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Vorwort des Herausgebers

Die Kombination von Elektromagnetischer Verträglichkeit (EMV) mit numerischer
Feldtheorie stellt für beide Bereiche eine Herausforderung dar. Dies insbeson-
dere auch deshalb, weil die räumlichen Dimensionen in der EMV die heute be-
kannte Leistungsfähigkeit der numerischen Feldtheorie bis an die Grenzen aus-
lasten. Diese Grenzen werden weniger durch das technische Verständnis, als
vielmehr durch Speichergrößen und Rechenleistung gesetzt. Während nun die
analytische Feldtheorie a priori das Verständnis um die Felder und Wellen un-
terstützt, ist bei der numerischen Feldtheorie eine intensive Interpretation der Er-
gebnisse unabdingbar. In Verbindung mit der erst seit wenigen Jahren intensiv be-
trachteten elektromagnetischen Verträglichkeit ergeben sich hieraus ebenso um-
fangreiche theoretisch-mathematische Aufgabenstellungen, wie Interpretationsan-
forderungen.

In der vorliegenden Arbeit sind die Problemstellungen, die Lösungsmöglichkeiten
und die Ergebnisse für die Einkopplung ebener elektromagnetischer Wellen in ge-
schlossene Gehäuse mit im Vergleich zur Wellenlänge kleiner Öffnungen umfas-
send untersucht. Es zeigt sich, daß von der Vielzahl numerischer Feldberech-
nungsverfahren für spezifische Anwendungen auch spezifische Codes nur optima-
le Ergebnisse liefern. Nicht globale, sondern lokale Verfahren, speziell adaptiert
an das Problem, führen zum Ziel. In diesem Sinne liefert die vorliegende Arbeit
beispielhaft Ein- und Ansichten zum Einsatz numerischer Feldberechnungsver-
fahren in der elektromagnetischen Verträglichkeit.

Prof. Dr.-Ing. Werner Wiesbeck

- Institutsleiter -



Forschungsberichte aus dem
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Table of Symbols and Variables

The present table summarizes the symbols and variables used in the fol-
lowing. Numerical �gures were taken from DIN 1324, Part 1 (1988).

A cavity size in ~ex m

�e electric polarisability m3

���m magnetic polarisability m3

B cavity size in ~ey m

C cavity size in ~ez m

c0 speed of light in vacuum, c0 = 2:997925 � 108m
s

m

s

~ex, ~ey, ~ez unit vectors in the three space coordinates
~E electric �eld V

m

" permittivity of a medium, " = "0 "r
Vs

Am

"0 permittivity of the vacuum, Vs

Am

"0 =
1

�0c
2
0

� 8:854187817 � 10�12 Vs
Am

"r relative permittivity

f frequency Hz

� general: surface
��ge Green's function for the electric �eld due to magnetic cur-

rent
m�2

��gF Green's function for the electric vector potential m�1

��gh Green's function for the magnetic �eld due to magnetic
current

m�3

��GA Green's function for the magnetic vector potential m�1

ix



x Table of Symbols and Variables

��Ge Green's function for the electric �eld due to electric current m�3

��Gh Green's function for the magnetic �eld due to electric cur-
rent

m�2

~H magnetic �eld A

m

��I unit dyad

j imaginary unit, j2 = �1
~J volume current density A

m
3

~J surface current density A

m
2

k wave number, k = 2�
�

m�1

~M magnetic current density V

m
2

� permeability, � = �0 �r
Vs

Am

�0 permeability of the vacuum, �0 = 4�10�7 Vs
Am

Vs

Am

�r relativ permeability

� intrinsic wave impedance, � =
p

�
"




! angular frequency ! = 2�f s�1

Q quality factor of a resonant system

� wavelength, � = c=f m

L(�) linear operator

~n normal vector of a surface

~r general: point in space m

~r 0 source point m

S scattering matrix

t time s

X normalisation constant for general variable x



Chapter 1

Introduction

1.1. Motivation

After the invention of the transistor and subsequently of the integrated
circuit, electronics have moved more and more into everyday life. Produ-
cers tend to include more and more `intelligent' features into most basic
appliances, even if an objective advantage is not obvious: toasters with mi-
crocontrollers clocked at a rate of several MHz [1], washing machines with
fuzzy logic controller, vacuum cleaners with electronic suck control. The
list goes on. Moreover, more and more electronic applications facilitate our
life: microwave ovens, computers, mobile phones came only recently, but
are today indispensable. And electronic devices control the functioning of
systems, watch over our life and make it more secure: for cars, we have
seen electronic injection or non blocking brakes and will, perhaps, see anti
collision radars and automatic guidance systems in a near future. Already
today, up to 48 microprocessors and 62 electric motors are integrated into
S-class cars of Mercedes-Benz.

Not always, however, the designers of systems accounted for the fact
that any equipment is to function in an electromagnetic environment which
is far from perfect. The oblivion of this parameter leads to inexplicable per-
formances, sometimes with serious consequences: lorries start their engine,
the medical apparatus fails during resuscitation allegedly because a doctor
uses his mobile phone in the ambulance [2], during the Vietnam war, the
American army looses aircrafts while approaching the aircraft carrier.

To redress the errors, two possibilities exist and have been chosen sim-
ultaneously: the �rst is to forbid what should not happen, as the �don't
use a cellular phone if you have a pacemaker� in [3]. The other is to impose

1



2 Chapter 1. Introduction

certain characteristics on all electric and electronic equipment not to per-
turb and not to become perturbed. This gave birth to regulations, quite
early for military applications, more recently also for civil ones.

Most regulations were issued by national bodies and were applicable
only to one speci�c country. Common markets need common rules, how-
ever. This is true not only for the abolishment of restraints, but also for
the undisturbed coexistence of various equipments together in a common
environment. This is why the European Union enacted a directive uniquely
concerning EMC. National laws as well as European and national standards
followed so as to �x common European testing procedures and limits.

Manufacturers and producers were hence obliged to harden their sys-
tems against possible perturbations, and to develop them in a way that the
emission of perturbations would be as small as possible. In the beginning,
EMC was considered only late during the design cycle, until it was realised
that late corrections are more expensive than an early inclusion of EMC
notions in the development. Nowadays, EMC experts take part in every
stage of the development.

Due to the experimental character, EMC was widely a domain of ex-
perimental work. While computers and software become faster and faster,
have a wider applicability with simultaneously falling prices, EMC contin-
ues to be an experimental area due to the tremendous complexity of the
systems and the symptoms. Even with modern mainframes, parallel ma-
chines or vector computers, a modellisation of an EMC problem remains
expensive in time or money.

The present work does not intend to solve one well de�ned problem.
It aims more on two other points. The �rst is the physical understanding
of phenomena: what happens and why. The other main point is closely
related to hereto. Knowing more about the phenomena, what should be
respected to reduce possible perturbations.

1.2. The Problem at Issue

The problem at issue is based on a natural necessity: even with a perfect
shielding in a housing, a connection of the equipment to the exterior is
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probe
antenna

aperture

Figure 1.1.: Generic metallic housing with probe antenna and �ight warn-
ing calculator Airbus A 320

necessary. The problem at issue picks up this necessity and treats the in-
teraction of a wave with a metallic housing. The wave enters the housing
through a hole like in �g. 1.1. A numerical method computes the currents
induced and predicts the interaction. The amount of coupling is measured
at the base of an antenna, which allows to compare easily with the experi-
mentations. Pure �eld measurements are quite sensitive to errors and are
therefore excluded from the present work.

An exact drawing of the generic structure is shown in �g. 1.2. The cavity
has the dimensions A, B and C in the x, y and z directions respectively.
The origin for all dimensions is the lower front corner of the cavity, shown
as a circle in the �gure. The aperture is in the x = 0 wall, its coordinates
are hence (0; yap; zap). It is described by a characteristic dimension as the
radius r or the surface S. The objects placed in the cavity are de�ned by
two corners, the bottom corner and the top corner. The coordinates are
(xbot; ybot; zbot) and (xtop; ytop; ztop) respectively.

The computation of wave interaction with this generic structure is not
a pure academic problem. Most housings resemble it like the �ight warning
calculator of the Airbus A 320 plane (�g. 1.1). Furthermore, a study of
the understanding of physical e�ects should concentrate more on general
phenomena than on the immediate solution of a concrete problem which
always remains one speci�c case only.
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aperture

A

B

C

origin
x

y
z

rtop

rbot

(0; yap; zap)
r, S

Figure 1.2.: Generic structure and dimensions

Each numerical method has its strong points, but also its restrictions.
An application of a method without careful and critical interpretation of
the results can lead to failure and wrong results. After considering several
methods, an Integral Equation formulation solved by a Method of Moments
has been chosen.

Numerical methods tend to be slow and to demand large amount of
memory. During the development of the method, this was also to be re-
spected.

1.3. Structure

The present work is organised as follows: after this introduction, a descrip-
tion of what makes Electromagnetic Compatibility (EMC) a wide domain
is given in chapter 2. For this, it is necessary to provide a common vocabu-
lary: basic notions in EMC form a major part of the chapter. An overview
of the European standards with special weight on radiated perturbations
and testing methods follows. Recent applications of numerical methods on
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problems in EMC are at the end of that chapter. Numerical methods are
the topic of chapter 3. Three of the most popular methods are: Finite
Di�erence Time Domain, Finite Element Method and Integral Equation
Method. By analysing the three, the Integral Equation Method shows to
be more adapted to the problem at issue. The general Integral Equations
are reformulated under consideration of the problem at issue at the end of
the chapter. Chapter 4 presents the details of the numerical implementa-
tion and sample cases showing the domain of validity of the method. Two
types of functions are presented and compared with respect to implement-
ation and e�ectiveness. This comparison was until now incomplete in the
literature and is here presented in a uni�ed way. A new method for gain-
ing broad band data in strongly resonant structures ends the chapter. A
physical interpretation of some phenomena, as well as possible applications
of the method are found in chapter 5. The use of statistical methods in
conjunction with the present numerical method for fast predictions in EMC
is a further part of that chapter. Chapter 6 summarises the present work,
and gives an outlook.

The appendix is a collection of most of the mathematical work. It
contains the polarizabilities for various apertures (appendix A), the way
to compute the expressions for reaction of the cavity (appendix B), the
elements of the moment matrix (appendix C) and the algorithm for the
interpolation by rational functions in appendix D.

Finally a comment on the presentation: Even though written in British
English, this text is inspired by a certain German `taste'. Unless directly
issued by computer software, �gures were drawn as suggested in the Ger-
man standards. DIN 5 [4] was underlying for perspective pictures, DIN
461 [5] for curves in coordinate systems. DIN 1324 [6] gives a broad basis
for quantities in electromagnetics. Finally, the document was formatted
using the German `Koma-script' package of LATEX.
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Chapter 2

Electromagnetic Compatibility

Electromagnetic compatibility (EMC) is de�ned as the ability of an equip-
ment to function in a given electromagnetic environment without emitting
perturbations possibly causing disturbances for other equipment present
in the same environment. Hereby a possible impairment of biological tis-
sues by electromagnetic �elds is related to it, is, however, not subject of
the present work. The two major parts of EMC are called immunity as the
ability to continue to function, and emission as the fact of not perturbating
other equipment.

EMC becomes more and more an important issue for manufacturers due
to legal regulations and also to fear of legal suits. During the design of new
systems, aspects of EMC must be included already in an early stage in order
to reduce costs arising from late corrections. To date, recommendations
exist for the design of systems so that they are less prone to perturbations.
They concern mainly the grouped arrangement of the di�erent analog and
fast and slow digital circuits, the design of printed circuit boards, grounding
schemes, the wire layout, position and size of ori�ces, shielding practice etc.,
and are based both on long-time experience and physical considerations.
The latter are the result of the nature of the di�erent phenomena, the
sources, and the coupling mechanisms. During and after the design stage,
the new equipment is subject to tests checking if it complies with the
requirements of the constructor, the customer and/or national standards.

This chapter will concentrate on some of the above items: �rst some
basic notions of EMC are introduced. Characteristic sources and possible
coupling mechanisms give an idea of the range of EMC considerations.
Protection measures for radiated perturbations as well as the transmission
of electromagnetic energy through apertures build another part of the basic
notions. The growing importance of national and international standards

7
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are the reason for an overview over European standards in EMC. These
standards de�ne also measurement techniques presented in a further part
of this chapter. Finally, some recent examples of numerical modellisation
in EMC follow. Additional informations much beyond the scope of the
present work can be found in [7�10].

2.1. Basic Notions

2.1.1. Sources of Perturbations

The sources of electromagnetic perturbations are usually subdivided ac-
cording to their origin into natural and man made sources, the latter fur-
ther subdivided into industrial and nuclear sources. Most natural sources,
lightning apart, have a low power level, and are thus only important for
speci�c equipments.

Natural Sources

Natural low power sources are electromagnetic noise by electrical discharges
in the atmosphere during thunderstorms and cosmic noise. This noise
has a long grasp and therefore a permanent character. Sources with a
short lifetime are electrostatic discharges, and lightnings. Direct strokes of
lightnings cause not only electric, but also thermic and mechanic damages.
Static discharges are accompanied by electric �elds up to 3 MV/m with
a rise time of several nanoseconds and a total time of several hundred
nanoseconds. Lightnings cause electric �elds of several hundred V/m with
a rise and total time in the order of microseconds.

Man Made Noise

Unintentional and intentional arti�cial emitters of electromagnetic energy
compose the man made noise. Unintentional and undesired signals are
produced by all sorts of electric and electronic systems like power lines,
transformers, electric motors in home appliances, ignition systems of com-
bustion engines, industrial applications like welding or cleaning, neon tubes
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and many others. Most of them have a spectrum spread over a wide range
of frequencies. Emitters of intentional signals are for instance radio and
television transmitters, information transmission systems using electromag-
netic waves in space or on wires, inductive heating systems, systems for
telemetry, etc., with a signal ideally con�ned to a very narrow frequency
band. Digital equipments consitute a source of electromagnetic noise due
to high clock rates and short rise times. This source of electromagnetic
noise becomes more and more important. The whole frequency spectrum
of common environments reaches from kHz to GHz with �eld strengths
from mV/m to V/m. Ambient electric �elds in urban areas in the order of
0:1 V/m [9] from short waves to VHF were reported.

Considering the bandwidth of the perturbation and the useful band-
width of the victim, the perturbation can also be referred to as being a
small or wide band perturbation.

Nuclear Sources (Electromagnetic Pulse, EMP)

Nuclear sources, or better perturbations caused by explosions of nuclear
weapons in the atmosphere or in high altitude, are of minor importance for
civil equipment, the direct e�ects of the ionising radiation being much more
important. Explosions in high altitudes are nevertheless of relevance not
only for armed forces, but also for civil electronic or electric applications
like power lines installations, transmission systems, etc. due to the large
spatial range they have. The electromagnetic e�ects after such explosions
also allow the surveillance of the nuclear activities in the world.

The electromagnetic radiation which concerns EMC is a result of the
interaction of the nuclear radiation with matter, either the atmosphere or
the soil, producing free charges by the photoelectric e�ect, Compton e�ect,
or formation of electron-positron pairs. Mathematical models exist for the
representation of electromagnetic �elds after nuclear explosions. Typical
rise times are hereby in the order of nanoseconds, the total duration of the
phenomenon is several hundred nanoseconds.

Additional e�ects on electronic and electric devices, not directly related
with the EMP, but rather with ionising radiation, are the SGEMP (System
Generated Electromagnetic Pulse, caused by direct irradiation of enclos-
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Conducted
Radiated

Lightning

Figure 2.1.: Coupling paths by radiation and conduction

ures) and the TREE (Transient Radiation E�ects on Electronics, direct
e�ect of ionising radiation on components).

2.1.2. Coupling Mechanisms

The electromagnetic interference e�ects caused by the various sources prop-
agate on various paths to a given equipment. Fig. 2.1 shows the two paths
of coupling: radiation and conduction. Cables and wires play a major role
for both types of perturbations. One considers that for frequencies below
30 MHz (corresponding to a wavelength of 10 m), the perturbations are
predominantly conducted ones, whereas above 30 MHz the radiated type
predominates.

Cables

Cables are the elements which cause most of the radiation. Even cables
normally not intended to carry RF currents, can radiate like presented
in [11] where the power supply cable of a computer screen radiates most
of the energy at certain frequencies. Also, a conducted perturbation can
be the result of a wave which couples to a cable or wire far away from the
actual equipment or system, then conducted into the system.



2.1 Basic Notions 11

The coupling by radiation in the near �eld of the source is either a
predominantly magnetic �eld coupling or an electric �eld coupling. The far
�eld of a source may be considered as an electromagnetic wave, at very large
distances as plane wave. The actual perturbation �nally happens when the
�eld couples to the system. The cable layout has a major in�uence on the
nature and amount of the coupling. To reduce perturbations by radiation,
the systems and interconnecting cables are provided with a shield which
must be continuous to be e�ective. However, the shields of coaxial cables
are rarely perfect. Flexible cables with their woven shields with small
holes deteriorate the shielding e�ectiveness. Furthermore, even with a very
e�ective shielding, the shield itself can act as an antenna, and radiate or
receive a considerable amount of energy, then coupled into a system via
inappropriate connectors.

Inside a system, more speci�cally between di�erent wires and cables
and also printed lines on printed circuit boards (PCB), the coupling is
called crosstalk, and caused by mutual inductances or inter-circuit capa-
citance. The wires being the source are clock or other digital lines, power
lines or current carrying grounds. The common impedances in the con-
ducting path possibly have a reactive part, resulting in resonances with
strong increase or decrease of the current. Design recommendations exist
for the layout of PCBs, where to place high speed circuits, analog devices,
connectors to other PCBs or the exterior, etc. Further down on the design
level, decoupling capacitances, the capacitances between the di�erent lay-
ers of the PCB, line widths etc. are parameters for decoupling the system
components mutually [1].

