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In this introductory chapter several basic concepts, relevant for meso-

scopic electron transport, will be described. The aim is to provide a basis

for several of the following Chapters of this volume. We, therefore, describe

in the �rst Section various aspects of electron quantum transport in two-

dimensional electron gases. This includes an estimate of typical material

parameters as well as comments on the fabrication. We then describe the

quantization of the conductance in point contacts and the edge state pic-

ture of the Quantum Hall e�ect. In the second Section we describe the
theory of single{electron tunneling in systems with strong charging and

Coulomb-blockade e�ects. Here we restrict ourselves to the simplest case

where low order perturbation theory is su�cient. We �rst discuss metallic

low-capacitance junction systems and then indicate the relevant extensions

when dealing with transport through quantum dots with discrete levels.

Many further, equally important aspects of mesoscopic transport can not

be covered here. Examples are interference and weak localization e�ects,

level statistics or the many body description of solids. Fortunately, some of

those will be covered in the more specialized Chapter of this volume.
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Figure 1. (a) Schematic cross section of a GaAs/AlGaAs heterostructure. The 2DEG is
located at the interface between the GaAs substrate and the AlGaAs top layer. (b) Hall
bar with six Ohmic contacts (shaded squares).

1. Electron Transport

1.1. 2DEG SYSTEMS AND THE QUANTUM HALL EFFECT

In this Section we introduce basic properties of a two-dimensional electron

gas (2DEG) in a GaAs/AlGaAs heterostructure (see Fig. 1a). On the GaAs

substrate a layer of typically 100 nm AlGaAs is grown. Somewhere halfway

in the AlGaAs layer there is a thin layer where the Ga atoms are replaced by

Si donor atoms. With a proper amount of Si one �nds that at low temper-

ature the only mobile electrons are located at the GaAs/AlGaAs interface.

These free electrons are attracted by the GaAs since they can lower their

energy in this smaller band gap material. They are also held as close as

possible to their ionized Si+ donors and thus they form a thin conducting

layer near the GaAs/AlGaAs interface (for a review on growth of GaAs

heterostructures see Ref. [1]). Since GaAs and AlGaAs can form a nearly

perfect interface on the atomic scale and since the Si donors are spatially

separated, the electrons experience very little scattering. Typical mean free

paths are 10 �m and the record is close to 100 �m. Before we discuss bal-

listic mesoscopic devices we �rst review a few important electron transport

properties of 2DEG's. In Table 1.1 we have summarized a number of useful

relations and some typical values for GaAs/AlGaAs heterostructures.

For transport experiments one �rst de�nes a so-called Hall-bar of typi-

cally 0.1mm�1mm. At the edge of the Hall-bar one then locally evaporates

a number of metal squares of roughly 50�m�50�m in size. By heating the

whole sample this metal di�uses into the semiconductor where at some

point it makes electrical contact to the 2DEG. Good contacts are char-

acterized by linear current-voltage traces and are therefore called Ohmic

contacts. Fig. 1b shows a Hall-bar with 6 Ohmic contacts in a con�guration

that allows measurements of the Hall resistance Rxy and the longitudinal
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Figure 2. Measurement of the Hall resistance Rxy and the longitudinal resistance Rxx

at 0.1 K. The mobility is � = 1:5 � 106cm2/Vs, the temperature is T = 80mK. (Figure
provided by R. L. Willett.)

resistance Rxx. The sample is current biased and resulting voltages can be

measured as a function of magnetic �eld.

Fig. 2 shows a remarkable measurement of Rxy and Rxx as a function

of magnetic �eld measured at a temperature of 80mK. The Hall resistance

shows plateaus where the longitudinal resistance has minima of virtually

zero resistance. The striking aspect of this data is that the plateaus are

precisely quantized at integer and fractional multiples of h=e2. The integer

plateaus are known as the integer quantum Hall e�ect (QHE), and corre-
spondingly, the fractional plateaus are referred to as the fractional QHE.

The precision of the quantization of the former is so accurate that it now

forms the international standard of resistance. An important quantity in

the quantum Hall regime is the �lling factor � = hns=eB. It is equal to

the number of electrons divided by the number of 
ux quanta �0 = h=e.

For �lling factor � = 1 the system is in the center of the �rst plateau at

h=e2, for � = 2 in the center of the second plateau at h=2e2, and so forth.

The �lling factor is, for instance, convenient for determining the electron

density. The oscillations in the longitudinal resistance, which have minima
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at the same magnetic �elds where the Hall resistance shows plateaus, are

called Shubnikov-de Haas oscillations. The temperature dependence of the

oscillation minima is an accurate determination of the mobility and mean

free path of the 2DEG.

Table 1.1. Useful relations and system parameters (including spin de-

generacy). We have chosen typical values for �e, and ns, from which the

other values are deduced.

{ electron mobility �e = 106 cm2/Vs (typical value)

{ scattering time � = m��e/e = 38 ps

{ e�ective mass m� = 0.067 m0

{ electron density ns = 2:8 1015 m�2(typical value)

{ Fermi energy EF = ��h2ns=m
� = 10 meV

{ Fermi velocity vF = (2EF=m
�)1=2 = 2:3 105 m/s

{ Fermi wavelength �F = (2�=ns)
1=2 = 47 nm

{ elastic mean free path l = vF� = 8:7�m

{ cyclotron radius at EF rc = m�vF=eB = 88 nm at B = 1 T

{ angular cyclotron frequency !c = eB=m� = 2:6 1012 rad/s

{ magnetic length lB = (�h=eB)1=2 = 8:1 nm at B = 10 T

1.2. E-BEAM FABRICATION OF A SUBMICRON SEMICONDUCTOR
DEVICE

We brie
y outline a standard procedure for fabricating small devices in a

2DEG. We start from a 2DEG con�ned in a GaAs/AlGaAs heterostruc-

ture. To laterally con�ne the electrons one must de�ne a pattern on top of

the heterostructure. As an example, we describe e-beam lithography, which

is a technique also used in the fabrication of chips. Depending on the de-

sired pattern, one can choose between many variations in the lithography

process steps. One procedure is shown schematically in Fig. 3. An organic
resist �lm (�100nm thick) is spun onto the substrate. Exposing the re-

sist with an electron beam results in a molecular-mass di�erence between

the exposed and unexposed parts (see Fig. 3a). An appropriate developer

removes only the exposed resist, resulting in the mask pattern shown in

Fig. 3b. Evaporated material now sticks only at the substrate where the

resist has been removed (see Fig. 3c). The mask itself can be removed by

dissolving the remaining resist (lift-o�), leaving a small pattern on top of

the substrate (see Fig. 3d). The minimum resolution of such a pattern with

present day electron-beam lithography facilities is about 20 nm.



INTRODUCTION TO MESOSCOPIC ELECTRON TRANSPORT 5

Figure 3. Outline of the electron-beam lithography procedure for fabricating submicron
structures.

Figure 4. (a) Cross-section of a GaAs/AlGaAs heterostructure with typical layer thick-
nesses. A negative voltage VG applied to the metal split-gate con�nes the electrons lat-
erally in the 2DEG.
(b) Top-view of a QPC. The dotted line indicates the depletion region in the 2DEG,
which is tuned by VG. The two wide 2DEG regions act as reservoirs, emitting electrons
through the QPC with energies up to their electrochemical potentials �1 and �2. A
voltage di�erence V = (�1 � �2)=e results in a net current I through the QPC.

From this point there are basically two ways to transfer the pattern to

the 2DEG. One way is to use the pattern as an etch mask. Etching removes

the portion of the 2DEG not protected by the pattern. The boundaries of

the etched pattern cause a depletion region, such that the conducting width

in the 2DEG is unknown and often much smaller than the de�ned width [2].
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Another, more 
exible way to transfer the pattern to the 2DEG is to use it

as a gate [3, 4]. Applying a negative voltage to the gate depletes the electron

gas beneath it, thereby con�ning electron motion to the ungated region. For

a split-gate geometry, shown in Fig. 4, this results in a narrow conducting

channel. The advantage of the split-gate technique is that the conducting

width of the point contact in the 2DEG can be tuned from the de�ned

lithographic width of the pattern to zero, by making the gate voltage more

negative. Transport between the two wide 2DEG regions in Fig. 4b occurs

only through the point contact and can be studied as a function of the

width by changing the gate voltage. The width W of the constriction can

be made comparable to the Fermi wavelength, so this device is called a

quantum point contact (QPC). The actual induced potential in the 2DEG

is unknown, but self-consistent calculations [5] indicate that it has a saddle-

shape (see Fig. 5a). In the constriction, electrons are con�ned in the lateral

x-direction and slowed down by the presence of a potential barrier in the

y-direction. Making the gate voltage more negative, simultaneously reduces

the width and increases the barrier height. For zero-width or a barrier which
is higher than the Fermi energyEF of the 2DEG, the QPC is pinched-o� and

electron transport between the wide 2DEG regions is impossible. Fig. 5b

shows a scanning electron micrograph of a double point contact device.

Figure 5. (a) Saddle-shaped potential induced in the 2DEG upon application of a
negative gate voltage, resulting in lateral con�nement in the x-direction and a potential
barrier in the longitudinal y-direction (from Beenakker, and van Houten in Ref. [6]).
(b) Scanning electron micrograph of a double-QPC device. The white areas are the Au
gates, and the marker is 1 �m long. The QPCs are 250 nm wide and are separated by
1.5 �m.

