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1. Introduction

Several chapters in this book elaborate on the concepts of mesoscopic
physics. This includes phase-coherent quantum transport combined with
concepts from the macroscopic world such as reservoirs and dissipation, as
well as single-electron e�ects. Mesoscopic physics is displayed in the elec-
tronic transport properties of small systems with spatial dimensions in the
range of a few nanometers to micrometers, at low temperatures typically
below 1 K. The progress in nano-fabrication allowed the controlled fabri-
cation of these structures and led to an increased interest in this physics.

Characteristic for superconductivity is the macroscopic phase coherence
of the order parameter and the supercurrent 
ow, as well as the modi�ca-
tions of quasiparticle properties by the energy gap. Superconductivity adds
new degrees of freedom and makes the description of mesoscopic electron
transport richer. On the other hand, typical superconducting properties are
in
uenced by mesoscopic e�ects, e.g. by charging e�ects, and the question
arises whether superconductivity persists in ultrasmall systems (see e.g. the
chapter by Ralph et al. in this volume).

In this chapter we will investigate mesoscopic superconducting systems
and heterostructures of normal metals and superconductors. We will �rst
discuss in Section 2 in a few illustrative examples the single-electron and
charging e�ects in superconducting tunnel junction systems. We show how,
on the one hand, the superconducting gap in
uences single-electron tunnel-
ing and how, on the other hand, charging e�ects in
uence Andreev re
ec-
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tion processes. Cooper pairs can tunnel coherently; associated with their
quantum dynamics is the 'macroscopic quantum tunneling' of the phase in
low capacitance junctions (see e.g. the chapter of Devoret and Grabert in
this volume). In junctions with even lower capacitance quantum mechani-
cal superposition of charge states play a role. The combination of coherent
Cooper pair tunneling, Andreev re
ection, and quasiparticle tunneling leads
to richly structured dissipative I-V characteristics.

We then turn in Section 3 to the properties of superconductor-normal
metal heterostructures. The key words here are proximity e�ect and, again,
Andreev re
ection. It has been known for a long time that the proximity
e�ect and the conversion between normal and supercurrents modi�es the
system properties over a �nite length near the interfaces. Recent experi-
ments could spatially resolve these properties either by probes placed close
enough to the interface, or in samples with small spatial dimensions L,
such that the Thouless energy D=L2 becomes comparable to the tempera-
tures in the experiment. We present some examples and several theoretical
approaches to these physical questions.

2. Charging e�ects in low-capacitance superconducting junction
systems

Modern technology has made it possible to fabricate, in a controlled way,
metallic tunnel junctions with capacitances in the range of C = 10�15F and
below. In this case the charging energy associated with a single-electron
charge, EC � e2=2C, is of the order of 10�4eV or larger, which corresponds
to a temperature scale EC=kB � 1K. This implies that electron transport
in the sub-Kelvin regime is strongly a�ected by charging e�ects (see the
introductory chapter and Refs. [1, 2]).

If part of the system is superconducting further interesting e�ects are
found: at subgap voltages single-electron tunneling (SET) is suppressed.
This makes higher-order processes such as Andreev re
ection in normal-
superconductor (NS) junctions a dominant transport process. Here we dis-
cuss how this process is a�ected by the charging e�ects.

The charging energy allows the control of the electron number of small
islands. Adding one electron to a small superconducting island necessarily
puts it into an excited state with an energy exceeding the gap. Only when
a second electron is added, can both recombine to form a Cooper pair.
If this happens in a coherent way, the energy of the excitation created
in the �rst tunneling process can be regained in the second. This leads to
\parity e�ects", which distinguish between states with even or odd electron
number in the superconducting island. As an example we analyze the I-
V characteristics of a NSN SET transistor with a superconducting island
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Figure 1. The SET transistor.

between normal conducting leads.

Also the coherent tunneling of Cooper pairs is in
uenced by charging
e�ects. The charge and the phase di�erence in a Josephson junction, al-
though macroscopic degrees of freedom, are quantum mechanical conjugate
variables. The eigenstates in general are superpositions of di�erent charge
states. We discuss the consequences for the dissipative I-V characteristics
of superconducting SET transistors. In an NSS transistor the Andreev re-

ection process in the NS junction can be used to probe the eigenstates
emerging from coherent Cooper pair tunneling in the SS junction. In SSS
transistors we analyze the combination of coherent Cooper pair tunneling
and quasiparticle tunneling, which leads to richly structured I-V charac-
teristic.

Reviews of single-electron e�ects in normal metal systems can be found
in the book Single Charge Tunneling [2]. Tinkham's Introduction to Super-

conductivity [3] includes some topics of the present chapter. Recent work is
presented in the proceedings of the workshopMesoscopic Superconductivity

[4] and reviews by Bruder [5] and Sch�on [6].

2.1. THE CHARGING ENERGY

The charging energy of systems of tunnel junctions depends on the elec-
tron number in various parts of the system and the applied voltages. An
important example is the single-electron transistor shown in Fig. 1. An
island is coupled via two tunnel junctions to a transport voltage source,
V = VL�VR, such that a current can 
ow. The island is, furthermore, cou-
pled capacitively to a gate voltage VG. The charging energy of the system
depends on the integer number of excess electrons n = �1;�2; ::: on the
island and the continuously varied voltages. Elementary electrostatics [2]
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yields the \charging energy"

Ech(n;QG) =
(ne�QG)

2

2C
: (1)

Here C = CL+CR+CG is the total capacitance of the island. The e�ect of
the voltage sources is contained in the \gate charge" QG = CGVG+CLVL+
CRVR. Similar expressions hold for the \single-electron box", an even sim-
pler system which consists of one junction only and a gate capacitance.

In a tunneling process, which changes the number of excess electrons in
the island from n to n + 1, the charging energy changes. Tunneling in the
left junction is possible at low temperatures only if the energy in the left
lead, eVL, is high enough to compensate for the increase in charging energy
eVL > Ech(n + 1; QG) � Ech(n;QG). Similarly, tunneling from the island
(transition from n + 1 to n) to the right lead is possible at low T only if
Ech(n + 1; QG) � Ech(n;QG) > eVR. Both conditions have to be satis�ed
simultaneously for a current to 
ow through the transistor. If this is not the
case the current is exponentially suppressed, which is denoted as \Coulomb
blockade". Varying the gate voltage produces the Coulomb oscillations, i.e.
an e-periodic dependence of the conductance on QG.

Many properties of the SET transistor and its extensions can be under-
stood by considering only the energy of the di�erent charge con�gurations.
A further understanding of the I-V characteristic requires the knowledge
of the tunneling rates of the electrons, which will be next topic.

2.2. SINGLE-ELECTRON TUNNELING RATES

The SET transistor, shown in Fig. 1, is described by the Hamiltonian

H = HL +HI +HR +Hch +Ht : (2)

Here, HL =
P

k;� �kc
y
k�ck� describes noninteracting electrons with wave

vector k in the left lead, with similar expressions for the island (with
states denoted by q) and the right lead. The Coulomb interaction, Hch =
(ne � QG)

2=(2C), is assumed to depend only on the total (net) charge

n =
P

k;� c
y
k�ck� � n+ on the island (electronic and ionic background), as

discussed above. Charge transfer processes are described by a tunneling
Hamiltonian, for instance tunneling in the left junction by

Ht;L =
X
k;q;�

Tkqc
y
k�cq� + h:c: : (3)

We determine the transition rates by Golden-rule arguments. An elec-
tron tunnels from one of the states k in the left lead into one of the available
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states q in the island, thereby changing the electron number from n to n+1,
with rate


LI(n) =
1

e2Rt;L

Z 1

�1
dE

Z 1

�1
dE0NL(E)NI(E

0)

�fL(E)[1� fI(E
0)] �(E0� E + �Ech) : (4)

The crucial point is that the conservation of energy, expressed by the �-
function, includes apart from the energies of the electron states �k=q also the
charging energy. The latter depends on the change of the electron number
and the applied voltages. In the process considered it changes by �Ech =
Ech(n+1; QG)�Ech(n;QG)�eVL. We further introduced the normal state
tunnel conductance of the junction R�1t;L = (4�e2=�h)NI(0)
INL(0)
LjT j2.
At this stage, the tunnel matrix elements Tkq can be considered as con-
stants; NI=L(0) and 
I=L denote the normal densities of states and volumes
of the island and lead. If the electrodes are superconducting we have to
account for the reduced densities of states. In ideal systems they take the

BCS form NI=L(E) = �(jEj ��I=L) jEj=
q
E2 ��2

I=L
.

Usually the distribution functions fI=L can be chosen to be Fermi func-
tions. If both electrodes are normal conducting the integrals over the elec-
tron states in Eq. (4) can be performed, resulting in the \single-electron
tunneling" (SET) rate [1]


LI(n;Qg) =
1

e2Rt;L

�Ech

exp[�Ech=kBT ]� 1
: (5)

At low temperatures, kBT � j�Echj, a tunneling process which would in-
crease the charging energy is suppressed, 
 ! 0. This phenomenon is called
\Coulomb blockade" of electron tunneling.

