A New Approach to Tchebycheffian B-Splines

Daniel Bister and Hartmut Prautzsch

Abstract. Originally, Tchebycheffian B-splines have been defined by generalized divided differences. In this paper, we define Tchebycheffian B-splines by integration. Based upon this definition, all basic algorithms for Tchebycheffian splines can be derived in a straightforward manner. As an example, a knot insertion algorithm for Tchebycheffian splines is constructed.

§1. Introduction

The class of Tchebycheffian splines contains many different kinds of splines: for example B-splines, exponential splines, and hyperbolic splines, see [11]. Algorithms for Tchebycheffian splines have been constructed by generalized divided differences, see e.g. [5], by generalized polar forms [8,6], and by generalized de-Boor-Fix dual functionals [1]. A fourth possibility based upon a new construction method for Tchebycheffian B-splines is presented in this paper. This construction method, which can be considered as a generalized convolution having its origin in the derivative formula for B-splines, makes it possible to derive all basic algorithms for Tchebycheffian splines in a straightforward elementary manner [2]. In this paper, we will present a knot insertion algorithm for Tchebycheffian splines to illustrate the method.

§2. Definition of Basis Splines

One can introduce ordinary B-splines by their derivative formula and derive all further properties from this definition [9]. It is also possible to construct exponential B-splines of arbitrary order by this method [4]. We will use this approach with a simple modification and get a much more general class of splines. In the following section, we will show that this class contains Tchebycheffian splines.

First, let us recall some basic concepts from analysis. A function $f: \mathbb{R} \rightarrow \mathbb{R} := \mathbb{R} \cup \{\pm\}$ is called locally integrable, abbreviated $f \in L_{loc}$, if f is Lebesgue integrable over every compact interval J with $J \subset \mathbb{R}$, see [12]. The
space L_{loc} is a function algebra: with $f, g \in L_{loc}$ and $\lambda \in \mathbb{R}$, the functions $f + g$, λf, and $f \cdot g$ belong to L_{loc}. A locally integrable function is called integral-positive if the integral
\[\int_J f(x) \, dx \]
is positive for every compact interval J with positive length. Further, a knot sequence is a non-decreasing sequence of numbers. With these concepts we are able to construct certain basis splines:

Definition 1. Let $\mathbf{t} = (t_i)_{i \in \mathbb{Z}}$ be a knot sequence and $\mathbf{w} = (w_0, \ldots, w_n)$ be a sequence of integral-positive functions. Then the basis splines $A^n_i(x) = A^n_i(x; \mathbf{t}, \mathbf{w})$ of order $n + 1$ over \mathbf{t} with respect to \mathbf{w} are recursively defined by

(0) \[A^0_i(x) := \begin{cases} w_0(x), & \text{if } t_i \leq x < t_{i+1}, \\ 0, & \text{otherwise}, \end{cases} \]

(1) \[A^n_i(x) := w_n(x) \int_{-\infty}^x \left(A^{n-1}_i(y)/\alpha^{n-1}_i - A^{n-1}_{i+1}(y)/\alpha^{n-1}_{i+1} \right) \, dy \]
where $\alpha^{n-1}_j := \int_{-\infty}^\infty A^{n-1}_j(y) \, dy$ is the area of A^{n-1}_j and the following rule is used if $t_j = t_{j+n}$:

\[\int_{-\infty}^x A^{n-1}_j(y)/\alpha^{n-1}_j \, dy := \begin{cases} 0, & \text{if } x < t_j, \\ 1, & \text{if } x \geq t_j. \end{cases} \]

Example 2. If we choose $w_0(x) = w_1(x) = \cdots = w_n(x) = 1$, we obtain B-splines, see [9].

Next, we state some properties of the basis splines A^n_i which can be verified by straightforward induction. The details and further properties are given in [2].

Positivity. For $t_i < t_{i+n+1}$ the area α^n_i of the basis spline A^n_i is positive. Hence, the basis splines in Definition 1 are well-defined. Moreover, the integral
\[\int_J A^n_i(x) \, dx \]
is positive for every interval J with positive length and with $J \subseteq [t_i, t_{i+n+1}]$. For $t_i = t_{i+n+1}$ the basis spline A^n_i is zero.