1.3. QUANTIZED CONDUCTANCE OF A POINT CONTACT

The resistance of a point contact in the classical ballistic regime is known as

the Sharvin resistance [7]. The Sharvin resistance is entirely due to elastic

backscattering at the geometrical narrowing of the ballistic point contact.
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Dissipative processes, which bring the electron system into thermodynamic

equilibrium, take place far away from the point contact (i.e. several times

the inelastic mean free path). Therefore, the cause of the resistance in this

system is spatially separated from its corresponding Joule heating. The

classical conductance of a Sharvin point contact in a 2DEG is [8]

Gs =
e2

�

dN2D

dE
vFW : (1)

The quantum mechanical 2D density of states per unit area, including

a factor 2 for spin degeneracy, is dN2D=dE = m�=��h, while vF = �hkF=m
�

is the Fermi velocity. We can rewrite the classical equation (1) to a semi-

classical version which includes the conductance quantum 2e2=h

Gs =
2e2

h

kFW

�
=

2e2

h

2W

�F
: (2)

The Fermi wave-vector kF or wavelength �F are related to the 2D elec-

tron density ns by kF = 2�=�F = (2�ns)
1=2. The semi-classical form of the

Sharvin conductance is continuous and linear in the width W . However,

Eq. 2 suggests that we can expect deviations due to the wave nature of

electrons whenever �F is of order W . We give a derivation of the quantum

version of the Sharvin conductance below, but �rst discuss the experimental

results.

The conductance of a point contact is measured by passing a current

I through the sample and measuring the voltage V between the current

source and drain (see Fig. 4b). Fig. 6 shows the conductance G in units

of 2e2=h = (12906 
)�1 versus gate voltage VG measured at B = 0. As-

suming that the width varies linear with gate voltage, we indeed see that

on average the conductance decreases linearly when the constriction is nar-

rowed. However, around this classical dependence we see that G changes

in quantized steps of 2e2=h. At VG = �2:2V, the conductance becomes

zero, corresponding to a pinched-o� point contact. Fig. 6 further shows

that on increasing the temperature the conductance quantization gradu-

ally disappears [9]. The conductance G(VG) is roughly linear at 4.2 K, in
accordance with the classical dependence of Eq. 1. Although the classical

result cannot explain the quantization, we note that the plateau values are

obtained in Eq. 2 whenever the width W is an integer multiple of �F=2.

Eq. 2 predicts that an increase in W of �F=2 (which is 21 nm in this sam-

ple) increases G by 2e2=h. In total 16 steps were observed between pinch-o�

and VG = �0:3V were the constriction is just formed in the 2DEG. The 16

steps give an estimate of the width W of about 340 nm, somewhat larger

than the lithographic width of 250 nm, but consistent with the schematic

depletion pro�le shown in Fig. 4(a). These considerations are reminiscent
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Figure 6. Conductance versus gate voltage at B = 0 and di�erent temperatures. In-
creasing the temperature thermally averages the higher plateaus �rst (from Ref. [9]).

of the states of a particle-in-a-1D-box, which, as we show below, is the basic

idea behind the conductance quantization.

We note that the conductance quantization is not as exact as the quan-

tum Hall e�ect. First, a series resistance (� 100 
) originating from the

wide 2DEG regions has been subtracted to line up the plateaus at their

quantized values [8]. Furthermore, the plateaus are not completely 
at.

This may be due to scattering at impurities in the vicinity of the QPC or,

as we discuss below, the abruptness of the constriction.

We now discuss that the conductance quantization for transport through

1D subbands. If the potential which describes the transition from the

wide 2DEG regions to the narrowest point in the QPC varies su�ciently

smoothly (i.e. adiabatically), the potential variation in the x- and y-directions

may be decoupled [10] (see Fig. 5a). The narrowest point forms the bottle-

neck of the QPC in the sense that it completely determines the transport

properties. In this case we can calculate transport through a QPC from the

Hamiltonian

H =
p2
x

2m�
+ eV (x) +

p2y

2m�
; (3)

where V (x) describe the transport at the bottleneck. For the con�nement in

the lateral x-direction, we follow Berggren et al. [11] and choose a parabolic

con�ning potential V (x) = 1=2m�w2
0x

2. Self-consistent calculations of Laux

et al. [5] have shown that small split-gate samples have a con�nement close

to such a parabola. The advantage of using a parabolic potential is that the
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resulting Schr�odinger equation can be written in the form of a harmonic

oscillator having energy eigenvalues

En = (n�
1

2
)�h!0 +

�h2k2y

2m�
(n = 1; 2; :::) (4)

which contains a free-electron kinetic energy dispersion in the longitudinal

y-direction. In the lateral x-direction the energy states, indexed by n =

1; 2; :::, are quantized and separated in energy by �h!0.

Because the electron motion is free in one direction only, Eq. 4 describes

1D subbands. Fig. 7 shows the 1D subband dispersion versus longitudinal

wave-vector ky. The right-going electrons, with a velocity �hvn = dEn=dky ,

originate from the left 2DEG reservoir, which at zero temperature populates

all the states up to its electrochemical potential �1. Similarly, the left-going

electron states are occupied up to �2, the electrochemical potential of the

right 2DEG reservoir (see Fig. 4b).

A voltage di�erence V = (�1��2)=e between the two reservoirs results

in a net current I , which is carried by the (uncompensated) electron states

in the energy interval between �1 and �2. Note that we de�ne the Fermi

energy as EF = �1 = �2 when V = 0. The net current I at zero temperature

is

I = e

NX
n=1

Z
�1

�2

dE
1

2

dNn

dE
vn(E)Tn(E) ; (5)

which includes the transmission probability of the n-th subband Tn(E) to
describe possible scattering events. Here N denotes the number of occupied

subbands, i.e. the largest number for which EN(ky = 0) < EF. The 1D spin-

degenerate density of states is dNn=dE = 2=�(dEn=dky)
�1. The important

aspect of 1D transport is the cancelation of the energy dependence in the

product of velocity and density of states (dNn=dE)vn = 4=h. For small

voltages (eV � EF), one can take Tn(E) = Tn(EF). Substituting this

in Eq. 5, one �nds that the conductance G = I=V = eI=(�1 � �2) is

independent of energy

G =
2e2

h

NX
n=1

Tn(EF) : (6)

Eq. 6 is known as the 2-terminal Landauer formula [12]. If no backscattering

takes place, so that
P
N

n=1 Tn(EF) = N , Eq. 6 reduces to

G =
2e2

h
N ; (7)
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Figure 7. Energy En versus longitudinal wave-vector ky from Eq. 4 at the bottleneck of
a QPC assuming a parabolic con�nement potential. The 1D subbands are separated by
�h!0. A net current results from the uncompensated occupied electron states in the interval
between �1 and �2, the electrochemical potentials of the two wide 2DEG reservoirs.

demonstrating that each occupied subband contributes 2e2=h to the con-
ductance. The subbands are called 1D current channels to emphasize that

each channel carries the same amount of current.

In the experiment, a decreasing VG increases the barrier in the QPC,

and simultaneously increases the lateral con�nement and consequently the

energy splitting. Both e�ects increase the subband energies. As long as EF

is between two subband bottoms, N is constant and G is quantized. If a

subband bottom moves through EF, N changes by 1 and G by 2e2=h.

Several numerical calculations [13] have shown that Eq. 7 gives an ac-

curate description of a QPC with the assumptions that impurity scattering

is absent and that the potential variations are smooth. Sharp potential

variations, possibly present at the entrance and exit of the QPC [14] or

originating from impurities [15, 16] can give rise to backscattering and

therefore destroy the quantization. The assumption of an adiabatic con-

striction in Eq. 3 is therefore no longer valid. At T > 0 the reservoirs inject

electrons with a Fermi-Dirac distribution, which averages the conductance

G(T ) =
R
dE(�df=dE)G(E). Comparing this with the temperature depen-

dence of the curves in Fig. 6, it is found that the subband separation grad-

ually increases from about 1 meV at VG = �1V to 3 meV at VG = �2:1V.

This illustrates that thermal averaging has a stronger e�ect on the higher

plateaus, as observed in Fig. 6.

1.4. DEPOPULATION OF 1D MAGNETO-ELECTRIC SUBBANDS

We now turn to the case of a QPC with an applied magnetic �eld in the

z-direction. In the Hamiltonian of Eq. 3, the magnetic �eld B is included

by substituting (p � eA) for the momentum p. In the Landau gauge for

the vector potential A = Ay = Bx, the Schr�odinger equation is once again
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Figure 8. 1D subband dispersion for three values of the magnetic �eld, illustrating
magnetic depopulation. The energy splitting is electric (�h!0) in (a), and hybrid (�h!,
with !2 = !20 + !2c) in (b). For large magnetic �elds (c) the 1D subbands are Landau
levels with an energy splitting of �h!c.

that of a harmonic oscillator, but now with energy eigenvalues [11]

En = (n�
1

2
)�h! +

�h2k2y

2mB
: (8)

These eigenvalues describe hybrid magneto-electric subbands. With !2 =

!20 + !2c , where the cyclotron frequency is !c = eB=m�, the energy separa-

tion is now a combination of the electrical con�nement and the magnetic

�eld. mB = m�!2=!20 is a magnetic �eld dependent e�ective mass yielding

a smaller dispersion for larger magnetic �elds. The in
uence of the mag-

netic �eld on the subband dispersion is shown schematically in Fig. 8. For

B = 0 the subbands are determined by the electrical con�nement only. A

small magnetic �eld increases the subband splitting and reduces the dis-

persion. For large magnetic �elds, the subbands have the magnetic energy

separation and a vanishing dispersion. In this case, the subbands are the

well-known Landau levels. It can be seen from Fig. 8 that on increasing the

magnetic �eld, the number of occupied subbands decreases. This process is

known as the depopulation of magneto-electric subbands.