If one or both electrodes are superconducting the rate still can be ex-
pressed in a transparent way


LI(n;Qg) =
1

e
Iqp

�
�Ech

e

�
1

exp[�Ech=kBT ]� 1
: (6)

The function Iqp(V ) is the well-known quasiparticle tunneling characteris-
tic (see e.g. Ref. [3]), which is suppressed at voltages below the supercon-
ducting gap(s). Charging e�ects reduce the quasiparticle tunneling further.
At zero temperature the rate is nonzero only if the gain in charging energy
compensates the energy needed to create the excitations �Ech+�I+�L � 0.

The rates describe the stochastic time evolution of the charge of the
junction system. For the theoretical analysis Monte Carlo schemes or {
in small systems { a master equation approach can be used. Examples of
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the resulting I-V characteristics of normal metal junctions are presented
in the introductory chapter of this volume. Characteristic is the e-periodic
dependence of the current and conductance on the applied gate charge QG.
Examples of superconducting junction systems will be presented below.

2.3. TWO-ELECTRON TUNNELING, ANDREEV REFLECTION

In the regime where quasiparticle tunneling is suppressed by the super-
conducting gap higher-order processes involving multi-electron tunneling
play a role. Cooper-pair tunneling is such a process, and will be discussed
later. If only one of the electrodes is superconducting there still exists a 2-
electron tunneling process, denoted as Andreev re
ection1. In this process
an electron approaching from the normal side with energy below the gap is
re
ected as a hole, while a Cooper pair propagates into the superconductor.

We will determine now the rate of Andreev tunneling taking into ac-
count charging e�ects, as discussed in Ref. [7]. For this purpose we consider
a SET transistor with a superconducting island and normal leads (NSN).
The tunneling Hamiltonian is rewritten in terms of the Bogoliubov creation
and annihilation operators for the excitations in the superconducting island

Ht;L =
X
k;q;�

Tkq[uq;�

y
q;� + v�q;�
�q;��]ck;� + h:c: : (7)

Here, uq;� and vq;� are the standard BCS coherence factors with magnitudesq
(1� �q=Eq)=2, and Eq =

q
�2q + �2 is the energy of the quasiparticles.

Andreev re
ection is a second-order coherent process. In the �rst part of
the transition one electron is transferred from an initial state, e.g. k " of the
normal lead, into an intermediate excited state q " of the superconducting
island. In the second part of the coherent transition an electron tunnels
from k0 # into the partner state �q # of the �rst electron, such that both
form a Cooper pair. The �nal state contains two excitations in the normal
lead and an extra Cooper pair in the superconducting island. The amplitude
for this process, to which we add the amplitude of the process in reverse
order, is given by [7]

Akk0 =
X
q

TkqTk0�quqvq

 
1

�Ech;1+Eq � �k
+

1

�Ech;1+ Eq � �k0

!
: (8)

Here spin indices have been suppressed and the relation vq;" = v�q;# has
been used. The change in the charging energy �Ech;1 � Ech(n + 1; QG) �

1Andreev considered a normal metal and a superconductor in good metallic contact,
but his physical picture can be generalized to tunnel junctions.
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Ech(n;QG) � eV corresponds to the virtual intermediate state where one

electron has tunneled from the lead (at voltage V ) to the island. Finally,
the rate for the Andreev re
ection process is


ALI =
2�

�h

X
k;k0

jAkk0 j2 fL(�k)fL(�0k)�(�k + �0k + �Ech;2) : (9)

Here, the change in the charging energy �Ech;2 = Ech(n+2; QG)�Ech(n;QG)�
2eV corresponds to the real �nal state where two electron charges have been
added to the superconducting island.

If we approximate the product of tunneling matrix elements by its av-
erage the q-summation in (8) can be performed, with the result Akk0 =

�NI(0)a (�=�Ech;1) hTkqTk0�qiq, where a(x) � 4
�

xp
x2�1 arctan

q
x�1
x+1

. An-

dreev re
ection is most important if the gap � is larger than the rel-
evant energy di�erences j�Ech;1j. In this limit the function a reduces to
a(x � 1) � 1. Henceforth, we disregard this weak energy dependence: As
such the integrations in (9) can be performed, resulting in


ALI(n;QG) =
GA

4e2
�Ech;2

exp(�Ech;2=kBT )� 1
: (10)

Note that the functional dependence of this rate coincides with that for
single-electron tunneling in a normal junction, Eq. (5). Hence Andreev re-

ection is subject to Coulomb blockade like normal-state single-electron
tunneling [8] with the exception that:
(i) The charge transferred in an Andreev re
ection is 2e, and the charging
energy changes accordingly.
(ii) The e�ective Andreev conductance is of second-order in the tunneling
conductance

GA =
1

4

RK

NchR
2
t

: (11)

(iii) We have to account for the number of independent parallel channels
for both the normal state conductance, 1=Rt = Nch=Rt;0, and the Andreev
conductance, GA / NchRK=R

2
t;0 . (Note that in Eq. (11) we express the

latter by 1=Rt. Hence the factor Nch appears in the denominator.) In the
tunneling Hamiltonian approach Nch is expressed by the correlations be-
tween the matrix elements [7]

1

Nch
=
hjhTkqTk0�qiqj2ik;k0

(hjTkqj2ikq)2
: (12)

A more detailed analysis [9] shows that the second-order Andreev process is
sensitive to spatial correlations in the normal metal, which can be expressed
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Figure 2. I-V characteristic of an NNS transistor. Both junctions have the same
normal-state conductance. The ratio of Andreev and normal-state conductance is
GARt = 0:02, and � = 4EC. From Ref. [10].

by the Cooperon propagator. For the moment we consider Nch as a �t
parameter; a comparison of the Andreev and the normal state conductance
shows that even in small junctions it is much larger than one.

As an example we show in in Fig. 2 the I-V characteristic of a NNS
SET transistor. The structure observed there with two characteristic scales
arises due to a combination of single-electron tunneling with rate (6) and
Andreev re
ection with rate (10).

2.4. PARITY EFFECTS

2.4.1. The Superconducting Electron Box

In a normal-metal electron box, sweeping the applied gate voltage increases
the electron number on the island in unit steps, and the voltage of the island
shows a periodic saw-tooth behavior. The periodicity in the gate charge QG

is e. If the island is superconducting and the gap � smaller than the charg-
ing energy EC, the charge and the voltage show at low temperatures a
characteristic long-short cyclic, 2e-periodic dependence on QG. This e�ect
arises because single-electron tunneling from the ground state, where all
electrons near the Fermi surface of the superconducting island are paired,
leads to a state where one extra electron { the \odd" one { is in an ex-
cited state [11]. In a small island, as long as charging e�ects prevent further
tunneling, the odd electron does not �nd another excitation for recombina-
tion. Hence the energy of this state stays (at least metastable) above that
of the equivalent normal system by the gap energy. Only at larger gate
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Figure 3. The charging energy of a superconducting single-electron box as a function of
the gate voltage shows a di�erence between even and odd numbers n of electron charges
on the island. Accordingly the average island charge hni is found in a broader range of
gate voltages in the even state than in the odd state.

voltages can another electron enter the island, and the system can relax
to the ground state. This scenario repeats with periodicity 2e in QG, as
displayed in Fig. 3.

At low temperatures the even-odd asymmetry has been observed in the
electron box [12] as well as in the I-V characteristics of superconducting
SET transistors [13, 14, 15]. However, at higher temperatures, above a
cross-over value Tcr � �, the e-periodic behavior typical for normal-metal
systems is recovered. We can explain this cross-over as well as the structure
in the I-V characteristics by analyzing the rate of tunneling of electrons
between the lead and the island, paying particular attention to the fate of
the \odd" electron [16, 17].

We �rst consider an electron box with a superconducting island and
a normal lead. If the distribution functions of lead and island are Fermi
functions, the rate of tunneling is given by Eq. (6). At low temperature the
rate 
LI is �nite only at voltages where the gain in charging energy (i.e.
�Ech < 0) exceeds the energy of the excitations (�k � 0; Ep � �) created
in the lead and island, i.e. for �Ech+� < 0. It is exponentially suppressed
otherwise. The assumption of equilibrium Fermi distributions is su�cient
when we start from the even state. For de�niteness let us assume that we
started from n = 0 at gate voltage 0 � QG � e. As such, the relevant
change in charging energy is �Ech = Ech(1; QG)� Ech(0; QG) and the rate
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of tunneling from an even to an odd state is given by eq. (6)


eo = 
LI(n = 0; QG) : (13)

In the odd state the quasiparticle distribution di�ers from an equi-
librium Fermi function. There is extra charge in the normal component.
After thermalization the excitations in the island can be described by a
Fermi function, f��(�) = [e(����)=kBT + 1]�1, but with a shifted chemical
potential �N = �S + �� relative to the condensate. The shift in chemi-
cal potential is �xed by the constraint of one excess electron charge 1 =
NI(0)
I

R1
�1 dENI(E)[f��(E)� f0(E)]. This reduces at low temperatures

to

�� = �� kBT lnNe�(T ); (14)

where

Ne�(T ) = NI(0)
I

p
2��kBT (15)

is the number of states in the island available for quasiparticles near the
gap [13]. Parity e�ects are observable as long as the shift of the chemical
potential is relevant �� > kBT . This is the case for temperatures below the
cross-over temperature

kBTcr = �= lnNe�(Tcr) : (16)

The tunneling rate back from the odd state (here n = 1) to the even
state (n = 0), 
oe = 
IL;��(n = 1; QG), is given by (4) with the island
distribution function replaced by f��(�). For exp(��=kBT ) � 1 the ratio
of the rates of the two transitions is


oe=
eo = e[Ech(odd)+���Ech(even)]=kBT = e�F=kBT : (17)

In other words, they obey a detailed balance relation, depending on a \free
energy" di�erence, which, in addition to the charging energy, contains the
shift of the chemical potential ��. This free energy di�erence coincides with
that introduced in Ref. [13].

