

A Multithreaded Processor Designed for Distributed Shared Memory Systems

Winfried Grünewald and Theo Ungerer

Department of Computer Design and Fault Tolerance, University of Karlsruhe, 76128 Karlsruhe, Germany,
Phone +721-608-6048, Fax + 721-370455, Email: {gruenewald, ungerer}@informatik.uni-karlsruhe.de

Abstract

The multithreaded processor – called Rhamma – uses a fast
context switch to bridge latencies caused by memory
accesses or by synchronization operations. Load/store, syn-
chronization, and execution operations of different threads of
control are executed simultaneously by appropriate func-
tional units. A fast context switch is performed whenever a
functional unit comes across an operation that is destined for
another unit. The overall performance depends on the speed
of the context switch. We present two techniques to reduce
the context switch cost to at most one processor cycle: A con-
text switch is explicitly coded in the opcode, and a context
switch buffer is used. The load/store unit shows up as the
principal bottleneck. We evaluate four implementation alter-
natives of the load/store unit to increase processor perfor-
mance.

1. Introduction

Currently standard or application specific microproces-
sors are used as nodes for multiprocessor systems. Stan-
dard microprocessors are developed and optimized for
microcomputers or workstations with a single processor
or with a low number of processors tied to a common bus.
The use of standard microprocessors limits the scalability
of shared memory multiprocessor systems unless provi-
sions are made to bridge latencies caused by remote mem-
ory accesses or by synchronization operations. Because of
the small market segment of multiprocessor systems,
designing microprocessors specifically for use in multipro-
cessors is expensive.

Our research project aims at the development of a pro-
cessor which is suitable for a node in a distributed shared
memory system (DSM) as well as in a uniprocessor sys-
tem. The storage of a DSM system is physically distrib-
uted, but all processors share a common address space. As
a consequence, memory access time depends on the loca-
tion of the accessed data. The data can be in the processor
cache, the local memory, or the remote memory.

The access of remote data and the synchronization of
threads cause processor idle times. It is the object of our
research to fill these idle times by switching extremely
fast to another thread of control. We further implement
suitable synchronization primitives that prevent busy wait-
ing. The processor should be able to bridge memory laten-
cies and synchronization waiting times so efficiently that
it could also be applied in a single-processor workstation.

Related approaches are:

the finely grained multithreaded processors HEP [1],
Horizon [2] and Tera systems [3], that switch context
on every instruction,
the block multithreaded processors Sparcle of the MIT
Alewife machine [4], MSparc [5] and MTA [6],
the multithreaded superscalar processors developed at
the Media Research Laboratory of Matsushita Electric
Industrial Co. [7], at the University of California,
Irvine [8], at the University of Karlsruhe [9], and the
simultaneous multithreaded processor of the University
of Washington [10], and
the decoupled access/execute architecture DAE [11],
which splits instruction processing of a single thread of
control into memory access and execution tasks, exe-
cuted by different units, that communicate via “archi-
tectural queues”.

Our approach is most similar to the Sparcle and
MSparc processors which switch the context on a cache
miss. However, the execution unit of our processor
switches the context whenever it comes across a load,
store or synchronization instruction, and the load/store
unit switches whenever it meets an execution or synchroni-
zation instruction. In contrast to Sparcle, the context
switch is triggered by the decode unit in an early stage of
the pipeline, thus decreasing context switching time. On
the other hand, the overall performance of our processor
may suffer from the higher rate of context switches unless
the context switch time is very small. Implementation
alternatives for a very fast context switch are presented.

•

•

•

•

Figure 1: Microarchitecture of the Rhamma processor

register
sets

sync
unit

load/store
unit

execution
unit

sync
requests

thread
tags

memory interface

thread
tags

thread
tags

sync
requests/

thread
tags

load/store
acknowledge-

ments

thread
tags

2. The Processor Architecture

The main idea is to remove all operations that may
cause active waiting from the execution unit. Therefore,
load, store and synchronization operations are performed
by different units within the processor. We distinguish
idle times caused by memory accesses from idle times
caused by synchronization operations. The former depend
on the memory hierarchy of a DSM system, and idle
times are predictable within a time period varied by net-
work access conflicts. The latter depend on the program
execution and are non predictable. We assign a unit for
the load and store operations — the load/store unit — and
another unit for the synchronization operations — the
sync unit. The execution unit processes the arithmetic-
logic and the control instructions. Each of these units exe-
cutes instructions from another thread. The units are cou-
pled by FIFO buffers and access different register sets.
The microarchitecture of the multithreaded processor is
shown in figure 1.

