
Meta-programming Composers In Second-Generation Component

Systems

Uwe Assmann

Universit�at Karlsruhe

Institut f�ur Programmstrukturen und Datenorganisation

Postfach 6980 76128 Karlsruhe Germany

assmann@ipd.info.uni-karlsruhe.de

November 18, 1997

Abstract

Future component systems will require that components can be composed
exibly. In contrast

to current systems which only support a �xed set of composition mechanisms, the component

system should provide a composition language in which users can de�ne their own speci�c com-

posers. It is argued for an object-oriented setting that this will be possible by meta-programming

the class-graph.

Composers will be based on two important elements. First, they will express coupling by graph-

based operators which transform parts of the class-graph (coupling design patterns). Second,

during these transformations, elementary meta-operators will be used to transform data and code,

rearranging slots and methods of parameter-components. Thus during their reuse, components

are queried by introspection and transformed by meta-programming.

Composers that use meta-programming generalize connectors in architectural languages. Hence

they encapsulate context-dependent aspects of a system, and make components independent of

their embedding context. Since meta-programming composers may change behavior of components

transparently, meta-programming composers will lead to a nice form of grey-box reuse, which

supports embedding of components (and classes) into application contexts in a new and
exible

way.

Contents

1 Introduction 2

2 Event coupling with meta-programming composers 4

2.1 Simple event coupling (Observer design pattern) . 5

2.2 From design patterns to meta-programming composers 8

3 Composers: the key to second-generation component systems 8

3.1 Composition with composers . 9

3.2 Composers in action . 10

3.3 Incremental meta-programming . 12

3.4 Aspects of composers . 12

3.5 Composers encapsulate and con�gure . 13

1

4 Composers adapt components by atomic meta-operators 14

4.1 Harmless and dangerous composition . 14

4.2 Operators that aggregate mo-collections . 15

4.2.1 Aggregation . 15

4.3 Other atomic meta-operators . 16

4.3.1 Code aggregation on conjunctive or disjunctive normal forms of �rst-order

formulas . 17

4.3.2 Renaming . 17

4.3.3 Overwriting . 17

4.4 Operators on speci�cations . 17

4.4.1 Code aggregation in an interpreted system 17

4.4.2 Attribute grammars . 18

5 Some applications of the technology 18

5.1 Subclassing is a composed atomic meta-operator . 18

5.2 Transactions . 19

5.3 Interface changes (versions) . 19

5.4 Architectural styles are speci�c composer styles . 19

5.5 A hierarchy of composers . 19

6 Related work 20

7 Conclusion 21

1 Introduction

Since long, software engineers have a beautiful dream: they want to build software from standard

parts by composition (LEGO principle). Several authors have claimed that software composition is

going to become one of the most fundamental principles for the future software industry, because it

supports
exible reuse [NM95b] [Nie95]. However, it is not easy to build software like LEGO: it is not

su�cient to reuse components as-is, a software component has to be adapted extensively before it

can be embedded into a larger system.

To embed components into a larger system, several aspects are important. First components need

to be coupled, i.e. their interfaces (ports) need to be linked. Second, during coupling components

have to be adapted speci�cally. Since complex coupling contexts require complex adaptation, often

this is a major problem. Third, coupled components need to be encapsulated to the outer world,

i.e. new interfaces need to be created. Hence component systems are hierarchical, i.e. composed

components can be re-used as components. Last, coupled components need to be con�gured, i.e.

often compositions come in several variants, from which one has to be selected.

Usually components are coupled by hand-programming. To this end commercially available com-

ponent systems, such as JavaBeans [Jav96] or ActiveX [VN96], o�er standardized interfaces of com-

ponents and coupling interfaces, by which the components can be plugged together. More elaborate

component systems (also called software architecture systems) such as Darwin [MDK92], UniCon

[SDK+95], or ACME [GAO95], o�er a limited set of connectors by which components can be coupled

in an abstract way. Connectors link interfaces (ports) of components and arrange for embedding and

2

control
ow among them. The major advantage is that communication- and coupling-oriented as-

pects of a system are encapsulated into connectors. This enables that components can be programmed

independently of their embedding context and improves reuse.

In general, two kinds of connectors can be distinguished. Primitive connectors are provided by

the programming language or the operating system and comprise mechanisms such as method calls,

pipelines, or event signalling. Composite connectors should be composed of these and should introduce

complex interaction schemes among the components. However, currently composite connectors are

only a design concept and cannot be programmed. Shaw admits [SDK+95] that in contrast to

primitive connectors

... Composite connectors may also appear in these diverse forms, we need (but do not

yet have) ways to de�ne them as well.

In this work, it is argued that the ability to program composite connectors will be the key feature of

a second generation component system. Such a system will provide a general composition language,

which o�ers to introspect components, to link ports, to adapt components appropriately, and to hide

adaptation to other use-contexts (transparent coupling).

Our claim is that the elements of a general composition language can be speci�ed with the help

of static meta-programming. With meta-programming classes and methods in a class-graph can be

introspected, adapted, or allocated.1 In this paper, meta-programming is used to de�ne composition

operators over components, so-called composers. Composers fall into two main categories: composite

connectors link components and encapsulators encapsulate components to the outer world. Typically

composers are structural meta-operators which transform the class-graph. During composition, a

composer needs to adapt components with atomic meta-operators that work on single items of the

meta-model.

Meta-operators can be evaluated at system generation time or at run-time. In the �rst case, the

meta-programs are partially evaluated and code is generated. In this work, it is concentrated on this

static meta-programming, as it is a type-secure programming methodology and leads to faster code. In

the second case, the meta-operators modify components dynamically (dynamic meta-programming).

Although this is more
exible as an unknown number of component-types can be created, it may

introduce run-time type errors and the code may run slower. The results of this paper can be applied

to dynamic meta-programmed composition as well.

When the atomic meta-operators of the composition language are designed carefully, transparent

and consistent integration of components is enabled. A criterion is de�ned which can be used to

check that changes of parameter-components during composition do not disturb the rest of the

system. Hence, although code and data of components are modi�ed, old use-contexts never need

to be changed explicitly. This is a major step forward towards general software composition, since it

leads to grey-box reuse, i.e. reuse that extends components transparent to old use-contexts.

Since composers may be programmed in variants, applications can be con�gured by appropriate se-

lection of connectors and encapsulators. When a composer couples transparently, it can be exchanged

to its variant without changing the coupled components. Hence meta-programming composers allow

to con�gure a software system orthogonally in two dimensions: both components and composers can

be varied independently.

Also component systems and design patterns are related. It is shown that a sub-class of design

patterns, coupling design patterns, can be seen as composers: they are graph transformation operators

1Meta-programming always refers to a meta-model. In this paper a class-based object-oriented setting is used and

the meta-model forms a type scheme whose instances are the class-graphs.

3

that manipulate the class-graph and modify their parameter-classes. Furthermore, as static meta-

programming is used, the design patterns can be expanded automatically to code. Hence this paper

gives a systematic method to generate code for a certain class of design patterns.

When composers (connectors and encapsulators) are programmed, architectural styles and envi-

ronments turn out to be component systems in which the style of de�ning composers is restricted.

Hence our paper supports Nierstrasz in saying [NM95a]:

Component frameworks essentially de�ne architectural styles in that applications built

using the same framework will exhibit similar architectural structure and make use of

the same kinds of collaborations between components. . .

