
STOCHASTICORDERSGENERATED BY INTEGRALS:

A UNIFIED STUDY.

ALFRED M�ULLER,� Universit�at Karlsruhe

Abstract

We consider stochastic orders of the following type: Let F be a class

of functions and let P and Q be probability measures. Then de�ne

P �F Q, if
R
f dP �

R
f dQ for all f in F. Marshall (1991) posed

the problem of characterizing the maximal cone of functions generating

such an ordering. We solve this problem by using methods from func-

tional analysis. Another purpose of this paper is to derive properties of

such integral stochastic orders from conditions satis�ed by the genera-

ting class of functions. The results are illustrated by several examples.

Moreover, we show that the likelihood ratio order is closed with respect

to weak convergence, though it is not generated by integrals.
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1 Introduction.

Stochastic orders are an important tool in many areas of probability and sta-
tistics. For a comprehensive treatment of this subject including a variety of
applications we refer to the books of Shaked and Shanthikumar (1994) or Sze-

kli (1995). A survey of the recent literature is given in the bibliography of

Mosler and Scarsini (1994).

Many of the stochastic orders, which are in common use, are de�ned as

follows. Let (S;A) be some measure space, and let F be some class of measu-

rable functions f : S ! IR. Then a relation �F is de�ned on the set of all
probability measures (p.m.) on (S;A) by

P �F Q if
Z
f dP �

Z
f dQ for all f 2 F;

such that the integrals exist. Whitt (1986) introduced the notion integral sto-

chastic order for these relations. He observed that a relation de�ned in this
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way needs not to be transitive. He proposed to avoid this problem by restric-

tion to sets of functions and/or probability measures, such that all integrals

exist.

One purpose of this paper is to �nd such an appropriate restriction. This is

carried out in section 2 by introducing a weight function b and by restriction

to b-bounded functions and to the set IPb of p.m.'s for which
R
b dP exists.

In this setting it is possible to develop a uni�ed theory of integral stochastic

orders. We introduce a duality of a function space and a space of signed

measures with integration as bilinear mapping. Thus we can use well known

results from functional analysis for our investigations. By applying the bipolar

theorem, we get as the main result of section 3 the characterization of the

maximal generating class of functions, that induces a given integral stochastic

order. This solves a problem posed by Marshall (1991).

Stoyan (1983) de�ned important closure and preservation properties of sto-

chastic orders. In section 4 we show how these properties arise directly from
conditions satis�ed by the underlying class of functions F. Most of the closure
properties, that can be found in Shaked and Shanthikumar (1994) can easily
be deduced from these results.

This is illustrated by several examples in section 5. We also give an example
of a stochastic order, which is not induced by integrals, namely the likelihood
ratio order. Nevertheless this order has interesting closure properties. In
Theorem 5.8 we show that it is closed with respect to weak convergence. This

result seems to be new.

2 Preliminaries.

First we want to make some remarks about our notation. Sets of functions

are mostly denoted by capital fraktur letters as F;V;R;B, ..., whereas we use

calligraphic letters as A;B; ::: for �-algebras. Sets of (signed) measures are de-
noted by letters in blackboard like IM; IP,... . We hope that these arrangements
increase the legibility of our paper.

Let (S;S) be a measure space and let b : S ! [1;1) be a measurable func-
tion, called weight function. We consider the set Bb of measurable functions
f : S ! IR, for which

kfkb := sup
s2S

jf(s)j

b(s)
<1:

For a signed measure � on A we denote the positive and negative variation

by �+ resp. ��. As usual j�j := �+ + �� is the total variation. Integrals are
mostly written in the functional form �(f) :=

R
f d� :=

R
f d�+ �

R
f d��.

Notice that �(f) exists and is �nite if and only if �+(jf j) + ��(jf j) <1.
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The set of all signed measures � on A with j�j(b) = �+(b) + ��(b) < 1

is denoted by IMb. We write IP for the set of all probability measures (p.m.)

on A, and IPb := IP \ IMb is the restriction of IMb to IP. IPb is nonvoid as it

contains all p.m.'s with �nite support. IMN

b
is the set of all signed measures

with �(S) = 0. Notice that the di�erence of two p.m.'s lies in IMN

b
and that

every measure in IMN

b
is a multiple of such a di�erence, i.e. IMN

b
is the linear

span of IPb � IPb.

