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1. Introduction

In the last few years the progress in microfabrication technology has led

to an enhanced interest in transport properties of ultrasmall conducting
islands coupled weakly to leads (for reviews see Refs.[1-6]). Quantization of

charge and tunneling through zero-dimensional states lead to many interest-

ing phenomena in these systems. Adding a single charge to a small island

costs the charging energy EC � e2=(�L) � e2=(2C) (L being the length

scale of the island, � the dielectric constant, and C the self-capacitance),

and, second, the level spacing �E of the single-particle states. For system

lengths in the nanoscale regime, charging energies can be reached of order

1 � 10K. For temperatures below 1K this implies that electron transport

can be completely blocked (Coulomb blockade) or being restricted to a

small number of possible charge states. In the same way electron transport

can be inuenced by the discrete level structure on the island. Especially

in 2d semiconductor quantum dots the level spacing is large (typically 1=10

of the charging energy).

The sensitivity to adding a single charge can be used for measurement
applications, e.g. for the detection of single charges or for setting up current

standards. Electronic applications are the subject of intensive research and

could become of technological interest if the operating temperature of these

devices can be increased. Experimentalists can use single electron phenom-

ena as spectroscopic tools. For theoreticians quantum dots are important

systems for studying models of strongly correlated systems in equilibrium

or nonequilibrium. Quantum dots represent various realizations of general-

ized Kondo and Anderson models. Arrays of quantum dots can be used to

model Hubbard chains.
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Many phenomena in single electron devices can be understood within

golden rule theory. This means that tunneling to the particle reservoirs is so

weak that the spectral density of the island remains unchanged and trans-

port can be described by classical master equations, the so-called orthodox

theory [1]. A crucial assumption in justifying perturbation theory is a small

intrinsic broadening of the island excitations compared to temperature T

(we always set kB = 1). Experimentally this can easily be achieved by

using tunneling barriers with tunneling resistances RT much higher than

the quantum resistance RK = h=e2. Thus, there exists a well-de�ned ex-

perimental regime where perturbation theory can describe single-electron

tunneling through zero-dimensional states [2].

It is important to notice that a master equation with golden rule tun-

neling rates is a perturbative approach in the coupling to the reservoirs but

not in the interaction within the island. Therefore, this approach has to be

distinguished from the well-known scattering formalism [7] which can de-

scribe coherent transport through mesoscopic devices for arbitrary tunnel-

ing barriers and temperatures but is restricted to noninteracting systems.

It is therefore very important to formulate theories which can interpolate

between both limits. It is the purpose of this report to present a technique

which is capabable of describing coherent transport through interacting

islands.

There are several experimental motivations to study coherent transport

through strongly interacting quantum dots. First of all there are regimes

where sequential tunneling is exponentially suppressed. This happens in the

Coulomb blockade regime where the current is dominated by higher order

processes such as coherent "cotunneling" processes of electrons through sev-

eral junctions [8]. In interference geometries where quantum dots are part

of an Aharonov-Bohm ring, only higher order processes beyond sequential

tunneling show a ux dependence and lead to Aharonov-Bohm oscillations

[9]. Experiments can be performed in the limit where the tunneling barriers

are so low that even the case of perfect transmission can be reached with-

out destroying the e�ect of Coulomb blockade. This leads to a signi�cant

deviation from "orthodox theory" even in regimes where sequential tunnel-
ing contributes. The spectral density of the island will be strongly a�ected

by the coupling to the leads, and the broadening of levels will approach

temperature or level spacing upon continously increasing tunneling. In the

presence of interactions the broadening can be a complicated function of

energy, temperature and bias voltage. This induces strong renormalization

e�ects of the levels and the system parameters. For quantum dots described

by one degenerate low-lying level it can even lead to new resonances in the

spectral density in the form of Kondo resonances. They show up in various

anomalies in the di�erential conductance as function of the bias voltage.
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Quantum dots with continuous level spectra are, in the two charge-state

approximation, equivalent to multichannel Kondo models. Again, this gives

rise to anomalous temperature dependences of the conductance as function

of gate or bias voltage. By varying the level spacing, level position or using

multi-dot systems an enormous variety of interesting many-body systems

can be realized. Their low-temperature scaling behaviour is still not known

for most cases.

Here we are interested in the case where the transmission per channel

of the barriers is still much less than unity so that a well-de�ned descrip-

tion via a tunneling Hamiltonian is justi�ed. One should recognize that,

for large channel number, this includes the possibility of total transmis-

sion being larger than unity. Experiments in this regime have recently been

performed in metallic dots with clear signs for deviations from classical be-

haviour [10]. Furthermore, quantum uctuations become visible by lowering

the temperature. Especially vertical quantum dots [11], ultrasmall metallic

particles [12] or molecules [13], are promising candidates for the observa-

tion of quantum uctuations in the weak transmission limit at realistic

temperatures.

The transport theory presented here is based on a recently developed

real-time diagrammatic approach [14-17]. It is closely related to path-integral

methods using the Feynman-Vernon technique [18] formulated in connec-

tion with dissipation [19, 20] or tunneling in metallic junctions [5, 21]. The

idea is to integrate out the reservoir degrees of freedom and to set up a

formally exact kinetic equation for the reduced density matrix of the dot.

The kernel of this integro-di�erential equation is represented as a sum over

all irreducible diagrams and can be calculated in a systematic perturbation

expansion in tunneling. In this way the strong correlations on the island

are fully taken into account. Furthermore, the golden rule theory, which
is reproduced by using the kernel in lowest order perturbation theory, can

be systematically generalized to higher orders. We will formulate an ap-

proximation for an explicit calculation of the kernel which reproduces the

Landauer-B�uttiker theory in the noninteracting limit but provides also a

good description for coherent transport in the strongly interacting case.

2. Single-electron devices

2.1. MOTIVATION: THE COULOMB BLOCKADE MODEL

In this section we discuss the basic physical properties of quantum dots.

We introduce a simpli�ed model and discuss the conditions for various

energy scales when Coulomb blockade phenomena and tunneling through

zero-dimensional states are observable.

We consider a small island containing interacting electrons in a uni-
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Figure 1. The SET transistor. All three terminals are coupled capacitively to the island.
Two tunnel junctions allow transport from the left reservoir to the right one.

form positive background charge. The island is coupled electrostatically

to macroscopic metallic reservoirs with di�erent electrochemical potentials

�r = eVr, r = L;R. A current can ow by tunneling of electrons across

the tunnel junctions. A schematic view of such an arrangement is shown

in Fig. 1. The total charge on the island is given by Q = eN , where N

denotes the excess electron number. By means of a third terminal, called

the gate, which is coupled electrostatically to the island, one can change

the electrochemical potential of the island independent of VL and VR. In

this way it is possible to control the particle number on the island. Such a

system is called a single-electron transistor (SET) in the general nonequi-

librium situation where VL 6= VR, or a single electron box (SEB) for the

equilibrium case where VL = VR.

The length scale L of the island is typically of order 0:1� 1�m. This is

large compared to atomic scales and it is possible to couple the island to

macroscopic voltage sources. On the other hand, the system size is so small

that single charge-transfer processes can be measured on a meV voltage

scale. Adding one single charge to the neutral island will cost a charg-

ing energy EC � e2=(�L) � 0:1 � 1meV � 1 � 10K where we have as-

sumed � � 10 for typical semiconductor quantum dots. The level spacing

�E � (kFL)
2�d�h2�2=(m�L2) de�nes the second energy scale for adding one

electron. Here, kF is the Fermi wave vector, d the dimension, and m� the

e�ective electron mass. To achieve �E � 1K, one has to reduce the dimen-

sionality or use smaller system sizes. For a 3d metallic system with Fermi

wave length �F � 10�A, one needs L � 10nm. For a 2d electron gas it is

su�cient to take L � 100nm. Furthermore, the level spacing is increased

in systems with small e�ective mass.

We start with an analysis of the concept of charging energy. To calculate

the electrostatic work Epot to build up an arbitrary charge distribution on

the island we use the so-called Coulomb blockade model. It means that the
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island is treated like a metal, i.e., the electrostatic potential on the island

is assumed to be homogeneous. For 3d metallic systems this is usually a

good approximation except for system sizes L smaller than 10nm where

the Thomas-Fermi screening length �TF = (�FaB=8)
1=2 starts to become

comparable to L and the potential is no longer homogeneous over the island.

In 2d semiconductor quantum dots there is no exponential screening and

the screening length is given by the Bohr radius aB. Here it depends on

the particle number and the distance to the gates whether the Coulomb

blockade model can be used.

Within the capacitive model the electrostatic work Epot(Q) to build up

the total charge Q on the island is given by Epot(Q) =
RQ
0 dQ0V (Q0), where

V (Q) is the electrostatic potential of the island for given island charge Q.

It depends on the �xed voltages Vi, i = L;R; g, of the metallic reservoirs

and follows from Ci(Vi � V ) = Qi, where Qi is the screening charge on

capacitor i (see Fig. 1 for notations). Using �Q = QL +QR +Qg together

with the de�nitions C = CL + CR + Cg and qx = �enx =
P

i=L;R;g CiVi,

we obtain V (Q) = (Q+ qx)=C and thus

Epot(Q = eN) = EC(N � nx)
2 ; (1)

where we have added the irrelevant constant ECn
2
x. The charging energy

EC is given by EC = e2=(2C). For typical lengths L � 0:1 � 1�m and a

dielectric constant � � 10, the capacitance is of order C � 10�16� 10�15F .

The system tries to minimize its electrostatic energy. Therefore, the

integer particle number N tends to be as close as possible to the continu-

ous variable nx. As a consequence, the particle number on the island can

be controlled in discrete units by varying nx via the gate voltage Vg. For

half-integer values of nx, two adjacent particle numbers N = nx� 1=2 lead

to the same electrostatic energy and transport is possible. Away from the

degeneracy points, transport is suppressed up to smearing due to temper-

ature, bias voltage and quantum uctuations. This is the phenomenon of

Coulomb-blockade.

So far we have considered only the Coulomb interaction. The total en-

ergy E of the island is given by

E =
X
k

�kDnkD + EC(N � nx)
2 ; (2)

where jkD > are single-particle states of the dot with occupation nkD and

energy �kD . k is the wave vector numerating the states. Furthermore, the

total excess particle number is given by N =
P

k nkD � N0, where N0 is

the number of electrons on the neutral island. If the particle number in-

creases from N to N + 1, the ground state energy changes by the amount
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Figure 2. One-particle excitation energies of the Coulomb blockade model. For simplicity
it is assumed that the level spacing is a constant. If an excitation �N falls into the window
of the electrochemical potentials of the reservoirs, transport can occur. The position of
�N depends linearly on the gate voltage Vg.

�N = E0
N+1 � E0

N = �DN+N0+1
+ 2EC(N � nx) + EC . It describes a one-

particle excitation energy of the island corresponding to a transition be-

tween ground state energies with di�erent particle numbers. The quantity

�N can also be regarded as the de�nition of the electrochemical potential
of the island. Of course there are other excitations involving excited states,

which become important if the level spacing �E is smaller than temperature

or bias voltage.