One can show that the velocity and density of states also cancel in a
magnetic �eld and that Eqs. ( 6) and ( 7) are still valid [17, 18]. From

the above analysis it follows that a gradual transition exists between the

quantized conductance G = N2e2=h at zero magnetic �eld (with N the

number of occupied electric subbands in Fig. 8a) to the quantum Hall

conductance GH = NL2e
2=h at a high magnetic �eld (with NL the number

of occupied Landau levels in Fig. 8c). We note that our particular choice

of a parabolic con�nement does not a�ect the general conclusions, such as

the cancelation of velocity with the density of states, and the conductance

quantization at zero and non-zero magnetic �eld.
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Figure 9. QPC conductance versus gate voltage at 0.6 K for several values of magnetic
�eld. The increasing width of the plateaus demonstrate the increasing energy splitting in
a magnetic �eld. The curves have been o�set for clarity (from Ref. [18]).

Fig. 9 shows the conductance of a QPC versus gate voltage for several

values of the magnetic �eld [18]. As can be seen, the quantization is pre-

served in a magnetic �eld. Above B = 1 T, spin-resolved plateaus develop

at odd multiples of e2=h. The depopulation can be seen from the fact that

at a �xed gate voltage, the number of plateaus (or, equivalently, the num-

ber of occupied subbands), decreases with increasing magnetic �eld. From

the measurements of Fig. 9, one can deduce subband splittings of about

1 meV at VG = �1V and 3 meV at VG = �2V, in agreement with the

values obtained from the temperature dependence [9]. A third independent

way to determine the subband splittings is by measuring the non-linear

current-voltage characteristics of a QPC [19].

1.5. ELECTRON TRAJECTORIES IN A LOW MAGNETIC FIELD

In the previous Section, we discussed the in
uence of a magnetic �eld on

the subband dispersion in momentum space. We now consider the electron

motion in real space, which yields a simple physical picture of the QHE

and associated e�ects. To elucidate the quantized electron motion in a

high magnetic �eld, we �rst discuss classical electron trajectories in a low

magnetic �eld.
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Figure 10. (a) Schematic classical electron trajectories in a magnetic �eld.
(b) Corresponding quantum picture of the energy states of Eq. (10) along a cross-section
of the 2DEG, illustrating the formation of edge channels at the boundary of the 2DEG
(formed by the electrostatic potential energy eV (x; y)) where the Landau levels intersect
the Fermi energy EF.

In the absence of an electric �eld E, the balance of the Lorentz force

FL = evB and the centripetal force F = m�v2=r leads to a cyclotron motion

of the electrons, with an angular frequency !c = eB=m� and at the Fermi

energy a cyclotron radius rc = m�vF=eB (see Fig. 10a). When the electric

�eld E = �rV (x; y) 6= 0, the electrons have a net drift velocity vD = E=B.

At the boundary of the sample, where E is large, the collisions at the edge

result in skipping orbits. The electrons skip with the drift velocity along

the edge of the sample. The direction of the velocity is opposite for the two

opposite edges (see Fig. 10a).

The skipping orbit motion of electrons along a 2DEG boundary in a

small magnetic �eld has been observed in an electron focusing experiment

by van Houten et al. [20]. The geometry shown in Fig. 5b with two ad-

jacent QPCs with a separation of L = 3�m was used, where one QPC

injects electrons into the 2DEG and the second QPC collects them. The
injected electrons are focused by the magnetic �eld on the boundary be-

tween injector and collector at distances 2p rc(p = 1; 2; :::). Focusing into

the collector occurs when 2p rc = L. In the experiment the collector voltage

is measured as a function of magnetic �eld B. From the condition 2p rc = L

it follows that the largest number of electrons reaches the collector when

Bfoc = 2pm�vF=eL which leads to periodic oscillations in the collector sig-

nal. This is shown in Fig. 11 together with a calculation. On average the

voltage increases linearly with magnetic �eld, which is expected for the

classical Hall resistance VHall=I = B=ens. For curve (a), however, we see
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Figure 11. Bottom: Electron focusing (T = 50 mK, L = 3:0�m) in the con�guration
depicted in the inset. The two traces a and b are measured with interchanged current
and voltage leads, and demonstrate the injector-collector reciprocity as well as the repro-
ducibility of the �ne structure. Top: Calculated classical focusing spectrum corresponding
to the experimental trace a (50 nm wide point contacts were assumed). The dashed line
is the extrapolation of the classical Hall resistance seen in reverse �elds. (From Ref. [20].)

additional large oscillations with �ne structure around the average Hall re-

sistance for positive magnetic �eld. These oscillations occur at the expected

focusing �elds. For a negative magnetic �eld no focusing signal is observed

since now the injected electrons are de
ected away from the collector.

Curve (b) is taken with the current and voltage probes interchanged.

The relation between (a) and (b) demonstrates B�uttiker's reciprocity rela-
tion [21],

Rij;kl(B) = Rkl;ij(�B) : (9)

It implies that upon interchange of the current probes i and j with the

voltage probes k and l, one obtains the same resistance at the opposite
magnetic �eld. This fundamental symmetry relation is clearly con�rmed

in Fig. 11, including the symmetry in the �ne-structure. The latter has

been explained by extending the classical focusing calculation of the top

section to include quantum interference e�ects between trajectories being

injected at di�erent angles [20]. This focusing experiment demonstrates

that the collisions at the boundary between injector and collector are highly

specular, since di�usive boundary scattering would average the oscillations.

In a subsequent experiment by Spector et al. [22] focusing signals were

observed up to a distance between injector and detector as large as 64 �m.
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1.6. THE QUANTUM HALL EFFECT ON MESOSCOPIC LENGTH SCALES

1.6.1. Edge Channels

In a high magnetic �eld the electron motion is quantized. The 
ux � en-

closed by an electron in a cyclotron orbit equals an integer times the 
ux

quantum �0 = h=e, and the quantized electron energies are:

En = (n�
1

2
)�h!c + eV (x; y) (10)

where n = 1; 2; ::: is the spin-degenerate Landau level index, and we have
ignored the Zeeman energy splitting �g�BB=2. We assume that the elec-

trostatic potential V (x; y) is 
at in the interior of the sample and rises at

the boundary. Electrostatic variations due to impurities are ignored, be-

cause we are dealing with ballistic samples. Fig. 10b shows schematically

the Landau energy levels of Eq. 10. The electron states at the left boundary

are occupied up to �1, the electrochemical potential of the current source,

and at the right boundary up to �2, the electrochemical potential of the

current sink (see Fig. 4b). At the two sample boundaries, the electron states

have opposite velocity directions, similar to the classical case of Fig. 10a.

The relevant electron states for linear transport are only those at the

Fermi energy. As can be seen, these are located at the sample boundaries,

where the Landau levels intersect the Fermi energy (En = EF), and they

extend in the direction perpendicular to the cross-section of Fig. 10b. The

intersections are the current-carrying states, which are known as edge chan-

nels [17, 23, 24]. The net current I only results from the uncompensated

states in the interval between �1 and �2. The total current carried by

the states below �2 is zero. The transport through edge channels is 1-

dimensional [17]. Edge channels can therefore also be viewed as 1D current

channels, each carrying a current In = 2e=h(�1 � �2). With the Hall volt-

age VH = (�1 � �2)=e measured between the two sample boundaries, this

directly gives the quantized Hall conductance GH = NLIn=VH = NL2e
2=h.

Up to now we have ignored all scattering processes. B�uttiker [25] has

pointed out that due to the spatial separation of the electron states with op-

posite velocity, backscattering requires scattering from one sample bound-

ary to the other. Backscattering is therefore suppressed when the edge

states between �1 and �2 are not connected by extended electron states.

This is the case in Fig. 10b, where the Fermi energy is between two bulk

Landau levels.

1.6.2. Selective Probing of Edge Channels

The above description of transport in the quantum Hall e�ect (QHE)

regime, known as the Landauer-B�uttiker formalism, is reviewed in Ref. [26].

This edge channel description gives an appealing physical picture of the
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QHE. The question now arises about how to prove the existence of edge

channels and whether they can really be viewed as independent current

channels. We now discuss an experiment involving two adjacent QPCs

which directly probes the transport through a particular edge channel. The

theory for this experiment provides a simple illustration of B�uttiker's multi-

probe formalism which has been used very successfully to describe di�erent

kind of mesoscopic transport phenomena.

In Section 1.5 we discussed the electron focusing from one QPC to an

adjacent second QPC by small magnetic �elds (B � 1T). These �elds are
too small to quantize the electron motion, and the focusing can be explained

in terms of classical cyclotron motion. We consider now the same geometry

in the high �eld regime (B � 1T). Fig. 12a shows schematically two adja-

cent QPCs A and B de�ned in a 2DEG with an applied magnetic �eld such

that two edge channels are occupied. The 2-terminal conductances GA and

GB of the individual QPCs measure the number of transmitted channels

and are quantized in multiples of 2e2=h (see also Fig. 9). The Hall conduc-

tance GH is normally thought to be independent of the characteristics of

the current and voltage probes and to correspond directly to the number of

occupied (spin-degenerate) Landau levels NL in the 2DEG, GH = NL2e
2=h.

This is not true for the situation in Fig. 12a and we discuss here that for

describing transport through mesoscopic conductors one has to include the

properties of the measurement contacts.