For the formulation of our �rst lemmas we need some notions from functio-

nal analysis, which can be found e.g. in Choquet (1969), x22.

A pair (E;F ) of vector spaces is said to be in duality, if there is a bilinear

mapping h�; �i : E � F ! IR. The duality is said to be strict, if for each

0 6= x 2 E there is a y 2 F with hx; yi 6= 0 and if for each 0 6= y 2 F there is

an x 2 E with hx; yi 6= 0.

Lemma 2.1 IMb and Bb are in strict duality under the bilinear mapping

h�; �i : IMb �Bb ! IR
h�; fi := �(f)

: (2.1)

Proof. Obviously Bb and IMb are vector spaces. For f 2 Bb we have jf j �

kfkb � b, and hence

j�(f)j � �+(jf j) + ��(jf j) � kfkb �
�
�+(b) + ��(b)

�
<1

for � 2 IMb. Thus the mapping h�; �i is well de�ned. It remains to show the
strictness of the duality.

(i) Bb contains the indicator functions of all sets A 2 A, as b � 1. Therefore
�(f) = 0 for all f 2 Bb implies �(A) = 0 for all A 2 A, and thus � � 0.
(ii) IMb contains all one point measures �s; s 2 S. Hence �(f) = 0 for all
� 2 IMb implies �s(f) = f(s) = 0 for all s 2 S and consequently f � 0. 2

Remark. In part (i) of the proof we needed the requirement b � 1 for the
weight function. Sometimes there is a naturally given weight function b0, which
only ful�ls b0 � 0. Then we can use b := b0 + 1, leading to IMb = IMb0 and

Bb0 � Bb, i.e. the measure space remains the same and even more functions
can be handled.

Unfortunately the duality (IMN

b
;Bb) is not strict, as �(f) = 0 for all � 2

IMN

b
only implies f constant. But strict duality can be obtained by identifying

functions which di�er only by a constant. Formally, we de�ne an equivalence
relation f � g if f � g is constant. Denoting the corresponding quotient space
by Bb=� we get the following lemma.

Lemma 2.2 IMN

b
and Bb=� are vector spaces in strict duality under the bili-

near mapping (2.1).
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A crucial role in our further investigations plays the bipolar theorem for

convex cones. Therefore we introduce the notion of polars. We follow the

notation of Choquet (1969).

The polar M� of a set M � E (in the duality (E;F ) ) is de�ned by

M� := fy 2 F : hx; yi � �1 for all x 2Mg:

The polar of a set N � F is de�ned analogously.

As usual a subset K of a vector space is called a cone, if x 2 K implies

�x 2 K for all � � 0. We de�ne the dual cone of an arbitrary set M � E by

M+ := fy 2 F : hx; yi � 0 for all x 2Mg:

It is easy to see that M+ is a convex cone.

Now the bipolar theorem for convex cones has the following form.

Theorem 2.3 (Corollary 22.10 in Choquet (1969)).
Suppose E and F are in strict duality and X � E is a convex cone. Then X��

is the �(E;F )-closure of X and X� = X+.

3 Main results.

Order relations for probability distributions are often de�ned as follows:
Let F be a class of real-valued functions. Then

P � Q if
Z
f dP �

Z
f dQ (3.1)

for all f 2 F, for which the integrals exist. This de�nition can be found e.g.
in Stoyan (1983), Def. 1.1.2, or Marshall (1991), p. 231.

Such an \order relation" needs not be transitive, as the following example

shows. If F contains only the identity and Q denotes the Cauchy distribution

(which has no expectation value), then �1 � Q and Q � �0, but �1 6� �0.
However, if all integrals exist, this aw can not appear.

In order to ensure this, we assume the existence of a weight function b.
Then by Lemma 2.1

R
f dP exists for all f 2 Bb and P 2 IPb. Therefore we

can de�ne an order relation �F on IPb via (3.1) for F � Bb. Since the right

hand side of (3.1) can be rewritten as
R
f d(Q�P ) � 0, the relation �F can

be de�ned as follows.

De�nition 3.1 For F � Bb let the (binary) relation �F be de�ned on IPb by

P �F Q :, Q� P 2 F+ , P (f) � Q(f) 8f 2 F: (3.2)
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We denote such a relation as an integral stochastic order and F is called

generator.

Directly from the de�nition we get the following result.