A unique thread tag identifies the thread. An activa-
tion frame is assigned to each thread holding thread-local
data, e.g. the program counter, the thread tag, and other
state information. The activation frames are physically dis-
tributed to the register sets. If more activation frames
exist than register sets are available, activation frames of
blocked threads are stored in the memory.

Each unit stops the execution of a thread when its
decode stage recognizes an instruction intended for
another unit. To perform a context switch the unit passes
the thread tag to the FIFO buffer of the unit that is appro-

priate for the execution of the instruction. Then the unit
resumes processing with another thread of its own FIFO
buffer. The units execute different threads of control.
Therefore, they access different activation frames and
thus different register sets. A fast context switch is real-
ized by simply switching to another register set. A more
detailed microarchitecture description of the multi-
threaded processor is given in [12]. In the following, we
omit the sync unit and concentrate on the load/store and
execution units.

3. Fast Context Switch

In general, using a five stage processor pipeline (e.g.
instruction fetch, decode, operand fetch, execution, write
back) a context switch is recognized in the decode stage.
This unnecessary decoding costs one cycle. We allow for
access to the new thread tag and loading the new instruc-
tion pointer from the thread tag each by an additional
cycle. The first instruction of the new thread is decoded
after two further cycles — thus context switching over-
head sums up to 5 cycles.

Besides the software simulations presented in this
paper, we implemented the Rhamma architecture in
VHDL and optimized the hardware towards a fast context
switch. We obtained a context switch cost of at most one
processor cycle by applying two optimizations:

One technique is to code the context switch explicitly
in the first opcode bit of the instruction. A complete
decoding is not necessary to recognize a context switch.
The instruction fetch stage already recognizes the con-
text switch itself, and the context switch just costs the
cycle to fetch the instruction.

The second technique applies a context switch buffer,
which is similar to branch buffers in modern micropro-
cessors. The context switch buffer is a small table in the
execution unit, which holds the addresses of the most
recently used load/store instructions. If the address of
the next instruction to be fetched matches with an
address in the context switch buffer, a context switch is
performed immediately. In this case context switching
time is reduced to zero. Otherwise the first method is
used. Our simulations with real work loads have shown,
that only a little buffer with about 32 entries is required.
The context switch buffer is also suitable if the instruc-
tion fetch costs more than one processor cycle as usual
in modern processors.

•

4. Alternative Implementations of the Load/Store Unit

The main bottleneck of each high-performance proces-
sor is the unit executing load and store instructions. In a
multithreaded processor the load/store bottleneck is even
more essential than in a conventional processor because
of the higher throughput of data. Multithreading, however,
allows new possibilities to solve the load/store bottleneck.
We studied four implementation alternatives:

Stalling: The simplest implementation is to issue a
load or store request to the memory interface and then
wait for the load/store acknowledgement that proves
completion of the memory access before the next
instruction is scheduled.
Interleaving: the load/store unit switches the thread of
control after each load or store request. A load or store
instruction of another thread can be scheduled. The
succeeding instructions of the switched thread are exe-
cuted after receiving the acknowledgement correspon-
ding to the memory request.
Overlapping: One or several load/store requests are
sent to the memory. Then the thread tag is handed
over to the execution unit or synchronization unit,
respectively. The next execution instructions are exe-
cuted if the instructions are data independent from the
previous ones.
Combining interleaving and overlapping: After sen-
ding a load/store request to the memory, the next data
independent instructions are scheduled. In the case
that the load/store unit has to stall for a dependent
instruction, the unit switches the thread of control.

