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Abstract

We consider the problem of making one choice from a known number of i.i.d.

alternatives. It is assumed that the distribution of the alternatives has some un-

known parameter. We follow a Bayesian approach to maximize the discounted

expected value of the chosen alternative minus the costs for the observations.

For the case of gamma and normal distribution we investigate the sensitivity

of the solution with respect to the prior distributions. Our main objective is to

derive monotonicity and continuity results for the dependence on parameters of

the prior distributions. Thus we prove some sort of Bayesian robustness of the

model.
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1 Introduction

There are many situations, where one has to select one o�er of sequentially arriving

alternatives. Special examples that have been considered in the literature are the

secretary problem, the problem of job search or the problem of selling an asset.

There are several possibilities for modelling this situation.

In this paper we investigate the following model: There is a �xed number N

of alternatives. The decision maker has to choose exactly one of these o�ers. The

alternatives can be described as independent and identically distributed real random

variables X1; :::; XN, which can be observed sequentially at a cost c per observation.

We consider two possibilities of the reward structure. If the decision maker stops

after the nth observation, 1 � n � N , his reward is either Xn, if no recall is allowed,

or maxfX1; :::; Xng, if recall is allowed. We assume that the common distribution

of the observations involves a parameter �, which is unknown to the decision maker.

We follow a Bayesian approach to �nd a strategy that maximizes the discounted

expected total reward.

This problem has been considered in the literature for several choices of distri-

butions. Sakaguchi (1961) and DeGroot (1968) regarded this problem under the

assumption of a normal distribution with unknown mean. Stewart (1978) obtained

some results for the case of a uniform distribution with unknown endpoints and

Tamaki (1983) studied it for observations drawn from a gamma distribution.

The main objective of this paper is to investigate the sensitivity of the solution

with respect to parameters of the prior distribution. This is an important topic for
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justifying the use of the Bayesian approach, since there is always some uncertainty in

the elicitation of a prior distribution. Using appropriate notions of stochastic order

relations and probability metrics, we derive (for the model with normal and gamma

distributed alternatives) monotonicity and continuity results for the dependence on

parameters of the prior distribution. As a by-product of this approach we prove in

Theorem 4.2 a conjecture of Tamaki (1983).

Our paper is organized as follows. In section 2 we de�ne a Bayesian control model,

that gives a formal description of the problem mentioned above. Section 3 contains

some well known facts about stochastic orders and probability metrics. These are

used in section 4 to derive the main results about monotonicity and continuity. In

section 5 we compare our analytical bounds with computational results.

2 The Bayesian Control Model.

The problem described in the introduction can be modelled as a Bayesian Control

Model (BCM) as introduced in Rieder (1975, 1988), see also Rieder and Wagner

(1991).

The BCM is given by a tupel (S;A;D; Z; T;�; �0; Q; r; V0; �) which in our case has

the following meaning:

(i) The state space S := M [ f1g with the following interpretation: M � IR

is the set of possible alternatives and s 2 M is the best momentary available

alternative. If you have already accepted an o�er, then you are in state s =1.

(ii) The action space A := f0; 1g has the following meaning: If you accept an

alternative then a = 1, and if you reject it then a = 0.

(iii) The restriction set D � S�A desribes, which actions a are allowed in state

s. In our case we have D = S � A=f1; 1g. This means, that if we have

accepted an o�er (s =1) then we must reject all subsequent o�ers (a 6= 1).

(iv) The disturbance space Z := M , as in our case the "disturbances" are the

new o�ers.

(v) The transition function T : D � Z ! S describes the transition from the

momentary state s to the new state s0 under action a and disturbance z. If we

accept an alternative then the new state is s0 = 1. Hence T (s; 1; z) = 1 for

all s and z. If we reject an o�er, then the new state is the next o�er z if no

recall is allowed and maxfs; zg if recall is allowed. Thus we have T (s; 0; z) = z

resp. T (s; 0; z) = maxfs; zg for all z and all s 2 M . Sometimes we will use

the convenient notion s _ z := maxfs; zg.