Instead of �xing the architectural styles of application through a particular set of com-

position mechanisms, component frameworks supported by a composition language will

be open ended.

A composition language generalizes current architectural de�nition languages (ADL). Until now it has

not been clear how such a language should look like, and this is what this paper suggests: powerful

composers can be programmed to enable grey-box reuse.

The next section presents some examples in which components are coupled by variants of event-

based design patterns (section 2). It turns out that these patterns can be seen as composite con-

nectors, which may be speci�ed separately from the components. This rises the need for meta-

programming. In section 3 composers are de�ned formally and their tasks in future component-systems

are discussed: complex composition (section 3.1), encapsulation, and con�guration (section 3.5). It is

also shown how composers can be represented by ordinary methods in an object-oriented language that

supports meta-programming (section 3.2). In particular, an overview is given on the classes of atomic

meta-operators which can be found and de�ne a criterion when destructive changes on parameter-

components do not disturb the rest of the system (section 4). Lastly, it is demonstrated that several

well-known approaches from the literature are applications of meta-programming composers.

2 Event coupling with meta-programming composers

This section presents several examples how meta-programming composers may look like, in particular

composite connectors. The examples are based on a certain class of design patterns, namely those

that couple components (coupling design patterns) [Tic97] [GHJV94]. These patterns can be meta-

programmed, i.e. described with programs on the meta-model.

Event coupling is a
exible method to link components [GHJV94] [SN92]. In an event-based cou-

pling, events are �red by an event source component and delivered to a mediator context2 which

redistributes them to event listeners components. All event source and listener components have

to register with the mediator, in order to enable the mediator to distribute events correctly. When

new listeners register, or the mediator changes, the behavior of the system changes also. Because

parameter-components may not know to whom an event is delivered and from whom an event orig-

inates, such a change is transparent to them. This is the reason why event-based coupling is so

exible.

In this paper a component model is used that is similar to the conventional object-oriented model.

Whereas usually composition may refer to classes or objects, in this work meta-programs are resolved

statically so that components are classes. Second, a component is an architectural item with di�erent

granularity than a class or an object [NSL96]:

2Also called event adaptor, event handler, or event manager

4

addListener()

init()

EventListenerEventSource

doit()

recieveEvent()

listener n1

fireEvent()

self->doit()

source->addListener();

o->receiveEvent()

listeners += listener;

var listeners: list;

forall o in listeners

Figure 1: Coupling two components with Observer. Coupling-speci�c parts are shaded. It is abstracted

from the distinction of abstract and concrete classes in [GHJV94].

Components are designed to be plugged together. Components may be implemented

as objects, but they need not necessarily be. The granularity of component is typically

coarser than that of objects, but may also be �ner. The main di�erence between the

two viewpoints is that the component viewpoint makes system architecture explicit.

Typically, a component consists of a set of classes, and its boundaries vanish in an implementation

if it has not been encapsulated explicitly.

2.1 Simple event coupling (Observer design pattern)

The design pattern Observer [GHJV94] provides simple event-based coupling (Figure 1), where the

mediator is embedded into event source and the event listener.3 To this end, the event listener has to

provide an interface method fireEvent which is called by the event source in case the event occurred.

For initialization, the event listener has to register at the event source, calling the addListener-

method of the event source. Since both need not know statically to whom they will be coupled, the

coupling is
exible.

When coupling two arbitrary components with this scheme, both need to be aware of the coupling:

The listener has to register himself, and the event source has to maintain a list of listeners to which the

events are broadcasted. Thus in Figure 1 context-related parts of the components can be identi�ed

that are implemented to enable the coupling. These are depicted in grey shade, whereas context-

independent parts are depicted normally.

Suppose a programmer wants to couple components which were not prepared for event-based

coupling. Then he has to extend their source code with new parts. Thus in a reuse context, Observer

can be programmed only with white-box reuse.

JavaBeans event adaptor Components can be coupled more loosely, and Figure 2 shows the

design pattern EventAdaptor from JavaBeans 1.0 [Jav96] (also called mediator in [SN92]). It is an

extension of Observer, and appears in [GHJV94] as the design pattern Adapter in a form that is not

3This kind of event coupling was also used in the �rst version of the Java AWT.

5

EventSource EventListener

init()

doit()
addListener()

listener 1

1

listener->doit()

code()

fireEvent()

adaptors += listener;

forall o in adaptors
o->receiveEvent()

source->addListener();

;

fireEvent();

recieveEvent()

EventAdaptor
n

adaptors 1

Figure 2: Coupling two components with JavaBeans EventAdaptor design pattern. Coupling-speci�c

parts are shaded. The event adaptor object receives the event and distributes to a listener.

6

EventSource

code()

1

fireEvent()

statechange

StateChange

addListener()
fireEvent()

stubn 1

forall o in stubs

create EventStub

o->receiveEvent()

EventListener

init()

doit()

1

source->statechange->addListener()

EventStubn 1

receiveEvent()

listener

listener->doit()

Figure 3: Coupling two components with design pattern EventNoti�cation. Coupling-speci�c parts

are shaded. The listener registration and event signaling is dispersed into StateChange and EventStub

components.

speci�c to event coupling. In this coupling scheme, the event source maintains a list of listeners

to which events are to be distributed. When the source �res an event with method fireEvent, an

event adaptor (mediator) component is called. This adaptor may queue or modify events and has

to distributes them to a listener. Hence a listener only has to register for an event at the event

source (calling method addListener) and to provide an ordinary method that is called when an event

occurs (method doit). However, since the source needs to do more for the coupling, it will be aware

whether it is used in an event context or not. Hence, when components should be reused that were

not prepared for event-based coupling, the components have to be extended by event-handling code

manually (white-box reuse).

Event noti�cation design pattern Event management can be decoupled from event sources. Fig-

ure 3 shows another event coupling design pattern, the EventNoti�cation [Rie96]. Here the man-

agement of the listener list is dispersed into a new component, the StateChange. At run-time for

each event a StateChange object is created, and for each listener that registers with an event, the

StateChange object creates a listener-speci�c EventStub object. These substitute the event-speci�c

listener queue of the event source. When an event occurs, the corresponding StateChange object is

signalled. As a consequence, all listener-speci�c EventStub objects are called which in turn call the

doit-routine in the listener.

7

2.2 From design patterns to meta-programming composers

In the EventNoti�cation, almost all elements of the coupling are separated from the event source

and the event listener, except the registration and the event-�ring. This introduces a new view on

the coupling of source and listener: the context-related parts of the scheme can be regarded as glue

code which is introduced by a composer (in this case a composite connector) while connecting the

components. In essence, such a composer has to do two things: it has to allocate new components and

their interactions (the glue code), and it has to modify the components so that they can be coupled.

In this case the composite connector has to create the glue classes StateChange and EventStub and

to mix-in the calls of the methods addListener() and fireEvent() into the code of the listener

and the source. Hence the connector performs grey-box reuse: although the user is not forced to edit

the component manually (white-box) the component is not reused as-is (black-box), but adapted by

mixing-in connector code.

Also Observer and EventAdaptor may be regarded as composers, the only di�erence is that they

couple more tightly and change more details in the parameter-components. The Observer composer

does not allocate new components at all, but modi�es the code of the components extensively: it

has to create the method addListener() in the source, the method receiveEvent() in the listener,

and to add the call to addListener() to the method EventListener.init(). The EventAdaptor

composer allocates a component EventAdaptor. While it modi�es the event source extensively, it has

to mix into the listener only a single call.