Screens and Housings

Systems are usually shielded by metallic housings. An electromagnetic
wave impinging onto a conductor induces a current on it. For a perfect
conductor this current is a surface current, and entirely con�ned to the
surface. An enclosure made of perfect conducting material would annihilate
the �eld in the interior, and hence perturbation by direct irradiation would
be impossible. On real materials for enclosures with �nite conductivity,
63:2 % of the total induced current are con�ned to the skin depth on the



12 Chapter 2. Electromagnetic Compatibility

irradiated surface. The skin depth depends on the media and frequency
and is given by

� =

r
2

��!
(2.1)

with � permeability, � conductivity of the shielding material. Hence, the
shielding e�ectiveness depends on the material, its thickness and the fre-
quency of the incoming wave. One sees that for high frequencies the skin
depth decreases, the shielding becomes more e�cient.

As plastic or resins are isolating media, enclosures made of these mater-
ials must be doubled by conducting coatings due to the isolating properties
of the plasti . The coatings usually consist of an isolating base material
with conducting �llers as carbon black, metallized glass, or others. The
requirements for the coatings are manifold. They must, among others, be
mouldable, light, and persistent. By using these modern composite mater-
ials, transparent openings with shielding properties are possible.

Apertures

By adequate shielding, the attenuation of external �elds can be made as
strong as necessary. However, as every equipment must communicate with
the exterior in a way or another, openings or ori�ces are inevitable for
ventilation, viewing displays, connectors for power and signal cables which
are intentional openings. Maintenance traps of small equipments and access
doors to large scale systems are usually sealed electromagnetically by joints,
which constitute unintentional and unexpected apertures after degradation
due to aging or improper use. Therefore, coupling through apertures is a
very important issue in electromagnetic compatibility.

Fig. 2.2 shows the ~E and ~H �eld coupling through small apertures in
thin walls [9]. For design purposes, apertures are usually modelled by the
basic equivalent dipole principle. This principle replaces the aperture by a
set of dipoles on both sides of the enclosure wall. This basic, but important
concept will be used to model the aperture, and yields very good results.
The reaction, which is the �eld coupled back to the aperture, is neglected,
can however cause at certain frequencies high resonances as shown in the
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Figure 2.2.: Coupling of ~E or ~H through an aperture

examples in chapter 4. In that chapter the equivalent dipole principle is
extended to include the reaction �elds.

The exponential attenuation of a wave in a waveguide below cut-o� to-
gether with thick walls helps to reduce the transmission of electromagnetic
energy through apertures. The attenuation constant is � � 2�fc

c
for low

frequencies compared to fc (cut-o� frequency of the waveguide formed by
the aperture through the wall), therefore the cross section of the opening
should be as small as possible, with a length corresponding to a intended
attenuation. This is exploited in honeycomb air vent �lters where the whole
section of the ori�ce is subdivided into small tubes by metallic lamellas.

2.2. A Survey on Laws and National and International Standards

In the following a short introduction into the area of standards is given.
This section also provides an idea of how EMC is currently regulated. The
presentation is limited to the standards issued by the CENELEC ( Comité
Européen de Normalisation Electrotechnique), the standardisation insti-
tute of the European Union for civil applications. Due to European laws
they have to be and were issued as national standards, e.g. in Germany by
the VDE (Verband Deutscher Elektrotechniker) in the DIN (Deutsches
Institut für Normung e.V.), or in France by the AFNOR (Association
Française de Normalisation). The standards are based on international
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CISPR (Comité International Spécial pour les Perturbations Radioélec-
triques) recommendations, so that the knowledge of the European stand-
ards is a good starting point also for other regions of the world.

The di�erent limits and methods of measurement are elaborated and
published by several CISPR subgroups. They are
CISPR 11,
CISPR 11A

for industrial, scienti�c and medical equipments

CISPR 12 for ignition systems for motor vehicles
CISPR 13 for receivers for radio and television
CISPR 14 for electrical motor operated and thermal appliances for house-

hold and similar purposes, electric tools and similar electric
apparatus

CISPR 15 for radio disturbance characteristics of electrical lighting and
similar equipment

CISPR 20 for immunity of sound and television broadcast receivers and
associated equipment

CISPR 22 for information technology equipment
The above mentioned CISPR recommendations were adopted as Eu-

ropean standards, the corresponding classi�cation mark is EN 550.., �..�
being the appropriate CISPR number. German standards are pre�xed
with DIN.

Another set of standards elaborated by the IEC, or International En-
gineering Consortium, are the IEC 801 standards which describe limits and
methods of measurement. They are now being replaced by the IEC 1000
standards, taken over by the European EN 61000 with part and section
appended to the number. The di�erent parts determine e.g. the methods
of measurement or the environment, whereas the sections determine among
other things the limits for measurements of immunity characteristics, for
tests concerning static electricity, high frequency �elds, bursts, magnetic
�elds, bulk currents, and others. In section 2.3 some of the methods of
measurement are detailed.

In other parts of the world, like North America or Asia, other standards
are applicable. They can be based on the same CISPR standards as the
European ones, as are for instance the American ANSI or FCC standards,
or be totally di�erent.
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Another �eld, not considered here, are standards and special speci�c-
ations for the various armies. They can vary between the di�erent forces.
They are not normalised in Europe, let alone in the world. As they can
be very di�erent in content, and di�cult to inspect due to understandable
security issues, this topic is not broached.

2.2.1. Legal Framework

The legal obligation to respect the standards is given by the European
directives 89/336/EEC and 93/68/EEC. They were translated into national
law, in Germany in the Gesetz über die elektromagnetische Verträglichkeit
dating November 9th, 1992 and furthermore in Erstes Gesetz zur Änderung
des Gesetzes über die elektromagnetische Verträglichkeit from August 30th,
1995. These laws concern all manufacturers of any equipment likely to
cause electromagnetic perturbations or to be disturbed electromagnetically.
An equipment is here a product with a characteristic function in contrast
to a system (e.g. a microcomputer) as an assembly of several equipments
with a common function, or to a plant as an assembly of several systems.
Systems are covered by the directive, whereas plants are only covered in
so far as the systems composing the plant are concerned. Components as
elements for products or systems are not covered either. Explicitly excluded
from the requirements of the law are equipments covered by other directives
like today motor vehicles (72/245/EEC), telecommunication equipments
(91/263/EEC), or equipments for satellite broadcast (93/97/EEC).

The main statement of the directive is that the producer is responsible
that his product confers with the corresponding European standards. The
fact that the equipment ful�ls the requirements is signed by marking the
equipment with the CE sign. The European standards in their German
version are shortly described below.

2.2.2. Standards

All equipment fall under the generic standards EN 50081, part 1 and 2 and
50082, part 1 and 2. EN 50081 treats the emission, EN 50082 the immunity.
Of either standard, part 1 is for residential, commercial and light industry
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Figure 2.3.: Measuring site as de�ned in EN 55020

environments, part 2 for industrial environment. The four standards are
not applicable to equipment for which speci�c product or product family
standards exist. EN 50081 and 50082 refer to other standards (mainly the
above CISPR or IEC standards in their European form) for �xing limits and
methods of measurement. They further describe how to mark the product
and which technical documentation must be available to the customer.

For some equipments, respective product or product family standards
exist. Their number is continuously growing.

2.3. Testing Procedures

Each of the above mentioned perturbations needs speci�c testing proced-
ures, the limits are then imposed on the thereby measured values. De�ned
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Figure 2.4.: Open stripline TEM cell as sketched in EN 55020

are measurement methods for conducted and radiated perturbations. As
the problem at issue is related to radiated perturbations these are the only
ones presented.

Radiated perturbations must be carried out on a site which satis�es the
dimensions as de�ned in EN 55022 and sketched in �g. 2.3: the distance
between the device under test (DUT) and the antenna is 10 m, the test
area is now de�ned as an area limited by an ellipse with the small axis of
approximately 17 m and the large axe of 20 m. Also possible is a distance
of 3 m, the axes of the ellipse then being 6 m and 5.2 m. The space inside
the ellipse and above the area, must be free of re�ecting objects. Usually
only open area test sites ful�l the requirements, but have sometimes a noise
level above the legal limits for perturbations. The standards (CISPR 16
and 22) also authorise alternative test sites with precise requirements for
the site attenuation.

Open area test sites and alternative test sites are, however, not always
available. Especially for smaller elements subject to immunity tests, strip-
line TEM cells (�g. 2.4) are used as de�ned in EN 55020. The wave limited
by the upper and lower plate is su�ciently homogeneous in approximately a
third of the TEM cell volume. The TEM cells can attain dimensions of more
than 50 m as e.g. the SSR site of the Direction Générale de l'Armement,
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so that tests on large scale systems like airplanes or vehicles are possible.

The basic requirement for all test sites is the homogeneity of the �eld on
the device under test. For anechoic chambers, this is an important property.
A possibility would be to use monoconic antennas with a metallic �oor, the
wave close to the �oor would be almost plane and hence homogeneous. This
type of test area is not included in the standards, will however be used for
comparative measurements within this work.

2.4. Numerical Modellisation in EMC

EMC is a domain where numeric modellisation is not yet widely used.
Standards only de�ne test procedures, no numeric tools are mentioned.
Development departments of manufacturers rely more on rules of thumb,
experience and testing as on numerical modellisation. Small and medium
companies can not a�ord the high investments state of the art tools would
demand.

However, large systems or test sites require sometimes even higher in-
vestments. Numerical modellisations in early stages reduce considerably
the high costs wrong or unsuitable designs can cause.

Big companies were hence the �rst to apply numerical tools. Levil-
lain [12] presented the use of numerical tools at the Aerospatiale. A Finite
Di�erence Time Domain code called GORF 3D was used for the design of
lightning conductors on the launch site of the Ariane rockets. For one type
of the Airbus airplane family, numerical methods were called on for the
accreditation process concerning electromagnetic compatibility and light-
ning.

Manufacturers of automobiles have used numerical tools for a long time
in the domain of crash tests. For the optimisation of combustion in en-
gines or crash tests, �nite element tools like NASTRAN are widely in use.
Electromagnetic simulations are not yet commonly used, essentially due to
limited computer resources. A modellisation of a medium sized car like a
Peugeot 306 with, as an example, the boundary element code ASERIS of
the Aerospatiale ( [13] and private communication) demands several days
for the meshing and several weeks for a simulation.



2.5 Conclusions 19

Printed circuit boards are a �eld where numerical tools begin to emerge.
Programs developed for the investigation of signal integrity are now ad-
apted to predict the radiation of boards. The quality of the simulated
values compared to measured values is, however, not satisfying due to the
more than simple models used. A thorough board simulation by 2 1=2
or 3D tools like Momentum or Microwave Explorer demands powerful PCs
or workstations. A recent paper reports the use of the numerical code
NEC (Numerical Electromagnetics Code) for simple test cases of the emis-
sion of microstrip lines with view on physical understanding and educa-
tional clearness [14].

The numerical modellisation of housings were the subject of a PhD
thesis of the University of Karlsruhe [15, 16]. Housings with �nite con-
ductivity with or without holes were treated using the TLM method. For
reasonable execution times the TLM algorithm was parallelised and ex-
ecuted on a workstation cluster. Housings with small apertures, however,
cause convergence problems.

Test sites demand a great e�ort in time and �nancial means. Numerical
modellisations can assist the builder during the design. The assessment and
possible optimisation of open area sites was presented based on Method
of Moments and Finite Di�erence Time Domain computations [17]. The
modellisation of semianechoic chambers and the possible improvement were
treated using the Finite Integration Technique in another PhD thesis of the
University of Karlsruhe [18]. There the homogeneity of the �eld incident
on the device under test (DUT) was computed, additional absorbers were
suggested in strategic places to optimise the electromagnetic properties of
the chamber.

2.5. Conclusions

In this chapter, a short and necessarily incomplete overview of the domain
of EMC, the phenomena, the legal framework and standards, as well as
testing procedures was given. Some emerging numerical applications show
the growing interest to use computers for EMC. The main attention is
hereby more and more directed towards the understanding of the underly-
ing physics and educational clearness.
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The presentation is necessarily only an incomplete collection of what
can be concerned, many things are missing. Hopefully the reader is now
aware of the large �eld of EMC and its growing importance in todays
industrial developments. The following chapters pick out of the various
elements the problem presented in chapter one.



Chapter 3

Numerical Modelisation

This chapter will present the criteria for choosing from some potential
numerical methods. No method is able to tackle the whole problem. The
separation of interior and exterior cuts the problem into two and allows to
consider interior and exterior separately by adapted methods. The selected
method is �nally examined more closely.

3.1. A Survey on Possible Solutions

The determination of a solution for Maxwell's equations with a set of
boundary conditions is only sometimes possible in an analytical way. In
early times approximations were made in order to solve problems with a
reasonable accuracy. With the advent of digital computers new methods
were developed to tackle di�erent problems. As each of these numerical
methods has its own strong points, but also its weaknesses, it is best suited
only for a certain class of problems. A �general problem solver� is not
yet known, and will, in my opinion, never be found. In the following
an overview over some of the most well-known methods (Finite Di�erence
Time Domain FDTD and Finite Integration Technique FIT, Finite Element
Method FEM and the Method of Moments MOM for the solution of the
Electric Field Integral Equation) is given. Further indicated are well-suited
problems and the reasons for choosing one of these rather than another. In
doing so, no details on each method will be given, but rather the criteria
which led to the �nal decision for the method used in the present work.
For further informations the reader is kindly invited to refer to the bibli-
ography. Beside books specialised on one or more methods (like [19�22]),
journals regularly publish special issues on numerical methods like [23], [24]
or most recently [25]. In these special issues the reader will �nd interesting

21
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and useful introductions, up-to-date informations as well as references for
technical details.

The problem presented in chapter 1 exhibits some very interesting fea-
tures which are important for the choice of the appropriate solution tech-
nique. Several details have to be taken into consideration:

� The cavity under test is placed in free space with a plane wave coming
onto the structure.

� The wave interacts with the cavity whose size spans from only frac-
tions of a wavelength at very low frequencies to several wavelengths
at high frequencies. At the same time the characteristic dimensions
of the aperture are very small compared to the dimensions of the
cavity and hence of the wave.

� The antenna measuring the amount of coupling into the cavity has
only a very small radius compared to the dimensions of the cavity

� At �rst, the cavity is only �tted with metallic objects. A deformation
of the quboidal cavity remains possible.

� The only losses for the cavity looked at as a resonator are the losses
through the small aperture and the ohmic losses in the antenna im-
pedance. Therefore, the Q-factor of the system is very high.

One has to bear in mind these constraints when considering a method. In
the following section some of the best known methods are confronted with
the present problem. First, the FDTD, the FIT and the FEM methods
show how they can tackle the present problem. This highlights their in-
terest and weaknesses. The codes chosen are the MAFIA and the HFSS

codes respectively.

3.1.1. Finite Di�erence - Finite Integration

The most straightforward way to introduce a numerical method for the
solution of Maxwell's equations is perhaps the Finite Di�erence Time Do-
main (FDTD) approach. Starting with initial conditions for the electric and
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magnetic �eld ~E (~r0; t0) and ~H (~r0; t0), one advances the time t step by step
while updating the �elds under consideration of the boundary conditions.
The most spread scheme is the scheme proposed by Yee in 1966 [26]. For
this scheme one applies central-di�erence approximations to the time and
space derivatives in Maxwell's curl equations. This procedure is a sampling
scheme accurate to the second order. The sampling points for the elec-
tromagnetic �elds (continuous in space and time) are chosen so that the
discretisation error stays within some previously �xed bounds. Hereby the
discretisations in space and time are not independent, but have to satisfy
the so-called stability-condition for numerical stability and least numerical
dispersion. Furthermore the components of the electric and magnetic �elds
are interleaved in time and space so as to be able to ful�ll the appropriate
boundary conditions at media interfaces. As the update process is expli-
cit, there is no need for setting up or solving a set of linear equations, the
required computer storage and running time are hence proportional to the
computational volume and time interval.

Another method closely related to the FDTD is the Finite Integration
Method (FIT) developed by Weiland [27] and commercially available as
MAFIA computer code. Each of the four Maxwell equations in integral
form is transformed to an equivalent matrix expression on a Yee lattice.
The integrations are simple multiplications by the cell size [18]. According
to the authors, the method is widely equivalent to the FDTD and shall
therefore be treated within the same section.

According to Ta�ove [28], the FDTD-method has among others the
following strong points:

� The method was validated by comparisons to analytical and experi-
mental results for three-dimensional conducting bodies in the range
of 0:1 to 30 wavelengths. Meshes with non-constant cell sizes are
possible. Due to limitations for the non-constant discretisation steps
in space, the proportion of the smallest detail to the biggest extent
is not arbitrary, but limited.

� It is easily applicable to complex surface shapes and/or closed geo-
metries with internal structures. As the discretisation is directed
in the three coordinate directions, only rectangular shapes can be
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meshed exactly. Arbitrarily shaped structures will be meshed with
a certain error, generally considered as neglectable. So-called Fuzzy-
cells at curved boundaries allow to reduce further this error.

� A variety of waveforms is available for the excitations by waves or dis-
crete sources. The number of complete cycles of the wave needed for a
converging solution is proportional to the Q factor of the structure or
phenomenon being modelled which can lead to very long computation
times for highly resonant cavity-structures near the resonance [29].

� The number of unknowns of the �elds can be very high, several hun-
dreds of thousands are usual. As however the entire volume has to
be discretised, this number is higher than for surface discretisations.

� The computation of problems involving non-linearities, time-varying
media properties or pulse responses is straightforward.

� Frequency dependent properties of media involve in the time domain
convolutions. Some types of frequency dependence (Debye) can be
taken into consideration by recursive convolutions [22].

In the following the capabilities of the Finite Di�erence Time Domain
method are compared to the constraints of the problems at issue.