(vi) � 6= ; is an arbitrary parameter space for the unknown parameter of the

distribution Q(�; dz); � 2 �, of the o�ers. We assume that there is a �-�nite

measure � on Z, such that Q(�; �) has a density q(�; �) with respect to � for all

� 2 �.
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(vii) The prior distribution �0 is an arbitrary probability measure on �, which

represents the initial knowledge about the unknown parameter.

(viii) The one step reward function r : D ! IR describes the reward that we get

in one period. If we accept an o�er then we get the value s of the best actually

available o�er; if we reject it, we have to pay the observation cost c; and if we

are already in the absorbing state s =1 then we get nothing. Hence we have

r(s; a) :=

8><
>:

0; s =1
s; s 2M; a = 1

�c; s 2M; a = 0

:

(ix) The terminal reward function V0 : S ! IR determines the reward, that we

get at the end of the procedure after the N -th period. It is equal to s, if s 2M

and 0, if s =1.

(x) Finally, all rewards are discounted in each period by a discount factor � 2
(0; 1].

For each parameter � 2 �, we denote by V �
N�(s) the expected discounted reward,

when we start is state s 2 S, apply the (history dependent) N -stage policy �, and

if Q(�; �) is the distribution of the alternatives.

Following the Bayesian approach, our aim is to maximize the Bayesian expec-

ted reward

VN�(s) :=

Z
�0(d�) V

�
N�(s)

over all N -stage policies �.

It is well known, that the Bayesian Control Model can be reduced to a Markovian

Control Model (MCM) by augmentation of the state space to Ŝ := S� IP(�), where

IP(�) is the set of all probability measures on �. Moreover, if there is a so called

su�cient statistic, then we can diminish IP(�) to an information space I . A formal

description of this procedure can be found in Hinderer (1970) and Rieder (1975,

1988). It is skipped here.

In our model the value iteration then assumes the following form:

Vk(i; s) = maxfs; ck(i; s)g; k 2 IN; i 2 I; s 2M; (2.1)

where

ck(i; s) := �c+ �

Z
Q(i; dz) Vk�1(�(i; z); T(s; a; z)): (2.2)

Here the function � describes the bayesian updating of the parameter i under the ob-

servation z, i.e. if �(i; �) is the prior distribution and we observe z, then �(�(i; z); �) is
the corresponding posterior distribution. The transition probability measure Q(i; �)
is de�ned as

Q(i; dz) :=

Z
�(i; d�) Q(�; dz): (2.3)
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The state s = 1 is an absorbing state with Vk(i;1) = 0 for all k 2 IN and i 2 I .

Therefore, this state will not be considered any more.

Example 2.1. (cf. DeGroot (1968))

Assume that Q(�; dz) = N (�; �), a normal distribution with unknown mean � and

known variance �. Assume further that the prior distribution is also a normal

distribution �0 = N (x; b). Then it is well known, that after observing z, one gets as

posterior distribution again a normal distribution

�1 = N (
x� + zb

� + b
;

�b

� + b
):

Hence it is su�cient to know the value of the mean and the variance of the current

posterior distribution. Thus we can choose I = IR�IR>0 as information space. From

(2.3) we deduce that Q(x; b; �) = N (x; b+ �). The value iteration then assumes the

form

Vk+1(x; b; s) = max

�
s;�c+ �

Z
N (x; b+ �; dz) Vk

�
x� + zb

� + b
;

�b

� + b
; T (s; a; z)

��
(2.4)
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Example 2.2. (cf. Tamaki (1983))

Let Q(�; dz) = �(�; �) be a gamma distribution with unknown scale parameter �

and known shape parameter �. Assume that the prior distribution is also a gamma

distribution, �0 = �(x; y). Then one gets as posterior distribution again a gamma

distribution �1 = �(x + z; y + �). Hence one can choose I = IR>0 � IR>0. From

(2.3) we get Q(x; y; �) = GB2(�; y; x), where GB2(�; �; ) is the generalized beta

distribution of the second kind with the density

z !
�(�+ �)

�(�) � �(�)
�

z��1�

( + z)�+�
; �; �; ; z 2 IR>0:

This distribution has been considered e.g. by Cummins et.al. (1990).