Figure 12. Left: Geometry used to observe an anomalous quantization of the Hall
conductance, for which QPC A is used as current probe and QPC B as voltage probe.
Right: Comparison between the Hall conductance GH and the 2-terminal conductance
of the current probe GA. The voltage probe conductance is kept �xed at GB = 2e2=h.
Although the number of occupied Landau levels in the 2DEG is unchanged, GH follows
the largest probe conductance (from Ref. [27])

We �rst assume that the edge channels shown in Fig. 12a are inde-

pendent, i.e. no scattering events occur between di�erent edge channels

or, equivalently, electrons travel with conservation of quantum-subband-

number. In this case the transport is adiabatic. The edge channels are oc-
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cupied up to the electrochemical potential of the last Ohmic contact they

have left. (We assume ideal Ohmic contacts, meaning that all incoming

electrons are absorbed and all outgoing states are occupied up to an av-

erage electrochemical potential.) Consequently, in the region between the

two QPCs, the two edge channels have an unequal population. Channel-2 is

occupied up to �1, while current probe 5 populates channel-1 up to �5. This

process is called selective population of edge channels. If the voltage probe

B detects all edge channels like an ideal Ohmic contact, the regular quan-

tum Hall conductance is measured. However, this is not the case in Fig. 12a

where the voltage probe selectively detects only the �rst channel. The sec-

ond channel is neither populated by the current probe nor detected by the

voltage probe and, therefore, is not measured. The Hall conductance G54;61

equals 2e2=h instead of 4e2=h which a regular Hall measurement would give.

The current and voltage contacts do not measure all the 2DEG properties,

but only those properties they "see", or couple to. In general one can show

that in the absence of inter-edge channel scattering this Hall conductance

is given by [27]

GH = maxfGA; GBg (11)

implying that GH is completely determined by the characteristics of the

probes and is independent of the number of occupied Landau levels in the

2DEG.

Fig. 12b compares the measured probe conductances GA and GB with

the Hall conductance GH. The magnetic �eld is kept �xed at 3.8 T, corre-

sponding toNL = 2 in the bulk 2DEG. The voltage on QPC B, de�ning the

voltage probe, is also �xed such that only the �rst edge channel is transmit-

ted, and therefore GB = 2e2=h. The voltage VgA on QPC A, de�ning the

current probe, is varied, resulting in a decreasing GA. Again we note that a

normal Hall measurement would give a constant conductance GH = 4e2=h.

However, Fig. 12b shows a Hall conductance which virtually follows the

largest probe conductance in agreement with Eq. 11 (for VgA > �1:5V,

GH = GA > 2e2=h; for �2:1V < VgA < �1:5V, GH = GA = GB = 2e2=h

corresponding to the edge channel 
ow of Fig. 12a; and for VgA < �2:1V,
GH = GB = 2e2=h). The experiment demonstrates that on short distances

of order �m the transport through edge channels is adiabatic, implying

that they can be viewed as independent 1D current channels. Subsequent

experiments have shown that a non-equilibrium population can persist up

to larger distances (several tens of �m's) [28]. In particular, it is found that

the top most channel is virtually decoupled from the lower edge channels

even over macroscopic distances of several times 100 �m [28, 29, 30, 31, 32].

These experiments have clari�ed the important role of measurement probes

in the QHE regime.
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Figure 13. Two-terminal conductance of a quantum point contact at B = 7T. At zero
gate voltage the conductance is G = e2=h implying that the 2DEG is spin-polarized at
�lling factor 1. On decreasing the gate voltage fractional plateaus are observed (from
Ref. [37].

1.6.3. The Importance of Electron-Electron Interactions for the QHE on

Mesoscopic Length Scales

In our discussion we neglected Coulomb interactions between the electrons.

For many experimental observations it is su�cient to give a description

in terms of a non-interacting electron model. There are several exceptions,

however. First of all, in very high mobility samples not only are plateaus

observed at integer �lling factors, but also at fractional �lling factors (see

Fig. 2). The theory for this fractional QHE needs to incorporate electron-

electron interactions [33]. Recently, a new appealing formulation for the

fractional QHE has been given in terms of composite particles [34]. Another

recent development is the prediction [35] and observation [36] of so-called

skyrmions.

Also, on mesoscopic length scales it has recently become appreciated

that electron-electron interactions can be important under certain circum-

stances. First of all, the FQHE can also be observed at short ballistic length

scales [37]. Fig. 13 shows the conductance of a QPC at 7 T. At zero gate
voltage the conductance is equal to e2=h showing that the �lling factor of

the bulk 2DEG is equal to one (i.e. spin resolved). On making the gate

voltage more negative the conductance decreases. However, at fractional

values 2/3 and 1/3 times e2=h it shows quantized plateaus. The QPC used

in this experiment shows quantized conductance at B = 0 implying that

fractional plateaus can exist in a ballistic sub-micron device [37, 38]. Also,

selective population and detection experiments of fractional edge channels

have been performed [39, 40] in a similar way as in Section 1.6.2 for the

case of integer edge channels. These experiments on the fractional QHE in
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the ballistic regime can not be explained with the non-interacting electron

models of Sections 1.6.1 and 1.6.2. Instead interacting models have been

proposed by Beenakker [41], MacDonald [42] and Chang [43]. These models

are the basis of recent models on self-consistent calculations of edge chan-

nels [44]. From these electrostatic calculations it follows that edge channels

have a �nite width. Regions where the Fermi energy is pinned in a Landau

level are called a compressible liquid whereas regions where the Fermi en-

ergy is between Landau levels are called an incompressible liquid. Although,

Coulomb interactions give edge channels a �nite width the selective popu-

lation experiments suggest that they remain 1D channels. In 1D Coulomb

interactions are known to give rise to a new type of electron liquid. This

so-called Luttinger liquid is discussed by Fisher and Glazman in this vol-

ume including predictions for correlated electron transport in fractional

edge channels. Altogether, we can conclude this Section with the statement

that the QHE is still a very interesting system for studying new electronic

properties.

2. Single{electron tunneling

2.1. REVIEW

The electron transport in two-dimensional electron gases displays the quan-

tum coherence of the electronic states, as described in the previous Section.

Another important aspect of mesoscopic systems is the role of interactions.

We mentioned already their importance in connection with the fractional

QHE. Interaction e�ects also in
uence strongly electron tunneling through

mesoscopic systems, and they lead to strong correlation e�ects. In this

Section we will discuss situations where it is su�cient to approximate the

Coulomb interaction by an e�ective capacitance model. This applies for

metal junction systems where after a relaxation of the space distribution

of the electrons the remaining Coulomb interaction is well described by

the geometric capacitance of the junctions. The capacitance model also

works remarkably well for the transport through small quantum dots. (See

the Chapter of Kouwenhoven et al. for many facts on quantum dots.) The

\charging e�ects" allow us to control single electron charges, which leads

to a variety of single{electron e�ects, e. g. to the suppression of tunneling,

a phenomenon known as the Coulomb blockade.

Single{electron e�ects have been studied for more than a decade, and

a large number of papers, incl. several reviews have been devoted to the

topic. Kulik and Shekhter [45] and Averin and Likharev [46] developed

the perturbation theory of single{electron tunneling in metal junctions and

discussed several consequences. Initial scepticism against the new concepts
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was overcome when experiments proved to be successful. After early experi-

ments by Fulton and Dolan [47], important breakthroughs were achieved in

Delft by Mooij and Geerligs and in Saclay by Devoret, Est�eve, Urbina and

further members of these groups [48, 49]. Their work is well summarized in

the proceedings of an earlier NATO ASI Single Charge Tunneling [50].

In this Section we introduce the concepts and basic description of single{

electron tunneling in systems with strong charging e�ects. For de�niteness

we �rst consider metallic electrodes with a large density of electron states.

We study how the charging energy depends on the number of electrons

and the transport and gate voltages applied to various parts of the system.

The simplest model systems demonstrating these features are the \single{
electron box" and the \single{electron transistor". We then derive within

perturbation theory the single{electron tunneling rates. In low capacitance

systems it is crucial to account for the change in the charging energy associ-

ated with the tunneling process. A master-equation description accounts for

the large-scale features of the current-voltage characteristic of the single{

electron transistor. In the Coulomb-blockade regime, where single{electron

tunneling is suppressed, higher-order processes such as coherent \cotunnel-

ing" of electrons through several junctions become observable. Finally we

discuss single{electron tunneling through quantum dots, where the level

quantization becomes observable as well..

Several extensions have been described in the literature. We mention

only a few:

{ The mesoscopic junction systems studied here are small such that charg-

ing e�ects and higher-order quantum processes play a role. On the other

hand, they are large enough such that macroscopic current and voltage

probes and sources can be coupled to the system. This makes the meso-

scopic system susceptible to the in
uence of the electric circuit. A complete

description has to include this circuit. The in
uence of the electrodynamic

environment on single{electron tunneling has been reviewed in the article

by Ingold and Nazarov in Ref. [50].

{ In this introduction we study tunnel junctions with two normal-conducting

electrodes (NN). If the system or part of it is superconducting the combi-
nation of single{electron tunneling, Cooper pair tunneling and Andreev

re
ection leads to further highly interesting e�ects [51]. For a review see

the Chapter of Fazio and Sch�on in this volume.

{ Many of the single{electron e�ects can be described within simple pertur-

bation theory. A necessary requirement is that the resistance of the tunnel

barriers is high compared to the quantum resistance RK = h=e2 � 25:8 k
.

