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Abstract—The discrimination of ventricular tachycardias with a single ventricular lead and analyzed in view of the
1:1 retrograde conduction from sinus tachycardia still remains a yentricular rate by the ICD. Although detection enhance-

challenge for rate based algorithms commonly used in dual- . . . .
chamber implantable cardioverter defibrillators. Morphology ments likerate stability or sudden onsedre used in third

based analysis techniques for a classification of antegrade anogene'_'ation ICD systems, inaPprOPriate ICD _therapy oc-
retrograde atrial activation patterns can be used to cope with curs in up to 13% of the patients who received such a
this problem. Here time-domain template matching techniques devicel’?® Whether the use of the recently introduced
are known approaches. However, a time-domain representationy al-.chamber 1CD¢ will lead to a reduction of inad-

of endocardial electrograms is not optimal for classification equate therapies is currently under investigation. Such a
tasks as the dimensionality of the underlying signal space is qu pies 1s cu yu investgation. Su

high and features being irrelevant for a signal characterization dual-chamber system also analyzes an atrial endocardial
are involved in the analysis. Therefore, the aim of this study is electrogram (AEE) obtained from an additional atrial

to develop an enhanced morphological analysis tool for a clas- |ead.

sification of antegrade and retrograde atrial activation by using A major challenge for rate based algorithms com-

a transform domain representation of endocardial electrograms. | d in dual-chamber 1CD t is the di
For this, we applied an adapted wavelet-packet decomposition m.on.y ‘%59 In ua.-c amber -Systems 'S_ e dis-
to extract discriminating features in endocardial electrograms Crimination of VT with 1:1 retrograde conduction from

representing antegrade and retrograde activation patterns. Fursinus tachycardia due to a correspondence of the atrial
ther, a feed-forward neural network was utilized to produce a gnd the ventricular rate. It is known, that the morphology
classification based on the extracted information. In using our of antegrade and retrograde atrial activation patterns can

hybrid method, no false classification of the physiological and - N
pathological cardiac state was made. It is concluded that the P& Use€d when a rate independent discrimination of the

proposed classification scheme represents a highly efficient ap-physiological from the pathological cardiac state is
proach for a classification of antegrade and retrograde atrial needed??® Here time-domain template matching meth-

[DOI: 10.1114/1.1376409 of difference?® or the bin area methdd are possible
approaches.

Keywords—Endocardial electrograms, Dual-chamber ICDs,

Adapted wavelet packets, Filter banks, Neural networks. In Leong and Jabif a classification scheme called

morphology and timing intracardiac classifivIATIC)
is proposed which analyzes the morphology of endocar-
dial electrograms additionally to rate criteria for patients

The implantable cardioverter-defibrillataiCD) is ac- ~ having VT with 1:1 retrograde conduction. MATIC uses
cepted to be the most effective therapy for preventing @ neural network to perform the template matching task.
sudden cardiac death due to ventricular tachycardias All methods mentioned so far are based on the time-
(VT).X® Such a device is continually monitoring the elec- domain representation of endocardial electrograms, that
trical activity of the heart, represented by an endocardial S the classification is directly applied to the original—
electrogram, and delivers defibrillation and/or pacing @nd often high dimensional—signal space. Therefore, we
therapy if a life-threatening arrhythmia is detected. Con- @imed at the construction of a feature extractor which
ventionally, an endocardial electrogram is obtained from Performs a mapping from the original signal space onto

a lower dimensional feature space where the discriminat-
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heim, Building D7, 27, Room 401, D-68131 Mannheim, Germany. appear clearly. Appropriate feature extractors can signifi-
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hance the performance of the classifier. Recently, the 12 bit resolution(DT 2824-PGH, Data Translation, Mar-

superiority of feature extraction based on orthonormal Iboro, MA). Data segments of 10 s duration were stored

wavelet-type (wavelet/wavelet packetdecompositions  for subsequent analysis.

before the classification over the direct application of the

classifier on the original signal was shoff. with such Feature Extraction Using Adapted Wavelet-Packet

a decomposition technique, the signal is decomposed into Decompositions

a set of orthonormal basis functiofiglso called atoms

which are localized in the time-frequency plane. The  The feature extraction scheme proposed in this paper

application of such basis functions for feature extraction is based on adapted wavelet-packet decompositions. Here

stems from the fact, that most of the signal features, e.g.,the termadaptedmeans that the wavelet-packet basis is

the dominant morphologies in electrocardiograrti chosen with respect to the AEE morphology of the indi-