For the following discussion it is useful to decompose the rate as


oe = 
IL(1; QG) + �
(QG) ; (18)

where 
IL is given by the equilibrium form, equivalent to (6), and

�
(QG) =
1

e2Rt

Z 1

�1
d�k

Z 1

�1
dENI(E)

�[f��(E)� f0(E)] [1� f0(�k)]�(�k �E � �Ech)(19)
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describes the rate of tunneling of the odd, excited electron [16]. In the
important range of parameters �+�Ech > kBT this \odd-electron tunneling
rate" reduces to

�
(QG) =
1

2e2RtNI(0)
I
; (20)

whereas it is exponentially suppressed otherwise. It contains a small pref-
actor 1=NI(0)
I as compared to 
IL. On the other hand, in the considered
range of gate voltages { since the energy of the excitation in the island
is regained in the tunneling process { �
 is not exponentially suppressed.
Hence it may be larger than 
IL.

In the range 0 � QG � e tunneling connects the island states n = 0
and n = 1. The range e � QG � 2e can be treated analogously. The
tunneling now connects the states n = 1 and n = 2. In this case, except
for the single-electron tunneling processes which create further excitations
with rate (6), one electron can tunnel into one speci�c state (�k;��),
the partner state of the excitation (k; �) which is already present. Both
condense immediately; the state with two excitations only exists virtually.
The latter process occurs again with rate �
(QG). The symmetry implies

eo=oe(QG) = 
eo=oe(2e � QG). Since the properties of the system are 2e-
periodic in QG, we have provided a complete description for all gate voltage.

The sequential tunneling of charges between the island and the lead is
described by a master equation for the occupation probabilities of the even
and odd states Pe(QG) and Po(QG),

dPe(QG)

dt
= �
eo(QG)Pe(QG) + 
oe(QG)Po(QG) (21)

with Pe(QG)+Po(QG) = 1. With 
�(QG) = 
oe(QG)+

eo(QG) the equilib-

rium solution follows to be Pe(o)(QG) = 
oe(eo)(QG)=
�(QG). For 

oe � 
eo

we have Pe(QG) � 1, i.e. the system occupies the even state, while for

eo � 
oe the island is in the odd state.

The cross-over value Qcr of the gate charge, where the system switches
between the even and the odd state, is determined by the condition Pe � Po,
i.e. 
oe(Qcr) � 
eo(Qcr). At low temperatures this condition coincides with
the condition that the energy is minimal, see Fig. 3. At �nite, but low
temperature we �nd

Qcr(T ) =
e

2
+
C

e
[�� kBT lnNe�(T )] ; (22)

where Ne�(T ) was introduced in (15). This means the short plateaus in
Fig. 3 get longer until, above Tcr, we have Qcr = e=2, and the e-periodic
behavior known from normal systems is recovered.



12 ROSARIO FAZIO AND GERD SCH�ON

2.4.2. I-V Characteristics of NSN Transistors

The analysis presented above can be extended such that we can derive
the I-V characteristics of SET transistors with a superconducting island.
We �rst consider an NSN transistor with an energy gap smaller than the
charging energy scale � < EC. In this system the important processes are
single-electron tunneling processes in the left and right junction, causing

transitions between even and odd states, with rates 

eo=oe
L and 


eo=oe
R which

are obvious generalizations of Eq. (13) and (18). At low T it is su�cient to
consider only one even and one odd state of the island. The solution of the
corresponding master equation yields the single-electron tunneling current

I = e(
eoL Pe � 
oeL Po) = e

eoL 


oe
R � 
eoR 
oeL


eoL + 
eoR + 
oeL + 
oeR
: (23)

At high temperatures, T > Tcr, this current (23) shows the Coulomb oscil-
lations known from normal systems with parabola-shaped maxima at the
points QG = e=2+ne with integer n. At low temperatures, T < Tcr, the cur-
rent is limited by the odd-electron tunneling rate 
 in one of the junctions.
In the window Qcr(T ) < QG <

e
2 +�C=e+Qcr=2 < e it is

Iplateau = e�
 =
1

2eRtNI(0)
I
; (24)

while it is exponentially small outside. A second current plateau exists in
the window e < 3e=2 � �C=e � Qcr=2 < QG < 2e � Qcr. Both plateaus
create a double structure which repeats 2e-periodically. For �+eV=2 > EC

the two plateaus merge to form a 2e-periodic single plateau structure. The
resulting I-V characteristic is visualized in Fig. 4.

In NSN transistors with a larger superconducting gap � > EC the odd
states have a large energy. Hence a mechanism which transfers two electrons
between the normal metal and the superconductor becomes important. An-
dreev re
ection with rate (10) provides such a mechanism [7]. The master
equation description can be generalized to include also this process. At low
temperatures a set of parabolic current peaks is found centered around the
degeneracy points QG = �e;�3e; : : : [7]

IA(�QG; V ) = GA

 
V � 4

�Q2
G

V C2

!
�

 
V � 4

�Q2
G

V C2

!
: (25)

Here �QG is �QG = QG � e for QG close to e, and similar near the other
degeneracy points.

At larger transport voltages, single-electron tunneling sets in, even if
� > EC, and Andreev re
ection gets \poisoned" [7]. This occurs for

V � Vpoison =
2

e

�
EC �

eQG

C
+�

�
: (26)
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Figure 4. The current I(QG; V ) through a NSN transistor with � < EC. From Ref. [17].
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Figure 5. The current I(QG; V ) through a NSN transistor with � > EC. The pa-
rameters correspond to those of the experiments [15], EC = 100�eV, � = 245�eV,

Rtl=R = 43k
; 1=GA � 1:2(2:4)108
 for the left (right) junction. From Ref. [17].

The rate for this transition, from the even to the odd state, is of the order
of 
eo � (V �Vpoison)=eRt. It puts the system into an excited state, making
it energetically favorable that a second electron tunnels into the partner
state of the excitation created in the �rst process. The rate for the second
process is given by �
, which in the considered range of parameters takes
the value given in Eq. (20). Typically the rate for the second transition,
from odd to even, is smaller than that of the �rst processes and, hence, cre-
ates the bottleneck in the sequence of SET processes. The same inequality
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also implies that above Vpoison the system is most likely in the odd state,
Po=Pe = 
eo=�
 � 1. Hence the current produced by the cycle is given by
Eq. (24).

Fig. 5 shows the current-voltage characteristic of a NSN transistor with
� > EC. At small transport voltages the 2e-periodic peaks due to Andreev
re
ection dominate; they get poisoned above a threshold voltage. The peaks
at larger transport voltages arise from a combination of single-electron tun-
neling and Andreev re
ection. The shape and size of the even-even Andreev
peaks and some of the single-electron tunneling features at higher transport
voltages agree well with those observed in the experiments of Hergenrother
et al. [15].

2.5. COOPER PAIR TUNNELING

2.5.1. Macroscopic Quantum E�ects

In \classical" Josephson junctions, Cooper pairs can tunnel free of dissi-
pation between the superconducting electrodes. The coupling is described
by the Josephson energy �EJ cos', which depends on ', the phase di�er-
ence across the barrier. The energy scale EJ = �hIcr=2e is related to the
critical current of the junction, which in turn can be expressed by the tun-
neling resistance of the junction and the energy gap of the superconductor,
Icr(T = 0) = ��=(2eRt).

Charging e�ects introduce quantum dynamics: The phase di�erence and
the charge on the electrodes, Q, are quantum mechanical conjugate vari-
ables. An ideal Josephson junction is governed by the Hamiltonian

H0 =
Q2

2C
� EJ cos' ; Q =

�h

i

@

@(�h'=2e)
: (27)

(For simplicity, we �rst describe a single junction; generalizations are pre-
sented below.) An important question, addressed in Refs. [18, 19, 20, 21],
is how to account for dissipation due to the 
ow of normal currents and/or
quasiparticle tunneling. The so-called \macroscopic quantum e�ects" like
macroscopic quantum tunneling of the phase, or quantum coherent oscil-
lations are derived from the Hamiltonian (27). Macroscopic quantum tun-
neling has been observed in tunnel junctions with small capacitances of the
order of 10�12 F. These values are still orders of magnitude to large for
single-electron e�ects to play a role.

