (SM) 

 

Murashide and Skoog (MS) inorganic salts  

B5-vitanims 

pH 5,7 with KOH 

for plates, medium was supplemented with 8 g/l agar and antibiotics 
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Murashige and Skoog (MS) medium   

MS salts 

B5-vitamins 

Fe-EDTA - 74,6 mg/l  

MES - 1g/l 

Sucrose - 30 g/l 

pH 5,7 with KOH 

for plates, medium was supplemented with 8 g/l agar 

 

Infiltration medium (IM) 

 

1/2xMS salts 

B5-vitamins 

Sucrose - 50 g/l 

BAP - 0,44 μM 

3,5-Dimethoxy-4-hydroxyacetophenon -100 mg/l 

adjust to pH 5,7 with KOH and add 

Silwet L-77 - 400 μl/l 

 

2.11.3 Buffers 

 

 

1M Na-phosphate buffer pH7,0 1M NaH2PO4·H2O buffer pH 9,1 was mixed with 

1M Na2HPO4·7H2O pH 4,0 in the ratio 2:1 

 

20xSSC 0,3M Na citrate 

3 M NaCl 

pH 7 with NaOH 
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10xTAE buffer pH 8 Tris - 48,4 g/l 

acetic acid - 11,4 ml/l 

EDTA – 0.3 g/l 

 

DNA loading buffer (10x) 30% glycerol, 1xTAE  

0,025% bromophenol blue  

0,025% xylene-glycol 

20xSSPE buffer 3M NaCl 

0.2M NaH2PO4·H2O 

0.02M EDTA pH 7.4 

pH 7.4 with 10N NaOH 

 

Church Hybridisation buffer NaH2PO4·H2O – 1.76 g/l 

Na2HPO4·2H2O – 66.2 g/l 

SDS – 70 g/l 

BSA – 10 g/l 
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2.12 Stock solutions for antibiotics, hormones and vitamins 

 Concentration stock Solvent Final  con-

centration 

Application  

Ampicillin* 50 mg/ml H2O 50 mg/l LB for E. coli 

BAP** 1 mg/ml NaOH/H20  Infiltration 

medium 

Biotin** 1 mg/ml NaOH/H20 1 mg/l CIM 

B5-vitamins(100x)** 

(Gamborg et.al., 1968) 

0.1% Nicotinic asid 

0.1% Pyridoxine-HCl 

1% Tiamine-HCl 

10% Myoinositol 

H2O 1x Plant medium 

Carbenecillin* 50 mg/ml H2O 200 mg/l LB for E. coli 

2,4-D ** 1 mg/ml NaOH/H20 1 mg/l CIM 

Gentamycin* 100 mg/ml H2O 60 mg/l Medium for 

Arabidopsis 

Hydroxyacetophenon*  100 mg/ml DMSO 100 mg/l Infiltration 

medium 

Hygromycin* 50 mg/ml H2O 30 mg/l Medium for 

Arabidopsis 

Kanamycin* 50 mg/ml H2O 50 mg/l Medium for 

E.coli and 

Arabidopsis 

Kinetin* 0.2 mg/ml NaOH/H20 0,2 mg/l CIM 

NAA*** 1 mg/ml NaOH/H20 0,1 mg/l CIM 

Rifampicin* 50 mg/ml DMSO 50 mg/l Medium for 

Agrobacterium 

tumefaciens  

     

     

 

 All  solution were filter sterilised (0.2 µm). 

 *- Storage at –20°C.  **- Storage at 4°C. ***- Storage at RT. 
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3 Methods 

3.1 Plant culture  

3.1.1 Sterilization of Arabidopsis seeds 

Seeds were put in Eppendorf reaction tube and 1 ml of the following reagents were added: 

70% EtOH - 1 min, 4% NaOCl - 15 min, sterile water - 4 times (1 min, 2min, 5 min, 5 

min). 

Removing of solution was done after brief centrifugation by 6000 rpm. For the last step 

seeds were resuspended  in 0,5 ml sterile 0.1% agarose and poured onto plates. Seeds were 

spread evenly over the entire area and after drying for 10 min. the plates were sealed with 

surgical tape and were placed overnight for +4°C and then in a growth chamber (Schmidt-

Puchta, et. al., in press). 

 

3.1.2 Plant growth 

Seeds were sowed in lightweight plastic pots prepared  with soil and plants were grown 

under conditions of 16 hours light/ 8 hours dark at 20 °C to 22 °C, fertilizing from below 

with Arabidopsis fertilizer once a week.   

 

3.1.3 Transformation of Arabidopsis by vacuum infiltration  

 400 ml A. tumefaciens cultures grew at 28°C at 200 rpm till OD600>2. The cells were 

centrifuged (6000 rpm, 10 min, RT) and after harvesting, were resuspended in 800 ml 

infiltration medium (OD600 approx. 0,8).  

Then above-ground part plants (5-7 weeks old) were dipped  in infiltration medium for 5-8 

s, with gentle agitation. Dipped plants were placed under a cover for 16 to 24 hours to 

maintain high humidity. Then plants were set upright, keeping watering and grown 
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normally till seeds become mature (Clough S.J. and Bent A.F.,1998). Dry seed were 

harvested. 

 

3.1.4 Genetic analysis of transgenic plants 

Sterilized seeds (3.1.1) were resuspend in 0,5 ml sterile 0.1% agarose and poured onto SM 

plates containing the appropriate selection. After one week in the growth chamber, when 

the first true leaves started developing, it was possible to select putative transgenic plants 

(green) from untransformed plants (bleached). Putative transgenic plants were transferred 

onto a second selection plate to reduce the possibility of selecting false positives. 2-3 week 

old seedlings were planted to soil. 

 

3.1.5 Crossing Arabidopsis plants 

Arabidopsis plants were grown until the flowers were at a stage right before the white 

petals become visible. All flowers were cut out, that were too old or too young from the 

inflorescence and 2-6 flowers were left per pollination. All flower parts except the ovary 

were removed. From a donor plant pollen were obtained and were placed on the tip of the 

exposed ovary. This was repeated at least twice to ensure proper pollination. Each 

pollinated ovary was labelled and let for developing to maturity. When the siliques were 

dry the seeds were harvested. 

 

3.1.6 Inoculation of Arabidopsis seedlings with  A. tumefaciens 

After centrifugation of 50 ml fresh overnight culture of  A. tumefaciens, grown in YEB 

medium containing corresponding antibiotics, the pellet was washed with 20 ml Basic 

medium and resuspended in Basic medium to a final  OD600=1.0. 

2 weeks old Arabidopsis seedlings were added to bacterial suspension supplied with  
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300 µg/ml acetosyringon. The mixture was exposed to reduced pressure (0,15 atm) in 

sterile vacuum chamber for 5 min. 

The seedlings were placed on CIM plates and further cocultivated for three days in a 

growth chamber. After cocultivation they were analysed with the histochemical GUS 

assay.  

 

3.1.7 Histological staining for GUS expression 

Arabidopsis and tobacco leaves or Arabidopsis seedlings were put into ß-glucuronidase 

staining solution  (0,1M sodium phosphate buffer pH 7.0 with 0,05% X-Gluc dissolved in 

dimethyl formamide, in presence of 0,1% sodium azide) and after application of vacuum 

(0,15 atm., 5 min.) the incubation was continued  at 37˚C for two days. The plantlets were 

bleached with ethanol at 65˚C for 1h. Sectors on  the leaves were counted under binocular. 

 

3.1.8 Non-destructive GUS-assay 

To detect recombination events in plants and to propagate them further,  ß-glucuronidase 

staining was done under non-destructive conditions. After 10 days  growing on 

germination medium under sterile conditions, seedling were transferred to 0,1M possatium 

phosphate buffer (pH=7.0) with 0.05% X-Gluc dissolved in dimethyl formamide. After 1-5 

hours, plants showed blue staining were identified. Part of them, with completely blue 

roots, were put to the planes with GM and one week later to the greenhouses. From others -  

tissue, that was identified by blue staining as recombinant, was cut out of seedlings and 

transferred to plates with GM harbouring plant hormones. This recombined material was 

propagated for future analysis via callus culture.  
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3.2 Molecular biology  

All standard methods of molecular biology were performed according to Sambrook et. al. 

(1989) if not otherwise indicated.  

Electrophoresis of DNA was carried in 1% agarose gels with ethidium bromide (final 

concentration 2,5 µg/ml) in 1xTAE buffer in horizontal apparatus. DNA samples were 

resuspended in loading buffer. 

Restriction endonuclease digestion of DNA was carried out under the salt and buffer 

requirements as recommended by suppliers. 

DNA molecular weight determination was performed using SmartLadder (Eurogentech). 

 

3.2.1 Transformation of E.coli  

The transformation of E.coli was performed using heat shock method. For transformation  

an aliquot of competent cells (150 µl in a tube) was thawed on  ice and added to 2-10 µl of 

ligation reaction, directly to the cold tube. All reactions were mixed by tapping the tubes, 

and incubated on ice for 30 min. After this cells were transferred for 120 s in a 42oC water 

bath and cooled on ice (2 min). 700 µl of SOC medium were added to each reaction and 

mixed. Tubes were incubated on shaker (200 rpm) at 37oC for 1 h. 30-200 µl of each 

transformation were pipetted on LB+ antibiotic plates and cells were spread with bent glass 

rod. Plates were placed inverted and incubated at 37oC overnight and then at 4oC until 

picking colonies. 