We are now able to set up the conditions when transport is possible.

In Fig. 2 we have shown an energy pro�le of the double barrier structure

indicating all electrochemical potentials of the reservoirs and the excitation

energies of the island. For constant level spacing �E, all excitation energies

are equidistant � = �N+1��N = �E+ 2EC. Furthermore, their absolute

position can be shifted linearly by the electrochemical potential �g = eVg
of the gate @�N=@�g = Cg=C. In lowest order perturbation theory in the

tunneling barriers, energy conservation and the Pauli principle restrict tun-

neling. This means that one of the excitations �N has to lie within the

window of the electrochemical potentials of the reservoirs �R < �N < �L.

For �nite temperatures, this condition has to be ful�lled only within the

smearing de�ned by the Fermi distribution function. If no excitation lies

between �R and �L, transport is suppressed. Thus, in order to observe a

signi�cant modulation of the current as function of the gate voltage, we

need T; eV = e(VL � VR)� � which implies T; eV � �E or T; eV � EC .

The �rst condition guarantees transport through zero-dimensional states,

whereas the second one implies the occurence of Coulomb-blockade phe-

nomena.

Within golden rule theory it is su�cient to consider the excitation spec-

trum of the isolated dot as shown in Fig. 2. This means that we have ne-

glected so far the fact that the spectral density of the dot itself can be
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changed by the presence of the reservoirs. Due to the �nite life-time � of

the excitations there will be a corresponding broadening � �h=� and via

Kramers-Kronig also a renormalization. We denote the temperature where

the renormalization becomes signi�cant by TK and call it "Kondo tem-

perature" since the model is similiar to Kondo and Anderson models. The

broadening and renormalization has two important consequences. First, in

the low-temperature region where T < �h=� or T < TK , golden rule theory

breaks down, higher order processes become important and nonperturbative

methods have to be applied. This is the region where quantum uctuations

are important but single-electron tunneling still persists. Secondly, if the

broadening �h=� approaches the spacing � of the excitations, single electron

phenomena will no longer be visible. This is the regime of strong tunneling.

Let us start with the case of large level spacing �E � T . Although the

life-time of an excitation involving many-body states is strongly inuenced

by interactions (see section 4.3), a rough estimate for the energy scale of the

broadening can be obtained by comparing with the noninteracting case. A

single state in a double barrier has a Breit-Wigner broadening � of the order
� � jtj2�E, where jtj2 is the transmission probability of a single barrier

[22]. For the Kondo temperature TK , no general estimate is possible since

it depends on the spectrum of the dot (see section 4.3). As already stated

above, deviations from golden rule theory occur in the low-temperature

region T < � or T < TK (see section 4.2 and 4.3). The regime of strong

tunneling �h=� � �E cannot be achieved here since, for high tunneling

barriers, jtj2 � 1, and consequently �h=� � �� �E.

For 3d metallic systems, where the level spacing �E is very small, the

situation is more complicated. Here, tunneling can happen through many

excited states and the broadening of the charge excitations turns out to be

� multiplied with the number of available states for tunneling into or out

of the island (see section 4.4) �h=� � �0max(�N ; T; eV ). Here,

�0 =
1

4�2
RK

RT

=
1

4�2
Zjtj2 � Z

�

�E
(3)

is, up to a conventional factor 1=(4�2), the dimensionless conductance of a
single barrier, and Z the number of transverse channels. RK = h=e2 is the

quantum resistance and GT = 1=RT = Z(e2=h)jtj2 the tunneling conduc-

tance of a single barrier. For �N � EC � T; eV , the broadening is given

by �h=� � �0EC � h=(RTC) which agrees with the classical relaxation time

for a charge on a capacitor in a RC-circuit. Single electron phenomena per-

sist if the broadening �h=� is much less than the distance � � EC between

the excitations. This is ful�lled for �0 � 1 or, equivalently, Z� � �E.

In contrast to the case of large level spacing, this condition is not auto-

matically ful�lled for large tunneling barriers. For large transverse channel
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number Z, �0 can be of order unity even if � � �E. This is the regime of

strong tunneling where quantum uctuations are enhanced by lowering the

tunneling barriers. When the condition �0 � 1 is ful�lled, single electron

phenomena are visible, but, due to renormalization of charge excitations,

golden rule theory again has to be improved in the low-temperature regime

(see section 4.4).

2.2. HAMILTONIAN AND CURRENT OPERATOR

In this section we will set up the Hamiltonian and the current operator. We

distinguish between two di�erent cases: Quantum dots with discrete quan-

tum states and metallic islands with a continuous single-particle spectrum.

We use the convention �h = kB = 1 and e < 0.

2.2.1. Quantum dots

We consider a small island coupled to several metallic reservoirs and to an

external heat bath. The bath can be represented by an environment or by

internal bosonic degrees of freedom like, e.g., phonons or plasmons. For the

general theory we need no assumption for the island Hamiltonian and in-

clude the possibility that the voltages on the reservoirs are time-dependent.

The coupling to the reservoirs includes an electrostatic interaction as well

as tunneling of electrons through high barriers. Let us �rst state the obvi-

ous form of the Hamiltonian and the current operator. For the interested

reader, the explicit derivations are presented at the end of this section.
The model Hamiltonian reads H(t) = H0+HT (t) with H0 = HR+HB+

HD. Here, HR, HB and HD denote the Hamiltonians for the reservoirs, the

heat bath, and the dot, respectively, and HT (t) describes the tunneling

between dot and reservoirs. Explicitly, we have

H0 = HR +HB +HD

=
X

r=L;R

X
k

�rka
y
krakr +

X
q

!qb
y
qbq +

X
s

EsP̂s ; (4)

HT (t) =
X

r=L;R

X
k;ss0

�T rk;ss0(t)a
y
krP̂ss0e

�i�̂ + (h:c:) : (5)

All terms have an obvious interpretation. jkr > denote the single particle

states in reservoir r with energy �rk , !q are the frequency modes of the heat

bath, Es are the energy eigenvalues of the many-body states js > of the

isolated dot, and P̂s = js >< sj is the projector on state js >. For the

Coulomb blockade model (2), the states js > of the dot are speci�ed by the

set of all occupation numbers for the single particle states: js >= jfnkDg >.

The more general notation is introduced here since we want to include cases

where the states of the dot cannot be described by single particle states, see



INTERACTING QUANTUM DOTS 9

e.g. [23, 24, 33]. Furthermore, the states js > can represent charge states

(see section 2.2.2.), spin states, or states of multiple dots. This allows a

uni�ed treatment of many possibilities.

The tunneling part (5) describes charge transfer processes where the

tunneling matrix element �T rk;ss0 corresponds to a transition of the dot state

from js0 > to js >. Therefore, we have introduced the operators P̂ss0 =
js >< s0j. Due to particle number conservation, we have �T rk;ss0 = 0 unless

Ns = Ns0 � 1, where Ns is the particle number on the dot for state js >.

The electrostatic interaction between dot and reservoirs is described by the

e�ective time dependence

�T rk;ss0(t) = T rk;ss0(t)e
ie
R t
t0
dt0 �Vr(t

0)
; (6)

where �Vr(t) = Vr(t) � VD(t) is the change of the electrostatic energy of

a particle entering reservoir r. Vr(t) denotes the time-dependent voltage

on reservoir r, and VD(t) is the spatial average of the external electrostatic

potential taken over the dot. The part of the electrostatic interaction which

remains for zero voltage on all reservoirs is included in HD. E.g. for the

Coulomb blockade model (2), we have VD(t) = �2ECnx(t) whereas the

part ECN̂
2 of the electrostatic interaction is included in HD. A possible

explicit time dependence of the tunneling matrix elements T in (6) accounts

for a modulation of the barriers.

Finally, the bosonic phase factor exp (�i�̂) in (5) describes the energy

exchange with the heat bath due to absorption or emission of bosonic

modes. The linear bosonic �eld �̂ is de�ned by �̂ = i
P

q gq=!q(bq � byq),

where gq is the coupling constant to the heat bath for mode q. This model

has been used widely in the literature, either to describe optical phonons

in semiconductor quantum dots [25] or voltage uctuations in metallic sys-

tems [26]. In the latter case, the relation between the coupling constants

gq, their spectral function J(!), and the impedance Z(!) of the external

circuit is given by [26]

J(!) = �
X
q

g2q�(! � !q) = e2!ReZ(!) ; (7)

where ! > 0, since the bosonic modes !q are all positive. For the special

case of ohmic dissipation J(!) � !, we obtain the Caldeira-Leggett model

[19]. For an extended discussion of various kinds of possible environments

we refer the reader to Ref. [27].

The physical observable which can be measured experimentally is the

current Ir owing in reservoir r. This current consists of two contributions:

a tunneling current I tunr (t) from electrons hopping on or o� the island and a
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displacement current Idisr (t) = d
dt
Qr(t) arising from the change of the time-

dependent screening charge Qr(t) on reservoir r. Let us show how the latter

can be calculated for the simpli�ed Coulomb blockade model introduced in

section 2.1. For given charge Q(t) on the island and given potentials Vr(t),

r = L;R; g, on the reservoirs and the gate we get for the screening charge

Qr = Cr(Vr � V ) with V = (Q + qx)=C being the potential on the island.

Inserting the de�nition qx =
P

r CrVr and taking the time derivative we get

for the displacement current

Idisr = Cr[ _Vr �
1

C
( _Q+

X
r0

Cr0
_Vr0)] : (8)

The time-derivative of the island charge _Q =
P

r I
tun
r is known after we

have calculated the tunneling currents. Summing (8) over r we �nd total

current conservation
P

r Ir(t) =
P

r[I
dis
r (t)+I tunr (t)] = 0. The displacement

currents are only important for the calculation of AC-currents since the time

average of Idisr is usually zero except for cases where
R
_Vr 6= 0.

The tunneling current operator Î tunr (t) is given by the time deriva-

tive of the particle number operator in reservoir r, Î tunr (t) = �e d
dt
N̂r =

�ie[H(t); N̂r]. Inserting for H(t) from (4) and (5) we �nd

Î tunr (t) = ie
X
k;ss0

�T rk;ss0(t)a
y
krP̂ss0e

�i�̂ + (h:c:) ; (9)

where the explicit time dependence stems only from the time dependent

tunneling matrix elements.

Let us now turn to the derivation of the Hamiltonian (4) and (5). The

microscopic starting point is

H(t) = HD(t) +HR(t) +HB + VDB +HT (t) ; (10)

where HD(t),HR(t) and HB denote the Hamiltonians for the dot, the reser-

voirs and the heat bath, respectively. VDB describes the interaction between

dot and heat bath and HT (t) the tunneling between dot and reservoirs.

The general form of the dot Hamiltonian is HD(t) = H0
D + eVex(t),

where eVex(t) is the potential energy from the �xed voltage distribution

on the reservoirs whereas the electrostatic energy for zero voltage on all

reservoirs is included in H0
D. Screening e�ects and nearby gates often justify

the form Vex(t) = VD(t)N̂ , where VD(t) is the spatial average of the external

electrostatic potential taken over the dot. We denote the normalized and

orthogonal many-body eigenfunctions of H0
D by js > with energy Es and

obtain HD(t) =
P

sEsP̂s + eVD(t)N̂ .
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For the reservoir Hamiltonian HR(t) we take a noninteracting Fermi

liquid with perfect screening properties like in an ideal metal HR(t) =P
kr �

r
ka

y
krakr + e

P
r Vr(t)N̂r, where Vr(t) is the electrostatic potential of

reservoir r, and N̂r is the particle number operator.