As the entire computational volume of the problem has to be discret-
ised, the lattice has to be truncated at some distance from the cavity. The
outgoing wave must not be re�ected at this lattice truncation so as to model
free space. This truncation problem is solved by application of absorbing
boundary conditions of di�erent types [30]. The Mur ABCs approximates
locally the wave equation at the cells at the lattice truncation by a Taylor
expansion. One assumes hereby that the wave is an outgoing plane wave
perpendicular to the boundary, thus necessitating a considerable distance
to all scatterers. Another possibility is the perfectly matched layer intro-
duced by J.P. Berenger [31, 32] as a �layer of media� with an impedance
suitably chosen so that waves are totally absorbed. The truncation can
then be much closer as with classic Mur absorbing boundaries. A cavity
with a size of approximately one third of a wavelength, e.g. 0.5 m for 200
MHz, has to be put into a volume of about one wavelength for the classic
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ABC. Thus, the interior of the cavity, which makes up the most interesting
part, is only a ninth of the total computational volume. Furthermore the
computation of near �eld quantities as surface current densities necessitates
for each angle of incidence a totally new computation.

The Finite Di�erence method was originally used with constant discret-
isation steps. For the meshing of small sized details in larger problems the
number of unknowns would be rather high as the mesh in less interesting
regions would be unnecessary �ne. Non-constant meshes allow to sample
precisely places of interest and the remaining parts more spaciously. The
ratio of the sizes of adjacent cells is usually limited to a value between
0:8 and 1:2. A constant expanding or contracting factor yields cell sizes
according to a geometric series law.

The most di�cult part to mesh is the small aperture. Tests show that
at least nine mesh points are needed on the aperture to accurately account
for it. Additionally, the wall with the aperture must have a �nite thickness
as the investigated FDTD codes are not capable to model plates with zero
thickness. At low frequencies the amount of the wave coupled into the
cavity is very low. The aperture in the wall acts like a waveguide below
cut-o� and attenuates further the coupling. Therefore, the wall thickness
should be small, necessitating a �ne sampling in the direction normal to
the wall. In the vicinity of the aperture the meshing is therefore very �ne
compared to a mesh needed for the rest of the cavity. Ta�ove proposed a
modi�cation of the basic FDTD algorithm in order to include also apertures
and gaps whose size is much smaller than a lattice cell [33]. This method
is not yet available in commercial codes.

For very small scatterers like wires with diameters much smaller than
the discretisation step, several e�orts are reported in the literature. One
possibility is to modify the FDTD update equations and to include the
charge and the current present on the wire. The electric and magnetic �elds
of the cells just around the wire are then modi�ed correspondingly [34].
Another possibility especially for wire bundles introduced in [29] is the
application of Faraday's law with a contour integral for the looping mag-
netic �eld adjacent to the wire or wire bundle. For this, the wire or the
wire bundle is replaced by a single wire with an equivalent radius. Then,
the equivalent wire is placed into a volume delimited by a virtual surface
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coinciding with a mesh border of the FDTD lattice. On this surface the
electromagnetic �elds are computed via a FDTD and then applied in an
electric �eld integral equation (EFIE) to compute the accurate current dis-
tribution on every single wire. Again, the thin wire formulation is not yet
available in many commercially available codes. If available, the previ-
ously mentioned antenna could be modelled using one of these thin wire
approximations.

Metallic objects of �nite thickness, dielectric bodies and cavities of ar-
bitrary shape are well suited problems for the FDTD

Application of MAFIA

The Finite Integration Method is commercially available in the package
MAFIA. It contains a mesh generator, two time-domain modules for two-
dimensional and for three-dimensional computations, a frequency-domain
module, and �nally a postprocessor. The frequency domain module does
not include absorbing boundary conditions so that free-space computations
are not possible. The ABC in the time-domain module are only classic ones
using the approximation of the wave-equation at the boundaries, Berenger-
ABCs are not available. Wires treated as perfect electric conductors are
possible, but approximated by polygons through mesh points.

The incident �eld can be created by electric dipoles, a plane wave,
or electric and magnetic �elds de�ned as initial �elds. The �elds can be
probed, measurements of currents however are �subject to a beta version,
so check [...] results carefully� [35].

Nevertheless, it was possible to model the problem of chapter 1 by this
commercial code, version 3.20. The time domain module t3 was used as
the frequency domain module f3 does not allow free-space computations.
Fig. 3.1 shows a sample mesh for a rectangular cavity with a small aperture
centred on the front wall. The long side of the cavity is �=3 long, the short
ones �=5. The aperture has a size of only �=20. Clearly to see is the
�ne mesh around the aperture with 16 mesh points lying in the aperture
plane. The front wall has a thickness of one cell size. The remaining inner
volume of the cavity is meshed with a larger step size. Absorbing boundary
conditions of the �rst order are placed at a distance of �=3 from the outer
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Figure 3.1.: Example of a mesh generated for the MAFIA code

walls of the cavity. The frequency of the incoming wave is well below the
�rst resonance of the quboidal cavity. There are no objects inside the
cavity.

Fig. 3.2 shows the z-component of the electric �eld right behind the
aperture for a monochromatic incident plane wave. One sees that the sys-
tem only reaches the steady state very slowly. In fact, there is no noticeable
attenuation of the high-frequency components. This is the major drawback
of time-domain solutions for the case of resonant structures: a very long
computation time is necessary to achieve the steady state. For the present
case of a cavity with very high Q-factor the computation times are not
acceptable (computation time for �g. 3.2 several hours).
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Figure 3.2.: Electric �eld inside a quboidal cavity (Ez=Vm�1 over t=s)

These problems encountered during the modellisation with Finite Dif-
ference and Finite Integration Methods suggested not to use these methods.
A possibility to perform computations of coupling to cavities is proposed
by [36]. There, the exterior and the interior of the cavity are separated by
application of the Schelkuno�-principle. The incident �eld on the outside
of the cavity is determined by a Method of Moments, then the interaction
of the equivalent aperture �eld inside the cavity is computed by a FDTD
scheme. This method, however, requires a profound modi�cation of the
FDTD codes.

3.1.2. Finite Elements - HFSS

Another code, commercialised by Hewlett-Packard, is the so-called High
Frequency Structure Simulator (HFSS). It is based on the Finite Element
Method (FEM) in the frequency domain. No details will be given here,
only the application of version 4.1 of the above programme to the present
problem.



3.1 A Survey on Possible Solutions 29

The Finite Element Method discretises the whole computational space
by tetrahedra and interpolates the electric �eld between the nodes by poly-
nomials, called basis functions. The solution of the �eld quantities involves
a matrix inversion for each frequency or each mesh. With �xed frequency,
the mesh is re�ned in an iterative process until a user de�ned error for
the �eld or for therefrom derived quantities as the scattering parameters
is achieved. ABC are again needed for free-space simulations. The ABC
are here called �radiation boundaries�, and normally used for computing
far �elds and radiation patterns. The boundary must lie at some distance
from all scatterers, at least a quarter of a wavelength [37].

Further restrictions concern the overall size of the problem. [38] states
several general rules for problems that are within the scope of the soft-
ware's analytical capabilities. Among other things, the structure should
be electrically small, i.e. only a few wavelengths long. Another import-
ant issue for the modellisation of structures is again the ratio of smallest
and largest dimensions. [37] advises not to use ratios greater than three
orders of magnitude (details of 1 mm are not advised for structures with
dimensions of 1 m).

Two options are available for scattering parameter S computations in
a certain frequency band. One option is to explicitly solve for the S para-
meters at every frequency point using the mesh generated for the so-called
adaptive frequency. This mesh reduces the di�erence of the �eld between
the previous iteration and the present one to the user de�ned value. An-
other option is the �fast sweep� option where the solution at the adaptive
frequency is extrapolated to the entire frequency band by an asymptotic
waveform evaluation. The accuracy of the solution is obviously best near
the adaptive frequency [37].

A di�culty arises when one attempts to compute currents on metallic
surfaces. The magnetic �eld is derived from the simulated electric �eld by
a discrete derivation ~H = 1

�j!�r � ~E. The current again is equal to the

curl of the magnetic �eld ~J = r� ~H [37]. By twice deriving numerically
the simulated quantity, the values for the current are inaccurate if one does
not take into account many iterations. Direct current measurements were
therefore excluded.

In a �rst step a completely closed, perfectly conducting box in free space
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~ex

~ey

~ez

Figure 3.3.: HFSS: completely closed, perfectly conducting box in a plane
wave �eld

was simulated. A plane wave directed in +z direction at a frequency well
below the �rst resonance impinges on the front wall. The electric �eld is
shown in �g. 3.3, the shape of the box is drawn in white. This obviously
wrong �eld reaches values inside the box ten times higher than the incident
�eld. The technical support mentioned that this was a known problem of
the method and con�rmed that the method was not applicable to boxes in
free space.

Among the most suited problems to be tackled with HFSS are com-
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WG representing the aperture

WG representing the

measurement port

Figure 3.4.: S21 simulation without free space

putations of the scattering matrix S of multiports. The present problem
of wave interaction is now looked as the determination of the scattering
matrix S of a two port, one port representing the small aperture, the other
one being the monopole antenna. Each port has to be connected to a
short homogeneous waveguide. As the dimensions of the waveguide asso-
ciated with the aperture are very small, this waveguide is operated below
cut-o�. The wave travelling down the waveguide is therefore strongly at-
tenuated which causes high di�erences for the �eld strength values, and
thus numerical problems when inverting the system matrix. Waveguides
should therefore be held as short as possible in these cases. Fig. 3.4 shows
a sample drawing of a rectangular cavity with at the back the small aper-
ture. The monopole antenna is modelled as a perfect conductor which ends
in a coaxial waveguide with impedance 50 
 representing the input of a
network analyser. Both the sweep and the fast sweep option for a wide
band computation were used. Fig. 3.5 shows the graphs of the sweep and
the fast sweep solution of HFSS for the scattering coe�cient S21 between
the two waveguides. For comparison also plotted is a Method of Moments
solution described further down for the interaction of a plane wave to the
cavity through a small hole. As the coupling through the aperture is not
equivalent to the coupling through a waveguide, the absolute values are
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Figure 3.5.: Sweep and fast sweep solution as well as Method of Moments
solution

not comparable. On the left-hand y-axis applicable to the HFSS-results,
the magnitude of S21 is shown. On the right-hand axis the received power
computed by the MoM for an incident plane wave of unity electric �eld
strength is shown. The agreement in shape and progression, specially for
the resonances, is satisfying.

As a result, the above stated problems show that the FEM is not en-
tirely suited for the problem at issue. In [39] a separation of exterior from
the interior is proposed which at least would solve the problems related to
a plane wave incident on objects in unbounded space. This demands how-
ever the inclusion of magnetic currents which is not provided in HFSS. A
complete rewriting of the FEM part would be necessary. Still, the question
of computing currents from the electric �eld is not addressed. Not having
the required competence and experience with the FEM, the already present
EFIE/MoM code [40] was chosen to be extended to three-dimensional ob-
jects.
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Figure 3.6.: Metallic scatterer in electromagnetic �eld

3.1.3. Integral Equations

One more family of methods is based on the �eld representation by Max-
well's equations in integral form. For perfect electric conductors, the Elec-
tric Field Integral Equation method (EFIE), exclusively involving the elec-
tric �eld, is used. In the following a very short introduction to this method
will be given, and leave further informations to literature, e.g. [41] or [42].

Consider �g. 3.6: a perfect conducting scatterer in free space with sur-
face � with outward pointing normal vector ~n is placed in an incident
electromagnetic �eld ( ~Einc; ~Hinc) created by some sources ~J; ~M . The total
electric �eld ( ~E, ~H) is the sum of the incident �eld and the scattered �eld:

~E = ~Einc + ~Esca
~H = ~Hinc + ~Hsca (3.1)

The scattered �eld ~Esca is created by the currents on the scatterer

~Esca =
j

!"

�r2 + k2
� Z

�

��GA (~r; ~r 0) ~J(~r 0) dr 0 (3.2)

where k is the free-space wave number k = 2�
�
, ~r 0 a point on � and ��GA is

the Green's function for the vector potential. The Green's function is, as
Collin [43] says,

�basically [...] the solution to a given di�erential equation,
together with speci�ed boundary conditions, with the source
being a source of unit strength and localised at a point in space.�

The actual geometry, which could be, to name but a few, free space, a half
space bordered by a perfect conducting plane, rectangular or cylindrical
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cavities, or strati�ed media, imposes the boundary conditions. Eqn (3.2)
states that if the currents are known, the integration of the Green's func-
tions over the currents will yield the �eld in any point of space under con-
sideration of the boundary conditions speci�ed by the Green's functions.
By changing the Green's function, it is possible to investigate the radiation
of the sources in the corresponding space.

For a general �eld problem however, the currents on the scatterers are
not known, so that the scattered �eld can not be determined. The boundary
condition for the electric �eld on a perfect conductor ~n � ~E = 0 gives us
the additional condition needed for the total �eld. Eqn. (3.1) and (3.2)
can now be combined to give:

~n� ~Einc = �~n� ~Esca = �~n�
�
j

!"

��r2 + k2
� Z

�

��GA (~r; ~r 0) ~J(~r 0) dr 0

(3.3)

The currents in this equation are still unknown. They are, however, re-
lated to the incident �eld by an integral equation. Once the currents are
obtained, the �elds can be computed in every point of the domain. The
most popular method for solving eqn. (3.3) is the Method of Moments
(MoM).

3.1.4. The Method of Moments

In general, the Method of Moments is a method to solve linear functional
equations. Here, only the MoM applied to the solution of the electric �eld
integral equation eqn. (3.3) is of interest. Further general considerations
about the method can be found e.g. in [21], [41] or [44].

Eqn. (3.3) is an inhomogeneous functional equation which can be writ-
ten in the form

L(f) = g (3.4)

with L being a linear operator, g a known function and f a function to be
determined. The MoM consists of several steps. First one identi�es the
operator L, its domain (the functions f on which it operates) and its range
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(the functions g for any given f). For the present work, L is an integral
operator with kernel (r2 + k2) ��GA, its range is the �eld created by the
currents in the space of the Green's functions. The domain of L are the
currents which can physically exist on the metallic objects.

The next step is the expansion of the unknown function f in a series of
known functions f1; f2; f3; : : : in the domain of L as

f =
X
n

�n fn (3.5)

where the fn are the so-called basis functions, and �n the projections of f
on the fn. As f is unknown, the �n are unknown as well. The sum is for
exact solutions usually in�nite, to be able to solve a given problem with
�nite resources, one has to truncate the sum at some index N . Applying
(3.5) to (3.4), it becomes

L(f) =
X
n

�n L (fn) = g (3.6)

as the operator L is linear.

The next step is to de�ne a set of weighting or testing functions w1, w2,
w3; : : : in the range of L and a suitable inner product h�;  i. This inner
product is then applied to eqn. (3.6) with each wmX

n

�nhL (fn) ; wmi = hg; wmi (3.7)

for each m = 1; 2; 3; : : : . The resulting set of equations can be written in
matrix form as

L� = g (3.8)
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with the matrix L and vectors � and g as:

L =

0
BB@

hL(f1); w1i hL(f2); w1i � � �
hL(f1); w2i hL(f2); w2i � � �
hL(f1); w3i hL(f2); w3i � � �
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
CCA

(3.9)

� =

0
B@

�1
�2
...

1
CA and g =

0
B@

hg; w1i
hg; w2i

...

1
CA

The matrix L is called the moment-matrix whose name is derived from
the original name nth-moment of f for the expression

R
f(x)xn dx. After

replacing xn by the fn, the integral keeps the name of moment.
If L is nonsingular, its inverse L�1 exists, the �n are then given by

� = L�1g (3.10)

f is then the linear combination of the �i fi as in eqn. (3.6). Depending
on f , the fn and wm, the solution for f may be exact or approximate.

From a practical point of view, the series (3.5) and (3.7) must always
be truncated at some index. The inversion of the matrix L is then always
possible.

3.1.5. Choice of the Green's Functions

The electric �eld integral equation method is depending on the Green's
functions ��GA applicable for a large range of problems. Until now usu-
ally only the free-space Green's functions were used, some authors as [44]
distinguished between MoM solutions using the free-space functions and
MoM solutions using Green's functions for other geometries, the latter
even calling hybrid MoM/Green's function methods. FEKO, e.g., a com-
mercial MoM program developed at the University of Stuttgart, Germany,
contains not only the free-space Green's functions, but also the ones for
a dielectric sphere in free space. The latter is used for computations of
biological e�ects of cellular telephones near human heads. Other Green's
functions again would enable �eld computations in other spaces.
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For a long time the Green's functions for rectangular or cylindrical
cavities have been known [45�48]. If one separated the interior of the
cavity from the exterior, the problem would e�ectively be cut into two
smaller ones: the �rst is the wave interacting with a metallic cavity in free
space, and the second the resulting �eld inside the cavity in presence of
metallic scatterers. This separation allows the use of two di�erent Green's
functions for the two regions, thus making pro�t of the advantage that the
Green's functions already include the boundary conditions. In free space
no arti�cial absorbing boundary conditions are needed, only the metallic
scatterer is discretised, and therefore the number of unknowns remains
quite small. On the other hand, the Green's functions of a cavity already
include the boundary conditions on the cavity walls, thus again reducing
the number of unknowns to the scatterers.

3.2. Separation of Interior and Exterior

[43] presents how to separate two regions: two waveguides are coupled
through a small aperture. It is based on a theory originally developed by
H.A. Bethe based on theorems by Schelkuno� [49] 1. The theorems provide
a formulation to replace apertures by equivalent electric and magnetic cur-
rent sheets. For apertures with dimensions small compared to wavelength,
an approximate theory states that the aperture is equivalent to a combin-
ation of electric and magnetic dipoles whose moments are proportional to
the �eld at the aperture. In the following Schelkuno�'s theorems is touched
upon, the equivalent dipole theory follows from that.