For tunnel junctions with lower resistance a more general formulation is

needed [52, 53, 54]. A systematic description of tunneling in systems with

strong charging e�ects is presented later in the Chapter of Schoeller.
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(b)(a)

Figure 14. a) An overlap junction with an oxide layer (hatched region), b) schematic
diagram for a tunnel junction.

2.2. CHARGING ENERGY AND SINGLE{ELECTRON DEVICES

2.2.1. The Energy Scale

Modern lithographic techniques allow the fabrication of narrow metallic

lines with widths down to approximately 20 nm, as well as tunnel junctions

in overlap regions of such lines, as illustrated in Fig. 14. The structures are

grown by evaporation of the metal, e. g. Aluminum, through masks onto

the substrate. Tunnel junctions can be produced by shadow evaporation

techniques, which involves two stages of evaporation at di�erent angles.

Between the two stages the �rst layer is allowed to oxidize. The junction is

formed in the overlap region. They can be produced reliably with areas of

S = (100 nm)2 and below. The oxide layer is roughly d = 10 �A thick, and

the dielectric constant of the oxide is � � 10. Using the classical expression

for the capacitance we arrive at C = �S=(4�d) � 10�15F.

The capacitance introduces an energy scale, the charging energy corre-

sponding to a single{electron charge (�e),

EC �
e2

2C
; (12)

which characterizes all charging e�ects. It is of the order of EC � 10�4eV

if the capacitance is C = 10�15F , which corresponds to a temperature

EC=kB � 1K. In a tunneling process the electrostatic energy changes by an

amount of the order of magnitude of EC. Hence we expect in the sub-Kelvin

regime electron transport to be a�ected by charging e�ects. Similar prop-

erties have been observed in semiconductor nanostructures, for instance

in quantum dots in 2-dimensional electron gases. The Coulomb energy in

these systems again can be characterized by a capacitance which depends

on the size of the dot and also may lie in the range of 10�15F or less.

Charging e�ects play a role in granular materials and ultimately even in

molecular systems. Here the capacitance may be as low as 10�18F, making

single{electron tunneling observable even at room temperatures.

2.2.2. Single{Electron Box

We now analyze in more detail the charging energy of simple systems of

tunnel junctions. It depends on the electron number in various parts of

the particular system and the applied voltages. The �rst example is the
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Figure 15. The single{electron box.

single{electron box, shown schematically in Fig. 15. It consists of a small

metallic island, coupled via a tunnel junction with capacitance CJ to an

electrode and via a capacitor CG to a gate voltage source VG. We choose

the reference such that for VG = 0 the lowest energy state of the system is

charge-neutral, i. e. the electrons on the island compensate the charge of the
ions; consequently there are n = 0 excess electrons on the island. If a gate

voltage is applied the number of excess electrons on the island can change

due to tunneling across the junction in discrete steps to n = �1;�2; :::.

While the total number of electrons on an island is integer, the charge

is spatially distributed and in general shifted relative to the positive back-
ground. If a voltage is applied the surface charges on the capacitor plates,

which are of equal magnitude but opposite sign on the two sides of each

junction, are in general non-quantized. They are determined by the integer

n and the non-quantized applied voltage. We obtain the charging energy

from the following elementary arguments: the total excess charge of the

box splits into two parts on the left and right capacitor plate �ne =

QL + QR. The corresponding voltage drops add to the applied voltage

VG = QL=CJ � QR=CG, and the charging energy is Q2
L=2CJ + Q2

R=2CG.

The relevant free energy is a Legendre transform of this energy, which also

contains the work done by the voltage source �VGQR. Elimination of QL

and QR in favor of n and VG yields, up to a contribution which does not

depend on the variable n, the result

Ech(n;QG) =
(ne�QG)

2

2C
: (13)

Here C = CJ + CG is the total capacitance of the island. The e�ect of the

voltage source is contained in the \gate charge" de�ned as QG = CGVG.

The charging energy Ech is plotted in Fig. 16 as function of the gate

charge for di�erent excess electron numbers n. With increasing gate voltage,

the electron number corresponding to the lowest energy state increases. It

does so in discrete steps from n to n+ 1 at the degeneracy points QG=e =
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Figure 16. The charging energy of a single{electron box as a function of the gate voltage
for di�erent numbers n of electron charges on the island.
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Figure 17. The average number of electron charges hni on the island of a single{electron
box as a function of the gate charge (voltage) for di�erent temperatures T=EC = 0
(dashed steps), 0.02, 0.05, 0.1, 0.2, 0.4, and 1 (nearly linear).

n + 1=2. Under the same conditions, the voltage of the island, Visland =

@Ech=@QG, displays a sawtooth dependence on the applied voltage.

At �nite temperatures the steps and sawtooth dependence are washed-

out, as follows from the classical statistical average

hn(QG)i =
1

Zch

1X
n=�1

n e�Ech(n;QG)=kBT ; (14)

where Zch is an obvious normalization. The result is displayed in Fig. 17 for

di�erent temperatures. The stepwise increase has been observed experimen-

tally, e.g. by the Saclay group (see results in Ref. [50]). Their measurement
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Figure 18. The SET transistor.

procedure will be discussed below. The experiments agree well with theo-

retical expectations. However, it is crucial to control heating and the noise

from the measurement setup, which usually is at a temperature higher than

that of the cryostat.

2.2.3. Single{Electron Transistor

Another fundamental example is provided by the single{electron transistor

shown in Fig. 18. Here an island is coupled via two tunnel junctions to

a transport voltage source V = VL � VR such that a current can 
ow.

The island is, furthermore, coupled capacitively to a gate voltage VG. The

charging energy of the system depends again on the integer number of

electrons n on the island and the continuous voltages. Some algebra along

the lines outlined for the electron box produces again Ech(n;QG) = (ne �

QG)
2=2C. For the transistor C = CL + CR + CG is the total capacitance

of the island, i.e. the sum of the two junction capacitances and the gate

capacitance, and all three voltage sources de�ne the gate charge

QG = CGVG + CLVL + CRVR : (15)

In a tunneling process, increasing the island charge from n to n+1, the

charging energy changes by

Ech(n+ 1; QG)�Ech(n;QG) =

�
n+

1

2
�
QG

e

�
e2

C
: (16)

The second energy di�erences are equally spaced and can be tuned by the

gate voltage. The situation is illustrated in the energy scheme shown in

Fig. 19. The di�erences in charging energy are plotted in the center. We

further display the Fermi levels of the two leads which are shifted by the

applied potentials VL=R.
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Figure 19. In the island the energy di�erences corresponding to the addition or removal
of an electron charge are shown. They can be shifted by the gate voltage VG. The elec-
trochemical potentials of the leads are shifted relative to each other by the transport
voltage V = VL � VR.

For de�niteness we assume that the energy of the electrons in the left

lead is higher than that in the right lead. Then at low temperature tunneling

from the left lead to the island (transition from n to n+1) is possible if the

electrochemical potential in the left lead eVL is high enough to compensate

for the increase in charging energy of the island

eVL > Ech(n+ 1; QG)� Ech(n;QG) : (17)

Similarly tunneling from the island (transition from n+1 to n) to the right

lead is possible at low temperature only if

Ech(n+ 1; QG)�Ech(n;QG) > eVR : (18)

Both conditions have to be satis�ed simultaneously in order for a current

to 
ow through the transistor. It is obvious from the �gure that at low

transport voltages, depending on the gate voltage VG we may be either in
a Coulomb blockade regime or have a �nite current. By varying the gate

voltage we produce the Coulomb oscillations, i.e. the e-periodic dependence

of the conductance on QG.

Additional devices can be examined (for a review see Est�eve's article

in Ref. [50]): (i) The electron trap is similar to the electron box except

that it contains at least two junctions in series. In contrast to the box

the trap has metastable charge states. (ii) Two traps can be combined to

build the electron turnstile, which can serve as a current source [48]. A

suitable ac-gate voltage with frequency f allows the controlled transfer of
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a single{electron per cycle. Hence the current is I = ef . (iii) Finally, in

single{electron pumps a current is driven by two phase-shifted ac-voltages

applied to di�erent islands [49]. In this case a current I = ef is transported

even at vanishing transport voltages. The turnstile and pump can serve

as a current standards, if one manages to minimize the e�ect of missed

cycles, of thermal 
uctuations, and of quantum 
uctuations. This requires

low frequencies, low temperatures, and a design (many junctions) which

minimizes higher order quantum tunneling processes.

Many properties of single{electron systems can be understood by con-

sidering only the energy of di�erent charge con�gurations. However, a de-

tailed understanding of the I-V characteristics requires knowledge of the

tunneling rates of the electrons, which will be next topic.

2.3. TUNNELING RATES AND I-V CHARACTERISTICS

In this Subsection we introduce the Hamiltonian of the SET transistor.

Using simple golden-rule arguments we derive the rate for the transfer of a

single electron charge across the tunnel barriers. It depends crucially on the

change in the charging energy. The transition rates enter a master equation,

from which we obtain the current-voltage characteristic. If a tunneling pro-

cess would increase the charging energy it is suppressed at low temperature.

This phenomenon is called \Coulomb blockade". This \orthodox theory"

was developed in Refs. [45, 46].