Tunneling between reservoirs and island is described by

HT (t) =
X
r;kl

T rkl(t)a
y
kralD + (h:c:) ; (11)

where T rkl(t) are possibly time-dependent tunneling matrix elements and

alD is a �eld operator corresponding to a set of single particle states on the

dot. The tunneling matrix elements are described by the spectral function

�rll0(t; t
0;!) = 2�

P
k T

r
kl(t)

�T rkl0(t
0)�(! � �rk). In the time-independent case,

one often uses the approximation �rll0(!) � �ll0�
r . This assumes constant

density of states in the reservoirs as well as the neglect of interference

phenomena in higher order perturbation theory in �. Expressed in the basis

js > we have HT (t) =
P

r;k;ss0 T
r
k;ss0(t)a

y
krP̂ss0 + (h:c:). The transformed

tunneling matrix elements T rk;ss0(t) =
P

l T
r
kl(t) < sjalDjs

0 > involve matrix

elements of the �eld operator alD between many-body states of the island.

They can lead to exclusion rules [23, 24]. The function � in the basis js >

reads

�rs1s01;s2s
0

2
(t1; t2;!) = 2�

X
k

T rk;s1s01
(t1)

� T rk;s0
2
s2
(t2)�(! � �rk) : (12)

The heat bath HB is modelled by a set of harmonic oscillators HB =P
q !qb

y
qbq which couple to the particle number operator N̂ of the island by

the interaction term

VDB = N̂
X
q

gq(bq + byq) + N̂2
X
q

g2q

!q
: (13)

The second term is a counter-term which is necessary to avoid an unphysical

renormalization of the energies Es (see below). The �rst term describes a

uctuating electrochemical potential on the island.

Finally we perform a standard time-dependent unitary transformation

U(t) to bring the Hamiltonian into the most convenient form. We choose

U(t) = exp fie
R t
t0
dt0(

P
r Vr(t

0)N̂r + VD(t
0)N̂)g exp (iN̂�̂), where t0 is the

initial time and the hermitian bosonic �eld �̂ is de�ned by �̂ = i
P

q
gq
!q
(bq�

byq). The transformed Hamiltonian �H = UHUy + i( d
dt
U)Uy reads �H(t) =

�H0+ �HT (t) where �H0 and �HT (t) are given by (4) and (5), respectively. We

see that the last term of (13) has been cancelled. Furthermore, we de�ne
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the coupling function ��r
s1s

0

1
;s2s

0

2

(t1; t2;!) after the unitary transformation

by replacing T by �T in Eq. (12).

For convenience we drop �nally the bar on all operators and imply that

the Hamiltonians and all observables A(t) � �A(t) = U(t)A(t)U(t)y are the

transformed ones after the unitary transformation. The states js > together

with the projectors P̂ss0 are kept unchanged.

2.2.2. Metallic island

A metallic island is characterized by a very small level spacing �E � T

which means that a very large number of excitation energies are relevant.

Therefore, following the standard approach, we introduce two approxima-

tions from the very beginning. First, like the reservoirs, we treat the is-

land as a Fermi liquid with perfect screening. This means that we use the

Coulomb blockade model (2) for the dot Hamiltonian

HD(t) =
X
k

�kDa
y
kDakD +ECN̂

2 + eVD(t)N̂ ; (14)

with eVD(t) = �2ECnx(t). The total Hamiltonian is again of the form (10)

with all other parts given as in the previous section. Secondly, we separate
the charge degrees of freedom of the island (described by N) from the de-

grees of freedom describing how the particles on the island are distributed

among the single particle states (described by nDk ). Furthermore we �x the

distribution function on the island by a Fermi distribution. These approxi-

mations are justi�ed since the time scale for the change of the distribution

function is much larger than the time scale for the variation of the total par-

ticle number. To formulate this more precisely we enlarge �rst our Hilbert

space by introducing formal charge states jN > with N ranging from plus

to minus in�nity. We de�ne the operator N̂ in (14) by N̂ jN >= N jN >

and the projectors P̂NN 0 = jN >< N 0j. We demand that each time an

electron changes its position from some reservoir to the island or vice versa

via tunneling, the charge state has to change simultaneously from jN >

to jN � 1 >. This is achieved by introducing the projectors P̂N�1;N into

the tunneling Hamiltonian HT (t) =
P

r;kl;N T
r
kl(t)a

y
kralDP̂N�1;N + (h:c:).

By construction, the new Hamiltonian is exactly equivalent to the old one

provided we use the constraint N =
P

k n
D
k �N0 to restrict ourselves to the

original physical Hilbert space. The approximation formulated above cor-

responds to the neglect of the latter constraint. Although the corrections

have never been analysed systematically it appears reasonable that they
are �nite-size corrections and scale like the inverse volume of the island.

We now apply the same unitary transformation U(t) as in the previous

section. The result for the transformed Hamiltonian is �H(t) = �H0 + �HT (t)
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with

�H0 = �HR + �HB + �HC

=
X

r=L;R;D

X
k

�rka
y
krakr +

X
q

!qb
y
qbq +

X
N

EN P̂N ; (15)

�HT (t) =
X

r=L;R

X
kl;N

�T rkl(t)a
y
kralDP̂N�1;Ne

�i�̂ + (h:c:) ; (16)

where �T rkl(t) is de�ned analog to (6). As indicated we decomposed the dot

Hamiltonian (14) into a "reservoir" part
P

k �kDa
y
kDakD, which has been

included in �HR, and a charge part �HC =
P

N EN P̂N , with EN = ECN
2.

Following the previous section, we drop from now on all bars and iden-

tify A � �A = UAUy for all observables A. Furthermore, using the analog

derivation to the quantum dot case, we obtain for the tunneling current

operator

Î tunr (t) = ie
X
kl;N

�T rkl(t)a
y
kralDP̂N�1;Ne

�i�̂ + (h:c:) ; (17)

whereas the displacement current can be calculated from (8).

3. Real-time transport theory

3.1. GENERAL CONCEPT

In this section we will explain the general structure of the theory without

going into details of technical derivations. The full microscopic approach

together with explicit expressions for various quantities introduced here will

be presented in the next section 3.2.

The following considerations refer to the quantum dot case but hold

as well for the metallic island by the replacement of dot states by charge

states (formally D ! C, s! N).

The tunneling part HT (t) describes the coupling between the environ-

ment (reservoirs and heat bath) and the dot. It will drive the dot system

out of equilibrium. For t � t0, we assume HT (t) to vanish, and the environ-

ment to be in equilibrium. This means that the initial density matrix can be

written in factorized form �(t0) = �
eq
R �

eq
B P̂ (t0), where �

eq
R �

eq
B is the grand-

canonical equilibrium density matrix of the environment, and P̂ (t) is the

reduced density matrix of the dot P̂ (t) = TrRB�(t) with TrRB = TrRTrB
being the trace over the reservoir and heat bath degrees of freedom.

At time t0 we switch on the tunneling between dot and reservoirs. For

t0 ! �1 this is performed adiabatically. Our �rst aim is to study the

time evolution of P̂ (t). This will be performed in section 3.2 by integrating



14 H. SCHOELLER

out the reservoirs and the heat bath with the result of an e�ective theory

in terms of the dot degrees of freedom. We will obtain the formally exact

kinetic equation

d

dt
Pss0(t) + i(Es �Es0)Pss0(t) =

X
s1s

0

1

Z t

t0

dt0�(t; t0)ss0;s1s01P (t
0)s1s01 ; (18)

where Pss0(t) =< sjP̂ (t)js0 >. The second term on the l.h.s. of this equation

is a ow term which describes the time evolution of the density matrix in the

absence of tunneling. This is not a dissipative source and, in the absence of
tunneling, would lead to a coherent time evolution of the dot. Dissipation is

described by the r.h.s. of Eq. (18). It forces the dot to approach a stationary

state and is due to tunneling.

The kinetic equation (18) can be written in a more familiar and trans-

parent form by eliminating the nondiagonal matrix elements of the proba-

bility distribution. This leads to

d

dt
Ps(t) =

X
s0

Z t

t0

dt0�ss0(t; t
0)Ps0(t

0) : (19)

Using the property
P

s �ss0(t; t
0) = 0, which is proven in section 3.2 and

guarantees the conservation of probability
P

s
_Ps(t) = 0, we can rewrite the

kinetic equation as

d

dt
Ps(t) =

X
s0 6=s

Z t

t0

dt0
�
�ss0(t; t

0)Ps0(t
0)� �s0s(t; t

0)Ps(t
0)
	
: (20)

We have obtained the structure of a master equation with a gain and loss

term on the r.h.s.. The kernel �ss0(t; t
0) can be interpreted as a generalized

and formally exact transition rate from the state s0 at time t0 to the state

s at time t. In second order in HT , we obtain the lowest order expression

for the rate but for arbitrary time-dependent situations. In the asymptotic

limit t0 ! �1 it reduces to the golden rule rate when integrated over

the time di�erence t � t0 (see at the end of this section and section 4.1).
In the context of Coulomb blockade phenomena, this term is called the

transition rate of "sequential tunneling". It corresponds to the physical

situation where all tunneling processes are incoherent. The next term, which

is of forth order in HT , is called the cotunneling transition rate. It means

that at least two tunneling processes are correlated allowing for coherent

transport through the dot from one reservoir to the other. The higher order

terms contain processes where the electron tunnels coherently back and

forth between the dot and the reservoirs. We will see in section 4 that

this can lead to renormalization and broadening e�ects. Except for special
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systems which are exactly solvable (see section 4.2 for an example), it is

not possible to calculate � exactly. However, we will at least formulate

a systematic and very general approximation in section 3.2 which will be

applied to speci�c examples in section 4. We call the kernel �ss0(t; t
0) within

this approximation the resonant tunneling transition rate.

For the special case of a diagonal density matrix Pss0(t) = �ss0Ps(t),

the kernel is given by �ss0(t; t
0) = �ss;s0s0(t; t

0). As we will see in section

4, there are special systems with the property that P̂ (t) will be diagonal

for all times t if it is diagonal at the initial time t0. To give a concrete

example we note the following property of Pss0(t) which follows from par-

ticle number conservation Pss0(t) � �Ns;Ns0
, which is ful�lled for all times

if it is ful�lled initially. Here, Ns =< sjN̂ js > denotes the particle num-

ber on the dot for state js >. This follows directly from the de�nition

Pss0(t) =< sjTrRB�(t)js
0 > and the fact that the total particle number

Ntot =
P

r=L;RNr +N is a conserved quantity. Thus, for metallic systems,

we �nd PNN 0(t) = �NN 0PN (t) if this property holds initially. A similiar

proof can also be given for quantum dots with a single spin 1=2 state where

spin conservation can be used (see section 4.3).

