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Abstract

It is well-known that for classical one-dimensional one-way CA (OCA) it is
possible to speed up language recognition times from (14 r)n, r € Ry, to (1 +
r/2)n. In this paper we show that this no longer holds for OCA in which a cell
can comminucate only one bit (or more generally a fixed amount) of information
to its neighbor in each step. For arbitrary real numbers ro > r; > 1 in time
ron 1-bit OCA can recognize strictly more languages than those operating in
time r1m. Thus recognition times may increase by an arbitrarily large constant
factor when restricting the communication to 1 bit. The results are generalized
to OCA with an “average communication bandwidth” of z bits, where z € Q..

1 Introduction

The model of 1-bit CA results from the standard definition by restricting the amount
of information which can be transmitted by a cell to its neighbors in one step to be
only 1 bit. We call this the communication bandwidth.

Probably the first paper investigating 1-bit CA is the technical report by Ma-
zoyer (1989) where it is shown that even with this model solutions of the FSSP in
optimal time are possible. More recently Umeo (1998) has described 1-bit CA for
several one- and two-dimensional problems (e.g. generation of Fibonacci sequences
and determining whether two-dimensional patterns are connected) which again are
running in the minimum time possible.

Therefore immediately the questions arises about the consequences of the restric-
tion to 1-bit information flow in the general case.

In Section 2 basic definitions are given and it is proved that each CA with s
states can be simulated by a 1-bit CA with a slowdown by a factor of at most
[log s|. This seems to be some kind of folklore, but we include the proof for the sake
of completeness and reference in later sections.

In Section 3 it is shown that for one-way CA (OCA) in general there must be
a slowdown. More specifically there is a very fine hierarchy with an uncountable
number of distinct levels (order isomorphic to the real numbers greater than 1)
within the class of languages which can be recognized by 1-bit OCA in linear time.

Generalizations are possible in different directions. In Section 4 we mention
preliminary results extending the ones presented here in different directions.

*This is technical report 25/98 of the Department of Informatics, University of Karlsruhe. It is
also available at http://liinwww.ira.uka.de/"worsch/research/papers/ on the WWW.
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2 Simulation of k-bit CA by 1-bit CA

A deterministic CA is determined by a finite set of states @, a neighborhood N' =
N U {0} and a local rule. (For a simpler notation below, we assume that N =
{n1,...,n;n} does not contain {0}). The local rule of C is of the form 7 : @ x QY —
Q, i.e. each cell can has the full information on the states of its neighbors.

In a k-bit CA B, each cell only gets k bits of information about the state of each
neighbor. To this end there are functions b; : Q — B* specified, where B = {0,1}. If
a cell is in state ¢ then b;(q) are the bits observed by neighbor n;. We allow different
bits to be seen by different neighbors. The local transformation of B is of the form
7:Q x (BX)N - Q.

Given a configuration ¢ : Z — @ and its successor configuration ¢’ the new state
of a cell i is ¢; = 7(ci, b1(Citny)s - - » b (Citny )-

As usual, for the recognition of formal languages over an input alphabet A one
chooses @@ D A and a set of accepting final states F' C @ ~ @. In the initial configu-
ration for an input x1---x, € A" cell ¢ is in state x; for 1 < i < n and all other cells
are in a quiescent state ¢ (satisfying 7(g,¢") = ¢q). A configuration c is accepting iff
c1 € F.

Given a k-bit CA C one can construct a 1-bit CA C' with the same neighbor-
hood simulating C' in the following sense: Each configuration ¢ of C is also a legal
configuration of C’, and there is a constant ! (independent of ¢) such that if ¢’ is
C’s successor configuration of ¢ then C’ when starting in ¢ reaches ¢’ after [ steps.
The basic idea is to choose representations of states by binary words and to transmit
them bit by bit to the neighbors before doing a “real” state transition.

