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Abstract—The discrimination of ventricular tachycardias wit
1:1 retrograde conduction from sinus tachycardia still remain
challenge for rate based algorithms commonly used in d
chamber implantable cardioverter defibrillators. Morpholo
based analysis techniques for a classification of antegrade
retrograde atrial activation patterns can be used to cope
this problem. Here time-domain template matching techniq
are known approaches. However, a time-domain representa
of endocardial electrograms is not optimal for classificat
tasks as the dimensionality of the underlying signal space
high and features being irrelevant for a signal characteriza
are involved in the analysis. Therefore, the aim of this study
to develop an enhanced morphological analysis tool for a c
sification of antegrade and retrograde atrial activation by us
a transform domain representation of endocardial electrogra
For this, we applied an adapted wavelet-packet decompos
to extract discriminating features in endocardial electrogra
representing antegrade and retrograde activation patterns.
ther, a feed-forward neural network was utilized to produc
classification based on the extracted information. In using
hybrid method, no false classification of the physiological a
pathological cardiac state was made. It is concluded that
proposed classification scheme represents a highly efficien
proach for a classification of antegrade and retrograde a
activation. © 2001 Biomedical Engineering Society.
@DOI: 10.1114/1.1376409#

Keywords—Endocardial electrograms, Dual-chamber ICD
Adapted wavelet packets, Filter banks, Neural networks.

INTRODUCTION

The implantable cardioverter-defibrillator~ICD! is ac-
cepted to be the most effective therapy for prevent
sudden cardiac death due to ventricular tachycard
~VT!.19 Such a device is continually monitoring the ele
trical activity of the heart, represented by an endocard
electrogram, and delivers defibrillation and/or paci
therapy if a life-threatening arrhythmia is detected. Co
ventionally, an endocardial electrogram is obtained fr
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a single ventricular lead and analyzed in view of t
ventricular rate by the ICD. Although detection enhanc
ments likerate stabilityor sudden onsetare used in third
generation ICD systems, inappropriate ICD therapy
curs in up to 13% of the patients who received such
device.17,28 Whether the use of the recently introduce
dual-chamber ICDs14 will lead to a reduction of inad-
equate therapies is currently under investigation. Suc
dual-chamber system also analyzes an atrial endoca
electrogram~AEE! obtained from an additional atria
lead.

A major challenge for rate based algorithms co
monly used in dual-chamber ICD-systems is the d
crimination of VT with 1:1 retrograde conduction from
sinus tachycardia due to a correspondence of the a
and the ventricular rate. It is known, that the morpholo
of antegrade and retrograde atrial activation patterns
be used when a rate independent discrimination of
physiological from the pathological cardiac state
needed.22,23 Here time-domain template matching met
ods such as the correlation waveform analysis,22 the area
of difference,21 or the bin area method20 are possible
approaches.

In Leong and Jabri12 a classification scheme calle
morphology and timing intracardiac classifier~MATIC!
is proposed which analyzes the morphology of endoc
dial electrograms additionally to rate criteria for patien
having VT with 1:1 retrograde conduction. MATIC use
a neural network to perform the template matching ta

All methods mentioned so far are based on the tim
domain representation of endocardial electrograms,
is, the classification is directly applied to the original—
and often high dimensional—signal space. Therefore,
aimed at the construction of a feature extractor wh
performs a mapping from the original signal space o
a lower dimensional feature space where the discrimin
ing information of patterns belonging to distinct class
appear clearly. Appropriate feature extractors can sign
cantly reduce the dimensionality of the problem and e
iv – Scientific Articles Repository) 
xte/5642001 
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484 STRAUSS et al.
hance the performance of the classifier. Recently,
superiority of feature extraction based on orthonorm
wavelet-type ~wavelet/wavelet packet! decompositions
before the classification over the direct application of
classifier on the original signal was shown.6,16 With such
a decomposition technique, the signal is decomposed
a set of orthonormal basis functions~also called atoms!
which are localized in the time-frequency plane. T
application of such basis functions for feature extract
stems from the fact, that most of the signal features, e
the dominant morphologies in electrocardiograms~P,
QRS, and T wave! are simultaneously localized in tim
and frequency. Therefore, wavelet-type decompositi
are suitable for a variety of applications dealing w
nonstationary signals as electrograms.7–9 Recently, we
have applied orthonormal wavelet-type decompositio
of endocardial electrograms for the automatic discrim
nation of atrial tachyarrhythmias12 and the detection o
ventricular tachycardias.8

This paper presents an automatic neural netw
based classification scheme using adapted wavelet-pa
decompositions for the extraction of discriminating sc
features in AEEs representing antegrade and retrog
activation patterns.