Schelkuno�'s ideas in the case of a perfect electric conductor are as
follows. Consider a perfect electric conductor with sources inside and an
aperture whose surface will be denoted by �a. When the aperture �a
is closed with a perfect electric conductor, the sources produce the �eld
E0; H0, the �eld outside is zero as there is no leakage through the conductor.
On �a the electric tangential �eld Etan vanishes and is therefore continuous.

1The decoupling of interior and exterior mentioned in sections 3.1.1 and 3.1.2 is based

on the same theorems, suggesting that this separation and subsequent use of the

EFIE for the exterior is in fact the best suited method for wave interaction of boxed

objects in unbounded media.
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Figure 3.7.: Small aperture equivalent problems

On the other hand, Htan is discontinuous by the electric current density
~J = �~n� ~H0 on �a.

The aperture being open, the �eld produced by the same sources is the
sum of E0; H0 and the �eld produced by an electric current sheet of density
n � H0 over �a. This is because the discontinuity in Htan is eliminated
and the continuity of Etan is preserved. The resultant �eld satis�es all
boundary conditions for the �eld produced by the given sources in the
conductor with aperture.

By virtue of the theorem the aperture can be replaced by a perfect
electric conductor and a set of sources provided that Etan is continuous
and Htan is discontinuous.

Based on this theory, Bethe and later van Bladel and others [50�52]
investigated the coupling through small apertures. They found that small
apertures can be approximated by two dipoles, one electric perpendicu-
lar to the aperture plane and one magnetic in the aperture plane. The
original theory concerns small apertures in in�nite screens separating two
homogeneous half spaces with electric characteristics "; � like in �g. 3.7.
Sources S� and S+ are located in both half spaces on the left and the
right side of the screen respectively. If the aperture placed at ~r 0 is closed
by a perfect electric conductor, the �eld on the two sides of the screen is
~E�
sc;

~H�
sc and ~E+

sc;
~H+
sc respectively. The �eld due to the aperture can now
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be approximated for the right side by

~pe = "�e

�
~E�
sc(~r

0�) � ~n� ~E+
sc(~r

0+) � ~n
�
� ~n (3.11)

~pm = ����m

�
~H�
sc(~r

0�)� ~H+
sc(~r

0+)
�

(3.12)

where ~r 0 is the location of the aperture, ~r 0+ a point at a small distance
in direction of ~n, and ~r 0� at some small distance in the direction of �~n.
The polarizabilities �e and ���m describe the size and shape of the aperture.
They are available for small apertures with di�erent shapes [43,51,53,54].
The polarizabilities for circular apertures with radius r in a screen normal
to ~ez are e.g.:

�e;z =
4

3
r3 and ���m =

8

3
r3 (~ex~ex + ~ey~ey)

For other shapes the dyad for the magnetic polarizability is possibly no
longer symmetric. The polarizabilities for some shapes are speci�ed in
appendix A, others can be found in literature.

As the equivalent dipole principle provides a suitable interface between
the interior and the exterior, a separate computation of the �elds in the
two regions is now possible. The exterior problem is solved by the pro-
gram FEKO which uses a hybrid method of moments for integral equations
and physical optics solution of scattering in free space. For the interior
the already existing theory [40] for wire scatterers is extended to three-
dimensional scatterers of arbitrary number. The following two sections
will treat the source �elds in the exterior and the Green's functions of a
rectangular cavity. The last section will �nally reformulate properly the
integral equation.

3.3. Source Fields at the Exterior

Originally the front wall of the cavity was considered as an in�nite metallic
screen [40]. One could also consider that the cavity is mounted behind a
screen thus assuring a constant electric and magnetic �eld on the side of
incidence. In this case the total �eld is easily computed by the boundary
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conditions on a perfect electric conductor

~n� ~H = ~Js

~n� ~E = 0

�~n � ~H = 0

"~n � ~E = �s =
j

!
r ~Js

(3.13)

with ~n normal vector pointing outward from the conductor and ~Js and
�s surface current density and surface charge respectively. Depending on
the polarisation of the incident wave the scattered �eld is then readily
computed [55]. A wave polarised parallelly to the cavity wall, for instance,
would generate at the conducting plane a zero electric �eld and a magnetic
�eld twice as strong as the incident one.

The assumption of an in�nite plane at the exterior is less valid for low
frequencies where, in addition to the fact that the aperture is very small
compared with wavelength, the cavity corners and edges are quite close to
the location of the aperture speaking in terms of wavelength. A numerical
determination of the exterior �elds is therefore included in the present work.
Fig. 3.8(a) shows the surface current density on a perfect conducting box
at low frequency where the box dimensions are a tenth and a sixth of the
wavelength respectively. At higher frequencies, the box becomes bigger in
terms of wavelengths, the assumption for the aperture being in an in�nite
plane becomes more valid, the current becomes more uniform on the front
side as in �g. 3.8(b).

In order to determine the surface current density and hence the mag-
netic and electric �eld at the aperture location a numerical method is ne-
cessary. Having in mind the above characteristics of numerical �eld com-
putation methods, the obvious choice is a MoM code with the Green's
functions of free space. An additional advantage compared to the pro-
cedures described before is that even for multiple incidence angles and
polarisations it only necessitates one determination of the matrix elements
in eqn. (3.8). After setting up the matrix, the surface currents on the
scatterers can be determined for several conditions of incidence like angle
or polarisation. The already mentioned program FEKO was used for the
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Figure 3.8.: Current distribution on a box in free space. The plane wave
travels in ~ex and is polarised in ~ez
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Figure 3.9.: Surface current Jz at aperture

computation of the incident �eld. It is a fast and accurate tool for com-
puting the required quantities. From the surface currents, the electric and
magnetic �eld strengths at the metallized aperture are derived.

The subsequent examples consider a perfect conducting box in a �eld
created by a plane wave. The typical test case is a box with dimensions 0:3
m, 0:3 m and 0:5 m in a plane wave �eld polarised in ~ez and propagating
in ~ex like the ones shown in �g. 3.8. Due to the polarisation parallel to the
cavity wall, there is no normal electric �eld and hence no surface charge
density at the aperture. The aperture will be placed centred on the wall
directly exposed to the wave as in subsequent numerical and experimental
studies. The only surface current of importance in this case is the one in
~ez as the one in ~ey is zero due to the polarisation. The surface current Jz
computed with FEKO is shown in �g. 3.9 together with the constant value
when accepting that the front wall of the cavity is comparable to an in�n-
ite plane. For low frequencies, the surface current density at the aperture
is slowly evolving, the body is not small compared with the wavelength.
At the resonances of the box at 705 MHz (1,1,0), 770 MHz (1,1,1), 924
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MHz (1,1,2), a numerical di�culty of the Integral Equations is seen. At
the internal resonances of the object, the solution is not physical, but a
arbitrary linear combination of the external physical solution and of para-
sitic solutions of the internal problem [56]. The currents on the surfaces
are non physical, the electric �eld inside the box is not zero as it should be.
In contrary to the non physical solution touched upon in section 3.1.2 for
the Finite Element Method, this occurs only very close to the resonances
of the internal problem, here the rectangular cavity. A solution based on
the Combined Field Integral Equation involving the electric type and the
magnetic type equation would yield correct results, is, however, not avail-
able in FEKO. Therefore, values in vicinity of the three strong resonance
lines in �g. 3.9 are to be interpreted with care. Being aware of the fact
that they are wrong, I used the values of the assumption of a cavity �anged
behind a wall for the subsequent calculations. These values are wrong in
the interpretation of the cavity in free space, but at least one is well aware
of the error. The three intervals are [693; 719] MHz, [768; 791] MHz and
[920; 931] MHz.

The magnetic exterior �eld Hy is equal (but opposite in phase) to this
surface current density and can now be used in eqn. (3.11) and eqn. (3.12)
to give the sources for the interior problem.

3.4. The Green's Functions of a Rectangular Cavity

The determination of the Green's functions for the interior of the cavity can
be found in [45�48]. In the following only a short sketch of this derivation
is given.

The Green's function for the potentials and �elds are dyadic and, as
expected, singular in the source region. In the following uppercase G will
denote a Green's function for �elds due to an electric current source, and
lowercase g the Green's functions connected with a magnetic current source.
The index e designates the electric �eld, while h stands for magnetic �eld.

The dyadic Green's functions for the magnetic vector potential are
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(a) for the magnetic vector potential
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(b) for the electric vector potential

with: A;B;C cavity size in x, y and z
(cc)i = cos(ki i) cos(ki i

0), and (ss)i = sin(ki i) sin(ki i
0), for i =

x; y; z, primed coordinates source points,
unprimed coordinates observation points
kx = m�

A
, ky = n�

B
, kz = l�

C
, K2

mnl = k2x + k2y + k2z ,
and �nally "i = 1 when i = 0 and "i = 2 when i 6= 0.

Table 3.1.: Dyadic Green's function for the vector potentials of a rectangu-
lar cavity
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de�ned by �r2 + k2
� ��GA (~r; ~r 0) = ���I � (~r; ~r 0)

~n�
�
k2 ��I +rr

�
� ��GA = 0 on �

(3.14)

where k = 2�
�

is the wave number of the homogeneous, isotropic medium

inside the cavity, ~r the observation point and ~r 0 the source point. ��I is the
identity dyad and ~n an inward directed unit normal vector on the surface
of the cavity �. Tai and Rozenfeld [47] determined the dyad ��GA using the
vector wave functions �L, �M and �N , it is shown in table 3.1(a). With ��GA,
the dyads ��Ge and ��Gh for the electric and magnetic �eld due to an electric
current source can be derived by

��Ge =
�
k2 ��I +rr

�
� ��GA (3.15)

��Gh = r� ��GA (3.16)

They are given in [48] and recapitulated in table 3.2(a) and 3.3(b).

The Green's dyad for the electric vector potential is de�ned by�r2 + k2
�
��gF (~r; ~r 0) =� ��I� (~r; ~r 0)

~n � ��gF = 0

~n�r��gF = 0

�
on �

(3.17)

��gF is given in [48] and show in table 3.2(b). Now with ��gF determined, the
dyads for the electric and magnetic �eld due to a magnetic current source
can be determined by

��ge = �r� ��gF (3.18)

��gh =
�
k2 ��I +rr

�
��gF (3.19)

The dyads have the interesting property that the ones for the electric �eld
due to a magnetic current and the ones for the magnetic �eld due to an
electric current are antisymmetric

��ge (~r; ~r
0) = � ��GT

h (~r; ~r 0) (3.20)
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The above dyads are the same as the ones presented in [47] and [46].
Their authors have taken great care to completely include the singularity
in the expansion functions for ��Ge in the source region. The agreement
shows that completeness is ensured by using potentials and deriving the
�elds therefrom.

3.5. Reformulation of the Integral Equation

Using the above Green's functions, the approximation for the aperture as
well as the relationship between the incident wave, the obstacle and the
sources for the aperture approximation, the general integral equation (3.3)
is reformulated. The starting point is

~n� ~Einc = �~n� ~Esca = �~n�
�
j

!"

��r2 + k2
� Z

�

��GA
~J dr (3.21)

The incident �eld inside the cavity ~Einc; ~Hinc is generated by the equi-
valent dipoles which in turn are related to the �elds at the aperture in the
exterior and the interior as explained in eqn. (3.11) and eqn. (3.12):

~pe = "�e

�
~E�
sc(~r

0�) � ~n� ~E+
sc(~r

0+) � ~n
�
� ~n (3.22)

~pm = ����m

�
~H�
sc(~r

0�)� ~H+
sc(~r

0+)
�

(3.23)

The exterior �eld has been determined in 3.3 by a numerical method.
The di�erent contributors of the interior �eld are identi�ed in the following.
The image theory removes the metallic walls by placing an image for every
interior source at the corresponding place. The sources to be imaged are
the dipoles and also the currents to be determined in the process. The �eld
created by the sources and their images is then the �eld inside the former
cavity. The interior �eld ~E+

sc(~r
0+), ~H+

sc(~r
0+) is now the one created by all

these sources except the original dipoles at the aperture. It represents the
reaction and hence the coupling to the aperture of cavity walls and objects.

To evaluate the �eld at the aperture two possibilities exist. One is to
directly sum the contributions of all sources using the free space Green's
functions. A better and more consistent way is to use again the Green's
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functions of the cavity. This is straightforward for the contribution of
the currents on the scatterers where the sources are on the surface of the
obstacles and the �eld point is at the aperture. The computation of the
�eld radiated by the images of the dipoles at the aperture however would
demand an evaluation of the Green's functions at the source where they
diverge. Therefore, more analytic work is needed for this contribution.

The �eld created by all images of the dipoles except the original ones can
be determined by using the Green's functions of the cavity when removing
the original or self term of the function:

��Gr
A (~r; ~r 0) = ��GA (~r; ~r 0)� ��I

e�jkR

2�R
(3.24)

��grF (~r; ~r 0) = ��gF (~r; ~r 0)� ��I
e�jkR

2�R
(3.25)

where R = j~r � ~r 0j is the distance of the observation point to the source.
��Gr
A and ��grf will be called the reaction Green's functions as they represent

the reaction of the �eld on the dipoles in the cavity. The Green's functions
for the electric and magnetic �eld due to an electric and a magnetic current
source arise by derivation of the above Green's functions from eqn. (3.15)
and eqn. (3.18) for the electric �eld and eqn. (3.16) and eqn. (3.19) for the
magnetic �eld. Note that all expressions individually diverge at the aper-
ture as one evaluates the Green's functions at the source point. However,
the di�erence of the two is bounded as it is a bounded solution of the ho-
mogeneous wave equation at the point ~r 0. Moreover, Daniele [57] showed
that the singular part of the dyadic Green's function for a homogeneous
medium which is bounded by a perfectly conducting surface equals the sin-
gular part of the free space Green's functions, the remainder is analytic.
The value of this analytic part as the reaction was previously determined
by interpolation of ��Gr

A and ��grF and a subsequent discrete derivation [48].
In this thesis, new paths will be treated: the derivation will be done ana-
lytically, the resulting expression will then be extrapolated to the aperture.
The exact procedure is shown in appendix B.
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The interior �eld can �nally be written as:

~E+
sc(~r

0+) =
1

"
��Gr
e ~pe + j�! ��gre ~pm � j

!"

Z
�

��Ge (~r; ~r
0) ~J ds 0 (3.26)

~H+
sc(~r

0+) = j! ��Gr
h ~pe + ��grh~pm +

Z
�

��Gh (~r; ~r
0) ~J ds 0 (3.27)

The incident �eld on the objects is created by the dipoles as already
described

~Einc =
1

"
��Ge (~r; ~r

0) ~pe + j �! ��ge (~r; ~r
0) ~pm (3.28)

Introduce now the di�erence between the interior and exterior �eld as two
more unknown �eld quantities

�E = ~E�
sc � ~n� ~E+

sc � ~n (3.29)

� ~H = ~H�
sc � ~H+

sc (3.30)

which yield with the expressions for the dipoles eqn. (3.11) and eqn. (3.12)

~pe = "�e�E (3.31)

~pm = ����m� ~H (3.32)

Put these into eqn. (3.26) and (3.27) to get

~E+
sc � ~n = ~E�

sc � ~n��E

= �e
��Gr
e �E ~n~n� j !� ��gre ���m� ~H~n� j

!"

Z
�

��Ge
~J ds~n

from which follows

~E�
sc � ~n = (1 + �e

��Gr
e~n~n)�E � j !� ��gre ���m� ~H~n� j

!"

Z
�

��Ge
~J ds~n (3.33)

Similar, for the magnetic �eld holds

~H�
sc = j !"�e

��Gr
h�E ~n+ (1� ��gh���m)� ~H +

Z
�

��Gh
~J ds (3.34)
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Note that for the two unknowns �E and � ~H only three �eld components
are necessary, the normal electric �eld and the tangential magnetic �eld.
They are taken into account in the matrix for the Method of Moments.
This system to be set up and solved is �nally0

@ ZJJ ZJE ZJH
ZEJ ZEE ZEH
ZHJ ZHE ZHH

1
A �

0
@ J

�E

� ~H

1
A =

0
B@ 0

~E� � ~n
~H�

1
CA (3.35)

Di�erent choices are possible for �E and � ~H : the approximated values
under the assumption of a cavity �anged to an in�nite plane, or the nu-
merically determined values for a box in free space. In the examples both
possibilities to investigate the domain of validity of the approximation are
presented. By virtue of the method of moments each of the submatrices
describes a physical contribution of the currents and �elds. They are in
detail

� ZJJ coupling of the di�erent currents between themselves (N -by-N
matrix). The �eld radiated by the surface currents is sampled by the
di�erent testing functions.

� ZJE incident electric �eld radiated by the electrical dipole weighted
by the testing functions (N -by-1 matrix)

� ZJH incident electric �eld radiated by the magnetic dipole weighted
by the di�erent testing functions (N -by-2 matrix)

� ZEJ reaction of the surface currents, or radiation of the currents onto
the electric dipole at the aperture (1-by-N matrix)

� ZEE relationship between the di�erence of the electric �eld and the
electric incident �eld (scalar): 1 + �e

��Gr
e~n~n

� ZEH reaction of the magnetic dipole onto the electric dipole (1-by-2
matrix): �j!���gre���m~n

� ZHJ reaction of the surface currents onto the electric dipole at the
aperture (2-by-1 matrix)

� ZHE reaction of the electric dipole onto the magnetic dipole (1-by-2
matrix): j!"�e ��Gr

h~n

� ZHH relationship between the di�erence of the magnetic �eld and
the magnetic incident �eld (2-by-2 matrix): ��I � ��grh���m
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The individual expressions for each of the submatrices are obtained from
the above equations. They are given in detail in appendix C.

Some notes should be added concerning the submatrices ZEJ , ZEE ,
ZEH , ZHJ , ZHE and ZHH . The two matrices ZEJ and ZHJ describe
the reaction of the object onto the aperture. Neclegting the coupling is
equivalent to set all elements to zero. Similar consideration hold for the
four other matrices ZEE , ZEH , and ZHE , ZHH . When neglecting the
reaction of the cavity onto the aperture, ZEH and ZHE are zero matrices
and ZEE and ZHH are identity matrices.

3.6. Conclusions

In this chapter three major numerical methods for the solution of electro-
magnetic �eld problems were discussed under consideration of the geometry
to be treated. From the proposed Finite Di�erence Time Domain, Finite
Element Method and the Integral Equation Method the last one was chosen
because of its capabilities in respect to the problem at issue and the ease
of implementation. Further presented were a method to separate the in-
terior from the exterior, and the Green's functions of a rectangular cavity.
The electric integral equation was reformulated so as to account for the
geometry as well as the sources. In the following chapter we will present
details of the implementation and some representative examples with com-
parisons to previous numerical and new experimental results.



Chapter 4

Implementation and Sample Cases

In the previous sections the subdivision of the coupling problem into two
subproblems was shown. The subproblems are the exterior problem as
the interaction of a wave with a totally closed metallic box, and the in-
terior problem as the �eld inside a totally closed cavity, possibly �tted with
metallic objects. The relation between the two is provided by Schelkun-
o�'s theorem, in form of the small aperture theory relating the �elds in
the exterior and the interior by a set of dipoles. The exterior problem will
be regarded at as solved, the following exclusively treats the interior prob-
lem. The method chosen for this task is the Method of Moments using the
Green's functions of the cavity due to the considerations in the previous
chapter. This chapter will present details of the numerical method, the
experimental setup used for measurements, numerical and experimental
data for sample cases, and �nally a new method to speed up wide band
simulations in resonant structures.

4.1. The Application of the Method of Moments to the Interior Prob-

lem

In section 3.5 the basic Electric Field Integral Equation was reformulated
to take into consideration the actual geometry of the problem. The �nal
equation (3.35) relates the known exterior �elds to the unknown interior
�elds and surface currents. The elements ZJJ involve the expansion in basis
functions of the unknown surface currents on the objects, and the sampling
of the resulting �eld by the testing functions. This is accomplished math-
ematically by a double integration of the Green's functions over the basis
and testing functions. If one restricts the objects to have only surfaces par-
allel to the three coordinate planes, the integrations involve only two of the

53
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three spatial dimensions. For certain classes of functions these integrations
can be carried out analytically, thus reducing the computational e�ort.

Another arti�ce to reduce the computation time and also to gain numer-
ical accuracy is to reduce the triple indexed Green's function series to series
with only two indices. This is accomplished by eigenfunction expressions
or Fourier series.

4.1.1. E�cient Computation of the Triple Series

Consider the following correspondences:

1X
m=1

1

k2x + �2
sin kxx sin kxx

0 =
X

2� sinh�X
sinh�x< sinh� (X � x>)

(4.1)
1X

m=0

"m

k2x + �2
cos kxx cos kxx

0 =
X

� sinh�X
cosh�x< cosh� (X � x>)

(4.2)
1X

m=1

kx

k2x + �2
cos kxx< sin kxx> =

X

2 sinh�X
cosh�x< sinh� (X � x>)

(4.3)
1X

m=1

kx

k2x + �2
sin kxx< cos kxx> =

�X
2 sinh�X

sinh�x< cosh� (X � x>)

(4.4)

with "m = 1=2 if m = 0, 1 elsewhere, x< = min(x; x 0), x> = max(x; x 0),
X real normalisation constant in x, kx = m�

X
and � arbitrary constant.

These expressions derived in [43,48] using Fourier series and eigenfunction
expansions permit to replace one summation of the series by the corres-
ponding analytical expression. We thus sum not over three indices, but
only over two, however with an additional multiplier depending on the two
indices. Therefore not only the computation time is reduced, but in the
same time the numerical accuracy is increased. This is especially import-
ant for the slowly converging series 4.3 and 4.4. An important property of
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the analytical expressions on the right hand side is that they decrease for �
real and large and for x< di�erent x< asymptotically like an exponential.

As an example consider the reduction in x of a cavity's Green's function.
The cavity dimension A in ~ex of the cavity plays the role of the above
normalisation constant X . kx, ky and kz are the wave numbers of the
modes in the cavity corresponding to the indices l, m, n of the Green's
function expression, and �2 equals k2y + k2z � k20 with k0 free-space wave
number. If the mode corresponding to the triplet kx, ky and kz has a wave
number Kmnl with K2

mnl = k2x+ k
2
y+ k

2
z higher than k0, the mode is below

cut-o�, the �eld due to that mode is then exponentially attenuated. � is in
this case real and positive and increases with m, n and l. In that case, the
expressions on the right in 4.1 - 4.4 decrease as mentioned exponentially
like:

F (�;A) � exp (��(x> � x<)) (4.5)

The physical picture for that is that as at high frequencies the respective
mode is not propagative, the �eld is attenuated exponentially and the closer
con�ned to the region of the source the higher the frequency. In other
words, the �eld at a point is less determined by modes with a high wave
number than the ones with a low wave number possibly being propagative.

An e�cient way of summing up the Green's functions can now be found
if one takes advantage of this property. For high � the double indexed series
will be multiplied by a term proportional to exp (��) which improves the
convergence over the ��-factor in the denominator of eqn. (4.1) - (4.4).
Now the di�erent modes ky and kz are sorted so that � increases, the most
important modes being the ones with a low wave number. This is shown in
�g. 4.1: the �rst term to be taken into account is the one with ky = kz = 0,
� is then imaginary. The subsequent values for n and l lie between ellipses

with half axes B(q+ 1
2
)

max(B;C)
and C(q+ 1

2
)

max(B;C)
, with B and C cavity dimensions in

~ey and ~ez respectively as shown in �g. 1.2. The �rst 10 resulting ellipses
and the corresponding (n; l)-pairs are shown in �g. 4.1 for B = 500 mm
and C = 300 mm. Once the wave number Kmnl of a mode exceeds k0, the
convergence will be exponential like in eqn. (4.5).

On the other hand, the exponential factor eqn. (4.5) depends also on
the distance x> � x< in ~ex of the source and the �eld point. The larger
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(n; l) pair

3
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5 10

growing �

decreasing term value

B = 500 mm
C = 300 mm
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d
ex
fo
r
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m
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z

Figure 4.1.: Sorting algorithm for e�cient calculation of the Green's func-
tions

the distance of the two points, the faster the series will converge as the
absolute value of the argument of the exponential is larger. For points
close to each other more terms will be necessary, the convergence will be
slower. If the two points lie on one x-plane, the exponential factor does no
longer speed up convergence, a high number of terms will be necessary to
obtain convergence.

The above considerations remain valid if the reduction of the triple sum
is performed in either x, y or z. The decision which series to replace by
its correspondence is made upon which part of the series is written in the
form of one of (4.1) - (4.4), mainly the one not involved in any integration.
Also important is to reduce for the largest distance x> � x<, y> � y< or
z> � z<.

4.1.2. Double Surface Integration

The integration of the kernel of the integral equation eqn. (3.7) is per-
formed for the source coordinates ~r 0 after the expansion of the unknown
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surface currents. This �rst integration involves a surface integration over
one expansion function and results in the �eld radiated by this function.
The next step is the sampling of the �eld by each testing function using a
suitable inner product. This is de�ned as

h ; �i =
Z
 (~r) ��(~r) dr (4.6)

with �� complex conjugate of �. The integration has to be carried out over
the domain of de�nition of � and  which again is a surface. As both the
�eld radiated by an expansion function, symbolised by �, and the testing
functions, symbolised by  , are real for the cavity case, the inner product
de�ned in 4.6 becomes a purely real operation and involves no complex
conjugate.

Both integrations are combined to a double surface integration and ex-
ecuted term by term. As the objects only will have surfaces parallel to the
coordinate planes, the surface integrations are uncoupled and therefore sep-
arable in the two directions. They will be carried out independently. The
functions are now written as a product of two one-dimensional functions,
e.g. for a surface parallel to the x = 0-plane:

 (~r) =  (x; y; z) =  y(y) z(z) (4.7)

It remains to de�ne suitable basis and testing functions and to examine
their respective properties.

Important criteria on the properties of the functions depend on the
nature of the integral equation and are given in [58]: in this paper the
authors conclude that

1. in direction of the current the sum of the orders of di�erentiability of
the basis and the testing function must be equal or greater than one,
but

2. orthogonal thereto any piecewise continuous function is permitted.
They even allow functions with a singularity of order less than one

These criteria exclude e.g. the piecewise constant (or pulse) function for
both basis and testing function. Furthermore the point matching or Dirac
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function is not derivable and will not be used here. The second criterion
enables the approximation of the singularity of the current along an edge,
this singularity always being less than one [59]. Wilton [60] reports a
certain, however small improvement of the near �eld quantities for the
quasistatic free-space functions when incorporating special edge functions.
As additionally the expressions become considerably more complicated,
here no special edge terms were included.

4.1.3. Basis and Testing Functions

Most commonly used functions are today linear functions on triangular sup-
ports which allow to mesh arbitrarily shaped objects. As the objects are
restricted to have only planar surfaces which are parallel to the coordinate
planes and have 90� angles to each other, these functions are not neces-
sary. Other criteria are more important in the present case. They are the
mathematical de�nition, easiness of implementation, rate of convergence
of the �nal result, matrix size, computation time, etc. Mathematically
simple functions are piecewise constant, linear, or sinusoidal functions over
a strictly local support. This signi�es that they have a value di�erent from
zero only for a small portion of the object. Functions being de�ned over
the whole surface or at least over slices of the surface of the objects with
trigonometric evolution will be called global functions and will �nally lead
to smaller matrices and therefore faster computation.

Strictly Local Functions

The �rst class is the mathematically simple class of local functions which
require a spatial discretisation of the surface. The mesh is not necessarily
regular, the step size can vary on the same object and also between di�erent
objects. Meshes with constant mesh sizes �i, i = x; y; z with the �rst and
last mesh point on the edge are generally used. In the following the mesh
points being the centre of a cell are denoted as xi with i = 1:::(Nx�2), the
corresponding cell size is �x. The �rst and last point x0 and xNx�1 lie on
the edge, the cell sizes are �x=2. Let x̂ = x�xi

�x

be normalised and centred
in respect to the cell.
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(a) Pulse (b) Triangle (c) Piecewise sinus.

Figure 4.2.: Three possible local functions: 4.2(a) pulse, 4.2(b) piecewise
linear (triangle), 4.2(c) piecewise sinusoidal.

Of all possible functions only three will be discussed in the following.
The two-dimensional functions which consist of the product of two identical
functions in two perpendicular directions are shown in �g. 4.2.

� pulse or piecewise constant (abbreviation C, �g. 4.2(a))

C(x) =

�
1 for jx̂j < 0:5

0 elsewhere
(4.8)

� triangular or piecewise linear (L, �g. 4.2(b))

L(x) =

�
1� x̂ for jx̂j < 1

0 elsewhere
(4.9)

� piecewise sinusoidal (S, �g. 4.2(c))

S(x) =

(
sin k(�x�jx�xij)

sin k�x

for jx̂j < 1

0 elsewhere
(4.10)

For �ne discretisations, i.e. �x small, the piecewise sinusoidal function is
well approximated by the piecewise linear functions, the two will then yield
the same result.

The well-known roof-top function is in fact the product of the piecewise
linear function in direction of the current with the constant function in
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Figure 4.3.: Special functions assuring the continuity over an edge: 4.3(a)
across an edge, 4.3(b) at a cavity wall

orthogonal direction. In the following I will however not deal with this
function.

For all functions one has to ensure the continuity of the currents normal
to an edge. Due to the special position of the �rst and last mesh point on
the edge, the two cells at the edge have only half of the normal width. For
isolated plates there is no current normal to an edge, the current is therefore
zero on the last cell. The functions for plates touching the cavity walls or
being connected to other plates in direction of the current must ensure the
continuity of the current, special attachment functions are therefore used.
A sketch is shown in �g. 4.3: for the continuity across an edge, two half
width functions with the same amplitude compose one attachment function
4.3(a). On an object being in conducting contact with a cavity wall a half
width function is used 4.3(b). The testing functions are constructed the
same way.
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Semi-Global Functions

Another possibility is not to mesh geometrically the object, but to decom-
pose the current on some functional basis. The �rst choice is a truncated
Fourier series, others could be e.g. Chebyche� or Legendre series. The func-
tions are now de�ned not only on a small portion of the surface, but over
the whole object in direction of the current, and assumed constant over a
small slice of the surface normal to it. Continuity of current is ful�lled by
the appropriate behaviour of the corresponding functions at the boundar-
ies, in our case the sine or cosine function will account for continuity:

� for currents on isolated plates the current is zero at both ends, there-
fore the sine function is used (m = 0; 1; : : : )

GI(x) = sin

�
(m+ 1)�

x� xmin

xmax � xmin

�
(4.11)

� for conductors attached to others at one side, isolated at the other,
here the case with isolation at x = xmax. The current is zero at the
end x = xmax and non zero at x = xmin (m = 0; 1; : : : )

GO(x) = cos

�
2m+ 1

2
�

x� xmin

xmax � xmin

�
(4.12)

the �rst three functions of this type are shown in �g. 4.4.

� for conductors attached to others at both ends, the current is non-
zero at both ends (m = 0; 1; : : : )

GB(x) = cos

�
(m+ 1)�

x� xmin

xmax � xmin

�
(4.13)

One important property of the global functions must be pointed out.
As the discretisation of the objects remains the same when augmenting the
number of basis and testing functions, the domains of integration remain
the same. Hence, not the entire impedance matrix has to be recalculated.
It is su�cient to add the small portion for which the new function pair
is responsible. Consider an example: the submatrix Z3

JJ for 3 functions
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(a) m = 0 (b) m = 1 (c) m = 2

Figure 4.4.: First three global domain functions GO(x)

was calculated. Now if the solution is judged to be insu�cient, one further
function pair can be added. The elements in Z3

JJ are however independ-
ent of the new functions, only one new row due to the additional testing
function and one new column must be calculated to obtain the new matrix
Z4
JJ :

Z4
JJ =

0
B@ Z3

JJ

new column due to
new basis function

new row due to
new testing function

interaction new basis
and testing function

1
CA (4.14)

This not only reduces the overall computational cost when �ne tuning
the modal discretisation, but allows also the use of order recursive matrix
solutions [61, 62].

Several sets of the above mentioned functions were applied to a simple
test case of a strip in a cavity �g. 4.5 (a), the dimensions are itemised in
tab. 4.5 (b), the origin for these values are in the right lower front corner
of the cavity. The strip is illuminated at a frequency of 800 MHz by a
magnetic dipole in ~ey placed at the centre of the wall x = 0. The strip is
cut into two slices in ~ey (cf. �g. 4.6(a)), the current density Jz is expanded
in 3 to 15 functions, corresponding for the local functions to a mesh �=5 to
�=25. The type of the functions is either one of the three proposed local or
of the global type (4.12). In �g. 4.6(b) is shown the short circuit current
at the base of the strip as the integral of the current density Jy at z = 0,
the two gray cells in �g. 4.6(a), as a function of matrix size and functions.
The abbreviations C (for piecewise constant), L (for piecewise linear) and



4.1 Application of MoM 63

~ex

~ey
~ez

origin

�
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Cavity dimension 297 297 498

Centre of strip base 150 150 0

Strip dimension 7:7 225

Source magnetic dipole in ~ey
f = 800 MHz

(a) Geometry (b) Dimensions

Figure 4.5.: Test case for functions
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Figure 4.6.: Test case for matrix size

S (for piecewise sinusoidal) denote the function type, �rst is basis, second
is testing function. A discretisation of �=10 would need 7 cells, �=15 10
cells. All functions eventually yield the same value, the numbers needed
however to achieve a relative convergence of 0:1 % are di�erent: only 9
functions for the global functions, 14 for the constant-linear set.
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Summarising, di�erent functions are usable for the method of moments.
Two classes were looked at more closely, the local functions as product of
two one-dimensional functions with local support, and the global functions
as product of a trigonometric function with global support and the constant
function with local support. The actual choice of which function to use in a
particular case is based on the following: small objects connected to others
or to the cavity wall are easier discretised by local elements as these have
simple attachment functions. Big objects, connected to the cavity walls
or not, are better modelised by global functions as these lead to smaller
matrices. Note that the Method of Moments does not constrain to use
only one function type for a particular geometry, local and global functions
can be mixed, e.g. global for a big plate with local functions for a small
scatterer. The following computations use almost exclusively the basic set
of the piecewise constant function as basis and the piecewise linear set as
expansion function.

4.1.4. Lumped Loads and Sources

A further relationship between the current densities and the �elds is added
if localised elements like loads or sources are present. The loads can be
resistive or reactive as resistors, inductors or capacitors. The input imped-
ance of a measuring instrument of 50 
, e.g. , must be taken into account
during the simulation. On the other hand lumped sources could act as
supply sources of equipment inside the cavity.

As the moment matrix associates the �elds with the surface currents,
lumped loads can be included. For this the impedance is assumed to be
distributed over one cell, the current passing through the cell gives raise
to a �eld. This �eld must be included in the surface integration associated
with the testing procedure. A mesh cell with centre xi shall be a�ected
with a load R. The contribution Ei to the electric �eld due to the basis
element Ji of the surface current density is now by (3.21)

Ei =
j

!"

�r2 + k2
� Z

�i

��GAJi dr +RsJi

=

�
j

!"

�r2 + k2
� Z

�i

��GAfi dr +Rsfi

�
Ji (4.15)
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Figure 4.7.: Intersecting basis and testing functions for lumped loads

and is sampled by the testing functions wj

hEi; wji = h j
!"