Let BS* denote B’ U --- U B, Denote by b; j(g) the j-th bit of b;(q), i.e. b;(q) =

bik(q) - bi1(q)-

Algorithm. As the set of states of C' choose Q' = Q x (BY)=F~1: ie. each state
q' consists of a ¢ € Q and binary words vy, ... , 0| of identical length j for some
0 <j < k-1 Foreach q € @ identify (q,¢,...,e) with ¢ so that @ can be
considered a subset of Q'. (Here, ¢ is the empty word.) For j < k — 1 and a
¢ = (gv1,---,yn)) € Q X (BN)J define b}(¢q') = b;;+1(q), where the b} are the
functions describing the bit seen by neighbor n; in C’.

The local transformation 7’ of C' is defined as follows:

o If the length j if all ve is < k — 1 then 7'((q,v1,...,vn|), 21, -, T|N|) =
(g, 1'101,---71'|N\U|N\)-

o If the length j if all ve is = k — 1 then 7'((q,v1,...,vn|), 1, -+, T|N|) =
(T(q,ﬁlvl,---,CU\N|U|N\),€,---78)-

The above construction shows that the following lemma holds:

Lemma. A k-bit CA can be simulated by a 1-bit CA with the same neighborhood
and slowdown k.

Since the states of a set () can be unambiguously represented as binary words of
length [log, |Q|], it is straightforward to see:
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Corollary. Each CA with s states can be simulated by a 1-bit CA with slowdown
[log, s| having the same neighborhood and identical functions b; for all neighbors.

It should be observed that the above slowdown happens if the bit visible to other
cells is the same for all neighbors. One could wonder whether the slowdown is always
less if different bits are sent to different neighbors. However this is not the case. The
proofs below for the lower bounds do not specifically make any use of the fact that
all neighbors are observing the same bit; they work even if there were |N| (possibly
different) functions b; for the neighboring cells.

On the other hand one should note that for certain CA there is a possibility for
improvement, i.e. conversion to 1-bit CA with a smaller slowdown: Sometimes it is
already known that neighbors do not need the full information about each state. In
a typical case the set of states might be the Cartesian product of some sets and a
neighbor only needs to know one component, as it is by definition the case in so-
called partitioned CA. It is then possible to apply a similar construction as above,
but only to that component. Since the latter can be described with less bits than
the whole state, the construction results in a smaller slowdown.

We will make use of this and a related trick in Section 3.3.

3 A linear-time hierarchy for 1-bit OCA

For a function f : Ny — Ny denote by OCAg(f(n)) the family of languages which
can be recognized by k-bit OCA in time f(n). In this section we want to prove:

Theorem. For all real numbers 1 < r; < ro holds:
OCAl(rln) ; OCAl(Tzn)

We will proceed in 3 major steps.

3.1 An infinite hierarchy

Let A,, be an input alphabet with exactly m = 2! — 1 symbols. Hence [ bits are
needed to describe one symbol of A,, U{O}, where O is the quiescent state. The case
of alphabets with an arbitrary number of symbols will be considered later.

Denote by L,, the set {vv® | v € A} of all palindromes of even length over A,,.

Lemma. Each 1-bit OCA recognizing L, needs at least time (I—e)n for every ¢ > 0.

Proof. Consider a 1-bit OCA C recognizing L,, and an input length n. Denote by
t the worst case computation time needed by C for inputs of length n.

Consider the boundary between cells k£ and k£ + 1, 1 < k < n, which separates a
left and a right part of an input. The computations in the left part are completely
determined by the corresponding part of the input and the sequence B, of bits
received by cell k from the right during time steps 1,...,f — k. There are exactly
2t-* such bit sequences. On the other hand there are m(™ %) = (2! — 1)("~*) right
parts of inputs of length n.

Assume that 2¢% < (2! — 1)(»~*) Then there would exist two different words v;
and vy of length n — k resulting in the same bit string received by cell & during any
computation for an input of one of the forms vv; or vvs. Since we are considering
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OCA, the bit string is independent of any symbols to the left of cell k£ + 1. Therefore
C would either accept or reject both inputs viv; or vive, although exactly one of
them is in L,,. Contradiction.