QRS, and T waveare simultaneously localized in time Vidual patient.

and frequency. Therefore, wavelet-type decompositions

are suitable for a Variety of app”cations dea”ng with Beat SelectionConsecutive beats within each recorded

nonstationary signals as electrografm$.Recently, we  AEE were selected by threshold application in the time

have app“ed orthonormal Wave|et-type decompositions domain. A reliable detection threshotdwas defined by

of endocardial electrograms for the automatic discrimi- 27% of largest sample amplitude of each data segment.

nation of atrial tachyarrhythmi& and the detection of ~ After detection, i.e., the value was crossed, each beat

ventricular tachycardid. was fixed within a selection window of 128 ms which
This paper presents an automatic neural network ranged from 40 ms before to 88 ms behind the crossing

based classification scheme using adapted wavelet-packepoint of a. Due to our sampling frequency of;

decompositions for the extraction of discriminating scale =2000Hz, a selected beat is therefore represented by

features in AEEs representing antegrade and retrogradeK =256 samples. To obtain a representative atrial activa-
activation patterns. tion pattern, we averaged five beats. Let us consider this
pattern as a sequence belonging to the original signal
spaceSC RX. We used the wrap-around technidftiéor
METHODS applying filter banks on such signal spaces of a finite
. dimension.
Data Acquisition

clinically indicated electrophysiological examination in tyPe orthonormal decompositions can be realized by us-
the laboratory of electrophysiology at the University ing finite impulse rc_esponséFleﬁnormahzed paraunitary
Hospital in Homburg/Saar, Germany. The patient popu- (NP) two-channel filter banké —a class of perfect re-
lation studied here can be separated into two groups: ~construction filter banks—as building blocks in a tree-
The first group with typical atrioventriculatAV) structured filter banl_(as usual, we assume here th_e very
nodal tachycardia, studied as a model for patients having S@me two-channel filter bank with a zero mean highpass
a spontaneous retrograde activation, was referred to thefilter on each decomposition level in tiedNote that the
institution for radiofrequency ablation. FIR property of the filters is equivalent to the use of
The second group with clinical monomorphic VT was Pasis functions with a compact suppdthat is, a finite
referred to the institution for either electrophysiological duration, a necessary condition for capturing features
study or radiofrequency ablation. In these patients, the b€ing compact in time. LeP and Q be decomposition
evidence of an accessory pathway or dual AV nodal OPerators which are associated with the decimators of a

physiology was ruled out during the electrophysiological tWo-channel NP analysis bank;: lowpass(channel 0,
examination. Q: highpass(channel 1. Their adjoint operators, which
A written consent was obtained from all patients prior are associated with the interpolators of the synthesis
. . . * * i
to the study. In both groups, bipolar endocardial signals bank, are denoted b$* and Q*, respectively. Please

were obtained from the high right atrium using the distal S€€ Fig. 1 for an illustration and the nomenclature for the
pair of a 6-French quadripolar electrode catheter with an mathematical definitions of decimators and interpolators.

interelectrode spacing of 0.5 cfUSCI, Bard, Billerica, ~ Due to the use of NP filter banks we have that
MA). These AEEs were recorded during sinus rhythm
and induced or spontaneously occurring AV nodal tachy- PQ*=QP*=0 and P*P+Q*Q=lI,

cardia or during induced monomorphic VT with 1:1 ret-

rograde conduction. The endocardial recordings were where | is the identity operator oiX. Now let Qoo
amplified (HBV 20, Biotronik, Berlin, Germany band- denote our signal spac8. Suppose further, that two-
pass filtered40—-500 Hz and digitized at 2 kHz with a  channel NP filter banks are arranged in a binary tree.
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FeaturesLet F be our low dimensional feature space.