Local Support. If $t_i < t_{i+n+1}$, the support of A^n_i is the interval $[t_i, t_{i+n+1}]$.

Basis Property. The basis splines $A^n_i, A^n_{i+1}, \ldots, A^n_{i+n}$ are linearly independent over any non-empty interval (t_{i+n}, t_{i+n+1}).

Remark 3. It is possible to replace the Lebesgue integral in Definition 1 by a Lebesgue-Stieltjes integral
\[A^n_i(x) := w_n(x) \int_{-\infty}^x (\cdots) \, d\sigma_n(y), \]
where σ_n is a locally bounded, strictly increasing, and right-continuous function.
§3. Tchebycheffian Splines

Let us now examine what kinds of basis splines can be constructed by Definition 1. To do this, we repeat the definition of Tchebycheffian splines given in the book of Schumaker [11].

Let $I = [a, b]$ be a compact subinterval of \mathbb{R} and let (u_0, \ldots, u_n) be a sequence of functions in $C^n(I)$. Then (u_0, \ldots, u_n) is called an Extended Complete Tchebycheff system on I, short ECT-system, if for all $k = 0, \ldots, n$ and each non-decreasing sequence (t_0, \ldots, t_k) of numbers in I the determinant

$$\det \left([D^{d_i}u_j(t_i)]_{i,j=0}^k \right)$$

is positive, where $d_i := \max \{ r \mid t_i = \cdots = t_{i-r} \}$.

A linear space is called an ECT-space on I if it has a basis forming an ECT-system on I.

Definition 4. Let $I = [a, b]$ be a compact interval, let U be a $(n+1)$-dimensional ECT-space on I, and let $t = (t_0, \ldots, t_{m+n+1})$ be a knot sequence. Suppose $t_0 = t_n = a, t_{m+1} = t_{m+n+1} = b$, and $\ell_i \leq n+1$ for $n < i \leq m$, where ℓ_i denotes the multiplicity of the knot t_i in t. Then a function $s: [a, b] \to \mathbb{R}$ is called a Tchebycheffian spline, abbreviated $s \in S(U, t)$ if s agrees on every non-empty knot interval $[t_i, t_{i+1})$ with a function in U and if $s \in C^{n-\ell_i}(t_i)$ for any knot t_i, where $n < i \leq m$.

Theorem 5. Every space $S(U, t)$ of Tchebycheffian splines has a basis of basis splines A^n_0, \ldots, A^n_m where the A^n_i are constructed by Definition 1.

Proof: Let (u_0, \ldots, u_n) be an ECT-system for U. A theorem in [3, p. 379] says that every ECT-system (u_0, \ldots, u_n) can be written as iterated integrals of positive weight functions $w_i \in C^i$:

$$u_0(x) = w_n(x)$$

$$u_1(x) = w_n(x) \int_a^x w_{n-1}(s_{n-1}) \, ds_{n-1}$$

$$\vdots$$

$$u_n(x) = w_n(x) \int_a^x w_{n-1}(s_{n-1}) \cdots \int_a^{s_1} w_0(s_0) \, ds_{n-1} \cdots ds_0.$$

Hence, the basis splines A^n_0, \ldots, A^n_m over t with respect to $w = (w_0, \ldots, w_n)$ belong to $S(U, t)$. Since the dimension of $S(U, t)$ is $m + 1$, see [11, p. 378], the assertion follows from the basis properties of the basis splines A^n_i. ■

It is also possible to produce non-Tchebycheffian B-splines with Definition 1. Consider the functions $u_0(x) = 1$, $u_1(x) = 2x^{1/2}$, $u_2(x) = \frac{2}{3}x^{3/2}$, and $u_3(x) = \frac{1}{5}x^{5/2}$ with $x \in [0, 1]$ as examined in [10]. They do not span an
ECT-system since u_1 is not differentiable at $x = 0$. However, the corresponding weight functions $w_3(x) = w_1(x) = w_0(x) = 1$ and $w_2(x) = x^{-1/2}$ are Lebesgue integrable and positive on $[0,1]$, so the construction of basis splines with Definition 1 is feasible.