Therefore 2¢=% > (2! — 1)(»=%)_ For sufficiently large n there is an arbitrarily
small ¢ such that this implies 2tF > 20-¢")(=k) jeo ¢t — k > (I —")(n — k),
ie.t >In+k—1lk—¢c"n+ e"k. For an arbitrarily chosen ¢’ > 0 consider the case
k = &'n (for sufficiently large n). One then gets t > In +&'n —le'n —&'"n +&'"¢'n =
In—(e'"(l—1—¢")+€")n. If ¢’ and " are chosen sufficiently small this is larger than
In —en for a given ¢. ]

Lemma. L,, can be recognized by 1-bit OCA in time (I + 1)n + O (1).

Proof. Algorithm 3.6 below describes a (I + 1)-bit OCA recognizing the language in
time n+O (1). Hence the claim follows from Lemma 2.2. |

Algorithm. We describe a (14 1)-bit OCA recognizing L,,. The set of states can be
chosen to be of the form Q,, = Ay U Ay, x (A, U{O}) x B2. The local rule mapping
the state g. of a cell and the state g, of its neighbor to 7(gc, gr) is chosen as follows.
For the first step, with a,b’ € A,:

T(a7 bl) = (a7 bl’ 17 1)
For later steps:
T((a7 a’,? x? xl)) (b7 bl) y7 y,)) = (a7 bl? xl /\ [a = al]’ y)

where [a = a'] is 1 if the symbols are equal and 0 otherwise. As can be seen immedi-
ately, the only information needed from the right neighbor is one symbol ' and one
bit y. Hence an (I + 1)-bit OCA can do the job.

A closer look at the local rule reveals that the OCA above indeed recognizes
palindromes in time n+O (1) if one chooses as the set of final states A, x {0} x {1} xB
(see Vollmar and Worsch (1995) for details). Hence L,, can also be recognized by
1-bit OCA in time ({+1)n+O(1). O

The upper bound of the previous lemma is not very close to the lower bound of
Lemma 3.2, and it is not obvious how to improve at least one of them.

3.2 Reducing the gap to (I = ¢)n

We will now define variants of the palindrome language for which gaps between upper
and lower bound can be proved to be very small.

We will use vectors of length r of symbols from an alphabet A as symbols of
a new alphabet A’. Although a vector of symbols is more or less the same as a
word of symbols, we will use different notations for both concepts in order to make
the construction a little bit clearer. Denote by M the set of vectors of length
r of elements from a set M and by A" the set of words of length r consisting of
symbols from A. The obvious mapping (z1,...,2;) — 1 -2, induces a monoid
homomorphism h : (A™)* — (A")* C A*.

3.7 Definition. For integers m > 1 and r > 1 let

Ly = {vh(v)" | v € (AF))*}
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Ly, is a language over the alphabet AU Ay, The words in L, » are still more or
less palindromes where in the left part of a word groups of r elements from A,, are
considered as one symbol. As a special case one has Ly, 1 = Ly, as defined earlier.

Lemma. For each ¢ > 0 there is an r > 1 such that each 1-bit OCA recognizing
Ly, needs at least time (I —¢)n .

A proof can be given analogously to 3.3 above. One only has to observe that the
border between cells k£ and k& + 1 must not lie within “the left part v” of an input.
Therefore for small ¢ one must choose a sufficiently large r, e.g. r > 1/¢, to make
sure that |v] < e|vh(v)E|.

Thus for sufficiently large r although [log, |Ap,|] - 7 is not a lower bound on the
recognition time of Ly, , by 1-bit OCA, it is “almost”.

Lemma. For each e > 0 and r = 1/¢ the language Ly, , can be recognized by a 1-bit
OCA in time (I 4+ ¢)n + O (1).

Thus for sufficiently large r although [logy |4 |] -7 is not an upper bound on the on
the achievable recognition time on 1-bit OCA, it is “almost”.
For the proof we use a construction similar to Algorithm 3.6.