2.5.2. Superposition of Charge States

We now turn to mesoscopic Josephson junctions or junction systems, where
the number of electrons or Cooper pairs in small islands is the relevant
degree of freedom. The charging energy has been discussed above. The
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Josephson coupling describes the transfer of Cooper-pair charges forward
or backward, and can be written in a basis of charge states as

hnjEJ cos'jn0i =
EJ

2
(�n0;n+2 + �n0;n�2) : (28)

Below, we will consider situations where Cooper pairs tunnel coherently,
which shows features known from the phenomenon of resonant tunneling.
Coherent Cooper pair tunneling is non-dissipative and strongest near points
of degeneracy. First we will show that these quantum 
uctuations broaden
the steps in the expectation value of the charge on the island of a super-
conducting electron box. Then we will discuss how coherent Cooper-pair
tunneling can be probed by Andreev re
ection and observed in the dissipa-
tive I-V characteristic of a NSS transistor [22]. Finally we describe how the
combination of coherent Cooper-pair tunneling and dissipative quasiparti-
cle tunneling leads to a dissipative I-V characteristic of SSS transistors
[23, 24, 13, 25, 26]. Further examples of coherent tunneling of Cooper pairs
can be found in the literature, e.g. the gate-voltage dependence of the crit-
ical current of SSS or SNS transistors [27, 28].

We �rst consider an electron box with superconducting island and lead
with large energy gap at low temperatures, � > EC � kBT . In this case,
at low voltages, quasiparticle tunneling is suppressed, and the island charge
can change only by Cooper-pair tunneling in units of 2e as described by
Eq. (28). The tunneling is strong near points of degeneracy. For instance
for QG � e the charging energies of the states with n = 0 and n = 2 are
comparable, and we can restrict our attention to these two charge states.
The coherent tunneling between both is described by the 2�2 Hamiltonian

H =

�
Ech(0) �EJ=2
�EJ=2 Ech(2)

�
: (29)

This Hamiltonian is easily diagonalized: the eigenstates and energies are

 0 = �j0i+ �j2i ;  1 = �j0i � �j2i ;

�2 =
1

2

h
1 +

�Echq
�E2

ch + E2
J

i
= 1� �2 ;

E0=1 =
1

2

�
Ech(0) +Ech(2)�

q
�E2

ch +E2
J

�
: (30)

Here we have introduced the di�erence in charging energy �Ech � Ech(2)�
Ech(0) = 4EC (QG=e� 1). The coe�cient � approaches unity if the charg-
ing energy of the state j2i lies far above that of j0i, i.e. for �Ech > 0, and
vanishes in the opposite limit, while � has the complementary behavior.
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The expectation value of the charge on the island in the ground state
is given by

h 0jnj 0i = 2�2 : (31)

It changes near QG = e from 0 to 2 over a width of order �QG � EJ=EC.
This has recently been observed experimentally [29].

2.5.3. NSS Transistors

Next we consider a NSS transistor. In this system the coherent tunneling
of Cooper pairs in the Josephson (SS) junction can be probed by the dis-
sipative current due Andreev re
ection across the NS junction [22]. We
restrict ourselves to low temperatures, kBT � EJ. In order to describe co-
herent Cooper-pair tunneling in a situation with nonzero transport voltage
we have to account in the Hamiltonian for the work done by the voltage
sources during the transitions. We, therefore, keep track also of the num-
ber of electrons NL and NR in the left and right electrode. A basis set of
states is denoted by jNL; n;NRi, and the corresponding charging energy
(for symmetric bias VL = �VR = V=2) is

Hch(NL; n;NR) = (ne� QG)
2=2C � (NR �NL)eV=2 : (32)

In a situation where only two charge states get appreciably mixed the
eigenstates and energies of the corresponding 2� 2 Hamiltonian are

 0 = �j0; 0; 0i+ �j0; 2;�2i ;  1 = �j0; 0; 0i� �j0; 2;�2i ;

E0=1 =
1

2

�
Ech(0; 0; 0)+ Ech(0; 2;�2)�

q
�E2

ch + E2
J

�
: (33)

The coe�cients coincide with those of the box discussed above, except for
the obvious change of notation, and �Ech = Ech(0; 2;�2)� Ech(0; 0; 0).

In the low-bias regime, the dominant mechanism of transport in the NS
junction of the transistor is Andreev re
ection. Starting from a state j0; 0; 0i
we are led in such a process to the state j�2; 2; 0i. The Josephson coupling
mixes this state with the state j � 2; 0; 2i. Hence we have to consider a
second set of eigenstates

 00 = �j � 2; 0; 2i+ �j � 2; 2; 0i ;  01 = �j � 2; 0; 2i � �j � 2; 2; 0i : (34)

The coe�cients � and � are the same as for the other pair, but the corre-
sponding energies are shifted E0

0=1 = E0=1� 2eV .

Andreev re
ection causes transitions between the two set of eigenstates
 0 !  00. The rate for this process can be derived along the lines de-
scribed in an earlier. Compared to Eq. (8) a modi�cation arises since the
charge transfer operators pick from the initial state the component with
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zero charge on the island, which has amplitude �, and select from the �nal
state the component with two extra charges, which has amplitude �. Hence
the amplitude for a Andreev re
ection process between the states  0 and
 00 with two electrons tunneling from the states k; " and k0; # of the normal
electrode is

Ak;k0( 0 !  00) = ��
X
q

TkqTk0�quqvq

 
1

E0 � Ekq

+
1

E0 �Ek0q

!
: (35)

The energy of the virtual intermediate state j� 1k; 1q; 0i, with one electron
added to the island and two excited quasiparticles with energies �k and

Eq =
q
�2q + �2 in the normal and superconducting electrode, is given by

Ekq = Ech(�1; 1; 0)� �k + Eq.
The summation in Eq. (35) can be performed, and the rate for the

Andreev re
ection process is obtained by the Golden rule. After summation
over the initial states k and k0 one �nds for E0

0 �E0 = �2eV � 0


( 0 !  00) = (��)2 a20
GA

4e2
2eV : (36)

The rate is proportional to the product

�2�2 =
1

4

E2
J

(�Ech)2 + E2
J

; (37)

which displays a typical resonance structure. Here GA is the Andreev con-
ductance (11),and the function a0 = a (�=[Ech(�1; 1; 0)�E0]) has been
de�ned below Eq. (9). We further assumed that the energy �+Ech(�1; 1; 0)
of the intermediate state lies above E0. If �� EC the function a0 reduces
to a0 � 1.

Andreev re
ection processes can also lead to transitions between the
other states introduced above, with rates


( 0!  01) = �4 a20
GA

4e2
[E0 + 2eV �E1] �[E0 + 2eV �E1)] ;


( 1!  00) = �4 a21
GA

4e2
[E1 + 2eV � E0] ;


( 1!  01) = (��)2 a21
GA

4e2
2eV : (38)

The function a1 is de�ned similar as a0, but the energy of the initial state
E0 is replaced by E1.

Below the threshold voltage V < Vth = (E1�E0)=2e the only transition
at low temperatures is Andreev re
ection between the states  0 and  00.
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Figure 6. I-V characteristic of a NSS transistor. A resonant structure due to Cooper pair
tunneling is visible in the dissipative current due to Andreev re
ection. From Ref. [22].

The resulting current, I = 2e
( 0 !  00), shows a pronounced resonant
structure due to the overlap of the functions � and �. At higher voltages
Andreev re
ection can take the transistor to the excited state  01. A master
equation yields the probabilities for the ground and excited states

P0 =

( 1!  00)


( 0!  01) + 
( 1 !  00)
; P1 = 1� P0 6= 0 for V > Vth : (39)

The current then is

I

2e
= [
( 0 !  00)+
( 0 !  01)]P0+[
( 1!  01)+
( 1!  00)]P1 : (40)

A plot of the current-voltage-characteristic, as a function of the gate and
bias voltage is shown in Fig. 6 for the case where the superconducting gap
is larger than the charging energy � � E0.

2.5.4. SSS Transistors

Next we consider the case of an SSS-SET transistor with superconducting
electrodes and island below the crossover temperature Tcr where parity
e�ects can be observed. The charging energy and coherent Cooper pair
tunneling in this system are described by the model Hamiltonian [24]

H0 =
X
n;�n

 "
(ne�QG)

2

2C
� 1

2
e�nV

#
jn; �nihn; �nj

�EJ

2

X
�

X
�
jn� 2; �n� 2ihn; �nj

!
: (41)
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Here we shortened the notation as compared to the previous subsection Eq.
(32) and introduced �n � (NR � NL), the number of electrons which have
tunneled through the transistor. The eigenstates of H0 are linear combina-
tions of di�erent charge states

j	�i =
X
n;�n

a�n;�njn; �ni ; (42)

and the energies are E�.

Quasiparticle tunneling can cause transitions between di�erent eigen-
states j	�i. It is accounted for by

H
qp
t =

X
k2L;q2I

T
(L)
kq jn+ 1; �n+ 1ihn; �njcyqck + h:c:

+
X

q2I;k02R
T
(R)
qk0 jn� 1; �n+ 1ihn; �njcyk0cq + h:c: :

(43)

If the junction resistances are large compared to the quantum resistance
Rt;L=R > RK = h=e2 the transition rates can be calculated by the Golden
rule. A quasiparticle tunneling process in the left junction gives rise to a
transition with rate



(L)
�!� =

X
n;�n;�

 
I
(L)
qp ("��)=e

1� exp(�"��=kBT )
+ 


!
jh	� jn� 1; �n� 1ihn; �nj	�ij2 :

(44)

Here I
(L)
qp is the I-V characteristic for quasiparticle tunneling in the left

junction [3], and "�� = E��E� is the energy di�erence between initial and
�nal state. We describe parity e�ects by including the escape rate �
 of an
odd quasiparticle in the island. It is given by an expression similar to Eq.
(20), modi�ed by the density of state in the superconducting electrode. It
is

�
 ' 1

2e2RtNI(0)

"�� +�q
("�� +�)2 ��2

�("��) (45)

if n is odd and vanishes in the even state.
In order to determine the dc-current we follow the procedure described

in Ref. [26] and �rst determine the eigenstates of H0, either in an ex-
pansion in the Josephson coupling or numerically taking into account a
su�cient number of charge states. This procedure converges for not too
large Josephson coupling energies, EJ < EC. Given the eigenstates j	�i
we calculate the rates in Eq. (44), which then enter a master equation
@tP� =

P
� 6=�(P�
�!� � P�
�!�) for the probabilities P� to �nd the sys-

tem in the �-th eigenstate. The stationary solution @tP� = 0 is su�cient
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Figure 7. I-V characteristic of an SSS transistor. The parameters are � = 1:3EC,
EJ = 0:17EC, Rl=r = R � RK, 
 = 2:5 � 10�5(RC)�1. From Ref. [26].

to evaluate the dc-current

I =
e

2

X
�;� 6=�

P�
�!� (h	�j�nj	�i � h	�j�nj	�i) : (46)

The combination of coherent Cooper pair tunneling and single-electron tun-
neling leads to a dissipative I-V characteristic. Results are shown in Fig. 7
with parameters corresponding to those in Ref. [13]. We note that the I-V
characteristic is 2e-periodic and observe a rich structure deep in the subgap
region. For transport voltages eV >�2:5EC the 2e-periodic features disappear
and the current becomes e-periodic in QG again. This is not surprising since
on a current scale I � e�
 the unpaired quasiparticle in the island looses
its importance.

For the parameters chosen at low transport voltages only few (two or
three) states j	�i are noticeably populated. Therefore, we can calculate
the eigenstates of H0, i.e. the coe�cients a

�
n;�n in Eq. (42), by expanding in

EJ . Away from certain resonant situations, the �-th eigenstate has only one
coe�cient a�n;�n of order unity, whereas all other coe�cients are considerably
smaller. To �x ideas, let us consider the state j	0i in the range of gate
charges QG 2 [0; e=2]. In this eigenstate the most likely charge state is
jn = 0; �n = 0i, i.e. a00;0 � 1. Due to coherent tunneling of one Cooper pair,

there is a non-zero amplitude a0�2;�2 / EJ=EC for the system to be in the
charge states jn = �2; �n = �2i. Higher order Cooper pair tunneling leads to
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a population of higher charge states with smaller amplitude. O� resonance
the system is in the charge state j2; 6i with amplitude a02;6 / (EJ=EC)

3.
At resonance these amplitudes are much larger. For instance along the

line
3eV = 4EC(1�QG) (47)

the charge states j0; 0i and j2; 6i have the same energy, and a three-Cooper-
pair tunneling process is in resonance. As a result the amplitude is drasti-
cally increased a02;6 / (EJ=EC).

A transition from j	0i to another eigenstate can occur if it is energeti-
cally favorable and the matrix element Eq. (44) is nonzero. When analyzing
the energies we �nd that the process

j	0i � j0; 0i �! j	1i � j1; 7i (process a)

is possible. O� resonance the rate of process a) is of the order 
(a) /
(EJ=EC)

6. However, in a narrow strip of width is proportional to EJ around
the resonance line (47) we �nd


(a) /
�

EJ=2

4EC(1�QG) + eV

�2
/
�
EJ

EC

�2
: (48)

This process leads to the most signi�cant resonance in the I-V characteris-
tic. We are, thus, led to the conclusion that the dominant transport process
in the subgap region is tunneling of a quasiparticle accompanied by simul-
taneous tunneling of 3 Cooper pairs. This combination provides enough
energy to overcome the quasiparticle tunneling gap 2�. The importance of
this type of transport mechanism was �rst noted by Fulton et al. [23].

So far we have studied the conditions for the system to leave the initial
state. However, a dc charge transport through the system requires cycles,
after which the island returns to a state equivalent to the initial one. The
simplest version is a two-step cycle of subsequent transitions of the same
type in the left and right junction. Such cycles dominate in NNN or NSN
transistors at low bias voltages. The cycle which leads to the pronounced
feature in Fig. 7, at 3eV = 4EC(1 � QG), arise due to two-step cycles
as well, but the second step is di�erent from the �rst one. The transition
completing the cycle which starts with process a) is

j	1i � j1e; 7i �! j	2i � j0; 12i (process b) :

This means a quasiparticle transfer is accompanied by 2 Cooper-pair tun-
neling processes. The latter process is not in resonance and, therefore, the
rate is 
(b) / (EJ=EC)

4. Whereas o� resonance the process a) is the bottle-
neck for the current, at resonance the process b) has the smaller rate. This
explains the value of the current at the resonance.
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For further discussions of the structures manifest in Fig. 7, including
extensions such as the in
uence of 
uctuations of the electromagnetic envi-
ronment, as well as a comparison with experiments on SSS transistor [13, 28]
we refer to Ref. [26].

2.6. EXTENSIONS

In the examples discussed above, the charging energy is the dominant en-
ergy, while tunneling could be described in low order perturbation theory
or { in the case of coherent Cooper pair tunneling { by diagonalization of a
simple Hamiltonian. The expansion parameter is the dimensionless tunnel-
ing conductance RK=(4�

2Rt), where RK = h=e2 = 25:8k
 is the quantum
of the resistance. In situations where this parameter is not small a more
general approach is required. H. Schoeller describes in his Chapter of this
volume a diagrammatic expansion to account for strong tunneling through
quantum dots [30, 31]. Strong tunneling in normal metal junctions has been
studied by several authors [32, 33, 34, 35].

A formulation in terms of path integrals displays in a transparent way
the interplay of charging e�ects and tunneling phenomena [31, 34]. Here
we would like to draw attention to the equivalent path-integral description
of superconducting junction systems, presented in Refs. [5, 6, 36]. In these
articles applications to selected problems have been discussed, such as (i)
the in
uence of charging e�ects on the Josephson current through a SNS
system, where earlier results of Bauernschmitt et al. [37] have been repro-
duced, (ii) the in
uence of charging e�ects on Andreev re
ection, and the
proximity e�ect, which extends earlier results of Aslamazov et al. [38].

3. Hybrid Normal-Metal/Superconductor Structures

3.1. REVIEW

In the last few years new experiments revived the interest in equilibrium
and non-equilibrium properties of superconductor-normal metal (SN) hy-
brid structures. Two key words in this context are: proximity e�ect and
Andreev re
ection. The hybrid structures can be grouped in two classes
depending on the transparency of the interface between superconductor
and normal metal. If they are separated by an insulating barrier with low
transparency the process of two-electron tunneling is the relevant trans-
port mechanism at low bias. If they are in good metallic contact nearly all
particles are transmitted; here the dominant process is Andreev re
ection.
Various excellent reviews [39, 40, 5] discuss many aspects of SN structures.
Our aim here is to introduce the basic concepts and theoretical techniques,
and to review some of the current literature. Some examples are discussed



MESOSCOPIC SUPERCONDUCTIVITY 23

explicitly to demonstrate the physics involved.
When a superconductor is put in contact with a normal metal, Cooper

pairs can leak across the interface. As a result there exists a non-vanishing
pair amplitude in the normal metal, de�ned by

F (~r) = h "(~r) #(~r)i ; (49)

where  �(~r) is the annihilation operator for an electron with spin �. The
pair amplitude is a two-particle property, related to the probability of �nd-
ing two time-reversed electrons at position ~r. The decay of F (~r) away from
the interface depends strongly on properties { di�usive vs. ballistic, nonin-
teracting vs. interacting { of the normal metal [41]. At �nite temperature
it decays in the normal metal exponentially on a scale �T given by

�T =
�hvF
2�T

or

s
�hD

2�T
; (50)

depending on whether the metal is in the clean or di�usive limit. Here D
is the di�usion constant. (Henceforth, we use units where �h = kB = 1.)
At zero temperature, if interaction e�ects can be be disregarded, the decay
follows a power law, F (~r) / 1=r. The appearance of the pair amplitude on
the normal side of the interface is accompanied by a depression of the order
parameter on the superconducting side.

A nonvanishing pair amplitude implies the coherence of two electrons
in the normal metal induced by the coupling to the superconductor. It does
not necessarily lead to a gap in the spectrum, �(~r) = �F (~r), since both are
related by the interaction strength �, which may vanish in normal metals
in the absence of an attractive or repulsive interaction.

The proximity e�ect is intimately related to the microscopic mechanism
which governs the transport through SN interfaces. At voltages and tem-
peratures below the superconducting gap single particle tunneling is expo-
nentially suppressed. The dominant process is then Andreev re
ection [42],
where an incoming quasi-electron from N is re
ected at the interface as
a quasi-hole, as a result of which a Cooper pair is injected into the su-
perconductor. The re
ected hole has a momentum which is opposite (to
order jk� kFj=kF) to the one of the incident electron. The small di�erence
in the momentum implies that the particle and the hole maintain their
phase coherence up to distance of the order of L� �

p
D=� where � is the

energy of the particle relative to the Fermi energy. If � is the thermal en-
ergy, this length coincides with the correlation length given in Eq. (50) [43].
This demonstrates that the proximity e�ect and Andreev re
ection, though
seemingly di�erent concepts, are closely related. Also in the presence of a
tunnel barrier at the NS boundary the dominant mechanisms of transport
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is the transfer of two electrons across the barrier. We call also this process
Andreev tunneling, although the momentum perpendicular to the interface
is not conserved. Andreev processes are also responsible for the Josephson
e�ect in S-N-S sandwiches [38, 44]. If the thickness of the normal region is
comparable to or less than its coherence length �T;N, phase coherence can
be maintained and a supercurrent can 
ow through it, depending on the
phase di�erence of the two superconductors.