�r2 + k2
� Z

�i

��GAfi dr +Rsfi; wji (4.16)

Consider now the one-dimensional case in �g 4.7: the matrix elements of
ZJJ (3.35) corresponding to the testing functions j = i � 1, j = i and
j = i+ 1 become now complex with the real part hwJ ; Rsfii. However as
the contribution of the impedance is expressed as simple integration of a
constant over a function, this part demands almost no computation time.

Sources can be taken into account by adding an additional voltage gap
in one element of the incident �eld vector. This is however not in the scope
of this thesis.

4.1.5. Inversion of the Impedance Matrix

The impedance matrix for the current computation is for a variety of prob-
lems quite small. Even with a local discretisation scheme and objects with
dimensions of the order of one wavelength the size is rarely larger than 500
or 600. Highly optimised algorithms are therefore not needed for invert-
ing the matrix. A numerical subroutine with an LU factorisation provided
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by external sources (IMSL or netlib) gives satisfactory results in negligible
computation times.

4.2. Experimental Setup

Comparative measurements were carried out at the SESAME site of the
French Government Body DGA at the Centre d'Etudes de Gramat [63].
The setup used hereby is a monoconic antenna with 4 m diameter and
1.865 m height in a circular semi-anechoic chamber, that is a chamber with
conducting �oor (�g. 4.9(a)). The geometry of the cone over the �oor as-
sures a low return loss at the antenna input. A cylindrical wave near the
�oor of the chamber is radiated, in the test volume which holds the cavities
it can be considered as plane [64]. The source for the monoconic antenna
(�g. 4.9(a)) is a network analyser HP 8510, the analyser is controlled by
a HP 300 computer. The receiver antenna consists of an adjustable set of
monopole antennas (�g. 4.9(b)) allowing various lengths. Several sets of
cavities, a specimen with circular aperture is shown in �g. 4.10(a), were
assembled and tested. For tests with larger objects inside the cavity, ad-
ditional walls were �xed inside the cavity, the connection of object to wall
was done with special conducting tape with naps �g. 4.10(b). The con-
ducting collar at the base of the cavity is taped with conducting napped
tape to the �oor of the chamber thus ensuring a wide area of contact and
preventing measurement errors by �elds leaking into the cavity.

In a �rst measurement the electric �eld at the cavity front was determ-
ined. All subsequent measurements are now normalised to this incident
�eld.

4.3. Sample and Test Cases

In the following the capabilities are investigated and also the limitations of
the present method. For this comparisons were drawn with a code treat-
ing the wire case [40], and measurements performed at the SESAME site
described in the previous section. The sample cases will test the following
items:
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Figure 4.8.: Experimental setup at SESAME

(a) Measurement site SESAME (b) Adjustable set of monopoles

Figure 4.9.: Monocone and monopole antennas
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(a) Specimen of test cavity.

Note: numerical �gures in this

picture are external dimensions,

not internal ones.

(b) Object in cavity

Figure 4.10.: Test cavity
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x=mm y=mm z=mm

Cavity dimensions 297 297 498

Aperture circular, r = 20 mm 0 152 248

Incident �eld a) constant, Hy = 5:3 mA=m
b) cavity in free space

Monopole circular, r = 1:93 mm
base 150 150 0

dimensions 225

Equivalent strip base 150 146:15 0

dimensions 7:7 225

mesh points Ny = 2 Nz = 11

Table 4.1.: Test case 1: dimensions

� agreement of the three-dimensional code with the wire code

� consistency of the three-dimensional code when changing the shape
of the cavity

� deformation of the cavity

4.3.1. The Wire in the Cavity

The �rst test case compares the performance of the new 3D code to the
already established wire code. Measurements were also called on. The test
case is a simple single wire in a cavity, the dimensions are shown in tab.
4.1. For the incident �eld 2 options exist: the assumption that the cavity
is �anged behind an in�nite plane, so that the exterior �elds are assumed
to be constant. The other possibility is the rigorous computation of the
exterior �eld by means of a numerical method (cf. 3.3). The measurement
monopole antenna is a thin circular wire. As the code presently only uses
rectangular objects and no wires, a correspondence between round wires
and rectangular plates was used to transform the wire into a rectangular
object. This was achieved using the correspondence [65] between a wire
with radius r and a thin strip with width w:

r =
w

4
(4.17)
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�

Figure 4.11.: Test case 1: geometry

The incident �eld is polarised in ~ez with unit electric �eld strength, the
frequency band is 100 MHz to 995 MHz, which also prescribes the size of
the mesh cells. The numbers of mesh points was �xed to 2 in ~ey and 11
in ~ez for the whole frequency band, the corresponding discretisation step
sizes are hence �x = 0:00385 mm and �z = 0:0225 mm. The step size is
�=10 at about 1330 MHz. Due to the polarisation, there is only a magnetic
dipole in ~ey.

Fig. 4.11 shows a sketch of the test object, �g. 4.12 and �g. 4.13 show
the power received in a 50 
 load at the base of the monopole. During the
measurements the monopole antenna was connected to the 50 
 input of
the network analyser.

In �g. 4.12 are plotted the experimental curve thogether with the curves
computed with the new 3D code. Di�erences are at most 3 dB in mag-
nitude. The shift of the resonance lines at 910 MHz is 12 MHz. The
computation fo the incident �eld using the free-space Method of Moments
is shown here for the �rst time together with the assumption of constant
incident �eld. Di�erences are only small, however the rigorous considera-
tion of the incident �eld agrees well with the experimental data especially
for low frequencies. The slight increase of 3 dB between 100 MHz and 250

MHz and between 250 and 500MHz is due to the incident �eld dependence
on the outer shape of the cavity in the wave �eld.

The comparison between the old wire code and the new 3D code is
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Figure 4.12.: Measure and 3D code. 3D code case a) is with constant in-
cident �eld, case b) with computed incident �eld.
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Figure 4.13.: Test case 1: comparison wire and 3D code
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Figure 4.14.: Test case 1: Contributions of reaction terms. Arrows show
resonances appearing when including the reaction by the cav-
ity and/or the object

shown in �g. 4.13. The codes agree well, the di�erence in magnitude is at
most 6 dB, the resonance lines are shifted by at most 20 MHz. These dif-
ferences as well as the spurious resonance at 500 MHz for the wire code are
contributed to numerical instabilities during the evaluation of the Green's
functions for the wire code.

Fig. 4.14 shows the di�erent contributions of the reaction parts for fre-
quencies above 700 MHz. Below this limit the reaction �elds alter the
magnitude by at most 0:5 %. Clearly seen are the additional resonances
at 711 MHz, 783 MHz and 931 MHz due to internal resonances of the cav-
ity. As a matter of fact, the method of moments allows to include or not
the respective expressions so that one has the possibility to investigate the
di�erent e�ects of the reaction terms. If in eqn. (3.35) the matrices ZEE
and ZHH are the identity matrices and simultaneously ZEH and ZHE are
the null matrices, the reaction of the cavity is not taken into account. One
sees that the reaction is only noteworthy at some discrete high frequencies.
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Figure 4.15.: Test case 1: Reaction of the cavity on the electric dipole

The frequencies where this e�ect occurs are the resonant frequencies of the
empty cavity where the reaction of the cavity on the aperture is strong.
Compared to the measurements in �g. 4.12 the resonance at f � 586 MHz
((0; 1; 1) and (1; 0; 1)) is missed in the computations due to the perfect in-
cident �eld polarised in ~ez excluding any contribution of the electric dipole
in ~ex or a ~ez component of the magnetic dipole. However this resonance
is readily seen in the reaction terms of the magnetic dipole in ~ez �g. 4.15,
and would appear when including a small electric dipole in ~ex.

Due to the size of the object the coupling of the object onto the aperture
is negligible, in fact the curves for no reaction and the one for only reaction
by the object coincide. Finally it is to note that the function set constant-
piecewise sinusoidal yields the same result as the linear-linear set.

4.3.2. Plates in the Cavity

The second test case is a preliminary test to show that it is possible to
change the shape of the cavity without being obliged to calculate the
Green's function of the actual cavity. This is especially interesting when
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�

additional wall

Figure 4.16.: Test case 2: Geometry

non-rectangular or non-cylindrical cavities are involved. Additional metal-
lic objects have then to be placed at the walls of the new cavity, the current
on these walls totally shields the space behind making the cavity electric-
ally smaller. The aim is now to simulate the same case as the previous
one, this time however with Green's functions of a di�erent cavity. For this
(�g. 4.16) a cavity which is longer in ~ex is chosen, the objects inside are
now the strip equivalent to the measuring monopole and a plate covering
the whole section of the cavity. This additional wall will now simulate the
backside wall of the original cavity. The dimensions are found in tab. 4.2,
the cell size is su�cient for simulations up to 1020 MHz and limited by the
number of mesh points on the additional wall.

Obviously the same results as in the �rst case must be obtained. In
�g. 4.17 the almost superposing curves are shown. Nevertheless, three
discrepancies appear when including the reaction of the cavity. In �g. 4.17
one resonance at 711 MHz is missed, two spurious ones appear at 870 MHz
and 902 MHz when including the reaction terms. The discrepancies are
due to numerical problems: the high values for the reaction terms of the
cavity rend the inversion of the matrix inaccurate.

4.3.3. Changing the Shape of the Cavity

The last veri�cation is a cavity with a reentrant edge. The original cavity
has slightly di�erent dimensions as the previous cases, a metallic box is
placed in the upper rear corner of the cavity so as to simulate a cavity with
reentrant corner. Two comments about the electric size of the objects.
The wavelength of the highest simulated frequency f = 995 MHz equals
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x=mm y=mm z=mm

Cavity dimensions 400 297 498

Aperture circular, r = 20 mm 0 152 248

Incident �eld constant

Monopole circular, r = 1:93 mm
base 150 150 0

dimensions 225

Equivalent strip base 150 146:15 0

dimensions 7:7 225

mesh points Ny = 2 Nz = 11

Second object base 297 0 0
dimensions 297 498

mesh points Ny = 12 Nz = 18

Table 4.2.: Test case 2: Dimensions
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Figure 4.17.: Test case 2: Comparison with test case 1
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x=mm y=mm z=mm

Cavity dimensions 300 300 500

Aperture circular, r = 38 mm 0 150 250

Incident �eld constant, Hy = 5:3 mA=m

Monopole circular, r = 1:5 mm
base 110 150 0

dimensions 125

Equivalent strip base 110 147 0

dimensions 6 225

mesh points Ny = 2 Nz = 11

Second object base 190 0 100

dimensions 300 300 500

mesh points Nx = 5 Ny = 12 Nz = 16

Table 4.3.: Test case 3: Dimensions

� = 301:2 mm which approaches the size of the additional object. This is
hence no longer a low frequency computation, but a computation in the
resonance domain. The cell size adopted for the object allows computations
up to about 1050MHz if one requires a cell size smaller than �=10. Previous
investigations [66] have shown that reasonable results can be achieved with
cell size of �=5 even though in that case the results must be carefully
interpreted. The discretisation is hence with certainty �ne enough. On
the other hand the dimension of the aperture is no longer in the domain
usually asked for when using the equivalent dipole principle. Comparisons
of measurements with computations show however that the small aperture
theory can be extended to apertures of longest dimensions 0:4� [40].

The comparison of simulated and measured curves is less favourable
as for the previous cases. Di�erences reach 10 dB. Nevertheless the main
features of the curves correspond.
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Figure 4.18.: Test case 3: cavity with reentrant corner

4.4. Acceleration of Computation Times

4.4.1. Di�erent Algorithms for Computing Acceleration

Computations of electromagnetic �eld problems are one of the most re-
source demanding applications for modern digital computers. Therefore
acceleration procedures were investigated for various aspects of the dif-
ferent numerical methods [67]. In the following only those methods are
touched upon which are applicable to a Method of Moments in general or
for the solution of an integral equation in particular.

Generally speaking, the way a mathematical method is coded contrib-
utes to performance, a simple precalculation of various re-used values can
save precious processor time. Under this aspect falls also the judicious
resorting of the terms in sec. 4.1.1.

The functions involved in the moment solution as basis or testing func-
tions have a further share in computation time. A careful choice of the
basis and testing functions helps to reduce computation time as discussed
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in sec. 4.1.3. A suitable current representation supports also a rapid con-
vergence and even extrapolation to higher frequencies [68].

Under all circumstances, however, optimal coding will not speed up
computation much beyond a limit, it is then more important to reduce
the complexity of the algorithm in question. The present algorithm uses
analytical expressions to reduce the complexity of the triple indexed sums
of the Green's functions in 4.1.1.

Computations needing big matrices were the reason for the development
of matrix compression algorithms [69,70] by constructing either directional
functions or wavelets. The procedures for the former are highly adapted
to the free-space case, so that they are not applicable to non free-space
problems as the present one. Moreover, both methods are better suited for
large matrices not encountered in the examples in the present work.

A last class is especially well adapted for the summation of periodic
free-space Green's functions occurring for waveguides or strati�ed media.
The convergence of some of their representations can be very slow, con-
vergence accelerating algorithms help to speed up computations. Beside
mathematical reformulations as the Poisson formula of the Fourier trans-
form, also proper algorithms for convergence accelerations were derived as
the "-algorithm or Shank's and Levin's transforms [71]. Those algorithms
are not applicable to the series constituting the Green's functions of cavities
due to their mathematical properties.

For all these methods it is to note that only the computation of a matrix
or series at one de�ned frequency is a�ected. If the results for a wide band
or even only several frequencies are needed, the algorithms will speed up
the single computations, the �nal result however is always the product of
number of frequency points and the time needed for every point. Another
method to gain fast data over wide range of frequencies will therefore be
superior to the above algorithms.

4.4.2. Wide Band Data from Sample Frequencies

An algorithm for the generation of wide band data from computations
at some frequency points uses the interpolation of the impedance matrix
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between so-called nodes [72]. By using this method, the impedance mat-
rix is only calculated at prede�ned frequency points, the matrices at the
other points are then interpolated. The application of the method to free
space uses a mixed linear of the real part and a logarithmic interpolation
of the imaginary part of closely spaced elements. The �nal matrix inver-
sion remains necessary for each frequency point which renders the method
rather tedious for large matrices. Another drawback of the method is
that the impedance matrices at the nodes need to be stored, whereas the
straightforward single step frequency computation allows to remove from
the storage medium the matrix for the already solved frequencies. These
drawbacks concern less the present case, as the matrix sizes are usually
rather small.

The Green's function of the cavity have poles at the resonances of the
empty cavity. An interpolation with an linear or logarithmic scheme would
inevitably fail if the nodes are spread below and above the resonance fre-
quencies. A polynomial interpolation would not accurately represent the
actual Green's function.

Based on [72] a new interpolation method for the Green's functions
in resonant structures has been developed and reported [73]. It is well
adapted to Green's functions for resonant geometries like cavities, but also
waveguides or dielectric resonators. It consists in subdividing the whole
frequency band at the resonant frequencies or the poles of the Green's
functions and then to interpolate using rational functions to well represent
the singular behaviour of the Green's function.

The application of this method to a simple case will be demonstrated
brie�y in the following. The resonance frequencies of the cavity are calcu-
lated by

fri (l;m; n) =
c

2�

r� l �
A

�2
+
�m�

B

�2
+
�n�
C

�2
(4.18)

Between two frequencies fri and f
r
i+1, nodes fk are chosen. Two possibilities

are suggested, the one with an equally spaced distribution of the nodes,
the other, more adapted for interpolation purposes and yielding better
interpolations especially at the subband limits [74], the distribution of the
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nodes according the Chebyche� law

fk =
fri + fri+1

2
+
fri � fri+1

2
cos

�
2k + 1

2n+ 2
�

�
(4.19)

Then the elements of the impedance matrix ZJJ (3.35) are interpolated
by a rational function of order � with �+ � + 1 = �+ 1 and � < �

R�(x) =
p0 + p1 x+ � � �+ p� x

�

q0 + q1 x+ � � �+ q� x�
(4.20)

An interpolation in the usual way would involve the inversion of a very
ill-conditioned matrix. Hence the interpolated value calculated by (4.20)
would be little accurate. A special algorithm for interpolation [75, 76] by
rational functions is faster and yields more accurate results. This algorithm
only computes the interpolated values R�(x), and not the coe�cients pi and
qi. The algorithm is highly e�cient and very accurate, a brief description
can be found also in appendix D.

As an example, consider the wire and plate case in section 4.3. The
whole band 100-995 MHz is subdivided into 18 subbands according to the
resonances of the empty cavity. Three or �ve nodes are chosen in each
subband, the corresponding curves without reaction of cavity or objects
are compared to the rigorous single step computations in �g. 4.19. The
agreement between the curves is for three nodes satisfying only for fre-
quencies below 600 MHz. Above this frequency, the curves di�er by up to
40 dB. This is due to the fact that with three nodes the rational function in
4.20 has only one pole, whereas the approximation of the Green's function
would necessitate two poles.

Five nodes allow to accurately interpolate functions with two poles,
hence the curves determined by single step computation and by acceler-
ated computation almost coincide. The maximal di�erence is 8 dB at the
frequency point 935 MHz.

The gain in computation time depends on the number of nodes and of
interpolated matrices, in other words the ratio between number of nodes
and number of frequency points. In the above case, 180 matrices were
needed for a frequency step of 5 MHz. For an interpolation with three
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Figure 4.19.: Exact and interpolated curves for the wire/plate case

nodes, 54 matrices must be exactly calculated, the other 126 are interpol-
ated with almost no computation time. The resulting gain is 70 %. This
number is reduced to 50 % when interpolating with �ve nodes.
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Chapter 5

Applications

The previous chapter presented details about the implementation of the
method I chose based on the considerations stated in chapter 3. In this
chapter the computer codes will be applied to two examples. The �rst
example emphasises the necessity of well thought grounding schemes by
comparing �ve di�erent, but similar geometries. The example also intro-
duces why methods are needed which rapidly give an insight into possible
perturbations without necessarily supplying exact values. The second ex-
ample is an application of statistical methods to the generic structure.
Statistical methods are intended to give an idea of possible perturbations
with only few data. This part is heavily based on a PhD thesis of the
University of Paris [77], elaborated at the same research institution as the
present work.