Algorithm. The CA uses a few additional steps before and after the check for
palindromes, where the check itself also has to be adapted to the different form of
inputs.

e In the first step each cell sends one bit to its left neighbor indicating whether
its input symbol is from A,, or A\, Thus, if the input is not in (A, )* A%, this
is detected by at least one cell and an error indicator is stored locally. It will
be used later.

e One may therefore assume now that the input is of the indicated form, and we
will call cells with an input symbol from A,, the “right” cells and those with a
symbol from A, the “left” cells.

After the first step the rightmost of the left cells has indentified itself.
e With the second step an algorithm for palindrome checking is started. The
modifications with respect to Algorithm 3.6 are as follows:

— Each cell is counting modulo Ir 4+ 1 in each step. (This doesn’t require
any communication.)

— During the first Ir steps of a cycle the right cells are shifting r symbols to
the left. In the (Ir 4 1)-st step they do not do anything.

— During the first Ir steps of a cycle the left cells are also shifting 7 symbols to
the left. In addition they are accumulating what they receive in registers.
In step Ir step they are comparing whether the register contents “match”
their own input symbol, and in step Ir + 1 they are sending the result of
the comparison, combined with the previously received comparison bit to
their left neighbor.

One should observe that the last point is the basic trick: the comparison bit
has not to be transported one cell to the left each time a symbol has been
received, but only every r symbols. Thus by increasing r the fraction of time
needed for transmitting these bits can be made arbitrarily small.
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e All the algorithms previously described have the following property: The part
of the time space diagram containing all informations which are needed for
the decision whether to accept or reject an input has the form of a triangle.
Its longest line is a diagonal with some slope n/t(n) (or ¢(n)/n depending on
how you look at it) leading from the rightmost input cell the leftmost one.
Furthermore every cell can know when it has done its job because afterwards
it only receives the encodings of the quiescent state.

e Therefore the following signal can be implemented easily: It starts at the right-
most input cell and collects the results of the checks done in the very first step.
It is moved to the left immediately after a cell has transmitted at least one
(encoding of the) quiescent state in a (Ir + 1)-cycle. Thus this signal causes
only one additional step to the overall recognition time.

Since the above algorithm needs Ir + 1 steps per r input symbols from A,, and since
the rightmost r symbols have to travel approximately n cells far, the total running
time isn-(Ir+1)/r+0 (1), i.e. ({4+1/r)n+0O (1) as required. O

From the Lemmata 3.8 and 3.9 one can immediately deduce the following:

Corollary. For each integer constant c the set of languages which can be recognized
by 1-bit OCA in time cn is strictly included in the the set of languages which can be
recognized by 1-bit OCA in time (¢ + 2)n.

This has to be contrasted with unlimited OCA where there is no such infinite hi-
erarchy within the family of languages which can recognized in linear time. One
therefore gets the following picture:

OCA;(2n) G OCAi(4n) G OCA;(6n) G OCA;(8n) &
C C C C
=z = = =
OCA(2n) = OCA(4n) = OCA(6n) = OCA(Sn) =

Figure 1: A hierarchy for 1-bit OCA.
In the top row one uses the fact that for each 7 > 1
OCA;(2in) € OCA;((2i +1—¢)n) G OCA;((2i + 1 +¢)n) € OCA;((2i + 2)n)
and for each column one has to observe

OCA;(2in) G OCA;((2i +2)n) € OCA((2i +2)n) = OCA(2in) .

3.3 There are small gaps everywhere

Finally we will prove now that a small increase of the linear-time complexity already
leads to an increased recognition power not only around (r +¢)n for natural numbers
r, but for all real numbers r > 1. Since the rational numbers are dense in R it suffices
to prove the result for r € Q.

The basic idea is the following: The number [ playing an important role in the
previous sections is something like an average number of bits needed per symbol.
What we want to achieve below is an average number r of bits needed per symbol.
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Assume that an arbirtrary rational number » > 1 has been fixed as well as the
relatively prime natural numbers z and y < & such that » = z/y. Then the above is
more or less equivalent to saying that one needs x bits for every y symbols.