METHODS

Data Acquisition

The signals used in our study were recorded durin
clinically indicated electrophysiological examination
the laboratory of electrophysiology at the Univers
Hospital in Homburg/Saar, Germany. The patient po
lation studied here can be separated into two groups

The first group with typical atrioventricular~AV !
nodal tachycardia, studied as a model for patients hav
a spontaneous retrograde activation, was referred to
institution for radiofrequency ablation.

The second group with clinical monomorphic VT wa
referred to the institution for either electrophysiologic
study or radiofrequency ablation. In these patients,
evidence of an accessory pathway or dual AV no
physiology was ruled out during the electrophysiologic
examination.

A written consent was obtained from all patients pr
to the study. In both groups, bipolar endocardial sign
were obtained from the high right atrium using the dis
pair of a 6-French quadripolar electrode catheter with
interelectrode spacing of 0.5 cm~USCI, Bard, Billerica,
MA !. These AEEs were recorded during sinus rhyth
and induced or spontaneously occurring AV nodal tac
cardia or during induced monomorphic VT with 1:1 re
rograde conduction. The endocardial recordings w
amplified ~HBV 20, Biotronik, Berlin, Germany!, band-
pass filtered~40–500 Hz! and digitized at 2 kHz with a
,

et

e

e

12 bit resolution~DT 2824-PGH, Data Translation, Mar
lboro, MA!. Data segments of 10 s duration were stor
for subsequent analysis.

Feature Extraction Using Adapted Wavelet-Packet
Decompositions

The feature extraction scheme proposed in this pa
is based on adapted wavelet-packet decompositions. H
the termadaptedmeans that the wavelet-packet basis
chosen with respect to the AEE morphology of the in
vidual patient.

Beat Selection.Consecutive beats within each record
AEE were selected by threshold application in the tim
domain. A reliable detection thresholda was defined by
27% of largest sample amplitude of each data segm
After detection, i.e., the valuea was crossed, each bea
was fixed within a selection window of 128 ms whic
ranged from 40 ms before to 88 ms behind the cross
point of a. Due to our sampling frequency off s

52000 Hz, a selected beat is therefore represented
K5256 samples. To obtain a representative atrial acti
tion pattern, we averaged five beats. Let us consider
pattern as a sequence belonging to the original sig
spaceS,RK. We used the wrap-around technique18 for
applying filter banks on such signal spaces of a fin
dimension.

The Wavelet-Packet Basis.It is well known, that wavelet-
type orthonormal decompositions can be realized by
ing finite impulse response~FIR! normalized paraunitary
~NP! two-channel filter banks24,26—a class of perfect re-
construction filter banks—as building blocks in a tre
structured filter bank~as usual, we assume here the ve
same two-channel filter bank with a zero mean highp
filter on each decomposition level in tree!. Note that the
FIR property of the filters is equivalent to the use
basis functions with a compact support~that is, a finite
duration!, a necessary condition for capturing featur
being compact in time. LetP and Q be decomposition
operators which are associated with the decimators o
two-channel NP analysis bank,P: lowpass~channel 0!,
Q: highpass~channel 1!. Their adjoint operators, which
are associated with the interpolators of the synthe
bank, are denoted byP* and Q* , respectively. Please
see Fig. 1 for an illustration and the nomenclature for
mathematical definitions of decimators and interpolato
Due to the use of NP filter banks we have that

PQ* 5QP* 50 and P* P1Q* Q5I ,

where I is the identity operator onRK. Now let V0,0

denote our signal spaceS. Suppose further, that two
channel NP filter banks are arranged in a binary tr
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485Endocardial Electrograms Using Wavelet Packets
Then, the spaceV0,0 is successively decomposed in
mutually orthogonal subspaces byP and Q such that

V j ,k5V j 11,2k% V j 11,2k11

for j 50,1...,J, k50,...,2j21.