Lemma 3.2 For arbitrary F �Bb we have:

a) �F is transitive und reexive, i.e. a pre-order.

b) �F is a (partial) order, if and only if F is separating in IPb, i.e. if it holds:

P;Q 2 IPb; P (f) = Q(f) 8f 2 F ) P = Q: (3.3)

Proof. a) is an easy consequence of the fact that F+ is a convex cone.

b) The antisymmetry of �F is equivalent to property (3.3). Thus a) implies

the assertion. 2

There may be di�erent classes of functions, which generate the same sto-
chastic order. For checking P �F Q it is desirable to have \small" generators,
whereas \large" generators are interesting for applications. Marshall (1991)
posed the question of characterizing the largest generator (which he denoted
by stochastic completion). We will solve this problem now in our setting.

De�nition 3.3 Let b be a weight function and let F � Bb be an arbitrary

generator of an order �F on IPb.
a) The set

RF := ff 2 Bb : P;Q 2 IPb; P �F Q ) P (f) � Q(f)g

is called maximal generator of �F (in Bb).

b) We denote by ~RF the set of all measurable functions f : S ! IR (not
necessarily in Bb) with the property:
P;Q 2 IPb and P �F Q imply P (f) � Q(f), if the integrals exist.
~RF is called extended maximal generator.

Remarks: 1. RF = ff 2 Bb : �(f) � 0 for all � 2 F+ \ IMN

b
g:

2. RF = ~RF \Bb.

3. Obviously F � RF. Though in general F is a proper subset of RF, they

both generate the same order on IPb.
4. If V is any generator of �F , then V � RF. Thus RF is not only a maximal

element in the set of all generators of �F , but even the greatest element.
5. RF and ~RF implicitly depend on the weight function b.

The following properties can be deduced directly from the de�nitions.

Lemma 3.4 Let F � V � Bb and P;Q 2 IPb.

a) P �V Q ) P �F Q.
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b) RF � RV and ~RF � ~RV.

c) If V � RF, then �V and �F are identical.

The next two results are counterparts to Proposition 3.3 and 3.5 in Marshall

(1991).

Theorem 3.5 Let F be an arbitrary generator of an order �F . Then:

a) RF contains the convex cone spanned by F;

b) RF contains all constant functions;

c) If the sequence (fn)n2IN � RF converges uniformly to f , then f 2 RF.

Proof. a) Let f1; :::; fn 2 F and a1; :::; an 2 IR>0. Since Bb is a vector space,
we have f :=

P
aifi 2 Bb. Now, if P;Q 2 IPb with P �F Q, then by de�nition

P (fi) � Q(fi) and thus

P (f) =
X
i

ai P (fi) �
X
i

ai Q(fi) = Q(f):

Hence f 2 RF.

b) is trivial.

c) Let (fi) � RF be a sequence with kfi � fk1 ! 0 for some f : S ! IR.
Then for every " > 0 there is a n 2 IN with kfn � fk1 � ". Thus, as b � 1,
jf(x)j � jfn(x)j+ " � (kfnkb + ") � b(x). Consequently f 2 Bb. Therefore, if
P �F Q, we have

P (f) = P (limfn) = limP (fn) � limQ(fn) = Q(f);

establishing f 2 RF. 2

Theorem 3.6 Let (
;A; �) be a �-�nite measure space and let f : 
�S ! IR
be a A
 S-measurable function, which ful�ls the following assumptions:

(i) f(!; �) 2 F for all ! 2 
;

(ii) There exists a �-integrable function c : 
! IR�0 with

jf(!; s)j � c(!) � b(s) for all ! 2 
; s 2 S.

Then g(�) :=
R
f(!; �)�(d!) exists and belongs zu RF.

Proof. Since jf(!; x)j � c(!) � b(x) we have for all � 2 IMb:

Z Z
jf(!; x)j �(d!)j�j(dx) �

Z
c(!)�(d!) �

Z
b(x)j�j(dx) <1: (3.4)
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Specializing � = �s; s 2 S, we can infer the existence of

g(s) =
Z
f(!; s)�(d!):

Now (3.4) and (ii) imply kgkb �
R
c d� <1. Hence g 2 Bb and we can apply

Fubini's theorem. Thus for P;Q 2 IPb with P �F Q we have

R
g(x)P (dx) =

RR
f(!; x)�(d!)P (dx) =

RR
f(!; x)P (dx)�(d!)