The value iteration is then given by

Vk+1(x; y; s) = maxfs;�c+ �

Z
GB2(�; y; x; dz) Vk(x+ z; y + �; T (s; a; z)): (2.5)

2

If no recall is allowed, then the function ck de�ned in (2.2) is independent of s

and hence it is optimal at stage k to accept an o�er s i�

s � ck(i) := �c+ �

Z
Q(i; dz) Vk�1(�(i; z); z):

Thus we have an optimal policy of control limit type. We will prove now that this

is also true if recall is allowed.

Theorem 2.1 Assume that recall is allowed. Then it is optimal to accept the o�er

s at stage k i� s � c0k(i), where

c0k(i) := inffs : s � ck(i; s) = �c+ �

Z
Q(i; dz) Vk�1(�(i; z); s_ z)g:
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Proof. This follows immediately from (2.1), if we can show that s ! s � ck(i; s) is

non-decreasing. But this follows easily by induction on k. 2

3 Stochastic Orders and Probability Metrics.

The main purpose of this paper is to show monotonicity and continuity results of

the functions i ! Vk(i) resp. i ! ck(i). For this we need appropriate concepts of

stochastic orders and probability metrics.

De�nition 3.1 a) Let P;Q be probability measures with distribution functions F

resp. G. Then P is said to be stochastically smaller than Q (written P �st Q), if

F (x) � G(x) for all x 2 IR.

b) If P;Q have densities f resp. g with respect to some �-�nite measure �, such that

f(y)g(x)� f(x)g(y) for all x � y;

then P is said to be smaller than Q in likelihood ratio order (written P �lr Q).

A concise treatment of these orderings can be found in Shaked and Shanthikumar

(1994). The most important facts that we need here are summarized in the following

theorem.

Theorem 3.2 a) The relation P �st Q holds i�
R
f dP �

R
f dQ for all increasing

functions, such that the integrals exist.

b) P �lr Q implies P �st Q.

Example 3.1. a) For normal distributions we have the following result:

N (�1; �
2
1) �lr N (�2; �

2
2) i� N (�1; �

2
1) �st N (�2; �

2
2) i� �1 � �2 and �21 = �22 .

b) For the case of gamma distributions we get

�(�1; �1) �lr �(�2; �2) i� �(�1; �1) �st �(�2; �2) i� (�1 � �2 and �1 � �2).

c) The family of generalized beta distributions GB2(�; �; ) introduced in Example

2.2 is �lr-increasing in � and  and �lr-decreasing in �. Due to Theorem 3.2 b) the

same is true for the ordering �st. 2

Next we want to introduce a probability metric that is valuable for proving con-

tinuity results. It turns out, that the Kantorovich metric is a suitable concept.

For a Lipschitz function f : IR! IR we de�ne the Lipschitz seminorm

kfkL := sup
x6=y

jf(x)� f(y)j

jx� yj
:

We denote by L the set of all Lipschitz functions and L1 shall be the set of all

Lipschitz functions f with kfkL � 1.

IPm will denote the collection of all probability measures with �nite mean. Then

the Kantorovich metric is de�ned as follows, cf. Zolotarev (1983) or Rachev (1991).
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De�nition 3.3 For any two probability measures P;Q 2 IPm we de�ne the Kanto-

rovich distance

�(P;Q) := sup

�����
Z
f dP �

Z
f dQ

���� : f 2 L1

�
:

For random variables X; Y with distributions PX ; PY 2 IPm we write �(X; Y ) :=

�(PX ; PY ).