Another quantity of interest is the tunneling current given by the av-

erage of the corresponding operator I tunr (t) = Tr�(t)Î tunr (t). Inserting the

form (9) or (17) for the operator and again integrating out the reservoir and

heat bath degrees of freedom, we will show in section 3.2 that the tunneling
current can be written as

I tunr (t) = �e
X
ss0

Z t

t0

dt0�r
ss0(t; t

0)Ps0(t
0) ; (21)

where we have already eliminated the nondiagonal elements.

The physical interpretation of (21) is very obvious. To obtain the tun-

neling current at time t, one has to multiply the current rate
P

s �
r
ss0(t; t

0),

corresponding to the sum over all processes starting at t0 in state s0 and

ending at time t in any state, with the appropriate initial probability Ps0(t
0)

and �nally integrate over all initial times t0 and sum over all initial states

js0 >. The index r indicates that during these processes the particle number

in reservoir r has changed. As a minor remark we note that, just for formal
reasons, only the sum over s of �r

ss0(t; t
0) is allowed to be interpreted as the

current rate.

The current rate includes all possible processes, i.e. the change of the

particle number in reservoir r can take any value. Therefore it is natural to

decompose the current rate in the form

X
s

�r
ss0(t; t

0) = �
X
s

1X
p=�1

p�
rp
ss0(t; t

0) ; (22)
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where �
rp
ss0(t; t

0) corresponds to that part of the total transition rate �ss0(t; t
0)

where in sum p particles are taken out of reservoir r. This allows a decompo-

sition of the tunneling current into a tunneling "in" and a tunneling "out"

contribution

I tunr (t) = e

1X
p=1

p
X
ss0

Z t

t0

dt0
n
�
r;p
ss0(t; t

0)Ps0(t
0)� �

r;�p
ss0 (t; t0)Ps0(t

0)
o
: (23)

Finally we show how the kinetic equation and the tunneling current can

be written in Fourier space. We are interested in the stationary solution

and set the initial time t0 = �1. We assume that the time-dependence

of the voltages and the tunneling matrix elements is periodic in time with

period T = 2�=
. This implies �ss0(t + T; t0 + T ) = �ss0(t; t
0) and the

periodicity of the stationary probability distribution and the tunneling

current. Thus, we use the Fourier expansion Ps(t) =
P1

n=�1 Pn
s e

in
t,

Ir(t) =
P1

n=�1 Inr e
in
t, �ss0(t; t

0) =
P1

n=�1 �n
ss0(t � t0)ein
t

0

, and a cor-

responding representation for �r
ss0(t; t

0). Inserting these expansions in the

kinetic equation (19) and the tunneling current (21), we �nd

i n
Pn
s =

X
s0

X
m

�mn
ss0 P

n�m
s0 ; (24)

Inr = �e
X
ss0

X
m

�
r;mn
ss0 Pn�m

s0 ; (25)

where we have de�ned the Laplace transform �nm
ss0 =

R1
0 d��n

ss0(�)e
�im
� ,

and analog for �
r;nm
ss0 .

If the period T is much smaller than the characteristic memory time

�� of the kernels, the n = 0 component of �n
ss0(t � t0) will give the most

dominant contribution to (19). The reason is that, for n 6= 0, the factor

ein
t
0

will oscillate very strongly for t0 varying on a range �� � 
�1. With

the same argument one can also neglect the components of �nm
ss0 (t; t

0) for

m 6= 0. The AC-components of the probability distribution are then much

smaller than the DC-components and we obtain

0 =
X
s0

�ss0Ps0 =
X
s0 6=s

(�ss0Ps0 � �s0sPs) ; (26)

Ir = �e
X
ss0

�r
ss0Ps0 ; (27)

where, by convention, we imply always that we mean the DC-Fourier com-

ponent n = m = 0 if no time argument and no Fourier index is written.

For time-translational invariant systems, the kernels depend only on the

relative time argument t� t0 and Eqs. (26)-(27) hold exactly.
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P (t)ss’P (t)ss’P (t)ss’P (t)ss’ + ...Σ=
s’

(t )o

t

s’

t 0

s

r

’

1t1 s1

s2 t2 s2

s

ss

’

’

,

s

Ps’s

Figure 3. An example for a diagram contributing to the matrix element Pss0(t) of
the reduced density matrix of the dot. Reservoir (boson) lines are indicated by dashed
(wiggly) lines.

3.2. MICROSCOPIC THEORY

In this section we provide the microscopic basis for the equations set up in

the previous section. We start from the de�nition Pss0(t) = Tr�(t)P̂s0s of

the matrix elements of the reduced density matrix of the dot and �nd in

interaction picture with respect to H0 = HR +HB +HD

Pss0(t) = Tr�(t0)T

�
e
�i
R

dt0HT (t

0)I P̂s0s(t)I

�
(28)

where HT (t)I and P̂s0s(t)I are operators in interaction picture, and  de-

notes the usual closed Keldysh contour which runs from t0 to t on the real
axis and then back again from t to t0. T denotes the time ordering along

this closed time path. Using the initial condition for the density matrix and

taking matrix elements we obtain

Pss0(t) =
X
�s�s0

P�s0�s(t0) < �sjTrRB �
eq
R �

eq
BT

�
e
�i
R

dt0HT (t

0)I P̂s0s(t)I

�
j�s0 > :

(29)
The next step is to expand (29) in HT (t)I and insert the form (5) or (16)

for the tunneling Hamiltonian. The tunneling vertices are arranged along

the closed time path as indicated in Fig. 3. The upper line corresponds to

the forward propagator and the lower line to the backward propagator. To

each vertex we assign a time variable ti and, from the tunneling Hamil-

tonian, a projection operator P̂s0
i
si , where si is the ingoing state and s0i

the outgoing state at each vertex (see Fig. 3). There is one external vertex

emerging from the projector P̂s0s in Eq. (29), which is the rightmost vertex

at time t in Fig. 3. It is the only vertex which does not contain any reservoir

or heat bath �eld operator.

The procedure is now to perform the trace over the reservoirs and the

heat bath, and �nally calculate the matrix element with respect to the dot

states. The trace can be calculated exactly since H0 is a bilinear form in the

reservoir and boson �eld operators, and �
eq
R;B are equilibrium density ma-

trices. What is left for each term is a c-number multiplied with the matrix
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element < �sj : : : j�s0 > of a product of dot projection operators in interac-

tion picture. We note that the three steps, i.e. calculating TrR, TrB and the

matrix element of the dot operators, can be performed independently since

H0 = HR + HB + HD contains no coupling between reservoirs, heat bath

and dot. Furthermore, the reader can convince himself that Fermi statistics

does not give any minus sign during the factorization of reservoir from dot

�eld operators if both are kept in the same sequence separately. This is due

to the quadratic structure a
y
kralD or a

y
lDakr of the tunneling vertex. In our

convention, the time-ordering operator T does not introduce any change

of sign.

Let us start with the calculation of TrR. It can be performed using

Wick's theorem with the result that all reservoir �eld operators are con-

tracted in pairs of creation and annihilation operators. In our convention, a

single contraction for the quantum dot case gives the contribution (� refers

to t1
<
>
t2 with respect to the Keldysh time path)


r;�

s1s
0

1
;s2s

0

2

(t1; t2) =
X
k

�T rk;s1s01
(t1)

� �T rk;s0
2
s2
(t2)hT

n
akr(t1)Ia

y
kr(t2)I

o
i�eq

R

=
1

2�

Z
d!��rs1s01;s2s

0

2
(t1; t2;!)f

�(!)e�i!(t1�t2) ; (30)

whereas for the metallic case we get

��r (t1; t2) =
X
kl

�T rkl(t1)
� �T rkl(t2)hT

n
(a
y
lDakr)(t1)I(a

y
kralD)(t2)I

o
i�eq

R

=
1

�

Z
d! �Dr(t1; t2;!)n

�(!)e�i!(t1�t2) ; (31)

with f+ = f , f� = 1� f , n+ = n, n� = 1 + n, and f(!), n(!) being the

Fermi and Bose distribution function. Furthermore, we have de�ned

1

�
Dr(t; t

0;!) =
1

2�

X
l

�rll(t; t
0;! + �Dl )[f(�

D
l )� f(�

D
l + !)] ; (32)

and �D by replacing �! ��.

For the metallic case we have used the fact that each loop of Wick

contractions is proportional to the transverse channel number Z. Therefore,

for large channel number, the loops will contain the minimal number of

vertices, i.e. they have the form of Eq. (31). Experimentally, the channel

number is usually of order 103.

Eq. (32) can be written in a more explicit form if we assume a constant

density of states �D in the island, take tunneling matrix elements of the
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form T rkl(t) = Fr(t)T
r
kl, and use approximately �rll(!) � �r independent of

l and !. We obtain Dr(t; t
0;!) = Fr(t)

�Fr(t
0)Dr(!) with

1

�
Dr(!) = �r0! ; (33)

and �r0 = 1=(2�)�r�D = RK=(4�
2Rr

T ) is proportional to the conductance

Gr
T = 1=Rr

T of a single barrier connecting the island to reservoir r = L;R

in units of the quantum conductance GK = 1=RK = e2=h.

For the quantum dot case, we get a minus sign for each crossing of con-

tractions due to Fermi statistics. Diagrammatically, a contraction between

reservoir �eld operators is indicated by a dashed line (see Fig. 3). The di-

rection of the line is chosen in such a way that it leaves the vertex where

a particle is annihilated on the dot. The time argument of this vertex has

to be chosen as the second time argument of the functions  and �, i.e.

corresponds to t2 in Eq. (30) and (31). The states s1;2 (s01;2) refer to the

ingoing (outgoing) dot states at both vertices.

The calculation of TrB proceeds in a di�erent way since the tunneling
vertex contains an exponential exp (�i�̂) of a linear bosonic �eld. Here we

can use path integral methods or Feynman's disentangling method [28] to

get

hT

n
e�i�̂(t1)Iei�̂(t

0

1
)I : : : e�i�̂(tm)Iei�̂(t

0

m)I
o
i�eq

B
=

=
Y
i<j

P�(ti; tj)
�1
Y
i<j

P�(t0i; t
0
j)
�1
Y
i;j

P�(ti; t
0
j) ; (34)

where, for t1
<
>
t2 with respect to the Keldysh path, we have de�ned the

correlators P�(t1; t2) = hT

n
e�i�̂(t1)Iei�̂(t2)I

o
i�eq

B
= P (�(t1 � t2)) with

P (t) = e�W (�t), W (t) = S(t) + iR(t), and [20, 27]

S(t) =
1

�

Z 1

0
d!
J(!)

!2
(1� cos(!t))coth(

�B!

2
) ; (35)

R(t) =
1

�

Z 1

0
d!
J(!)

!2
sin(!t) ; (36)

where J(!) is de�ned in (7). The Fourier transform P (E) = 1
2�

R
dteiEtP (t)

describes the probability that an electron absorbs the energy E from the

bosonic environment [26, 27]. We write (34) formally as a sum by de�ning

L�d (t1; t2) = P�(t1; t2) � 1 and L�s (t1; t2) = P�(t1; t2)
�1 � 1. Here, Ld

corresponds to a pair of vertices with di�erent signs of the bosonic phase

�elds, whereas Ls refers to a pair with the same sign. Both Ld and Ls
are zero if the coupling to the environment is absent. Diagrammatically,
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we represent the bosonic contributions Ld;s by wiggly lines (see Fig. 3).