�
RR
f(!; x)Q(dx)�(d!) =

R
g(x)Q(dx):

This yields g 2 RF. 2

Now we are ready for our main result.

Theorem 3.7 RF is the �(Bb; IMb)-closure of the convex cone, which is span-
ned by F and the constant functions.

Proof. First we consider the strict duality (IMN

b
;Bb=�). As IMN

b
is the linear

span of IPb � IPb, the de�nition of RF implies

f 2 RF=� , �(f) � 0 8� 2 (F=�)
+ , f 2 ((F=�)

+)+: (3.5)

From Theorem 3.5 we deduce that RF=� contains the convex cone spanned

by F=�. Now a look at Lemma 3.4 c) shows that we can assume without loss

of generality F=� to be a convex cone. But by Lemma 2.2 IMN

b
and Bb=�

are in strict duality, and thus Theorem 2.3 and (3.5) imply that RF=� is the

�(Bb=�; IM
N

b
)-closure of F=�. Now the result follows immediately from the

de�nition of the equivalence relation �. 2

Theorem 3.7 is rather of theoretical nature. As the �(Bb; IMb)-topology
is hard to handle, it is not very useful for applications. In our next result,
however, we give a su�cient condition for F = RF, which is very easy to
check.

Corollary 3.8 If F � V � RF, and V is a convex cone containing the con-

stant functions and closed under pointwise convergence, then V = RF.

Proof. It is enough to show that V is closed with respect to the topology
�(Bb; IMb). Since IMb includes all one point measures, the �(Bb; IMb)-topology
is �ner than the topology of pointwise convergence. Hence each set, which is

closed under pointwise convergence, is also closed with respect to �(Bb; IMb).

2

In general ~RF is larger than RF. For example, if S = IR, b � 1 and RF is
the set of all bounded increasing functions, then ~RF is the set of all increasing

functions. This is an easy consequence of the following theorem.
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Theorem 3.9 Let (fn) � RF be a monotone sequence, converging to a real-

valued function f (not necessarily in Bb). Then f 2 ~RF.

Proof. For probability measures P;Q 2 IPb with P �F Q and P (jf j); Q(jf j)

�nite we have to show that P (f) � Q(f) holds. But if fn 2 RF, then P (fn)

and Q(fn) are �nite and P (fn) � Q(fn) holds. Now the monotone convergence

theorem implies P (f) = limP (fn) � limQ(fn) = Q(f). 2

In contrast to maximal generators there are in general no minimal genera-

tors, see 3.11. Nevertheless there are often \small" generators, which give rise

to the same order (and are better suited for checking P �F Q). In the next

theorem we use the following notation:

A subset B of a cone K in an arbitrary vector space is called a base, if for

every x 2 K with x 6= 0 there is exactly one y 2 B and one � 2 IR>0 with
x = �y.

Theorem 3.10

a) If F is a convex cone, then each base of F also generates �F .

b) Each set, which is dense in F with respect to uniform convergence, is a
generator of �F .

Proof. a) If V is a base of F, then Theorem 3.5 implies that RV contains the
convex cone, which is spanned by V. Thus V � F � RV. Now from Lemma
3.4 c) we can infer that �F and �V are identical.

b) follows like a) from 3.4 c) and 3.5 b). 2

In the proof of the next theorem we use some well known properties of the

usual stochastic order �st, which is introduced in section 5.

Theorem 3.11 In case S = IR there is no minimal generator for �st.

Proof. Suppose F1 is a minimal generator. Due to 3.10 a) and 3.5 b) we can

assume without loss of generality

inf f = 0 and sup f = 1 (3.6)

for all f 2 F1.

We denote by W the set of all increasing functions, for which (3.6) holds,
and let E be the set of extreme points of W. Obviously E is the set of all

functions, which assume only the values 0 and 1, and which have exactly one

switch from 0 to 1. As each f 2 W can be approximated uniformly by step
functions in W, it is easy to see that W is the (weak) closure of the convex

hull of E. Thus, by minimality of F1, Theorem 3.7 implies F1 � E.
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If we denote by A the set of switching points of functions in F1, then Amust

be dense in IR. Otherwise, if there would be a < b with A\ [a; b] = ;, then we

would have f(a) = f(b) for all f 2 F1 and thus �b �st �a, a contradiction.