It is well known that the Kantorovich metric is equivalent to the L1-distance of

the corresponding cumulative distribution functions, i.e. if F and G are the c.d.f.'s

of P resp. Q, then

�(P;Q) =

Z 1

�1
jF (x)� G(x)j dx; (3.1)

cf. Rachev (1991), p. 6. Using (3.1) it is very often possible to calculate the

Kantorovich distance explicitly. Some important cases are treated in the following

theorem. The easy proof is omitted.

Theorem 3.4 a) If X; Y are integrable random variables with X �st Y , then

�(X; Y ) = EY � EX:

b) Assume X is an integrable random variable and Y := aX with a > 1. Then

�(X; Y ) = (a� 1) �EjX j.

c) �(aX; aY ) = a � �(X; Y ) for all a > 0.

d) �(X + a; Y + a) = �(X; Y ) for all a 2 IR.

Example 3.2. From Theorem 3.4 the following examples can easily be derived.

a) If X � N (x; b) and Y � N (y; b), then �(X; Y ) = jx� yj.

b) If X � N (x; b1) and Y � N (x; b2), then �(X; Y ) =
p
2=� � j

p
b1 �

p
b2j.

c1) If X � GB2(�1; �; ), Y � GB2(�2; �; ) and � > 1, then

�(X; Y ) = j�1 � �2j � =(� � 1):

c2) If X � GB2(�; �; 1), Y � GB2(�; �; 2) and � > 1, then

�(X; Y ) = j1 � 2j � �=(� � 1):

c3) If X � GB2(�; �1; ) and Y � GB2(�; �2; ) and �1; �2 > 1 then

�(X; Y ) = � �

���� 1

�1 � 1
�

1

�2 � 1

���� :
2
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4 Monotonicity and Continuity Results.

Now we want to show some monotonicity results of the functions i ! Vk(i). (It is

then easy to derive monotonicity for i ! ck(i) resp. i ! c0k(i).) To prove monoto-

nicity with respect to parameters of the prior distribution we need an appropriate

concept of stochastic ordering. As it is easy to see that the function s ! Vn(i; s)

is increasing, a natural candidate is the usual stochastic order �st. But this order

relation is not preserved under conditioning. If one looks for a stronger order re-

lation, which is preserved under conditioning, then one is lead in a natural way to

the likelihood ratio ordering, cf. Keilson and Sumita (1982). Using this ordering

resp. its multivariate counterpart �tp, introduced by Karlin and Rinott (1980), it

is possible to show general results about monotonicity for partially observed control

models. For a detailed exposition of this approach see Rieder (1991). By applying

Theorem 4.3 in that article to our model we get the following result.

Theorem 4.1 Assume that

(i) (�; z)! q(�; z) is a TP2-function.

(ii) There are some i; j 2 I, such that �(i; �) �tp �(j; �) and �(i; �) or �(j; �) is TP2.

Then ck(i) � ck(j) resp. c
0
k(i) � c0k(j).

However, the assumption that q(�; z) is a TP2-function is often not ful�lled. It

is well known that if q is twice di�erentiable, then q is TP2 i�

d

d�

d

dz
log q(�; z) � 0 for all �; z:

But if e.g. Q(�; �) = �(�; �), then

d

d�

d

dz
log q(�; z) = �1 for all �; z;

and hence q is not TP2.

Therefore, it is often better to prove monotonicity results directly by induction,

using the fact that s ! Vn(i; s) is increasing. We will do this now for the case of

o�ers from a gamma distribution.

Theorem 4.2 In Example 2.2 the function Vn(x; y; s) is increasing in x and decre-

asing in y (in the model without recall as well as in the model with recall).