Hence an event coupling scheme can be regarded as a meta-programming composition operator,

which transforms the class-graph and mixes-in data and code into the parameter-components. Because

nothing particular has been required, more design patterns should be realizable by meta-programming

composers.

3 Composers: the key to second-generation component systems

This section de�nes formally how composers and 2nd generation component systems look like. These

de�nitions can be realized directly in a programming language which supports re
ection and interces-

sion, and we outline how it would look like in Java.

A second-generation component system has to ful�l the following requirements:

Composition with meta-programming composers Our examples demonstrate that coupling of

components should be performed by composers that allocate glue code and modify existing

components. This can be done by meta-programming. Any composition action should be

transparent to the components and should preserve the consistency of their code.

Matching and rewriting component connections with structural meta-operators In most

cases the interaction of components before the coupling is not as simple as in our examples

(in which it consisted only of a simple association). When a composer requires that

components are already connected in a certain way (by relations or primitive connectors),

these parts have to be matched in the class-graph. Thus composers must have a structural

matching part whose e�ect is similar to a left-hand side of a graph rewrite rule. On the

other hand, composers have to modify and allocate components, which is similar to the

e�ects of a right-hand side of a graph rewrite rule. Hence composers perform a kind of

graph rewriting on the class-graph.

Modifying parameter-components with atomic meta-operators Components need to be

adapted by mixing-in code and data. This can be performed by atomic meta-operators that

inspect and modify single components.

8

3.1 Composition with composers

For the de�nition of composers, a meta-model is assumed which is similar to OMT [RBP+91]. It may

be easily extended in case of speci�c requirements. In this model components are classes. Additional

meta-objects are slots, methods, and instructions. Component ports are method calls and method

interfaces, and primitive connectors are method calls. Other primitive connectors, such as pipes or

events, are assumed to be implemented by method calls. If two components are linked by a method

call, they are in use-relation. The other relations between components are inheritance and aggregation.

A class-graph is an instance of the meta-model:

De�nition 1 A meta-model M = (T;R) is a scheme for a relational graph with a set of labels

T = fclass; slot;method; instructiong and set of relation labels R = faggregation; inheritance; useg.

A class-graph G = (Vi ; Ej) is a relational graph with a family of node sets Vi ; i 2 T , and a family

of binary relations Ej � (I � I);I =
S
Vi ; j 2 R. I is called the set of meta-objects.

T can be extended for other purposes with arbitrary other meta-objects and relations. Program

variables are assumed to be slots of the global context.

The following de�nes collections of meta-objects:

De�nition 2 A mo-collection is a collection4 of meta-objects. A mo-collection of slots is called data-

collection. A mo-collection of instructions or methods, inclusive the data-collection that is used, is

called code-collection.

A class-graph can be rewritten by a composer, an operator that uses graph rewriting and meta-

programming.

De�nition 3 An atomic meta-operator is an n-ary function f : I � ::� I ! I.

A meta-expression E is an expression built from atomic meta-operators. A meta-instruction I is

an assignment of a meta-expression to a slot. A meta-program P is a list of meta-instructions.

A composer C = (L ! R;P) is a complex operator on the meta-model with the following

parts:

� (L! R) is a graph-rewrite rule with left-hand side class-graph L and right-hand side class-graph

R.

� P is a meta-program, performed on the items matched by L.

An induced subgraph is matched, if together with a set of nodes in the graph all incident edges are

matched also. Otherwise a non-induced subgraph is matched. A composer applies to a class-graph

as follows:

De�nition 4 Let G be a class-graph. Then the composition G !C H with composer C consists of

the following steps:

1. The user speci�es a subgraph G0 � G (the application point). G0 is tested, whether L matches

it, i.e. a non-induced injective graph homomorphism from L to G0 is found [BFG94].

2. The rewriting is performed, i.e. G0 is rewritten to G00 which is injectively homomorph to R.

3. The meta-program P is performed on G0.

4Either a set or a list.

9

The examples from section 2 can be regarded as graph rewrite rules on the class-graph: the left-

hand side L consists of the white parts in the �gures which are matched in the class-graph. The

shaded part, i.e. the allocated glue methods and classes, is introduced by applying the right-hand side

R to the matched subgraph. After that the meta-program P modi�es the white parts appropriately,

i.e. extends the matched meta-objects.

Based on these terms a component systems can be formally de�ned. A component system is a

meta-model with a set of composers:

De�nition 5 A component system is a tuple CS = (M; C) whereM is a meta-model and C is a �nite

set of composers. A component-based software S is the result of a sequence Q of compositions in

the component system, starting from an initial class-graph Z: Q = Z !C1
G1 � � � !Cn�1

Gn�1 !Cn

S;C1; : : : ; Cn 2 C.

Component-based software is the result of a sequence of composer applications. Unfortunately, CS

cannot be an automatic graph rewrite system, since such a system would select arbitrary derivations,

and not those the programmer wanted.

3.2 Composers in action

These formal de�nitions are concrete enough that they translate directly to a textual form in a Java-

like style, and in the following the JavaBeans-connector from section 2 is demonstrated. All that is

needed additionally is a meta-programming interface that provides re
ection (querying meta-objects)

and intercession (manipulating them). To this end it is assumed that the re
ection interface of Java

is extended by intercession [KP97].

In such an extended re
ection interface, the items of the meta-model, i.e. all meta-objects and

-relations, are represented with ordinary classes. The following example uses the meta-object classes

Class, Method, and (implicitly) Instruction (Figure 4). We assume some basic re
ective methods,

such as findMethod which �nds a method with a name, and findClass which �nds a class with its

name. Also several intercessory methods are required, which form the atomic meta-operators. The

operator new may also allocate meta-objects, addMethod adds a method to a class, prefix pre�xes

the instruction list of a method with some instructions, and MakeCodeFromText constructs instruction

lists from Java text.

Also the entire component system becomes an ordinary Java class, in which composers are static

methods. In a composer (L ! R;P), the graph rewrite tasks are implemented by matching and

manipulating class-graph objects. The left-hand side L is implemented with a list of tests on the

parameter-components and their relations. The right-hand side R turns into meta-statements which

allocate and link meta-objects. The meta-program P consists of applications of atomic meta-operators

and translates directly to a sequence of intercessory method calls.

With composers as methods, users may write programs of composer applications (Figure 5).