Schematically, this splitting is shown in Fig. 1 for
two-channel NP building block. In other words, letx
5$x@n#%n50

N21 be the input sequence of a two-chann
building block, thenPx and Qx are two sequences wit
a lower resolution asx of the lengthsN/2. In general, the
sequencePx represents coarse morphological features
x whereasQx represents fine or detail ones. The reco
structed versions of these sequences which have
same length as the input sequence are obtained by
plying P* and Q* , respectively.

When using a frequency-domain consideration, a tw
channel building block decomposes the bandwidth of
input signal into two subbands with uniform frequen
bands. We can roughly say, that the input frequency b
is halved.

The filter bank tree which makes up the backbone
our feature extraction scheme is shown in Fig. 2. In vi
of the preprocessing of the given data segments
features, especially the dimension of the feature sp
that we aimed at, this tree turned out to be well sui
for our task. The tree with the output sequencesym , m
51,2...,8gives the following decomposition:

FIGURE 1. A two-channel NP building block and a decompo-
sition example of a signal which contains different frequency
components over time. H0„z… represents the analysis low-
pass filter associated with the decomposition operator P and
H1„z… the analysis highpass filter associated with the de-
composition operator Q.
e
-

~y1 ,...,y8!5~Qx,QPx,Q2P2x,PQP2x,Q2P3x,

PQP3x,QP4x,P5x!. ~1!

Features.Let F be our low dimensional feature spac
For a characterization of atrial activation patterns
extracted a feature vectorjPF by

j5~j1 ,...,j6!ª~ iy3i l 1,...,iy8i l 1!, ~2!

so we have dimF56. The vectorj carries the concen
tration ofx in l 1 on levelm53,...,8, i.e., the considere
decomposition stages. Please note that we have disca
the sequencesy1 and y2 . They represent noise and/o
very detailed morphological features ofx and do not
carry substantial discriminating features of the record
AEEs representing the distinct activation patterns, ple
see Fig. 5 in the results for a graphic example. Therefo
these levels were considered to be irrelevant for our ta
We normalizedj such thatiji l 151 since we are only
interested in the distribution of features inF, i.e., the
specific concentration on particular levels, and not
their overall energy content.

The whole process described so far is simply a m

f :S→F.

The mapf is called a feature extractor. In the followin
we will introduce our adaptation concept. For this, it
necessary to distinguish between feature vectors re
senting antegrade and retrograde activation patte
Therefore, we will use notationjant andjret if the under-
lying pattern x originates from an antegrade activatio
and a retrograde one, respectively.

Adaptation of the Decomposition.So far, we are able to
characterize antegrade and retrograde atrial activa
patterns by relatively small feature vectors. Howev
there is no guarantee thatj represents discriminating
signal features in the distinct activation patterns wh
using arbitrary two-channel NP building blocks in th
tree. Therefore, an adaptation of these building blo

FIGURE 2. The filter bank implementation of our wavelet-
packet decomposition.
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486 STRAUSS et al.
was realized such thatj captures the morphological dis
similarities. For this, we used the lattice structure24,25

which provides an efficient implementation and compl
parameterization of all two-channel FIR NP filter ban
with real filter coefficients. We parameterized filters
order N55 which proved to be suitable for AEE
decompositions.7,8 To obtain the corresponding structur
the polyphase matrix of the analysis bank was deco
posed in the following manner:

Hpol~z!5R2D~z!R1D~z!R0 , ~3!

where

D~z!5diag@1,z21#

and

Ri5S cosq i sinq i

2sinq i cosq i
D , i 50,1,2.

It can be verified that the polyphase matrixHpol(z) in
Eq. ~3! is in fact NP since we have a product of
rotation matrixRi which is orthogonal and a delay ma
trix D(z) which is NP, i.e.,D(z)D̃(z)5I , where I is a
232 identity matrix andD̃(z) denotes the paraconjuga
of D(z). The parameterized lattice structure is shown
Fig. 3.

Note, if cosqiÞ0 for all i then cosqi can be factored
out and summarized to a common factor of the latt
structure. In this way we obtain thetwo multiplier QMF
lattice24 which is more efficient as the number of mult
plications is reduced.