 

3.2.2 Plasmid DNA extraction 

For plasmid isolation bacteria grew in overnight culture (3 ml for miniprep extraction up to  

10 µg and 50 ml for midiprep up to 500 µg plasmid DNA) at 37°C by shaking (200 rpm). 

The cells were harvested by centrifugation and plasmid DNA was extracted using Qiagen 

Plasmid Isolation kit or Quiagen Midiprep kit following the supplier's protocol. 
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3.2.3 Transformation of A. tumefaciens by electroporation 

For each transformation 50 μl of competent cells of A. tumefacies strain C58 Cl Rf, thawed 

on ice, were mixed with 3 μl of plasmid DNA (about 10 ng)  and transferred to the 

electroporation cuvette. Electroporation was done at 2,5 kV on electroporator EasyjecT 

Prima (EquiBio). The cells were mixed in 1 ml SOC medium and placed on YEB media 

containing selective agent and incubated at 28°C for 24 h. 

 

3.2.4 Plant DNA extraction  

Total plant DNA was isolated from Arabidopsis and tobacco leaves and calli according to 

Fulton et. al. (1995).  

 

3.2.5 Southern analysis 

For Southern analysis, 5 μg of purified genomic DNA was digested at 37 °C with 

corresponding enzymes  ON and fragments were  fractionated on agarose gel. Agarose gel 

electrophoresis was performed with 1% agarose gels in 1xTAE buffer submerged in a 

horizontal electrophoresis tank containing 1xHAC buffer according to the methods 

described by Sambrook et. al. (1989). After electrophoresis the DNA fragments were 

nicked by soaking agarose gel for 15 min. in  0,25 M HCl. The DNA fragments were 

bound by capillary transfer to a nylon hybridisation membrane "Hybond N+" with 0,4 M 

NaOH overnight. The  membrane was washed twice 10 min with 2xSSPE and prehybrized 

at hybridization temperature for 1 to 2 hours  in Church buffer. 

 Plasmid DNA or DNA fragments were labelled using a random priming labelling kit 

(Amersham, UK) by [α-32]dCTP (Amersham, UK). Hybridization was performed 

according to manual instructions at 65ºC. 
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3.2.6 PCR reaction 

As substrate for PCR reaction plasmide templates, amplified DNA and plant genomic 

DNA were used. General reaction mixture for PCR reaction (total 50 µl): TaKaRa Ex Taq 

(5 units/µl)-0,5 µl; 10x ExTaq buffer – 5 µl; dNTP Mixture (2,5 mM) – 4 µl; template - < 

1 µg; both primers –1 µM (final concentration); sterilized distilled water up to 50µl. The 

standard PCR condition was as follows: denaturing at 94°C for 5 min for the first cycle and 

30 s for the subsequent cycles; primer annealing at 55-65°C for 30 s; elongation at 74°C 

for 1-2 min; and final elongation step at 74°C for 7 min. The sequences of oligonucleotides 

used in this study are listed in 2.10. 

 

3.2.7 Sequencing.  

DNA sequencing was done with use of automated A.L.F.-sequencing equipment 

(Pharmacia)  on sequencing laboratory (S. König, B. Bruckner, IPK, Gatersleben). 

 

3.3 Transformation by particular bombardment 

3.3.1 Preparation of DNA  

From the resulting clone pGUS 231 plasmid DNA was prepared using the restriction 

enzymes XbaI, StuI, SmaI, AatI, ScaI and BsaI. All restriction enzymes were obtained from 

BioLab or Amersham  and the digestion was performed in the buffer systems and 

temperature conditions as suggested by the manufacturers. Plasmid DNA was digested for 

12-16 h. 

Completion of digestion was tested by retransformation in to E.coli. For experiments 

plasmid was used with >99%  efficiency of digestion. 
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3.3.2 Plant material and preparation of leaves  

 Wild type Arabidopsis thaliana (ecotype Colambia-O) and Nicociana tabacum (SR1) 

plants were grown under standard conditions on GM in Sigma boxes.  

Plant leaves (tobacco - 1,  Arabidopsis - 8-9) were arranged to form 3cm-diameter circle in 

the centre of a petri dish containing callus induction medium and incubated 24 h before 

bombardment in growth chamber. 

 

3.3.3 Covering gold particles with plasmid DNA and bombardment 

Gold particles (5 mg - sufficient for 16 bombardment; 1 µm diameter) were kept overnight 

in 1 ml absolute ethanol. After washing two times with sterile water, the particles were 

resuspended in 100 µl of 50% glycerol.   

For each shooting about 200 ng plasmid DNA was used. The mixture used for 4 

bombardments was prepared as follows: 25 µl (X) of gold particle suspension was mixed 

with 10 µl of plasmid DNA (Y) and 35 µl (X+Y) of 1M Ca (NO2)3.  After 10 min 

incubation at room temperature and brief centrifugation supernatant was discarded and 

coated gold was resuspended in 100 µl of absolute ethanol. 25 μl of plasmid/gold 

suspension were pipetted onto each macrocarrier disk. Leaves were bombarded after 

complete evaporation of ethanol using the Biolistic PDS1000-He Particle Delivery System 

from BioRad - 1100 psi, 1/4" gap. 
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4 RESULTS  

4.1 Species-specific differences in the repair of double-strand breaks by 

NHEJ in Arabidopsis and tobacco 

4.1.1 Cloning procedure of pGUS231 

Plasmid pGUS23 is a pUC7 derivative that carries the β-glucuronidase ORF under the 

control of the 35S promoter (Puchta and Hohn, 1991). Two oligonucleotides 231S and 

231AS  were designed (Figure 4.1.). After annealing specific polylinker was inserted into 

Acc65I site of pGUS23 between 35S promoter and ORF of ß-glucuronidase gene. 

 

231S

231AS

CATGCGGGCCCTTAATTAACCGCGGAGGCCTGTTAACATCGATACCGGTTCTAGA
GTACGCCCGGGAATTAATTGGCGCCTCCGGACAATTGTAGCTATGGCCAAGATCT

5'GTACAGCATGCGGGCCCTTAATTAACCGCGGAGGCCTGTTAACATCGATACCGGTTCTAGA3'

5'GTACAG 3'
                 TCATG-5’

5’GTACTTCTAGAACCGGTATCGATGTTAACAGGCCTCCGCGGTTAATTAAGGGCCCGCATGC3’

C

annealing

 
 

Figure 4.1. Cloning polylinker for insertion in pGUS23. 

 

 

The polylinker contains recognition sites for 9 different restriction enzymes (Table 4.1.). 

Insert of the polylinker into the pGUS231 in 3 plasmid was proved by restriction with 

Acc65I, SphI and XbaI (Figure 4.2.).   
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Restriction enzyme Sequence for cleavage site Kind of restricted ends 

SphI GCATGC 
CGTACG 

5′- overhangs 

ApaI GGGCCC 
CCCGGG 

5′- overhangs 

PacI TTAATTAA 
AATTAATT 

5′- overhangs 

SacII CCGCGG 
GGCGCC 

5′- overhangs 

StuI AGGCCT 
TCCGGA 

blunt end 

HpaI GTTAAC 
CAATTG 

blunt end 

BspDI ATCGAT 
TAGCTA 

3′- overhangs 

AgeI ACCGGT 
TGGCCA 

3′- overhangs 

XbaI TCTAGA 
AGATCT 

3′- overhangs 

 

Table 4.1. Types of restriction sites in polylinker, inserted in pGUS23. 

 

From the resulting clone pGUS231 (Fig. 4.3.) plasmid DNA was prepared by Qiagen 

plasmid Maxi Kit and then linearized using one of the restriction enzymes. Completion of 

digestion was tested by retransformation of the linearized plasmid DNA into E. coli. For 

plant bombardment experiments only plasmid preparations were used in which the number 

of colonies was decreased by more than 99% compared with untreated plasmid 

preparation. 

1  2   3       4   5   6       7   8  9
Figure 4.2. Identification of 3 clones of 
pGUS231 plasmid (clone 1 - lines 1,4,7; clone 2 
- 2,5,8 and  clone 3 - 3,6,9) by restriction with 

65I (1-3), I (4-6) and I (7-9). Acc Sph Xba
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Figure 4.3. The plasmid pGUS231. The 35S promoter and open reading frame (GUS) of 

ß-glucuronidase cassette are indicated as well as the cloned polylinker used for this study. 

 

4.1.2  Stability of linearized plasmid DNA in Arabidopsis and tobacco 

To test the hypothesis that the differences found in DSB repair between Arabidopsis and 

tobacco are due to differences in the processing of DNA ends it was decided to test the 

stability of plasmid DNA transformed into leaves cells of both organisms. For this purpose 

four different restriction sites within the plasmid pGUS231 were chosen - XbaI and StuI  in 

the polylinker of plasmid pGUS231 between 35S promoter and ß-glucuronidase ORF and  

SmaI and AatII which cut in the pUC backbone of pGUS231 (Figure 4.4). Thus all 

different kinds of DNA restricted ends could be tested: StuI and SmaI, result in linearized 

plasmid DNA with blunt ends, AatII results in linearized DNA with 5’-overhangs and XbaI 

results in linearized DNA with 3’-overhangs.  
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p U C 7  G  U  S 

XbaI I  AatII
 

  (3‘) 
35S 

 SmaI
 

Figure 4.4. The plasmid pGUS231. The promoter and open reading frame of the ß-     

glucuronidase expression cassette are indicated as well as the recognition sites of 

restriction enzymes applied for study stability of linearized plasmid DNA in Arabidopsis 

and tobacco. 

