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Abstract

The multithreaded processor  – called Rhamma – uses a fast 
context switch to bridge latencies caused by memory 
accesses or by synchronization operations. Load/store, syn-
chronization, and execution operations of different threads of 
control are executed simultaneously by appropriate func-
tional units. A fast context switch is performed whenever a 
functional unit comes across an operation that is destined for 
another unit. The overall performance depends on the speed 
of the context switch. We present two techniques to reduce 
the context switch cost to at most one processor cycle: A con-
text switch is explicitly coded in the opcode, and a context 
switch buffer is used. The load/store unit shows up as the 
principal bottleneck. We evaluate four implementation alter-
natives of the load/store unit to increase processor perfor-
mance.

1. Introduction

Currently standard or application specific microproces-
sors are used as nodes for multiprocessor systems. Stan-
dard microprocessors are developed and optimized for 
microcomputers or workstations with a single processor 
or with a low number of processors tied to a common bus. 
The use of standard microprocessors limits the scalability 
of shared memory multiprocessor systems unless provi-
sions are made to bridge latencies caused by remote mem-
ory accesses or by synchronization operations. Because of 
the small market segment of multiprocessor systems, 
designing microprocessors specifically for use in multipro-
cessors is expensive.

Our research project aims at the development of a pro-
cessor which is suitable for a node in a distributed shared 
memory system (DSM) as well as in a uniprocessor sys-
tem.  The storage of a DSM system is physically distrib-
uted, but all processors share a common address space. As 
a consequence, memory access time depends on the loca-
tion of the accessed data. The data can be in the processor 
cache, the local memory, or the remote memory.

The access of remote data and the synchronization of 
threads cause processor idle times. It is the object of our 
research to fill these idle times by switching extremely 
fast to another thread of control. We further implement 
suitable synchronization primitives that prevent busy wait-
ing. The processor should be able to bridge memory laten-
cies and synchronization waiting times so efficiently that 
it could also be applied in a single-processor workstation.

Related approaches are:

the finely grained multithreaded processors HEP [1], 
Horizon [2] and Tera systems [3], that switch context 
on every instruction, 
the block multithreaded processors Sparcle of the MIT 
Alewife machine [4], MSparc [5] and MTA [6],
the multithreaded superscalar processors developed at 
the Media Research Laboratory of Matsushita Electric 
Industrial Co. [7], at the University of California, 
Irvine [8], at the University of Karlsruhe [9], and the 
simultaneous multithreaded processor of the University 
of Washington [10], and
the decoupled access/execute architecture DAE [11], 
which splits instruction processing of a single thread of 
control into memory access and execution tasks, exe-
cuted by different units, that communicate via “archi-
tectural queues”.

Our approach is most similar to the Sparcle and 
MSparc processors which switch the context on a cache 
miss. However, the execution unit of our processor 
switches the context whenever it comes across a load, 
store or synchronization instruction, and the load/store 
unit switches whenever it meets an execution or synchroni-
zation instruction. In contrast to Sparcle, the context 
switch is triggered by the decode unit in an early stage of 
the pipeline, thus decreasing context switching time. On 
the other hand, the overall performance of our processor 
may suffer from the higher rate of context switches unless 
the context switch time is very small. Implementation 
alternatives for a very fast context switch are presented.
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Figure 1: Microarchitecture of the Rhamma processor
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2. The Processor Architecture

The main idea is to remove all operations that may 
cause active waiting from the execution unit. Therefore, 
load, store and synchronization operations are performed 
by different units within the processor. We distinguish 
idle times caused by memory accesses from idle times 
caused by synchronization operations. The former depend 
on the memory hierarchy of a DSM system, and idle 
times are predictable within a time period varied by net-
work access conflicts. The latter depend on the program 
execution and are non predictable. We assign a unit for 
the load and store operations — the load/store unit — and 
another unit for the synchronization operations — the 
sync unit. The execution unit processes the arithmetic-
logic and the control instructions. Each of these units exe-
cutes instructions from another thread. The units are cou-
pled by FIFO buffers and access different register sets. 
The microarchitecture of the multithreaded processor is 
shown in figure 1.