For a characterization of atrial activation patterns we

FIGURE 1. A two-channel NP building block and a decompo- extracted a feature vectdre F by
sition example of a signal which contains different frequency
components over time. Hy(z) represents the analysis low-

2

PAP2y Q¥

@

pass filter associated with the decomposition operator P and gz (51 pene '56) ’:(”yS”/l’ s ’HYS”/l)r (2)
H.(z) the analysis highpass filter associated with the de-
composition operator Q. so we have dif=6. The vector{ carries the concen-

tration ofx in /* on levelm=3,...,8, i.e., the considered
) ) ) decomposition stages. Please note that we have discarded
Then, the spacd),, is successively decomposed into the sequencey, andy,. They represent noise and/or

mutually orthogonal subspaces Byand Q such that very detailed morphological features af and do not
carry substantial discriminating features of the recorded
Qi k=Qj 1128 Qj1x+1 AEEs representing the distinct activation patterns, please
see Fig. 5 in the results for a graphic example. Therefore,
for j=0,1...)J, k=0,...,2—1. these levels were considered to be irrelevant for our task.

We normalizedé such that| g ,1=1 since we are only
Schematically, this splitting is shown in Fig. 1 for a interested in the distribution of features i, i.e., the
two-channel NP building block. In other words, Igt specific concentration on particular levels, and not in
={x[n]}N-¢ be the input sequence of a two-channel their overall energy content.

building block, thenPx and Qx are two sequences with The whole process described so far is simply a map
a lower resolution ag of the lengthdN/2. In general, the
sequencePx represents coarse morphological features of f:S—F.

X whereasQx represents fine or detail ones. The recon-

structed versions of these sequences which have theThe mapf is called a feature extractor. In the following
same length as the input sequence are obtained by apwe will introduce our adaptation concept. For this, it is
plying P* and Q*, respectively. necessary to distinguish between feature vectors repre-

When using a frequency-domain consideration, a two- senting antegrade and retrograde activation patterns.
channel building block decomposes the bandwidth of the Therefore, we will use notatiog®™ and £ if the under-
input signal into two subbands with uniform frequency lying patternx originates from an antegrade activation
bands. We can roughly say, that the input frequency bandand a retrograde one, respectively.
is halved.

The filter bank tree which makes up the backbone of Adaptation of the DecompositioBo far, we are able to
our feature extraction scheme is shown in Fig. 2. In view characterize antegrade and retrograde atrial activation
of the preprocessing of the given data segments andpatterns by relatively small feature vectors. However,
features, especially the dimension of the feature spacethere is no guarantee thdt represents discriminating
that we aimed at, this tree turned out to be well suited signal features in the distinct activation patterns when
for our task. The tree with the output sequenggs m using arbitrary two-channel NP building blocks in the
=1,2...,8gives the following decomposition: tree. Therefore, an adaptation of these building blocks
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FIGURE 3. The parameterized lattice structure implementa-
tion of the NP analysis bank;  x: input sequence; y,: lowpass

output; y;: highpass output.

was realized such thd captures the morphological dis-
similarities. For this, we used the lattice strucfiti@
which provides an efficient implementation and complete
parameterization of all two-channel FIR NP filter banks
with real filter coefficients. We parameterized filters of
order N=5 which proved to be suitable for AEE
decompositiond® To obtain the corresponding structure,
the polyphase matrix of the analysis bank was decom-
posed in the following manner:

Hpol(2)=R2D(2)R1D(2)Ro, 3

where
D(z)=diad 1z 1]
and
cosd;  sint,
Ri:(—sinﬁ‘i cosﬁi)' 1=0,12.

It can be verified that the polyphase mattik,(z) in
Eq. (3) is in fact NP since we have a product of a
rotation matrixR; which is orthogonal and a delay ma-
trix D(z) which is NP, i.e.,D(z)D(z)=1, wherel is a
2% 2 identity matrix andD(z) denotes the paraconjugate
of D(z). The parameterized lattice structure is shown in
Fig. 3.

Note, if cosd;#0 for all i then cos9; can be factored
out and summarized to a common factor of the lattice
structure. In this way we obtain thevo multiplier QMF
lattice?® which is more efficient as the number of multi-
plications is reduced.

It is known, that the angles in E¢3) must add ton/4
to guarantee a highpass filter with a zero mé&ha
necessary constraint for NP filter banks used for wavelet-
type expansions. Thus, with the representation

132:

7~ Vo= 1,

(4)

the anglesd=(19,,9,) are the design parameters for the
filter bank and, hence, for our complete wavelet-packet
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basis. For a numerical optimization, we considered the
corresponding parameter space on a discrete grid. Let the
set’P be a sampling if0,n{, that is,

TCo
r-|

T

U:O,...,T—l), TelN.