On the other hand, for everyA0 � IR, which is dense in IR, the corresponding

set of increasing step functions with one switch from 0 to 1 is a generator

of �st. But if we delete an arbitrary element a0 from a dense set A, then
~A := Anfa0g is still dense in IR. Therefore, if we delete a function f from F1,

then ~F := F1nffg still generates �st. Thus F1 can not be minimal. 2

4 Closure Properties.

In this section we de�ne some interesting properties of (integral) stochastic
orders and show, how they arise directly as consequences of corresponding
properties of the generator F. Most of these properties have been de�ned by
Stoyan (1983). Some of them can also be found in Marshall (1991).

Sometimes it is more convenient to formulate the results for random varia-
bles (r.v.) instead of p.m.'s. Therefore we write X �F Y , if PX �F PY holds
for the accompanying distributions.

De�nition 4.1 Let S be some ordered metric vector space and let b : S !
[1;1) be some weight function. Let �F be some (pre-)order on IPb. Then
�F has
a) Property (R), if a � b implies �a �F �b;
b) Property (E), if X �F Y implies EX � EY (assumed the expectations
exist);

c) Property (M), if X �F Y implies aX �F aY for all a � 0;
d) Property (T), if X �F X + a holds for all r.v. X and all positive a;
e) Property (C), if P1 �F P2 implies P1 �Q �F P2 �Q for all p.m. Q;

f) Property (W), if �F is closed with respect to weak convergence, i.e. if
Pn �F Qn holds for all n 2 IN and the sequences (Pn); (Qn) converge weakly to

P resp. Q, then P �F Q.

We will show that all these properties can be traced back to properties

of the generator F respectively RF. Part e) of the following theorem can be

found in similar form in Stoyan (1983), Prop. 1.1.2. and the if-part of f) is
contained in Proposition 3.13 of Marshall (1991). As usual, we denote the set

of all bounded continuous functions by Cb.

Theorem 4.2 a) Property (R) holds, if and only if all functions in F are

increasing.
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b) Property (E) holds, if and only if ~RF contains all increasing linear functions.

c) Property (M) holds, if and only if RF is scale invariant, i.e. f 2 RF and

a > 0 implies fa 2 RF, where fa(x) := f(ax).

d) Property (T) holds, if and only if all functions in F are increasing.

e) Property (C) holds, if and only if RF is invariant under translations.

f) Property (W) holds, if and only if there is a generator V � Cb for �F .

Proof. Part a) - e) and the if-part of f) are easy to check. Therefore we only

prove the only-if-part of f). Suppose �F has property (W) and there is no

generator V � Cb. Then de�ne F1 := RF \ Cb,

IF := f� 2 IMN

b
: � 2 F+g and IF1 := f� 2 IMN

b
: � 2 F+

1
g:

We endow IMN

b
with the weak topology �(IMN

b
;Cb). Then, by assumption,

IF is a closed convex cone and a proper subset of IF1. Hence, by a separation
theorem for closed convex sets (Choquet (1969), Theorem 21.12), for � 2 IF1nIF

there is a continuous linear functional L on IMN

b
with

L(�) < inf
�2IF

L(�) =: �: (4.1)

Since IF is a convex cone, � = 0. Now, by Proposition 22.4 in Choquet (1969)
we can represent L as a function f 2 Cb with L(�) = �(f). Thus (4.1)
implies inf�2IF �(f) = 0 and �(f) < 0. Hence f 2 IF+ = RF and f 62 F1, a
contradiction. 2

5 Examples.

A. The usual stochastic order �st.

The best known stochastic order relation is the usual stochastic dominance �st.
This order can already be found in Lehmann (1955), and has been studied in
a very general setting by Kamae, Krengel and O'Brien (1977). They assume

S to be a Polish space, endowed with a closed partial order. Then they de�ne

P �st Q if
R
f dP �

R
f dQ for all measurable bounded increasing functions

f .

We give an equivalent de�nition in our setting. Let S be an ordered Polish

space and choose b � 1 as weight function. This means that IPb is the set of

all p.m.'s and Bb is the set of all bounded measurable functions. Now de�ne
�st to be the order induced by the generator Fst, where Fst is the set of all

indicator functions 1A, such that A is a measurable increasing set.