5. The Simulator

 We use an event driven simulation at the register trans-
fer level of the Rhamma processor which is able to per-
form the behavior of a single processor system or a
memory coupled multiprocessor system. The execution
unit is a processor based on the DLX processor of the uni-
versity of Stanford [13]. The DLX processor is a conven-
tional RISC processor with a five stage pipeline. The
DLX instruction set is extended by synchronization and
thread management instructions. In our simulations we
evaluate our multithreaded Rhamma processor vs. a con-
ventional processor without multithreading represented by
the original DLX processor, and vs. a multithreaded pro-
cessor with context switching on cache miss similar to the
Sparcle/MSparc processor. The latter is also based on the
DLX processor and uses a one cycle context switch — in
contrast to the original Sparcle processor, that needs 14

cycles for a context switch. A one cycle context switch
will be difficult to implement.

We assume one simulation time step per pipeline stage
for each instruction execution and for the access to the
instruction memory. The access to a FIFO queue and the
minimum delay time the data has to stay in a FIFO queue
is also one simulation time step.

We vary
the thread switching cost: the number of time steps nec-
essary to switch the execution unit or the load/store
unit to another thread of control,
the access time(s): the amount of time steps from a
memory request to its completion,
the cycle time(s): the minimum number of time steps
between two memory accesses, and
the hit rate(s): percentage of memory requests served
by the cache, the local memory, or remote memory.

Depending upon the memory hierarchy we distinguish
access times, cycle times and hit rates of the cache, local
memory and remote memory within a DSM system. We
assume split transactions on the network of the DSM sys-
tem. Therefore, the remote memory cycle time is chosen
as fraction of the remote memory access time. Access and
cycle times are shown in table 1. We vary the cache hit
rate and the local memory access rate.

As explained in section III, the context switch of our
VHDL implementation of Rhamma costs at most a single
cycle and is reduced to zero if a context switch buffer
entry matches. For the software simulations we used a con-
text switch cost of one simulation time step.

As simulation workload we applied several small appli-
cation programs written in Modula-2. The applications
were compiled to the machine language of DLX and to
the extended machine language of Rhamma. For the simu-
lations presented in this paper we chose a set of synthetic
benchmark programs. The workload is characterized by
100 000 instructions, three threads, and a rate of one
load/store instruction to three execution instructions. The
number of data independent succeeding instructions is
two. This simulation workload does not contain synchroni-
zation instructions.

Table 1: Access and cycle times

1/1

25/25
100/25

access cycle
time time

cache 1 1
local memory 25 25
remote memory 100 25

•

•

•

•

•

•

•

Figure 2: Simulation diagrams for the four load/store unit implementation alternatives

0%
25%

50% 75%
100%

100%

65%

30%

0

500000

1000000

1500000

2000000

2500000

3000000

stalling store/load unit

0%
25% 50%

75%
100%

100%

65%

30%

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

store/load unit with interleaving

0%
25%

50% 75%
100%

100%

65%

30%

0

100000

200000

300000

400000

500000

600000

700000

800000

store/load unit with overlapping

0% 25% 50%
75% 100%

100%

65%

30%

0

100000

200000

300000

400000

500000

600000

700000

800000

load/store with overlapping and interleaving

cachelocal memory

tim
e

steps

6. Simulation Results

Various configurations of multiprocessors were simu-
lated. The four diagrams in figure 2 vary the cache hit rate
and the local memory access rate. The remote memory
access rate results from these two rates. The vertical axis
shows the yielded simulation time steps for the executed
benchmark program.

As can be seen easily, the stalling load/store unit
performs worst, and the combined approach (bottom right)
gives the best performance (note the different scales on the
vertical axis). The interleaving and the overlapping tech-
niques are intermediate and not in a direct order to each other.
This is because of the convex and concave crookedness of
the planes formed by the tops of the small bars. If we analyze
the edges of the planes in the four figures, the following con-
figurations of multiprocessor systems are represented:

a. The front edge, running from the lower rightmost side
to the leftmost side, represents configurations without
remote memory - a single processor system without
cache (the leftmost bar) or with cache and different
cache hit rates.

b. The back edge, running from the uppermost bar in the
middle of the diagram to the rightmost bar, removes
the local memory from the simulations – representing
cache-only DSM multiprocessors like the KSR-
machines of Kendall Square Research, or NUMA (non