 

4.1.2.1 Particle bombardment of linearized pGUS231 into Arabidopsis  and tobacco 

leaves   

To transfer the DNA into tobacco and Arabidopsis leaves particle bombardment was used 

(Seki et al., 1999).  Gold particles (1 µm diameter) were covered with linearized pGUS231 

DNA. For each shooting ~200 ng plasmid DNA was used. Leaves were bombarded using 

the Biolistic PDS1000-He Particle Delivery System from BioRad - 1100 psi, 1/4" gap. To 

avoid variation due to differences in the DNA preparations in all cases the same batch of 

the DNA-gold preparation was used simultaneously for bombardment of Arabidopsis and 

tobacco cells. For this purpose leaves of 8 week old tobacco seedlings and leaves of 6 

week old Arabidopsis seedlings, both in a similar phase of their development, were 

cultured for one day on CIM medium and then bombarded with gold particles coated with 

DNA in parallel. Then, the leaves were cultivated for two days on CIM medium before 

further analysis on the stability of the transferred DNA either by Southern blotting or by 

transient expression studies was performed. 
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4.1.2.2 Southern blot analysis of DNA extracted from leaves after biolistic 

transformation  

In a first set of experiments plasmid stability was analysed by Southern blotting. To 

elucidate how different types of breaks influence the stability of a DNA molecule in plant 

cells, pGUS231 with 3’-(XbaI), 5’-(AtaII) overhangs or blunt ends (SmaI, StuI) was 

prepared. After incubation for two days the leaves were harvested and total DNA was 

extracted. This DNA was digested overnight with the restriction enzyme HindIII that has 

no recognition sequence within pGUS231. After gel electrophoresis and Southern blotting 

respective membrane was hybridised with a plasmid-specific probe under high stringent 

conditions. The obtained radioactive signals on the blot were quantified by the use of a 

phosphoimager. 

 

4.1.2.3 Indications for differences in DNA end processing in Arabidopsis and tobacco 

The intensity of two kinds of signals were determined – the signal of the linearized plasmid 

(see bracket a in Figure  4.5.) and signal of degradated plasmid (see bracket b in Figure 

4.5).   

The signal of the linearized plasmid DNA was set into relation to the smear produced by 

digested DNA, in the same lane (relation shown in Figure 4.6). The data obtained from 

tobacco and Arabidopsis were then set into relation. In pilot experiments different 

incubation times of the leaves after bombardment were tested. After 8, 24 and 48 hours 

besides degraded DNA the linearized plasmid band was clearly visible for both plant 

species, whereas after 72 hours the resulting band became too weak for a reliable 

quantification. For further analysis we therefore chose the longest possible incubation 

period for which a reliable quantification could be performed (two days). In general the 

intensity of the linear band was between 1 and 5 % of the total intensity of the signal in the 

respective lane. These percent values obtained for tobacco and Arabidopsis were then set 
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into relation. E.g. if in case of a particular experiment the linearized band represented 3 % 

of the total signal intensity in tobacco and 2 % of the total signal intensity in Arabidopsis, a 

ratio of 1.5 was determined.  Thus any value over 1 indicates that the full-length linear 

DNA was more stable in tobacco than in Arabidopsis. The higher the values the more 

linear plasmid molecules remained undegraded in tobacco in comparison to Arabidopsis. A 

value of 2 would indicate that twice as much linear plasmid molecules remained 

undegraded in tobacco than in Arabidopsis. Series of experiments were performed using 

differently restricted plasmids. For each restriction enzyme nine independent experiments 

are depicted in Table 4.2. In spite of quite large variation between single experiments, 

which are typical for transient transformation assays (e.g. Puchta and Hohn, 1991), our 

results clearly demonstrate that, independent of the respective DNA end, in most cases (29 

out of 36) the linearized DNA was less degraded in tobacco than in Arabidopsis (Table 

4.2). Linearized plasmid DNA was on average 1.4 to 1.9 times more stable in tobacco than 

Arabidopsis. No major differences between blunt and overhanging DNA ends could be 

detected (Table 4.2). However, due to the fact that the subtraction of the standard 

deviations from the means, given in Table 4.2, result in only two of four cases in a value 

above 1, these results can only be taken as a first indication of differences in processing of 

DNA molecules in the two plant species and needs to be further confirmed by transient 

expression analysis. 
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Figure 4.5. Representative Southern blot of DNA extracted from leaves two days after 

biolistic transformation with linearized DNA of the plasmid pGUS231. After isolation the 

DNA was restricted with HindIII, blotted and hybridised with 32P labelled pGUS231. The 

intensity of the signals was determined by the use of a phosophoimager. The linear band 

(a) was put into relation with the smear resulting from degraded DNA (b). In lanes 1-3 

Arabidopsis DNA and in lanes 4-6 tobacco DNA was loaded. Lanes 1, 4 : DNA of plant 

leaves bombarded with pGUS231 restricted with XbaI; Lanes 2, 5: DNA of plant leaves 

bombarded with pGUS231 restricted with SmaI; Lanes 3, 6: DNA of plant leaves 

bombarded with pGUS231 restricted with AtaII. 
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C.                                                              D. 

Figure 4.6. Relation between signal of the linearized plasmid band (see bracket a in 

Figure  4.5.) to the signal of the degradated plasmid smear (see bracket b in Figure  

4.5.) in Arabidopsis   and tobacco   A. XbaI; B. StuI; C. SmaI; D. AatII 
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XbaI 

3’-overhang 

StuI 

blunt 

SmaI 

blunt 

AtaII 

5’-overhang 

2.48 2.25 0.96 2.64 

1.88 0.97 1.32 0.63 

1.70 2.80 2.17 0.97 

1.28 0.94 1.00 1.95 

1.52 1.17 1.64 1.74 

1.92 2.63 2.15 1.48 

0.63 3.15 1.54 1.86 

1.46 1.55 1.18 1.23 

1.54 1.34 1.75 0.46 

1.60 + 0.50 (9) 1.91 + 0.92 (9) 1.52 + 0.45 (9) 1.42 + 0.66 (9) 

 

Tabl. 4.2. The relative stability of linearized DNA molecules of the plasmid pGUS231 in 

leaves cells of tobacco in relation to Arabidopsis. 

  
  

 

4.1.3 Study of transient expression in Arabidosis and tobacco 

 
The previous analysis demonstrated that DNA molecules are degraded to different extents 

in tobacco and Arabidopsis. However, the results obtained above could be due to 

differences in the  activity of DNA exo- or endonucleases. To further clarify the nature of 

the nuclease-specific differences a transient expression assay after biolistic bombardment 

of Arabidopsis and tobacco with linearized pGUS231 was performed. The idea was that in 

case of endonucleolitic degradation, there should be no difference in the relative rate of 

transient expression of marker gene between Arabidopsis and tobacco irrespective where 

the break was induced in the plasmid molecule. However, in case of exonucleolitic 

degradation different positions of the break were expected to reveal differences between 

the two species. The closer the break site is to a DNA sequence required for expression the 
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more the activity should be reduced. Therefore on one side the XbaI and StuI restriction 

sites that were lying between promoter and ORF of the ß-glucuronidase gene and on the 

other the ScaI site, that is located within the pUC backbone (Figure 4.7) were used.  

 

          

 

p U C 7  G  U  S 

XbaI StuI  ScaI 
 

  (3‘) 
35S 

 

 Figure 4.7. The plasmid pGUS231. The promoter and open reading frame of the ß-         

glucuronidase expression cassette are indicated as well as the recognition sites of 

restriction enzymes applied for study transient expression in Arabidopsis and tobacco. 

 

 

Whereas in case of XbaI and StuI exonucleolitic degradation of less than 100 bp at each 

end would most probably result in a loss of function of the ß-glucuronidase gene, in case of 

ScaI only degradation of more than 1 kb on one or more than 2 kb on the other would 

result in a loss of function of the enzyme. As both StuI and ScaI digestion result in blunt 

ends, not the nature of the break itself but only the position of the break differs between the 

respective DNA molecules. In contrast, XbaI-digested (3’ ends) and StuI-digested (blunt 

ends) DNAs differ strongly in the nature of the DNA ends but hardly in the position of the 

break site. Thus we were able to test whether the respective position or/and the nature of 

the break site would influence the outcome of the reaction. 
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After plasmid linearization with respective enzymes the one was transformed into 

Arabidopsis and tobacco leaves using the Biolistic PDS1000-He Particle Delivery System 

(4.1.2.1.). Bombardment with circular plasmid DNA was included as transcription control.                         

Histochemical staining of leaves material of both species was done (Figure 4.8). The 

number of blue sports per cm2 were calculated for leaves transformed with circular, non 

digested pGUS231 and for leaves transformed with pGUS231 digested with one of 

enzymes - XbaI, StuI or ScaI. Data are shown in Table 4.3. 