Our parameter space on a discrete grid is simply the
two-fold Cartesian product oP:

P?={9=(99,91) | 99,91 P}. )

We worked withT=30 for constructingP. In this way,

we achieved the discrete parameterization of our decom-
position scheme. The extracted feature vector depends
now on the angles).

Optimization Criterion.To determine the optimal wave-
let-packet basis, we need a discriminant information
functional which measures the dissimilarity among
£"Y9) and £°(9). For this, we applied thel
divergencé® (that is a symmetric version of the well
known Kullback-Leibler divergencg®® which is defined
as

dimF
e et et an &1(9)
IE = 2 N Dlog s
dimF grnet( ﬁ)

+ n; &R 9log (6)

&MYy’

with the convention log & —o, log(y/0)=~ for y>0,
0(*>)=0. To optimize the decomposition for the indi-

vidual patient, specific angle8 e P? were chosen by

d=argmaxJ[£M9), £ NP, (D)

Using & in a future monitoring of the individual pa-
tient, our decomposition scheme will produce a different
distribution of the features it for the distinct activa-
tions. The described feature extraction algorithm can be
summarized as follows.

(1) Construct the averaged beat patterns using 5 beats
for the respective atrial activation. Se¢=7P> (W
denotes a working spacend setJ;,,=0.

(2) ChoosedeW and decompose the averaged activa-
tion patterns usind? in the lattice implementation of
the described wavelet-packet tree.

(3) Calculate the* norms of the output signals at the
considered levels to obtain the feature vectors
£9) and £°(I), respectively.
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(4) Determine thel divergenceof the feature vectors. If ¥
n e
JEND), £9D]> Imax s [
set Jma=JE7(9),£°(9) ] and 9=49. Detector| | Bank
(5) Removed from W and repeat steps 2 to 4 unwW

=.
FIGURE 4. The complete AEE classification scheme.

AEE Classification Using Neural Networks

spectively. To be more precisel" is the weight vector

The feature vectorg™'(9) and £°(9) are extracted and 7, is the threshold of th@th hidden formal neuron.

in a manner, that they represent morphological dissimi-
larities of the distinct activation patterns. Now we need a

o LT X L Training of the FFNNWe applied the commonly used
classifier which indicates the underlying activation pat- g PP y

backpropagation meth&d for training the FFNN. For

tern of a given feature vectdj(4). Such a classifiec is training, we used separately the preselected sets of the

a map five antegrade and the five retrograde activations which
make up the averaged atrial activation patterns. L&t

c:F—C, be the training set of feature vectors with respect to the

five antegrade atrial activations. Analogousi{, de-
whereC={0,1} represents the classificatioor response  notes the training set of feature vectors of the five pre-
space of the two classes, i.e., the distinct atrial activa- selected retrograde atrial activations. Training means the
tions. Our classifier should be tolerant to slight changes determination of the weights and thresholds such that for
of the fe_atures_lr_ﬂ-" since we are dealing W|t_h signals of g &) e A and &) e A™ with fixed outputsp®™
a biological origin where slight morphological changes 4,4 p' the squared error
are very likely to occur. In other words, we need the
capability of a meaningful generalization. Further, the
classification should be realized in a computationally ef-
ficient manner. A classifiec which match these condi- ant - ant
tions is a feed-forward neural netwotRENN) with one f(d) < A
hidden layer. Such FFNNs have recently proven their
capabilities for classifying bioelectric signalé?*327

N(H)

NGO 2
ant ant .
,,et—pz,l wioT i§: l: wp) ére( §) — TpH

is minimal. Before training, the weights and thresholds
of the FFNN were initialized with random numbers be-
FENN  ArchitectureFENN  consists outward ofN® tween—0.5 and 0.5. We had then trained the FFNN such

=dimF=6 formal input neurons andN©=1 output that we havep™=0 for all £9) A" and p™®=1 for
neuron. The number of formal neurons in the hidden all &®)e.A™. The training was continued until the
layer was determined empirically. Here the restriction to Sduared error converged to less than 1%.