Suppose three classes boss, assistant, and secretary are given, each of them with a doit and

init method. Before a composer can be applied to a class-graph, a parser has to translate some

components from program text to a class-graph. Then the composers (e.g. the EventAdaptor- and

EventNoti�cation-connectors) can be applied to the components. Finally, a pretty-printer has to

generate Java code which contains the �nal layout of the classes. Hence complex applications can be

plugged together with several calls to composer methods:

Since the composer extends the doit- and init-methods of the classes appropriately, event com-

munication is introduced automatically by the composer application. Furthermore, since the composer

only adds event-�ring calls, and these are independent of the old code, the parameter-components are

10

class ComponentSystem {
public static void ClassGraph parser() {..};
public static void void prettyPrint(ClassGraph c) {..};
public static void JavaBeansEventConnector(

EventSource:Class, EventListener: Class) {
/* MATCH whether the source and the listener are related by a relation listener */
if (!member(EventListener,EventSource->listener)) return;

/* no application possible */

/* REWRITING: Create meta-objects and meta-object-relations */
Class EventAdaptor = new Class("EventAdaptor");
Method receiveEvent = new Method("receiveEvent",MakeCodeFromText("listener->doit()"));
Method addListener = new Method("addListener",MakeCodeFromText(

"for (o = first(EventSource.adaptors);
o != NULL;
o = next(EventSource.adaptors,i))

o.receiveEvent();"));
addMethod(EventAdaptor,receiveEvent);

/* MODIFY existing components */
prefix(findMethod(EventListener,"init"),MakeCodeFromText("source.addListener()"));
addMethod(EventSource,addListener);
initialize(EventSource.adaptors);

}
}

Figure 4: A component system as a Java-style class

public static void CreateApplication() {
ComponentSystem cs;
ClassGraph classgraph = cs.parser();
Boss boss = findClass("Boss");
Assistant assistant = findClass("Assistant");
Secretary secretary = findClass("Secretary");

/* Compose the classes */
cs.JavaBeansEventConnector(boss,assitant);
cs.EventNotificationConnector(boss,secretary);

cs.prettyPrint(classgraph);
}

Figure 5: Composer applications as ordinary method applications

11

extended transparently. This illustrates the power of our approach: components may be programmed

independent of their context and, if the added code does not con
ict with old code, the components

are embedded into the context transparently.

Of course a full-
edged component system would o�er a library of composers. Users may use

inheritance or even composition to extend them: since composers are components, they can be

composed themselves. Composers will be designed along several design dimensions: Which parts of

which parameter-components are coupled to others (data-
ow dimension)? How complex are links?

Which parameter-component executes when (control-
ow dimension)? How tight are parameter-

components coupled (integration dimension)? Programming composers spans up a large design space

of composers, leaving all freedom for users to adapt compositions to their applications.

3.3 Incremental meta-programming

This approach can be extended to a dynamic scenario. If the pretty-printing step is substituted by

a code generation step (say to Java bytecode) the generated classes can be loaded dynamically.

Additionally, if bytecode can be read and meta-programmed { which is no problem in Java since

run-time type information is attached to each class �le { the scenario becomes completely dynamic:

compositions can be applied during the runtime of a system, the resulting classes are compiled, type-

checked, and re-loaded again. Hence incremental meta-programming paves the way for incremental

dynamic evolution of architectures.

3.4 Aspects of composers

Matching parts of the class-graph and providing glue between components depends on several ques-

tions:

1. Which parts of which parameter-components are coupled to others (links)? How complex are

links?

2. Which parameter-component is executing when (control
ow)?

3. How to couple the parameter-components (degree of integration)?

The answers to these questions span up a design space of composite connectors; in the sequel

some of its points are discussed.

Coupling with explicit linking Coupling can introduce linking explicitly, i.e. ports of components are

directly or indirectly linked.

with connector-speci�ed control
ow Composite connectors can impose control
ow order-

ing between components, e.g. they may start parameter-components in a sequential or

data-parallel way, if several work-items can be processed independently. Also composite

connectors can set up pipelines of components. In this case primitive connectors should be

streams, not only method calls.

without connector-speci�ed control
ow If linking of component ports is explicit and control

ow of the coupling is not de�ned by the composite connector, the components call them-

selves to run. This is the style of the design patterns in [GHJV94] or the architectural

speci�cations in [SDK+95]. In the �rst case links are represented by method calls; in the

latter case by any primitive connector.

12

Our examples from section 2 are of this kind, as the control
ow of the cooperation is

determined by events which are signalled by the components. The connector only provides

the linking, i.e. which component listens to which events. Also other coupling design

patterns, such as Model-View-Controller, or Client-Server, belong to this category.

Coupling without explicit linking Components need not be linked explicitly. Instead components

can talk via shared-memory repositories, �le systems or databases.

with connector-de�ned control
ow Parameter components need not be linked explicitly, but

can be controlled by indirect speci�cation of control-
ow, e.g. with rule systems. Then the

composite connector creates a rule interpreter which invokes all components according to

the rule system.

Examples for this scenario is make. Here the components are programs that have to be

invoked according to the set of dependencies in a Make�le. They communicate via the

shared �le system. Odin is another, more sophisticated example [CO90]. Odin does not

maintain explicit dependency �les, but calculates the dependency graph from a prede�ned

rule-base and a control-
ow plan.

without connector-de�ned control
ow Composite connectors may not specify a linking, but

turn the parameter-components into active processes, which communicate in a way that is

not pre-computable.

Examples for such systems are coordinating process systems, invocation by agenda lists

(agenda parallelism) [CG89], or blackboard systems [GS93]. Because control
ow is not

prede�ned, components check themselves when to run.

Distributed vs. tight coupling Also the degree of integration can be determined by the composite

connector. If distributed coupling is necessary, connectors may wrap components so that they

are dispersed onto di�erent machines. Connectors can generate the necessary marshaling code,

proxy components, and service arbiters.

Several languages for distributed systems already provide transparent remote procedure call

(RPC) or remote object invocation (ROI) [Ros92] [WJK96]. E.g. CORBA's object request

broker seems to be nothing else than a glue arbiter for components.

3.5 Composers encapsulate and con�gure

Until now only composers have been investigated which couple components. Of course a composer may

also abstract its parameter-components into one new component (encapsulation). In a component-

based software, such hierarchical composition of subsystems is desired, since subsystems hide unnec-

essary details to the outer world. In our example, this means that after the two event connectors

have been applied, an composer should be called that encapsulates the three classes into one com-

ponent. Such a composer should be formed according to an encapsulating design pattern, such as

Facade [GHJV94]. It would create at least one new component for encapsulation and would link all

parameter-components to it.

Con�guring a system means to choose one of several variants for some of its parts. When

composers can be freely programmed, they can be built in variants, and con�guration amounts to

selection of composers. Here are some examples:

13

run-time boundaries Composers may exist in variants that may or may not encapsulate. In the latter

case, the component's boundary vanishs in the implementation. Hence exchange of encapsulat-

ing composers with their non-encapsulating cousins removes run-time boundaries of components.

control-
ow In case that parameter-components can be executed independently, composers may

arrange the control-
ow of the parameter-components sequentially or parallelly. A sequential

composer starts the components in a certain order, a parallel one starts them in parallel and

supervises their execution. Hence variant composers lead to scalable software systems: exchange

of variants con�gure a system appropriately for the machine architecture.

Con�guration of control-
ow is used in the compiler model CoSy for compiler phases [AASv94]:

here variants of control-
ow-based composers are o�ered, that run components sequentially or

in parallel on a shared memory machine. The code of components need not be changed.

late implementation binding with bridges Late binding of implementations can be expressed by the

design pattern of static bridges [GHJV94]. Di�erent bridge implementations can be regarded as

variant composers which provide a di�erent implementation for a component.

4 Composers adapt components by atomic meta-operators

To adapt parameter-components, a composer has to modify their data slots and method code. This

can be performed with several basic meta-programming operators and in this section such a set is

discussed. Some operators can be applied both to code and data, as they only require lists or sets of

meta-objects.

Atomic meta-operators can be categorized in two classes: imperative and functional ones. If op-

erators from the former class are applied to components, these are updated in-place, i.e. destructively.