 

1a
1b

2a 2b

 

Figure 4.8. Transient GUS expression in Arabidopsis and tobacco leaves. 1a and 1b: 

Arabidopsis and tobacco leaves transformed with circle pGUS231 plasmid; 2a and 2b: 

Arabidopsis and tobacco leaves transformed with pGUS231 digested with XbaI. 

 

 



     4. Results                                                                                                                        46  

  
 
 

Experi- 
ments 

Plasmid 
 

Species Spots per 
cm2 

Relation to circular 
pGUS231 

Relation 
tobacco/Arabidopsis 

tobacco 260   circular 
 Arabidopsis 44,2   

tobacco 70 0.27 1.40 XbaI 
 Arabidopsis 8.4 0.19  

tobacco 240 0.92 1.03 

1. 

ScaI 
Arabidopsis 39.4 0.89  
tobacco 500   circular 

 Arabidopsis 131   
tobacco 122.2 0.24 2.00 XbaI 
Arabidopsis 15.2 0.12  
tobacco 290 0.58 1.14 

2. 

ScaI 
Arabidopsis 67.4 0.51  
tobacco 157.5   circular 

 Arabidopsis 52.7   
tobacco 24.6 0.16 1.60 XbaI 
Arabidopsis 5.4 0.10  
tobacco 73 0.46 0.50 

3. 

ScaI 
Arabidopsis 48.5 0.92  
tobacco 103   circular 

 Arabidopsis 40   
tobacco 30.3 0.29 1.38 XbaI 
Arabidopsis 8.5 0.21  
tobacco 86.4 0.83 0.71 

4. 

ScaI 
Arabidopsis 47 1.17  
tobacco 185.7   circular 

 Arabidopsis 34.7   
tobacco 28.1 0.15 2.10 

5. 

XbaI 
Arabidopsis 2.29 0.07  
tobacco 260   circular 

 Arabidopsis 44.2   
tobacco 73 0.28 1.50 XbaI 
Arabidopsis 8.4 0.19  
tobacco 120 0.46 0.50 

6. 

ScaI 
Arabidopsis 39.4 0.89  
tobacco 292.8   circular 

 Arabidopsis 132.7   
tobacco 158 0.54 1.23 ScaI 
Arabidopsis 58.6 0.44  
tobacco 25 0.085 2.43 

7. 

StuI 
Arabidopsis 4.6 0.035  
tobacco 67.7   circular 

 Arabidopsis 9.3   
tobacco 19.3 0.29 2.4 

8. 

StuI 
Arabidopsis 1.17 0.12  
tobacco 368.5   circular 

 Arabidopsis 72   
tobacco 15.5 0.040 2.35 

9. 

StuI 
Arabidopsis 1.2 0.017  
tobacco 185.7   circular 

 Arabidopsis 34.7   
10. 

StuI tobacco 28.1 0.152 2.15 
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  Arabidopsis 2.29 0.0706  
tobacco 258   circular 

 Arabidopsis 55   
tobacco 168.5 0.654 2.18 

11. 

StuI 
Arabidopsis 17 0.300  
tobacco 280   circular 

 Arabidopsis 120   
tobacco 11.5 0.0410 1.97 

12. 

StuI 
Arabidopsis 2.5 0.0208  

 
Table 4.3. Number of blue spots per cm2  and frequency of ß-glucuronidase restoration  

after bombardment of linearized DNA molecules of the plasmid pGUS231 in leave cells of 

tobacco and Arabidopsis. 

 

The average number of spots per cm2 of both plant species was set in relation to each other. 

The value obtained representing the efficiency of expression of the respective construct in 

the two plant species. In general independent of plant species the highest numbers of spots 

were detected after shooting with circular pGUS231, followed by the plasmid cut outside 

of the marker gene. Religation of pGUS231 harbouring sticky ends occurred quite 

efficiently, depending on experiment in the range of 10 to 30% of the molecules the ORF 

was restored, whereas religation of the blunt-ended plasmid gave in most experiments 

lower rates. All values were above 1%, the putative maximal “background” value, due to 

traces of undigested plasmid DNA in the preparation, as determined by retransformation of 

the respective linearized plasmid preparations into E. coli. To directly compare the results 

obtained from tobacco and Arabidopsis the values obtained with the linearized plasmid 

molecules were set into relation to the circular ones (Table 4.3, second last row). By this 

procedure values were obtained that were independent of transcription-based differences 

between tobacco and Arabidopsis. These values were then set into relation to one another 

(Table 4.3, last row). E.g., a value of 2 indicates the presence of twice as many functional 

ß-glucuronidase genes in tobacco than in Arabidopsis after bombardment with the 

respective DNA. In repeated experiments (for the statistical evaluation see Table 4.4) this 
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relation was found to be around 1 in case of the ScaI digested pGUS231 and around 2 for 

both XbaI and StuI digested pGUS231. This indicates that in case of a break between 

promoter and ORF on average two times more functional ß-glucuronidase expression 

cassettes were restored in tobacco than in Arabidopsis irrespective of the nature of the 

DNA ends. The calculated standard deviations indicate that the detected differences are 

highly significant. 

 

 

Kinds of plasmid linearization 

       StuI 

 

       ScaI 

 

XbaI 

2.43 1.03 1.40 

2.40 1.14 2.00 

2.35 0.50 1.60 

2.15 0.71 1.38 

2.18 1.23 2.10 

1.97 0.50 1.50 

2.25+0.18 (6) 0.85+0.32 (6) 1.66+0.31 (6) 

 

Table 4.4. The relative expression of ß-glucuronidase gene after bombardment of 

linearized DNA molecules of the plasmid pGUS231 in leave cells of tobacco in relation to 

Arabidopsis. In the bottom line the means and standard deviations are given. 

 

These results demonstrate that if the break is near to the marker gene (StuI/XbaI) ß-

glucuronidase expression is lower in Arabidopsis in comparison to tobacco, in contrast to 

the situation, when break is far from ORF for marker gene (ScaI). 

Thus, DNA ends are less stable in Arabidopsis then in tobacco, at least under our 

experimental condition.  
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4.2 Double-strand break repair by homologous recombination in 

Arabidopsis thaliana 

4.2.1 Cloning procedure 

For the analysis of  the efficiency of homologous DSB repair in the presence of nearby 

homology, the binary vectors pDU.GUS and pIU.GUS were constructed. Standard cloning 

procedures were used (Sambrook et. al., 1989). In pDU.GUS and pIU.GUS, a non-

functional internal fragment of the GUS gene of 1087 nucleotides was cloned in direct or 

inverted orientation to a ß-glucuronidase gene into which in about the middle of the gene a 

linker with I-SceI and XhoI sites was incorporated rendering it non-functional. For creation 

of the I-SceI restriction site, a specific polylinker with the sequence: 

5’-CTCGAGATTACCCTGTTATCCCTAGTCGAC-3’ was cloned into the MscI–

digested pGUS23 vector (Puchta and Hohn, 1991) (Fig.4.9),  resulting in the plasmid 

pGUS23I, carrying I-SceI restriction site inside of the non-functional GUS gene. 

Homologous overlaps of 537 and 550 bp, interrupted by the linker, are shared by both GUS 

sequences. The SalI site within the linker was removed by cutting the plasmid and 

consecutive blunting of the obtained ends using the Klenow enzyme followed by 

religation. The obtained plasmid was cut by Acc65I, treated with Klenow enzyme for 

filling in and religated. Via PCR, using p35SX and pTH primers from the resulting 

plasmid pGUS23I+, a fragment containing GUS gene interrupted by I-SceI was isolated 

and cloned into XbaI and HindIII sites of plasmid pCH (Tinland et al., 1994) – resulting in 

the plasmid pCH23 (Fig.4.10). Subsequently, the non-functional internal fragment of the 

GUS gene (1087 nucleotides) was amplified from pGUS23 with pHZD and pRZD primers 

and inserted in the Acc65I site of pCH23, resulting pCH23I. The orientation of the 

fragment was determined  by NotI digestion. Two plasmids were identified containing a 

recombination substrate with part of the GUS gene in direct (pDU.GUS) and in inverted 

(pIU.GUS) orientation (Fig.4.11).  
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G     
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Figure 4.9. Scheme for construction pGUS23I+ carrying a I-SceI restriction site inside of 

the non-functional GUS gene. 
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Hygrom XbaI
HindIII

Acc65I

U       SG     U
I- ISce

U       

 

Figure 4.10.  Construction of pCH23I vector. (For details see the text). 

 

G   U U   SU G   U U   SU HygromHygrom

1,1 kb

G    U    SG    U    SHygrom

~2,8 kb

pIU.GUS

pDU.GUS 

RB

RB

LB

LBLB

I -ISce

U

 Figure 4.11. Schematic representation of the recombination substrate and structure of the 

expected product of the homologous recombination.  
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4.2.2 In planta transformation of Arabidopsis thaliana  by vacuum infiltration 

The plasmids carrying recombination substrate were transferred into Agrobacterium 

tumefaciens via electroporation. The resulting strains containing the pDU.GUS and 

pIU.GUS constructs, were used to transform five-week-old Arabidopsis thaliana plants 

ecotype Colombia-O  by vacuum infiltration (see 3.1.3).   