N(M=4 neurons has proven to be optimal in view of the ~AS decision threshold:, p™"< x<p'®, which indicates
network performance and, at the same time, its complex- Whether physiological or pathological cardiac activities
ity. For an implementation in an implantable device a are present, we used=0.5 for all patients. Now we
network of a low complexity is needed such that a small have an antegrade atrial activation if an application of
number of hidden neurons is desirable. With four neu- the FFNN givesp<x, i.e., class 0 and a retrograde
rons we achieved the best performance of the network activation if p=x«, i.e., class 1.

with respect to the classification accuracy and in-class 10 improve the reliability of this decision, we applied
variability, respectively, when using a test set of data & SO-calledX out of Y detector which was also used in

segments. We used theermi function, i.e., T(x)=(1 Leong and Jabri? Here a final decision is only made if
+e #)~1 as sigmoidal transfer function of the neurons X out of Y classifications of the FFNN are the same. In
in the hidden layer. this way, incorrect classifications due to ectopic beats or
An application of this network computes a valpe  artifacts, i.e.outliers can be reduced. We uséd-=6 out
eR by of Y=7 beats. Our complete AEE classification scheme
is shown schematically in Fig. 4.
N(H) NO)
p=2 wOT > w§:>fi<3>—rp1. (8) RESULTS

P = Feature Extraction in AEEs

Here 7 represents the threshold vector am? andwE,H) With the following examples we demonstrate the

are the weights of the output and the hidden layer, re- work of our feature extraction scheme.
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FIGURE 6. Extracted features in averaged activation pat-

FIGURE 5. An exemplary decomposition: ~ (a) the original sig- terns: (a) antegrade activation pattern; (b) retrograde activa-

nal; (al) the reconstructed version of the signal without level tion pattern: (al), (bl) the extracted features using a non-

m=1 and m=2; (a2) the reconstruction error; ~ (b1)—(b2) the adapted decomposition;  (a2), (b2) the extracted features
reconstructed subbands with the underlying basis function. using an adapted decomposition.

Decomposition Examplén Fig. 5@ an exemplary de- In the upper layer of Fig. 6 t\_/vo z_iveraged activation
composition of a selected beat is shown. Here we usedPattérns are shown. The pattern in Figa)Gepresents an

the well known Daubechies filtetsvith six coefficients antegrade atrial activation, thg pattern in .Figb)ﬁrepre-
which correspond t@pg=(1.96185,0.49984) for the lat- sents a retrograde one. In F|g(.r:]:16) and Fig. G;bl) the
tice implementation of the two-channel NP building Ccorresponding feature vecto" (9pe) and £°(pe),
blocks. In the middle column of Fig. 5 the expansions '€SPECtively, are shown as example for an arbitrary non-
using ys,....yg (thus, the reconstructed versions of the ;Olngtaen?(g““)agﬁé'%gt(ogth)e cl;lcl;[erzo?agilfff.e:—hs? fnei?i‘(t:l;rnilvec-
considered output signals of the filter barake shown in Dé D6 9 Y.

Figs. 5bl)—Fig. 5b6) in turn. On the right, the basis Indened Wi haVS a small J  divergence
functions which span the corresponding subspace§ of J[€"(Ipe), £°(Ipe) ]=0.09 [we used the natural loga-

and o, respectively, with their appropriate shifts are nthrr_] in EqQ. _(6) for the numerical expe_rlments in this
illustrated. Please note that small leveisdo not always %eCtIOI’]. In Figs. @a2) and @b2) W? applied th? angles
correspond to high frequency atoms. The underlying 9. Now the feature vectorg®"(9) and £°(9) are
wavelet packet tre€); ,,j=1,...J,k=1,...,27%, where  highly dissimilar vyielding a largeJ divergence
the frequency does not monotonically increase Withs J[E"(9),£°(9)]=0.60. In contrast to the time-domain
called aPaley orderedtree?® Note further, that the se-  representation only a few scale features represent clearly
guences in Figs. (65 and 5b6) are the conventional the discriminating information of the distinct activation
wavelet representation of the signal on the decomposi- patterns.