Proof. By Example 3.1 c) GB2(�; y; x; �) is �st-increasing in x and �st-decreasing

in y. Combining this with the fact that s! Vn(i; s) is increasing (in both models),

the result follows from (2.5) and Theorem 3.2 a) by induction on n. 2

Remark. Due to his computational results, Tamaki (1983) conjectured for the

model without recall, that y ! Vn(x; y; s) is decreasing. But he was not able to

prove this theoretically except for � = 1.
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For the case of normally distributed o�ers we have the following result. We skip

the proof, as it is similar to that of Theorem 4.2.

Theorem 4.3 In Example 2.1 the function Vn(x; b; s) is increasing in x (in the

model without recall as well as in the model with recall).

There is no general monotonicity result for b! Vn(x; b; s). In the model without

recall b ! Vn(x; b; s) is decreasing, if � = 1. This can be proved by using the

representation for Vn given in Lemma 4.7. We conjecture that this is also true in

case � < 1, but it seems to be di�cult to prove this. In the model with recall,

however, it is easy to see, that b! V1(x; b; s) is strictly increasing if s < �c+ �x.

Next we want to show that in Example 2.1 and 2.2 we have continuity of the

function i! Vn(i; s). In fact we will show that this functions are locally Lipschitz,

and we will give exact bounds for their oscillation. All subsequent results hold for

the model with recall as well as for the model without recall. In the proofs we will

restrict ourselves to the model with recall, as this model is the computationally more

di�cult one.

The main tool of our investigations will be the following lemma.

Lemma 4.4 a) kVn(i; �)kL � 1 for all i 2 I and n 2 IN0.

b) For every f 2 L and P;Q 2 IPm it holds����
Z
f dP �

Z
f dQ

���� � kfkL � �(P;Q):

Proof. a) follows from (2.1) by induction, using the fact that for any probability

measure P and all Lipschitz functions it holds k
R
P (dz)f(z; �)kL � maxz kf(z; �)kL

and kmaxff; ggkL � maxfkfkL; kgkLg:

b) If f 2 L, then f=kfkL 2 L1. Hence����
Z
f dP �

Z
f dQ

���� = kfkL �

����
Z

f

kfkL
dP �

Z
f

kfkL
dQ

���� � kfkL � �(P;Q)

2

A. Normally distributed o�ers.

In Theorem 4.3 we have shown, that x! Vn(x; b; s) is increasing. Now we are able

to show bounds for the growth of this function. We will use the abbreviation

�n(t) :=
n�1X
�=0

t� ; t > 0:

Theorem 4.5 For all b 2 IR>0; s 2 IR and n 2 IN0 we have kVn(�; b; s)kL � ��n(�).
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Proof. We proceed by induction. The assertion obviously holds for n = 0. Hence

assume that kVn(�; b; s)kL � ��n(�) =: dn for all b 2 IR>0 and s 2 IR.

(i) Fix b 2 IR>0 and s 2 IR and de�ne g1(x; z) := (x� + zb)=(� + b) and g2(z) :=

s _ z. Then we have kg1(x; �)kL = b=(� + b) and kg2kL = 1. Hence we get for

h(x; z) := Vn(g1(x; z);
�b

� + b
; g2(z)) = Vn

�
x� + zb

� + b
;

�b

� + b
; s_ z

�
;

using the induction hypothesis and Lemma 4.4 a),

kh(x; �)kL � dn � kg1kL + 1 � kg2kL = dn �
b

� + b
+ 1 (4.1)

and kh(�; z)kL � dn � �=(� + b) for all z 2 IR.

(ii) By Example 3.2 a) we have �(N (x; b);N (y; b)) = jx � yj for all x; y 2 IR.