Of course this may disturb old use-contexts of the component which knew the component in the old

shape. Operators of the second class never modify components, but derive new components from old

ones. Hence old uses of components are never a�ected.

De�nition 6 An atomic meta-operator (or a composer) is called imperative, if it updates its argu-

ments. Otherwise it is called functional.

4.1 Harmless and dangerous composition

In program analysis, a program slice is a part of a procedure that refers to one variable or one

assignment [Wei84] [GL91]. Because a slice encapsulates all statements which are dependent on a

variable or a variable de�nition, the rest of the procedure is independent of it. Two program slices are

orthogonal to each other, if they are disjunct. Then there are no data dependencies between them,

e.g. the slices refer to di�erent set of variables and memory locations.

In software composition, code composition is not dangerous, if the composition composes orthog-

onal slices, i.e. code parts that do not disturb each other.

De�nition 7 Two data-collections are called orthogonal to each other, if all names of contained slots

are di�erent.

Two code-collections are called orthogonal to each other, if they do not have dependencies.

14

Theorem 1 Two code-collections are orthogonal, if they are disjunct program slices. A su�cient

condition is that all names of used slots are di�erent and no aliases exist between variables with

di�erent names.

The proof is trivial, and relies on the standard knowledge of program slicing.

De�nition 8 An imperative composition operation on parameter-components is harmless, if

� it does not delete meta-objects (data or code) of the parameter-component's mo-collections.

� all data- and code-collections of parameter-components are orthogonal to mo-collections that

are introduced by the composition.

An imperative composition operator is called harmless, if it can be used for harmless compositions.

Otherwise it is called dangerous. An imperative composition operator is called strongly harmless, if it

can be used only for harmless compositions.

Harmless compositions retain orthogonal data-collections and orthogonal program slices of

parameter-components: newly introduced code does not con
ict with old code and does not make old

code con
ict. Functional composition operators are always strongly harmless.

In a harmless meta-operation, when a code-collection is composed with another code-collection,

also data is composed. E.g. when a method is unioned from two instruction collections m1 and m2,

the object to which the code refers has to get more slots to which the new code may refer. Otherwise

m1 uses slots referenced by m2 or vice versa, and the program slices are not disjunct anymore.

Theorem 2 A component c1 is called conform to another component c2, if c1 can substitute c2 in

all use-contexts [FZZ95].

If a component is composed out of parameter-components by a harmless imperative meta-

operation, each modi�ed parameter-component is conform to its unmodi�ed version.

Proof: A program slice does not con
ict with other code, as it is closed against dependencies

[Wei84] [GL91]. Suppose a component c2 is composed from a parameter-component c1 which consists

of a code-collection m1. Let U be the set of all use-contexts of c1. c1 can only be extended with new

code or data.

If c1 is extended by a code-collection m2 which is orthogonal to m1, m1 will still behave in the

same way, since m1 and m2 are disjunct program slices. Hence c2 shows the same behavior as c1 when

it is used in a u 2 U: of course, both m1 and m2 are executed, but since m2 is orthogonal, c2 will

show the same behavior in the old context as c1. If c1 is extended by an orthogonal data-collection

m3, the same holds.

If several parameter-components are composed, m2 is not allowed to create dependencies between

any of them, i.e. all of them must stay orthogonal. This is the case if m2 is orthogonal to all

parameter-components.

4.2 Operators that aggregate mo-collections

4.2.1 Aggregation

Aggregation is an atomic meta-operator that unions or concatenates data or code-collections. Aggre-

gation may be commutative. Components can be aggregated directly or indirectly. Direct aggregation

of data-collections means that all slots in the aggregated component can be accessed on the same

level without indirections. Indirect aggregation corresponds to delegation: the aggregated parameter-

components stay separate but are related to the aggregated component. In direct code aggregation

15

the code is combined directly (by inlining). Indirect code aggregation means that the aggregated

component calls the composed code-collections.

A system that can aggregate code directly is the LambdaN-calculus [Dam95]. In particular, con-

structor methods can be aggregated, i.e. whenever a class is extended, the constructor is extended

also.

Wrappers

A special form of aggregation meta-operators are wrappers. Pre�xing concatenates a mo-collection

to the front of another one, while post�xing appends mo-collections. Wrapping combines pre�xing

and post�xing. These operators can be applied to code and data; in the �rst case instruction lists are

extended, in the second case slot lists are enlarged.

Code wrapping is harmless, if the wrapping mo-collection does not refer to data of the wrapped

code-collection, as this would create dependencies. Instead each wrapping mo-collection has to refer

to its own data only, which makes it orthogonal to all other code-collections.

Code pre�xing operators common to all methods of an object are called �lters [Ber94] or layers

[Bos95]. Method wrapping has been used for a long time in Lisp systems for method combination (KEE

[KS87], CLOS [DeM93]), because certain algorithms can be composed along the class inheritance dag

with before- and after-methods. It can also be used to couple observers to programs, as the wrappers

may transfer information to the observer. A speci�c example is algorithm visualization [Fri97].

Slot access wrappers

A special case of wrapping is wrapping of slot access methods. In concurrent scenarios, where readers

and writers compete, access to a slots may be under the control of a synchronization protocol. In

particular, the client-server scenario conforms to this scheme. Suppose, several clients compete for

a shared server object. Then the access to a server's slot should be controlled by an appropriate

synchronization protocol. However, when only one client wants to access the object, no protocol is

necessary and access can be granted freely. Typically, only the application context can provide this

knowledge. When the protocol methods can be wrapped into slot access methods of the server object,

a composer may use its context-knowledge and mix-in the protocol.

Slot access wrapping for synchronization has been used in generic synchronization policies

[MWBD92] [McH94]. Here policies may be de�ned apart from the class hierarchy, and are mixed-in

as appropriate. Another example is the composite connector EventNoti�cation from section 3. It has

to modify its parameter-components in order to enable the event coupling. The event source has to

be modi�ed at all places which can �re an event. Typically, this happens while setting slot values

in internal data. The composite connector can wrap these slot access methods with event-signalling

code.

4.3 Other atomic meta-operators

Shadowers for slots

Composite connectors may introduce transactions on components, in the case that several components

update data competitively. Sometimes con
icts between concurrent readers and writers can be resolved

if data is shadowed, i.e. provided in several versions. Then a shadow operator should replicate the data

under con
ict and modify the corresponding code in each competing component such that the private

16

copy is referenced. Again, shadowing can be introduced by modi�cation of slot access methods: for

each component, the method has to refer to the private shadow slot, so that no con
icts occur.

The compiler model CoSy [AASv94] uses a shared repository for communication among compo-

nents and provides shadowing for data structures in the repository. When two competitive components

are started, the data under con
ict is replicated, and the components work on their private copies.

When they �nish, a selector function selects one of the shadows. Because the replication is �ne-grained

(on object slots), shadowing is implemented by modi�cation of slot access methods.

4.3.1 Code aggregation on conjunctive or disjunctive normal forms of �rst-order formulas

Boolean expressions can be built from �rst-order predicate expressions in conjunctive or disjunctive

normal form. If the formulas are free of side e�ects, they are orthogonal to each other and can easily

be extended by adding new predicate code-collections. In this way class hierarchies can be generated

that test preconditions, postconditions and invariants of classes and methods by means of predicate

composition [FNZ96].