tion levelsm=7 and m=8, respectively. In Fig. &1

the superposition of the signals Figs(bb)—-6(b6) is

shown, hence, the reconstructed beat when the coeffi- Performance of the AEE Classification Scheme

cientsy,,y, are discarded. In Fig. (&2 the resulting _
reconstruction error is illustrated. As noticeable, only A total of 254 data segment@ntegrade: 131, retro-

finer details of the original signal are lost due to the 9rade: 123of 10 s were obtained from 30 patier(@8

reconstruction with a reduced numb@nly 1/4) of ex- with AV nodal tachycardia, 2 with monomorphic VT
pansion coefficients. with retrograde conductionFrom the individual patient,

the data segments were obtained with a time delay and

Influence of the Adaptatiohe given example can only five beats of the respective atrial activation were selected
: i in t t

provide a rough survey of the morphological features on 0 Provide the training setst®" and A™ and the aver-
our considered decomposition levels as the representa-29€d antegrade and retrograde activation patterns, respec-
tion heavily depends on the underlying wavelet-packet tively. These beat patterns were visually controlled to
basis. Therefore, the choice of a wavelet-packet basis@void the inclusion of ectopic beats and artifacts in the
which is properly adapted to the task at hand is crucial training set. Using the averaged patterns, the angles
and can significantly improve the performance of the were determined. The FFNN was then trained with fea-

transform. ture vectors&(d) e A2 and &J) e AL
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v  antegrade atrial activation TABLE 2. ppean® SD for sinus rhythm at BL and after AS.
s retrograde atrial activation
P1 P6 P9 P30
. o . 8 g°3_
Lo-g;gigl”!N,giigigggﬁgggl’i!gi CLR 40% 51% 31% 36%
Yt MLE L PRREIE Y ! AT BL 0.02+0.06 0.01+0.03 0.03+0.05 0.03+0.05
P LR "4 . AS —-0.01+0.06 0.04+0.03 0.05+0.09 0.05+0.07
E" . s S °
3 05 — - = K
= v ] ! M 7 ¥y v v . .
= T MM ; ¥ R N atrial cycle length reductiofCLR) of 40% compared to
v ¥ Ty ¥ . ‘g . . .
001 !iihl ”i,g, THIHIT i ! l i l il BL. Here no significant influence of the increasing heart
Y L. MR rates on the FFNN output was observed. Details of this

analysis are given in Table 2.

p atiennt s

FIGURE 7. The results of the FFNN for all classified data
segments.

DISCUSSION

In the presented paper a new hybrid method for a

Application ResultsOur AEE classification scheme was classification of AEEs representing antegrade and retro-
applied to seven consecutive beats of each data segmen@rade atrial activation patterns is proposed. We used an
which were not used for the adaptation and training of adapted wavelet packet decomposition for feature extrac-
the FFNN, respectively, i.e., a test set of beats which is tion followed by a FFNN based classification. This
independent from the training set. 234 data segmentsmethOd is new to the area of endocardial signal analysis.
were classified by the scheme and 20 data segments were 1he innovative approach of using an adapted decom-
discarded by theX out of Y detector. For the classified Position technique, thus a tailor-made endocardial elec-
data segments, the outputs of the FFNN are shown in trogram representation for individual patient, might con-
Fig. 7 for all sets ofX=6 beats underlying the classifi- {ribute to overcome problems of known morphological
cation. A summary and statistical analysis of these results €ndocardial electrogram analysis methods. For instance,
is given in Table 1(SD: standard deviation Al indi- in Leong and Jabtf a patient-dependent method is pro-
vidual atrial activations and data segments, respectively, Posed which utilizes the time-domain representation of
were classified correctly with respect to our threshold €ndocardial electrograms as neural network input to pro-
xk=0.5. Thus, a classification accuracy of 100%, i.e., vide a classification of sinus rhythm and VT with 1:1
100% sensitivity and 100% specificity, was achieved by retrograde conduction. This method suffers from the fact
our scheme in an automated analysis of the test set. |nthat the morphological dissimilarities in endocardial elec-
some patients a relatively large variance of the FFNN trograms representing distinct activation patterns are
output can be observed. In patient No. 26 an unstable hardly to capture in the time domain, e.g., compare Figs.
arrhythmia was recognized which caused the large vari- 6@ and @b). For similar morphologies of the distinct
ance. In some patients the endocardial recordings wereatrial activation patterns this results in a false
of a bad quality since the AEEs were obtained from classificatiort.”