In contrast to reservoir lines, an arbitrary number of bosonic lines can be

attached to a single vertex.

The matrix element < �sj : : : j�s0 > of products of dot projection operators

in interaction picture is given by

< �sj
mY
i=1

P̂s0
i
si(ti)I j�s

0 >=
mY
i=0

< si+1jUD(ti+1; ti)js
0
i > ; (37)

where UD(t; t
0) is the evolution operator of HD, and we identi�ed sm+1 = �s,

s00 = �s0, and tm+1 = t0. This result means that each segment of the Keldysh

contour in Fig. 3, which connects two vertices, corresponds to a matrix

element of the dot evolution operator starting from the outgoing state of

the initial vertex to the incoming state of the �nal vertex. Since HD is

diagonal in the states js >, the matrix element of the evolution operator is

given by < sjUD(t; t
0)js0 >= �ss0e

�iEs(t�t
0). This means that we can assign a

certain dot state to each segment of the Keldysh contour. However, for more

general dot Hamiltonians, which include transitions between the dot states

js >, one has to use the above description in terms of the dot evolution

operator.

Finally we have to assign the factor (�i)nim to each diagram which
arises from the expansion of the exponentials in Eq. (29). Here, n (m) is

the number of vertices on the forward (backward) propagator. The time

integrations are then all performed on the real axis from t0 to t. Assigning

a factor (�i)2 to each reservoir line, we can alternatively say that each

reservoir line and each vertex on the lower line of the Keldysh contour

gives rise to a minus sign. Furthermore, each diagram is multiplied with

the matrix element P�s0;�s(t0) of the initial distribution.

We mention that each reservoir line can be dressed by a bosonic con-

tribution. This means that instead of r;�, the contribution of a reservoir

line is replaced by ~
r;�
s1s

0

1
;s2s

0

2

(t1; t2) = 
r;�
s1s

0

1
;s2s

0

2

(t1; t2)P
�(t1; t2), where we

have added the two contributions of the two vertices being connected by

a reservoir and a boson line (giving Ld), and the term where they are

only connected by a reservoir line (giving ). In the same way we replace

��r (t1; t2) by ~��r (t1; t2) = ��r (t1; t2)P
�(t1; t2). In the presence of the heat

bath we will automatically imply from now on that a dashed line corre-

sponds to a dressed reservoir line.

The dressing can be written very elegantly in Fourier space if we consider

the case of time-independent tunneling matrix elements T rkl and periodic

voltages of the harmonic form e �Vr(t) = e �V 0
r + ��r sin (
t). We de�ne the
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2
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s’

Σ = + + . . .
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Figure 4. The kernel �s1s
0

1
;s2s

0

2

(t1; t2) which contains all irreducible diagrams in the

sense that an arbitrary vertical line will always cut through some reservoir or boson line.

Fourier expansion of A = ~, ~� by

A(t1; t2) =
1X

n=�1

Z
d!ein
t1e�i!(t1�t2)An(!) ; (38)

which is possible since A(t1 + T; t2+ T ) = A(t1; t2). After some algebra we

obtain

~
r;�;n
s1s

0

1
;s2s

0

2

(!) =
1

2�

Z
d!0�rs1s01;s2s

0

2
(! � !0 � e �V 0

r )f
�
r (! � !

0)P�
r;n(!

0) ; (39)

~��;nr (!) =
1

�

Z
d!0Dr(! � !

0
� e �V 0

r )n
�
r (! � !0)P�

r;n(!
0) ; (40)

where fr(!) = f(! � e �V 0
r ), nr(!) = n(! � e �V 0

r ), and

P�
r;n(!) = in

X
m

Jn+m(
��r



)Jm(

��r



)P�(! +m
) : (41)

This shows very clearly the e�ect of dressing a reservoir line with index r
and Fourier component n. The heat bath and the time-dependent �elds

supply the energy !0 for absorption/emission with probability P�
r;n(!

0).

Without heat bath we obtain the usual Tien-Gordon theory for the n = 0

Fourier-component [29].

We can now proceed to derive the kinetic equation (18). Looking at

an arbitrary diagram we distinguish between two di�erent time segments.
There are "free" time segments in the sense that a vertical line drawn

through the diagram will not cut through any reservoir or boson line. These

parts correspond to the free evolution of the density matrix of the dot with-

out any coupling to the external environment. All the other time segments

are "irreducible", i.e. a vertical line cuts either through a reservoir or a bo-

son line. They reect the inuence of the environment. We denote the sum

of all irreducible diagrams by the kernel �s1s
0

1
;s2s

0

2
(t1; t2), with arguments

as shown in Fig. 4. The summation of sequences of irreducible blocks with

free parts in between can be written in the style of a Dyson equation (see
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P(t) = O ( + Σ

Σ

+ Σ Σ + ...)
= P(t )O + P(t )2

t t t1

P(t )

O t2 t

Figure 5. The Dyson-like equation for the probability distribution. � includes all ir-
reducible diagrams in the sense that any vertical line will at least cut one reservoir or
boson line.

Fig. 5)

Pss0(t) =
X
�s�s0

�
(0)
ss0;�s�s0(t; t0)P�s�s0(t0)

+
X
s1s2

s0
1
s0
2

Z t

t0

dt1

Z t1

t0

dt2�
(0)
ss0;s1s

0

1

(t; t1)�s1s
0

1
;s2s

0

2
(t1; t2)Ps2s02(t2) ; (42)

where �
(0)

s1s
0

1
;s2s

0

2

(t1; t2) =< s1jUD(t1; t2)js2 >< s02jUD(t2; t1)js
0
1 > describes

the evolution of the density matrix in the free segments. Di�erentiating
(42) with respect to t, we arrive at the kinetic equation (18).

For the diagonal kinetic equation (19) we have to de�ne the kernel �ss0

in a di�erent way. We allow for free segments in the kernel as well but with

the restriction that the dot states associated with the lower and upper line

of the contour are di�erent in the free segments.

The property
P

s �ss0(t; t
0) = 0, needed for the derivation of (20), can

be easily proven by attaching the rightmost vertex of each diagram � to

the upper and lower proppagator. The minus sign for each vertex on the

backward propagator cancels both contributions if we sum over all states

s.

To calculate the tunneling current, we have to replace the projector P̂s0s
in (29) by the tunneling current operator (9) (quantum dot case) or (17)
(metallic island). This means that the rightmost vertex of each diagram

will be the tunneling current vertex which has the same structure as the

other tunneling vertices from HT . Therefore, the �rst irreducible block �r

to the right is part of the total kernel � which enters the kinetic equation.

Here r is the index for the reservoir for which we want to calculate the

tunneling current. Accounting correctly for the sign of the tunneling current

vertex, we �nd immediately that �r is that part of �, where the reservoir

line attached to the rightmost vertex corresponds to reservoir r and is an

outgoing (ingoing) line if the rightmost vertex lies on the upper (lower)
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(b)k

k

k

k

k’

k’

kk

(a)

Figure 6. Diagrams contributing to (a) sequential and (b) resonant tunneling. At each
reservoir line we have indicated which state k of the reservoir is involved at the tunneling
vertices. This creates holes (open circles) or particles (�lled circles) on the propagators.

propagator. The other irreducible blocks which follow �r to the left are

identical to �. Thus, after summing over all sequences of � which gives the

probability distribution P , we obtain (21). The proof of (22) requires some

more technical considerations and can be found in [17].

For a given model it is straightforward to calculate the lowest orders of

the kernels � and �r. However, as we will see in section 4, renormalization

and broadening e�ects due to quantum uctuations can only be derived by

considering an in�nite series of higher order diagrams. We select this series

by allowing the total density matrix to be nondiagonal with respect to the

reservoir states up to a certain degree. For this let us disregard the bosonic

heat bath and consider �rst the lowest order contribution to the kernels.

This is the contribution to the sequential tunneling or golden rule rate and

consists diagrammatically of one single reservoir line. An example is shown

in Fig.6a. If the reservoir �eld operator at the tunneling vertices is a
(y)
kr ,

we see that one hole in reservoir r is present on the backward propagator

whereas the forward propagator remains unchanged (we use the states to

the left of the diagram as reference). This means that we are considering

a matrix element of the total density matrix which is o�diagonal up to
one hole excitation. If we consider all diagrams in lowest order, we �nd

that sequential tunneling can be characterized by o�diagonal elements up

to one hole or one electron excitation. This shows that the density matrix

tries to be as close as possible to a diagonal matrix with respect to the

reservoir states. Therefore it is natural to improve sequential tunneling by

considering the next possibility of nondiagonal matrix elements, namely

those which are o�diagonal up to one electron-hole, electron-electron or

hole-hole excitation. An example is shown in Fig.6b. It shows that this

approximation can be characterized diagrammatically by the condition that

any vertical cut can cut at most two reservoir lines.

Without the heat bath it can be shown that the sum over all diagrams

within this approximation can be written in the form of a self-consistent

integral equation. For special models this integral equation can be solved
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Σ rss’
r+ (t,t’) =

s’ s

t’ t
s’ s

+

Figure 7. The diagrams for the golden rule rate to tunnel from reservoir r to the dot.
The rate to tunnel from the dot to reservoir r is obtained from the same diagrams by
inverting the direction of the reservoir lines.

analytically, otherwise one has to �nd the solution numerically. For the tech-

nical details we refer the reader to [14, 17]. In the presence of a heat bath,

one can use the same solution by dressing the reservoir lines. The inclusion

of bosonic lines between vertices which are not connected by reservoir lines

is very di�cult and is still an open problem.

4. Applications

In this section we will describe several applications using the formalism we

have developed in section 3. We start with two well-known limits which

are standardly used in the literature to describe most of the experiments

dealing with transport through small devices: golden rule theory (sequential

tunneling) and the noninteracting case (Landauer-B�uttiker theory). Golden

rule theory treats the tunneling in lowest order whereas interaction e�ects

are incorporated in all orders. The noninteracting case disregards interac-

tion e�ects whereas the tunneling is treated in all orders. In section 4.3 we

describe resonant tunneling in a quantum dot with large charging energy

and two possible spin excitations, and in section 4.4 resonant tunneling for

the in�nite-Z metallic island in the two state approximation. Here tunnel-

ing is considered in all orders within the resonant tunneling approximation

set up in section 3, and interaction e�ects are taken fully into account.

4.1. SEQUENTIAL TUNNELING

The rates �
rp
ss0(t; t

0) in second order in HT are shown in Fig. 7 for s 6= s0.

In the current formula (23) we need in lowest order only �r�
ss0 � �

r;�1
ss0 with

s 6= s0. Furthermore, for s 6= s0, we get for the kernels entering the kinetic

equation (20) �ss0(t; t
0) =

P
r

P
p=�1 �

rp
ss0(t; t

0).