Remark: Mosler and Scarsini (1991) claim that all increasing sets in a partial-
ly ordered Polish space are (Borel-)measurable. This statement is wrong, as is
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easily seen by the following example in IR2. LetM � IR>0 be a nonmeasurable

set and de�ne

A := f(x; y) 2 IR2 : x > 0; y > 1=xg [ f(x; 1=x) : x 2Mg:

Then A is a nonmeasurable increasing set.

Our de�nition is consistent with that given by Kamae, Krengel and O'Brien

(1977). This is a consequence of part a) of the following theorem. A proof of

it can be found in Kamae, Krengel and O'Brien (1977) and Stoyan (1983), but

most of the results can be deduced easily from 3.7, 3.8 and 4.2.

Theorem 5.1 For the order �st the following statements hold:

a) RF is the set of all measurable increasing bounded functions.

b) ~RF is the set of all measurable increasing functions.

c) The order �st has the properties (R), (E), (M), (T), (C) and (W).

Remark. By Theorem 4.2 (W) holds if and only if there is a generator V
of �st, which consists of bounded continuous functions.

If S is a Polish vector space, endowed with a vector space ordering � and a

metric d, (with d and � invariant under translations), then a generator V � Cb
can be de�ned as follows. For A a closed increasing set and n 2 IN de�ne

fA;n(x) := maxf0; 1� n � d(A;x)g: (5.1)

Then the set V of all these functions generates �st.

This can be proved as follows. By Theorem 1 (vi) of Kamae, Krengel and

O'Brien (1977) the set F of all indicator functions 1A of closed increasing sets
A is a generator of �st. Now, for �xed A and n !1 the sequence (fA;n)n2IN
converges monotonely to 1A. Thus we have F � RV. Hence 3.4 implies
the assertion, if we can verify that fA;n is increasing, bounded and continuous.

Since boundedness and continuity are obvious, only monotonicity remains to be

shown. But for x � y we have a � a+y�x for all a 2 A, as � is invariant under
translations. Hence, since A is an increasing set, A0 := fa+y�x; a 2 Ag � A.
As d is invariant under translations, this implies

d(x;A) = inf
a2A

d(x; a) = inf
a2A

d(x+ y � x; a+ y � x) = d(y;A0) � d(y;A):

Thus fA;n(x) � fA;n(y).

It seems intuitively clear that the function fA;n is increasing. But without

the assumption, that d and � are invariant under translations, this needs not
to be true, as is seen from the following counterexample.
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Let S = IR2 and de�ne the ordering � by the convex cone C = f(x; x) : x � 0g.

The metric d shall be de�ned by

d((x1; x2); (y1; y2)) = jx3
1
� y3

1
j+ jx3

2
� y3

2
j:

Then d induces the euclidian topology and the ordering � is closed. If A :=

f(x; x) : x � 1g, then A is increasing and closed, but x ! d(x;A) is not

decreasing (and thus fA;n is not increasing). Let x = (1; 0) and y = (2; 1).

Then x � y and d(x;A) = 1 < 7 = d(y;A). Moreover, x ! d(x;A) is even

strictly increasing on the set I := f(x1; x2) : x1; x2 � 1;x1 6= x2g.

Nevertheless, if A is a closed increasing set in an arbitrary Polish space,

which is endowed with a closed partial order, then the indicator function 1A is

the pointwise limit of a decreasing sequence of continuous increasing functions.
This follows from Theorem 5 in the Appendix of Nachbin (1965).

B. Convex and increasing convex order.

In case S = IRn the convex order �cx and the increasing convex order �icx

are well known, see e.g. Shaked and Shanthikumar (1994). In this case it is

necessary to use a nontrivial weight function. This is seen by the following
example for S = IR. If Q denotes Cauchy's distribution (which has no expec-
tation value), and f is a convex function, then

R
f dQ exists if and only if f is

constant. Therefore we use the weight function b(s) = 1 + ksk. Thus �cx and
�icx are de�ned for random variables, for which EX exists.

Theorem 5.2 The relations �icx and �cx are partial orders.

Proof. It su�ces to show that �icx is antisymmetric. Suppose X �icx Y and

Y �icx X and let FX resp. FY be the corresponding distribution functions.
For t 2 IRn de�ne

�t(x) :=
n

max
i=1

(xi � ti)
+

and let 	X(t) := E�t(X). Since �t is increasing and convex, we can infer
	X(t) = 	Y(t) for all t 2 IRn. Since for e := (1; 1; :::; 1) it holds

lim
"!0

	X(t+ "e)�	X(t)

"
= FX(t)� 1;

we get FX(t) = FY(t) for all t 2 IRn. 2

Theorem 5.3

a) For �cx the following holds:
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(i) RF is the set of all convex functions in Bb.

