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Abstract

Object
oriented systems are usually not designed from scratch but con


structed using frameworks or class libraries	 This construction should lead

to correct systems provided the reused classes are locally correct	 There


fore knowledge about the features that a certain class provides is often

not enough	 It is additionally necessary to know the correct semantics of

classes� i	e	 information on how to use these features	 Especially� we have

to mind the sequences of method calls that are acceptable by an object	

Using regular languages for the description of these sequences works �ne

for some classes but is not adequate for others� e	g	 for stacks� bu�ers�

queues or lists etc	

In this paper we present a more general approach for the speci�cation

of the dynamic behavior of objects using context
free grammars	 We

investigate questions of correctness in subtyping and application of such

classes	 We de�ne su
cient conditions for class systems such that local

correctness in subtyping and application implies global correctness of the

system	

� Introduction

The cost e�ective construction of high quality software is the main issue in
software engineering� It requires the correct composition of components� The
object�oriented paradigms promised to solve this problem� e�g� ��� ��	


� Classes de�ne software components with clearly de�ned interfaces provid�
ing reusable services�

� Abstract classes allows implementation of frameworks that contain general
solutions on an abstract level� These frameworks can be instantiated to
application domain speci�c system� Polymorphism provides the base for
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this construction� Objects that provide a certain interface can be plugged
into abstract solutions in order to build concrete systems�

� Inheritance allows to reuse� mix or adapt the behavior 
or only the imple�
mentation� of other classes�

In practice� there are many problems with using these techniques in system
design
 locally correct classes may lead to globally incorrect systems � systems
are not safe by construction�

Gamma�s Design Patterns ���	 represent expert knowledge on the design
of reusable components 
class structures�� His work contains agreed expert
solutions to several design problems� The informal description may lead to errors
in construction� Especially� the missing speci�cation of the dynamic behavior
is missing or poor� Most of the discussions in there are about �exibility rather
than correctness� However� the goal should be the design of correct systems
preserving �exibility�

Meyer�s Design by Contract ���	 is one step towards this goal� The software
contracts describe the interactions between objects by pre� and postconditions
of methods and class invariants� But still the use of inheritance� polymorphism
or genericity may lead to incorrect systems � the global system correctness may
be destroyed by locally correct classes�

Wegner�s and Zdonik�s Principle of Substitutability ���	 requires that
instances of subtypes can always be used in any context in which an instance
of a supertype was expected� This guarantees the safe reuse of class structures
even if components� i�e� classes� are substituted by other classes�

America showed that contra�covariance of pre� and postconditions of meth�
ods implies substitutability of these classes ��	� It is required that 
i� for each
method msuper in the superclass there exists a method msub in the subclass
with the same name� 
ii� the pre�conditions of methods msuper imply the pre�
conditions of the methods msub� and 
iii� the postconditions of msuper may be
followed from the post�conditions of the methods msub�

Liskov and Wing relaxed this de�nition while preserving the substitutabil�
ity ���	� They prove that 
iii� must only satis�ed for those post�conditions of a
subclass that may become true in the context of the superclass� Zaremski and
Wing use a proof theoretic approach to check the conformance and the use of
objects for correctness in Larch�ML ���	 programs ���	�

In object�oriented languages like Simula ���	� C�� ���	� Modula�� ��� �	�
Sather
�K� ���� ��	� and Java ���	� contra�covariance 
or a stronger condition� is
checked only for those predicates that are computable at compile time� namely
for the types� This approach was formalized by Cardelli ��	 or Frick et
al� ���	� Assume� a class A� is declared a subclass 
�type� of A 
denoted by A� �
A�� A type systems only check if 
i� holds� Additionally� for all corresponding
methods msuper and msub and for parameter types P i

super and P i
sub it must

be P i
super � P i

sub 
the index i denotes the parameter identi�cation� e�g� name
or�and position�� This is obviously weaker than 
ii�� Finally� for the result
types Rsuper and Rsub 
if any� it must be Rsub � Rsuper which is weaker than
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iii�� To show that the dynamic behavior of an objects of a class conforms to
an object of another class� proof obligations for the software engineer remain�
However� there is no general approach to check these obligations by a compiler�
This is not surprising because� in general� it is an undecidable problem�

Our question was the following
 Is it possible to specify the dynamic behavior
of objects 
beyond types� such that we can statically check whether or not



�� a class conforms to another class� and


�� a class is applied correctly in a certain context�

Chambers de�nes Predicate Classes ��	 for the language Cecil ��	� Objects
of a given class may accept some of its methods only if some properties are true�
Such a class is described by several property classes� These property classes
correspond to states of a �nite automaton and accept only a subset of the class�
methods� Statically it is not decidable which transition is executed at run time�
Therefore� neither correctness of application nor conformance in the sense we
de�ned it may be tested statically�

For the programming language Ei�el ���	� Mitchell et al� describe how
to enhance the checks of software contracts� see ���	� The evaluation is done at
run time�

The work most closely related to ours is that of Nierstrasz ���	� He de�
scribes the dynamic behavior of objects in terms of regular types� The sequences
of method calls that class may accept are de�ned by a regular language� Con�
formance 
request substitutability� and correct application of classes 
request
satis�ability� are de�ned in terms of inclusion of the corresponding regular lan�
guages� He adopts an algorithm known from the theory of formal languages to
check whether or not two classes are request substitutability� The same algo�
rithm could be applied for the request satis�ability problem� However� therefore
single objects must be considered instead of classes� Additionally� the call se�
quences to the single objects have to be determined� Both questions are not
addressed in ���	� Additionally� if the regular sets are de�ned by nondetermin�
istic automata� the test may become exponential in time�

Not all call sequences can be de�ned by regular sets� Therefore� our ap�
proach uses context�free grammars to narrow the dynamic behavior of objects�
We apply results from formal language theory to derive a su�cient criteria for
conform subtyping� This criteria is closely related to the structural containment
of grammars � Structural containment of the grammars is decidable for context�
free languages� We show how a slightly modi�ed condition can be computed
e�ciently� Additionally� we know proper subsets of context�free languages for
which the problem becomes computable in polynomial time� Furthermore� we
show how a dynamic check for correctness of an application of such objects
can be generated� We apply techniques that are used to generate parsers from
context�free languages� We introduce an analysis that� if successful� allows to
omit the runtime checks� This analysis traces the control �ow of a program�
generates a context�free grammar of all method calls and slices this grammar
w�r�t� single instances of classes�
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This paper is organized as follows
 First� we give some basic de�nitions�
Second� we de�ne a su�cient criteria to guarantee conformance at compile time�
Third� we discuss the dynamic checking of correctness in applications and de�ne
an analysis allowing to drop these runtime tests� Finally� we conclude the results
and sketch our further work�

� Basic De�nitions and Observations

An object oriented class system � is a collection of classes that together de�ne
an executable program� We de�ne local correctness and conform subtyping of
classes� Furthermore� we de�ne the correct application of objects of such classes�
These de�nitions partially base on those introduced in ��� ��	�

De�nition ��� �Local Correctness� Let A be a class and MA be the set of
methods of A� A is locally correct i��

invAis satis�able �

�m �MA 
 prem�A � invAis satis�able �

�m �MA 
 fprem�A � invAgbmfpostm�A � invAg�

where prem�A� invA� bm� and postm�A is the precondition of m� the invariant of
A the method body of m� and the post�condition of m� respectively� fPgbmfQg
asserts that Q holds after the execution of bm provided P holds before its execu�
tion�

Remark� Condition 
�� guarantees that there exists at least one instance of A�
Condition 
�� guarantees that there is at least one method applicable to an
instance of A� Condition 
�� guarantees that the method�s execution does not
contradict the invariant of A� �

Attributes are modeled by a pair of access methods� Note� that the pre�
conditions are evaluated in terms of the state before the body of m is executed
while the postconditions are evaluated in terms of the state after that execution�

Local correctness is assumed in the following� We de�ne the notion of con�
formance of two classes A and A� recursively


De�nition ��� �Conformance� Conformance vc is re�exive and transitive�
A� vc A i��

invA� � invA �

�m �MA �m� �MA� 
 m� vc m�

m� vc m i�

prem � invA � prem� � invA� �

postm� � prem � invA� � postm � invA�

�



Conformance of methods cannot be checked statically since the simulation
of Turing machines can be reduced to this problem� Therefore a weaker criteria
based on the static types is used This criteria can be checked statically� De��
nitions based on the parameters and result types� e�g� in ��� ��	� abstract from
the following properties of class systems�



�� Certain methods in the system must be called in the body of m� in order
to conform to m� Consider e�g� calls from m back to the system�


�� A history of method calls may be required before m� can be executed�
including 
a� calls to the object containing m and 
b� calls to parameters�
An example is that all objects must be initialized be explicitly calling a
certain method before any other method can be executed�


�� The result is used in the class system� i�e� methods are sent to this result�
Again� these methods may require other methods to be called in m�

The abstraction from 
�� is admissible if there is no call from m back to objects
that are known by other instances of classes in the system or if these calls have
no side e�ects� 
�� can be ignored if m can be invoked in an instance of the
considered class independently of its current state� The same must be true for
any method in the parameter classes called inside m� 
�� does not need to be
considered if� e�g�� any method in the result class can be called in an arbitrary
order�

This work extends the state of the art by considering 
�� for the class con�
taining m� We assume therefore that abstractions from 
��� 
�b�� and 
�� are
admissible in the class system�

Example � We consider an abstract data type stack which is able to capture
elements of type T �

class stack�T� is
push�e�T��
pop�T�
empty�BOOL�

end class�

The methods are not yet implemented� so abstraction 	
� is no problem� No
method is called on the parameter� Hence abstraction 	�b� and 	
� are admissi�
ble� However� pop must not be executed on an empty stack�

We de�ne the notion of conform subtyping as a weaker condition than con�
formance


De�nition ��� �Conform Subtyping� Conform Subtyping v is re�exive and
transitive�

�Properties could be speci�ed using pre� and postconditions�
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Let A be a class and MA be the set of methods of A� We denote MA the
alphabet of A� Let A� be a class with alphabet MA� The alphabet MA� vMA i�

�m �MA �m
� �MA� 
 m� v m�

m� v m i�

P i
m v P i

m� �

Rm� v Pm�

Let h be the function that matches m to m�� i� m� v m� A class A restricts
the valid sequence of accepted methods by a language LA
MA� over the alphabet
MA� A

� v A i�

MA� v MA �

H
LA
MA�� � LA�
MA���

where � is the usual inclusion of languages and H
L� is the complete application
of h on all methods in the sequences in L�

The type systems of programming languages like C��� Java� and Sather
assume the languages over the alphabets MA always to be the regular languages
M�

A where � is the Klenee ���	 operator� Then the abstractions from 
��� 
��� and

�� are admissible� In this case the relations � 
de�ned above� and � 
de�ned
in the introduction� are equal� Therefore these languages only check for the
conformance of alphabets� Nierstrasz ���	 describes the history of method calls
by regular languages� Implicitly� he makes the same assumptions for the system
as we do� i�e� he abstracts from 
�� 
�b�� and 
��� Chambers ��	 also motivates
other languages but cannot statically check for conformance� In contrast to
these approaches� we discuss context�free languages�

In the following we use L
A� and LA
MA� as synonyms�

Example � For the class in example 
� the language L is de�ned by the context�
free grammar G � 
S�M�N� P � with the alphabet M �f pop� push� empty g the
non terminal symbols N � fS� Tg and the productions P �

S 	 S T j

T

T 	 push S pop j

push pop j

empty�

An extended stack may capture elements of type T and T��

class extended stack�T�T�� is
push�e�T��
push��e�T���

�



pop�T�
pop��T��
empty�BOOL�

end class�

For this class� the language is de�ned by the context�free grammar G� � 
S��M �� N �� P ��
with the alphabet M � �f pop� push� empty� pop�� push� g the non terminal
symbols N � � fS�� T �g and the productions P ��

S� 	 S� T � j

T �

T � 	 push S� pop j

push pop j

push� S� pop� j

push� pop� j

empty�

It guarantees that pop is allowed i� the top of the stack is of type T and pop� is
allowed i� the top of the stack is of type T��

Obviously the extended stack conforms to the simple stack from example 
�

In the remainder of this section we discuss the correctness of the applications
of objects and classes� Therefore we de�ne


De�nition ��	 �Application of Objects and Classes� An application of an
object a of a class A is the call a�m of a method m in a� An application of a
class is a declaration v 
 A which de�nes a variable for instances of A�

An application of an object is correct i� the caller guarantees the precondi�
tions of m and accepts the postconditions of m�

De�nition ��
 Let v 
 A be an application of a class A� Let v�m be an applica�
tion of the object a contained in v at a certain point in the execution� Let V be
the set of all objects possibly contained in v� Let fPgv�mfQg be the requirement
for the correctness of v�m v 
 A is correct i�

�v�m � � 
 �a � V 
 P � prem�A � invA �

postm�A � invA � Q�

Again the correctness of an application of a class cannot be tested statically
in the general case� However� in ��� ��	 it is shown that


A� vc A� � 
v 
 A is correct � v 
 A� is correct�� 
��

Similar results are obtained by replacing v by � and assuming an application
to be correct 
�ly typed� i� is not possible to have a dynamic type error while
executing a program� cf� ��� ��	



A� � A� � 
v 
 A is correctly typed � v 
 A� is correctly typed�� 
��
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Since we restricted the legal calls to an object a of class A by LA
MA��
certain calls a�m may be rejected by a although the program is correctly typed�
Now we are ready to de�ne the notion of correct application of a class that may
be followed from v� analogous to the implications 
�� and 
��


De�nition ��� �Correct Application of Objects and Classes� Let a be an
object of class A� Let L
a� be a language over MA� L
a� contains all sequences
of calls possibly occurring in an execution of a system �� a is applied correctly
in � i�

L
a� � LA
MA��

Let v 
 A be an application of a class A� Let V be the set of all objects possibly
contained in V � For each a � V � let L
a� be the language of calls to a for
executions of �� A is applied correctly i�

�v � � 
 �a � V 
 applied correctly�

This de�nition is stronger than that used in equation 
�� since it rejects also
correctly typed applications because of other dynamic errors that might occur�
It is weaker than the notion of correctness from equation 
���

Theorem ��� Let v 
 A be an application of a class A in � and A� v A� If
v 
 A is correct then v 
 A� is also correct�

Proof� The �rst part of the proof should show that for each individual call
a�m the call a��m� does not cause a type error� This is obviously true since
M
A�� vM
A�� For details we refer to ��� ��	�

Now we prove that no call v�m� is rejected in a sequence v�m�

�
� � � � � v�m�

n� of
calls if the sequence v�m�� � � � � v�mn� h
mi� � m�

i� was accepted

Assume the opposite was true� i�e� it exists a sequence of calls m�� � � � �mn�

such that a call of m is accepted next by a and after the call sequencem�

�
� � � � �m�

n�
a call of m� is rejected by a�� The sets of all legal call sequences of the class
A and A�� respectively� is de�ned by the sets of all pre�xes of legal sentences
l � L
A� and l� � L
A��� respectively� The class A� conforms to A� i�e� the set
of legal sentences l � L
A� is a subset of legal sentences l� � L
A��� This implies
that the same is true for the pre�xes of both languages which is in contradiction
to the assumption above� �

� Conformance

In general it is not decidable for two context�free languages L and L� whether
or not L � L�� However� we are able to derive su�cient criteria to guaran�
tee L � L�� One su�cient criterion uses parenthesis grammars introduced by
McNaughton in ���	�
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A context�free grammar 
G� � 
S�M
f
� �g� N� P � is a parenthesis grammar
i� the right�hand side of any production is of the form X 	 
w�� w � 
M 
N���

G� is called the parenthesis version of the grammar G � 
S�M�N� P � if for
each production X 	 w�w � 
M 
N��� 
G� contains a production X � 	 
w���
with X � X � and w � w�� For parenthesis languages the equivalence problem is
decidable ���	� If the parenthesis versions of two grammars are equivalent� the
grammars generate the same words with the same form of derivation tree ���	�
Obviously it holds
Lemma ��� If the parenthesis versions 
G�� and 
G�� of two grammars G�

and G� are equivalent then for the induced languages it holds that L
G�� �
L
G��� G� and G� are called structural equivalent�

For showing the equivalence of 
G�� and 
G��� cf� ���	� the grammars 
G��
and 
G�� are transformed into grammars 
G����� and 
G����� in a normal form�
The latter grammars only di�er in the names of the nonterminals if they are
equivalent� Then there exists a isomorphism N ���

�
	 N ���

�
�

Algorithm ��� The transformation of a parenthesis grammar 
G� is done by
the following steps�

	
� Construct an invertible equivalent grammar 
G�� with L

G�� � L

G���
such that no two right�hand sides of a production are equal�

	�� Construct an grammar 
G��� with L

G��� � L

G���� that does not contain
any useless terminal or nonterminal symbol� A terminal symbol is called
useless i� it does not occur in a word of L

G����� A nonterminal symbol
X is useless i� it does not produce a terminal word or there is no word
w � 
M 
N�� including X that can be derived from the start symbol�

	
� Construct a reduced grammar 
G���� with L

G���� � L

G����� that has no
redundant nonterminal symbols� Two nonterminal symbols are redundant
i� both can be replaced by one additional terminal symbol without changing
the language�

Finally� compare the grammars 
G����� and 
G����� for equivalence�

Since parenthesis grammars can be transformed in an unique normal form
they can also be checked for inclusion� If every production of 
G��

��� is in 
G�����

then L

G��� � L

G���� This leads to the following
Lemma ��� Let 
G�� and 
G�� be the parenthesis versions of context�free
grammars G� and G�� respectively� If 
G�� � 
G�� then L
G�� � L
G��� G� is
called structural contained in G�� 
G�� � 
G�� is decidable�

In steps 
�� and 
��� the above algorithm constructions exponential many
subsets of nonterminals in the worst case� Additionally� the comparison of the
normal forms is exponential because productions may have alternative right
hand sides� The algorithm must compare each alternative right hand side of
a production of the �rst grammar with any alternative right hand side of the
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corresponding production in the second grammar� It backtracks when it fails
and tries the next mapping of alternatives� Hence in general� it cannot run
in polynomial time� We therefore de�ne a stronger condition� computable in
polynomial time� to guarantee inclusion of context�free languages�

The �rst simpli�cation is that we assume the grammars to be deterministic�
This implies step 
�� does not change the grammar and can be omitted� Step

�� is polynomial and is performed as is� Step 
�� is omitted hoping that both
grammars contain the same redundant nonterminals� The problem is� however�
to decide which alternative productions to compare� Our algorithm uses the
SLL
k� ���	 property of some grammars
 A top�down parser is able to choose
the right alternative of any production by comparing the next k input tokens
with the k �rst admissible tokens of each alternative right hand side� Obviously
the intersection of the k �rst admissible tokens must be empty for each pair
of alternative productions� Additionally� these sets are computable e�ciently�
cf� ���	�

The algorithm for checking structural equivalence is de�ned by the construc�
tive proof of the following

Theorem ��	 Let 
G�� and 
G�� be the parenthesis versions of context�free
grammars G� and G�� respectively� If G� and G� are SLL
k� grammars without
	or the same� redundant nonterminals� structural equivalence of G� and G� can
be computed e�ciently�

Proof� SLL
k� grammars are deterministic� For each grammar� we compute
the sets of the �rst k admissible tokens for each alternative of each production�
These sets are pairwise disjoint for the alternative right hand sides of a produc�
tion� otherwise the grammar is not SLL
k�� We only have to compare those
right hand sides of productions from 
G�� and 
G�� for which the computed
sets are equal� Beginning with the start symbol this requires a single top down
traversal � backtracking is not necessary� �

Although the SLL
k� property of grammars is a su�cient criteria to decide
structural equivalence and containment� respectively� in polynomial time� it is
often too restrictive� It is su�cient to distinguish alternative productions with
the same number of nonterminals by the �rst k admissible tokens� This heuristic
is obviously correct since two productions with di�erent number of nonterminals
cannot be structural equivalent�

Example � Consider the grammars of stack and extended�stack� The gram�
mars are not SLL
k� for any k� However� algorithm 
�� can always decide which
alternatives should be compared 	the rightmost column describes why other com�
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parisons need not be considered��

S � S� start symbols

S T � S� T �

T � T � same number of nonterminals

push S pop � push S� pop

push pop � push pop same �rst � admissible tokens

The algorithm decides that the grammars are structurally contained since no
comparison leads to a contradiction�

The following heuristics relax the criteria of structural containment� Al�
though structural containment is a su�cient criteria� it is still too restrictive as
the following example shows�

Example 	 Consider again our example stack� A second stack� equivalent
to stack except for an additional production S� 	 S in its grammar� S� is the
start symbol of G
stack��� Both languages are still equivalent� However� the
grammars are not structural equivalent because of the additional production� To
avoid these kind of problems� we could eliminate chain productions before we
check for structural equivalence�

Let another stack stack�� be equivalent to stack except for the missing
production S 	 S T in the grammar G
stack���� Obviously� L
stack��� �

stack� since G
stack��� is structurally contained in G
stack�� However� if we
eliminate chain productions the nonterminal T disappeared� Then the grammars
are not structurally contained any longer�

To avoid these problems we perform the following


Algorithm ��
 Eliminate chain productions� Assume at a certain step in our
comparison of the reduced grammars G and G�� algorithm 
�� decides that the
two production p and p� are not structurally contained� If the following holds�


� X� 	 X� is an alternative in p� The set of the �rst k admissible tokens
of X� is K�

�� X �

�
	 � � � is the production p�� The set of the �rst k admissible tokens of

X �

�
is K ��


� K � � K�

Then substitute p by X� 	 X� in G� perform step 	�� of the algorithm 
���
eliminate chain productions and compare the obtained grammar �G with G��

Since L
 �G� � L
G�� it holds that L
G�� � L
G� if G� is structurally contained
in �G� Since algorithm ��� removes at least one production from G for each cycle�
the algorithm is still polynomial�
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We conclude this discussion with the remark that� w�r�t� our application�
languages L containing � need not be distinguished from languages that do not
contain �� � is a legal pre�x of all sentences of any language� In the terminology
of our application� it is always legal to call no method of an object� Every
SLL
k� grammar G with L
G� � L 
 f�g� can be transformed into a SLL
k �
�� grammar G� with L
G�� � L� cf� ���	� We perform this transformation if
necessary�

In addition to the criteria of �structural containment� of context�free lan�
guages� we know of sublanguages for which the inclusion problem is e�ciently
computable� The results are summarized below�

It is decidable whether or not a regular language L is subset of a regular lan�
guage L�� For every regular language produced by a regular grammar G there
exists a 
in general nondeterministic� �nite automaton A accepting L ��	� For
every nondeterministic �nite automaton there exists a deterministic one accept�
ing the same language ���	� The construction is exponential� The minimization
is polynomial in time ���� ��	� Two minimized �nite automata accepting the
same language are isomorphic and di�er only in the names of the states ���	�
The inclusion of two minimized �nite automata can be checked in linear time
for example by depths �rst search over the states�

The �nite automaton that is constructed from a regular grammar corre�
sponds to the derivation tree of the grammar� If the grammar is deterministic�
the automaton is deterministic as well� The problem becomes computable in
polynomial time� It easily follows
Theorem ��� If the call sequences of two classes A and A� are de�ned by
deterministic regular grammars� conformance of A and A� can be checked in
polynomial time�

We now look at the inclusion problem for Dyck languages� The Dyck lan�
guage over an alphabet T � fai� a�iji � �� � � � � ng is generated by the grammar
G � 
X�T� fXg� P � where P � fX 	 XX  X 	 aiXa�iji � �� � � � � ng� A Dyck
language is the language over an alphabet containing pairs of parenthesis that
are properly set�
Theorem ��� If the call sequences of two classes A and A� are de�ned by
Dyck languages L
A� and L
A��� conformance of A and A� can be checked in
polynomial time�

Proof� For Dyck language L and L� it holds that L � L� i� the alphabet M � of
the language L� includes the alphabet M of L
 There is exactly one production
X 	 aiXa�i in P for each of the parenthesis ai� a

�

i� It is easy to see that Dyck
languages depend only on their alphabet and the inclusion problem can be
reduced to a check of the alphabets� This can be done in polynomial time� �

This section de�ned three su�cient criteria computable in polynomial time
that imply conformance of two classes A� and A


�� G
L
A�� and G
L
A��� are SLL
k� and G
L
A�� is structural contained
in G
L
A���� cf� theorem ���� Additionally we can relax the SLL
k��

��



condition such that only productions with an equal number of nonter�
minals in its alternatives must be distinguished by the �rst k admissible
tokens�

�� L
A� and L
A�� are regular languages and L
A� � L
A��� cf� theorem ����

�� L
A� and L
A�� are Dyck languages and L
A� � L
A��� cf� theorem ����

In general� it is not decidable whether or not two context�free languages L and
L� are regular and Dyck languages� respectively� We omit to describe known
necessary criteria�

� Correct Application

By now we considered whether or not two classes conform to each other� We
required a context�free grammar that de�nes a language of legal sequences of
message calls� We did not consider whether or not the call to an object of
such a class complies with this language� Unfortunately� this cannot be decided
statically in the general case since it would require to solve the aliasing problem�
which is intractable in general ���	� However� we can derive at least dynamic
consistence checks from the language� These checks would improve the safety
of our system in the sense that inappropriate method call would be rejected
immediately� i�e� a misplaced method call cannot lead to errors somewhere in
other objects�

For distributed systems� the same technique could be used do generate syn�
chronization code� Since this code is generated from a speci�cation� inheritance
anomalies as described by Matsuoka and Yonezawa in ���	� cannot occur�

We assume the grammar to be a 
S�LR
k�� 
S�LL
k�� or LALR
k� gram�
mar� Waite and Goos give a summary of these classes of grammars in ���	�
These properties imply that the grammar is deterministic 
which restricts the
languages we can handle�� With the algorithms described e�g� in ���	 we could
automatically generate stack machines accepting only the correct sequence of
calls� There are a lot of tools available which implement these generation algo�
rithms
 ell� yacc� bison� lalr� lark are only some examples� Grosch describes
the latter generator and gives an overview over the others ���	�

All generated parsers run in time linear to the length of the sequence of
method calls� Additionally� they ful�ll the requirement that the �rst misplaced
method call is detected and recognized as an error�

Unfortunately� we cannot check the correctness of an application at compile
time� However� our next step is to introduce an analysis which allows to remove
the runtime check for some applications of a class� For correctly applied objects�
cf� de�nition ���� we can omit the runtime check� To determine whether or
not objects are applied correctly we have 
i� to distinguish di�erent objects at
compile time and 
ii� to prove that for each single object a� generated as an
instance of class A� it holds L
a� � L
A��

��



Using the algorithm from the previous section we can test 
in a pessimistic
way� whether or not a is applied correctly�

First we show how 
i� can be approximated� The technique to do this is
Cousot�s abstract interpretation ���	� We require a model of the dynamic
behavior of a program and interpret the program w�r�t� this model� i�e� we
update the model in each step� This is done up to a �x�point� The concrete
model that we may apply in our context is the Storage Shape Graph 
SSG�
de�ned by Chase� Wegman� and Zadeck in ��	� This Storage Shape Graph
is computed for each program point� The result is a graph containing variable
nodes for each variable� and storage nodes for objects� Edges in this graph
represent references� either from variables to objects or from object attributes
to other objects�

Obviously� the SSG cannot be exact because not all branches are statically
predictable� Therefore an object node in the SSG represents a set of objects
that might be created at runtime� Variables that point to only one SSG node
are called deterministic variables� An object node uni�es all objects that are
created at the same point in the program and which are referenced to by the
same set of deterministic variables� Similarly we call an attribute deterministic�
if it points to only one SSG node�

The original algorithm distinguishes weak and strong updates during inter�
pretation� To identify whether weak or strong updates should be performed�
the analysis identi�es nodes that correspond to single runtime objects� This is
exactly what we require to approximate 
i�� We compute 
ii� for all objects that
are abstracted by a single SSG node and that additionally are accessible only
via deterministic variables and attributes�
Remark� The results of storage shape analysis can by improved by adding two
heuristics
 we can distinguish objects if they are created at the same point
in the program but if the call path to this creation is di�erent� To maintain
computability� we only consider the last k computational steps� This is known
as k�bounded approximation and was introduced by Schwarz in ���� ��	� The
second technique that sharpens the shape of the storage is to distinguish the
�rst l elements of lists instead of unifying all non anchor elements ���	� Both
heuristics increase the time for the analysis signi�cantly already for small k and
l� �

The technique to determine 
ii� is program slice
 We �lter the program such
that it only contains those parts that are of interest for just a single object�
This contains all calls to variables or �elds pointing to this object� Additionally
we have to consider the control structure of the program in order to determine
the sequence of these calls� The set of possible sequences is represented by
a grammar which we construct while interpreting the program on an abstract
level� We assume that our programming language contains conditional and loop
statements� It further contains method calls and basic assignments of values to
variables�

Algorithm 	�� Let a be the object of class A for which we compute the slice�
For each single program point� the Storage Shape Graph de�nes the set of vari�

��



ables and attributes pointing to a� We denote this set the access path set of a
at a certain program point� The grammar G � 
S�MA� N� P � is that describes
L
a� is initially N � fSg� P � �� We associate the start symbol S with the main
method� i�e� with the entry point of the program� For each method de�nition we
add a new unique nonterminal symbol to N and associate it with this method�

For each method� we compute the set of rules describing the sequence of calls
to a generated by this method� Let Xm be the nonterminal symbol associated
with an arbitrary method m� We add a production Xm 	 X�

m � � �Xn
m to P

where the X i
m are determined in the following way�

We traverse m beginning with its entry point in textual order� initially i � ��
i is increased whenever an X i

m is de�ned 	by the 
 operation�� One of the
following cases may occur�


� We skip basic assignments�

�� For each call to a method m�� X i
m 
 Xm� � where Xm� is the nonterminal

symbol associated with m�� We add a production Xm� 	 m� to P i� the
call is to a variable of attribute from the access path set of a�


� For each loop� X i
m 
 Y where Y is a new nonterminal symbol� We add

Y to N and Y 	 � to P � Recursively we determine the grammar of the
loop body by the same algorithm�

�� For each conditional statement� X i
m 
 Y where Y is a new nonterminal

symbol� We add Y to N and Y 	 Y �jY �� to P � Y �� Y �� are also new nonter�
minal symbols� Y � determines the true block of the conditional statement�
Y � the false block� If there is no false block� we replace Y �� by � in P � Re�
cursively� we determine the grammar of the true block and the false block
	if any� by the same algorithm�

We eliminate useless terminal and nonterminal symbols� Finally we eliminate
chain and � productions�

Remark� Case statements are treated like cascades of if statements� Polymorph
calls are treated like case statements over monomorph calls� �

Lemma 	�� The grammar G is context�free�

Proof� For each production in P � there is only a single nonterminal symbol on
the left hand side� �

Example 
 We consider an application of the stack class from our previous
examples�

class Main is
s�STACK�INT��
f�x�INT� is

if x	
 then

��



s�push�x��
f�x�
��
s�pop�

end� ��if
end� ��f
main method is

s��new�STACK�INT���
x��input�
f�x��

end� ��main method
end� ��Main

There is only one object created from stack� The access path set is empty before
the �rst statement of the main�method� For all other points in the program� this
set is fsg�

According to algorithm ��
� the main�method generates the productions�

S 	 Xnew Xinput Xf �

where Xnew� Xinput� and Xf are nonterminals for the subsequences of calls
generated by the methods new� input� and f� resp� We do not consider the
former two methods since they do not generate calls to s� They are deleted
later� The method f would create the productions�

Xf 	 X� Y

Y 	 Y � j �

Y � 	 Xpush Xf Xpop

Xpush 	 push

Xpop 	 pop�

We do not further consider the methods �� push and pop for this example� We
assume there is no call from these methods to the considered object�

After the described deletions and the elimination of chain productions we ob�
tain a grammar G � 
Xf �Mstack� N� P � with N � fXfg�Mstack � fpush� popg
and with the following productions�

Xf 	 push Xf pop j

push pop�

with Xf as the new start symbol� Obviously L
G� � L
stack�� Easy computa�
tions show that the two grammars are SLL
�� and G is structurally contained
in G
stack��

By construction� the grammar G de�nes a pessimistic approximation of the
set of all sequences L
a� of calls to an object a that might occur in a run of the
program� More precisely� for each considered object a� algorithm ��� computes
a grammar G such that L
a� � L
G� for each execution of the program� This
observation leads directly to the following central

��



Theorem 	�� Let G be the grammar computed by algorithm ��
 for an object
a of class A� If L
G� � L
A� then a is guaranteed to be applied correctly�

Of course� the runtime check can be omitted in this case� Because of lemma ���
we may apply the results from the previous section to check L
G� � L
A��

� Conclusion

We extended the de�nition of conformance of classes by not only considering
the interfaces� i�e� the sets of methods� but also the admissible call sequences
to these methods� Call sequences are de�ned by languages over the interfaces�
cf� section ��

We discussed context�free languages� as required for many standard data
structures like stacks� bu�ers� channels etc� We proved several su�cient crite�
ria for conformance that can be checked statically and in an e�cient way� cf�
section ��

We further showed how a dynamic check can be generated from the speci�ca�
tion of legal call sequences� These checks guarantee that no method is executed
if the sequence of calls is not admissible� This technique can be used to detect
errors at the point of their occurrence instead of the point of their symptoms�
occurrence� For languages supporting active objects� it can be used to gener�
ate synchronization code� This avoids inheritance anomalies� Additionally� we
showed an analysis which allows to omit dynamic tests� For certain applications
it is guaranteed at compile time that all call sequences are legal� cf� section ��

The next step is to demonstrate the bene�ts of our approach for practical
problems� Therefore we currently analyze Karla � the library of algorithms and
data structures� developed at our institute� Initial investigations showed that
most of the about ��� classes in Karla require at least a regular restriction since
most of them must be initialized before being used�

In this work� we only considered criteria that can be checked in polynomial
time� From the generation of scanners� we know that some exponential problems
can be handled in practice� E�g� the construction of a deterministic automaton
from a nondeterministic one is practically harmless� We should �nd out whether
some of our exponential decision problems are practically not serious in our
applications�

However� quite a few theoretic questions remain unsolved


� How can we handle calls from methods back to the system! Our idea is
to extend the solutions discussed for acceptors of languages to language
transducers� It is an open problem which of the criteria are then decidable
and which are e�ciently computable�

� How can we specify the sequence of methods that should have been called
to arguments and will be called to results� respectively! If the legal call
sequences to arguments can be described by regular languages� we simply

�http���i��www�info�uni�karlsruhe�de�� karla
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specify the required state� For context�free languages� again a grammar
could describe these required call sequences� What are then the implica�
tions for the correctness and conformance criteria!

� Can we de�ne better criteria for checking inclusion of context�free lan�
guages in polynomial time! Right now we have a su�cient criteria� Is
this criteria too strong for some practically relevant cases! Are there
more precise criteria computable in polynomial time!

� Can we give better criteria for conformance such that systems are correct
by construction! Is it possible to specify the dynamic behavior of objects
even more precisely such that we can statically check whether or not these
objects can be combined in a reliable way!

� Can we relax the de�nition of conformance in a way such that a correct
but more �exible combination of objects is possible! It can be observed
that in concrete applications not always all methods of an object are called
but only a few of them� This means that conformance can be considered
w�r�t� a used set of methods� Especially� this approach permits proofs of
correctness for specialized 
partial conforming ���	� classes�

Although there are open problems� our results can be used to improve the
safety of object oriented systems and to increase the number of classes that can
be reused in a safe way�

References

	
� P� America� Designing an object�oriented language with behavioural subtyping� In Foun�
dations of Object�Oriented Languages� REX School�Workshop� volume �
� of Lecture
Notes in Computer Science� pages �� � ��� Springer�Verlag� 
��
�

	�� G� Booch� Object Oriented Design with Applications� Benjamin�Cummings� 
��
�

	�� L� Cardelli� A semantics of multiple inheritance� Info� and Computation� ���
�
�
���

�

�

	�� L� Cardelli� J� Donahue� L� Glassman� M� Jordan� B� Kalsow� and G� Nelson� Modula��
report� Report �
� August ��� 
�

� DEC System Research Center� Palo Alto� 
�

�

	�� L� Cardelli� J� Donahue� L� Glassman� M� Jordan� B� Kalsow� and G� Nelson� Modula��
report �revised�� Technical Report ��� DEC System Research Center� Palo Alto� 
�
��

	�� C� Chambers� Predicate Classes� In O� Nierstrasz� editor� Proceedings of the ECOOP ���
European Conference on Object�oriented Programming� LNCS ���� pages ��
�����
Kaiserslautern� Germany� jul 
���� Springer�Verlag�

	�� C� Chambers� The cecil language � speci�cation and rationale� Technical report� Dept�
of Comp� Science and Engeneering � University of Seatle �Washington�� december 
����

	
� David R� Chase� Mark Wegman� and F� Kenneth Zadeck� Analysis of pointers and struc�
tures� Technical Report CS������� Department of Computer Science� Brown University�
March 
���� Sun� 
� Jul 
��� 

����
� GMT�

	�� N� Chomsky and G� A� Miller� Finite state languages� Inf� and Controll� 
�����
�

��

��
�

��



	
�� P� Cousot and R� Cousot� Abstract interpretation� A uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints� In Proceedings of
the 	th Symposium on Principles of Programming Languages� pages ��
 � ���� ACM
SIGACT�SIGPLAN� 
����

	

� O� J� Dahl� B� Myhrhaug� and K� Nygaard� Simula 
�� Common Base Language� Norway
Computer Center� Oslo� 
��
�

	
�� A� Frick� W� Zimmer� and W� Zimmermann� On the design of reliable libraries� In
TOOLS �� 
 Technology of Object�Oriented Programming� pages 
����� 
����

	
�� J� Frigo� R� Neumann� and W� Zimmermann� Generation of robust class hierarchies� In
TOOLS �� 
 Technology of Object�Oriented Languages and Systems� 
����

	
�� E� Gamma� R� Helm� R� Johnson� and J� Vlissides� Design Patterns� Elements of
Reusable Software Components� Addison�Wesley� 
����

	
�� G� Goos� Sather�K � the language� Software 
 Concepts and Tools� 

��
�
��� 
����

	
�� J� Gosling� B� Joy� and G� Steele� The Java Language Speci�cation� The Java Series�
Addison Wesley� 
����

	
�� J� Grosch� Lark � a LR�
� parsergenerator with backtracking� Technical Report ��� GMD
Forschungsstelle Karlsruhe� Nov� 
����

	

� D� A� Hu�man� The synthesis of sequential switching circuits� Journal of the Franklin
Institute� �������
�
�
�� and �������� ��� 
����

	
�� S�C� Klenee� Representation of events in nerve nets and �nite automata� In C� Shannon
and J� McCarthy� editors� Automata Studies� pages ���
� Princton Univ� Press� 
����

	��� William Landi� Undecidability of static analysis� ACM Letters on Programming Lan�
guages and Systems� 
������������ December 
����

	�
� James Richard Larus� Restructuring symbolic programs for concurrent execution on
multiprocessors� Technical Report CSD�
������ University of California� Berkeley� 
�
��

	��� B� Liskov and j�M� Wing� A new de�nition of the subtype relation� In O� Nierstrasz�
editor� Proceedings of the ECOOP ��� European Conference on Object�oriented Pro�
gramming� volume ��� of Lecture Notes in Computer Science� pages 


 � 
�
� Springer�
Verlag� jul 
����

	��� S� Matsuoka and A� Yonezawa� Analysis of inheritance anomaly in object�oriented con�
current programming languages� In G� Aghga� A� Yonezawa� and P� Wegner� editors�
Research Directionsin Concurrent Object�Oriented Programming� pages ���
��� MIT
Press� 
����

	��� R� McNaughton� Parenthesis grammars� J� Assoc� Comput� Mach�� 
����� � ���� 
����

	��� B� Meyer� Applying �Design by Contract�� IEEE Computing �Special Issue on Inheri�
tance � Classi�cation�� ���
��� october 
����

	��� Bertrand Meyer� Ei�el� the Language� Prentice Hall� 
����

	��� R� Mitchell� I� Maung� J� Howse� and T� Heathcote� Checking software contracts� In
R� Ege� M� Singh� and B� Meyer� editors� TOOLS �� � Technology of Object�Oriented
Programming� pages ���
��� Prentice Hall� August 
����

	�
� E� F� Moore� Gedanken experiments on sequential machines� Princeton University Press�
New Jersey� 
����

	��� A� Nerode� Thourghts on a Larch�ML and a new application of LP� In Proc� Amer�
Math� Soc��� pages ��
����� 
��
�

	��� O� Nierstrasz� Regular types for active objects� In Proceedings OOPSLA���� pages 
 �

�� ACM� 
����

	�
� M� O� Rabin and D� Scott� Finite automata and their decision problems� IBM J� Res��
�����

� � 
��� 
����

��



	��� D�J� Rosenkrantz and R�E� Stearns� Properties of deterministic top�down grammars� Inf�
and Controll� 
���������� 
����

	��� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen� Object�Oriented
Modeling and Design� Prentice Hall� 
��
�

	��� A� Salomaa� Formal Languages� Academic Press� New York� San Francisco� London�

����

	��� J�T� Schwartz� Optimization of very high level languages � I� Value transmission and its
corollaries� Computer Languages� 
�
�
 � 
��� 
����

	��� J�T� Schwartz� Optimization of very high level languages � II� Deducing relationships of
inclusion and membership� Computer Languages� 
�
�� � �

� 
����

	��� D� Stoutamire� The pSather��� Manual� International Computer Science Institute� 
����

	�
� B� Stroustrup� editor� The C�� Programming Language� Addison Wesley� second edi�
tion� ���

	��� W� Waite and G� Goos� Compiler Construction� Texts and Monographs in Computer
Science� Springer� 
�
��

	��� P� Wegner and S�B� Zdonik� Inheritance as an incremental modi�cation mechanism or
what like is and isn�t like� In Proceedings ECOOP���� volume ��� of Lecture Notes in
Computer Science� pages �� � ��� Springer�Verlag� 
�

�

	�
� J�M� Wing� E� Rollins� and A�M� Zaremski� Thourghts on a Larch�ML and a new
application of LP� In U� Martin and J�M� Wing� editors� �st Internat� Workshop on
Larch� Springer� 
����

	��� A�M� Zaremski and J�M� Wing� Speci�cation matching of software components� ACM
Trans� Software Engineering and Methodology�� �������� � ���� 
����

��


