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NUMERICAL INTEGRATION OF CONSTRAINED

HAMILTONIAN SYSTEMS USING DIRAC BRACKETS

WERNER M. SEILER

Abstract. We study the numerical properties of the equations of motion of

constrained systems derived with Dirac brackets. This formulation is com-

pared with one based on the extended Hamiltonian. As concrete examples a

pendulum in Cartesian coordinates and a chain molecule are treated.

1. Introduction

The fundamental problem in the numerical integration of a constrained Hamil-
tonian system (or more generally of any di�erential algebraic equation [5]) is the
drift o� the constraint manifold. Geometrically seen, all dynamics happens on this
manifold. Only it has a physical meaning; the ambient space is an artifact of the
modeling. The dynamics is not well-de�ned outside the constraint manifold and
can be modi�ed, as long as it remains unchanged on the manifold.

Exact solutions are not a�ected by such modi�cations. But for numerical solu-
tions any change can make a considerable di�erence. Due to the discretization error
they typically leave the constraint manifold and their stability depends decisively
on the properties of the equations in the neighborhood of this manifold.

For Hamiltonian systems Dirac [8, 9] proposed modi�cations of the dynamics,
although for other reasons. He introduced the total and the extended Hamiltonian,
respectively, di�ering from the canonical one by a linear combination of constraint
functions. On the constraint manifold both coincide and generate the same dynam-
ics. But the extended Hamiltonian yields more stable equations of motion [15].

We study in this article the Hamilton-Dirac equations of motion [8, 9]. This
approach uses a modi�cation of the symplectic structure of the phase space, namely
the so-called Dirac bracket, rather than of the Hamiltonian. We will show that it is
equivalent to a simpli�cation of the equations of motion derived with the extended
Hamiltonian already mentioned in [15].

The basic idea behind the Dirac bracket is the construction of an unconstrained
Hamiltonian system (or underlying ordinary di�erential equation) which has the
constraint functions as �rst integrals. For the special case of a regular system with
imposed constraints the impetus-striction formalism [7, 18] achieves the same. In
contrast, most index reduction techniques for general di�erential algebraic equa-
tions do not preserve the Hamiltonian structure of the system.
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In order to make this article as self-contained as possible we give in the next
two sections a brief review of the Dirac theory and the Hamilton-Dirac equations.
In Section 4 we consider the extended Hamiltonian and its relationship to the
Dirac theory. After discussing the stability of the constraint manifold for three
di�erent approaches we demonstrate the ideas developed so far at a simple toy
model. Section 7 specializes the theory to regular systems with imposed constraints.
The following two sections contain numerical results for two test problems. Finally,
we give some conclusions.

2. The Dirac Theory

Let qi be coordinates in an N -dimensional con�guration space Q. We restrict our
presentation to autonomous systems, as explicit time dependencies can always be
treated by considering the time as additional coordinate in an extended con�gura-
tion space. The dynamics of a mechanical system described by a Lagrangian1 L(q; _q)
is given by the Euler-Lagrange equations [11]

d

dt

�
@L

@ _qi

�
�
@L

@qi
= 0 ; i = 1; : : : ; N :(1)

If the Hessian @2L
@ _qi@ _qj

is singular, some equations in (1) are not of second order and

the system is constrained.
Introduction of the canonically conjugate momenta

pi =
@L

@ _qi
(q; _q)(2)

leads to the Hamiltonian formalism. For a constrained system (2) cannot be solved
for all velocities _qi. Instead one obtains by elimination some primary constraints

��(q; p) = 0 ; � = 1; : : : ; A � N :(3)

The canonical Hamiltonian of the system is given by

Hc(q; p) = pt _q � L(q; _q) :(4)

For an unconstrained system it is obvious that Hc can be considered as a function
of (q; p) only, since _q can be eliminated using (2). Due to the special form of the
right hand side of (4), this is also possible in a constrained system, but the result-
ing Hc is uniquely de�ned only on the constraint manifold. Thus the formalism
remains unchanged, if we add an arbitrary linear combination2 of the constraint
functions � [13]. This leads to the total Hamiltonian3

Ht(q; p) = Hc + u���(5)

where the multipliers u are a priori arbitrary functions of (q; p).
The standard Hamiltonian formalism is based on the canonical Poisson bracket

of two phase space functions F (q; p); G(q; p)

fF;Gg =
@F

@q

@G

@p
�
@G

@q

@F

@p
:(6)

1For simplicity we mostly suppress indices, thus q, _q, etc. should be read as vectors.
2Here and in the sequel the coe�cients of \linear combinations" are allowed to be arbitrary

functions of the phase space variables (q; p).
3We use the Einstein convention that a summation over repeated indices is always implied.
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This bracket is linear in its arguments, skew-symmetric fF;Gg = �fG;Fg and
satis�es the Jacobi identity fF; fG;Hgg+ fG; fH;Fgg+ fH; fF;Ggg= 0. It gives
the phase space the structure of a symplectic manifold. Coordinate transformations
(q; p) 7! (Q;P ) that preserve this structure are called canonical.

Using constrained variational calculus one can show that the Euler-Lagrange
equations (1) are equivalent to the following �rst order system [13]

_q =
@Hc

@p
+ u�

@��

@p
; _p = �

@Hc

@q
� u�

@��

@q
; �� = 0 :(7)

The di�erential part of (7) is not Hamiltonian. However, we can use the following
Hamiltonian system

_q = fq;Htg ; _p = fp;Htg ; �� = 0 ;(8)

as the right hand sides of the di�erential equations in (7) and (8) di�er only by
linear combinations of the constraint functions. More generally, the time evolution
of any phase space function F (q; p) can be written as

_F = fF;Htg :(9)

In a consistent theory the constraints �� = 0 must be preserved by the evolution
of the system. This leads to the conditions

_�� = f��;Htg � 0 :(10)

The � signals a weak equality ; it may hold only after taking the constraints into
account. By a standard argument in di�erential geometry [13] this implies that the
Poisson bracket in (10) must be a linear combination of the constraint functions.
There are three possibilities: (i) it yields modulo the constraints an equation of the
form 1 = 0; (ii) it becomes 0 = 0; (iii) we obtain a new equation  (q; p) = 0.

(i) implies inconsistent equations of motion; they do not possess any solution.
(ii) is the desired outcome. (iii) splits into two sub-cases. If  depends on some of
the multipliersu, we consider it as an equation determining one of them.4 Otherwise
we have a secondary constraint. We must then check whether all secondary con-
straints are preserved by repeating the procedure until we either encounter case (i)
or all constraints lead to case (ii). This is the Dirac algorithm [8, 9].

The Dirac algorithm is sometimes surprisingly subtle [13]. We consider here only
a trivial example with the Lagrangian L = 1

2
( _q1)2 � V (q1; q2). The momenta are

p1 = _q1 and p2 = 0. Thus there is one primary constraint function �1 = p2. The
total Hamiltonian is Ht =

1

2
p21 + V (q1; q2) + up2 with a multiplier u. (10) leads

to the secondary constraint function �2 = f�1;Htg = �Vq2 . Applying again (10)
yields f�2;Htg = �Vq1q2p1 � Vq2q2u = 0. If we assume that Vq2q2 does not vanish,
the Dirac algorithm stops here, as this condition determines the multiplier u.

From the point of view of di�erential equations, the Dirac theory is a special
case of the general problem of completing a system of di�erential equations [28].
This problem is also closely related to the concept of an index of a di�erential
algebraic equation. Essentially, the (di�erential) index corresponds to the number
of iterations needed in the Dirac algorithm [27].

4Note that as these are weak equations they determine the multipliers only up to linear com-

binations of the constraint functions.
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3. Hamilton-Dirac Equations

Let �� (� = 1; : : : ;K) denote all constraint functions, primary ones and those
obtained with the Dirac algorithm. They can be divided into two classes by studying
the K �K matrix of their Poisson brackets

C�� = f��; ��g :(11)

As C is skew-symmetric, its rankM is even. Let us assume for simplicity that after
a simple relabeling of the �� the top left M �M sub-matrix of C is regular (in
general we must rede�ne the constraint functions by taking linear combinations to
achieve this). Then we call the constraint functions �1; : : : ; �M second class.

The Poisson bracket of a �rst class constraint function  with any other con-
straint function � (primary or higher) vanishes weakly

8� : f ; �g � 0 :(12)

In our case the constraint functions �M+1; : : : ; �K are �rst class (again we may
have to rede�ne them by taking linear combinations). Obviously this classi�cation
can be performed only after all constraints have been found.

First class constraints generate gauge symmetries [13]. One example is the fol-
lowing system which came up in a study of Chern-Simons quantum mechanics [10]

L =
1

2

�
_q1 � q3q2

�2
+

1

2

�
_q2 + q3q1

�2
:(13)

It describes a charged particle moving in a plane under the in
uence of a perpen-
dicular constant magnetic �eld. There is one primary constraint function �1 = p3
generating one secondary constraint function �2 = q2p1� q

1p2. Both are �rst class
and essentially generate the rotational symmetry of the system.

First class constraints lead to arbitrary functions in the general solution of the
equations of motion; these are under-determined [28]. In the example described by
the Lagrangian (13) q3 remains arbitrary. In the sequel we will always assume that
no �rst class constraints are present. This is no real restriction, as they appear very
rarely in �nite-dimensional systems. Furthermore they can always be transformed
into second class constraints by a gauge �xing, i. e. by adding further constraints
removing the under-determinacy.

Second class constraints signal the presence of unphysical or redundant degrees
of freedom; as mentioned above their number M is always even. A trivial example
is q1 = p1 = 0. If there are no �rst class constraints, the matrix C de�ned by (11)
is regular (otherwise we take the sub-matrix of C corresponding to the second class
constraint functions) and we can introduce the Dirac bracket [8] of two phase space
functions F;G by

fF;Gg
� = fF;Gg � fF; ��g (C

�1)�� f��; Gg :(14)

In the case of our trivial example this means that we simply omit in (6) the di�er-
entiations with respect to q1; p1.

The Dirac bracket possesses exactly the same algebraic properties as the canoni-
cal Poisson bracket (6): it is linear, skew-symmetric and satis�es the Jacobi identity.
Hence it can be used instead of (6) to de�ne a symplectic structure on the phase
space. We will show now that restricted to the constraint manifold both brackets
generate the same dynamics.
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Consider for any function F (q; p) the dynamics de�ned by

_F = fF;Hcg
� :(15)

We prove in two steps that for initial data on the constraint manifold this dynamics
is equivalent to the original one de�ned by (9). It su�ces to show that the right
hand sides of the respective equations of motions (9) and (15) are weakly equal, as
for such initial data the trajectories never leave the constraint manifold.

As �rst step we show that the evolution (15) is weakly equal to the one generated
by the total Hamiltonian Ht using Dirac brackets:

fF;Htg
� = fF;Htg � fF; ��g(C

�1)��f�� ;Htg

� fF;Hcg � fF; ��g(C
�1)��f��;Hcg+

u

�
fF; �
g � fF; ��g(C

�1)��f��; �
g
�

= fF;Hcg
� :

(16)

Here we used in the second line that all Poisson brackets involving the multipliers u
are multiplied by constraint functions and in the last line the de�nition (11) of C.

As second step we note that on the constraint manifoldDirac and Poisson bracket
generate the same dynamics with Ht:

fF;Htg
� = fF;Htg � fF; ��g(C

�1)��f�� ;Htg � fF;Htg ;(17)

as after completion of the Dirac algorithm f��;Htg is for all � a linear combination
of constraint functions. We are thus lead to the Hamilton-Dirac equations

_q = fq;Hcg
� =

@Hc

@p
�
@��

@p
(C�1)��f��;Hcg ;

_p = fp;Hcg
� = �

@Hc

@q
+
@��

@q
(C�1)��f��;Hcg :

(18)

For historical correctness one should remark that Dirac did not consider (18). He
used the total HamiltonianHt instead of the canonical oneHc. But we proved above
that the corresponding equations of motion are weakly equal. Computationally the
use of Hc is more e�cient, as it leads to simpler equations.

The Dirac bracket e�ectively eliminates the second class constraints, as they
become distinguished or Casimir functions: the Dirac bracket of any phase space
function F with a second class constraint function vanishes strongly, i. e. everywhere
in phase space, as again by the de�nition (11) of C

fF; �
g
� = fF; �
g � fF; ��g(C

�1)��f��; �
g = 0 :(19)

4. The Extended Hamiltonian

The distinction into �rst and second class constraints is an intrinsic one, i. e. it
has a geometric meaning. In contrast, the distinction into primary and secondary
(or higher) constraints is to some extent arti�cial and depends on the precise form of
the Lagrangian L. There might exist an equivalent Lagrangian, i. e. one describing
the same system, yielding di�erent primary constraints.

Furthermore, if one looks at the argument for introducing the total Hamiltonian,
one sees that one could also apply it to secondary constraints. These considerations
lead to the extended Hamiltonian He which is the canonical Hamiltonian Hc plus
a linear combination of all constraint functions and not just the primary ones.
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This approach was used by Leimkuhler and Reich [15] for the symplectic inte-
gration of constrained Hamiltonian systems. By calling He extended Hamiltonian
we slightly abuse Dirac's terminology. He added only the �rst class class constraint
functions based on symmetry and not on stability considerations.

Assuming that all constraint functions � are second class we make the ansatz

He = Hc + v��� :(20)

Recall that the v should not be considered as new variables but as so far unknown
functions of (q; p)! Demanding f��;Heg � 0 yields the condition

f��;Heg = f��;Hcg+ f��; v
�g�� + f��; ��gv

� � 0 ;(21)

If we discard the Poisson brackets with v, since they are multiplied by constraint
functions, (21) becomes a system of linear equations with the particular solution

v� = �(C�1)��f��;Hcg(22)

with C given by (11). Further solutions of the weak equation (21) are obtained by
adding an arbitrary linear combination of constraint functions to each of the v�.

This suggests the following equations of motion

_q = fq;Heg ; _p = fp;Heg :(23)

We will see below that they yield the correct dynamics, as (23) is weakly equal to
the Hamilton-Dirac equations (18).

The extended Hamiltonian leads to considerably more involved equations of mo-
tion than the Hamilton-Dirac approach. The multipliers and thus He depend on
the matrix C�1 also appearing in the Dirac bracket (14). In the equations of mo-
tion (23) there arise terms from the Poisson brackets of the dynamical variables
with the entries of C�1 and these terms are typically rather complicated.

Leimkuhler and Reich [15] considered a simpli�cation which they called the
\weakly Hamiltonian Dirac formulation". It arises by discarding the terms con-
taining the Poisson brackets with the multipliers. This is allowed, since they vanish
weakly. Using the solution (22) for the multipliers we obtain as equations of motion

_q = fq;Heg � fq;Hcg � fq; ��g(C
�1)��f�� ;Hcg ;

_p = fp;Heg � fp;Hcg � fp; ��g(C
�1)��f��;Hcg :

(24)

Thus we recover the Hamilton-Dirac equations (18)! Leimkuhler and Reich claimed
that they were not Hamiltonian. We can now correct this statement. Although (18)
is not Hamiltonian with respect to the canonical Poisson bracket, it is with respect
to the Dirac bracket.

Above derivation of the extended Hamiltonian He is a special case of a more
general construction [31]. With any phase space function A we can associate a
function A� � A such that fA�; �g � 0 for all constraint functions �:

A� = A � ��(C
�1)��f��; Ag :(25)

Using (22) for the multipliers we �nd He = H�

c . The Dirac bracket of two func-
tions A;B is weakly equal to the Poisson bracket of their associated quantities

fA;Bg� � fA�; B�g :(26)
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5. Constraint Stability

We discuss the stability of the constraint manifold for three formulations of the
equations of motion: (i) the classical one (8) based on the total Hamiltonian Ht,
(ii) the Hamilton-Dirac equations (18), and (iii) the equations of motion (23) for
the extended Hamiltonian He. We assume that we are given the canonical Hamil-
tonian Hc on a 2N -dimensional phase space and that after completion of the Dirac
algorithm there are K = 2k second class constraints ��(q; p) = 0.

Let � : (q; p) 7! (Q;P ) be a canonical transformation such that in the new
coordinates the constraints are given by Qa = Pa = 0 for a = 1; : : : ; k.5 At least
locally such a transformation always exists [13]. Independent of which formulation
is used the transformed equations of motion can be split into two subsystems� _Qa

_Pb

�
=

�
Ua
c (Q

i; Pi)Q
c + V ac(Qi; Pi)Pc

Wbc(Qi; Pi)Qc + Zc
b (Q

i; Pi)Pc

�
;

� _Qr

_Ps

�
=

�
F r(Qi; Pi)

Gs(Qi; Pi)

�
:(27)

The �rst part of (27) re
ects that for all consistent formulations of the equations
of motion the time derivative of any constraint function must vanish weakly and
can thus be written as a linear combination of the constraint functions

_�� =M�
� (q

i; pi)�� :(28)

Considering the variables (Qr; Pr) as parameters the origin is a �xed point of the
�rst subsystem of (27) and its stability properties can be used as measure for the
stability of the constraint manifold.

Entering the constraints Qa = Pa = 0 into the second part of (27) yields a Hamil-

tonian state space form. If we do not use the constraints, we obtain a perturbed
state space form allowing for a perturbation theoretic analysis of the stability of
the constraint manifold. However, we will not pursue this approach here but con-
centrate on the stability of the origin in the �rst subsystem of (27).

The stability analysis of a Hamiltonian system di�ers in several aspects from
that of a general dynamical system. Its linearization yields a Hamiltonian matrix.
If � is an eigenvalue of such a matrix, ��, �� and ��� are also eigenvalues [2]. Hence
a �xed point can be linearly stable, if and only if all eigenvalues are zero or purely
imaginary and their algebraic and geometric multiplicities are equal [17].

Furthermore no asymptotically stable �xed points exist. A stable �xed point is
never hyperbolic and the Hartman-Grobman theorem cannot be applied. Actually,
linear stability is neither su�cient nor necessary for nonlinear stability. The only
simple criterion for nonlinear stability is the theorem of Dirichlet [29]: if the eigen-
values are as above and the Hessian of the Hamiltonian with respect to all canonical
variables is de�nite at the �xed point, then it is nonlinearly stable. Otherwise the
stability can be only established with a normal form computation [2, 29].

For the Hamilton-Dirac equations (18) the stability analysis is easy. According
to (19) the constraint functions �� are distinguished functions

_�� = f��;Hcg
� = 0 :(29)

Hence the constraint functions are �rst integrals of the 
ow generated by (18) and
in (27) the matrices U , V , W and Z vanish. This implies that the origin is stable.
Obviously, there is no need to distinguish between linear and nonlinear stability.

5For the remainder of this section we adopt the following convention: indices a; b; c are always

running from 1 to k, indices r; s from k + 1 to N and indices i; j from 1 to N .
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This result has the following geometric meaning. The constraint functions �
foliate the phase space into disjoint submanifoldsM� de�ned by ��(q; p) = �� with
constants �. Exact solutions of the Hamilton-Dirac equations (18) lie completely
on the submanifoldM� determined by the initial data. The equations do not \see"
the values �; especially � = 0 is not distinguished.6 Numerical errors are neither
damped nor ampli�ed by the dynamics. They lead to di�erent values �� and without
further errors the trajectory would stay on the submanifoldM��.

For many constraint functions this result implies that the constraint mani-
fold M0 is orbitally stable7 though not attractive. For example, if the subman-
ifoldsM� are compact, there exists obviously a constant upper bound (depending
only on �) for dist(X;M0) with X 2 M�. The same holds in the for applications
important case that the constraint functions � are quadratic.

In order to study the equations of motion derived with the total and extended

Hamiltonian, respectively, we denote by ~Hc, ~Ht and ~He the with � transformed
Hamiltonians, byAc, At and Ae their Hessians with respect to the variables (Q

a; Pa)

evaluated at the origin and by J =

�
0 Ik
�Ik 0

�
the K � K symplectic matrix.

For the classical equations of motion (8) it is not possible to make any general
statements. Linear stability is decided by the eigenvalues of Bt = JAt. However,
(numerical) experience shows that usually the origin is unstable. Otherwise the
drift o� the constraint manifold would not be a serious problem.

In the approach based on the extended Hamiltonian the precise form of the
relevant matrices depends crucially on the chosen solution of the linear system (21)
for the multipliers v. Leimkuhler and Reich [15] showed for the special case of
the pendulum (see Section 8) that the origin is a center, if the v are determined
using (22), whereas for another choice of v it becomes a saddle point. In principle,
one could use the stability analysis as a guideline for choosing the precise form of
the multipliers. But this seems hardly feasible in practice.

Using (22) for the multipliers we �nd

M�
� = �

�
��; (C

�1)�
f�
 ;Hcg
	

(30)

(as above C�� = f��; ��g) and in the transformed coordinates (Q;P )

Ua
b = �

@2 ~Hc

@Qa@Pb
; V ab = �

@2 ~Hc

@Qa@Qb
; Wab =

@2 ~Hc

@Pa@Pb
; Z = �U t :(31)

Evaluated at the origin the block matrix

�
U V

W Z

�
becomes Bc = JAc.

Thus the stability depends not only on the choice of the multipliers v but also
on the precise form of the canonical Hamiltonian Hc. Recall from Section 2 that
Hc is uniquely de�ned only on the constraint manifold. We can add arbitrary
linear combinations of the primary constraint functions to it and such modi�cations
change the matrix Bc. The Hamilton-Dirac equations are less sensitive to such
changes; they a�ect only the second and not the �rst subsystem of (27) and thus
only the perturbed state space form but not the stability of the constraint manifold.

6This is also evident from the fact that the Dirac bracket depends only on the derivatives of

the constraint functions and not on the functions themselves.
7A manifoldM is called orbitally stable for a dynamical system _z = f(z), if for every � > 0

there exists a � > 0 such that for any solution z(t) satisfying dist(z(0);M) < � the inequality

dist(z(t);M) < � holds [12].
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6. A Theoretical Example

We demonstrate our theoretical results at a simple system de�ned by the La-
grangian L = 1

2
( _q1)2 � V (q1 � q2) where we assume that the function V satis�es

V (0) = V 0(0) = 0 and V 00(0) 6= 0. Later we will further specialize to V (x) = 1

2
x2.

We showed already in Section 2 how the Dirac algorithm works for such a system:
there is one primary constraint function �1 = p2 and one secondary �2 = V 0(q1�q2).
The total Hamiltonian is

Ht =
1

2
p21 + p1p2 + V (q1 � q2) :(32)

Since f�1; �2g = V 00(q1 � q2), the Dirac bracket is de�ned by

fF;Gg� = fF;Gg+
fF; �1gf�2; Gg � fF; �2gf�1; Gg

V 00(q1 � q2)
:(33)

It is also straightforward to determine the extended Hamiltonian

He =
1

2
p21 + p1p2 + V (q1 � q2)�

�
V 0(q1 � q2)

�2
V 00(q1 � q2)

:(34)

The canonical transformation � may be taken as

Q1 = V 0(q1 � q2) ; Q2 = q1 ; P1 = �
p2

V 00(q1 � q2)
; P2 = p1 + p2 :(35)

In order to decide the stability of the origin for the �rst subsystem of (27) we need
the Hessian of the total and the extended Hamiltonian, respectively, with respect
to Q1 and P1 evaluated at the origin. After some straightforward applications of
the chain rule one �nds

At =

��
V 00(0)

�
�1

0
0 �V 00(0)

�
; Ae =

�
�
�
V 00(0)

�
�1

0
0 �V 00(0)

�
:(36)

At is inde�nite, thus we cannot apply the criterion of Dirichlet and obtain no infor-
mation about the nonlinear stability for the classical formulation. In contrast, Ae is
de�nite (independent of the sign of V 00(0)) and thus for the extended Hamiltonian
formulation the origin is even nonlinearly stable.

Although it is possible to solve exactly the equations of motion for arbitrary
functions V , we specialize now to V (x) = 1

2
x2. The classical equations of motion

are computed using _F = fF;Htg

_q1 = p1 + p2 ; _q2 = p1 ; _p1 = � _p2 = q2 � q1 :(37)

We solve this system for some initial point (q10; q
2
0; p10; p20). Denoting the constraint

residuals at this point by � = p20 and � = q10 � q
2
0, we can write the solution as

q1(t) = q10 + (p10 + �)t ;

q2(t) = q10 + (p10 + �)t + 1

2
(� � �)e�t � 1

2
(� + �)et ;

p1(t) = p10 + �� 1

2
(� � �)e�t � 1

2
(� + �)et ;

p2(t) =
1

2
(� � �)e�t � 1

2
(� + �)et :

(38)

This implies that for �+ � 6= 0 the constraint residuals grow exponentially and the
constraint manifold is unstable. For general V we can conclude that the constraint
manifold is linearly unstable. This also follows from the fact that the eigenvalues
of Bt are �1.
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The Hamilton-Dirac equations are very simple for this system. They are com-
puted using _F = fF;Hcg

� with the Dirac bracket (33)

_q1 = _q2 = p1 ; _p1 = _p2 = 0 :(39)

Taking the same initial point as above we �nd the solution

q1(t) = q10 + p10t ; p1(t) = p10 ;

q2(t) = q10 + � + p10t ; p2(t) = � :
(40)

The constraint residuals remain constant and the constraint manifold is orbitally
stable but not attractive in accordance with our results above.

The equations of motion for the dynamics _F = fF;Heg de�ned with the extended
Hamiltonian (34) are identical with the classical ones (37) except for the sign of the
forces. But this sign drastically changes the solution

q1(t) = q10 + (p10 + �)t ; p1(t) = p10 + �+ � sin t� � cos t ;

q2(t) = q1
0
+ (p10 + �)t� � sin t� � cos t ; p2(t) = �� sin t+ � cos t :

(41)

The constraint residuals do not grow but oscillate. The origin is a center of the
�rst part of (27); the eigenvalues of Be = JAe are �i. Again this implies that the
constraint manifold is orbitally stable though not attractive. As mentioned above
this holds even for general V .

If we consider the full solution instead of only the constraint residuals, we see
that the di�erence between the position coordinates in (41) for di�erent values
of � grows linearly. In the Hamilton-Dirac equations even this di�erence remains
constant. They represent the most stable formulation for a numerical integration
among the three considered.

This example also demonstrates well the e�ect of a rede�nition of Hc. Instead
of using Hc =

1

2
p21+ V (q1� q2) we take �Hc =

1

2
(p1+ p2)

2+ V (q1 � q2). Obviously,

Hc and �Hc di�er only by a multiple of the primary constraint function �1 = p2.
The multiplier u must now satisfy u � 0; thus we set �Ht = �Hc. For V (x) = 1

2
x2

the classical equations of motion are

_q1 = _q2 = p1 + p2 ; _p1 = � _p2 = q2 � q1 :(42)

Although the constraint manifold is still unstable for this dynamics, the residuals
grow now only linearly and no longer exponentially, as the general solution is

q1(t) = q10 + (p10 + �)t ; p1(t) = p10 + �t ;

q2(t) = q10 + � + (p10 + �)t ; p2(t) = � � �t :
(43)

Using the standard choice (22) for the multipliers we obtain for the extended

Hamiltonian �He =
1

2
(p1 + p2)

2 + V (q1 � q2) �
�
V 0(q1 � q2)

�2
=V 00(q1 � q2). In the

quadratic case the general solution is the same as for the total Hamiltonian �Ht; only
the signs of the terms �t in the momenta changes. Hence, the constraint manifold
is now linearly unstable for the formulation based on the extended Hamiltonian.

7. Regular Systems with Imposed Constraints

For applications the most important case of a constrained system is described
by a regular Lagrangian L0 and subject to k externally imposed holonomic con-
straints ��(q) = 0. In principle, this situation cannot be treated within the Dirac
formalism, as it covers only singular Lagrangians. Therefore one introduces La-
grange multipliers �� and considers the Lagrangian L = L0+ ����. In contrast to
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the multipliers u in the Dirac theory, the � must be considered as additional dy-
namical variables and not as undetermined functions. Now L is obviously singular,

as it does not depend on the \velocities" _�.
For the Hamiltonian formalism we must introduce canonically conjugate mo-

menta �� for the ��. The primary constraints are simply given by � = 0. If we
denote by H0 the Hamiltonian for the regular system, the canonical Hamiltonian of
the constrained system is Hc = H0 � �

���; the total one is Ht = Hc + u���. The
Dirac algorithm yields the secondary constraints �� = 0 and the tertiary constraints
 � = f��;H0g = 0. The next step determines �

f �;H0g � ��f �; ��g = 0 :(44)

The �fth and last step yields u = 0 .
This rather long derivation can be shortened by not introducing the total Hamil-

tonian Ht and the momenta �. Starting with Hc and imposing � = 0 as primary
constraints leads to equivalent results, as in the end � = u = 0. The standard
approach is to take the Hamiltonian equations of motion for Hc and augment them
by the constraints to get the following di�erential algebraic equation (see (7))

_q =
@H0

@p
; _p = �

@H0

@q
+ ��

@��

@q
; �� = 0 :(45)

By di�erentiating twice the last equation in (45) one can derive exactly the same
equation (44) for � as in the Dirac theory. With Q�� = f��;  �g it has the solution

�� � (Q�1)��f �;H0g :(46)

The main problem in using Dirac brackets is the inversion of the matrix C of the
Poisson brackets of the constraint functions. For a larger number K of constraints
one can no longer do this symbolically. Thus one must numerically invert a K �K

matrix at each evaluation of the equations of motion. In our special case K = 2k
and C can be partitioned into four k � k sub-matrices

C =

�
0 Q

�Qt S

�
(47)

where Q is as above and S�� = f �;  �g. The inversion of such a matrix can be
reduced to the inversion of one k � k matrix plus two matrix multiplications, as

C�1 =

�
Q�tSQ�1 �Q�t

Q�1 0

�
:(48)

The Hamilton-Dirac equations take now the following form

_q =
@H0

@p
� (Q�1)��

@ �

@p
 � ;

_p = �
@H0

@q
� (Q�1)��

@��

@q
f �;H0g

+
h
(Q�tSQ�1)��

@��

@q
+ (Q�1)��

@ �

@q

i
 � :

(49)

Taking (46) into account we see that they di�er from (45) only by some terms
multiplied by  . Thus both formulations are weakly equal. Note that the position
constraint functions � do not appear explicitly!

We cannot apply here the results of Ascher e. a. [3] on the stabilization of dif-
ferential algebraic equations. They subtract the constraint functions multiplied by
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some matrix from an underlying di�erential equation. If the product of this matrix
and the Jacobian of the constraints is positive de�nite, the constraint manifold is
asymptotically stable for the obtained 
ow. The Hamilton-Dirac equations can be
understood within this general scheme, but the result does not hold, as the matrix
product is not positive de�nite. We got weaker stability results. But this was to be
expected, as we still have a Hamiltonian system, whereas the approach of Ascher
e. a. destroys this property.

For the extended Hamiltonian we make the following ansatz

He = H0 � �
��� + �� � :(50)

For � we recover the result (46); for � we obtain

�� = (Q�1)�� � :(51)

Thus � vanishes weakly und could be taken as zero. But then He = Ht and
we get as equations of motion the classical ones (45) plus terms (@��=@q)�� and
(@��=@p)��, respectively (compare (7) and (8)).

The multipliers � depend on derivatives of the momentumconstraint functions  .
Since they occur in the extended Hamiltonian He, we need three di�erentiations
of the original constraint functions � to set up the equations of motion opposed to
the Hamilton-Dirac equations where two di�erentiations su�ce.

8. Numerical Example I: The Pendulum

A classical example of a constrained system is the planar pendulum in Cartesian
coordinates. For simplicity, all constants like length, mass, etc. are set to 1. The
Lagrangian of the underlying regular system is L0 =

1

2
( _x2 + _y2) � y. We add the

constraint function � = 1

2
(x2 + y2 � 1) with a multiplier � to get the Lagrangian

for the pendulum L = L0 +
1

2
�(x2 + y2 � 1). The canonically conjugate momenta

are just the velocities: px = _x, py = _y. Checking whether the evolution generated

by the Hamiltonian Ht =
1

2
(p2x + p2y) + y � 1

2
�(x2 + y2 � 1) preserves the primary

constraint � = 0 yields a secondary constraint  = f�;Htg = xpx+ ypy = 0. Then
the Dirac algorithm stops, as the next step only determines �. Since f�;  g = x2+y2

the Dirac bracket takes the form

fF;Gg� = fF;Gg+
1

x2 + y2

�
fF; �gf ;Gg� fF;  gf�;Gg

�
:(52)

By taking Dirac brackets with the Hamiltonian H0 = (p2x + p2y)=2 + y of the
underlying regular system we �nally arrive at the Hamilton-Dirac equations,

_x = px + �x ; _y = py + �y ; _px = �x� �px ; _py = �y � �py � 1 ;(53)

where �; � are given by

� = �
p2x + p2y � y

x2 + y2
; � = �

xpx + ypy

x2 + y2
:(54)

We compare this formulation with the one based on the extended Hamiltonian
He = H0���+� with the multipliers �; � again given by (54). This corresponds
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Figure 1. Integration and energy error (pendulum)

to the choice (22) for the solution of (21). The equations of motion are

_x =

�
2�

1

x2 + y2

�
px + 2�x ; _y =

�
2�

1

x2 + y2

�
py + 2�y ;

_px = �
x

x2 + y2
� 2�px � 2�2x ;

_py = �
y

x2 + y2
� 2�py � 2�2y �

1

2

�
1 +

1

x2 + y2

�
:

(55)

They di�er from (53) only by linear combinations of constraint functions. As ex-
pected, they are more complicated and thus more expensive to evaluate.

In order to show the necessity of stabilizing the constraint manifold we compare
these two formulations with the classical equations of motion (45)

_x = px ; _y = py ; _px = �x ; _py = �y � 1(56)

with � again given by (54).
We integrated numerically all three formulations with the classical fourth order

Runge-Kutta method for the following initial data: x0 = 1, y0 = 0, p0x = 0, p0y = �2.
For these values the pendulum rotates clockwise with a period of T � 3:31. We
integrated over the interval t 2 [0; 100], i. e. roughly over 30 periods, with a constant
step size of h = 0:1 � T=33. Fig. 1 contains logarithmic plots of the integration
and the energy error; Fig. 2 shows the position and momentumconstraint residuals.
class, dir and ham label the curves for the classical equations of motion (56), for the
Hamilton-Dirac equations (53) and for the equations (55) derived with the extended
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Figure 2. Position and momentum constraint residual (pendulum)

Hamiltonian, respectively. The integration error was estimated by comparing with
the solution of the state space form �' = � sin' computed with h=10.

Since the amplitude of our pendulum is 1 and its maximalmomentumabout 2.45,
the computed values can surely be considered as useless, if the integration error ex-
ceeds 1. Thus the Hamilton-Dirac equations are the only formulation where the
numerical integration does not clearly break down before the end of the consid-
ered interval. With the extended Hamiltonian one obtains reasonable results until
approximately t = 70; with the classical formulation until about t = 30.

The stabilizing e�ect of the extended Hamiltonian and of the Dirac bracket,
respectively, shows not only in the lower absolute values of the errors but also
in their growth. Both formulations show a quadratic growth of the integration

error and a linear growth of the energy error. Taking only the time into account
where the classical formulation yields reasonable results, its integration error grows
cubically and its energy error quadratically. For the Hamilton-Dirac equations the
constraint residuals grow linearly, for the extended Hamiltonian even less. In the
classical formulation the position constraint residual shows a quadratic growth,
whereas the momentum constraint residual behaves also linearly.

As already mentioned in Section 5 in the case of the pendulum with our choice
for the multipliers �; � in the extended Hamiltonian the origin is a center of (28).
This can be observed in the �gures, as the curves are always very \shaky" for this
formulation. The di�erent stability properties of the various equations of motion
can also be clearly seen, if one chooses inconsistent initial data. The Hamilton-Dirac
equations do not notice the inconsistency but produce a solution with the same
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y(2T ) y(4T ) y(10T ) y(20T ) y(30T )

class 9:66 � 10�3 7:28 � 10�2 9:22 � 10�1 2:16 � 10�1 3:05 � 10�1

ham 5:75 � 10�3 1:77 � 10�2 8:98 � 10�2 3:17 � 10�1 6:21 � 10�1

dir 8:28 � 10�4 2:63 � 10�3 1:39 � 10�2 5:18 � 10�2 1:13 � 10�1

Table 1. Phase error (pendulum)

behavior as in the �gures, however now with respect to the manifold �(x; y) = �

and  (x; y; px; py) = � de�ned by the initial data. In contrast, the solution of the
equations of motion for the extended Hamiltonian tries to reach the true constraint
manifold but e�ectively oscillates about it.

Another important aspect is how much of the periodicity of the solution is main-
tained during the numerical integration. Table 1 contains the numerical values of
y after several revolutions. The correct value would be zero for our initial data.
Phase portraits of the numerical solutions (not shown here) also clearly demonstrate
that the classical formulation leads only for a rather short time to an acceptable
approximation of the true solution.

In a comparison one must also take the computational costs into account. Using
the Hamilton-Dirac equations requires only about 5% more computing time than
the classical formulation, whereas the extended Hamiltonian needs almost 65%
more time. The di�erence in computational e�ciency becomes even larger with a
variable step size. Using a �fth order Runge-Kutta-Fehlberg method the integration
of the equations of motion derived with the extended Hamiltonian needs between
50% and 100% more evaluations of the equations for the same prescribed precision
than the Dirac bracket approach.

9. Numerical Example II: A Chain Molecule

As a larger example we consider a problem in molecular dynamics already used
by Leimkuhler and Skeel [16] in the context of constrained dynamics. It consists of
a planar chain molecule with N = 7 atoms. The bonds between them are assumed
to have a �xed length. This condition yields the constraints. The interaction of the
atoms is described by a Lennard-Jones potential

V = 0:1
X
j>i

(r�12ij � 2r�6ij )(57)

where rij denotes the distance between atom i and atom j.
One global energy minimaof the molecule is the hexagonal structure shown in the

left part of Fig. 3. We took this as initial con�guration in our computations. At the
ends of the chain we started with initial velocities of equal amplitude (v0 = 0:25)
but opposite direction; the remaining atoms are initially at rest. The emerging
dynamics can be split into a rigid body rotation of the whole chain and small
vibrations of each atom around its equilibrium position. The right part of Fig. 3
shows the motion of an end atom of the chain.

Integration methods for di�erential algebraic systems are often based on back-
ward di�erentiation formulae. As Leimkuhler and Skeel [16] reported, this approach
leads to physically unacceptable solutions. Such methods were originally developed
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Figure 3. Global energy minimum and motion of end atom

for sti� systems. After a short time they completely eliminate the vibrational de-
grees of freedom of the system and yield a pure rigid body rotation. This implies a
signi�cant violation of energy conservation.

We have chosen this model in order to demonstrate that the Dirac bracket ap-
proach can be reasonably applied even for larger systems. Actually in this example
it is still easily possible to perform all necessary calculations by hand based on our
results in Section 7. We did not try to do this for the method of the extended
Hamiltonian, as it would lead to very complex equations of motion.

If we denote the coordinates of atom i by (xi; yi) and its momenta by pix; p
i
y, the

underlying regular Hamiltonian is

H0 =
1

2

NX
i=1

h
(pix)

2 + (piy)
2

i
+ V (x; y)(58)

with V given by (57) and r2ij = (xi � xj)2 + (yi � yj)2. The constraints are

�� =
1

2

�
(�x�)2 + (�y�)2 � L2

�
= 0 ;

 � = �x��p�x +�y��p�y = 0 ;
� = 1; : : : ; N � 1 ;(59)

where L stands for the length of the bonds and where we have introduced the short
hand �x� = x� � x�+1 and so on.

Computing the entries of the matrices Q;S de�ned in Section 7 we obtain for Q

f��;  �g = 2���
�
(�x�)2 + (�y�)2

�
�

��+1;�
�
�x��x� +�y��y�

�
�

��;�+1
�
�x��x� +�y��y�

�(60)

and for S, respectively,

f �;  �g = ��+1;�
�
�x��p�x ��x��p�x +�y��p�y ��y��p�y

�
�

��;�+1
�
�x��p�x ��x��p�x +�y��P�

y ��y��p�y
�
:

(61)

Both matrices are tridiagonal, as we have a chain structure or \nearest neighbors
constraints:" ��;  � involve only data of the atoms � and �+ 1. The inversion of
such matrices has a linear complexity and can thus be done very fast.
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Figure 4. Integration and energy error (chain molecule)

The Poisson brackets of the coordinates with the constraint functions are

fxi; ��g = 0 ; fpix;  �g = (�i�+1 � �i�)�p
�
x ;

fpix; ��g = �fxi;  �g = (�i�+1 � �i�)�x
�

(62)

and corresponding expressions for y; py. Finally, we calculate

f �;H0g = (�p�x)
2 + (�p�y )

2 �

�x�
�
@V

@x�
�

@V

@x�+1

�
��y�

�
@V

@y�
�

@V

@y�+1

�
:

(63)

(60{63) contain all expressions needed to set up the equations of motion (49).
The evaluation of the potential and the two matrix multiplications have a complex-
ity quadratic in the number N of atoms. All other operations are linear in N . Thus
the Dirac bracket could be applied without problems to much larger molecules.

We integrated the system for the initial conditions described above with the
classical fourth order Runge-Kutta method for the interval t 2 [0; 200]. As one can
see from the right part of Fig. 3 this corresponds roughly to 5=4 periods of the
rigid body rotation of the molecule. Figs. 4 and 5 show the results for the constant
step size h = 0:1. As for the Hamilton-Dirac formulation of the pendulum, the
integration error grows quadratically, all others errors about linearly.

Comparingwith Leimkuhler and Skeel [16], we �nd that at least regarding energy
conservation their approach using the Rattle algorithm [1] leads to better results.
Their energy error remains more or less constant over the full integration interval
t 2 [0; 200]. The explanation is simple: Rattle is a symplectic integrator [24].

It is well-known that such methods often perform superior in long time inte-
grations, especially with respect to energy conservation. Since almost all known
symplectic integrators preserve only the canonical Poisson bracket, it may appear
that they are not applicable in the case of a modi�ed bracket structure like the
Dirac bracket used in the Hamilton-Dirac equations.

We hope to discuss this problem in more detail in the future, but we want
to comment brie
y on some preliminary experiments with a canonical symplectic
integrator: the implicit midpoint rule. The arising nonlinear equations were solved
with a simple functional iteration to a tolerance of 10�5.
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Figure 5. Position and momentum constraint residuals (chain molecule)

Although the implicit midpoint rule is only second order opposed to the fourth
order scheme used so far, it conserved the energy for the same step size better by
almost an order of magnitude. The error growth is less than linear; the constraints
residuals improve by more than an order of magnitude. If the step size is halved,
the energy error becomes smaller by more than an order of magnitude and remains
almost constant about 10�4 over the full integration interval.

A partial explanation might be given as follows. On the constraint manifold
the Dirac bracket represents the symplectic structure induced by the canonical
Poisson bracket [13, 30]. For small constraint residuals a canonical symplectic
integrator thus de�nes in good approximation a symplectic mapping for the Dirac
bracket, too. But for other methods for the symplectic integration of constrained
systems the situation does not di�er much, as they require the solution of nonlinear
equations [14, 22]. In a numerical computation they are also only approximations
of symplectic mappings, if these equations are not solved exactly.

The implicit midpoint rule preserves quadratic �rst integrals, if the arising non-
linear equations are solved exactly [6]. In our example the constraints and the
energy are de�ned by quadratic functions. The constraints are �rst integrals for
the Hamilton-Dirac equations. Thus it is not surprising that we �nd small errors.

We may expect that the higher the precision with which the nonlinear equations
are solved, the more the implicit midpoint rule behaves like a true symplectic inte-
grator for the Dirac bracket. First numerical tests seem to con�rm this conjecture.
In the case of the pendulum one observes for example much smaller phase errors
compared with Table 1.

10. Conclusion

There exist two basic strategies for dealing numerically with di�erential algebraic
equations. One can modify the equations; this leads to stabilization and index
reduction techniques. Or one designs special numerical schemes like projection
methods. Obviously, these two strategies are complementary and can be combined.
We studied in this article the �rst approach for the special case of constrained
Hamiltonian systems.
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There have been attempts to stabilize general di�erential algebraic equations [3].
However, no systematic solution with a solid theoretical foundation has emerged
so far. A classical example for the problems encountered is the Baumgarte stabi-
lization [4] where the choice of the parameters is to a large extent still a question
of try and error. In physical problems like Hamiltonian mechanics the di�erential
equations possess special properties. In this article we exploited the symplectic
structure of the phase space to derive stable equations of motion.

The constraint manifold is always stable for the Hamilton-Dirac equations. In
contrast its stability for the classical formulation or for the one based on the ex-
tended Hamiltonian depends on choices made for the canonical Hamiltonian or the
multipliers. This was demonstrated by the toy model in Section 6. The neutral
stability obtained with the Dirac bracket is in some sense the optimum one can
achieve in a Hamiltonian formulation of the equations of motion. If the constraint
manifold was asymptotically stable, the theorem of Liouville on the conservation of
phase space volume [2] would imply an instability within the constraint manifold.

The Faddeev-Jackiw formalism [25], a �rst order approach to constrained dy-
namics, uses an extended phase space and modi�es the symplectic structure there.
Although the modi�ed structure coincides with the Dirac bracket on the origi-
nal phase space, the arising equations of motion di�er from the Hamilton-Dirac
equations. But in numerical experiments both approaches lead to almost identi-
cal results even for long integration times. This clearly indicates that the physical
properties of the Dirac bracket are the cause of the observed stability.

For systems with a large number of constraints the e�ciency of the Dirac bracket
approach depends crucially on the matrixC which must be inverted at each evalua-
tion of the Hamilton-Dirac equations. As the example of the chain molecule demon-
strated, this inversion can be signi�cantly simpli�ed by exploiting special constraint
structures like \nearest neighbors constraints." Note that for the Hamilton-Dirac
equations it su�ces to invert numerically, whereas the extended Hamiltonian ap-
proach needs in addition derivatives of C�1 to set up the equations of motion.

For regular systems with imposed constraints there exists a comparatively cheap
way to exploit much of the stability of the Hamilton-Dirac equations without re-
ally using them [26]. We noted already in Section 7 that for this class of systems
the classical Hamiltonian equations of motion (45) and the Hamilton-Dirac equa-
tions (49) di�er only by terms multiplied by the momentum constraint functions  .
If we perform at each step a momentum projection in order to exactly maintain
these constraints, the two formulations are equivalent and we can ignore the addi-
tional terms which are rather expensive to evaluate. For most systems occurring
in applications the constraint functions  are linear in the momenta p. Thus the
projection requires only the solution of a linear system and is rather cheap.

The constraint functions become �rst integrals for the Hamilton-Dirac equa-
tions; for the equations derived with the extended Hamiltonian they represent only
weak invariants. For a higher degree of constraint preservation one may thus use a
special scheme for maintaining invariants. Moan [19] constructed recently explicit
Runge-Kutta methods preserving quadratic �rst integrals. Among them is a second
order method with three stages that applied to the chain molecule yields with less
evaluations better results than the classical fourth order method. For general con-
straint functions one could use the discrete gradient methods proposed by Quispel
e. a. [20, 21], although their construction appears rather expensive.
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Finally, we note that Dirac brackets can be generalized to in�nite-dimensional
systems. Thus this approach could also be useful for problems in electrodynamics,
continuum mechanics etc. like the impetus-striction formalism [7, 18]. Salmon [23]
showed for example that the semi-geostrophic equations for a rotating 
uid often
used in meteorology or oceanography can be derived using Dirac brackets.
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