 

4.2.3 Segregation analysis and characterisation of T-DNA insertions in transgenic lines.  

24 and 21 individual hygromycin resistant plants were obtained from transformations with 

pIU.GUS and pDU.GUS, respectively. The initial hygromycin resistant plants are referred to  

hereafter as F1. The progeny obtained from a F1 transgenic plant (by self-cross) will be 

referred to as F2. F2 plants were analysed for the integration of the foreign gene by 

calculating the ratio of the number of hygromycin tolerant plants to the number of non-

tolerant plants. Under selective conditions, progenies of nine and nine lines of F2 plants 

developed in the proportion of three resistant to one sensitive, that is characteristic for the 

segregation of a single locus (3:1).  From each of the selected lines, at least 10 F2 resistant 

plants were grown in soil.  

To confirm the presence and number of T-DNA insertions, genomic DNA from 

nontransformed (wild type Col-O) and transgenic plants was extracted. 10 µg of DNA was 

digested with HindIII, fractionated in an agarose gel, blotted and the resulting Southern Blot 

was hybridised with the [α-32P]-dCTP-labeled 2kb KpnI/SacI fragment of the pGUS23 

plasmid, harbouring the GUS gene. The results, shown in Figure 4.12 indicated, that two of 

the nine pDU.GUS lines contained one copy of insert (lines 4 and 6 in Figure 4.12) and three 

from nine pIU.GUS lines contained one copy of insert (data not shown). 
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  1         2         3           4          5           6           7           8          9        Col-O       

 

Figure 4.12. Southern blot analysis for the  presence and number of T-DNA insertions. 

10 µg of genomic DNA from the wild type and transgenic lines were digested over-night 

with HindIII and subsequently fractionated in an agarose gel (0.8%). The DNA was blotted 

onto a nylon filter and hybridised with radioactive labelled GUS probe. Lines 1-9 – plant 

DNA from transgenic lines pDU.GUS; line Col-O – DNA from wild-type Colombia-O 

Arabidopsis thaliana..  

 

4.2.4 Induction of homologous recombination via transformation of seedlings 

DSBs by I-SceI expression in plants can be induced in two ways: either by transient 

expression via transformation of seedlings or by stable transformation of the I-SceI 

expression cassette in plants. 

To induce recombination at the cotyledon stage of the transgenic lines with the recombinant 

substrate, homozygous for the transgene seedlings were inoculated with an Agrobacterium 

strain pZpp-ISceI, carrying the I-SceI open reading frame under the control of 35S promoter 

on its T-DNA to achieve transient expression of the enzyme (Puchta et. al., 1996). In parallel 

experiments seedlings were inoculated with the same Agrobacterium strain devoid of binary 

vector (pPM6000k). To identify putative homologous recombination events, seedlings were 

histochemically stained for GUS expression after two days of incubation. Numbers of blue 
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sectors (recombination events) in transformed and nontransformed plants were calculated. 

Table 4.5. shows the number of sectors per seedling and enhancement of recombination 

events.  

Sectors per seedling Enhancement of Transgenic line 
without 

inoculation 
after inoculation 

with 
pPM6000k 

after inoculation 
with 

pZpp-ISceI 

intrachromosomal 
homologous 

recombination 
pDU.GUS 6 0.53 

0.87 
1.1 

0.1 
2.5 
4.6 

0.18 
2.1 
3.7 

0.3 
2.4 
3.4 

pDU.GUS 8 0.95 
2.0 
1.4 

0.47 
2.1 
1.44 

0.94 
3.14 
1.6 

0.99 
1.27 
1.1 

pIU.GUS 1 1.29 5.68 3.14 2.4 
pIU.GUS 7 0.73 

4.2 
0.54 
6.6 

0.7 
5.6 

0.9 
1.3 

pIU.GUS 8 0.54 
2.4 
2.05 

0.98 
1.4 
4.1 

1.41 
1.4 
4.1 

2.6 
0.58 

2 
 
Table 4.5. Recombination frequencies in different transgenic lines with and without 

induction of DSBs by seedling inoculation. 

 

Our experiments do not indicate a strong recombination-enhancing effect by the transient  

expression of  I-SceI. 

This can be due to the fact that owing to the our transformation procedure only in few cells 

of the seedlings I-SceI was expressed. To achieve expression of the enzyme as much as 

possible an approach with the stable transformation of expression cassette was done.   

 

4.2.5 The use of different kind of recombination substrate for the analysis of 

homologous DSB repair.    

For analysing efficiency of different kinds of homologous DSB repair in the presence of 

nearby homologous sequences two addition transgenic Arabidopsis lines were used. Line 

pDGU.US1 and pDGU.US2 (A. Kirik, PhD thesis) contain a construct, in which I-SceI site 
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is flanked by two halves of ß-glucuronidase gene harbouring an overlap of 557 bp (Tinland 

et. al, 1994). See Figure 4.13.  

 

RB G   U U   SG   U U   S Bar

I -ISce

G    U    SG    U    S
2,8 kb

RB

LBLB

LBLB

 

 Figure 4.13. Schematic representation of the recombination substrate line pDGU.US and 

structure of the possible recombination product.  

 

4.2.6 Determination of recombination frequencies with and without DSB induction in vivo. 

To study homologous recombination after induction of DSB in vivo, lines of transgenic 

plants that contain the three different recombination substrates, were crossed with 

homozygous plants from line pDISceI1. This line was produced by Agrobacterium-mediated 

transformation with the binary plasmid pDISceI for plant expression of an artificial I-SceI 

ORF (Puchta et. al., 1993) under  the control of the DMC1 promoter and gentamycin as a 

selective marker (Klimyuk and Jones, 1997).  

The obtained progeny was grown for two weeks on germination medium with antibiotics 

and then subjected to a histochemical staining using X-Gluc to determine the number of 
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recombination events. At the same time, seedlings of transgenic plants which are  

homozygous for the recombination substrates, were stained to determine the level of DNA 

recombination without DSB induction. Results  obtained for F1 generation after crossing are 

depicted in Table 4.6. and presented in Figure 4.14. 

Line  Number of 
seedlings 

Number of blue 
sectors 

Sectors per 
seedling 

Enhancement 

IU.GUS 7 39 40 1.03  
IU.GUS 7 x 
DISceI 

29 373 12.86 12.49 

IU.GUS 8 32 60 1.88  
IU.GUS 8 x 
DISceI 

21 711 33.86 18.01 

DU.GUS 6 37 21 0.57  
DU.GUS 6 x 
DISceI 

25 381 15.24 26.7 

DU.GUS 8 32 39 1.22  
DU.GUS 8 x 
DISceI 

28 400 14.28 11.7 

DGU.US1 31 47 1.5  
DGU.US1 x 
DISceI 

22 2380 108.2 72.13 

DGU.US2 17 12 0.7  
DGU.US2 x 
DISceI 

14 894 63.86 91.2 

 
Table 4.6. Determination of recombination frequencies in different transgenic lines with and 

without induction of DSB. 
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Figure 4.14. Enhancement of somatic recombination frequency by in vivo DSB induction in 

different F1 transgenic lines containing a recombination substrate.  

 

Without DBS-induction all lines with different recombination substrates revealed a similar 

number of sectors in a range from 0.57 to 1.88 per seedling. Whereas in about half of the 

seedlings no recombination event could be detected, in others from 1 to 5 blue sectors could 

be identified (Table 4.7.). No major differences were found for the three particular 
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substrates. Different lines harbouring the same construct did not differ more than by a factor 

of two. The means of the three lines harbouring the same kind of transgene conformation 

differed by less than a factor 2 for the three constructs. Thus, without DSB induction no 

significant differences between the three recombination substrates could be detected.  

After crossing with the line pDISceI-1 the number of blue sectors increased drastically 

(Figure 4.15). The presence of the I-SceI expression cassette resulted in about ten to thirty 

times more sectors for DU.GUS and IU.GUS and up to almost one hundred times more for 

DGU.US. As in the seedlings from the crossings the recombination substrates are present in 

a hemizygous state the rate of induction might be underestimated by a factor of two. It has 

been shown before (Puchta et. al., 1995) that the frequency spontaneous intrachromosomal 

recombination is reduced to about half in hemizygous in comparison to homozygous plants, 

which have been used as a control in the current experiment. For line DGU.US 1 between 55 

and 210 and for line DGU.US 2 between 34 and 84 blue sectors were detected per individual 

seedling. Similarly to the experiment without DSB induction, no major difference could be 

found between the lines harboring the repeat in direct or inverted orientation. Also the 

distribution of numbers of recombination events between the individuals was similar for 

these lines. Between 6 and 22 blue sectors were detected per plant for lines DU.GUS 6, 

DU.GUS 8 and IU.GUS 7. Only in the case of line IU.GUS 8 the values were somewhat 

higher (9 to 59 sectors) (Table 4.7). If we compare the distribution of non-induced to 

induced recombination events of line IU.GUS 8 with DU.GUS 6, DU.GUS 8 and IU.GUS 7 

the χ2 values (1.607, 3.297 and  1.911) indicate that the differences are statistically not 

significant (rejection p<0.05). This clearly demonstrates, that the efficiency of gene 

conversion is not influenced by the orientation of the donor sequence in respect to the 

acceptor. In contrast, a comparison of IU.GUS 8 with lines DGU.US 1 and  DGU.US 2 

reveals statistical significant differences (p<0.0005; χ2 values 37.777 and 23.897), whereas 
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the two DGU.US lines do not differ significantly between themselves (p>0.6 , χ2 value 

0.245).  