A special case of this scenario are decision trees, to which new branches or leaves can be added

orthogonally. Decision tables are decision trees, augmented by action code. Because the action code

of each branch is only dependent on the predicates of the branch, it is orthogonal to action code of

other branches, and decision table branches can be added easily.

4.3.2 Renaming

Complex composition requires an atomic meta-operator that renames meta-objects. Because meta-

operators can introspect the name spaces of their parameter-components and mo-collections, a com-

poser can check whether names of meta-objects would con
ict during composition. If so, it can

rename the con
icting names consistently by several applications of the rename operator.

For instance, renaming plays an important role in the architecture description language Rapide

[LKA+95]. In Rapide, methods from di�erent components may be mapped to each other even if they

have di�erent names. This is also useful in linking of object �les [FPW96].

4.3.3 Overwriting

Another atomic meta-operator which has to be applied carefully is overwriting of meta-objects. If

applied imperatively, this operation may not be harmless, since updated components can only substitute

their original variants if they conform [FZZ95].

4.4 Operators on speci�cations

This section presents meta-operators that compose code speci�cations. Either the rules of interpreters

are composed, or a generator expands the speci�cation to the actual code of the composed component.

4.4.1 Code aggregation in an interpreted system

In an interpreted system, code is executed by a virtual machine. Interpreters either require that their

code is ordered (instruction-sequence-based virtual machines) or unordered (rule-based interpreter).

Naturally code meta-operators can also be applied to the instruction sequence of a virtual machine.

Composition of rule-based speci�cations should be possible e.g. in Prolog, Datalog, term or graph

rewrite systems [Ass94], or constraint systems. Additionally, if a rule system consists of rules

17

with declarative semantics, only infers new knowledge from old knowledge, and does not update old

knowledge, its composition operators are strongly harmless. An example is Datalog [CGT89]. Datalog

rule systems have unique �xpoints. When new rules are added, the old �xpoint is part of the new

�xpoint, i.e. the solution terms of the old �xpoint are a subset of the solution terms of the new

�xpoint. Hence composition operators for Datalog rule systems must be strongly harmless.

4.4.2 Attribute grammars

Current attribute grammar tools are modular, i.e. modules of speci�cations can be set-unioned in order

to arrive at the �nal speci�cation. Union of attribute grammars assembles all attribute equations

together which refer to the same non-terminal. Afterwards the attribute grammar evaluator can be

used to evaluate the composed attribute equations. Because attribute grammars are declarative, by

de�nition the composed modules are orthogonal, i.e. do not disturb each other. Hence attribute

grammar composition operators are strongly harmless.

Attribute grammars come in two classes. A restricted class can be partially evaluated such that the

control
ow is statically known. This class of attribute grammars is called ordered and determining the

control
ow is called computation of visit sequences [Kas80]. The other class of attribute grammars

has to be evaluated by an interpreter, but is more general [Far86] [Gro92]. This class can be used in

dynamic scenarios, i.e. when an attribute grammar module is fetched from the web and integrated in

the existing module set.

5 Some applications of the technology

5.1 Subclassing is a composed atomic meta-operator

Subclassing (inheritance with code reuse) is a functional meta-operator which performs overwriting

and aggregation. It is functional, as new classes are derived from old ones; it is overwriting as methods

of super-classes can be overwritten; and it is post�xing as the slot list of the super-class is extended

by new slots of the inheriting class.

Mixin-based static inheritance [Bra92] explains inheritance as a mixing process between classes,

where the mix is performed by several atomic meta-operators (union, overwriting, etc.). Dynamic

mixin-based cloning carries this over to cloning-based object systems [SCD+]. When inheritance is

explained as functional composition over meta-objects, mixin-based inheritance results as a special

case.

Interpreting inheritance as composed meta-operator illuminates the semantic di�erences of in-

heritance in current object-oriented programming languages. These di�erences stem from how the

inheritance meta-operator is composed from atomic meta-operators. E.g. In Oberon-2 and C++

classes are records, and subclassing appends new record �elds to the record �eld list. Hence subclass-

ing applies a post�xing operator on the slot list. In other languages, such as Ei�el and Sather, slot

collections are sets, and subclassing applies set-union as aggregation operation.

Include inheritance in Ei�el or Sather-K [Goo95] allows to reuse classes such that slot lists can

be embedded directly. Slots of the included classes are unioned with the current slots and may be

renamed in case of con
icts. Interface inheritance in Java [GJS96] unions method interfaces, and

does not reuse code. This means that method interfaces are distinct meta-objects.

18

5.2 Transactions

A transaction has an initialization, a main, a rollback and a commit phase. Since components can

be composed transparently, a transaction composer can allocate the appropriate glue components

(transaction supervisor, rollback engine, commit log manager) and insert calls to begin-, rollback-

and commit-transaction methods into the components as appropriate. Hence a transaction composer

enables components to be used in transactions that were not prepared for this.

5.3 Interface changes (versions)

When a component is extended, its interface may change. However, old use-contexts should see the

old interface, i.e. use-contexts should have a speci�c view. Views on interfaces can be implemented

as adapters, which encapsulate interfaces that do not �t to all requirements of their uses [GHJV94].

Adaption may rename methods, change format of data, etc.

One example are schema changes in databases: after a change old query code has to be adapted

to the new schema. [Sch93] exempli�es this for the database OBST: in this system all object slots are

accessed by methods which are generated speci�cally to the use-context. When a database schema

changes, only the generated adapter module has to be re-generated, and the code of the use-context

need not be changed.

5.4 Architectural styles are speci�c composer styles

Architectural styles [GS93] describe component systems that allow only a certain kind of composer:

Repository systems Components are coupled tightly. Synchronization is done by slot access wrap-

ping.

Blackboard systems Composers do not impose control-
ow on the components, but they deter-

mine themselves when to run, according to the contents of the blackboard.

Pipe-�lter systems These systems only allow the unidirectional
ow of work packages in pipes.

Data in pipes may be copied or in a shared memory repository.

Implicit-invocation systems Only event-based composers are allowed.

Procedure-call systems Only composers are allowed that introduce method call links.

Layered systems A layer is a complex composer that allows tight collaboration within the layer,

and introduces interfaces between the layers.

When the description of the architecture is separated from the components and put into composer

applications, exchange of composers change the architecture. Also, exchanging one composer style

to another changes the architectural style of a system. For instance, it can be easily imagined that

a procedure-call system can be turned into an implicit-invocation system: call-composers need to be

exchanged to their event-based cousins.

5.5 A hierarchy of composers

When composers are programmed, several categories can be distinguished.

� Black-box reusers. Atomic composers re-use components as-is, i.e. without modi�cations. This

reuse-style is well-known.

� Adaptors. Some composers may not change components, but may adapt them, i.e. by wrapping

them with new functionality.

19

� Transformers. These use static meta-programming to extend components.

Adaptors and transformers appear both in functional and imperative variants, i.e. they may store

modi�cations in new components or directly extend old components. It is claimed that the latter is very

important for second generation component systems. Allowing to extend components imperatively and

harmlessly will enable grey-box reuse, i.e. reuse that introspects and extends components: Adaptors

wrap components and transformers extend and modify components in an arbitrary way, provided that

harmless meta-operations are performed.

6 Related work

Architectural styles [GS93] describe component systems that allow only a certain kind of composers:

Implicit-invocation systems Only event-based composers are allowed.

Procedure-call systems Only composers are allowed that introduce method call links.