5.1. Interaction Plate�Monopole

The careful consideration of connections to ground and/or earth is very
important when designing equipments compatible with their environments.

The mutual connection of several devices with shielded cables can cause
interferences known as ground loops. They are mainly due to di�erent im-
pedances to the earth potential. In this case, the di�erent devices should be
grounded only once so that the ground loop is opened. One hence prevents
the interference due to common mode perturbation. For high frequencies,
however, the parasitic capacitance to earth of the non-grounded device will
close again the loop and ruin the protection.

On printed circuit boards one uses large ground planes to reduce the
inductance of the ground connection. Di�erential mode perturbations are
e�ectively eliminated.
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�

(a) Border is

grounded

�

(b) Base is groun-

ded

�

(c) Floating plate

�

(d) Plate is connec-

ted at the top via

two strips

�

(e) Plate is connected

via two strips

Figure 5.1.: Interaction monopole�plate: various grounding schemes (see
text)
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This section presents why and how large plates should be grounded
inside cavities. For this, two objects are �tted into the usual cavity: the
measuring monopole and a thin plate covering a large portion of the cavity
section. This large plate is grounded, i.e. connected to the cavity walls, via
di�erent schemes:

1. The plate is connected to the base and to two side walls of the cavity,
cf. �g. 5.1(a).

2. The plate is only connected to the cavity base, cf. �g. 5.1(b).

3. The plate `�oats' in the cavity, but has a conducting connection from
the middle of the base to the cavity base, cf. �g. 5.1(c).

With a certain experience in �eld theory and antennas, the high-frequency-
engineer will suppose that at certain frequencies a �oating plate or a plate
grounded only at an edge will resonate and hence radiate strongly. Two
further schemes try to short circuit these resonances:

4. The top edge of the plate is connected to the cavity walls via two
short, thin strips, cf. �g. 5.1(d). As the current normally goes to zero
at the edges of conductors this scheme does not promise good results.

5. The edges of the plate are connected to the cavity walls via two short,
thin strips at mid height of the plate, cf. �g. 5.1(e).

The dimensions of the geometries are summarised in table 5.1. Origin and
axes are analog to �g. 4.5.

The structure was chosen to simulate in a simpli�ed form a real, boxed
system. A long cable, e.g. a power supply cable, is located close to a mul-
tilayer printed circuit board (PCB) in a cavity. The PCB is simpli�ed to
its large ground plane (for low inductance, see above), the e�ects from sub-
strate and various other layers are neglected. Another large layer, e.g. for
power supply, would be very close to the ground plane compared to other
distances in the cavity. The substrate thickness would also be very small
compared, its e�ect is hence negligible. Therefore, the whole PCB will be
considered as a simple conducting plane.
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x=mm y=mm z=mm

common characteristics:
cavity size 300 300 500

aperture circular, r = 20 mm
position 0 150 250

monopole loaded with R = 50


base 100 150 0
dimension 4 225

scheme 1: plate connected at the border

plate base 175 0 0
dimensions 300 300

scheme 2: plate connected only at the base

plate base 175 25 0
dimensions 250 300

scheme 3: �oating plate with grounding strip

plate base 175 25 20
dimensions 250 300

strip base 175 150 0
dimension 4 20

scheme 4: plate grounded at the top edge via two strips

plate base 175 25 0
dimensions 250 300

strips base 175 0 296
175 300 296

dimensions 25 4

scheme 5: plate grounded centrally via two strips

plate base 175 25 0
dimensions 250 300

strips base 175 0 148
175 300 148

dimensions 25 4

Table 5.1.: Dimensions of the di�erent grounding schemes
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The power in the base impedance of the measuring monopole in the
frequency band 100 MHz to 995 MHz for the �ve grounding schemes was
simulated using the method of chapter 4. Here, no reaction terms (neither
of the cavity nor of the objects) were taken into account. Only the e�ects
of the resonating plate coupling to the monopole were to be shown without
covering them by other e�ects.

Figure 5.2 shows the received power for the �ve grounding schemes.
Already in these plots over a wide band one sees, that the �ve schemes
yield di�erent results. Scheme 3 with the �oating plate constitutes a case
apart having di�erences of 4 to 6 dB to the others. In the following I will
discuss more closely some of the phenomena, marked with arrows in the
�gures.

The �rst strong resonant e�ects occur between 120 MHz and 270 MHz.
Figures 5.3 show the �ve curves in this frequency band in detail. Below 130
MHz, the base voltage of the monopole is the same for all cases apart from
the one with the almost totally �oating plate. Starting at 130 MHz, several
resonances occur with a maximum decrease and increase of approximately
35 dB. Above 240 MHz, the curves are again �at with a comparable level.
The longer dimension of the plate, 300 mm, is �=4 at 250 MHz. For a
physical explanation, image the plate at the cavity base, the whole length
would now be 600 mm, the corresponding resonance is now �=2. All curves
except for the one for scheme 1 (complete grounding of the plate) and
5 (central grounding) show at least one resonance, suggesting that the
plate resonates and couples to the monopole. Scheme 5 (grounding at mid
height) shifted the resonance to 150 MHz, being more e�cient to shortcut
the above resonance.

The computations assume that losses occur only in the ohmic load of
the monopole. The sharp resonances are due to the small losses, in reality
they would be less sharp.

A physical interpretation of the remaining frequency band is di�cult.
Above 600 MHz more than six modes of the cavity are excitable, the dif-
ferent coupling mechanisms are tedious to investigate and to interpret.
Di�erent modes are excitable in di�erent ways by the polarisation of the
incoming wave and the position of the aperture. The di�erent modes then
do not couple uniformly to plate and monopole due to the �eld con�g-
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Figure 5.2.: Induced voltage at monopole base for the various grounding
schemes. Top schemes 1 to 3, bottom scheme 2 (borders) and
3, 4 (strips)
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Figure 5.3.: Induced voltage in the frequency band 170 MHz to 270 MHz

uration. A close investigation would also be counterproductive because a
small change in the parameters of the cases like dimensions or the position
of the grounding wires would yield totally di�erent curves. This can be
seen when comparing the two schemes 4 and 5 with the grounding wires
to the cavity walls.

Looking at �gure 5.2 let us nevertheless conclude that generally the
scheme with the plate connected to all possible walls is the one with the
least resonances, at least in this frequency band. When considering only
this frequency band and only the received power in the monopole, scheme 1
is in fact the best one. But other constraints could be asked for, for instance
a maximum perturbation in the frequency band the system is functioning
in. If the system functions only in a region from 300 MHz to 500 MHz, all
curves are the same, all grounding schemes are appropriate. If however the
usable band is in the region 100 MHz to 300 MHz, scheme 2 is necessary.

A resonance at 540MHz, however, is a di�erent case: only the curve for
scheme 1 shows a strong resonance, all others are rather �at. A detailed
plot is shown in �g. 5.4. Scheme 5 with grounding at mid-height has also
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Figure 5.4.: Induced voltage in the frequency band 500 MHz to 600 MHz

a resonance in this region.

Starting with these examples several investigations are possible: chan-
ging the dimensions of the plate or its location, grounding by other schemes,
etc. and so rapidly making explode the number of structures to investig-
ate. Another factor in such an investigation is the frequency range: is the
whole frequency range of 100 MHz to 1 GHz important or only a portion
of it? Finally, what is the interesting physical variable? For audio and
video applications, this could be a mean of the noise on the input voltage,
for digital systems its maximum value. For a fast insight into possible per-
turbations, statistical methods can be used. One method was developed
for an application in EMC [77], and shall be exemplaryly applied below.

5.2. Statistical Methods in EMC

By using statistical methods in EMC, developers can gain a fast insight of
what can happen if the parameters of a system are modi�ed. The general
performance of the system is then judged by measuring some physical vari-
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ables like voltages or currents at characteristic places. The methods used
below were developed by [77]. For consistency with his work, the variable
parameters of a system will be called the factors, the performance of the
system will be called the response of the system.

The �rst step is to choose the factors one would like to investigate, and
the response. The mean value of a voltage or a current is a parameter one
could be interested in. The mean of the voltage at the base of the monopole
�U(f) constitues one easily measurable, yet characteristic parameter of the
system. Restricted to the frequency band 650 MHz to 1 GHz this response
will be considered in the following. The factors are the di�erent geometric
dimensions. For the previous case this could be the shape, size and position
of the aperture (4 factors), the position and dimensions of the monopole (5
factors), and/or the dimensions of the plate (5 factors). Already with this
easy case, fourteen factors possibly vary. For an exemplary description,
this number is reduced by using a structure resembling the �rst test case
of chapter 4: the single monopole in a cavity. The aperture will be con-
sidered as �xed, the plate will be removed. Of the remaining factors for the
monopole only three will vary: the length of the monopole and its position
on the cavity base. Considering a totally symmetric geometry with the
aperture centred on the front wall, the domains for the three factors are
hence reduced to the following intervals:

126 mm � length l of monopole � 400 mm

150 mm � position y of monopole � 250 mm

50 mm � position x of monopole � 250 mm

The domain of variation of the position y is reduced to the above range due
to the obvious symmetry of the structure: `left' (y 2 [50 mm : 150 mm])
will yield the same base voltages as `right' (y 2 [50 mm : 150 mm]). The
factors are now mapped into normalised intervals and named for an easy
identi�cation:

�1 � x1 � 1

�1 � x2 � 1

�1 � x3 � 1
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x1 is the length, x2 and x3 are the position in x and y of the monopole
respectively. One now says that the factors can have levels (= values)
between +1 and �1.

For the application of the statistical methods, a so-called design of
experiments, or in short just design is now implemented. It lists all possible
combinations of all possible levels of the factors. For smaller plans and
hence less experimentations, the numbers of levels are reduced. In the
present case the number of levels were restricted to two, and 7 points
were added so as to obtain the so called composite �-optimal design. The
normalised factors now have the values�1 and+1, which would correspond
to 126 mm and 400 mm and for the length l of the monopole. The above
mentioned additional points correspond to the level 0, which is a length of
l = 263 mm. The design used in the following prescribes 15 simulations.
The simulations used the method of chapter 4.

The 15 experimentations are now treated by a numerical method called
ordinary Kriging [78,79], a method which is well known in geostatistics and
mining. Jean Lefebvre [77] applied it to the coupling problem. After several
steps of computation, the method issues an estimate and the corresponding
standard deviation as error of this estimate to the true value. All necessary
steps are described in detail in [77]. The estimation of the mean value for
the base voltage is shown together with the standard deviation in �g. 5.5,
the mean on the left hand side, the standard deviation on the right hand
side. The black dots in the graph represent the values at which a simulation
took place according to the plan of experimentations. At these places,
the estimate is exact (no standard deviation), the plots for the standard
deviation show zero. The three charts individually show the values of the
perturbation for the three lengths l of 126 mm, 263 mm and 400 mm,
each chart shows the estimate for the perturbation at the corresponding
position. All three charts are issued by one single application of the Kriging
method using all 15 simulations. Charts relating to other monopole lengths
l as the shown ones are possible. The present charts also contain the
original simulations and are therefore more interesting as the other ones.
Note �nally that other characteristics of performance are possible. The
maximum base voltage could be another important and interesting value.
However, the maximum voltage is very dependent on the frequency step
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Figure 5.6.: Maximum and mean of the base voltage. Simulation by [77]

used during the calculation or experimentation step preliminary to the
statistical method.

The method used for the previously mentioned �gure 5.5 is also able
to predict two performances important for the EMC engineer: the max-
imum value and the mean of the voltage for any position as a function
of the monopole length. Figure ref�g-minmax gives interesting informa-
tions for nine di�erent monopole lengths: the maximum base voltage in
the considered frequency band will always be between �45 dB(V) and �35
dB(V). At the same time, the mean of the base voltage in the same band
will always be lower than �55 dB(V) whichever position for the monopole
is chosen. The data is not meant to be exact design data, but provides
with orders of magnitude.

5.3. Conclusion

The present chapter presented two applications of the computer codes is-
sued by the present work. The �rst application was a short investigation
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of di�erent grounding schemes. It also showed the need for fast prediction
methods without necessarily accurate values. These methods can among
others be statistical methods which were shown in the second part of this
chapter. With the two methods, an exact method which is also rather fast
compared to other exact methods and a statistical method for rapid pre-
dictions with a reasonable accuracy, the engineer has tools available which
assist in the development of electromagnetic devices.
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Chapter 6

Conclusion and Outlook

The determination and investigation of possible coupling paths and mech-
anisms is important for the design of devices which are to continue to
function in an electromagnetic environment possibly hostile. The present
work contributes to this by investigating the electromagnetic coupling to
objects in cavities. The electromagnetic perturbation is in the present case
an electromagnetic wave impinging onto the cavity and entering into it
through a small aperture.

The investigations are inserted in the various e�orts combined to the
catchword Electromagnetic Compatibility (EMC). EMC is a wide �eld
which comprises many disciplines. Engineers specialised in areas as diverse
as high voltage and high frequency techniques are needed for todays de-
velopments. Whereas until now mainly experimental techniques have been
used, numerical methods become more and more important. Still, rigorous
solutions need resources in memory and processor speed beyond present
day desktop computers. The present work contents to present a fast, but
still accurate method for the investigation of various e�ects which can oc-
cur in a generic structure. This generic structure is the coupling to metallic
objects in perfectly conducting cavities via a small aperture (cf. chapter 1).

Not only legal obligations, but also possible liability claims nowadays
encourage companies to develop and test their products carefully. European
standards were elaborated to insure that new products won't interact in
a non admissible way. A survey on some of the most representative and
important standards is given in chapter 2.

Various tests with commercially available programs showed that these
were less e�ective, or even inappropriate for the solution of the prob-
lem (chapter 3). Therefore, an existing method treating wire objects was

97
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extended to include plane conductors. Voluminous objects can be com-
posed by several plates.

The separation of interior and exterior of the cavity is a crucial detail in
the present method. The separation is necessary to reduce the complexity
of the problem, two small problems being less expensive than one large.
Both problems, i.e. the exterior and the interior problem, are tackled with
the most appropriate method.

The scattering problem in the exterior, short exterior problem, is solved
using two classic methods. The �rst method is to assume that the cavity is
�anged behind an in�nite plane, the exterior �eld is then easily computed.
Otherwise a Method of Moments for the free space takes into account
the three-dimensional structure. The use of the numerical method for the
exterior problem allowed for the �rst time to investigate the in�uences
of the outer shape of the cavity. The in�uence is of minor importance
compared to other characteristics as position or size of the internal objects.

The interior problem is solved using a specially developed Method of
Moments using the dyadic Green's functions of the cavity. The mathemat-
ical form of these Green's functions needs a particular treatment, described
in chapter 4. The reaction of the objects and the cavity on the aperture
is evaluated by an improved technique. Further details of the numerical
implementation show also a comparison of global and local function types.
The experimental setup used for measurements is described before com-
paring computations and measurements.

Interior and exterior are related by the equivalent dipole principle. The
aperture is metallized and replaced by two dipoles, an electric one and
a magnetic one. The calculation of the dipole moments necessitates the
determination of the short-circuit �elds at both sides of the wall. The nu-
merical evaluation of the exterior �elds removes restrictions on the position
of the aperture, it can now be placed anywhere on a cavity wall. The de-
termination of the interior �eld involves the evaluation of Green's functions
close to the source and an extrapolation.

Computations for wide frequency bands need long computation times.
A new method for fast wide band computations of scattering problems in
resonant structures is set out at the end of chapter 4. The method demands
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more memory than a simple step-by-step computation, is, however, much
faster.

Exemplary computations of wave interaction with cavities are found in
chapter 5 where the interaction of a monopole and a plate is looked at.
In the example a large plate is connected to the cavity walls by various
schemes. The numerical results give evidence that grounding is a di�-
cult task in EMC. It also underlines that techniques are needed in EMC
which predict rapidly possible perturbations without involving long com-
putations. Statistical methods, shown in the second part of the chapter,
can contribute to fast predictions.

A work, what extensive it may be, is always incomplete and should
stimulate to further research. Further work is possible in the physical area
and the numerical area.

Further investigations may be done on the actual symptoms the generic
structure exhibits. A study involving various parameters appears useful
to gain understanding of physical phenomena. Hereby a simple generic
structure permits a study of e�ects of aperture size and shape or cavity
shape and size.

More theoretical work is still needed for the transmission of electro-
magnetic energy through small, medium, and large sized apertures. Both
numerical and experimental work need to be conducted to obtain ideally
expressions for large apertures as simple as the ones of the equivalent dipole
approximation.

The procedure of separating interior and exterior is a necessary step
when computing coupling through apertures. The implementation of the
continuity/discontinuity of the E/H �eld is straightforward when using
Integral Equations, but needs more theoretical work to be applicable in
combination with other methods like the Finite-Di�erence Time-Domain
or Finite Element Method.

Already now with the conjunction of the present rigorous numerical
methods and statistical methods, the engineer has tools for the investiga-
tion of coupling problems. The present method also has the advantage that
by including or excluding in a well de�ned way the various contributions,
the user will gain more understanding of the coupling phenomena, and is
hence able to react and to prevent strong interactions.
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Appendix A

Polarisabilities of Small Apertures

The aperture considered in the following has a normal in ~ex, the two half
axis for the elliptic ones and the major directions for the rectangular ones
are in ~ey and ~ez respectively. Dimensions and orientation are sketched in
�g. A.1.

Butler [80] resumes the polarisabilities for small circular, elliptic and
narrow elliptic apertures. His notation is used here. Please note, that the
values di�er from his by a factor of 2 due to a di�erent de�nition of �elds
radiated by the equivalent dipoles.