Hence for f(x) :=
R
N (x; b+ �; dz) h(x; z) we can conclude

jf(x)� f(y)j =

����
Z
N (x; b+ �; dz) h(x; z)�

Z
N (y; b+ �; dz) h(y; z)

����
�

Z
N (x; b+ �; dz) jh(x; z)� h(y; z)j

+

����
Z
N (x; b+ �; dz) h(y; z)�

Z
N (y; b+ �; dz) h(y; z)

����
� dn �

�

� + b
� jx� yj + kh(y; �)kL � �(N (x; b);N (y; b))

= dn �
�

� + b
� jx� yj + (dn �

b

� + b
+ 1) � jx� yj

= (dn + 1) � jx� yj:

Applying this to Vn+1(x; b; s) = maxfs;�c+ �f(x)g yields

kVn+1(�; b; s)kL � � � (dn + 1) = � � (��n(�) + 1) = � � �n+1(�):

2

For the sensitivity with respect to b we can show the following result.

Theorem 4.6 For all x; s 2 IR and b; b0 2 IR>0 we have

jVn(x; b; s)� Vn(x; b
0; s)j � n � j

p
b�

p
b0j+ �n � jb� b0j; (4.2)

where the sequences (n); (�n) are de�ned recursively as follows:

0 = �0 = 0 and for n 2 IN0

n+1 = � �

 
n + �n+1(�) �

r
2

�

!

and

�n+1 = � �

 
�n + ��n(�) �

r
2

��

!
:
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Proof. As V0 is independent of b, there is nothing to show for n = 0. Hence we

assume that (4.2) holds for some n 2 IN0. For �xed s; x 2 IR we de�ne

fb(z) := Vn

�
x� + zb

� + b
;

�b

� + b
; s _ z

�

and Qb(�) := N (x; b+ �).

(i) Combining Theorem 4.5 with the induction hypothesis yields

jfb(z)� fb0(z)j =

����Vn
�
x� + zb

� + b
;

�b

� + b
; s_ z

�
� Vn

�
x� + zb0

� + b0
;

�b0

� + b0
; s _ z

�����
�

����Vn
�
x� + zb

� + b
;

�b

� + b
; s _ z

�
� Vn

�
x� + zb0

� + b0
;

�b

� + b
; s_ z

�����
+

����Vn
�
x� + zb0

� + b0
;

�b

� + b
; s_ z

�
� Vn

�
x� + zb0

� + b0
;

�b0

� + b0
; s _ z

�����
4:5

� ��n(�) �

����x� + zb0

� + b0
�
x� + zb

� + b

����

+ n �

������
s

�b0

� + b0
�

s
�b

� + b

������ + �n �

���� �b0

� + b0
�

�b

� + b

����

� n �
���pb0 � pb��� + �n �

��b0 � b
�� + ��n(�) �

jx� zj � jb� b0j

� + b
:

(ii) An easy calculation shows
R
Qb(dz) jx�zj =

p
b+ � �

p
2=�, and by Example

3.2 b) we have �(Qb; Qb0) =
p
2=� � j

p
b+ � �

p
b0 + �j. Furthermore, from equation

(4.1) we get kfbkL � �n+1(�). Hence we obtain

jVn+1(x; b; s)� Vn+1(x; b
0; s)j � � �

����
Z
Qb(dz)fb(z)�

Z
Qb0(dz)fb0(z)

����
� � �

����
Z
Qb(dz)jfb(z)� fb0(z)j +

�Z
Qb(dz)fb0(z)�

Z
Qb0(dz)fb0(z)

�����
(i); 4:4

� � �
�
n �

���pb0 � pb��� + �n �
��b0 � b

��
+ ��n(�) �

jb� b0j

� + b
�
p
b+ � �

q
2=� + �(Qb; Qb0) � kfb0kL

�

� � �
�
n �

���pb0 � pb��� + �n �
��b0 � b

��

+ ��n(�) � jb� b0j �

r
2

��
+

r
2

�
� j
p
b�

p
b0j � �n+1(�)

�

= n+1 � j
p
b�

p
b0j + �n+1 � jb� b0j:
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2

In case � = 1, the results of Theorem 4.5 and 4.6 can be improved considerably.

This is due to the following lemma, which can easily be proved by induction.