2.3.1. The Single{electron Tunneling Rate

For de�niteness we consider a SET transistor, shown in Fig. 18, which

consists of a metallic island coupled via tunneling barriers to two leads and

capacitively to an external gate voltage. Its Hamiltonian is

H = HL +HI +HR +Hch +Ht : (19)

Here,HL =
P
k;� �kc

y

k;�
c
k;�

describes the noninteracting electrons with wave

vector k in the left lead, with similar expressions for the island HI (with

states denoted by q) and the right lead HR. We allow that the leads have dif-

ferent electrochemical potentials. The Coulomb interaction Hch is assumed

to depend only on the total charge on the island, as discussed above,

Hch =
(n̂e�QG)

2

2C
: (20)

The number operator of excess electrons on the island is given by n̂ =P
q;�
cyq;�cq;� � N+, where the number of positively charged ions of the

island has been subtracted. Charge transfer processes are described by the
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standard tunneling Hamiltonian, for instance tunneling in the left junction

between the states k and q by

Ht;L =
X
k;q;�

Tk;qc
y

k;�
c
q;�

+ h:c: : (21)

We determine the transition rates by golden-rule arguments. The tun-
neling rate of an electron in the left junction is


+L (n) =
1

e2Rt;L

Z
1

�1

d�k

Z
1

�1

d�qfL(�k)[1� fI(�q)]�(�Ech+ �q � �k) : (22)

It describes the tunneling from one of the many states k in the left lead

to one of the available states q in the island, In this process the electron

number is increased from n to n + 1. The crucial point is that the energy,

which is conserved as expressed by the �-function, contains the energies of

the electron states �k=q , but also the charging energy. The latter depends on

the electron number and the applied voltages VG and VL=R. In the process

considered it changes by

�Ech = Ech(n+ 1; QG)�Ech(n;QG)� eVL : (23)

We further introduced the tunnel conductance of the left junction

1

Rt;L
=

4�e2

�h
NI(0)
INL(0)
LjT j

2 : (24)

It depends on the tunnel matrix elements Tk;q, which at this stage can

be considered as constants, as well as the densities of states at the Fermi

level, NI=L(0), and the volumes, 
I=L, of the island and lead. Equivalent

expressions apply for the reverse process 
�L (n + 1), decreasing the island

charge from n+1 to n, and for the tunneling processes in the other barriers.

In equilibrium the distribution functions fI=L are Fermi functions, and

the integrals over the electron states in Eq. (22) can be performed explicitly.

The resulting \single{electron tunneling" (SET) rate is [46]


+L (n) =
1

e2Rt;L

�Ech

exp[�Ech=kBT ]� 1
: (25)

At low temperatures, kBT � j�Echj, if the charging energy would increase

in a tunneling process, the tunneling is suppressed, 
 ! 0. This phe-

nomenon is called \Coulomb blockade" of electron tunneling. If charging

energy is gained the rate is


+L (n) =
1

e2Rt;L
j�Echj for �Ech � 0 ; T ! 0 : (26)
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At �nite temperatures all processes are allowed. The forward and backward

rates satisfy detailed balance, 
+L (n)=

�

L (n+ 1) = exp[��Ech=kBT ].

A familiar limit of what is described above is a single voltage-biased tun-

nel junction, where �Ech is replaced by �eV , independent of n. In this case

(25) yields a linear current- voltage relation, It = e[
+ � 
�] = V=Rt. We

can also reverse the argument. The two requirements | (i) a linear char-

acteristic in the voltage-biased case and (ii) detailed balance | uniquely

determine the expression for the rate to be of the form (25).

2.3.2. Master Equation for Sequential Tunneling

Given the electron tunneling rates we can set up a master equation for

the probability P (n; t) to �nd the island in a state with n electrons. The

probability changes by tunneling in the left and right junctions. Hence

d

dt
P (n; t) = � [
+L (n) + 
�L (n) + 
+R (n) + 
�R(n)]P (n; t)

+ [
+L (n� 1) + 
+R (n� 1)]P (n� 1; t)

+ [
�L (n+ 1) + 
�R (n+ 1)]P (n+ 1; t) : (27)

The rates and probabilities also determine the current. In the left junction

the current is

IL(t) = �e
X
n

[
+L (n)� 

�

L (n)]P (n; t) : (28)

In most cases we apply dc-voltages and are interested in the dc-current. In

this case we need only the stationary solution of the master equation, and

the currents in the left and right junctions are equal I = IL = IR.

As an example we consider a junction with symmetric bias VL = �VR =

V=2. At low temperatures and low transport voltages (except at symmetry

points) only two di�erent charge states { and those transitions which con-

nect both { have an appreciable probability. For instance, if ne < QG <

(n+1)e we need to consider only P (n) and P (n+1) and the two transitions


+L (n) and 

+
R (n) increasing the island charge from n to n+ 1 electrons, as

well as the two reverse transitions 
�L (n + 1) and 
�R (n + 1). The energy

changes determining the rates 
+L (n) and 

�

L (n+ 1) are

�Ech = �

"�
n +

1

2
�
QG

e

�
e2

C
�
eV

2

#
; (29)

respectively, while for the transitions in the right junction eV is replaced

by �eV . In the 2-state limit the stationary probability and current become

P (n) =

�L (n+ 1) + 
�R(n+ 1)


�
; P (n + 1) = 1� P (n)
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Figure 20. The current of a symmetric transistor is shown as a function of gate and
transport voltage. At low temperatures and low transport voltages V C=e < 1 only two
charge states play a role, and the Coulomb oscillations are clearly demonstrated. At larger
transport voltages more charge states are involved.

I = �e

+L (n)


�

R(n+ 1)� 
+R(n) 

�

L (n+ 1)


�
; (30)

where 
� = 
+L (n) + 
+R(n) + 
�L (n+ 1) + 
�R(n+ 1).

This expression is readily analyzed by inspection of (29). At low tem-

peratures the tunneling process in the left junction from n to n + 1, with

rate 
+L (n), is allowed when QG�(n+1=2)e � �V C=2. On the other hand,

the transition which carries on the charge to the right electrode with rate


�R (n + 1) is allowed when QG � (n + 1=2)e � VC=2. Both coexist in a

window of width CV around QG = (n+1=2)e. The other two processes are

not allowed simultaneously, in fact they are suppressed in the window just

mentioned. Therefore, at low temperature the current is

I =
1

4Rt

"
V �

4e

C2V

�
QG

e
� n �

1

2

�2
#

for �
V C

2e
�
QG

e
�n�

1

2
�
VC

2e
;

(31)

while it vanishes outside the window. For simplicity we have assumed in (31)

that the two junctions have the same tunneling resistance Rt = Rt;L = Rt;R.

The current through a symmetric SET transistor is plotted as a function

of transport and gate voltages in Fig. 20. For gate voltages such that QG=e

is close to an integer, the current vanishes below a threshold bias voltage

Vth(QG = ne) = e=C. This is a manifestation of the Coulomb blockade.

At non-integer values of QG=e the threshold voltage is lower Vth(QG) =
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shape of a staircase. The phenomenon got accordingly the name \Coulomb

staircase" [55]. The behavior is demonstrated in the plot of Fig. 21.

2.4. HIGHER ORDER TUNNELING PROCESSES

If sequential single{electron tunneling is suppressed by the Coulomb block-

ade, higher-order processes such as coherent \cotunneling" through several

junctions becomes crucial (Averin and Nazarov in Ref. [50]). As a spe-

ci�c example we consider a SET transistor, biased such that the current

in lowest-order perturbation theory vanishes (see Fig. 19). At low tem-

peratures sequential tunneling is exponentially suppressed in this regime

since the energy of a state with an excess charge on the island lies above

the Fermi levels of the leads. On the other hand, if a transport voltage is

applied, a higher-order tunneling process transferring an electron charge
coherently through the total system is energetically allowed. In this case

the state with an excess electron charge in the island exists only virtually.

Standard second-order (or fourth, depending on the counting) perturbation

theory yields the rate


i!f =
2�

�h

������
X
 

hijHtj ih jHtjfi

E � EI

������
2

�(Ei � Ef) : (32)

The energy of the intermediate virtual state lies above the initial one,

E � Ei > 0, but it enters only into the denominator rather than into

the exponent of the sequential tunneling rate. Hence the higher-order rate
is nonzero even at very low temperatures.

When analyzing the process we have to pay attention to the following:

(i) There are actually two channels which add coherently. Either an electron

tunnels �rst from the left lead onto the island, and then an electron tunnels

from the island to the other lead. In this case the increase in charging

energy of the intermediate state compared with the initial one is �EL =

Ech(n+ 1; QG)� Ech(n;QG)� eVL. Or an electron tunnels �rst out of the
island to the right lead, and another electron from the left lead replaces

the charge. In this case the increase in energy of the intermediate state is

�ER = Ech(n � 1; QG) + eVR � Ech(n;QG). Both amplitudes have to be

added before the matrix element is squared.

(ii) The leads contain a macroscopic number of electrons. Therefore, with

overwhelming probability the outgoing electron will come from a di�erent

state than the one which the incoming electron occupies. Hence, after the

process an electron-hole excitation is left in the island, which explains why

it is called \inelastic" cotunneling. This scenario is visualized in Fig. 22.
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Figure 22. In an inelastic cotunneling process two electrons tunnel coherently, i.e. in a
single qutnum process, in the left and right junction. The result is the transfer of charge
through the system even in the Coulomb blockade regime. A particle-hole excitation is
left in the island.