The strong inclination of the graphs is mainly caused
by the influence of the cache hit rate on the overall
performance. The multithreaded processor bridges
only a part of the memory latency, because the cycle
time is equal to the memory access time. If the cycle
time is smaller than the access time, the multithread-
ing approaches perform even better than shown in
Figure 3.

b. Removing the local memory from the nodes, we rep-
resent a cache-only DSM multiprocessor or a NUMA
multiprocessor with caches and remote memory (fig-
ure 4). The three more complex load/store unit
approaches perform much better than the two conven-
tional processors and the simple multithreading
approach, especially when cache hit rate is low or the
cache is missing. The Sparcle/MSparc approach per-
forms best for cache hit rates up to 60%. The angle
between the upper three and the lower four graphs in
Figure 4 is caused by the ratio of cycle time to access
time.

The realistic hit rates for caches in multiproces-
sor systems range from 10% to 60%. The graph of
the conventional processor with overlapping is typi-
cal for a cache-only multiprocessor system like the
KSR, which does not use a multithreaded processor
to bridge memory latencies. Here, the advantage of a
multithreaded processor is overwhelming.

The three multithreading techniques perform in
the range of realistic cache hit rates from 10% to
60% as well as conventional processors with a very
good cache hit rate of 80% or higher. Even multi-
threading without cache is as good as a conventional
processor with a cache hit rate of 65%. Thus, multi-
threading can replace expensive cache memories.

Figure 3: no remote memory (configuration a.)

Figure 4: no local memory (configuration b.)

-uniform memory access) multiprocessor systems with
caches and a single global memory.

c. The back edge, running from the uppermost bar in the
middle of the diagram to the leftmost bar, represents
configurations with local and remote memory but with-
out cache - representing NUMA multiprocessors like
e.g. DSM multiprocessors without caches.

d. All bars, not at an edge, represent DSM multipro-
cessors with caches or shared memory multiprocessors
with caches, local and global memory. A realistic hit
rate assumption is 60% cache hits, 10% local memory
and 30% remote memory accesses, easily discovered
as a specific single bar in the diagrams. Starting from
this bar, we vary:

d1. the cache hit rate and the local memory access
rate (remote memory access fixed at 30%),

d2. the cache hit rate and the remote memory access
rate (local memory access rate fixed at 10%), and

d3. the local and the remote memory access rates
(cache hit rate fixed at 60%).

The configurations a. – c. and d1. – d3. are shown in
single diagrams (figures 3 – 8) and compared with the per-
formance of a conventional processor, either with stalling
or with overlapping load/store unit implementations.

a. Removing the remote memory, the diagram (figure 3)
illustrates the memory hierarchy behavior of a system
with a single processor. The multithreaded processor
with all four load/store unit implementations performs
better than the conventional stalling processor. But the
conventional processor with overlapping load/store and
execution instructions performs better than the simple
multithreading approach for systems without cache or
with low cache hit rates. The realistic cache hit rates
range from 60% to 95%. In this region the combined
approach performs best and much better than the con-
ventional processors.

0

100000

200000

300000

400000

500000

600000

700000

800000

stalling
interleaving
overlapping
combined

stalling
overlapping

100%90%80%70%60%50%40%30%20%10%0%

cache hit rate

Rhamma:

conventional:

cache hit rate (no local memory)

0

500000

1000000

1500000

2000000

2500000

3000000

remote miss

stalling
interleaving
overlapping
combined

stalling
overlapping

100%90%80%70%60%50%40%30%20%10%0%

Rhamma:

conventional:

Sparcle

The configuration d2 (figure 7) with a fixed local
memory access rate of 10% varies cache hit rate and
remote memory access rate. It shows good latency
bridging again for the same three multithreading
approaches. The cache hit rate is not as essential for
the multithreading approaches as for the conventional
processors and the simple stalling approach.

c. In the diagram in figure 5, cache memory is left out,
thus representing a DSM multiprocessor without
caches. We see from the diagram, that the interleaving,
overlapping and combined methods are very good
solutions for the problem of latency hiding. Executing
instructions succeeding the load/store instructions also
hides a small part of latency in the overlapped
conventional approach.