 

Line Number of 
blue sectors 

Number of 
seedlings 

Sectors per 
seedling 

Enhancement 

DGU.US1 0 
1 
2 
3 
4 
5 

14 
6 
3 
2 
1 
5  

 

   47/31=1.5  
DGU.US1 x DISceI 55 

62 
63 
65 
75 
85 
87 
90 
95 
105 
108 
110 
150 
180 
200 
210 

1 
1 
1 
3 
1 
2 
1 
1 
1 
2 
1 
2 
1 
1 
1 
2 

  

   2380/22=108.2 72.13 
DGU.US2 0 

1 
2 
3 

8 
7 
1 
1 

  

   12/17=0.7  
DGU.US2 x DISceI 34 

45 
57 
58 
59 
62 
65 
70 
74 
82 
84 

1 
1 
1 
1 
1 
1 
3 
1 
2 
1 
1 

  

   894/14=63.86 63.86 
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IU.GUS 7 0 
1 
2 
3 
4 

19 
10 
3 
4 
3 

  

   40/39=1.03  
IU.GUS 7 x DISceI 5 

6 
7 
9 
10 
11 
12 
13 
14 
15 
17 
18 
19 
20 
22 

2 
1 
1 
1 
6 
2 
2 
3 
2 
2 
1 
1 
1 
2 
2 

  

   373/29=12.86 12.49 
IU.GUS 8 0 

1 
2 
3 
4 
5 

12 
5 
3 
3 
5 
4 

  

   60/32=1.88  
IU.GUS 8 x DISceI 9 

18 
28 
29 
32 
35 
37 
39 
44 
48 
59 

1 
1 
2 
3 
3 
3 
3 
2 
1 
1 
1 

  

   711/21=33.86 18.01 
DU.GUS 6 0 

1 
2 
3 
4 

26 
5 
3 
2 
1 

  

   21/37=0.57  
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DU.GUS 6 x DISceI 6 
9 
12 
13 
14 
15 
16 
18 
19 
20 

1 
1 
2 
2 
3 
3 
5 
4 
3 
1 

  

   381/25=15.24 26.7 
DU.GUS 8 0 

1 
2 
3 
4 
5 

16 
6 
3 
3 
2 
2 

  

   39/32=1.22  
DU.GUS 8 x DISceI 6 

7 
10 
11 
12 
13 
14 
15 
16 
18 
19 

1 
1 
1 
1 
2 
2 
6 
5 
4 
2 
3 

  

   400/28=14.28 11.7 
 
Table 4.7. Distribution of recombination events in Arabidopsis seedlings carrying a 

recombination substrate without and with induction of DSBs. 

 
 
4.2.7 Molecular analysis of recombinants 

To demonstrate that the restoration of the ß-glucuronidase activity is indeed due to 

homologous recombination, events were analyzed on a molecular level. A ß-glucuronidase 

assay under nondestructive conditions was performed on seedlings from the third generation 

after crossing. Tissue that due to light blue staining was putatively identified as recombinant, 

was cut out of the respective seedlings and transferred to GM harboring plant hormones so 

that the recombinant material could be propagated via callus culture for further analysis.                                                                                                                                                                                                                                   
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Figure 4.15. ß-Glucuronidase assay of transgenic seedlings harbouring a recombination 

substrate before and after crossing with the line expressing DI-SceI1. Recombination events, 

that, due to HR, restore the marker gene, result in blue staining of the corresponding cell and 

its progeny. On the left - seedlings of the lines IU.GUS 7 (A), DGU.US 1 (C) and DU.GUS 

8 (E), and on the right - seedlings of the same lines crossed with line D-ISceI1, IU.GUS 7 X 

DISceI (B); DGU.US 1 X DISceI (D); DU.GUS 8 X ISceI (F). 
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As the efficiency of regeneration with this procedure is quite low (less than 1% of the calli, 

Swoboda et. al., 1994) we used for this analysis also progeny from several crossed lines that 

harbored both the recombination substrate and the I-SceI expressing cassette. These plants 

showed a similar enhancement of recombination as the parental lines. DNA was extracted 

from callus material. When staining indicated a recombination event early in development 

(bigger parts of the plants stained blue) in some cases such seedling were transferred directly 

to soil for getting offspring. After propagation part of the obtained plant material was stained 

with X-Gluc to confirm expression of the recombined GUS gene and lines which had 

completely blue plants were selected. From another part DNA was extracted for Southern 

blot and PCR analysis. The analysis sustained in all cases that the restoration of the marker 

was due to HR. Results of the molecular analysis for all three constructs are given below. 

 

 
 
4.2.7.1 PCR analysis of recombinants  

Via PCR the restoration of the ß-glucuronidase gene could be demonstrated. 

In case of line and IU.GUS 7 R1, calli were completely blue after several hours staining, 

indeed that the material was propagated from cell with single recombination event. The 

remaining part of the calli was used for DNA extraction and the DNA was digested with I-

SceI. Using this material, a fragment of the GUS gene (1,9 kb) was amplified by PCR with 

primers binding outside of the Acc65I site (pGUSR+GUSHIN2) (Figure 4.16.). The product 

of the reaction was extracted from gel and shortly reamplified (20 cycles). Restriction of this 

PCR product with I-SceI (XhoI) indicated that the I-SceI restriction site was absent in the 

part of PCR templates. For further characterization, the amplified band was cloned into the 

SmaI site (blunt ends) of the pUC19 vector. Restriction analysis indicated that a similar 

number of plasmid clones contained inserts with and without I-SceI site. Sequence analysis 

(with primers pRZD and pHZD ) demonstrated that the removal of the I-SceI was indeed 
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correlated with the restoration of the functional GUS gene, whereas the original transgene 

sequence, including the I-SceI, site was conserved in the other plasmids (Figure 4.16.).                                

ISce-I

G    U    SHygromUU
1,1kb

LBLB RB

1,1kb

pGUSR GUSHIN2

pRZD

pHZD inGUSh inGUSr1,5 kb
1.9 kb

pRZD

pHZD

XhoI

 

Figure 4.16. Schematic drawing of a line with the recombined substrate with pairs of 

primers and sizes of possible PCR products.  

 

DNA from the original line (IU.GUS 7) was also amplified and cloned in the same way into 

pUC19 vectors. For sequence analysis the PCR products from amplification with pRZD and 

pHZD primers was used. 

The analysis detected that in case of the original line (line IU.GUS 7) the I-SceI restriction 

site was still present with its original boundaries, whereas for the recombined line (line 

IU.GUS 7 R1) – the I-SceI restriction site had been removed and the sequence of GUS gene 

was restored. 

A similar analysis was performed for recombination events of line IU.GUS 8 with an 

identical outcome. We were able to regenerate plant material from four recombination 

events of line IU.GUS 8. In all four cases, PCR followed by sequence analysis revealed that 

the marker gene was restored by a gene conversion event that removed the linker sequence 

within the GUS gene.  
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As the outcome of the recombination reaction with the substrate DU.GUS was expected to 

be identical to the one of IU.GUS, a molecular analysis similar to the one described above 

was performed for the line DU.GUS 8R1. We were able to regenerate two more 

recombination events from line DU.GUS 8R (DU.GUS 8R2 and 3) after DSB induction and 

in both cases restriction of the amplified PCR fragment with XhoI sustained the loss of the 

linker sequence within the GUS gene (Figure 4.17. A and B lines 2, 3, 5). This observation 

could be further confirmed by sequence analysis. 

A                       B

1,9 kb ~1,2 kb
~0,7 kb

1,9 kb

1   2   3   4   5                              1     2    3    4    5  

 

Figure 4.17. A – fragment obtained after a PCR reaction with pGUSR and GUSHIN2 

primers; B – digestion of this PCR products with XhoI. Lines: 1 – IU.GUS 8 R1; 2 - 

DU.GUS 8 R2; 3 - DU.GUS 8 R3; 4 - IU.GUS 8; 5 - DU.GUS 8.  

 

 

4.2.7.2 Southern blotting analysis of recombinants  

To full characterization the recombined lines in detail Southern blot analysis was performed.   

Plant DNA from the original lines and the recombined lines was digested with different 

enzymes and hybridized with a GUS-specific radioactive labeled probe. A schematic 

representation of the expected  fragments in Southern blotting analysis is depicted in Figures 

4.18 whereas Figures 4.19, 4.20, 4.21. and 4.22 shows the result from the blotting 

experiments.  
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The analysis confirmed that the restoration of the marker was due to HR in all three 

recombination substrates.  

Southern blotting of DNA from the original line IU.GUS 8 and from the recombined line 

IU.GUS 8 R1 (Figure 4.20) indicated that  - as expected for a gene conversion event - no 

detectable changes in size of the transgene occurred (lane 1 and 2, HindIII digested DNA). 

We also found no indication for any change within the donor sequences (lane 5 and 6, the 

size of the small Acc65I fragment did not change between parental and recombined line). 

However the XhoI/HindIII digest indicated that the linker sequence was removed due to 

gene conversion (lane 4), resulting in the restoration of the functional GUS gene as detected 

by histochemical staining. IGU.US 8R1 is homozygous for the recombination substrate and 

therefore beside the upper band in lane 4 that could not be restricted by XhoI, two smaller 

bands corresponding to the bands of the same size in IGU.US 8 were also present. Thus, the 

second copy of the transgene did not undergo gene conversion.  