Therefore choose the smallest m such that 2% < mY and a set M of 2% —1 different
words from Af,. In order to define the languages L, . to be used later we start with
the languages Ly, , considered in the previous section, where m’ = 2% —1. Denote by
Je,y & one-to-one mapping gz, : Apy — M which is extended to words of r-tuples by
considering it as a function g : (A))* — ((A' )¥)* mapping each r-tuple of symbols
is a word of length y of r-tuples of symbols. Now choose

Laz,y,m,r = gx,y(Lm’,r)

For an example assume that we are interested in the case r = 1/3. Then m = 2 is
the smallest integer such that 2! < m3.

Analogously to the previous sections we will proceed now by showing that (z/y —
e)n is a lower bound on the recognition time of L;n’l/a and that time (z/y + ¢)n
suffices.

Lemma. For each ¢ > 0 there is an r > 1 such that each 1-bit OCA recognizing
Lyym,r needs at least time (xz/y — €)n.

Proof. Straightforward. u

Lemma. For each ¢ > 0 and r = 1/e the language Ly y m, can be recognized by a
1-bit OCA in time (z/y +¢)n + O (1).

Proof. Straightforward. u

As a consequence one gets that there is an uncountable set of families of languages
ordered by proper inclusion which is order isomorphic to the real numbers greater
than 1 as already claimed at the beginning of this section:

Proof. (of Theorem 3.1) Choose a rational number z/y and an ¢ > 0 such that
r <z/y—e<az/y+e<ry From Lemmata 3.12 and 3.14 follows that there is a
language in OCA;(z/y + ¢) ~ OCA;(xz/y — ) which is then also a witness for the
properness of the above inclusion. [

Therefore the hierarchy depicted in Figure 1 can be generalized to the following,
where r; and rp are arbitrary real numbers satisfying 1 < r; < ro:

G OCAi(rin) S--G OCAi(ran) G-

C C
Z= Z=
= OCA(rin) =---= O0OCA(ran) =---

Figure 2: The very fine hierarchy for 1-bit OCA.
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The above results can be generalized in several ways. On is to consider z-bit OCA
where z € QQ is a rational number. For a suitable definition of this model one can
then show that for real numbers 1 < 71 < r9 and 0 < 21 < 23 the following inclusions
are all proper:

C C

Z Z
S OCA,(mn) S+ G OCA; (ran) G-
C C
P z=
C C
P z=
S OCA,(rin) S-+G OCA,(ran) &-
C C
Z Z
C C
P z=
.= OCA(rln) = ... = OCA(Tzn) =---

Figure 3: A very fine hierarchy for OCA with restricted communication bandwidth.

This will be shown in a forthcoming paper.

The other obvious extension is to two-way CA (and later higher dimensional CA).

It si not too difficult to see, that L,, can be recognized by 1-bit CA in time
(I 4+2)n/2, but it cannot be recognized by 1-bit OCA in time (I — ¢)n. This is a gap
of (Il —e)n— (I +2)n/2 = (I — 2 — 2¢)n/2 which can be made arbitrarily large! In
other words:

Lemma. For each constant ¢ > 1 there are languages for which 1-bit two-way CA
can be faster than any OCA recognizing it by a factor of c.

Corollary. For no constants r > 1 and ¢ > 1 is CA1(rn) C OCA;(crn).

We also have preliminary results analogously e.g. to Lemma 3.2 for two-way CA,
but still with a large gap between classes which can be shown to be related by proper
inclusion. We hope to reduce the gap in a further work.

5 Conclusion

It has been shown that for all real numbers 7 > 1 and € > 0 there are problems which
can be solved on 1-bit OCA in time (r + €)n, but not in time rn. As a consequence
there are problems the solution of which on 1-bit OCA must be slower than on
unlimited OCA by a factor of at least r.

It is therefore interesting, and in some way surprising, that certain problems
which are considered to be nontrivial, e.g. the FSSP, can solved on 1-bit CA without
any loss of time.



Two-way CA with the ability to communicate 1 bit of information in each direc-
tion are more powerful than one-way CA with the ability to communicate &k bit in
one direction. For certain formal languages the latter have to be slower by a constant
factor which cannot be bounded.
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