Although many properties of hybrid SN system have already been stud-
ied in the past, the interest in proximity devices has been renewed recently.
The reason is that it became possible to study mesoscopic hybrid systems
with dimensions smaller than �T . In this case the particle and the hole pre-
serve their phase coherence across the entire conductor. Another relevant
length scale, the phase-coherence length L� of single electrons in a normal
metal, might well be larger than �T .

In mesoscopic proximity systems the interplay between phase-coherent
electron propagation in N and macroscopic phase coherence in S gives rise
to interesting new physics [4]. For instance, Andreev re
ection in meso-
scopic N-S tunnel junctions is strongly in
uenced by electronic interfer-
ence. The transport through NS-QUIDS (Normal Metal-Superconductor
QUantum Interference DeviceS) was studied theoretically by Hekking and
Nazarov [9] and experimentally by the Saclay group [45], showing the exis-
tence of a modulated current as a function of the 
ux piercing the device.
Nakano and Takayanagi [46] considered a di�erent type of interferometer
where the phase di�erence is created by a current which passes through
the superconductor. Petrashov et al. [47] and Courtois et al. [48] performed
a series of experiments on interference e�ects in transport through meso-
scopic samples containing superconducting arms. Proximity systems with
clean N-S interfaces show a remarkable non-monotonic temperature depen-
dence [49, 43]. In these systems the presence of the superconductor renders
the di�usion constant of the normal metal e�ectively energy dependent.

Since electrons from the normal metal can enter the superconductor
and then return to the normal metal not only the o�-diagonal properties of
the metal are modi�ed, but also the single particle properties (diagonal in
the Nambu space). Very recently, the local electron density of states (DOS)
of a normal metal in contact with a superconductor has been studied at
mesoscopic distances from the N-S interface [50, 51]. Close to the Fermi
energy, a suppression of the DOS below its normal value has been observed.

Due to the development of superconductor-semiconductor (S-Sc) inte-
gration technology, it is now possible to observe the transport of Cooper
pairs through S-Sc mesoscopic interfaces as well [4]. Examples are the super-
current through a two-dimensional electron gas (2DEG) with Nb contacts
(S-Sc-S junction) [52, 53] or through quantum point contacts [54, 55]. The
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critical current was predicted to be quantized in units of e�=�h analogously
to the quantization of the normal state conductance in ordinary quantum
point contacts. Another example is the excess low-voltage conductance due
to Andreev scattering in Nb-InGaAs (S-Sc) junctions [56].

Electron-electron interactions in the normal metal modify the proximity
e�ect, both qualitatively and quantitatively [41]. If the interactions between
the electrons are repulsive, the induced pair amplitude in N decays faster
than in the noninteracting case. This is because interactions scatter the two
electrons out of their initial, time-reversed state. If the interaction is attrac-
tive, e.g. if N becomes superconducting at a lower transition temperature,
TcN < T < TcS, the pair amplitude decays slower because of the presence of
superconducting correlations, and �T diverges at TcN. A perturbative treat-
ment of the interactions [57] shows that an additional contribution to the
supercurrent arises. Its sign depends on the nature of the interactions in
the slab (attractive or repulsive), and its phase-dependence has period � (in
contrasts to 2� in the non-interacting case). In the tunneling regime, if the
dimensions of the normal metal and its electric capacitance are small, the
phenomenological capacity model described in section 2 can be used. In this
case the critical current of an S-N-S system depends strongly on charging
e�ects and can be tuned by a gate voltage applied to the island [37].

In low-dimensional semiconductor nano-structures with low electron
concentration the Coulomb interactions cannot be treated as a weak pertur-
bation. Rather a non-perturbative, microscopic treatment of interactions is
required. For 1D systems, e.g. in a 2DEG gated to form a quantum wire,
this can be done in the framework of the Luttinger liquid (LL) model [58].
Hybrid superconductor - Luttinger liquid (S-LL) systems are interesting
since they enable one to study how the Coulomb interaction in
uences
the phase-coherent propagation of two electrons through a 1D normal re-
gion. The Josephson current through a S-LL-S device has been evaluated
in Refs. [59, 60]. Due to the interactions the Andreev current in a junction
between a superconductor and a chiral Luttinger liquid depends in a non-
linear way of the voltage [61]. Recently also the single particle properties
(DOS) of a LL connected to a superconductor have been studied, where the
combined e�ect of interaction and Andreev tunneling leads to a behavior
compared which di�ers qualitatively from that of an isolated LL [62].

Various theoretical approaches have been employed to study SN het-
erostructures. One school generalizes the scattering approaches of Landauer
to include Andreev tunneling. In this case the Bogoliubov-de Gennes equa-
tions are used to construct the scattering matrix (the interested reader is
invited to read the reviews on the topic [39, 40]). Another school uses qua-
siclassical methods starting from the Eilenberger equations (or the Usadel
equations for dirty metals) with the inclusion of the appropriate boundary



26 ROSARIO FAZIO AND GERD SCH�ON

conditions for the Green's functions at the interface. The two complemen-
tary methods provide a framework to tackle various problems involving
hybrid structures. The quasiclassical methods have been useful to extract
analytic results in the di�usive limits. On the other hand the scattering ap-
proach is more appropriate in multi-terminal geometries or in the regimes
where neither the ballistic nor the di�usive limit are appropriate. In this
case numerical solutions have been worked out. The next sections are de-
voted to a summary of the two approaches. In the �nal part of this chapter
we discuss the in
uence of interactions on the proximity e�ect in supercon-
ductor - Luttinger liquid systems.

3.2. SCATTERING THEORY

Transport properties of mesoscopic systems have been described success-
fully within the scattering (Landauer) formalism [63]. The conductance
is related to the transmission, and the transport theory is reduced to
an analysis of the properties of the scattering matrix. This approach has
been generalized to systems containing SN interfaces by Lambert [64] and
Beenakker [65].

We consider an n-terminal geometry where the n-th reservoir is su-
perconducting (the case of two or more superconducting reservoirs can be
described in the same fashion). Each lead contains N incoming and out-
going modes (for simplicity we assume here that N is the same for each
reservoir). In the scattering approach, one needs to evaluate the S-matrix,
de�ned as

O� = Ŝ��I� : (51)

Here � � (a; p) and � � (b; q), a; b = 1; :::n refer to the reservoirs while
q; p = 1; :::N refer to the channel indices. The superconducting reservoir
is characterized by the pair (n; l = 1; :::N) and it will be denoted by the
index s. In Eq. (51) O and I are the amplitudes of outgoing and incom-
ing channels, respectively. The underline denotes the two components in
particle - hole space (in the absence of the superconductor the S-matrix is
block-diagonal in this space).

The aim of this section is to express the scattering matrix Ŝ�� as a
function of the scattering in the mesoscopic region and the scattering which
takes place at the SN-interface. In order to pursue this scheme, it is con-
ceptually simpler to separate the scattering in the normal region, which is
determined by the geometry and disorder in the the mesoscopic conductor,
from the scattering at the SN interface, where the Andreev processes oc-
cur. For this purpose it is assumed that a normal region, free of disorder,
lies between the scattering region and the SN boundary, as illustrated in
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Figure 8. Sketch of the scattering region including the small ballistic region in contact
with the superconducting reservoir.

Fig. 8. This ballistic region can be thought of as arbitrarily small, and its
properties do not appear in the physical results.

If the superconductor were not present the scattering matrix is deter-
mined exclusively by the geometry of the mesoscopic region

O� = Ŝ
(0)
�� I� : (52)

On the other hand, the scattering at the SN interface is described by the
2� 2 matrix

�
I�?

Os

�
=

 
Ŝ
(A)
�?�? Ŝ

(A)
�?s

Ŝ
(A)
s�? Ŝ

(A)
ss

!�
O�?

Is

�
; (53)

where the index �? � (n; r = 1; ::N) refers to the intermediate ballistic
region, separating the scattering region from the superconducting reser-
voir (see Fig.8). The components of the Andreev scattering matrix are
constructed by solving the Bogoliubov - de Gennes equations [66, 67]. Note
also that the outgoing states in the previous equation are I�? and OS , since
the incoming wave in the reservoir n (as de�ned in Eq. (51)) is outgoing
with respect to the SN interface.