A similar analysis was performed for a DSB-induced recombination event of line IU.GUS 7 

(IU.GUS 7  R1) with an identical outcome (Figure 4.19).  

We were able to regenerate plant material from three more recombination events of line 

IU.GUS 8 X DI-SceI1 (IU.GUS 8 R2, 3 and 4) and one more for line IU.GUS 7 X DI-SceI1 

(IU.GUS 7R2). In all cases, PCR followed by sequence analysis revealed that the marker 

gene was restored by a gene conversion event that removed the linker sequence within the 

GUS gene.  
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Figure 4.18.  Schematic map of the recombination substrates used in this study and 

predicted outcome of the HR reaction. (Details see in text).
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As the outcome of the recombination reaction with the substrate DU.GUS was expected to 

be identical to that of IU.GUS, corresponding analyses were performed for the line DU.GUS 

8. As shown in Figure 4.21, Southern blotting revealed no major changes in the recombinant 

DU.GUS 8R1 in comparison to the parental line DU.GUS 8 as to the transgene construct 

beside the elimination of the inserted linker with the XhoI and I-SceI sites. As in case of the 

recombinant IU.GUS 8 XR1 the analyzed line DU.GUS 8R1 was homozygous for the 

marker construct but only one copy underwent gene conversion. We were able to regenerate 

two more recombination events (DU.GUS 8R2 and 3) and in all cases restriction of the 

amplified PCR fragment with XhoI sustained the loss of the linker sequence within the GUS 

gene. The loss of the complete linker sequence could be confirmed  by sequence analysis. 

In case of the lines DGU.US1 and DGU.US2, restoration of the GUS gene was expected to 

result from a deletion of the interrupting sequence including the I-SceI site. Southern 

blotting of the recombinant line DGU.US1 R1 revealed that this was indeed the case. After 

the recombination event the GUS-specific fragment (HindIII-Acc65I) was reduced in size 

from 3.4 to 2.8 kb (Figure 4.22, lanes 5 and 6; 11 and 12). A similar size reduction is 

indicated by HindIII digest (Figure 4.22, lanes 1 and 2; 7 and 8). The removal of the linker is 

demonstrated by the fact that only the HindIII fragment of the original line, but not of the 

recombination can be restricted by I-SceI (compare Figure 4.22 lane 3 with lane 4 and line 9 

with line 10). 

In addition to the described case six more recombination events (three from line DGU.US 1, 

DGU.US1 1R 2 to 4 and three from line DGU.US2, DGU.US2 1R 1 to 3) could be isolated. 

PCR analysis of the respective lines revealed in all cases that the restoration of the marker 

gene was coupled with the elimination of I-SceI restriction site. 

Thus, the molecular characterisation confirm that the events that lead to the restoration of 

the ß- glucuronidase gene are due to the homologous recombination and this applies for all 

constructs used in this study.    
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5 Discussion 

5.1 The role of NHEJ in genomic DSB repair in different plant species and genome 

evolution in plants 

Double-strand breaks (DSBs) are critical lesions in genomes. Efficient repair of DSBs is 

necessary for the survival of all organisms. In principle, DSBs can be repaired via non-

homologous end joining (NHEJ) or via homologous recombination. Although homologous 

recombination is used for DSB repair in plants (Chiurazzi et. al., 1996; Shalev and Levy, 

1997; Puchta, 1999a; Xiao and Peterson, 2000; Siebert and Puchta, 2002) NHEJ seems to be 

the main mode of DSB repair (for reviews see Puchta and Hohn, 1996, Vergunst and 

Hooykaas, 1999; Gorbunova and Levy, 1999; Mengiste and Paszkowski, 1999). Error prone 

DSB repair may result either in deletions, insertions or various other kinds of genomic 

rearrangements (Pipiras et. al., 1998; Salomon and Puchta, 1998; Jasin, 2000). In plants 

genomic alterations in somatic cells of meristems can be transferred to the offspring (Walbot, 

1996) and are therefore relevant for evolution. Thus, somatic DSB repair might in 

evolutionary terms have an impact on genome size and genome organization.  

The reason for the large differences in the nuclear DNA content of eukaryotes, particularly 

plants, known as “C value paradox”, has been a matter of debate since long (Cavalier-Smith, 

1985; Dove and Flavell, 1988). Even closely related species with similar phenotype may 

significantly differ as to their diploid genome size. One mechanism responsible for these 

differences could be due to a species-specific increase/reduction of repetitive sequences. In 

principle, genomes may become larger via duplications and insertions or smaller via 

deletions. Species-specific spread of retrotransposons was postulated as a main route 

enlarging plant genomes (SanMiguel et. al., 1996; SanMiguel et. al., 1998; Bennetzen and 

Kellog, 1997). Alternatively, deletions might reduce genome size and counterbalance 

enlargements (Petrov, 2001). Recently, an elegant theoretical study (Petrov et al., 2000) has 

demonstrated that deletions of significantly different extension within retroelements yielded 
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species-specific genome size alterations in related insect species over evolutionary time 

periods. It was demonstrated experimentally that the mean size of deletions obtained from 

DSB repair is on average a third larger in Arabidopsis than in tobacco (Kirik et. al., 2000). 

Thus, for plants and insects an inverse correlation between genome size and deletion size was 

found. However, one has to be careful to draw final conclusion from the comparison of only 

two species each, but it is tempting to speculate that the phenomenon might be due to a 

general principle of genome evolution.  

During DSB repair the size of a deletion depends on the processing of DNA ends. If broken 

ends are not religated directly the processing of such ends might result in the loss of DNA at 

the break site (Salomon et. al., 1998; Kirik et. al., 2000). Depending on the efficiency of DNA 

degradation more or less information will be lost. In the current work differences as to the 

stability of linearized plasmid DNA in tobacco and Arabidopsis cells was detected. Although 

the results obtained by Southern blotting indicate that on average plasmid molecules 

transformed into Arabidopsis cells are less stable than in tobacco cells, it of course cannot be 

excluded that this difference might not be caused by degradation in the nucleus, as plasmid 

molecules are also transferred into other compartments of the cell. However, as two other 

assays, that are clearly nuclear-based (chromosomal DSB repair [Kirik et al., 2000] and the 

transient expression assay described in this report) demonstrate a similar difference using 

unrelated methodologies, it is possible to speculate that this is indeed caused by the same kind 

of phenomenon.  

The results presented in the current report indicate that the difference in the processing of 

DNA ends between the two plant species is at least mainly due to an enhanced exonucleolytic 

degradation of DNA in Arabidopsis. If a break was induced between promoter and open 

reading frame of a marker gene the expression level was reduced by a factor of two in 

Arabidopsis in relation to tobacco. This is in contrast to the similar expression levels obtained 

for both species when the break was introduced distantly from the marker gene. Whereas in 
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the first case exonucleolytic digest of few nucleotides would result in destruction of the 

expression cassette, in the latter case the removal of more than thousand base pairs would be a 

prerequisite for the destruction of the ORF. Because endonucleolitic degradation would 

destroy all information on a plasmid at the same rate independent of a preexisting break site, 

no differences should be found in presence of such a nuclease activity. However, since the 

restoration of the ß-glucuronidase ORF in case of the StuI and XbaI restricted plasmid 

requires a ligation step, the data of the expression assay alone do not suffice to discriminate 

between a more efficient exonucleolytic destruction of the marker gene or a less efficient 

ligation reaction in Arabidopsis cells. As Southern blotting revealed differences in the 

degradation of plasmid DNA linearized with the exactly the same enzymes between 

Arabidopsis and tobacco, one can assume that at least most of the effect is due a more 

efficient exonucleolytic degradation of DNA in Arabidopsis. However one question remains: 

What is the reason for the enhanced DNA degradation in Arabidopsis?  This could be either 

due to less active DNA exonucleases or due to the better protection of DNA ends from 

degradation e.g. by DNA end binding factors (Liang et. al., 1996) in tobacco.  

Purposely, the stability of circular plasmid DNA in both plant species was not tested, as this 

approach would not have allowed us to discriminate between exo- and endonucleolytic 

degradation. Linearization of the plasmid DNA by an endogenous endonuclease would be a 

prerequisite of exonucleolitic degradation, however if the plasmid is linearized, exonuclease 

could immediately work on it. Thus, it would be hard to discriminate to which extent what 

kind of enzyme activity would contribute to DNA degradation in Arabidopsis and tobacco. 

Using linearized molecules the work was done with a more defined system as endonucleases 

could work on all DNA molecules immediately after transformation and independent of a 

second reaction.  

Theoretical calculations on the evolution of genome sizes have to take into account the rate of 

duplication and the rate of loss of genomic sequences (Petrov, 2001). DSB repair is one 
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mechanism that may result in sequence deletions. To evaluate the possible role of DSB repair 

in this process one has to take into account two factors: the number of breaks induced and the 

loss of sequence information per repair event. The loss of sequence information is strongly 

influenced by the stability of the broken DNA ends. The more efficient the ends are recessed 

by exonucleolitic degradation the more the genome size is supposed to shrink over an 

evolutionary time period. In line with this argumentation we found indications that in a plant 

with a small genome free DNA ends are less stable than in a plant with a more than twenty 

times larger genome. 