§4. Knot Insertion

Let t be a knot sequence, and let w be a sequence of integral-positive functions. A spline s over t with respect to w is defined as a linear combination of the basis splines $A^n_i(x) = A^n_i(x; t, w)$, i.e.,

$$s(x) = \sum_i c_i A^n_i(x), \quad \text{where } c_i \in \mathbb{R}^d.$$

The points c_i are called control points. They form the control polygon of s.

We want to construct a knot insertion algorithm for these splines. Let $\hat{t} \in \mathbb{R}$ be a number occurring with multiplicity ℓ in $t = (t_i)_{i \in \mathbb{Z}}$. If \hat{t} is not contained in t, we set $\ell := 0$. Let r be the number with $t_r < \hat{t} \leq t_{r+1}$. If \hat{t} is inserted in t, we obtain the refined knot sequence $\hat{t} = (\hat{t}_i)_{i \in \mathbb{Z}}$ where

$$\hat{t}_i := \begin{cases} t_i & \text{if } i < r + 1, \\ \hat{t} & \text{if } i = r + 1, \\ t_{i-1} & \text{if } i > r + 1. \end{cases}$$

We write $\hat{t} = t[\hat{t}]$ to indicate that \hat{t} is obtained by inserting \hat{t} into t.

Theorem 6. Let A^n_i be the basis splines over t with respect to w, and let $B^n_i(\cdot) = A^n_i(\cdot; \hat{t}, w)$ be the basis splines over the refined knot sequence $\hat{t} = t[\hat{t}]$ with respect to w. Then there exist numbers $\lambda^n_i \in \mathbb{R}$ and $\mu^n_i \in \mathbb{R}$ with

$$A^n_i = \lambda^n_i B^n_i + \mu^n_i B^n_{i+1}. \quad (1)$$

Proof: We show the theorem by induction. Let r be such that $t_r < \hat{t} \leq t_{r+1}$, and let ℓ be the multiplicity of \hat{t} in t. For $n \leq \ell$, we obtain from Definition 1

$$A^n_i = \begin{cases} B^n_i & \text{if } i < r, \\ B^n_i + B^n_{i+1} & \text{if } i = r, \\ B^n_{i+1} & \text{if } i > r. \end{cases}$$

Thus equation (1) holds for

$$\lambda^n_i := \begin{cases} 1 & \text{if } i \leq r, \\ 0 & \text{if } i > r \end{cases} \quad \text{and} \quad \mu^n_i := \begin{cases} 0 & \text{if } i < r, \\ 1 & \text{if } i \geq r. \end{cases}$$

Suppose $n > \ell$. Let α_{j-1}^n and β_{j}^{n-1} be the areas of A_{j-1}^n and B_{j}^{n-1} respectively, and assume $t_i < t_{i+n}$ and $t_{i+1} < t_{i+n+1}$ so that α_{i-1}^n and α_{i+1}^n do
not vanish. Suppose for the induction that there are numbers \(\lambda_j^{n-1} \) and \(\mu_j^{n-1} \) such that
\[
A_j^{n-1} = \lambda_j^{n-1} B_j^{n-1} + \mu_j^{n-1} B_{j+1}^{n-1}.
\] (2)

Using this expression (2) for a substitution in the definition of \(A_j^n \) gives
\[
A_j^n(x) = w_n(x) \int_{-\infty}^{x} \left[\left(\lambda_i^{n-1} B_i^{n-1}(y) + \mu_i^{n-1} B_{i+1}^{n-1}(y) \right) / \alpha_i^{n-1} \right.
\]
\[
- \left. \left(\lambda_{i+1}^{n-1} B_{i+1}^{n-1}(y) + \mu_{i+1}^{n-1} B_{i+2}^{n-1}(y) \right) / \alpha_{i+1}^{n-1} \right] dy.
\]

Applying Definition 1 to \(B_i^n \) and \(B_{i+1}^n \), we obtain
\[
A_j^n(x) = \lambda_i^{n-1} \frac{\beta_i^{n-1}}{\alpha_i^{n-1}} B_i^n(x) + \mu_{i+1}^{n-1} \frac{\beta_{i+1}^{n-1}}{\alpha_{i+1}^{n-1}} B_{i+1}^n(x)
\]
\[
+ \left(\frac{\mu_i^{n-1}}{\alpha_i^{n-1}} - \frac{\lambda_i^{n-1}}{\alpha_i^{n-1}} \frac{\beta_i^{n-1}}{\alpha_i^{n-1}} \right) w_n(x) \int_{-\infty}^{x} B_{i+1}^{n-1}(y) dy.
\]