Lemma 4.7 If � = 1, then we have for all x; s; t 2 IR; b 2 IR�0 and n 2 IN:

Vn(x; b; s) = t + Vn(x� t; b; s� t): (4.3)

Theorem 4.8 If � = 1, then kVn(�; b; s)kL � 1 for all s 2 IR; b 2 IR�0 and n 2 IN0.

Proof. By Lemma 4.7 we have Vn(x; b; s) = x+ Vn(0; b; s� x). Combining this with

Theorem 4.3 and the fact that s! Vn(0; b; s) is increasing yields the assertion. 2

Utilizing Theorem 4.8 we can also improve the result of Theorem 4.6. For a

detailed proof see M�uller (1995).

Theorem 4.9 In case � = 1 for any x; s 2 IR and b; b0 2 IR>0 it holds

jVn(x; b; s)� Vn(x; b
0; s)j � n � j

p
b�

p
b0j+ �n � jb� b0j (4.4)

with n = 1=
p
2� � n and �n =

p
2=(��) � n.

A. Gamma distributed o�ers.

For gamma distributed o�ers we are able to show similar results. The proofs are

skipped, since they are similar to the case of normal distributions. We refer to

M�uller (1995) for more details.

Theorem 4.10 For all y > 1; s; x; x0 2 IR>0 and n 2 IN0 we have

jVn(x; y; s)� Vn(x
0; y; s)j �

��

y � 1
� �n

�
� +

��

y � 1

�
� jx� x0j: (4.5)

Theorem 4.11 If y; y0 � � > 1, then we have for all x; s 2 IR>0 and n 2 IN0:

jVn(x; y; s)� Vn(x; y
0; s)j � n � x �

���� 1

y � 1
�

1

y0 � 1

���� ; (4.6)

where the sequence (n) is recursively de�ned as follows: 0 = 0 and

n+1 = � �

�
n + � �

�
n

�� 1
+

��

�� 1
� �n

�
� +

��

�� 1

�
+ 1

��
:
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5 Numerical Results.

In the model without recall, the value function Vk and the control limit function

ck can be computed numerically. This is due to the fact, that s ! Vk(i; s) if of a

very simple structure, namely the maximum of two a�ne functions. The explicit

formulas can be found in DeGroot (1968) and Tamaki (1983). The latter article also

includes some lists with numerical values.

In the model with recall, however, this is not the case. Therefore the model with

recall is numerically intractable, and hence it is of special interest to investigate the

structure of the solution as we did in the previous section.

For the (computationally tractable) model without recall and with normally dis-

tributed o�ers we computed in case � = 1 the exact values of the function ck(0; b)

and compared the numerical results with the analytical bounds for the oscillation

given in Theorem 4.9. It turned out that - especially for large N - the analytical

bounds are not very tight, but this is not surprising due to the recursive nature of

the bounds.

� = 2

� = 6

� = 10

b

ck(0; b)

�1

0

�0:5

0:5

10 20 30 40

Figure 1: b! ck(0; b) for � = 1; c = 1; k = 40 and � = 2; 6 and 10.
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From Figure 1 you can see, however, that the qualitative behavior of b! ck(0; b)

is described very well by (4.4). In fact, b ! ck(0; b) seems not to be Lipschitz in a

neighbourhood of 0. On the contrary, it somehow looks like b ! �1 � �2 �
p
b for

some constants �1 2 IR and �2 > 0, as one would expect if the bounds in (4.4) where

tight. By rescaling the b-axe with the transformation b !
p
b one gets a function,

which is Lipschitz in a neighbourhood of 0, as claimed in Theorem 4.9, cf. Figure 2.

p
b

ck(0; b)

�1

0

�0:5

0:5

2 4 6 8

� = 2

� = 6

� = 10

Figure 2:
p
b! ck(0; b) for � = 1; c = 1; k = 40 and � = 2; 6 and 10.
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