A.1. Circular Aperture
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A.2. Elliptic Aperture
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K and E are the complete elliptic integrals of the �rst and second kind
respectively: K(�) =

R �=2
0

d�p
1��2 sin2 �

, E(�) =
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1� �2 sin2� d�, � is

the ellipse eccentricity � =
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2.
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Figure A.1.: Aperture dimensions and orientation

A.3. Narrow Elliptic Aperture (w � l)
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A.4. Narrow Slit (w � l)

Lee [54] cites the polarisabilities for a narrow slit.
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A.5. Various Shapes

When normalising the polarisabilites by A3=2 with A surface of the aper-
ture, the resulting values for a rectangular, cross, or rectangular with roun-
ded corners are very close (at most 3%) to the elliptic ones [54]. Slightly
di�erent values are obtained for the losange. By this normalisation, aper-
tures with almost arbitrary shapes can be considered.
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Reaction of Cavity and Objects

Topic of this appendix is the derivation of the reaction �eld of the cavity
to the aperture. For the free-space case the reaction �elds were derived
in [81]. In the general case, consider an electric dipole in ~ez, shown in
�g. B.1, and in a similar way a magnetic dipole in ~ez. The spherical and
Cartesian coordinate system are shown in the same �gure along with the
corresponding angles and unit vectors.

B.1. Electric Dipole

The electric and magnetic �eld radiated by an electric dipole ~p = p0~ez
are [82]:
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Very close to the source (r small), the exponential can be approximated
by

e�jkr = 1� jkr � k2r2
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Figure B.1.: Electric dipole in spherical and Cartesian coordinate system
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+ j

2kr

3

�
(B.6)

and

H� =
jp0!k

4�

sin �

r

�
1

kr
+ j

��
1� jkr � k2r2

2
+ j

k3r3

6

�

=jp0
!k

4�

sin �

r

�
1

kr
+
kr

2
� j

k2r2

3

�
(B.7)

With this the electric �eld in ~ez is

Ez =Er cos � �E� sin �

=
p0

4�"

k2

r

�
2 cos2 � � sin2 �

k2r2
+
k2

2

�
2 cos2 � + sin2�

�� j
2kr

3

�
(B.8)
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Please note that the imaginary part of the electric �eld remains bounded
at the source. The real part diverges with r�3 and r�1.

Similar for the magnetic �eld:

Hx =�H� sin�

=� jp0
!k

4�

r sin � sin�

r2

�
1

kr
+
kr

2
� j

k2r2

3

�

=� jp0
!k

4�

y

r2

�
1

kr
+
kr

2
� j

k2r2

3

�
(B.9)

Hy =H� cos�

=jp0
!k

4�

r sin � cos�

r2

�
1

kr
+
kr

2
� j

k2r2

3

�

=� jp0
!k

4�

x

r2

�
1

kr
+
kr

2
� j

k2r2

3

�
(B.10)

The real parts vanish at the source. The choice y = r and x = r respectively
simpli�es the expressions and is therefore the direction of extrapolation.

To simplify the expression for the Ez choose now cos � = 1p
3
, so that

eqn. (B.8) becomes

Ez =
p0

6�"

k2

r
(B.11)

and hence

GFS
ezz =

k2

6�r
(B.12)

The Green's function for the magnetic �eld close to the source are

GFS
hxz =� k

4�

y

r2

�
1

kr
+
kr

2

�
(B.13)

GFS
hyz =

k

4�

x

r2

�
1

kr
+
kr

2

�
(B.14)

With a simple coordinate transform, the expressions for an electric dipole
~p = p0~ex are readily found.
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Gezz
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Figure B.2.: Extrapolation procedure for Ez(p0~ez)

B.2. Magnetic Dipole

Babinet's principle now states that if ~E0 and ~H 0 are solution of Maxwell's
equations in a homogeneous, lossless and chargefree space, then also

~E = �Z ~H 0 (B.15)

~H = +
1

Z
~E0 (B.16)

with Z =
p
�=" are solution of Maxwell's equation, hence the expressions

for the electric and magnetic �eld in the vicinity of the source are expressed
analogously.

B.3. Example

The �eld radiated by the images of the two dipoles which replaced the
aperture is now the di�erence between the �eld radiated by a dipole in free
space and the �eld radiated by a dipole in a cavity. Both �elds diverge
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at the aperture, however the di�erence is bounded. This value was pre-
viously determined by the extrapolation of ��GA and ��gF and a subsequent
numerical �nite di�erence scheme. The values for ��Ge, ��Gh, ��ge and ��gh are,
however, very inaccurate. More accurate is the direct extrapolation of the
di�erence of the Green's function of free space and of the cavity proposed
here. In �g. B.2 is shown the Green's function for free space and for the
cavity evaluated for cos � = 1=

p
3. Both curves show the 1=r behavior of

eqn. (B.11), the di�erence is now extrapolated to the source point (nu-
merical values for the �gure: A = 297 mm, B = 297 mm, C = 498 mm,
(xaper ; yaper; zaper) = (0; 152; 0; 248) mm, f = 400 MHz).
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Appendix C

The Elements of the Impedance Matrix

Equation (3.35) shows the linear system to be solved. This equation is
recalled here for clarity:

(3.35):

0
@ ZJJ ZJE ZJH

ZEJ ZEE ZEH
ZHJ ZHE ZHH

1
A �

0
@ J

�E

� ~H

1
A =

0
B@ 0

~E� � ~n
~H�

1
CA

The di�erent elements were described in section 3.5, and are recalled here
together with a more detailed description of the actual implementation.

C.1. ZJJ : Moment Matrix

The elements of the Moment Matrix relate the �eld radiated by a current
element, hence the basis function of this current element, with the testing
or sampling function. Mathematically, a double surface integration of the
Green's function with basis and testing function yield the matrix elements.
The domains of integration are �rstly the domain �b for the basis functions
fb and secondly �t, domain of the testing functions ft. Numerical issues
of the Green's functions as well as the double surface integration are listed
in chapter 4. The integrations again are carried out term by term, they
converge su�ciently to be allowed to do this.

(ZJJ) =

Z
�b

Z
�t

ft
��Gefbd�td�b (C.1)
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The elements ZJyJy for the current Jy on a surface normal to ~ex are:

hGeyyfby; ftyi = j

!"

X
kx

X
ky

X
kz

sin (kxx) sin (kxx
0)�

k2 � k2y
� Z
�t

cos (kyy) ft(y)d�t

Z
�r

cos (kyy
0) fb(y

0)d�b

Z
�t

sin (kzz) ft(z)d�t

Z
�r

sin (kzz
0) fb(z

0)d�b

The part for x is reduced by using one of the expressions (4.1) - (4.4).

The other elements ZJJ are computed in the same way.

C.2. ZJE: Sampled Incident Field Due to Electric Dipole

The sampled incident electric �eld is the electric �eld radiated by the elec-
tric dipoles representing the aperture.

(3.28): ~Einc =
1
"
��Ge (~r; ~r

0) ~pe

This incident �eld is sampled by a testing function. For a current Jx, (3.28)
becomes:

(ZJxE) = �e

Z
�t

ftxGexx (~r; ~raper) d�t (C.2)

ftx is contructed depending on the normal vector of the surface with no
integration in the normal direction. Similar for Jy and Jz.

C.3. ZJH : Sampled Incident Field Due to Magnetic Dipole

The sampled incident electric �eld is the electric �eld radiated by the mag-
netic dipoles representing the aperture.



C.4 ZEJ 111

(3.28): ~Einc = +j �! ��ge (~r; ~r
0) ~pm

This incident �eld is sampled by a testing function.

(ZJxHy
) =� j �!

Z
�t

ftgexy (~r; ~raper) d�t�myy

� j �!

Z
�t

ftgexz (~r; ~raper) d�t�mzy (C.3)

(ZJyHy
) =� j �!

Z
�t

ftgeyy (~r; ~raper) d�t�myy

� j �!

Z
�t

ftgeyz (~r; ~raper) d�t�mzy (C.4)

(ZJzHy
) =� j �!

Z
�t

ftgezy (~r; ~raper) d�t�myy

� j �!

Z
�t

ftgezz (~r; ~raper) d�t�mzy (C.5)

Similar for Hz .

C.4. ZEJ : Reaction of Surface Currents onto Electric Dipole

When neglecting the reaction of the surface currents on the objects, these
elements equal zero.

(ZEJ) =

0
@� j

!"

Z
�b

Gexxfbxd�b;� j

!"

Z
�b

Gexyfbyd�b;� j

!"

Z
�b

Gexzfbzd�b

1
A

(C.6)

In a Galerkin scheme (basis and testing functions are identical), the sampled
incident �eld (C.2) and the reaction of the surface currents (C.6) are pro-
portional by a factor of � j

"!
1

�e�E
.
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C.5. ZEE: Reaction of the Electric Field onto Electric Dipole

Unity if reaction is neglected. The exact derivation of the elements of the
so-called reaction Green's ��Gr

e functions is in appendix B.

(ZEE) = (1 + �eG
r
exx) (C.7)

C.6. ZEH : Reaction of the Magnetic Field onto Electric Dipole

Zero if reaction is neglected. The exact derivation of the elements of the
so-called reaction Green's functions ��gre is in appendix B.

(ZEH) = (ZExHy
; ZExHz

) =
��j!�grexy � j!�grexz

�
(C.8)

C.7. ZHJ : Reaction of Surface Currents onto Magnetic Dipole

When neglecting the reaction of the surface currents on the objects, these
elements equal zero.

(ZHyJ ) =

0
@+

Z
�b

Ghyxfbxd�b;+

Z
�b

Ghyyfbyd�b;+

Z
�b

Ghyzfbzd�b

1
A (C.9)

Similar for ZHzJ . In a Galerkin scheme (basis and testing functions are
identical), the sampled incident �eld and the reaction of the surface currents
(C.2) are proportional by a factor of �j�!�m�H .

C.8. ZHE: Reaction of the Electric Field onto Magnetic Dipole

Zero if reaction is neglected. The exact derivation of the elements of the
so-called reaction Green's functions ��Gr

h is in appendix B.

(ZHEx) = (ZHyEx; ZHzEx) =
�
j!"�eG

r
hyx; j!"�eG

r
hzx

�
(C.10)
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C.9. ZHH : Reaction of the Magnetic Field onto Magnetic Dipole

Unity if reaction is neglected. The exact derivation of the elements of the
so-called reaction Green's functions ��grh is in appendix B.

(ZHyH) = (ZHyHy
; ZHyHz

) =
��
1� grhyy�myy

�
;�grhyy�myz

�
(C.11)

Similar for ZHzH .

C.10. One Dimensional Integrations of Sine/Cosine and Basis/Testing

Functions

The following expressions list the expressions of the integrals encountered
during the expansion as well as the testing step. The appropriate expres-
sions are used in the appropriate elements above.

According to the distinction made in section 3.5 for the type of basis
or testing funtions the expressions for local and global functions are listed.

The following expression contain the variables xi, xi+1 and xi�1 which
are the present sampling point and the two adjacent sampling points. If
i = 0, the sampling point is on the edge, xi�1 does not exist in that case.
The last point on the edge is xN�1 with i = N � 1. The sampling rate is
xi�xi�1 = �x. Some terms can be precalculated and stored to reduce the
computational e�ort.

C.10.1. Local Basis Functions

� piecewise constant function with sine:

i = 0 :

Z xi+1

xi

sin kxx dx =
1

kx
sin kx

�x

4
sin kx(x0 +

�x

4
)

(C.12)

i 6= 0; N � 1 :

Z xi+1

xi�1

sin kxx dx =
2

kx
sin kx

�x

4
sin kxxi (C.13)

i = N � 1 :

Z xi

xi�1

sin kxx dx =
1

kx
sin kx

�x

4
sin kx(xN�1 � �x

4
)

(C.14)
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with cosine:

i = 0 :

Z xi+1

xi

cos kxx dx =
1

kx
sin kx

�x

4
cos kx(x0 +

�x

4
)

(C.15)

i 6= 0; N � 1 :

Z xi+1

xi�1

cos kxx dx =
2

kx
sin kx

�x

4
cos kxxi (C.16)

i = N � 1 :

Z xi

xi�1

cos kxx dx =
1

kx
sin kx

�x

4
cos kx(xN�1 � �x

4
)

(C.17)

� piecewise linear function with sine:

i = 0 :Z xi+1

xi

sin kxx

�
1� jx� xij

�x

�
dx = +

cos kxxi

kx

� 2 sin kx
�x

2

kx�x

cos kx(xi +
�x

2
)

kx
(C.18)

i 6= 0; N � 1 :Z xi+1

xi�1

sin kxx

�
1� jx� xij

�x

�
dx = �x

 
2 sin kx

�x

2

kx�x

!2

sin kxxi

(C.19)

i = N � 1 :Z xi

xi�1

sin kxx

�
1� jx� xij

�x

�
dx = � cos kxxi

kx

+
2 sin kx

�x

2

kx�x

cos kx(xi � �x

2
)

kx
(C.20)
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with cosine:

i = 0 :Z xi+1

xi

cos kxx

�
1� jx� xij

�x

�
dx = � sin kxxi

kx

� 2 sin kx
�x

2

kx�x

sin kx(xi +
�x

2
)

kx
(C.21)

i 6= 0; N � 1 :Z xi+1

xi�1

cos kxx

�
1� jx� xij

�x

�
dx = �x

 
2 sin kx

�x

2

kx�x

!2

sin kxxi

(C.22)

i = N � 1 :Z xi

xi�1

cos kxx

�
1� jx� xij

�x

�
dx = +

sin kxxi

kx

� 2 sin kx
�x

2

kx�x

sin kx(xi � �x

2
)

kx
(C.23)

� piecewise sinusoidal with sine:

i = 0 :

Z xi+1

xi

sin kxx
sin k (�x � jx� xij)

sin k�x

dx =

k sin kxxi

k2 � k2x

cos kx�x � cos k�x

sin k�x

� cos kxxi

k2 � k2x

kx sin k�x � k sin kx�x

sin k�x

(C.24)
i 6= 0; N � 1 :

Z xi+1

xi�1

sin kxx
sin k (�x � jx� xij)

sin k�x

dx =

2k sin kxxi

k2 � k2x

cos kx�x � cos k�x

sin k�x

(C.25)
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i = N � 1 :

Z xi

xi�1

sin kxx
sin k (�x � jx� xij)

sin k�x

dx =

k sin kxxi

k2 � k2x

cos kx�x � cos k�x

sin k�x

+
cos kxxi

k2 � k2x

kx sin k�x � k sin kx�x

sin k�x

(C.26)

with cosine:

i = 0 :

Z xi+1

xi

cos kxx
sin k (�x � jx� xij)

sin k�x

dx =

k cos kxxi

k2 � k2x

cos kx�x � cos k�x

sin k�x

+
sin kxxi

k2 � k2x

kx sin k�x � k sin kx�x

sin k�x

(C.27)
i 6= 0; N � 1 :

Z xi+1

xi�1

cos kxx
sin k (�x � jx� xij)

sin k�x

dx =

2k cos kxxi

k2 � k2x

cos kx�x � cos k�x

sin k�x

(C.28)
i = N � 1 :

Z xi

xi�1

cos kxx
sin k (�x � jx� xij)

sin k�x
dx =

k cos kxxi

k2 � k2x

cos kx�x � cos k�x

sin k�x

+
sin kxxi

k2 � k2x

kx sin k�x � k sin kx�x

sin k�x

(C.29)

C.10.2. Global Basis Functions

� �oating plate, functionGI(x) = sin
�
(m+ 1)� x�xmin

xmax�xmin

�
with km =

(m+1)�

xmax�xminZ xmax

xmin

sin kxx GI(x) dx =

km

k2m � k2x

�
sin kxxmin � (�1)m+1 sin kxxmax

�
(C.30)
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Z xmax

xmin

cos kxx GI(x) dx =

km

k2m � k2x

�
cos kxxmin � (�1)m+1 cos kxxmax

�
(C.31)

� plate at one end, function GO(x) cos
�
2m+1
2

� x�xmin

xmax�xmin

�
. with km =

2m+1
2

�
xmax�xminZ xmax

xmin

sin kxx GO(x) dx =

�kx
k2m � k2x

cos kxxmin + (�1)m km

k2m � k2x
sin kxxmax (C.32)

Z xmax

xmin

cos kxx GO(x) dx =

kx

k2m � k2x
sin kxxmin + (�1)m km

k2m � k2x
cos kxxmax (C.33)
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Appendix D

Algorithm for the Interpolation by Rational Functions

The Neville type algorithm for the interpolation by rational functions
[75, 76] is well suited for the interpolation of functions which are not well
approximated by polynomials, but well approximated by rational functions.

Let R� be a rational function of order �+ 1 with

R� = Ri(i+1)�(i+�) =
p0 + p1 x+ � � �+ p� x

�

q0 + q1 x+ � � �+ q� x�
(D.1)

with �+1 = �+ � +1. It denotes a rational function passing through the
�+ 1 data doublets (xi; yi) with R�(xi) = yi. Note that the zeros and the
poles of (D.1) can be both real or complex, so that an approximation of
real functions with singular continuation in the complex plane is possible.

The proposed algorithm performs a Neville type rational function ex-
trapolation on tabulated data. The recurrence relation is the following:

Ri(i+1)�(i+�) = R(i+1)�(i+�) +
R(i+1)�(i+�) �Ri(i+1)�(i+��1)

x�xi
x�xi+�

�
1� R(i+1)�(i+�)�Ri(i+1)�(i+��1)

R(i+1)�(i+�)�R(i+1)�(i+��1)

�
� 1

(D.2)

and generates the rational functions through the �+1 points using the ones
through the � and �� 1 points. The �rst elements are

Ri = yi (D.3)

and

Ri(i+1)�(i+m) = 0 when m = �1 (D.4)

Finally please note that the Padé-approximation is a method where the
�rst �+ 1 terms of the power series expansion of (D.1) correspond to the
�rst �+ q terms of the power series expansion of the desired function f(x).
The presented algorithm however is not using this property.
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