The diagrammatic rules give

�r+
ss0(t; t

0) = ei(Es�Es0)(t�t
0)~r+ss0;s0s(t; t

0) + (t$ t0) ; (43)

�r�
ss0(t; t

0) = e�i(Es�Es0)(t�t
0)~r�s0s;ss0(t; t

0) + (t$ t0) ; (44)
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for the quantum dot case, and

�r�
NN 0(t; t

0) = e�i(EN�EN 0)(t�t0)~��r (t; t
0)�N;N 0�1 + (t$ t0) (45)

for the metallic case with EN = ECN
2.

Using these results one can, in principle, calculate the full time depen-

dent solution starting from an arbitrary initial state. For the stationary

state one needs only the quantities �
rp;nm
ss0 used in (24) and (25). From (43)

and the Fourier expansion (38) of ~, we �nd for periodic voltages

�
r+;nm
ss0 = i

Z
d!~

r;+;n
ss0;s0s(!)�

1

Es �Es0 � ! + (n�m)
+ i�
�

1

Es � Es0 � ! +m
� i�

�
; (46)

and a corresponding equation for �
r�;nm
ss0 if we interchange Es $ E0

s and

~
r;+;n
ss0;s0s $ ~

r;�;n
s0s;ss0 . The metallic case follows from ~r;�;n::: $ ~��;nr �N;N 0�1.

Without heat bath and using the Coulomb blockade model for the quantum

dot, the stationary current has been calculated from these rates in Ref. [35].

Let us discuss some limiting cases which are usually treated in the lit-

erature. As discussed in section 3, we can restrict ourselves to the DC-

components �r�
ss0 � �

r�;00
ss0 if the time-dependent �elds are absent or have

a very high frequency 
� �. From (46) we get

�r+
ss0 = 2�~r+ss0;s0s(Es �Es0) ; �r�

ss0 = 2�~r�s0s;ss0(Es0 � Es) : (47)

and analog for the metallic case by ~r;�;n::: $ ~��;nr �N;N 0�1.

In the absence of time-dependent �elds and the heat bath this gives for

the quantum dot case

�r+
ss0 = �rf+r (Es �Es0)

X
l

j < sja
y
lDjs

0 > j
2
; (48)

�r�
ss0 = �rf�r (Es0 � Es)

X
l

j < sjalDjs
0 > j

2
; (49)

where we have used (39) together with �rll0(!) = �ll0�
r. For metallic islands

we get

�r+
NN 0 = 2��r0 � (EN � EN�1 � e �Vr)n

+
r (EN � EN�1)�N;N 0+1 ; (50)

�r�
NN 0 = 2��r0 � (EN+1 � EN � e �Vr)n

�
r (EN+1 � EN)�N;N 0�1 ; (51)

where we used (40) together with (33).

Eqs. (48)-(51) are the usual golden rule rates which are standardly used

in the literature. In the presence of time-dependent voltages and the heat
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bath they have to be convoluted with the probability function P�
r � P�

r;0

de�ned in (41). Physically, they express what we have already discussed

qualitatively in section 2.1. For a current to ow through the dot we need

that both the tunneling "in" and tunneling "out" rates are present. For

this let us consider a transition between two dot states sN $ sN+1, where

sN corresponds to a state with N particles on the dot. For tunneling "in"

we have s0 = sN and s = sN+1 in (48). This means that EsN+1
�EsN < e �Vr

according to the Fermi function in (48). For tunneling "out" we have s0 =

sN+1 and s = sN in (49). This gives EsN+1
� EsN > e �Vr0 . Both conditions

can only be ful�lled simultaneously if the excitation energy EsN+1
�EsN lies

in the window of two di�erent e�ective potentials e �Vr0 < EsN+1
�EsN < e �Vr.

This expresses energy conservation from golden rule and the Pauli principle

as already explained in section 2.1. and illustrated in Fig. 2.

The master equation with golden rule rates has been studied extensively

in the literature. We mention Ref. [1] for the metallic case, Refs. [30-32] for

the Coulomb blockade model, Ref. [23, 33] for the quantum dot case with

exact many-body wave functions in the few electron limit, Ref. [34] for the

metallic case in time-dependent �elds, Ref. [35] for the Coulomb blockade

model in time-dependent �elds, and Refs. [26, 27] for the metallic case in

the presence of a heat bath.

Finally we want to mention that the kernels in lowest order perturbation

theory remain the same for the metallic case even if the channel number Z

is �nite, since the lowest order can contain only one loop with two tunneling

vertices.

4.2. "NONINTERACTING" QUANTUM DOT

In this section we consider the special case of a quantum dot consisting

of one single-particle state in the absence of time-dependent �elds and the

heat bath. This means that we consider the Hamiltonian

H(t) =
X
kr

�rka
y
krakr + �cyc+

X
kr

( �T rk (t)a
y
krc + h:c:) ; (52)

where c; cy are the �eld operators of the dot, and the time dependence of

the tunneling matrix elements involves only the static e�ective potentials

of the reservoirs �T rk (t) = T rk exp (ie
�Vr(t� t0)). Obviously the Hamiltonian

has the form of a noninteracting system which can be solved exactly. Only

the presence of the e�ective potential �Vr = Vr � VD within the tunneling

matrix elements reminds of the Coulomb interaction. Here, the latter has

only the e�ect of shifting the band buttom of the reservoirs and the dot.

The above Hamiltonian can be thought of as a special case of our general

Hamiltonian set up in section 2.2.1. To show this let us consider the case
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where only one excitation energy Es1 �Es0 of the quantum dot is relevant,

with js0 > and js1 > being two ground states of the dot corresponding to

particle numbers N and N + 1, respectively (e.g. N = 0). In this case, the

Hamiltonian from (4) and (5) reads

H(t) =
X
kr

�rka
y
krakr+(Es1�Es0)P̂s1+

X
kr

( �T rk;s0s1(t)a
y
krP̂s0s1 + h:c:) ; (53)

where we have already used P̂s0 + P̂s1 = 1 and omitted an overall constant.

This form is equivalent to the above Hamiltonian since we can identify

P̂s0s1 = c, js0 >= j0 >, js1 >= j1 >, T rk;s0s1 = T rk , and � = Es1 � Es0 . This

means that there is a well-de�ned limit where an interacting quantum dot

can e�ectively be described by a noninteracting Hamiltonian [36]. However,

in a realistic situation degeneracies of excitations can hardly be excluded
due to spin and orbital e�ects, at least in the absence of high magnetic �elds.

It is only this case where interaction e�ects really become important and

will change the qualitative behaviour of the noninteracting case completely

in the whole temperature regime (see section 4.3).

The nonequilibrium problem corresponding to the Hamiltonian (52) has

been solved exactly by many authors. We mention the Landauer-B�uttiker

formalism [7, 22, 37], Keldysh technique [36, 38], equation of motion meth-

ods [31], and golden rule theory with lorentzian broadening of the energy

conservation [35]. Here we will rederive the solution by using the resonant

tunneling approximation which turns out to be exact in the noninteracting

limit. We only show the analytical result here. For the technical details the

reader is refered to Refs. [17].

We �rst introduce the quantities �r (!) = 
r;�
01;10(!) which are, up to a

factor 2�, identical to the golden rule tunneling "in" and "out" rates given

by (47) if we set ! = �. With (39) we obtain �r (!) = (1=(2�))�r(!)f
�
r (!),

where we de�ned �r(!) = �r01;10(! � e
�Vr)

The transition rates within the resonant tunneling approximation are

given by

�10 =
1

�

Z
d!

P
r �r(!)f

+
r (!)

j! � � � �(!)j2
; �01 =

1

�

Z
d!

P
r �r(!)f

�
r (!)

j! � �� �(!)j2
; (54)

where

�(!) =

Z
d!0

P
r r(!

0)

! � !0 + i�
; (55)

r(!) = +r (!) + �r (!) = (1=(2�))�r(!), and � =
R
d!j! � �� �(!)j�2.

In the numerator of Eq. (54) we recognize the golden rule transition

rates. The denominator describes a renormalization and a broadening of
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the dot excitation energy � by the real and imaginary part of �(!). We get

Re�(!) =
1

2�
P

Z
d!0

�(!0)

! � !0
; Im�(!) = �

1

2
�(!) ; (56)

where � =
P

r �r and P
R
denotes a principal value integral. The renormal-

ization and the broadening are independent of temperature and bias volt-

age. This is the reason why quantum uctuations in noninteracting systems

do not result in anomalies in the zero-temperature limit. Furthermore, for

nearly constant density of states in the reservoirs the energy dependence of

�(!) is weak. This results in a small renormalization and a nearly constant

broadening.

If � is energy independent we have � = i�=2 and � = 2�=�. We obtain

�10 =
R
d!
P

r �rf
+
r (!)��(! � �) and �01 =

R
d!
P

r �rf
�
r (!)��(! � �) for

the transition rates. Here, the function ��(!) = (�=(2�))=(!2+ (�=2)2)�1

has a lorentzian form with half-width �. If we replace this function by a

Dirac delta function we would obtain the golden rule theory. This result

expresses a very important feature of noninteracting systems with constant

�. One can just use elementary golden rule theory and obtains the exact

solution by smearing out the energy conservation by �! It is remarkable

that this property even holds when time-dependent �elds are present [35].

It is basically due to the fact that the broadening of the dot excitation

energy is a constant and does not depend on energy, temperature or bias

voltage. We will see in the next section that the behaviour is very di�erent

in interacting systems.

Finally, we �nd for the stationary tunneling current

Ir =
e

h

X
r0 6=r

Z
d!Trr0(!) [fr(!)� fr0(!)] ; (57)

with the one-particle transmission probability given by

Trr0(!) =
M �r(!)�r0(!)

(! � �� Re�(!))2 + (Im�(!))2
: (58)

This formula agrees with the well-known Landauer-B�uttiker formalism [7,

37] and is discussed in detail in [22]. In linear response, we have e �Vr =

� + e� �Vr with e� �Vr � T;�. This gives Ir =
P

r0 Grr0(� �Vr � � �Vr0) with the

conductance matrix given by the Breit-Wigner formula

Grr0 = �2�
e2

h

�r�r
0

�

Z
d!��(!)f

0(! + � � �) ; (59)

where we have neglected the energy dependence of �r(!).
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For T � � (incoherent or sequential tunneling limit), we obtain

Grr0 = �2�
e2

h

�r�r
0

�
f 0(� � �) ; Gmax

rr0 = 2�
e2

h

�r�r
0

�2
�

T
; (60)

i.e. a symmetric line shape of the resonance around � = � with exponential

tails. With decreasing temperature the line width decreases � T and the

height of the resonance increases � 1=T .