Using Eq. (52) and Eq. (53) it is possible is to eliminate I�? and O�? ,
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which allows us to express Ŝ�� in terms of Ŝ
(0)
�� and Ŝ

(A)
��

Ŝ�� = Ŝ
(0)
�� + Ŝ

(0)
��?

h
1� Ŝ(A)�?�? Ŝ

(0)
�?�?

i�1
Ŝ
(A)
�?�? Ŝ

(0)
�?� (a; b 6= n)

Ŝ�s = Ŝ
(0)
��?

h
1 � Ŝ(A)�?�? Ŝ

(0)
�?�?

i�1
Ŝ
(A)
�?s (a 6= n)

Ŝs� = Ŝ
(A)
s�? Ŝ

(0)
�?� + Ŝ

(A)
s�? Ŝ

(0)
�?�?

h
1 � Ŝ(A)�?�? Ŝ

(0)
�?�?

i�1
Ŝ
(A)
�?�?Ŝ

(0)
�?� (b 6= n)

Ŝss = Ŝ
(0)
ss + Ŝ

(A)
s�? Ŝ

0
�?�?

h
1� Ŝ(A)�?�?Ŝ

(0)
�?�?

i�1
Ŝ
(A)
�?s

(54)
The previous expressions for the S-matrix have a simple physical meaning:
By expanding the denominators one can identify each term of the series
as a sequence of scattering processes (re
ections and transmissions) at the
various reservoirs.

The �nal step is to express physical quantities in the scattering formal-
ism. Let us �rst consider the current operator in the (normal) lead �

Î� =
e

2mi
Tr

Z
dy�	�(~r�)�zr	y

�(~r)� h:c: : (55)

Here a trace is performed in Nambu and spin space, and the matrix �z
accounts for the di�erent signs of the current in the electron and hole chan-
nels. The integration is over the transverse coordinate y� in lead �. Using
scattering states [68, 69] as a (more convenient) basis, with destruction
and creation operators a and ay of incoming scattering states, the current
can be expressed as

Î�(t) = e
X
�


Z
dEdE0ay�(E)�̂z

h
�����
 � Ŝ

y
��Ŝ�


i
a
(E

0)e�i(E�E
0)t: (56)

Since the reservoirs are in thermal equilibrium, the occupation probabil-
ities of the scattering states are given by Fermi distributions. Combining
Eq. (56) with the expressions Eq. (54) one arrives at the desired result
for the transport properties in terms of the geometric properties of the
scattering region and the Andreev scattering at the boundary with the
superconducting lead.

In a two terminal geometry, where � � (1; q = 1:::N) is the index for the
normal contact and s � (2; p = 1:::N) for the superconductor, the average
current is

INS = 2�e

Z
dE [f(E)� f(E + eV )]

n
1� jS(ee)�� j2 + jS(he)�� j2

o
: (57)

A trace over the channels is implied. The current depends on the re
ection
coe�cients. Note that the normal re
ection (ee) and Andreev re
ection
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(he) enter with opposite sign. If there is no potential barrier at the NS
interface, at energies below the gap there is no normal re
ection but only
Andreev re
ection. The linear conductance in this regime has been obtained
by Beenakker [65]

GNS =
4e2

h

X
q=1;N

T 2
q

(2� Tq)2
: (58)

This result is the multi-terminal generalization of the formula obtained by
Blonder, Tinkham and Klapwijk [66] and by Shelankov [67]. The amplitudes

Tq are the eigenvalues of the geometrical transmission matrix (S
(0)
12 ), i.e.

the same coe�cients which enter in the multichannel Landauer formula
G = (2e2=h)

P
q Tq, and the index q runs over the transverse channels in the

normal lead. Various applications of the previous expression and extensions
can be found in Ref. [39]. The general formula for the current beyond the
Andreev approximation and at �nite voltage has been discussed in Refs. [70,
71], extensions to d-wave superconductors have been considered in Ref. [72].
The use of the scattering approach is not limited to the study of the average
current. Eq. (56) also allows the evaluation of the current noise (see the
chapter by de Jong and Beenakker in this volume).

3.3. QUASICLASSICAL APPROACH

3.3.1. Equilibrium Theory

A complementary approach, developed to study hybrid structures, employs
Green's functions

G(~r; ~r0; t) = �ihT (~r; t) y(~r0; 0)i; F(~r; ~r0; t) = �ihT (~r; t) (~r0; 0)i :
(59)

Despite their apparent simplicity, the Gor'kov equations governing the dy-
namics of G and F are almost impossible to handle in inhomogeneous sit-
uations. On the other hand, the information contained in these equations
is redundant, since usually only properties close to the Fermi energy are
interesting. It is possible in these cases to reduce the Gor'kov equations
to transport-like equations which are much easier to study. These are the
Eilenberger [73] and Usadel [74] equations for clean and dirty systems, re-
spectively.

The main steps are as follows. It is convenient to introduce the center
of mass ~R = (~r+ ~r0)=2 and relative coordinates ~� = ~r � ~r0 and to consider
the Fourier transform of the Green's functions with respect to the latter
(since we are dealing with time-independent situations we use the energy
representation). The Green's function show strong oscillations as a function
of the relative coordinate on the scale of the Fermi wavelength �F. If one is
interested only in variations on scales much larger than �F it is su�cient to
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consider the quasiclassical Green's functions obtained by integrating G;F
over �p = p2=2m� �,

�
g

f

�
(E; ~R;~vF) =

i

�

Z
d�p

Z
d3�

� G
F

�
(E; ~R; ~�)e�i~p�~� : (60)

Further simpli�cations are possible if the system is dirty and the de-
pendence on the direction of ~vF is weak (the system is nearly isotropic). In

this case g and f can be expanded in spherical harmonics, g(E; ~R;~vF) =

G(E; ~R) + ~vF � ~G(E; ~R) and f(E; ~R;~vF) = F (E; ~R) + ~vF � ~F (E; ~R). An ex-
pansion yields the Usadel equation

�iEF ��G =
D

2

h
G br2F � Fr2G

i
: (61)

Inelastic interactions can be accounted for by the shift �iE ! �iE +
1=(2�in), by the inelastic scattering rate. Pair-breaking e�ects add a further
term (1=�s)GF on the left hand side. The magnetic �eld is introduced

through the gauge invariant derivative, br! r� 2ie ~A, acting on F .

The diagonal and o�-diagonal component satisfy a normalization con-
dition, G2 + F 2 = 1, which is automatically guaranteed if we choose a
parameterization F = sin � and G = cos �.

The formalism is completed by the self-consistency equation for the gap

�(~r) ln
T

Tc
= 2�T

X
!�>0

"
F (i!� ; ~r)�

�(~r)

!�

#
: (62)

We further have to specify the boundary conditions at the SN interface
(which we assume to be located in the x = 0 plane). In the absence of an
extra boundary potential these read [75]

F (E; 0S) = F (E; 0N)

�S
d

dx
F (E; 0S) = �N

d

dx
F (E; 0N) : (63)

Hence, the parameter which describes the properties of the interface is the
ratio of the coherence lengths over the ratio of the conductivities in the two
materials � = �N�TS=�S�TN.

This semiclassical approach has recently been applied to study the local
density of states (DOS) in hybrid structures [51]. Earlier theoretical treat-
ments of this problem can be found in Refs. [76, 77]. Experimentally the
DOS is studied by attaching several tunnel junctions at certain distances
from the interface and measuring the I-V characteristics [50].
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Figure 9. The density of states on the normal (a) and superconducting side (b) of a NS

heterostructure at di�erent distances from the interface. The length scale is � =
p
D=2�.

A nonzero pair breaking strength 1=�s = 0:03� and � = 1 have been assumed. From
Ref. [51].

The local DOS is de�ned through the retarded one-electron Green's
function GR(x; x0; t) � �ihf (x; t);  (x0; 0)ygi �(t) as

N(x;E) = � 1

�
Im

Z 1

�1
dt eiEt GR(x; x; t) = N(0) ReG(E) : (64)

If the metal is a Fermi liquid the DOS is almost featureless � N(0) while in
the superconductor it behaves like N(E) = N(0)E=

p
E2 ��2. This raises

the question how the DOS behaves close to an NS interface to interpolate
between these two very di�erent limits.

Due to the proximity e�ect, the DOS indeed acquires nontrivial struc-
ture. Results are shown in Fig. 9 (a) for the normal side of the interface.
It shows a subgap structure (a bump) and a depression close to the Fermi
energy. These features tend to disappear when one moves away from the
interface. In the absence of pair breaking the DOS vanishes at the Fermi
level. On the superconducting side the singularity at � is suppressed and
a �nite DOS appears also at low energies, as shown in Fig. 9 (b).

If the dimensions of the normal metal are �nite (a slab of thickness L), a
true gap Eg appears in the DOS of the normal metal. This mini-gap scales
with the length and is related to the Thouless energy D=L2. A �t to the
numerical results is

Eg � (� + L)�2 ;

where � =
p
D=2�, implying that the e�ective di�usion length is � � + L.
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3.3.2. Nonequilibrium Situations

To describe systems with a �nite applied voltage, the formalism of nonequi-
librium superconductivity [78, 79, 80] should be used. It is based on the
real-time Keldysh technique [80, 81], which involves matrix Green's func-
tions

�G =

 
ĜR ĜK

0 ĜA

!
(65)

having retarded, advanced and Keldysh (R,A,K) components. Each of these
are 2� 2 matrices in Nambu space typical for superconductivity

Ĝ =

�
G F

F y �G

�
; (66)

whose entries are quasiclassical Green's functions, which in the dirty limit
satisfy the Usadel equation (61). The boundary conditions for Keldysh
Green's functions at NS-interfaces have been derived by Zaitsev [82]. Ap-
plications to di�usive NS heterostructures have been discussed by Volkov
et al. [83].