The last term in this equation vanishes since integrating equation (2) gives
\[
\alpha_j^{n-1} = \lambda_j^{n-1} \beta_j^{n-1} + \mu_j^{n-1} \beta_{j+1}^{n-1}.
\]

Hence equation (1) is valid for
\[
\lambda_i^n := \lambda_i^{n-1} \frac{\beta_i^{n-1}}{\alpha_i^{n-1}} \quad \text{and} \quad \mu_i^n := \mu_{i+1}^{n-1} \frac{\beta_{i+1}^{n-1}}{\alpha_{i+1}^{n-1}}.
\]

A similar computation gives
\[
\lambda_i^n := 1 \quad \text{and} \quad \mu_i^n := \mu_{i+1}^{n-1} \frac{\beta_{i+1}^{n-1}}{\alpha_{i+1}^{n-1}} \quad \text{for} \quad t_i = t_{i+n} < t_{i+n+1}
\]
and
\[
\lambda_i^n := \lambda_i^{n-1} \frac{\beta_i^{n-1}}{\alpha_i^{n-1}} \quad \text{and} \quad \mu_i^n := 1 \quad \text{for} \quad t_i < t_{i+1} = t_{i+n+1}.
\]

The case \(t_i = t_{i+n+1} \) is trivial. \(\blacksquare \)

The proof of Theorem 6 shows that the numbers \(\lambda_i^n \) and \(\mu_i^n \) are as follows:

Corollary 7. Let \(\alpha_i^m \) and \(\beta_i^m \) be the areas of \(A_i^m \) and \(B_i^m \), respectively. Then the numbers \(\lambda_i^n \) and \(\mu_i^n \) in Theorem 6 can be computed by
\[
\lambda_i^n = \begin{cases}
1 & \text{if } i \leq r - n + \ell, \\
\prod_{m=\ell+r-i}^{n-1} (\beta_i^m / \alpha_i^m) & \text{if } r - n + \ell < i \leq r, \\
\mu_i^n & \text{if } i > r,
\end{cases}
\]
\[
\mu_i^n = 1 - \lambda_i^{n+1}
\]

where \(r \) is such that \(t_r < \hat{t} \leq t_{r+1} \) and \(\ell \) is the multiplicity of \(\hat{t} \) in \(t \).

If we apply Theorem 6 to linear combinations of the basis splines \(A_i^n \), we obtain the following knot insertion algorithm:
Algorithm 8 (Knot Insertion). Every spline $s = \sum_i c_i A^n_i$ over t can be written as a spline $s = \sum_i d_i B^n_i$ over $t[\delta]$ where the control points d_i are given by

$$d_i = (1 - \lambda^n_i) c_{i-1} + \lambda^n_i c_i, \quad \lambda^n_i \text{ as in Corollary 7.}$$

Algorithm 8 implies that knot insertion is a corner cutting algorithm, see [7] for a detailed description of corner cutting algorithms. With a knot insertion algorithm it is easy to derive subdivision algorithms. For example, if the functions $w_0(x) = x(1-x)$ and $w_1(x) = w_2(x) = 1$ defined on the interval $[0, 1]$ are periodically continued to \mathbb{R}, we can construct a local corner cutting algorithm by repeated knot insertion which produces C^2-curves with flat points, see [2] for full details. Also, by forming tensor products and introducing special rules for non-quadrilateral meshes, we can extend this local corner cutting algorithm to control nets of arbitrary topology, see Fig. 1 for an illustration.

References

Daniel Bister
Institut für Betriebs- und Dialogsysteme
Universität Karlsruhe (TH)
D-76128 Karlsruhe
Germany
bister@ira.uka.de

Hartmut Prautzsch
Institut für Betriebs- und Dialogsysteme
Universität Karlsruhe (TH)
D-76128 Karlsruhe
Germany
prau@ira.uka.de