For T � � (coherent or resonant tunneling limit), we obtain

Grr0 = 2�
e2

h

�r�r
0

�
��(�� �) ; Gmax

rr0 =
e2

h

�r�r
0

(�=2)2
; (61)

i.e. the line shape saturates at zero temperature to a lorentzian form reect-

ing the energy dependence of the transmission probability. For the special

case of two reservoirs which couple symmetrically to the dot, the height

of the resonance is given by the quantum conductance e2=h. Compared to

the incoherent limit we see that quantum uctuations tend to suppress the

conductance and broadens the line shape. The latter behaviour will also

be obtained qualitatively in the interacting case described in the follow-

ing sections. However, we will see that the line shape has no longer to be

symmetrically, there can be logarithmic temperature or bias voltage de-

pendences of peak position, peak height and broadening, and we will �nd

interesting anomalies for the di�erential conductance as function of the

bias voltage. All these features are completely absent in the noninteracting

case, since the renormalization and broadening of the dot level have no

interesting structure.

4.3. INTERACTING QUANTUM DOT

In this section we will study a more realistic and interesting case, namely

the presence of two relevant excitation energies �� = Es��Es0 , with � ="; #,

in the dot. This means that we consider two possible transitions when a

particle tunnels into the dot. If the incoming electron has spin up or down

we consider the transition s0 ! s" or s0 ! s#, respectively. Due to spin

conservation the corresponding Hamiltonian is given by

H(t) =
X
k�r

�rka
y
k�rak�r +

X
�

��P̂s� +
X
k�r

( �T rk (t)a
y
k�rP̂s0;s� + h:c:) ; (62)

where we have assumed spin independent tunneling matrix elements and

used P̂s0 = 1 �
P

� P̂s� . Each reservoir line carries now a spin index in

addition to the reservoir index.



30 H. SCHOELLER

This model has a very interesting analog in the theory of strongly cor-

related fermions, namely the so-called in�nite-U Anderson impurity model

in nonequilibrium which is described by the Hamiltonian

H(t) =
X
k�r

�rka
y
k�rak�r+

X
�

��c
y
�c�+Un"n#+

X
k�r

( �T rk (t)a
y
k�rc� + h:c:) ; (63)

with U ! 1 being assumed to be the largest energy scale in the system.

The role of the dot is here taken over by the role of a local impurity with

one single spin 1=2 state. U is the on-site Coulomb repulsion and takes

over the role of the charging energy. Since U is assumed to be large, double

occupancy of the impurity level is suppressed and only the three states

j0 >, j ">, and j #> are possible. They are identi�ed with the states js0 >,

js" >, and js# >, corresponding to the Hamiltonian (62), respectively. This

gives c� � P̂s0;s� , and we can see that the two Hamiltonians are equivalent.

The signi�cance of this equivalence lies in the fact that it is known from

equilibrium theory that the Anderson model reveals a very interesting low-

temperature behaviour. For degenerate energies � = �" = �# and in the

Kondo regime � � ��, the system shows resonant transmission at zero

temperature although the level position is far away from the Fermi level

(de�ned at zero energy). The reason is that the transmission probability

develops a Kondo resonance at the Fermi level for temperatures below the

Kondo temperature TK � (U�)1=2 exp (��=�) [28, 39]. The height of this

resonance increases � ln (TK=T ) and saturates for very low temperatures.

At zero temperature the Kondo resonance is decreasing when the level

� approaches �� from below since the system leaves the Kondo regime.

However, for experimentally accessible temperatures, the Kondo resonance

is only visible for � � �� due to the exponential dependence of the Kondo

temperature on �. This is the cross-over from the Kondo regime to the

mixed valence regime and corresponds roughly to the optimal value for the

height of the resonance at the Fermi level.

The idea to test these features by measuring zero-bias anomalies of the

di�erential conductance has a long history and many experiments have

been performed [40]. The disadvantage here is that the current is measured
through an ensemble of impurities and the control over physical parameters

like coupling constants or impurity level positions is weak. Therefore the

idea was formulated to test such features by measuring the conductance

through quantum dots [41]. Various calculations were performed for the

di�erential conductance as function of the bias voltage [42, 43] with the re-

sult of a zero-bias anomaly in the form of a maximum in the Kondo regime.

It was predicted that the Kondo resonance splits by an applied bias and is

shifted by Zeeman splitting [43]. The latter leads to a splitting of the zero-

bias maximum. These features have been observed experimentally by Ralph
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& Buhrman [44]. They measured the di�erential conductance through sin-

gle charge traps in a metallic quantum point contact. Although this system

does not allow a controlled variation of the level position, the appearance of

a zero bias maximum with a peak height varying logarithmically with tem-

perature clearly demonstrates the mechanism of Kondo assisted tunneling.

A detailed comparism of the line shape between experiment and theory can

be found in Refs. [17, 45]. The inuence of external time dependent �elds

or bosonic environments was studied in Refs. [16, 17, 46] with the result

of side band anomalies in the di�erential conductance and pump e�ects.

A closer investigation of the zero-bias anomaly reveals a cross-over of the

zero-bias maximum to a zero-bias minimum by shifting the level position

of the dot through the Fermi level [16, 17]. Further studies of the Kondo

e�ect in quantum dots involve the AC-conductance in linear response [47]

and Aharonov-Bohm oscillations [9].

To understand some of these results let us apply the resonant tunnel-

ing approximation. It can be evaluated analytically for the degenerate case

which we will consider from now on. First we note that due to spin conser-

vation the reduced density matrix of the dot is diagonal once it is diagonal

at the initial time. The solution is identical to the one for the noninteract-

ing dot, given by (54) and (55) for the transition rates and (57) and (58)

for the tunneling current, but with an important change of the de�nition

of r(!) = 2+r (!) + �r (!). The golden rule tunneling \in" rate +r has to

be multiplied with a factor 2 since there are 2 possibilities for an electron

to tunnel onto the dot. Adding the golden rule tunneling "out" rate �r ,

we obtain r which is an estimate for the inverse �nite life-time of the dot

excitation. This is expressed by the imaginary part of �(!) which is given

by Im�(!) = ��
P

r r(!) = �
1
2

P
r �r(!)(1 + fr(!)). We see that the

broadening depends now on the Fermi functions and is therefore energy,

temperature and voltage dependent. When energy increases the broaden-

ing decreases, i.e. we expect quantum uctuations to become weaker if we

increase �.

From the Kramers-Kronig relation we have necessarily also a renormal-

ization which is given by the real part of �(!). We obtain

Re�(!) =
1

2�

X
r

�r(!) �

�

"
 (

1

2
+
�EC

2�
)� Re (

1

2
+ i

�

2�
( �Vr � !)) + �

! � �Vr

2EC

#
; (64)

where  is the digamma function and we have chosen a lorentzian form

for �r(!) = �rE2
C=((! �

�Vr)
2 + E2

C). The cut-o� will be of the order of

the charging energy EC since we do not allow for two electron to tunnel
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onto the dot. For T � j �Vr � !j � EC , the renormalization depends loga-

rithmically on energy Re�(!) � 1=(2�)
P

r �
r ln (EC=j �Vr � !j). This leads

to a logarithmic increase of the renormalization when ! approaches the

e�ective potentials e �Vr of the reservoirs. As a consequence the transmission

probability (58) has a maximum near ! � e �Vr since there is a solution of

! � � � Re�(!) = 0 near these values. This indicates the occurence of the

Kondo resonance and explains the splitting when the potentials �Vr are not

equal (see inset of Fig. 8a).

To illustrate the consequences for the current let us start with the in-

coherent limit T � �. In this case we can neglect the renormalization and

the transmission probability is a sharp function around ! � �. Neglecting

the energy dependence of �r(!) we can replace the transmission probability

in formula (57) by Trr0(!) ! �2��r�r
0

=Im�(�)�(! � �) This gives for the

conductance in linear response

Grr0 = �4�
e2

h

�r�r
0P

�r �
�r(1 + f(� � �))

f 0(�� �) : (65)

As expected the line shape is assymmetric since the broadening of � de-

pends on VD. This result shows a clear di�erence to the noninteracting case

where the line shape is symmetric. It shows up already in the high tem-

perature regime and can be calculated also from the golden rule approach.

The assymmetry was �rst predicted by Beenakker [30] but has never been

identi�ed experimentally.

In the coherent regime T � �, the real part of �(!) becomes important.

As already mentioned above, the resonance of the transmission probabil-

ity at the Fermi levels is only signi�cant for �Vr � � � � since the Kondo

temperature depends exponentially on �Vr � �. In this regime the relevant

energy scale for the onset of quantum uctuations is �. In Fig. 8 we show

the di�erential conductance G = dI=dV (I = IR = �IL) as function of the

bias voltage V = VL � VR for � � � � �� and � � �. Thereby we have

chosen VL = �VR = V=2 and used eVD = e
P

i=L;R;g(Ci=C)Vi with sym-

metric capacitances CL = CR. This gives eVD = (Cg=C)eVg independent

of the bias voltage. For a low lying level a pronounced zero bias maximum
is developed which is due to the fact that the Kondo resonances of the

transmission probability at ! = �Vr, r = L;R, are split by the bias voltage

and decrease in magnitude (see inset of Fig. 8a). In contrast, for � + VD
near the electrochemical potentials of the reservoirs, a zero bias minimum

is observed although the Kondo resonances are absent. This is due to the

fact that the nontrivial structure of the real part of �(!) is still present and

inuences the di�erential conductance always for T � � independent of

whether the transmission probability shows Kondo resonances or not. The

striking di�erence of the zero-bias anomaly for di�erent values of VD or
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Figure 8. (a) The di�erential conductance vs. bias voltage for �L = �R = �=2,
T = 0:01�, � = 0, � = �4� and EC = 100�. The curve shows a maximum at zero bias.
Inset: increasing voltage leads to an overall decrease of the transmission probability in
the range jEj < eV . (b) The di�erential conductance vs. bias voltage for �L = �R = �=2,
T = 0:05�, VD = 0, � = 0 and EC = 100�. The curve shows a minimum at zero bias.
Inset: increasing voltage leads to an overall increase of the transmission probability in
the range jEj < eV .

Vg motivates an interesting experiment which can only be performed with

devices where the e�ective positions of the dot excitations can be varied by

an external gate voltage.

4.4. METALLIC ISLAND

In this section we study the resonant tunneling approximation for the

in�nite-Z metallic island. In addition, we assume that only one excitation

energy �N = EN+1�EN with EN = ECN
2 lies within the relevant energy

range of the e�ective potentials e �Vr = eVr � eVD of the reservoirs. This

means that the charging energy EC is assumed to be much larger than

temperature and bias voltage so that the other excitations are irrelevant.

Without loss of generality we can set N = 0.

In the absence of time-dependent �elds and the heat bath, the Hamil-

tonian follows from (15) and (16)

H(t) =
X

r=L;R;D;k

�rka
y
krakr +�0P̂1+

X
r=L;R;kl

( �T rkl(t)a
y
kralDP̂01 + h:c:) ; (66)

where the time dependence of the coupling constants is only due to the
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static voltages �T rkl(t) = T rkl exp (ie
�Vr(t� t0)). This Hamiltonian looks very

similiar to (53) where we considered a quantum dot with one excitation en-

ergy. However, the important di�erence here is that the vertex a
y
kralD leads

to bosonic contractions in the in�nite-Z case whereas in (53) we had to deal

with fermionic contractions. Therefore, the resonant tunneling approxima-

tion does not turn out to be exact here. We obtain the same solution as

in the fermionic case but with the replacements �r(!) ! 2Dr(! � e �Vr),

f�r ! n�r , 
�
r ! ��r , and r ! �r = �+r + ��r , where Dr(!) = ��r0! and

��r = (1=�)Dr(! � e �V
0
r )n

�
r (!) follow from (33) and (40).