(ii) ~RF is the set of all convex functions.

(iii) �cx has the properties (E), (M) and (C), but the properties (R), (T) and

(W) do not hold.

b) For �icx the following holds:

(i) RF is the set of all increasing convex functions in Bb.

(ii) ~RF is the set of all increasing convex functions.

(iii) �icx has the properties (R), (E), (M), (T) and (C), but the property (W)

does not hold.

Proof. The Theorem easily follows from 3.7, 3.8 and 4.2.

C. Ordering by Laplace transform and by moment generating func-

tions.

The following order can be found in Chapter 3.B of Shaked and Shanthi-
kumar (1994).

De�nition 5.4

Let S = IR�0, b � 1 and FLt be the class of functions of the form f(s) =
�e��s; � > 0. The order induced by FLt is called Laplace transform order

and is denoted by �Lt.

To characterize the maximal generator of �Lt we need the following notion.

A function f : IR>0 ! IR is said to be completely monotone, if all derivatives
exist and satisfy (�1)nf (n)(x) � 0 for all n 2 IN0 and x > 0.

The following theorem can be found in similar form in Shaked and Shan-

thikumar (1994), Th. 3.B.1, 3.B.2 and 3.B.4. The characterization of ~RF is

originally due to Reuter and Riederich (1981), but their proof is very compli-
cated and lengthy. Therefore we show, how it can be deduced from section

3.

Theorem 5.5 For the order �Lt the following holds:

(i) RF is the set of all bounded functions, that have a completely monotone

derivative.

(ii) ~RF is the set of all functions, that have a completely monotone derivative.

13



(iii) �Lt has the properties (R), (E), (M), (T), (C) and (W).

Proof of (i). Let V be the set of all functions, that have a complete-

ly monotone derivative. By a celebrated theorem of Bernstein, a comple-

tely monotone function f is the Laplace transform of some measure �, i.e.

f(s) =
R
e�sx �(dx). Therefore, if F 2 V with f = F 0, then F (s) =R

(�e�sx=x) �(dx) + c; where c 2 IR is some constant. Hence Theorem 3.6

implies V � RF. On the other hand, V is a convex cone, which contains

the constant functions. Hence the assertion follows from Corollary 3.8, if we

can show that V is closed with respect to pointwise convergence. But it is

well known that completely monotone functions can be characterized by the

alternating signs of their �nite di�erences, cf. Reuter and Riederich (1981),

Theorem 1 (2). From this characterization it can easily be deduced that f 2 V,
if and only if

(�1)n�h0
�h1

:::�hnf(t) � 0

for all t; h0; h1; :::; hn 2 IR>0, n 2 IN0. But this pointwise characterization

implies that V is closed with respect to pointwise convergence. 2

Integer-valued random variables are very often analyzed by utilization of
the moment generating function t ! E(tX). Thus it is natural to introduce

a moment generating function order �mgf , which is induced by the class of
functions of the form s ! ts; t 2 (0; 1). But this order is equivalent to �Lt,
as ts = �e��s with � := � log t.

D. Further examples.

A plenty of further examples of integral stochastic orders can be found in

Shaked and Shanthikumar (1994). For each of these orders they state some
\closure properties". Most of them can easily be deduced from Theorem 4.3.
Our property (C) e.g. can be found in Shaked and Shanthikumar (1994) for se-

veral orders in Theorem 2.A.6, 3.A.5, 3.B.4, 3.B.10, 3.B.13, 5.A.4 etc.. But pro-
perty (C) also holds for some more orders, for example for �ccx, �iccx;�uo�cx

and for the supermodular ordering �sm, which has been utilized by Szekli et.
al. (1994). This follows immediately from 4.2 e), since their generating classes

of functions are invariant under translations.

E. A counterexample: The likelihood ratio order �lr.

We don't want to conceal that there are some important stochastic orders,

which are not induced by integrals. One of them is the likelihood ratio order

�lr, cf. section 1.C in Shaked and Shanthikumar (1994).