In a recent investigation of retroelements in Arabidopsis thaliana the hypothesis about 

reduction genome size through illegitimate recombination was confirmed (Devos et. al., 

2002). The data indicate the absence of LTRs older then a few millions years, which allows to 

conclude that they are gradual degradated over time. Illegitimate recombination associated 

with deletion seems to play a more prominent role than homologous recombination in the 

elimination of DNA for the Arabidopsis thaliana: at least fivefold more DNA has been 

removed by NHEJ than unequal homologous processes. 

 

5.2 The role of homologous recombination in genomic DSB repair in plants 

The main mode of repair of double-strand breaks (DSBs) in plants, like in other higher 

eukaryotes, proceeds via non-homologous end-joining (Gorbunova and Levy, 1999; Salomon 

and Puchta, 1998; Kirik et. al., 2000). However, homologous sequences can potentially be 

used for repair. In several studies by the use of the rare cutting restriction endonuclease I-SceI 

it was analyzed to what extend the position of the homologous sequence in relation to the 

DSB determines the proportion of breaks repaired by HR. Only one out of about 10.000 

breaks undergoes HR using homologous sequences in ectopic or allelic positions (Puchta 

1999a; Gisler et. al., 2002; for results obtained by a transposon-based approach see Shalev 

and Levy, 1997). In contrast, breaks within a duplicated region can be repaired in up to one 
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third of the cases by formation of a deletion involving homologous regions (Siebert and 

Puchta, 2002; for a transposon based approach see also Xiao and Peterson, 2000; Xiao et. al., 

2000). These differences might be due to different mechanisms of DSB repair acting under 

these experimental conditions. Whereas the synthesis-dependent strand-annealing (SDSA) 

model seems to be the most appropriate to describe gene conversions between allelic or 

ectopic homologous sequences, the formation of a deletion due to HR between homologous 

sequences in close proximity is best described by the single-strand annealing (SSA) model. 

Both models are depicted in Figure 1.2 and Figure 1.3. 

The SDSA model describes transfer of information from a homologous donor sequence to the 

break site (Gloor et. al., 1994) without a loss of  sequences at the donor locus. This process 

does not result in the loss of genomic sequences as the donor locus is conserved. The SSA 

model (Lin et. al., 1984; 1990) describes a non-conservative reaction resulting in a loss of 

information that is positioned between the annealing repeats. SSA-like models have also been 

postulated for explaining the loss of information during NHEJ (e.g. Nicolas et. al., 1995). It is 

tempting to speculate that the enzyme machinery involved in both mechanisms differs in at 

least some of the factors. For the formation of a D-loop structure and the switch of the 

template during DNA synthesis probably more factors are required than for a simple 

annealing reaction. According to the SDSA model the orientation of the donor sequence to the 

break has no influence on gene conversion.  

Transgenic Arabidopsis thaliana plants contains interrupted sequences of ß-glucuronidase 

gene as recombination substrate were used to assay homologous recombination events. As 

expected, both with and without DSB induction, no difference was found as to the frequency 

of ß-glucuronidase gene restoration for both orientations of the constructs detecting gene 

conversion events (DU.GUS; IU.GUS). Without DSB induction, the frequency of HR found 

with the DGU.US lines was similar to that observed for DU.GUS and IU.GUS. The picture 

changes when we look at the frequencies of DSB-induced marker gene restoration. Here, the 
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SSA pathway seems to be more efficient (~5 fold) than the gene conversion pathway. A 

possible explanation for this phenomenon would be that the kind of lesion leading to the 

spontaneous HR events might differ from the DSB induced by I-SceI. One might speculate 

that spontaneous events are linked to replication. A prominent recombination reaction linked 

to replication is sister chromatid exchange (SCE). Indeed, besides the recombination 

mechanisms discussed above (SSA and SDSA) the ß-glucuronidase gene could be restored by 

crossing over using information from the sister chromatid. This applies for all three different 

recombination substrates used in this study. By crossing the transgenic lines produced in this 

study with insertion mutants of Arabidopsis deficient in the expression individual members of 

the repair and replication machinery (for a recent review on mutants see Hays, 2002) it might 

be possible to differentiate between these reactions by identifying the factors involved.  

Although our results clearly show that classical gene conversion events are less efficient 

than SSA events under similar conditions, one has to keep in mind that according to the 

SDSA pathway besides classical conversion events other products might arise, too. Earlier 

work demonstrated that DSBs can also be repaired by a combination of HR and NHEJ 

(Puchta et. al., 1996; Puchta 1998a; Puchta, 1999a). However, with the assay system 

applied in this study such events cannot be detected, as only repair of both ends of the 

break via HR result in a functional marker. The previous results indicated that repair of one 

and of both ends of a break by HR occur at about the same frequency (Puchta, 1998a) so 

that the SDSA-like pathway of DSB repair seems to be in any case less efficient than the 

SSA-like pathway in plants.  

If one take all previous results into account and compare them with the results obtained in 

this study one is able to obtain a detailed picture on how DSBs are repaired in somatic 

plant cells. The most efficient way to repair a break is by non-homologous end-joining. If 

homologous sequences are available close to the break, the repair can take place in up to a 

third of the cases by a single-strand annealing pathway (Siebert and Puchta, 2002). If gene 
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conversion is five times less efficient than deletion formation, as it was demonstrated in 

this study,  then one can expect that in about one out of fifteen breaks, repair could also 

proceed via the SDSA pathway. This is two to three orders of magnitude more efficient 

than a gene conversion event that uses homology from an allelic (Gisler et. al., 2002) or 

ectopic site (Puchta, 1999a). Thus DSB-induced gene conversion between members of 

tandemly arranged gene families might well play an important role in plant genome 

evolution. Various resistance genes are organized in tandem arrays in plant genomes and 

gene conversion events between the various members have been demonstrated by sequence 

analysis (e.g. Parniske et. al., 1997, Parniske and Jones, 1999). Our results indicate that 

such events might not necessarily be due to meiotic recombination but may - at least 

partially - also occur during vegetative growth. It has been shown before that somatic 

changes in meristems can be transferred to the “germ line” in plants (for discussion see 

Puchta and Hohn, 1996). Indeed, pathogen attack is inducing intrachromosomal 

recombination between tandemly repeated sequences (Lucht et. al., 2002). Moreover, 

certain sites in plant genomes might be less stable for repeated sequences than others. This 

is documented by finding that certain transgene sequences are deleted from the genome at 

high rates (Zubko et. al., 2000), a phenomenon which has been postulated to be due to 

transient DSB-induction (Puchta, 2000). It is tempting to speculate that the various gene 

conversion events, detected in tandemly arranged resistance gene clusters, might be 

correlated with higher rates of transient breaks in these regions of the plant genome 

(Ramakrishna et. al., 2002). 
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Summary  

To establish the molecular basis of differences in the repair genomic double-strand breaks 

(DSBs) by non-homologous end-joining (NHEJ) in Arabidopsis thaliana and Nicotiana 

tabacum the fate of free DNA ends in both plant species was analysed by biolistic 

transformation of leave tissue with linearized plasmid molecules. Total DNA was isolated 

and Southern blotting was performed. Hybridisation against labelled plasmid DNA 

indicated, that irrespective of nature of the ends (blunt; 5’ or 3’ overhangs) linearized full-

length DNA molecules were less stable in Arabidopsis than in tobacco. To clarify nature of 

degradation (exo- or endonucleotic) measument of activity of a ß-glucuronidase gene of 

the restricted  plasmid DNA was performed. When the break was at distance to the marker 

gene the relative expression of the ß-glucuronidase was similar in both plant species. If the 

DSB was introduced between promoter and open reading frame, transient expression was 

reduced by half in Arabidopsis in comparison to tobacco. These results indicate that DNA 

ends are more stable in tobacco than in Arabidopsis, either due to less DNA exonuclease 

activity or due to a better protection of the DNA ends or both. Exonucleotic degradation of 

DNA ends might therefore be a driving force in the evolution of genome size as the 

Arabidopsis genome is over twenty times smaller than the tobacco genome. 

To study the efficiency of the different pathways of homologous recombination in somatic 

cells six transgenic lines carrying three different recombination substrates were produced. The 

transgenes contain a recognition site for the restriction endonuclease I-SceI either between 

direct GUS repeats to detect deletion formation (DGU.US), or within the GUS gene to detect 

gene conversion using a nearby donor sequence in direct or inverted orientation (DU.GUS 

and IU.GUS). Without expression of I-SceI, the frequency of homologous recombination 

(HR) was low and similar for all three constructs. By crossing transgenic lines, carrying 

different recombination substrate with an I-SceI expressing line, recombination was induced 

by one to two orders of magnitude. The frequencies obtained with the DGU.US construct 
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were about five times higher than with DU.GUS and IU.GUS, irrespective of the orientation 

the of donor sequence. Molecular characterization of recombinants was shown by restoration 

of the marker due to HR. These results indicate that recombination associated with deletions 

is the most efficient pathway of homologous DSB repair in plants. However, DSB-induced 

gene conversion seem to be frequent enough to play a significant role in evolution of 

tandemly arranged gene families like genes which are responsible for resistance against 

pathogens. 
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