Repository systems Components are coupled tightly. Synchronization is done by wrapping slot

access methods with synchronization protocols.

Blackboard systems Composers do not impose control-
ow on the components, but they deter-

mine themselves when to run, according to the contents of the blackboard.

Pipe-�lter systems These systems only allow the unidirectional
ow of work packages in pipes.

Data in pipes may be copied or in a shared memory repository.

When the description of the architecture is separated from the components and put into composer

applications, exchange of composers change the architecture. Also, exchanging one composer style

to another changes the architectural style of a system. For instance, it can be easily imagined that

a procedure-call system can be turned into an implicit-invocation system: call-composers need to be

exchanged to their event-based cousins.

Adaptive programming (ADP) uses graph rewriting on the class-graph and method aggregation.

First ADP computes a set of classes to which new methods are added, evaluating a path expression

on the class-graph. This corresponds to the evaluation of a Datalog procedure on the class-graph,

or an edge-addition rewrite system [Ass94]. In a second step these classes are extended by new

methods which are created from a code speci�cation. In essence, ADP is just a form of static

meta-programming. It can be regarded as a powerful super-composer, connecting a set of classes

with an mixed-in algorithm. Because the set of classes is computed from a Datalog procedure, the

ADP-operator can do more than a structural composer, which can match only a �xed number of

meta-objects in the left-hand side of its graph rewrite rule.

Aspect oriented programming (AOP) divides programs into component parts and aspects [Kic96].

Aspects are merged into the components, just as in our approach composers extend components

with context-related code. However, AOP relies on a particular aspect language, which describes the

coupling, and an aspect weaver, which performs the coupling. Hence for each class of applications

new aspect languages and weavers have to be developed. Our approach is more simple, as it only

relies on static meta-programming. As in AOP, the composition process can be expanded to code.

Our criterion on orthogonal composition allows to exactly determine when a composition is harmless.

As this criterion is based on the features of meta-operators and program slices, and not of a special

aspect language, it is valid for all application domains and easy to check.

Context relations allow to adapt objects to their context at allocation time [SPL96]. This is

similar to the exchange of superclasses at allocation time [Wec97]. However, adapting components

and exchanging superclasses is just a special case of meta-programmed composition at allocation time.

20

Composition-�lters [Ber94] [ABV92] and the layered object model [Bos95] represent context-

related actions of a class by �lters or layers that encapsulate it. Each message that arrives at a

class has to cross this set of �lters that modify it. However, composing �lters (i.e. wrapping code

around methods and objects) is a simple atomic meta-operation. Both approaches can model generic

synchronization policies, mixin-based inheritance, delegation and context-related adaptation. [Bos97]

details this for context-related adaptation. He argues that components need to be adapted
exibly

with superimposition. This is a modi�cation of the component's interface or implementation by means

of a new layer around it. He demonstrates that adaptation by superimposition is more powerful than

black-box reuse, and mentions the idea that adaptation can be meta-programming, but does not

elaborate on this. However, meta-programming is more powerful than layering: meta-programming

can change components deep inside their implementation while layering can only wrap components.

In his thesis [Zim97], Zimmer develops the idea to use design patterns as transformation operators

on the class-graph. Zimmer de�nes a language in which all actions a design pattern involves can

be described systematically (pattern matching on the class-graph, transformations of methods, etc.).

Although this provided one of the starting points for our work he did not recognize that his language

uses static meta-programming.

Code generation from design patterns has been attempted only recently [BFVY96]. Design pat-

terns are described in the form of [GHJV94], with an additional description in a special language

COGENT. This macro-based language is expanded by the perl interpreter to C++ code. Since the

items of COGENT are classes, this approach is static meta-programming, although it has not been

described as such. In our work, code generation from design patterns results naturally, since composed

classes can be compiled.

7 Conclusion

This work contributes the following results. First, complex composers (connectors and encapsulators)

can be developed by (static) meta-programming, using coupling design patterns as transformers on

the class-graph. Second, harmless composition has been de�ned which allows to compose compo-

nents transparently. The meta-programmed compositions generate glue code between components

automatically. Meta-programming composers generalize architectural description languages to a gen-

eral composition language. Hence this work lays the foundation for future component systems, in

which context-speci�c aspects will be encapsulated in complex composers while application-speci�c

aspects will be encapsulated in components. Since both components and composers can be varied

orthogonally, reuse will be enhanced enormously.

White-box reuse is too di�cult and laborious; black-box reuse is too primitive; grey-box reuse is

the way to go, and meta-programming composers enable grey-box reuse.

References

[AASv94] Martin Alt, Uwe A�mann, and Hans Someren van. Cosy compiler phase embedding with

the CoSy compiler model. In Peter A. Fritzson, editor, Compiler Construction, Springer

Verlag, pages 278{293, April 1994.

[ABV92] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural. An object-oriented language-

database integration model: The composition-�lters approach. In Ole Lehrmann Madsen,

editor, Proceedings of the 6th European Conference on Object-Oriented Programming

21

(ECOOP), volume 615 of Lecture Notes in Computer Science, pages 372{395, Berlin,

Heidelberg, New York, Tokyo, June 1992. Springer-Verlag.

[Ass94] Uwe Assmann. On Edge Addition Rewrite Systems and Their Relevance to Program

Analysis. In Janice Cuny, Hartmut Ehrig, Gregor Engels, and Grzegorz Rozenberg, edi-

tors, 5th Int. Workshop on Graph Grammars and Their Application To Computer Science,

Williamsburg, volume 1073 of Lecture Notes in Computer Science, pages 321{335, Hei-

delberg, November 1994. Springer.

[Ber94] Lodewijk M. J. Bergmans. Composing concurrent objects. PhD thesis, University of

Twente, Enschede, 1994.

[BFG94] Dorothea Blostein, Hoda Fahmy, and Ann Grbavec. Practical Use of Graph Rewriting.

Technical Report Queens University, Kingston, Ontario, November 1994.

[BFVY96] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatic code generation

from design patterns. IBM Systems Journal, 35(2):151{171, 1996.

[Bos95] Jan Bosch. The layered object model. PhD thesis, University Twente, 1995.

[Bos97] Jan Bosch. Adapting object-oriented components. In M. Aksit et al., editor, ECOOP

Workshop on Component Systems, June 1997.

[Bra92] Gilad Braha. The Programming Language Jigsaw: Mixins, Modularity and Multiple In-

heritance. PhD thesis, University of Utah, 1992.

[CG89] Nicholas Carriero and David Gelernter. How to write parallel programs: A guide to the

perplexed. ACM Computing Surveys, 21(3):323{357, September 1989.

[CGT89] S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to Know About Datalog

(And Never Dared to Ask). IEEE Transactions on Knowledge And Data Engineering,

1(1):146{166, March 1989.

[CO90] Geo�rey Clemm and Leon Osterweil. A mechanism for environment integration. ACM

Transactions on Programming Languages and Systems, 12(1):1{25, January 1990.

[Dam95] Laurent Dami. Functions, records and compatibility in the lambda N calculus. In O. Nier-

strasz and D. Tsichritzis, editors, Object-Oriented Software Composition, pages 153{

174. Prentice Hall, 1995.

[DeM93] Linda G. DeMichiel. An Introduction to CLOS. In Andreas Paepcke, editor, Object-

oriented programming - the CLOS perspective, pages 3{28. MIT Press, 1993.