It is known, that the angles in Eq.~3! must add top/4
to guarantee a highpass filter with a zero mean,4,18 a
necessary constraint for NP filter banks used for wave
type expansions. Thus, with the representation

q25
p

4
2q02q1 , ~4!

the anglesq5(q0 ,q1) are the design parameters for th
filter bank and, hence, for our complete wavelet-pac

FIGURE 3. The parameterized lattice structure implementa-
tion of the NP analysis bank; x: input sequence; y0 : lowpass
output; y1 : highpass output.
basis. For a numerical optimization, we considered
corresponding parameter space on a discrete grid. Le
set P be a sampling in@0,p@, that is,

P5H ps

T Us50,...,T21J , TPN.

Our parameter space on a discrete grid is simply
two-fold Cartesian product ofP:

P 25$q5~q0 ,q1! u q0 ,q1PP%. ~5!

We worked withT530 for constructingP. In this way,
we achieved the discrete parameterization of our dec
position scheme. The extracted feature vector depe
now on the anglesq.

Optimization Criterion.To determine the optimal wave
let-packet basis, we need a discriminant informati
functional which measures the dissimilarity amon
jant(q) and jret(q). For this, we applied theJ
divergence16 ~that is a symmetric version of the we
known Kullback–Leibler divergence!,15 which is defined
as

J@~jant~q!,jret~q!!#ª (
n51

dimF
jn

ant~q!log
jn

ant~q!

jn
ret~q!

1 (
n51

dimF
jn

ret~q!log
jn

ret~q!

jn
ant~q!

, ~6!

with the convention log 052`, log(g/0)5` for g.0,
0(6`)50. To optimize the decomposition for the ind
vidual patient, specific anglesq̂PP 2 were chosen by

q̂5argmax$J@jant~q!,jret~q!#uqPP 2%. ~7!

Using q̂ in a future monitoring of the individual pa
tient, our decomposition scheme will produce a differe
distribution of the features inF for the distinct activa-
tions. The described feature extraction algorithm can
summarized as follows.

~1! Construct the averaged beat patterns using 5 b
for the respective atrial activation. SetW5P2 ~W
denotes a working space! and setJmax50.

~2! ChooseqPW and decompose the averaged activ
tion patterns usingq in the lattice implementation o
the described wavelet-packet tree.

~3! Calculate thel 1 norms of the output signals at th
considered levels to obtain the feature vecto
jant(q) and jret(q), respectively.
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487Endocardial Electrograms Using Wavelet Packets
~4! Determine theJ divergenceof the feature vectors. If
J@jant~q!,jret~q!#.Jmax

set Jmax5J@jant(q),jret(q)# and q̂5q.
~5! Removeq from W and repeat steps 2 to 4 untilW

5B.

AEE Classification Using Neural Networks

The feature vectorsjant(q̂) and jret(q̂) are extracted
in a manner, that they represent morphological dissi
larities of the distinct activation patterns. Now we need
classifier which indicates the underlying activation p
tern of a given feature vectorj(q̂). Such a classifierc is
a map

c:F→C,

whereC5$0,1% represents the classification~or response!
space of the two classes, i.e., the distinct atrial acti
tions. Our classifier should be tolerant to slight chang
of the features inF since we are dealing with signals o
a biological origin where slight morphological chang
are very likely to occur. In other words, we need t
capability of a meaningful generalization. Further, t
classification should be realized in a computationally
ficient manner. A classifierc which match these condi
tions is a feed-forward neural network~FFNN! with one
hidden layer. Such FFNNs have recently proven th
capabilities for classifying bioelectric signals.5,12,13,27

FFNN Architecture.FFNN consists outward ofN(I)

5dimF56 formal input neurons andN(O)51 output
neuron. The number of formal neurons in the hidd
layer was determined empirically. Here the restriction
N(H)54 neurons has proven to be optimal in view of t
network performance and, at the same time, its comp
ity. For an implementation in an implantable device
network of a low complexity is needed such that a sm
number of hidden neurons is desirable. With four ne
rons we achieved the best performance of the netw
with respect to the classification accuracy and in-cl
variability, respectively, when using a test set of da
segments. We used theFermi function, i.e., T(m)5(1
1e2m)21 as sigmoidal transfer function of the neuro
in the hidden layer.

An application of this network computes a valuer
PR by

r5 (
p51

N(H)

wp
(O)TF(

i 51

N(I)

wip
(H)j i~q̂!2tpG . ~8!

Heret represents the threshold vector andw(O) andwp
(H)

are the weights of the output and the hidden layer,
spectively. To be more precise,wp
(H) is the weight vector

andtp is the threshold of thepth hidden formal neuron.