De�nition 5.6

The real random variables X;Y are said to be in likelihood ratio order

14



(X �lr Y ), if they have densities f and g with respect to some �-�nite measure

�, such that

f(y)g(x) � f(x)g(y) for all x � y: (5.2)

Remarks: 1. Inequality (5.2) can be rewritten in the form

f(y)g(x) � f(x ^ y)g(x _ y) for all x; y 2 IR:

where ^ and _ are the usual lattice operators. In this form, the de�nition

can easily be extended to vector valued random variables. This multivariate

likelihood ratio order can be found in Karlin and Rinott (1980).

2. An equivalent de�nition of �lr can be given as follows:

P �lr Q if P (J)Q(I) � P (I)Q(J) for all intervals I; J with I � J;

where I � J means that x 2 I and y 2 J imply x � y.
From the proof of Theorem 1.C.2 in Shaked and Shanthikumar (1994) one can

deduce that this is equivalent to the de�nition given above.

Proposition 5.7 The order �lr is not an integral stochastic order.

Proof. Assume RF is the maximal generator of �lr. Since �lr has property
(R), Theorem 4.2 a) implies that all functions in RF are increasing. On the

other hand, RF must include all bounded increasing functions as �lr is stronger
than �st. Hence RF is the set of all bounded increasing functions, and thus
�st and �lr must be identical. But it is well known that this is not true. 2

Nevertheless �lr shares most of the properties introduced in De�nition 4.1.
It is well known that �lr has the properties (R), (E) and (M). It is also well
known that property (C) does not hold, see e.g. Shanthikumar and Yao (1986).
But it seems to be unknown so far that �lr has property (W).

Theorem 5.8 The likelihood ratio order �lr has property (W), i.e. it is closed
with respect to weak convergence.

Proof. Assume Pn �lr Qn for all n 2 IN and that (Pn); (Qn) converge weakly

to P resp. Q. By Corollary 2.1 in Karlin and Rinott (1980) for arbitrary

A;B 2 B
Pn(A) Qn(B) � Pn(A ^ B) Qn(A _B);

where A ^B := fa ^ b : a 2 A; b 2 Bg and A _B is de�ned analogously.

Let Ix(h) denote the closed interval [x�h; x+h]. Then for arbitrary x; y 2 IR
we have Ix(h) ^ Iy(h) = Ix^y(h) and Ix(h) _ Iy(h) = Ix_y(h). Hence

Pn(Iy(h)) Qn(Ix(h)) � Pn(Ix^y(h)) Qn(Ix_y(h)): (5.3)
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Now let � be a �-�nite measure with �(Ix(h)) > 0 for all x and h, which

dominates P and Q. Such a measure exists, as you can add Lebesgue's measure

to an arbitrary dominating measure without a�ecting the dominance property.

By the portmanteau theorem (cf. Dudley (1989), Theorem 11.1.1), inequa-

lity (5.3) implies

P (Iy(h)) Q(Ix(h)) � P (Ix^y(h)) Q(Ix_y(h));

if the intervals are �-continuity sets.

Next we construct a sequence hn # 0, such that the intervals Ix(hn) are

�-continuity sets for �-almost all x 2 IR. Denote by M the countable set of

atoms of �. Then the setM �M is also countable. Now select hn 2 (M �M)c

with hn # 0. Then Ix(hn) is a �-continuity set for all x 2 M . Furthermore,
the set of all x 2 M c, for which Ix(hn) is not a �-continuity set, is at most
countable. Hence Ix(hn) is a �-continuity set for �-almost all x 2 IR.

Consequently, for �-almost all x; y 2 IR,

P (Iy(hn))

�(Iy(hn))

Q(Ix(hn))

�(Ix(hn))
�
P (Ix^y(hn))

�(Ix^y(hn))

Q(Ix_y(hn))

�(Ix_y(hn))
;

as fx; yg = fx ^ y; x _ yg.

Now the general di�erentiation theorem for measures (Wheeden and Zygmund
(1977), Theorem 10.49 and Corollary 10.50) yields

f(y) g(x) � f(x ^ y) g(x _ y) for �-almost all x; y 2 IR;

where f and g are �-densities of P resp. Q. Hence P �lr Q. 2

There are several other orders, which are stronger than �st. Examples are
the hazard rate order �hr, the reversed hazard rate order �rh and the shifted

likelihood ratio order �lr". With exactly the same proof as for Proposition 5.7
it follows that these orders are no integral stochastic orders.
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