The configuration d3 (figure 8) with a fixed cache hit
rate of 60% varies local and remote memory access
rates. It shows the same results as d1 and d2.

In all six diagrams the combined approach performs
best, the less complex interleaving and overlapping
approaches are often nearly as good as the combined
approach. The stalling approach is to simple. It often per-
forms better than the stalling conventional processor, but
worse than the overlapping conventional processor.

Figure 5: no cache (configuration c.)

Figure 7: no cache (configuration d2.)

Figure 8: cache hit rate fixed at 60% (configuration d3.)

Figure 6: remote memory access fixed at 30% (configuration d1)

500000

1000000

1500000

2000000

2500000

3000000

local&remote miss
remote miss

stalling
interleaving
overlapping
combined

stalling
overlapping

100%90%80%70%60%50%40%30%20%10%0%

hit rate of local memory Sparcle:

Rhamma:

conventional:

cache hit rate

300000

600000

900000

1200000

1500000

stalling
interleaving
overlapping
combined

stalling
overlapping100%90%80%70%60%50%40%30%20%10%0%

Rhamma:

conventional:

The Sparcle/MSparc approach (see Sparcle
remote curve) stalls on a local cache miss. It can not
bridge the local memory access time. If
Sparcle/MSparc is modified to switch on local and
remote miss, it shows a similar performance as the
combined approach.

Increasing the number of nodes in a multiprocessor
system corresponds in general to a lower hit rate to the
local memory, because data is distributed over the
local memories of more processors. The graphs for the
interleaving, overlapping and combined methods are
nearly horizontal, which shows, that the use of
multithreaded processors supports the scalability of the
system. The data distribution is not a critical subject,

The configuration d1 (figure 6) with a fixed remote
memory access of 30% varies the cache hit rate and
local memory access rate. All three multithreading
approaches, interleaving, overlapping, and their
combination, show good performance due to the
latency bridging for DSM systems.

cache hit rate

0

500000

1000000

1500000

2000000

2500000

stalling
interleaving
overlapping
combined

stalling
overlapping100%90%80%70%60%50%40%30%20%10%0%

Rhamma:

conventional:

hit rate of local memory

200000

400000

600000

800000

1000000

1200000

interleaving
stalling

overlapping
combined

stalling
overlapping100%90%80%70%60%50%40%30%20%10%0%

conventional:

Rhamma:

d2.

d1.

d3.

We conducted further simulations to test the robustness
of our simulation results. These supplementary simula-
tions are summarized as follows:

For the simulations as shown above we used a simula-
tion load of three threads. Increasing the number of
threads also increases the load usable for latency bridg-
ing, which is advantageous when long latencies have to
be bridged by the multithreaded processor.

A longer memory access time does not necessarily
slow down the performance. Provided that the work
load is sufficient and the cycle time is not changed, per-
formance does not deteriorate, because of the latency
bridging capability of the multithreaded processor.

The cycle time proves as the critical parameter for the
multithreaded processor. Increasing the cycle time
slows down the performance as soon as the latency can-
not be bridged completely by the multithreaded proces-
sor. A shorter cycle time widens the load/store
bottleneck, thus possibly increasing performance.

The load/store variants overlapping and interleaving,
that use overlapping instruction execution, depend on
the number of data independent instructions following
a load/store instruction. However, if enough threads
are provided, the waiting time in the FIFO-buffer to
the execution unit is sufficient to bridge the latency. In
contrast, the overlapping conventional processor slows
down if the number of data-independent instructions
decreases.

Changing the instruction mix will change the processor
utilization. Best utilization will be reached by choosing
an instruction mix given by the equation

Our multithreaded processor as well as the conven-
tional processor are based on a scalar RISC processor.
It is not easy to compare the simulation results with a
hypothetical superscalar processor. However, since a
superscalar processor is also equipped with a single
load/store unit, it is comparable with our multithreaded
processor containing an execution unit, which is able
to issue execution instructions simultaneously from a
single thread to several functional units. Simulating a
higher issue bandwidth the main problem remains —
the load/store bottleneck that can only be widened by
better cycle times.