Training of the FFNN.We applied the commonly use
backpropagation method15 for training the FFNN. For
training, we used separately the preselected sets of
five antegrade and the five retrograde activations wh
make up the averaged atrial activation patterns. LetA ant

be the training set of feature vectors with respect to
five antegrade atrial activations. Analogously,A ret de-
notes the training set of feature vectors of the five p
selected retrograde atrial activations. Training means
determination of the weights and thresholds such that
all j(q̂)PA ant and j(q̂)PA ret with fixed outputsrant

and r ret the squared error

(
jret
ant

(q̂) P Aret
ant
H rret

ant
2 (

p51

N(H)

wp
(O)TF(

i 51

N(I)

wip
(H)j

i
ret
ant

~q̂!2tpG J 2

is minimal. Before training, the weights and threshol
of the FFNN were initialized with random numbers b
tween20.5 and 0.5. We had then trained the FFNN su
that we haverant50 for all j(q̂)PA ant and r ret51 for
all j(q̂)PA ret. The training was continued until th
squared error converged to less than 1%.

As decision thresholdk,rant,k,r ret, which indicates
whether physiological or pathological cardiac activiti
are present, we usedk50.5 for all patients. Now we
have an antegrade atrial activation if an application
the FFNN givesr,k, i.e., class 0 and a retrograd
activation if r>k, i.e., class 1.

To improve the reliability of this decision, we applie
a so-calledX out of Y detector which was also used i
Leong and Jabri.12 Here a final decision is only made
X out of Y classifications of the FFNN are the same.
this way, incorrect classifications due to ectopic beats
artifacts, i.e.,outliers, can be reduced. We usedX56 out
of Y57 beats. Our complete AEE classification sche
is shown schematically in Fig. 4.

RESULTS

Feature Extraction in AEEs

With the following examples we demonstrate th
work of our feature extraction scheme.

FIGURE 4. The complete AEE classification scheme.
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488 STRAUSS et al.
Decomposition Example.In Fig. 5~a! an exemplary de-
composition of a selected beat is shown. Here we u
the well known Daubechies filters3 with six coefficients
which correspond toqD65(1.96185,0.49984) for the lat
tice implementation of the two-channel NP buildin
blocks. In the middle column of Fig. 5 the expansio
using y3 ,...,y8 ~thus, the reconstructed versions of t
considered output signals of the filter bank! are shown in
Figs. 5~b1!–Fig. 5~b6! in turn. On the right, the basi
functions which span the corresponding subspaces oS
and V0,0, respectively, with their appropriate shifts a
illustrated. Please note that small levelsm do not always
correspond to high frequency atoms. The underly
wavelet packet treeV j ,k , j 51,...,J,k51,...,2j 21, where
the frequency does not monotonically increase withk, is
called aPaley orderedtree.29 Note further, that the se
quences in Figs. 5~b5! and 5~b6! are the conventiona
wavelet representation of the signal on the decomp
tion levels m57 and m58, respectively. In Fig. 5~a1!
the superposition of the signals Figs. 5~b1!–6~b6! is
shown, hence, the reconstructed beat when the co
cients y1 ,y2 are discarded. In Fig. 5~a2! the resulting
reconstruction error is illustrated. As noticeable, on
finer details of the original signal are lost due to t
reconstruction with a reduced number~only 1/4! of ex-
pansion coefficients.

Influence of the Adaptation.The given example can onl
provide a rough survey of the morphological features
our considered decomposition levels as the represe
tion heavily depends on the underlying wavelet-pac
basis. Therefore, the choice of a wavelet-packet b
which is properly adapted to the task at hand is cruc
and can significantly improve the performance of t
transform.

FIGURE 5. An exemplary decomposition: „a… the original sig-
nal; „a1… the reconstructed version of the signal without level
mÄ1 and mÄ2; „a2… the reconstruction error; „b1…–„b2… the
reconstructed subbands with the underlying basis function.
-

-

In the upper layer of Fig. 6 two averaged activatio
patterns are shown. The pattern in Fig. 6~a! represents an
antegrade atrial activation, the pattern in Fig. 6~b! repre-
sents a retrograde one. In Fig. 6~a1! and Fig. 6~b1! the
corresponding feature vectorsjant(qD6) and jret(qD6),
respectively, are shown as example for an arbitrary n
adapted initialization of the filter bank. The feature ve
tors jant(qD6) and jret(qD6) do not differ significantly.
Indeed we have a small J divergence:
J@jant(qD6),j

ret(qD6)#50.09 @we used the natural loga
rithm in Eq. ~6! for the numerical experiments in thi
section#. In Figs. 6~a2! and 6~b2! we applied the angles
q̂. Now the feature vectorsjant(q̂) and jret(q̂) are
highly dissimilar yielding a large J divergence:
J@jant(q̂),jret(q̂)#50.60. In contrast to the time-domai
representation only a few scale features represent cle
the discriminating information of the distinct activatio
patterns.