A unique thread tag identifies the thread. An activa-
tion frame is assigned to each thread holding thread-local 
data, e.g. the program counter, the thread tag, and other 
state information. The activation frames are physically dis-
tributed to the register sets. If more activation frames 
exist than register sets are available, activation frames of 
blocked threads are stored in the memory.

Each unit stops the execution of a thread when its 
decode stage recognizes an instruction intended for 
another unit. To perform a context switch the unit passes 
the thread tag to the FIFO buffer of the unit that is appro-

priate for the execution of the instruction. Then the unit 
resumes processing with another thread of its own FIFO 
buffer. The units execute different threads of control. 
Therefore, they access different activation frames and 
thus different register sets.  A fast context switch is real-
ized by simply switching to another register set. A more 
detailed microarchitecture description of the multi-
threaded processor is given in [12]. In the following, we 
omit the sync unit and concentrate on the load/store and 
execution units.

3. Fast Context Switch

In general, using a five stage processor pipeline (e.g. 
instruction fetch, decode, operand fetch, execution, write 
back) a context switch is recognized in the decode stage. 
This unnecessary decoding costs one cycle. We allow for 
access to the new thread tag and loading the new instruc-
tion pointer from the thread tag each by an additional 
cycle. The first instruction of the new thread is decoded 
after two further cycles — thus context switching over-
head sums up to 5 cycles.

Besides the software simulations presented in this 
paper, we implemented the Rhamma architecture in 
VHDL and optimized the hardware towards a fast context 
switch. We obtained a context switch cost of at most one 
processor cycle by applying two optimizations:

One technique is to code the context switch explicitly 
in the first opcode bit of the instruction. A complete 
decoding is not necessary to recognize a context switch. 
The instruction fetch stage already recognizes the con-
text switch itself, and the context switch just costs the 
cycle to fetch the instruction.

The second technique applies a context switch buffer, 
which is similar to branch buffers in modern micropro-
cessors. The context switch buffer is a small table in the 
execution unit, which holds the addresses of the most 
recently used load/store instructions. If the address of 
the next instruction to be fetched matches with an 
address in the context switch buffer, a context switch is 
performed immediately. In this case context switching 
time is reduced to zero. Otherwise the first method is 
used. Our simulations with real work loads have shown, 
that only a little buffer with about 32 entries is required. 
The context switch buffer is also suitable if the instruc-
tion fetch costs more than one processor cycle as usual 
in modern processors.
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4. Alternative Implementations of the Load/Store Unit

The main bottleneck of each high-performance proces-
sor is the unit executing load and store instructions. In a 
multithreaded processor the load/store bottleneck is even 
more essential than in a conventional processor because 
of the higher throughput of data. Multithreading, however, 
allows new possibilities to solve the load/store bottleneck. 
We studied four implementation alternatives:

Stalling: The simplest implementation is to issue a 
load or store request to the memory interface and then 
wait for the load/store acknowledgement that proves 
completion of the memory access before the next 
instruction is scheduled.
Interleaving: the load/store unit switches the thread of 
control after each load or store request. A load or store 
instruction of another thread can be scheduled. The 
succeeding instructions of the switched thread are exe-
cuted after receiving the acknowledgement correspon-
ding to the memory request.
Overlapping: One or several load/store requests are 
sent to the memory. Then the thread tag is handed 
over to the execution unit or synchronization unit, 
respectively. The next execution instructions are exe-
cuted if the instructions are data independent from the 
previous ones.
Combining interleaving and overlapping: After sen-
ding a load/store request to the memory, the next data 
independent instructions are scheduled. In the case 
that the load/store unit has to stall for a dependent 
instruction, the unit switches the thread of control. 