7. Simulation Results

We presented a multithreaded processor which uses fast
context switching to bridge latencies caused by memory
accesses or synchronization operations. Since the context
switch is triggered by the decoding in an early stage of the
pipeline, context switching time can be as short as one
cycle. The multithreaded processor outperforms the con-
ventional processor by its ability to tolerate memory laten-
cies by executing instructions of another thread. Because
of the short context switching time, a load of only few
threads is sufficient for increasing performance over a con-
ventional processor.
Memory latencies depend on the access and the cycle
time. While the access time can be fully bridged by multi-
threading, the cycle time proves as the critical parameter.
Cycle times should be shorter than access times. The
implementation of the load/store unit is essential for the
overall performance, too. The Rhamma processor with a
simple stalling load/store unit performs better than the
stalling conventional processor but worse than the overlap-
ping conventional processor because short cycle times can
not be utilized. The more sophisticated load/store unit
implementations increase the performance of the multi-
threaded processor. The combined approach performs
best.
As the next step after the software simulation we devel-
oped a VHDL implementation of Rhamma. We conducted
a hardware simulation and synthesis using the Synopsys
tools. With the software simulation results in mind we
chose to implement the combined load/store unit and to
minimize the context switch overhead, that we could
reduce to at most one processor cycle (see section III). We
are working towards a hardware prototype.

References

load/store
instructions# ≈ #

average
cycle time

execution
instructions·

B. J. Smith: The Architecture of HEP. In: J. S. Kowalik
(Ed.): Parallel MIMD Computation: The HEP Supercompu
ter and Its Applications. The MIT Press, Cambridge 1985.
M. R. Thistle, B. J. Smith: A Processor Architecture for
Horizon. Supercomputing 88, Orlando1988, 35 - 41.
R. Alverson et al.: The Tera Computer System. 4th
International Conference on Supercomputing, Amsterdam,
June 11-15, 1990, 1- 6.
A. Agarwal et al.: The MIT Alewife Machine: Architecture
and Performance. The 22nd Annual International
Symposium on Computer Architecture, Santa Margherita
Ligure, June, 22-24, 1995, 2 - 13.

•

•

•

•

•

•

[1]

[2]

[3]

[4]

A. Mikschl, W. Damm: MSparc: A Multithreaded Sparc.
Proceedings of the Second International Euro-Par Confer-
ence, Lyon, August 1996, Vol. II, 461-469.
H. Hum, K. Theobald, G. Gao: Building Multithreaded
Architectures with Off-the-Shelf Microprocessors. Proceed-
ings of the International Parallel Processing Symposium,
Cancun, April 1996, 288-294.
H. Hirata, S. Kimura, S. Nagamine, Y. Mochizuki, A. Nishi-
mura, Y. Nakase, T. Nishizawa: An Elementary Processor
Architecture with Simultaneous Instruction Issuing from
Multiple Threads. 19th Annual International Symposium on
Computer Architecture, 1992, 136–145.
M. Gulati, N. Bagherzadeh: Performance Study of a Multi-
threaded Superscalar Microprocessor. International Sympos-
ium on High Performance Computer Architecture, San Jose,
February 1996, 291-301.

U. Sigmund, T. Ungerer: Identifying Bottlenecks in a Multithreaded
Superscalar Microprocessor. Proceedings of the Second International
Euro-Par Conference, Lyon, August 1996, Vol. II, 797-800.
D. E. Tullsen, S. J. Eggers, H. M. Levy: Simultaneous Multi-
threading: Maximizing On-Chip Parallelism. The 22nd
Annual International Symposium on Computer Architecture,
Santa Margherita Ligure, June, 22-24, 1995, 392 - 403.
J. Smith, S. Weiss, N. Pang: A Simulation Study of Decou-
pled Architecture Computers. IEEE Transactions on Com-
puters, Vol C-35, No. 8, August 1986, 692-701.
W. Grünewald, T. Ungerer: Towards Extremely Fast Con-
text Switching in a Block-multithreaded Processor. Proceed-
ings of the 22nd Euromicro Conference, Prague, September
1996, 592-599.
J. L. Hennessy, D. A. Patterson: Computer Architecture a
Quantitative Approach, San Mateo1996.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