Transitions involving di�erent excitations are added incoherently. The

resulting rate for inelastic cotunneling is


cot =
�h

2�e4Rt;LRt;R

�

Z
k2L

d�k

Z
q2I

d�q

Z
q02I

d�q0

Z
k02R

d�k0f(�k)[1� f(�q)]f(�q0)[1� f(�k0)]

�

"
1

�q + �EL � �k
+

1

�k0 + �ER � �q0

#2
�(eV + �k � �q + �q0 � �k0) : (33)

At T = 0 the integrals can be performed analytically. The result for in the
Coulomb blockade regime (eV � �EL; �ER) is


cot =
�h

12�eRt;LRt;R

�
1

�EL
+

1

�ER

�2
V 3 : (34)

At �nite temperatures forward and backward processes occur. They obey

a detailed balance relation 
cot(�V ) = exp(�eV=kBT )
cot(V ). The current

then is

I(V ) �
�h

12�e2Rt;LRt;R

�
1

�EL
+

1

�ER

�2 h
(eV )2 + (2�kBT )

2
i
V : (35)

In the Coulomb blockade regime of a SET transistor the V 3 depen-

dence of the cotunneling current has been observed. In systems with N

junctions a corresponding N-th order process (or 2N-th order, depending

on the counting) leads to a current I / V 2N�1. As an example we con-

sider N=4 junctions with C = 10�15F and tunneling resistance Rt. In this
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case (see D. Est�eve in Ref. [50]) 
cot =
�
2:5� 10�3=sec

�
(V=�V)7 (k
=Rt)

4.

These cotunneling processes limit the accuracy of the single{electron turn-

stile even under the most favorable situations, i.e. low T and low frequency,

where thermally activated multi-electron transfer processes and missed cy-

cles play little role.

The expression for the cotunneling rate presented above displays sev-

eral important properties: (i) The expansion parameter is the dimensionless

tunneling conductance RK=Rt, where the quantum resistance RK serves as

reference. (ii) The approximate expression given diverges when the interme-

diate and initial or �nal states are degenerate. This divergence is removed by

life-time broadening e�ects. The complete cotunneling theory, recently an-

alyzed in Ref. [56], describes well the logarithmic temperature dependence

observed in th experiments of the Saclay group on junctions with tunneling

resistances comparable to the quantum resistance [57]. (iii) Higher order

processes and eventually resonant tunneling processes are most essential

near the points of degeneracy of the charging energy, QG=e = n+1=2. The

Chapter of Schoeller in this volume presents the theoretical framework to

describe tunneling beyond perturbation theory.

There exists also the process of \elastic cotunneling" where one electron

tunnels through the total system, leaving no excitations in the island. It is

the dominant process in the Coulomb blockade regime of tunneling through

a single-level quantum dot. However, in the metallic junction it is usually

not important, since its rate is smaller by a prefactor / 1=
INI(0) (i.e.

inversely proportional to the number of states of the island) compared to the

inelastic cotunneling rate. The exception is the range of very low voltages

and temperatures kBT; eV �
p
EC=
N(0), since elastic cotunneling yields

a current which is linear in the applied voltage.

Single{electron tunneling is also in
uenced by the response and the 
uc-

tuations of the electromagnetic circuit where it is embedded. This is partic-

ularly important in single junctions. In this case Coulomb blockade e�ects

can only be observed if the junction is in series with a nearby large resistor

of the order of the quantum resistance or larger. In systems of junctions the

tunneling resistance of one junction usually provides the required decou-

pling of the remaining junctions and single{electron e�ects are observable.

Here we do not have the space to present this theory. It is reviewed in the

article by Ingold and Nazarov in Ref. [50].

2.5. SINGLE{ELECTRON TUNNELING THROUGH QUANTUM DOTS

In this Subsection we describe the in
uence of Coulomb blockade phenom-

ena on single{electron tunneling through ultrasmall quantum dots. The

important di�erence compared to the metallic case is the quantization of
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the energy levels inside the quantum dot with typical separation �. It can be

resolved in transport experiments, when the level spacing exceeds the tem-

perature � > kBT . In this case one encounters the phenomenon of resonant

tunneling through discrete levels.

Many of the experiments showing single{electron e�ects in quantum

dots can be explained by lowest order perturbation theory in tunneling. As

in the metallic case, the theory is based on a classical master equation with

golden-rule rates which describe incoherent transport through the device.

This means that the electrons tunnel sequentially, i.e. they loose their phase

memory before the next tunneling process occurs. The \orthodox theory",

initially developed for metallic islands [45, 46], was later generalized to

quantum dots with discrete spectra [58, 59, 60, 61]. In this Section we de-

scribe this golden-rule theory for the simplest systems. Quantum dots with

exact many-body wave functions in the few electron limit have been stud-

ied in Ref. [62, 63, 64], while coupled quantum dots have been considered

in Ref. [65, 66]. The e�ect of time-dependent �elds have been described in
Refs [67, 68] for metallic junctions and in Ref. [69] for the Coulomb block-

ade model, and in Refs. [70, 71, 72] for the metallic case in the presence of

a heat bath. Various extensions, incl. experimental results and further ref-

erences, will be reviewed in the Chapter of Kouwenhoven et al. later in this

volume. A powerful theory which allows a consistent treatment of higher

order tunneling processes and further generalizations will be presented in

the Chapter by Schoeller.

The electron tunneling through a quantum dot is described by the

Hamiltonian H = Hres +HD +Ht, where

Hres =
X

r=L;R

2
4X
k;�

�kra
y

k;�rak;�r + eVrn̂r

3
5 ; (36)

HD =
X
s

Esjs >< sj ; (37)

Ht =
X

r=L;R

X
k;l;�

T r
kla

y

k;�ral;�D + h:c: ; (38)

describe the reservoirs, the dot, and the tunneling, respectively.

The reservoirs are assumed to have noninteracting single-particle states

labeled by the reservoir index r, wave vector k and spin �. The voltage of

reservoir r is denoted by Vr, and n̂r denotes the total particle number.

The eigenstates of the isolated dot are denoted by js > with energy Es.

For the Coulomb blockade model, the states js > of the dot are speci�ed

by the set of all occupation numbers for the single particle states: js >=
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jfnl;�Dg >. In this case, the dot energy is given by

Es =
X
l;�

�lDn̂l;�D +EC(n� nG)
2 ; (39)

where n̂ is the particle number operator of the dot. The charging energy

EC = e2=2C and the gate charge QG = �enG =
P

i=L;R;GCiVi coincide

with the expressions (13) and (15) introduced in the metallic case. The

general notation in terms of the many-body wave functions js > is intro-

duced here to include cases where the states of the dot cannot be described

by single particle states, see e.g. Refs. [73, 62, 63, 74].

The tunneling part describes charge transfer processes between the

reservoirs and the dot. The tunneling matrix elements are conveniently

combined in the spectral function

�r;ll0(E) =
2�

�h

X
k

T r�

kl
T r
kl0�(E � �kr) ; (40)

which depends on the energy and the single-particle states l; l0 involved.

A typical value of the spectral function de�nes an energy scale � which

characterizes the intrinsic broadening of the single-particle states of the dot

by quantum 
uctuations from tunneling. If �� kBT , thermal 
uctuations

dominate over quantum 
uctuations, and we can use golden-rule theory.

The reservoirs are treated as large systems in equilibrium described by

the grand canonical density matrix �eqres. The tunneling rate for a transition

of the dot from state js0 > to js > when p = �1 charges have been added

from reservoir r to the dot is given by the golden-rule expression



p

r;ss0 =
2�

�h

X
��0

nr(�0)=nr(�)+p

�eqres(�
0)j < �sjHtj�

0s0 > j2 �(Es�Es0+E��E�0�p�r) :

(41)
Here � denote the states of the reservoirs with particle numbers nr(�).

The energy conserving �-function includes the change �r = eVr of the elec-

trostatic energy, which is regarded here as the e�ective electrochemical

potential of reservoir r. The change of the electrostatic energy of the dot is

included in Es �Es0 .

Inserting the tunneling Hamiltonian Ht from Eq. (38) into the golden-

rule rate (41) yields



p

r;ss0 =
X
ll0

�r;ll0(Es�Es0��r) < sja
y

lDjs
0 >< s0jal0Djs > fpr (Es�Es0) ; (42)

where f+r (!) = f(! � �r) is the Fermi distribution of reservoir r, while

f�r = 1� f+r
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The rates can be used as an input for a master equation. Consequently,

the stationary dc-probability distribution Ps for the dot and the stationary

dc-tunneling current in reservoir r can be calculated from

0 =
X
s0

[
ss0P (s
0)� 
s0sP (s)] ; (43)

Ir = e
X
ss0

[
+r;ss0P (s
0)� 
�r;s0sP (s)] ; (44)

with 
ss0 =
P

rp 

p

r;ss0 . Current conservation
P

r Ir = 0 follows from the

property X
r

[
+r;ss0 � 

�

r;ss0 ] = 
ss0(ns � ns0) ; (45)

where ns denotes the number of particles in the dot in state s.

The rates satisfy the detailed balance relation 
�r;s0s=

+
r;ss0 = exp[�(Es�

Es0��r)]. As a consequence, the equilibrium solution of the master equation
(43) is the grand canonical distribution

P eq(s) =
1

Z
e��(Es��ns) ; (46)

which applies when all electrochemical potentials are the same �r = �. In

this case the dc-current (44) is zero.

Using detailed balance we can write the tunneling rates as


+r;ss0 = f+r (Es � Es0)

�
r;ss0 ; 
�r;s0s = f�r (Es �Es0)


�
r;ss0 ; (47)

where


�r;ss0 = 
+r;ss0 + 
�r;s0s (48)

is the sum of tunneling `in' and tunneling `out' rates. As a consequence the

current (44) can be expressed as

Ir = e
X
ss0


�r;ss0
�
f+r (Es �Es0)P (s

0)� f�r (Es �Es0)P (s)
�
: (49)

A current can 
ow through the structure if both the tunneling `in' and

tunneling `out' rate are non-zero. At low temperatures we consider the

transition between two dot states sn $ sn+1, with n and n + 1 particles

in the dot, respectively. For tunneling `in' from reservoir r we need �E =

Esn+1 �Esn < �r, and a similar relation for tunneling `out' to reservoir r0.