5. The Simulator

 We use an event driven simulation at the register trans-
fer level of the Rhamma processor which is able to per-
form the behavior of a single processor system or a 
memory coupled multiprocessor system. The execution 
unit is a processor based on the DLX processor of the uni-
versity of Stanford [13]. The DLX processor is a conven-
tional RISC processor with a five stage pipeline. The 
DLX instruction set is extended by synchronization and 
thread management instructions. In our simulations we 
evaluate our multithreaded Rhamma processor vs. a con-
ventional processor without multithreading represented by 
the original DLX processor, and vs. a multithreaded pro-
cessor with context switching on cache miss similar to the 
Sparcle/MSparc processor. The latter is also based on the 
DLX processor and uses a one cycle context switch — in 
contrast to the original Sparcle processor, that needs 14 

cycles for a context switch. A one cycle context switch 
will be difficult to implement.

We assume one simulation time step per pipeline stage 
for each instruction execution and for the access to the 
instruction memory. The access to a FIFO queue and the 
minimum delay time the data has to stay in a FIFO queue 
is also one simulation time step.

We vary
the thread switching cost: the number of time steps nec-
essary to switch the execution unit or the load/store 
unit to another thread of control,
the access time(s): the amount of time steps from a 
memory request to its completion, 
the cycle time(s): the minimum number of time steps 
between two memory accesses, and
the hit rate(s): percentage of memory requests served 
by the cache, the local memory, or remote memory.

Depending upon the memory hierarchy we distinguish 
access times, cycle times and hit rates of the cache, local 
memory and remote memory within a DSM system. We 
assume split transactions on the network of the DSM sys-
tem. Therefore, the remote memory cycle time is chosen 
as fraction of the remote memory access time. Access and 
cycle times are shown in table 1. We vary the cache hit 
rate and the local memory access rate.

As explained in section III, the context switch of our 
VHDL implementation of Rhamma costs at most a single 
cycle and is reduced to zero if a context switch buffer 
entry matches. For the software simulations we used a con-
text switch cost of one simulation time step.

As simulation workload we applied several small appli-
cation programs written in Modula-2. The applications 
were compiled to the machine language of DLX and to 
the extended machine language of Rhamma. For the simu-
lations presented in this paper we chose a set of synthetic 
benchmark programs. The workload is characterized by 
100 000 instructions, three threads, and a rate of one 
load/store instruction to three execution instructions. The 
number of data independent succeeding instructions is 
two. This simulation workload does not contain synchroni-
zation instructions.

Table 1: Access and cycle times

1/1

25/25
100/25

access cycle
time time

cache 1 1
local memory 25 25
remote memory 100 25
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Figure 2: Simulation diagrams for the four load/store unit implementation alternatives
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6. Simulation Results

Various configurations of multiprocessors were simu-
lated. The four diagrams in figure 2 vary the cache hit rate 
and the local memory access rate. The remote memory 
access rate results from these two rates. The vertical axis 
shows the yielded simulation time steps for the executed 
benchmark program.

As can be seen easily, the stalling load/store unit 
performs worst, and the combined approach (bottom right) 
gives the best performance (note the different scales on the 
vertical axis). The interleaving and the overlapping tech-
niques are intermediate and not in a direct order to each other. 
This is because of the convex and concave crookedness of 
the planes formed by the tops of the small bars. If we analyze 
the edges of the planes in the four figures, the following con-
figurations of multiprocessor systems are represented:

a. The front edge, running from the lower rightmost side 
to the leftmost side, represents configurations without 
remote memory - a single processor system without 
cache (the leftmost bar) or with cache and different 
cache hit rates.

b. The back edge, running from the uppermost bar in the 
middle of the diagram to the rightmost bar, removes 
the local memory from the simulations – representing 
cache-only DSM multiprocessors like the KSR-
machines of Kendall Square Research, or NUMA (non



The strong inclination of the graphs is mainly caused 
by the influence of the cache hit rate on the overall 
performance. The multithreaded processor bridges 
only a part of the memory latency, because the cycle 
time is equal to the memory access time. If the cycle 
time is smaller than the access time, the multithread-
ing approaches perform even better than shown in 
Figure 3.

b. Removing the local memory from the nodes, we rep-
resent a cache-only DSM multiprocessor or a NUMA 
multiprocessor with caches and remote memory (fig-
ure 4). The three more complex load/store unit 
approaches perform much better than the two conven-
tional processors and the simple multithreading 
approach, especially when cache hit rate is low or the 
cache is missing. The Sparcle/MSparc approach per-
forms best for cache hit rates up to 60%. The angle 
between the upper three and the lower four graphs in 
Figure 4 is caused by the ratio of cycle time to access 
time.