Performance of the AEE Classification Scheme

A total of 254 data segments~antegrade: 131, retro
grade: 123! of 10 s were obtained from 30 patients~28
with AV nodal tachycardia, 2 with monomorphic VT
with retrograde conduction!. From the individual patient,
the data segments were obtained with a time delay
five beats of the respective atrial activation were selec
to provide the training setsA ant and A ret and the aver-
aged antegrade and retrograde activation patterns, res
tively. These beat patterns were visually controlled
avoid the inclusion of ectopic beats and artifacts in t
training set. Using the averaged patterns, the angleq̂
were determined. The FFNN was then trained with fe
ture vectorsj(q̂)PA ant and j(q̂)PA ret.

FIGURE 6. Extracted features in averaged activation pat-
terns: „a… antegrade activation pattern; „b… retrograde activa-
tion pattern; „a1…, „b1… the extracted features using a non-
adapted decomposition; „a2…, „b2… the extracted features
using an adapted decomposition.
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489Endocardial Electrograms Using Wavelet Packets
Application Results.Our AEE classification scheme wa
applied to seven consecutive beats of each data seg
which were not used for the adaptation and training
the FFNN, respectively, i.e., a test set of beats which
independent from the training set. 234 data segme
were classified by the scheme and 20 data segments
discarded by theX out of Y detector. For the classifie
data segments, the outputs of the FFNN are shown
Fig. 7 for all sets ofX56 beats underlying the classifi
cation. A summary and statistical analysis of these res
is given in Table 1~SD: standard deviation!. All indi-
vidual atrial activations and data segments, respectiv
were classified correctly with respect to our thresh
k50.5. Thus, a classification accuracy of 100%, i.
100% sensitivity and 100% specificity, was achieved
our scheme in an automated analysis of the test se
some patients a relatively large variance of the FFN
output can be observed. In patient No. 26 an unsta
arrhythmia was recognized which caused the large v
ance. In some patients the endocardial recordings w
of a bad quality since the AEEs were obtained fro
acute leads during an electrophysiological examinat
where respiration or movement of the electrode cath
can affect the AEE morphology. However, the over
variance seems to be small in view of the biologic
nature of the signals.

Rate Independence.In patient P1, P6, P9, and P30 th
AEE was obtained during sinus rhythm and base l
~BL! and after adrenergic stimulation~AS! with atropine
and/or orciprenaline. After the stimulation, we had me

FIGURE 7. The results of the FFNN for all classified data
segments.

TABLE 1. FFN results for ll patients.

rmin rmax rmean SD Activations

Antegrade: 20.45 0.48 0.03 0.09 726
Retrograde: 0.51 1.54 0.98 0.13 678
nt

re

,

r

atrial cycle length reduction~CLR! of 40% compared to
BL. Here no significant influence of the increasing he
rates on the FFNN output was observed. Details of t
analysis are given in Table 2.

DISCUSSION

In the presented paper a new hybrid method for
classification of AEEs representing antegrade and re
grade atrial activation patterns is proposed. We used
adapted wavelet packet decomposition for feature ext
tion followed by a FFNN based classification. Th
method is new to the area of endocardial signal analy

The innovative approach of using an adapted deco
position technique, thus a tailor-made endocardial el
trogram representation for individual patient, might co
tribute to overcome problems of known morphologic
endocardial electrogram analysis methods. For insta
in Leong and Jabri12 a patient-dependent method is pr
posed which utilizes the time-domain representation
endocardial electrograms as neural network input to p
vide a classification of sinus rhythm and VT with 1
retrograde conduction. This method suffers from the f
that the morphological dissimilarities in endocardial ele
trograms representing distinct activation patterns
hardly to capture in the time domain, e.g., compare Fi
6~a! and 6~b!. For similar morphologies of the distinc
atrial activation patterns this results in a fal
classification.12