acute leads during an electrophysiological examination ~In contrast to the Fourier transform based algorithm
where respiration or movement of the electrode catheter Which is proposed in Minamet al.** for feature extrac-
can affect the AEE morphology. However, the overall tion in endocardial electrograms, the features which

variance seems to be small in view of the biological Make up our feature space are extracted in a way, that
nature of the signals. they guarantee an illumination of the discriminating in-

formation in the distinct activation patterns. The use of
an adapted basis is the major advantage of our feature
extraction scheme in comparison to the Fourier transform
which is restricted to fixed basis functions. Using the
adapted basis, the discriminatory power is provided by
the transform which individually maximizes thiediver-
genceof the multilevel concentration of distinct activa-
tion patterns. Therefore, the whole classification scheme
takes into account the particular AEE morphology of the

Rate Independencén patient P1, P6, P9, and P30 the
AEE was obtained during sinus rhythm and base line
(BL) and after adrenergic stimulatigAS) with atropine

and/or orciprenaline. After the stimulation, we had mean

TABLE 1. FFN results for Il patients.

Prmin Pmax Pmean SD Activations LAres - .

p individual patient. The resulting feature vectors are of a
Antegrade: -045 048 003 0.9 726 | ; ; ;
ow dimension such that an FFNN of a low complexit

Retrograde: 0.51 1.54 0.98 0.13 678 P y

can be applied.
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A problem that often occurs when using time-domain of the decomposition such that we can use a fixed archi-
template matching methods is a false classification if the tecture for all patients.
selected activation is not centered in the same fashion as Please note that the tree structure utilized for realizing
the template. Here computationally demanding selection a wavelet-packet decomposition depends on the prepro-
enhancement methods like thest fit alignmerit for the cessing of the endocardial signals, i.e., filtering and sam-
correlation waveform analysis are necessary. To handlepling. Therefore, the decomposition tree suggested in this
the alignment problem in our scheme, we preferred the paper is only appropriate when the same preprocessing
concentration on a decomposition level, i.e., on a specific of the data was applied. However, due to the flexibility
frequency band, rather than the transient information di- of wavelet-packet decompositions such a tree can easily
rectly. But of course, due to the use of the multirate be modified and adapted to another preprocessing. If
operations the scheme is still shift variant. A shift invari- necessary, the FFNN architecture must then be adjusted
ance can be achieved by undecimted filter banks which to the modified decomposition tree.
are related to wavelet framésdowever, these decompo- We applied orthonormal expansions which involve the
sitions are very computationally demanding. The con- use of perfect reconstruction filter banks. At first sight
struction of more efficient approximated shift-invariant the perfect reconstruction condition seems not necessary
decompositions seems to be a branch of interesting for our task. However, orthonormal decompositions pro-
further research in the area of shift-invariant endocardial vide the whole information of a given signal in a non-
signal analysis. Please also note, that the ability for an redundant manner. Therefore, they guarantee that the
adjustment of the atoms to discriminating features being subbands on each decomposition level carry different
compact in time is involved during adaptation. Here lo- information, a desirable property for the extraction of
cal features are involved to spread the multilevel concen- signal features. Furthermore, in view of the current in-
tration of the distinct activation patterns. The concentra- terest in  endocardial electrogram  compression
tion in specific frequency bands of a multirate filter bank algorithmg for ICDs, coding conditions can be added to
decomposition for feature extraction followed by a our scheme without difficulty.
FFNN has also recently proven to be powerful for a Enhanced detection criteria utilizing the endocardial
classification of electrogastrograns. electrogram morphology additional to the rate informa-

We applied a wavelet-packet decomposition which tion require a supplementary computational load. In view
can be seen as a generalized version of wavelet expan-of the limited energy resources of implantable devices,
sion where the filter bank tree is restricted to have an efficient implementation strategies of such methods are
octave-band structure. In contrast to wavelet expansions,needed. Therefore, we preferred the adapted orthonormal
wavelet-packet decompositions offer more flexibility and decomposition which can be implemented using parauni-
an enhancement in the frequency resolution at the pricetary filter banks over the computationally demanding in-
of a poorer time resolution due to a larger support of the tegral wavelet transform. The latter one is also used
basis functions on detailetbr high frequency decom- successfully in hybrid wavelet-neural network systems—
position levels. However, the use of atoms which allow the so-called wavelet networksfor classifying
for an accurate transient localization of features it is not biosignals: The efficiency of filter banks based on lattice
necessary—and in fact not desirable—for our task since structure is well know#***and has recently proven to be
the transient information suffers from the alignment suitable for very large scale integrated
problem which is discussed earlier. Therefore, we pre- implementations® FFNNs allow for an efficient imple-
ferred the flexible wavelet-packet decomposition scheme mentation due to their inherit parallelism and simplicity
over the conventional wavelet expansion. of the processing elements making them suitable for our