The tunneling current is given by (57) but the Fermi functions in this

expression are replaced by Bose distributions. Using (58) together with the

above mentioned replacements, and performing some elementary manipula-

tions, we can rewrite the current as Ir = e=h
P

r0

R
d!TFrr0(!) [fr(!)� fr0(!)]

where TFrr0 is the transmission probability between the original Fermi reser-

voirs

TFrr0(!) = 4�2
�r(!)�r0(!)

(! ��0 � Re�(!))2+ (Im�(!))2
: (67)

Renormalization and broadening e�ects are described by the real and

imaginary part of �(!) =
R
d!0

P
r �r(!

0)=(! � !0 + i�). We see that in

contrast to the fermionic case the bosonic distribution functions n�r occur-

ing in ��r do not cancel in the sum �r. Like in the quantum dot case with

two excitations, this gives rise to a broadening which depends on energy,

temperature and voltage, and via Kramers Kronig to a nontrivial renor-
malization. Explicitly, we get Im�(!) = �

P
rDr(!� e �Vr)(1+2nr(!)) and

Re�(!) = �
1

�

X
r

Dr(! � e �Vr) �

�[ (
EC

2�T
) +  (1+

EC

2�T
)� 2Re (i

j!� e �Vrj

2�T
)] ; (68)

where we have chosen a lorentzian form for Dr(!) = ��r0!E
2
C=(!

2 + E2
C).

�r0 is the dimensionless conductance of barrier r de�ned after (33). For

very low temperatures we get Im�(!) � ��
P

r �
r
0j! � e �Vrj and Re�(!) �

�2
P

r �
r
0(!�

�Vr) lnEC=j! � �Vrj. The broadening is proportional to energy

since the number of available states for tunneling on or o� the island is

also proportional to energy. In contrast to the interacting quantum dot in
the previous section, the renormalization is zero for ! � �Vr. Therefore, no

additional resonances occur here for the transmission probability but we

still have a logarithmic shift of the excitation energy �0.

The renormalization of �0 is determined by �nding the maximum of the

transmission probability (67) which is approximately determined by solving

the self-consistent equation ~�0 = �0 + Re�(~�0). In a �rst approximation
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we use ~�0 for the value of ! inside the  -function of the real part of �

given by (68). For ! � EC we obtain ! � �0 � Re�(!) = Z�1(! � ~�0)

with the renormalization factor Z de�ned by

Z�1 = 1+
X
r

�r0[ (
EC

2�T
) +  (1 +

EC

2�T
)� 2Re (i

j~�0� e �Vrj

2�T
)] : (69)

Within this approximation the transmission probability reads

TFrr0(!) � 4�2
~�r(!)~�r0(!)

(! � ~�0)2 + (Im~�(!))2
; (70)

where ~�r and ~� are de�ned as before but multiplied with Z. This can be

interpreted as a renormalization of the dimensionless conductance ~�r0 =

Z�r0. What we mean by renormalization becomes clear when we neglect

the broadening in (70) which is described by the imaginary part of ~�. This

is justi�ed if ~�r0 � 1. We obtain

TFrr0(!) � 4�2
~�r( ~�0)~�r0( ~�0)P

�r ~��r(
~�0)

�(! � ~�0) : (71)

This is precisely the golden rule result for the transmission probability but

with renormalized parameters.

In certain limits we can estimate the renormalized parameters. We take

VL = �VR = V , VD = 0 (otherwise one has to shift the excitation energy

�0 by VD), and �
L
0 = �R0 = �0. If one of the energy parameters ~�0, T ,

or eV is large compared to the other two ones but small compared to the

charging energy, we obtain for the renormalization factor

Z =
1

1 + 4�0 ln (EC=max(j ~�0j; 2�T; jeV j=2))
: (72)

We note that �0 is the dimensionless conductances of a single barrier. For

the derivation we have used the asymptotic expansion  (z) = ln (z), valid

for jzj ! 1. The renormalized parameters follow from ~�0 = Z�0 and
~�r0 = Z�r0. These equations agree with the renormalization group results

performed for the equilibrium case Vr = 0 [48]. This shows that the lead-

ing logarithmic terms are included within the resonant tunneling approxi-

mation. However, we have achieved more than renormalization group here

since we do not need all the approximative steps used so far. We can handle

all intermediate regimes for the three energy parameters described before

and can account for the broadening of the charge excitations by not ne-

glecting the imaginary part of ~� in (70). The latter can be estimated to

be of the order h=� � Im�( ~�0). Within the same limits discussed before
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this gives h=� � � ~�0max(j ~�0j; 2T; jeV j=2) (compare with the discussion

in section 2.1). We see that broadening e�ects start to become impor-

tant for ~�0 > 0:1 which means that they can only be enhanced by low-

ering the tunneling barriers. Renormalization e�ects become signi�cant for

max(j~�0j; 2�T; jeV j=2) < ECe
�1=(2�0). This means that they can be en-

hanced either by lowering the tunneling barriers or by lowering all the

other energy parameters.

Let us demonstrate the inuence of quantum uctuations on the dif-

ferential conductance as function of the gate voltage. Again we set VL =

�VR = V=2 and �L0 = �R0 = �0. We study G = dI=dV , with I = IR = �IL,

as function of �0 and set VD = 0 (equivalently we could study G as func-

tion of eVD = (Cg=C)eVg and keep �0 �xed). We insert the transmission

probability (70) including the broadening into the current formula. Using

the result (72) for the renormalization factor, we �nd in the two limits

T � jeV j and jeV j � T that the di�erential conductance at �0 = ~�0 = 0

is given by

2G(�0 = 0)RT =
Z

2
=

1

2

1

1 + 4�0 ln (EC=max(2�T; jeV j=2))
; (73)

where RT = RL
T = RR

T is the resistance of a single barrier. The golden

rule result is 2G(�0 = 0)RT = 1=2 and corresponds to 1=2 of the ohmic

resistance since all the other excitation energies �N (N 6= 0) are suppressed

by the Coulomb blockade. We see that due to quantum uctuations, the

di�erential conductance is no longer a constant at the symmetry point

but decreases logarithmically with bias voltage or temperature. We note

that the qualitative e�ect of quantum uctuations is again a suppression

of the di�erential conductance like it was the case for quantum dots. It

is not suprising that the di�erential conductance for the noninteracting

quantum dot case saturates at low temperatures whereas it decreases for

the metallic island since the temperature dependence of the golden rule

results are already di�erent for the two cases.

The broadening of the line shape of the di�erential conductance can be

estimated by noting that the integral of G(�0) over �0 is not inuenced
by quantum uctuations and can be calculated to be

R
d�0G(�0)RT =

(1=3)jeV j for T � jeV j, and
R
d�0G(�0)RT = (�2=8)T for jeV j � T .

Together with the value at the symmetry point we conclude that quantum

uctuations lead to a broadening that increases logarithmically with bias

voltage or temperature if we measure �0 in units of jeV j or T .

Both features, the logarithmic decrease of G(�0 = 0) and the logarith-

mic increase of the broadening with bias voltage or temperature is demon-

strated in Fig. 9. In Fig. 9b we furthermore observe a splitting of the reso-

nance due to nonequilibrium e�ects and a shift of the individual resonances
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Figure 9. (a) The di�erential conductance in linear response (V=0) for the metallic
island as a funciton of the excitation energy �0 normalized to the temperature kBT with
�L0 = �R0 = 0:05 and (1) kBT=EC = 0:1, (2) kBT=EC = 0:01, (3) kBT=EC = 0:001. For
comparison, (0) shows the golden rule result, which is independent of the temperature
kBT . (b) The di�erential conductance in nonlinear response for the metallic island as
a function of the excitation energy �0 normalized to the transport voltage eV with
�L0 = �R0 = 0:05, T = 0 and (1) eV=EC = 0:1, (2) eV=EC = 0:01, (3) eV=EC = 0:001.
For comparison, (0) shows the golden rule result, which is independent of the transport
voltage eV .

due to quantum uctuations. The logarithmic decrease of G(�0 = 0) has

been observed experimentally [10] with a good �t to the theoretical predic-

tions [49].

5. Conclusions

Within this paper we have analysed a very fundamental problem of statis-

tical mechanics, namely the interaction between a large environment and

a small mesoscopic system. To describe experimentally realizable systems,

we concentrated on particle exchange via tunneling and energy exchange

by considering a uctuating voltage. For the environment we have chosen
metallic electronic reservoirs with di�erent electrochemical potentials, and

the system was realized by a strongly interacting quantum dot. Macroscopic

systems being in equilibrium with large particle reservoirs are described by

a grandcanonical ensemble. For a mesoscopic system we have to consider

the following new aspects. First, the energy scale associated with the cou-

pling between system and environment can be so large that quantum uc-

tuations lead to a complete deviation from a grandcanonical ensemble. In

macroscopic systems, the coupling to the environment is always a surface

e�ect which can be negleted in the thermodynamic limit. Second, the en-
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ergy scale characterizing the distance between the one-particle excitation

energies of the system can be so large that the discreteness of the density of

states becomes visible on experimentally controllable voltage scales. This

demands the consideration of �nite size e�ects and strong capacitive in-

teractions. Third, the nonequilibrium stationary state induced by di�erent

electrochemical potentials on the reservoirs can no longer be described by

a local equilibrium distribution. Therefore, we have aimed at presenting

a nonequilibrium theory which provides a nonperturbative analysis in the

coupling between an environment and a strongly correlated �nite system.

We have demonstrated that the measurement of the di�erential con-
ductance G as function of the gate voltage Vg or the bias voltage V can

reveal all aspects decribed above. The discreteness of the dot excitation

spectrum leads to resonances in G(Vg) separated by the sum of level spac-

ing and charging energy. Strong nonequilibrium e�ects can be observed by

comparing the line shape of an individual peak for V = 0 and T = 0.

E.g. for a metallic island we have shown these two cases in Fig. 9 where a

splitting of the resonance occurs at �nite bias voltage. Quantum uctua-

tions set on by lowering temperature or increasing tunneling. Without spin

degeneracies, they lead to a renormalization and broadening of the excita-

tion energies of the island. Whereas for noninteracting systems the e�ects

on G(Vg) are already well-known from Landauer-B�uttiker theory, the pres-

ence of interactions can lead to an anomalous temperature dependence of

height, broadening or position of the resonances. This is demonstrated in

Fig 9 for the case of metallic islands. For spin degenerate excitation ener-

gies quantum uctuations can create zero bias anomalies of G(V ) at �xed

gate voltage as is demonstrated in Fig. 8. They can occur in the form of

zero bias maxima or minima dependent on the postion of the excitation

energies relative to the electrochemical potentials of the reservoirs. Due

to the enormous variety of possible arrangements of island systems and

the experimental progress in realizing such devices, we expect that future

research will reveal many more motivations for studying quantum uctua-

tions induced by strong coupling between mesoscopic systems and particle

reservoirs.
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