In contrast to the Fourier transform based algorith
which is proposed in Minamiet al.13 for feature extrac-
tion in endocardial electrograms, the features wh
make up our feature space are extracted in a way,
they guarantee an illumination of the discriminating i
formation in the distinct activation patterns. The use
an adapted basis is the major advantage of our fea
extraction scheme in comparison to the Fourier transfo
which is restricted to fixed basis functions. Using t
adapted basis, the discriminatory power is provided
the transform which individually maximizes theJ diver-
genceof the multilevel concentration of distinct activa
tion patterns. Therefore, the whole classification sche
takes into account the particular AEE morphology of t
individual patient. The resulting feature vectors are o
low dimension such that an FFNN of a low complexi
can be applied.

TABLE 2. rmeanÁ SD for sinus rhythm at BL and after AS.

P1 P6 P9 P30

CLR 40% 51% 31% 36%
BL 0.0260.06 0.0160.03 0.0360.05 0.0360.05
AS 20.0160.06 0.0460.03 0.0560.09 0.0560.07
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A problem that often occurs when using time-doma
template matching methods is a false classification if
selected activation is not centered in the same fashio
the template. Here computationally demanding selec
enhancement methods like thebest fit alignment22 for the
correlation waveform analysis are necessary. To han
the alignment problem in our scheme, we preferred
concentration on a decomposition level, i.e., on a spec
frequency band, rather than the transient information
rectly. But of course, due to the use of the multira
operations the scheme is still shift variant. A shift inva
ance can be achieved by undecimted filter banks wh
are related to wavelet frames.2 However, these decompo
sitions are very computationally demanding. The co
struction of more efficient approximated shift-invaria
decompositions11 seems to be a branch of interestin
further research in the area of shift-invariant endocard
signal analysis. Please also note, that the ability for
adjustment of the atoms to discriminating features be
compact in time is involved during adaptation. Here
cal features are involved to spread the multilevel conc
tration of the distinct activation patterns. The concent
tion in specific frequency bands of a multirate filter ba
decomposition for feature extraction followed by
FFNN has also recently proven to be powerful for
classification of electrogastrograms.27

We applied a wavelet-packet decomposition wh
can be seen as a generalized version of wavelet ex
sion where the filter bank tree is restricted to have
octave-band structure. In contrast to wavelet expansi
wavelet-packet decompositions offer more flexibility a
an enhancement in the frequency resolution at the p
of a poorer time resolution due to a larger support of
basis functions on detailed~or high frequency! decom-
position levels. However, the use of atoms which allo
for an accurate transient localization of features it is
necessary—and in fact not desirable—for our task si
the transient information suffers from the alignme
problem which is discussed earlier. Therefore, we p
ferred the flexible wavelet-packet decomposition sche
over the conventional wavelet expansion.

We also like to emphasize that we stuck to the ve
same decomposition tree for all patients and used
lattice parameterization which provides a very large
adaptable wavelet-packet bases of this tree. In kno
wavelet-packet schemes only a small number of smo
filters is used and often the tree is adapted.16,29 However,
a smoothness constraint is not necessary for our task
the complete architecture of the classification sche
must be individually adjusted if the decomposition tr
varies from patient to patient. A fact which is not des
able when considering implementation strategies. The
fore, we used a large set of arbitrary bases of a fixed
rather than a tree adaptation. In our scheme only
adjustment of the lattice angles provides the adapta
s

-

,

d

-

of the decomposition such that we can use a fixed ar
tecture for all patients.

Please note that the tree structure utilized for realiz
a wavelet-packet decomposition depends on the pre
cessing of the endocardial signals, i.e., filtering and sa
pling. Therefore, the decomposition tree suggested in
paper is only appropriate when the same preproces
of the data was applied. However, due to the flexibil
of wavelet-packet decompositions such a tree can ea
be modified and adapted to another preprocessing
necessary, the FFNN architecture must then be adju
to the modified decomposition tree.

We applied orthonormal expansions which involve t
use of perfect reconstruction filter banks. At first sig
the perfect reconstruction condition seems not neces
for our task. However, orthonormal decompositions p
vide the whole information of a given signal in a no
redundant manner. Therefore, they guarantee that
subbands on each decomposition level carry differ
information, a desirable property for the extraction
signal features. Furthermore, in view of the current
terest in endocardial electrogram compress
algorithms1 for ICDs, coding conditions can be added
our scheme without difficulty.