We also like to emphasize that we stuck to the very purpose. The computationally demanding adaptation of
same decomposition tree for all patients and used thethe decomposition and the training of the FFNN are
lattice parameterization which provides a very large set realized off-line. The classification algorithm itself is of
adaptable wavelet-packet bases of this tree. In knownlow complexity. For the individual patient, only the lat-
wavelet-packet schemes only a small number of smoothtice angles and FFNN parameters must be changed to
filters is used and often the tree is adapet’. However, implement a sophisticated, patient adjusted algorithm.
a smoothness constraint is not necessary for our task and
the complete architecture of the classification scheme Limitations.We aimed at the classification of antegrade
must be individually adjusted if the decomposition tree and retrograde atrial activation which can be used to
varies from patient to patient. A fact which is not desir- differentiate VT with 1:1 retrograde conduction from si-
able when considering implementation strategies. There-nus tachycardia. This method is not suitable for a dis-
fore, we used a large set of arbitrary bases of a fixed treecrimination of VT from supraventricular reentrant tachy-
rather than a tree adaptation. In our scheme only ancardia with retrograde activation such as AV nodal
adjustment of the lattice angles provides the adaptationreentrant tachycardia or AV junctional tachycardia. How-
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ever, both arrhythmias are very rare in the typical ICD

populations and can be cured by radiofrequency ablation.
We like to emphasize that all patients entered our study
were in a resting state and supine position. The influence
of different lead positions, the presence of antiarrhythmic
drugs, and changing electrophysiological properties of
the cardiac tissue to our classification scheme is not
known. Further, the AEEs were obtained from acute

leads during an electrophysiological examination. Pos-
sible effects of lead maturation were not studied. As for

all morphology based classification techniques, the
choice of the training patterns of the individual patient is

crucial and affects the performance of our scheme. With
the given data it cannot be said whether the scheme
performs even better if another filtering is applied such

that more low frequency information of the raw signals

is included in the analysis.

CONCLUSION

We have developed a new hybrid method for classi-
fying antegrade and retrograde atrial activation patterns
in AEEs based on adapted wavelet-packet decomposi-
tions and FFNNSs. This method can be used to distinguish
sinus tachycardia from VT with 1:1 retrograde conduc-
tion, an unsolved problem for rate based algorithms cur-
rently used in dual-chamber ICDs. In an automated
analysis, no false classification was made by our classi-
fication scheme such that a high accuracy was con-
cluded. The application of the proposed method seems
also to be promising for other morphological classifica-
tion tasks in electrocardiology. However, with the given
limitations, further investigations are needed to evaluate
whether our method will offer the same performance in
every day clinical use.

NOMENCLATURE

R the set of real numbers

N the set of natural numbers

dim the dimension of a space

/P the space opth power summable sequences

I -1l0 the norm on/?

I the identity operator oK

@ direct sum

Hpol(2) polyphase matrix of a ‘ENO chgnnel analysis

HHn(Z H{1(Z

bank, that isHp0|(z)=(H§§Ez; H%Ez;), where
HP(2),,v€{0,1} are the polyphase com-
ponents of the analysis filters

R orthogonal rotation matrix

diaga,b] 2Xx2 diagonal matrix with elements,b

I 2X 2 identity matrix
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paraconjugation of)(z), that is QI(zfl)
the argument of the maximum, i.eX
=argmaxf(x)|xe X}, f(X)=f(x)Vxe X

Q(2)

argmax

The multirate basic building blocks:
Y[ 1= ZkezX[K]h[M - —K]
Y- 1= Zkex[K]gl- —KL]

M-fold decimator
L-fold interpolator
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