The realistic hit rates for caches in multiproces-
sor systems range from 10% to 60%. The graph of 
the conventional processor with overlapping is typi-
cal for a cache-only multiprocessor system like the 
KSR, which does not use a multithreaded processor 
to bridge memory latencies. Here, the advantage of a 
multithreaded processor is overwhelming.

The three multithreading techniques perform in 
the range of realistic cache hit rates from 10% to 
60% as well as conventional processors with a very 
good cache hit rate of 80% or higher. Even multi-
threading without cache is as good as a conventional 
processor with a cache hit rate of 65%. Thus, multi-
threading can replace expensive cache memories.

Figure 3: no remote memory (configuration a.)

Figure 4: no local memory (configuration b.)

-uniform memory access) multiprocessor systems with 
caches and a single global memory.

c. The back edge, running from the uppermost bar in the 
middle of the diagram to the leftmost bar, represents 
configurations with local and remote memory but with-
out cache - representing NUMA multiprocessors like 
e.g. DSM multiprocessors without caches.

d. All bars, not at an edge, represent DSM multipro-
cessors with caches or shared memory multiprocessors 
with caches, local and global memory. A realistic hit 
rate assumption is 60% cache hits, 10% local memory 
and 30% remote memory accesses, easily discovered 
as a specific single bar in the diagrams. Starting from 
this bar, we vary: 

d1. the cache hit rate and the local memory access 
rate (remote memory access fixed at 30%),

d2. the cache hit rate and the remote memory access 
rate (local memory access rate fixed at 10%), and  

d3. the local and the remote memory access rates 
(cache hit rate fixed at 60%).

The configurations a. –  c. and d1. –  d3. are shown in 
single diagrams (figures 3 – 8) and compared with the per-
formance of a conventional processor, either with stalling 
or with overlapping load/store unit implementations.

a. Removing the remote memory, the diagram (figure 3) 
illustrates the memory hierarchy behavior of a system 
with a single processor. The multithreaded processor 
with all four load/store unit implementations performs 
better than the conventional stalling processor. But the 
conventional processor with overlapping load/store and 
execution instructions performs better than the simple 
multithreading approach for systems without cache or 
with low cache hit rates. The realistic cache hit rates 
range from 60% to 95%. In this region the combined 
approach performs best and much better than the con-
ventional processors.
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The configuration d2 (figure 7) with a fixed local 
memory access rate of 10% varies cache hit rate and 
remote memory access rate. It shows good latency 
bridging again for the same three multithreading 
approaches. The cache hit rate is not as essential for 
the multithreading approaches as for the conventional 
processors and the simple stalling approach.

c. In the diagram in figure 5, cache memory is left out, 
thus representing a DSM multiprocessor without 
caches. We see from the diagram, that the interleaving, 
overlapping and combined methods are very good 
solutions for the problem of latency hiding. Executing 
instructions succeeding the load/store instructions also 
hides a small part of latency in the overlapped 
conventional approach.

The configuration d3 (figure 8) with a fixed cache hit 
rate of 60% varies local and remote memory access 
rates. It shows the same results as d1 and d2.

In all six diagrams the combined approach performs 
best, the less complex interleaving and overlapping 
approaches are often nearly as good as the combined 
approach. The stalling approach is to simple. It often per-
forms better than the stalling conventional processor, but 
worse than the overlapping conventional processor.

Figure 5: no cache (configuration c.)

Figure 7: no cache (configuration d2.)

Figure 8: cache hit rate fixed at 60% (configuration d3.)