Enhanced detection criteria utilizing the endocard
electrogram morphology additional to the rate inform
tion require a supplementary computational load. In vi
of the limited energy resources of implantable devic
efficient implementation strategies of such methods
needed. Therefore, we preferred the adapted orthono
decomposition which can be implemented using parau
tary filter banks over the computationally demanding
tegral wavelet transform. The latter one is also us
successfully in hybrid wavelet-neural network systems
the so-called wavelet networks—for classifying
biosignals.5 The efficiency of filter banks based on lattic
structure is well known24,25 and has recently proven to b
suitable for very large scale integrate
implementations.10 FFNNs allow for an efficient imple-
mentation due to their inherit parallelism and simplici
of the processing elements making them suitable for
purpose. The computationally demanding adaptation
the decomposition and the training of the FFNN a
realized off-line. The classification algorithm itself is o
low complexity. For the individual patient, only the la
tice angles and FFNN parameters must be change
implement a sophisticated, patient adjusted algorithm

Limitations.We aimed at the classification of antegra
and retrograde atrial activation which can be used
differentiate VT with 1:1 retrograde conduction from s
nus tachycardia. This method is not suitable for a d
crimination of VT from supraventricular reentrant tach
cardia with retrograde activation such as AV nod
reentrant tachycardia or AV junctional tachycardia. Ho



D
ion
udy
nce

ic
of

not
te

os-
for
the
is
ith
me
ch
ls

si-
rns
osi
ish
c-
ur-

ted
ssi-
on-
ms
a-

en
ate
in

es

is

-

r-

s.

rted

ted

th

et
the
7,

H.
nal

H.
-

In:

on
let

le
elet
-

e
cs,
–19

c
.
s-
r

.

ic
lar
ble
g-

w

In:

491Endocardial Electrograms Using Wavelet Packets
ever, both arrhythmias are very rare in the typical IC
populations and can be cured by radiofrequency ablat
We like to emphasize that all patients entered our st
were in a resting state and supine position. The influe
of different lead positions, the presence of antiarrhythm
drugs, and changing electrophysiological properties
the cardiac tissue to our classification scheme is
known. Further, the AEEs were obtained from acu
leads during an electrophysiological examination. P
sible effects of lead maturation were not studied. As
all morphology based classification techniques,
choice of the training patterns of the individual patient
crucial and affects the performance of our scheme. W
the given data it cannot be said whether the sche
performs even better if another filtering is applied su
that more low frequency information of the raw signa
is included in the analysis.

CONCLUSION

We have developed a new hybrid method for clas
fying antegrade and retrograde atrial activation patte
in AEEs based on adapted wavelet-packet decomp
tions and FFNNs. This method can be used to distingu
sinus tachycardia from VT with 1:1 retrograde condu
tion, an unsolved problem for rate based algorithms c
rently used in dual-chamber ICDs. In an automa
analysis, no false classification was made by our cla
fication scheme such that a high accuracy was c
cluded. The application of the proposed method see
also to be promising for other morphological classific
tion tasks in electrocardiology. However, with the giv
limitations, further investigations are needed to evalu
whether our method will offer the same performance
every day clinical use.

NOMENCLATURE

R the set of real numbers
N the set of natural numbers
dim the dimension of a space
l p the space ofpth power summable sequenc
i•i l p the norm onl p

I the identity operator onRK

% direct sum
Hpol(z) polyphase matrix of a two channel analys

bank, that is,Hpol(z)5(
H

10
p1(z)

H00
p1(z)

H
11
p1(z)

H01
p1(z)

), where

Hmn
p1 (z),m,nP$0,1% are the polyphase com

ponents of the analysis filters
R orthogonal rotation matrix
diag@a,b# 232 diagonal matrix with elementsa,b
I 232 identity matrix
.

-

Q̃(z) paraconjugation ofQ(z), that is Q
*
T (z21)

argmax the argument of the maximum, i.e.,x̂
5argmax$ f (x)uxPX%, f ( x̂)> f (x);xPX

The multirate basic building blocks:

M-fold decimator y@•#5(kPZx@k#h@M•2k#
L-fold interpolator y@•#5(kPZx@k#g@•2kL#
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