[Far86] Rodney Farrow. Automatic Generation of Fixed-Point-Finding Evaluators for Circular, but

Well-De�ned, Attribute Grammars. ACM SIGPLAN Notices, 21(7):85{98, July 1986.

[FNZ96] Arne Frick, R. Neumann, and Wolf Zimmermann. Eine Methode zur Konstruktion ro-

buster Klassenhierarchien. Softwaretechniktrends, 16(3):16{23, 1996. Beitrag zur Soft-

waretechnik '96.

[FPW96] Lisa Spicknall Fruth, James M. Purtilo, and Elizabeth L. White. A Pattern-Based Object-

Linking Mechanism for Component-Based Softwae Development Environments. Journal

of Systems Software, 32:227{235, 1996.

22

[Fri97] Arne Frick. Eine Architektur zur Visualisierung von Algorithmen. PhD thesis, Universit�at

Karlsruhe, 1997. forthcoming.

[FZZ95] Arne K. Frick, Walter Zimmer, and Wolf Zimmermann. On the design of reliable libraries.

In R. Ege, M. Singh, and B. Meyer, editors, TOOLS 17| Technology of Object-Oriented

Programming, pages 13{23. Prentice Hall, August 1995.

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: why reuse

is so hard. IEEE Software, 12(6):17{26, November 1995.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

[GJS96] James Gosling, Bill Joy, and Guy Steele. Java Language Speci�cation. Addison-Wessley

Publishing Company, August 1996.

[GL91] Keith Brian Gallagher and James R. Lyle. Using program slicing in software maintenance.

IEEE Transactions on Software Engineering, 17(8):751{761, August 1991.

[Goo95] Gerhard Goos. Sather-K. Report 8/95, Universit�at Karlsruhe, Fakult�at f�ur Informatik,

1995.

[Gro92] Josef Grosch. AG - An Attribute Evaluator Generator. Technical report, Gesellschaft fuer

Mathematik und Datenverarbeitung, Forschungstelle Karlsruhe, August 1992. Language

Manual.

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architecture, volume 1, pages

1{40. World Scienti�c Publishing Company, 1993.

[Jav96] JavaSoft. JavaBeansTM. http://java.sun.com/beans, December 1996. Version 1.00-A.

[Kas80] U. Kastens. Ordered attributed grammars. Acta Informatica, 13:229{256, 1980.

[Kic96] Gregor Kiczales. Aspect-oriented programming. ACM Computing Surveys, 28(4), De-

cember 1996.

[KP97] Gregor Kiczales and Andreas Paepcke. Open implementations and metaobject protocols.

Technical report, Xerox PARC, 1997.

[KS87] R. Kempf and M. Stelzner. Teaching object-oriented programming with the KEE system.

In Norman Meyrowitz, editor, Proceedings of the Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications (OOPSLA), volume 22, pages 11{25,

New York, NY, December 1987. ACM Press.

[LKA+95] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, D. Bryan, and

Walter Mann. Speci�cation and analysis of system architecture using Rapide. IEEE

Transactions on Software Engineering, 21(4):336{355, April 1995.

[McH94] Ciaran McHale. Synchronisation in Concurrent, Object-oriented Languages: Expressive

Power, Genericity and Inheritance. Ph.D. thesis, Department of Computer Science, Trin-

ity College, Dublin, 1994.

23

[MDK92] Je� Magee, Naranker Dulay, and Je�rey Kramer. Structuring parallel and distributed

programs. In Proceedings of the International Workshop on Con�gurable Distributed

Systems, London, March 1992.

[MWBD92] Ciaran McHale, Bridget Walsh, Se�an Baker, and Alexis Donnelly. Scheduling predicates.

In O. Nierstrasz M. Tokoro and P. Wegner, editors, Proceedings of the ECOOP'91

Workshop on Object-Based Concurrent Computing, LNCS 612, pages 177{193. Springer-

Verlag, 1992.

[Nie95] Oscar Nierstrasz. Research topics in software composition. In Proceedings, Langages et

Mod�eles �a Objets, pages 193{204, Nancy, October 1995.

[NM95a] Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a composition language. In

ECOOP 94 Workshop on Models and Languages for Coordination of Parallelism and

Distribution, volume 924 of Lecture Notes in Computer Science, pages 147{161, 1995.

[NM95b] Oscar Nierstrasz and Theo Dirk Meijler. Research directions in software composition.

ACM Computing Surveys, 27(2):262{264, June 1995.

[NSL96] Oscar Nierstrasz, Jean-Guy Schneider, and Markus Lampe. Formalizing composable soft-

ware systems { a research agenda. In 1st IFIP Workshop on Formal Methods for Open

Object-based Distributed Systems, 1996. Paris, France. To appear.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented

Modelling and Design. Prentice Hall, Englewood Cli�s, 1991.

[Rie96] Dirk Riehle. The event noti�cation pattern { integrating implicit invocation with object-

orientation. Theory and Practice of Object Systems, 2(1):43{52, 1996.

[Ros92] Ward Rosenberry. Understanding DCE. O'Reilly & Associates, Inc., 981 Chestnut Street,

Newton, MA 02164, USA, October 1992.

[SCD+] P. Steyaert, W. Codenie, T. D'Hondt, K. D. Hondt, C. Lucas, and M. V. Limberghen.

Nested mixin-methods in Agora. Number 707, pages 197{219. Springer-Verlag, New

York, N.Y. ECOOP '93 - Object-Oriented Programming 7th European Conference,

Germany, July 1993. Proceedings.

[Sch93] Bernhard Schiefer. Supporting Integration and Evolution with Object-Oriented Views.

FZI-Report 15/93, Forschungszentrum Informatik (FZI), Karlsruhe, Germany, July 1993.

[SDK+95] Mary Shaw, Robert DeLine, D.V. Klein, T.L. Ross, D.M. Young, and G Zelesnik. Ab-

stractions for software architecture and tools to support them. IEEE Transactions on

Software Engineering, pages 314{335, April 1995.

[SN92] Kevin J. Sullivan and David Notkin. Reconciling environment integration and software

evolution. ACM Transactions of Software Engineering and Methodology, 1(3):229{269,

July 1992.

[SPL96] Linda M. Seiter, Jens Palsberg, and Karl J. Lieberherr. Evolution of Object Behavior

using Context Relations. In David Garlan, editor, 4th ACM SIGSOFT Symposium on the

foundations of Software Engineering, pages 46{57, October 1996.

24

[Tic97] Walter F. Tichy. Classi�cation of Design Patterns. Lecture slides, Universit�at Karlsruhe,

January 1997. http://wwwipd.ira.uka.de/ tichy/entwurfsmuster.html.

[VN96] Steven J. Vaughan-Nichols. ActiveX chases Java. BYTE Magazine, 21(6):27{27, June

1996.

[Wec97] Wolfgang Weck. Inheritance Using Contracts and Object Composition. In WCOP Work-

shop on component-based systems at ECOOP 97, June 1997.

[Wei84] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):352{

357, July 1984.

[WJK96] Michael Weiss, Andy Jhonson, and Joe Kiniry. Distributed Computing: Java, CORBA,

and DCE. Open Software Foundation Version 2.1, February 1996.

[Zim97] Walter Zimmer. Frameworks und Entwurfsmuster. PhD thesis, Universit�at Karlsruhe,

February 1997.

25