Figure 6: remote memory access fixed at 30% (configuration d1)
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bridge the local memory access time. If 
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remote miss, it shows a similar performance as the 
combined approach.
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system. The data distribution is not a critical subject, 
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memory access of 30% varies the cache hit rate and 
local memory access rate. All three multithreading 
approaches, interleaving, overlapping, and their 
combination, show good performance due to the 
latency bridging for DSM systems.

cache hit rate

0

500000

1000000

1500000

2000000

2500000

stalling
interleaving
overlapping
combined

stalling
overlapping100%90%80%70%60%50%40%30%20%10%0%

Rhamma:

conventional:

hit rate of local memory

200000

400000

600000

800000

1000000

1200000

interleaving
stalling

overlapping
combined

stalling
overlapping100%90%80%70%60%50%40%30%20%10%0%

conventional:

Rhamma:

d2.

d1.

d3.



We conducted further simulations to test the robustness 
of our simulation results. These supplementary simula-
tions are summarized as follows:

For the simulations as shown above we used a simula-
tion load of three threads. Increasing the number of 
threads also increases the load usable for latency bridg-
ing, which is advantageous when long latencies have to 
be bridged by the multithreaded processor.

A longer memory access time does not necessarily 
slow down the performance. Provided that the work 
load is sufficient and the cycle time is not changed, per-
formance does not deteriorate, because of the latency 
bridging capability of the multithreaded processor.

The cycle time proves as the critical parameter for the 
multithreaded processor. Increasing the cycle time 
slows down the performance as soon as the latency can-
not be bridged completely by the multithreaded proces-
sor. A shorter cycle time widens the load/store 
bottleneck, thus possibly increasing performance.

The load/store variants overlapping and interleaving, 
that use overlapping instruction execution, depend on 
the number of data independent instructions following 
a load/store instruction. However, if enough threads 
are provided, the waiting time in the FIFO-buffer to 
the execution unit is sufficient to bridge the latency. In 
contrast, the overlapping conventional processor slows 
down if the number of data-independent instructions 
decreases.

Changing the instruction mix will change the processor 
utilization. Best utilization will be reached by choosing 
an instruction mix given by the equation

Our multithreaded processor as well as the conven-
tional processor are based on a scalar RISC processor. 
It is not easy to compare the simulation results with a 
hypothetical superscalar processor. However, since a 
superscalar processor is also equipped with a single 
load/store unit, it is comparable with our multithreaded 
processor containing an execution unit, which is able 
to issue execution instructions simultaneously from a 
single thread to several functional units. Simulating a 
higher issue bandwidth the main problem remains — 
the load/store bottleneck that can only be widened by 
better cycle times.

7. Simulation Results

We presented a multithreaded processor which uses fast 
context switching to bridge latencies caused by memory 
accesses or synchronization operations. Since the context 
switch is triggered by the decoding in an early stage of the 
pipeline, context switching time can be as short as one 
cycle. The multithreaded processor outperforms the con-
ventional processor by its ability to tolerate memory laten-
cies by executing instructions of another thread. Because 
of the short context switching time, a load of only few 
threads is sufficient for increasing performance over a con-
ventional processor.
Memory latencies depend on the access and the cycle 
time. While the access time can be fully bridged by multi-
threading, the cycle time proves as the critical parameter. 
Cycle times should be shorter than access times. The 
implementation of the load/store unit is essential for the 
overall performance, too. The Rhamma processor with a 
simple stalling load/store unit performs better than the 
stalling conventional processor but worse than the overlap-
ping conventional processor because short cycle times can 
not be utilized. The more sophisticated load/store unit 
implementations increase the performance of the multi-
threaded processor. The combined approach performs 
best. 
As the next step after the software simulation we devel-
oped a VHDL implementation of Rhamma. We conducted 
a hardware simulation and synthesis using the Synopsys 
tools. With the software simulation results in mind we 
chose to implement the combined load/store unit and to 
minimize the context switch overhead, that we could 
reduce to at most one processor cycle (see section III). We 
are working towards a hardware prototype.
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