Both conditions are satis�ed simultaneously if the excitation energy �E lies

in the window of the e�ective potentials of the reservoirs, �r0 < �E < �r.

The energy- and state-dependence of the spectral function �r;ll0(!) ac-

counts for the energy-dependence of the density of states in the reservoirs,
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and mesoscopic 
uctuations of the conductance peak heights. Here we con-

centrate on the simplest case and set

�r;ll0(!) � �ll0�r ; (50)

In this case we �nd from (42) that the sum of the tunneling `in' and `out'

rates de�ned in (48), di�ers from this scale


�r;ss0 = �r
X
l

j < sja
y

lDjs
0 > j2 (51)

only by a constant factor, since the Fermi functions have canceled out.

Inserting this relation in (49), and using current conservation
P

r Ir = 0 to

eliminate the term which is independent of the Fermi functions, we �nd

Ir = e
X
r0ss0

�r�r0

�

X
l

j < sja
y

lDjs
0 > j2[P (s) + P (s0)]

�[fr(Es �Es0)� fr0(Es �Es0)] ; (52)

with � =
P

r �r. This formula is frequently used in the literature. In linear

response, it reduces to a form �rst derived by Beenakker [59]. In this case

we set �r = �+ e�Vr, and �nd

Ir =
X
r0

Grr0(�Vr � �Vr0) ; (53)

where the conductance is

Grr0 = �e2
X
ss0

�r�r0

�

X
l

j < sja
y

lDjs
0 > j2[P (s)eq+ P (s0)eq]f 0(Es �Es0 � �) :

(54)

In the general case, many excitation energies Es � Es0 can lie between

�r and �r0 and are relevant for transport. However, only those transitions

s0 ! s will occur for which the initial probability P (s0) is not too small.

For temperatures and bias voltages smaller than the level spacing � and the

charging energy Ech, only the ground states s
0
n of the dot will have nonzero

occupation probability. This means that only the energies

�n = E
s0n+1

�Es0n (55)

are relevant. The transition from s0
n
to an excited state s�

n+1 does not occur

since, upon increasing the gate voltage, the transition s0
n
! s0

n+1 occurs

sooner and afterwards the dot is already in the n+1-particle ground state.

Thus, we obtain the same physical picture as shown in Fig. 19 with the
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Figure 23. Linear conductance versus � for two doubly degenerate levels with ��1 = 0,
��2 = 25�, T = 5�, EC = 75�, and �L = �R = �=2. The distance between the second and
third main resonance is larger due to the �nite level spacing. All resonances involving
excited states are hidden.

only di�erence that the distance � between adjacent excitation energies is

no longer a constant.

This behavior is re
ected in the formula (54) for the conductance matrix

in linear response. Due to the derivative of the Fermi function, the conduc-

tance will be maximal when � coincides with one of the excitation energies

within a range set by the temperature. The energy di�erence Es � Es0 is

varied experimentally by the gate voltage. Thus, the conductance shows

a series of resonances with varying distance between the peaks and a line

shape which is approximately given by the derivative of the Fermi distri-

bution function. Between the resonances, transport is not possible and the

system is in the Coulomb blockade regime. As an example, we show the

Coulomb oscillations in Fig. 23 for the Coulomb blockade model with two

spin-degenerate levels with energies �1 < �2. According to (39) the excita-

tion energies, describing the energy changes of the dot when a particle is

added in level l to a state with n particles, are given by

�nl = ��lD + 2nEC : (56)

Here ��lD = �lD +EC(1� nG) describes the e�ective level position, which is

tuned by the gate voltage. As a consequence, we observe four resonances

corresponding to the excitation energies �01 = ��1, �11 = ��1 + 2EC, �22 =

��2 + 4EC, and �32 = ��2 + 6EC. As explained above, all other excitation

energies �02 = ��2, �12 = ��2 + 2EC, �21 = ��1 + 4EC, and �31 = ��1 + 6EC

are hidden because they involve excited states.
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Figure 24. The dc current in nonlinear response versus eV = e(VL � VR), with
VL = �VR = V=2 and CGVG=e = 1 �xed, for two doubly degenerate levels with ��1 = 0,

��2 = 50�. The other parameters are T = 5�, EC = 75�, and �L = �R = �=2. All
one-particle excitations of the dot are visible.

At �nite bias voltage all excitations are in principle visible since the

excited states acquire a �nite occupation probability. This holds at least

in the absence of certain selection rules arising from the matrix element

< sja
y

lDjs
0 > in (52). For a constant density of states of the leads the I-V-

characteristic shows steps each time a new excitation becomes relevant. This

result is shown in Fig. 24 for the same example as before. Equivalently, the

di�erential conductance dI=dV shows peaks as function of the bias voltage.

As can be seen, all eight excitation energies mentioned before are visible.

The e�ects of strong correlations on the dot are not only re
ected in

the increase of the distance between adjacent resonances but also in the

line shape of an individual peak as a function of the applied gate voltage.

To show this explicitly, we consider the Coulomb blockade model for a

single spin-degenerate state with energy � on the dot. For EC � T we can

restrict ourselves to the transition between an empty and a singly occupied

dot, n = 0; 1. According to relation (56), the excitation energy for this

transition is given by � = ��. From the master equation and (52) we �nd

Ir = 2e
X
r0

�r�r0

�

1

1 +
P

r00
�r00
� fr00(�)

[fr(�)� fr0(�)] ; (57)

Grr0(�) = �2e2
�r�r0

�

1

1 + f(�� �)
f 0(�� �) : (58)

The current contains an asymmetry factor 1=(1+
P

r
�r
� fr(�)) which is

absent either for a nondegenerate level or for the noninteracting case EC =
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0. This factor arises from correlations since double occupancy of the dot

is forbidden. This gives rise to particle-hole asymmetry and, consequently,

to an asymmetric line shape of the di�erential conductance as a function

of � as shown in Fig. 25 for �nite bias voltage. The maximal value of the

conductance in linear response is given by

Gmaxrr0 = 4�
e2

h

�r�r0

�

2

3T
: (59)

For a nondegenerate level or for the noninteracting case with one degen-

erate level, the factor 2=3 has to be replaced by 1=2 or 1, respectively.

This can be easily understood. At the maximum of the conductance sev-

eral states of the dot have the same probability. For large charging energy

the doubly occupied state can be excluded, and we have two degenerate

excitations which can be used for transport, and three possible states of

the dot (the empty dot and two degenerate states with one electron). Each

excitation contributes equally to the current but has to be multiplied with

the probability 1=3 of the initial state. This explains the factor 2=3. For

a nondegenerate level we have only one excitation and two states, result-

ing in a factor 1=2. For a noninteracting model with one degenerate level

we have four excitations (two for each transition n = 0 ! n = 1 and

n = 1 ! n = 2) and four possible states, giving a factor 1. The reduc-

tion of the current by Coulomb repulsion is obvious, since certain processes

are blocked. In contrast to the noninteracting case, we have seen that the

presence of degenerate states does not give rise to a pure multiplicative
factor of the degeneracy. The reason is that Coulomb interaction induces a

correlation between the levels. When one level is occupied, the other is not

allowed to be occupied due to the strong on-site Coulomb repulsion.

Selection rules occur due to the matrix element j < sja
y

lDjs
0 > j2 in (52).

Spin conservation allows only transitions where the total spin of the states

s and s0 di�ers by �1=2. For the discussion of spin blockade e�ects and

related negative di�erential conductances we refer to Refs. [62, 63, 74].

Conclusions

Many further fundamental concepts of mesoscopic electron transport

could not be included in this Introduction, but will be covered in follow-

ing Chapters. Interference and localization e�ects and extensions will be

discussed in the Chapters of Stern and of Imry. The Chapter by Kouwen-

hoven, Markus, McEuen, Tarucha, Westervelt, and Wingreen will cover the

wide �eld of electron transport through quantum dots. Eaves includes in

his Chapter concepts related to chaos. De Jong and Beenakker review noise

properties of electron transport. Also B�uttiker and Christen's Chapter deals
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Figure 25. The di�erential conductance as a function of � = �� for a two-fold degen-
erate level with large charging energy EC so that double occupancy can be neglected.
T = 0:25�, �L = ��R = 15�, and �L = �R = �=2.

with extensions to time-dependent phenomena. A systematic discussion of

tunneling beyond perturbation theory is presented in Schoeller's Chapter,

while Fisher and Glazman discuss transport in 1D interacting systems.

Superconductivity adds further degrees of freedom to mesoscopic elec-

tron transport. The properties of normal metal { superconductor heterostruc-

tures are described in the Chapter of the Saclay group, while Fazio and

Sch�on describe single-charge tunneling in superconducting junction systems

and further review the theory of quantum transport in NS heterostructures.

The very existence of superconductivity in ultrasmall particles is investi-

gated in the article of Ralph et al., while van Wees and Takayanagi address

transport through semiconductor { superconductor systems.

The �eld of scanning probe microscopy has advanced substantially in

recent years. It is reviewed by Sohn et al. The transport through quantum
point contacts still reveals new results as described in two Chapters by van

Ruitenbeek and by Garcia et al.

We included in this Book also two peripheral Chapters. Yamamoto de-

scribes concepts of quantum optics to solid state physicists, while DiVin-

cenzo reviews the novel �eld of quantum computing.
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