As an example, and application of the Keldysh technique, we consider
the transport through a di�usive wire of length L connected to a normal
and a superconducting reservoir via metallic contacts. One of the striking
e�ects in the transport of this system is the non-monotonic temperature
dependence when the temperature is of the order of the Thouless energy
EL = D=L2. The resistance of this system initially decreases when the
temperature is lowered but approaches again the normal state resistance
at T = 0. This e�ect was analyzed theoretically in Refs. [49, 84, 85] and
experimentally in Ref. [43].

The di�erential conductance, normalized to its value if the supercon-
ductor was not present, can be expressed as

GN =
1

2T

Z 1

0
dE

D(E)

cosh2(E=2T )
(67)

where D(E) is the e�ective energy-dependent transparency to be deter-
mined microscopically from the quasiclassical equations. It is the presence
of the electric �eld combined with the proximity e�ect which renders this
situation a nonequilibrium one.

At temperatures much lower than the Thouless energy EL the conduc-
tance increases quadratically with temperature

GN = 1+ A

�
T

EL

�2
; (68)
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Figure 10. Electric �eld in the normal bridge between a bulk superconductor (x � L)
and a bulk normal metal (x � 0). From Ref. [85].

where A is a constant. Although the low-temperature conductance coincides
with the normal state value, the wire is in
uenced by the superconductor,
as can be seen in the local density of states [85]. At higher temperatures
T > EL the conductance decreases with rising temperature

GN = 1 + B

s
EL

T
; (69)

where B is a constant. In this regime the coherence length �T in the normal
wire is shorter than L. Hence the resistance of the structure is determined
by the portion of the wire, � L� �T , which is still normal [85].

In the non-equilibrium situation considered here, it is essential to an-
alyze the penetration of the electrical �eld in the wire. This problem was
considered in Ref. [86] for the in�nite wire case and in Ref. [85] for the case
where the wire is attached to two reservoirs. At high temperatures, the �eld
is essentially constant, but at low temperatures it has a non-monotonic
behavior. This in turn is responsible for the non-monotonic temperature
dependence of the conductance. The electric �eld in the wire is plotted in
Fig. 10.

In the presence of tunnel barriers with resistance larger than the Drude
resistance of the wire, the electric �eld is con�ned to the barrier. In this
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case the nonequilibrium e�ects related to the electric �eld in the wire, and
responsible for the non-monotonic temperature dependence disappear.

Recent experiments [47, 48] have also studied more complex NS struc-
tures where supercurrents can 
ow between at least two superconducting
reservoirs [47] or are induced by a magnetic 
ux through a loop within the
structure [48]. In the picture of Andreev re
ections, interference between
quasiparticles acquiring a superconducting phase during the re
ection pro-
cess occurs. As the Usadel equations (61) describe the modulation of the
Green's functions by possible gradients of the superconducting phase, the
in
uence of these currents on the system conductance (67) can be easily
calculated within the quasiclassical approach. These e�ects remain pro-
nounced even at higher temperatures, when the coherence length �TN is
smaller than the geometrical lengths of the system. In this case one could
expect that superconducting correlations are destroyed before interference
occurs, hence the e�ect should be absent and supercurrents are exponen-
tially small. However, low energy channels (E � EL) can still interfere
and contribute to the conductance with a relative weight of EL=T . Their
contribution remains pronounced. This is characteristic for linear response
quantities, in contrast to thermodynamic ones like the supercurrent.

3.4. SUPERCONDUCTOR-LUTTINGER LIQUID SYSTEMS

As discussed already in the �rst part of this chapter, electron-electron in-
teraction plays an important role in systems of reduced dimensionality. The
interplay of proximity e�ect and charging was discussed in [36]. Another
class of systems in which interaction is of fundamental important is that
of quantum wires. In this case the capacitance model cannot applied any
longer, instead a paradigm model for interacting one-dimensional electron
systems is the Luttinger model (see the chapter by Fisher and Glazman
in this volume for an introduction) In this last section we brie
y review
some properties of hybrid systems of superconductors and a Luttinger liq-
uid. In 1D, interactions have drastic consequences. For instance, there are
no fermionic quasiparticle excitations, and the transport properties cannot
be described in terms of the conventional Fermi-liquid approach. Instead
the low-energy excitations of the system are independent long-wavelength
oscillations of the charge (�) and spin density (�), which propagate with dif-
ferent velocities. For a quantum wire with an arbitrarily small barrier this
leads to a complete suppression of transport at low energies [87, 88, 89].

Hybrid S-LL have been studied in the two extremes of tunneling junc-
tion and of perfectly transparent interfaces. In the �rst case the tunneling
Hamiltonian is used [59], while in the second case a new type of bosoniza-
tion developed in Ref. [60] is employed. In this section we consider only
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the tunneling density of states in a LL with a highly transparent S-LL
interface [62].

The Hamiltonian of a LL can be written in bosonized form as

ĤL =
1

2

X
j

vj

Z
dx

"
gj

2
(r�j)2 +

2

gj
(r�j)2

#
; (70)

where j = �; �, and vj = (2=gj)vF are the renormalized interaction-depen-
dent Fermi velocities for charge and spin density excitations. For repulsive,
spin-independent interactions we have g� < 2 and g� = 2. The Fermi �eld
operators are decomposed in right- and left-moving Fermion operators  +;s
and  �;s, respectively,  s = eikF x +;s + e�ikF x �;s, where kF is the Fermi
wave vector. The �elds  �;s in turn can be expressed through Boson oper-
ators

 
y
�;s =

p
�0e

i
p
�[��s(x)+�s(x)]; (71)

where �s =
1p
2
(�� + s��) and �s =

1p
2
(�� + s��). The density of electrons

per spin in the LL is �0 = kF =2�. The �elds �, � can be decomposed in a
normal mode expansion which incorporates the boundary conditions at the
S-LL interfaces. For a LL coupled to two superconductors at a distance L,
Maslov et al. [60] obtained the result

��(x) =

r
�

2
(J + �)

x

L
+ i

s
2

g�

X
q>0


q sin(qx)(b̂
y
�;q � b̂�;q); (72)

��(x) =
1p
�
�(0)� +

s
2

g�

X
q>0


q cos(qx)(b̂
y
�;q + b̂�;q); (73)

��(x) =

r
�

2
M
x

L
+ i

r
g�

2

X
q>0


q sin(qx)(b̂
y
�;q � b̂�;q); (74)

��(x) =
1p
�
�(0)� +

r
g�

2

X
q>0


q cos(qx)(b̂
y
�;q + b̂�;q) : (75)

Here, b̂
(y)
j;q are Bose operators and 
q = expf�q�=2�g=

p
qL where � is a

short range cut-o�. The expansion (72) { (75) is valid at energies smaller
than the superconducting gap �. The phase di�erence between the two
superconductors is �; J and M describe topological excitations satisfying

the constraint J+M = odd. Finally, �
(0)
� and �

(0)
� are canonically conjugate

to M;J . The local density of states (per spin) of the LL measured at a
distance x from the superconducting contact is related to the retarded one-
electron Green's function of the LL by Eq. (64).

As an example we discuss the space and frequency dependent DOS of a
LL contacted at x = 0 with a superconductor. This corresponds to the limit
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L!1 in the mode expansion given by Eqs. (72) { (75). In this case only
the non-zero modes (q > 0) contribute to the local DOS. The correlation
function h ys(x; t) s(x; 0)i can be evaluated using the boson representation
Eq. (71), with the result

h ys(x; 0) s(x; t)i = 2�0
Y

j=�;�

�
�2+(2x)2

�2

�
j � �2

(��ivj t)2
��j

�
h

�2

(��i(2x+vjt))(�+i(2x�vjt))

i
j
; (76)

at distance x from the LL-S interface. Here 
j = (gj=16 � 1=(4gj)) and
�j = (gj=16 + 1=(4gj)). At small energies ! � �, the DOS behaves as

NS�LL(!) � !g�=4�1=2: (77)

The exponent of the DOS is negative (g� < 2), which implies a strong

enhancement at low energies whereas in the absence of the superconductor
the DOS of the LL vanishes at the Fermi energy

N(!) � !(g�+4=g��4)=8 : (78)

Thus the presence of the superconductor changes the properties of the
Luttinger liquid in a qualitative way. Although we consider a clean S-LL
interface, backscattering is induced by the superconducting gap, which re-

ects low-energy electrons either directly or via (multiple) Andreev pro-
cesses. The enhanced DOS as a function of frequency, Eq. (77), is schemat-
ically drawn in Fig. 11; for comparison we also show the vanishing DOS in
absence of the superconductor, Eq. (78).

On the other hand, at low energies ! the enhancement of the DOS
persists over large distances x(!) � v�=! from the interface. On the other
hand, the induced pair amplitude in the LL, which is characteristic of the
presence of the superconductor, decays as a power [60] of the distance x.
This profound di�erence in the space dependence demonstrates that the
DOS provides di�erent information compared to the proximity e�ect. The
reason why the DOS does not approach the well-known behavior of an
Luttinger liquid far from the superconducting contact is in part related to
the fact that we are considering a clean wire. In this case the states in the
LL are extended and the DOS enhancement does not depend on x.
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