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We study electron transport through a small metallic island

in the perturbative regime. Using a diagrammatic real-time

technique, we calculate the occupation of the island as well

as the conductance through the transistor in forth order in

the tunneling matrix elements, a process referred to as co-

tunneling. Our formulation does not require the introduction

of a cut-o�. At resonance we �nd signi�cant modi�cations

of previous theories and quantitative agreement with recent

experiments.

Electron transport through small metallic islands is
strongly inuenced by the charging energy associated
with low capacitance of the junctions [1{3]. A variety of
single-electron e�ects, including Coulomb blockade phe-
nomena and gate-voltage dependent oscillations of the
conductance, have been observed. If the conductance of
the barriers is low

�0 � h=(4�2e2RT)� 1 (1)

they can be described within the \orthodox theory" [1]
which treats tunneling in lowest order perturbation the-
ory (golden rule). This corresponds to the classical pic-
ture of incoherent, sequential tunneling processes. On
the other hand, there is experimental and theoretical ev-
idence that in several regimes higher-order tunneling pro-
cesses have to be taken into account.
First, in the Coulomb blockade regime, sequential tun-

neling is exponentially suppressed. The leading contri-
bution to the current is a second-order process in �0
where electrons tunnel via a virtual state of the island.
Averin and Nazarov [4] evaluated the transition rate of
this \inelastic cotunneling" process at zero temperature.
A divergence which arises at �nite temperature requires
a regularization, which they treated by an approxima-
tion which is valid far away from the resonances. In this
regime, their results were con�rmed by experiments [5].
Second, even at resonance where sequential tunneling

occurs, higher-order processes can have a signi�cant ef-
fect on the gate-voltage dependent linear and nonlinear
conductance [6,7]. Similar e�ects were discussed for the
equilibrium properties of the single-electron box [8{12].
A diagrammatic real-time technique developed for metal-
lic islands [6,7] as well as for quantum dots [13,14] allows
a systematic description of the nonequilibrium tunnel-
ing processes. The e�ects from quantum uctuations be-
come observable either for strong tunneling �0 � 1 or at
low temperatures �0 lnEC=T � 1, where EC denotes the
charging energy (see below). The theory has been eval-
uated in the limit where only two adjacent charge states

are included (even virtually). Therefore, it was necessary
to introduce a band-width cut-o� � EC. The predicted
broadening of the conductance peak as well as the reduc-
tion of its height was con�rmed qualitatively in recent
experiments on a single-electron transistor in the strong
tunneling regime by Joyez et al. [15]. However, a quanti-
tative �t between theory and experiment requires using
a renormalized value for the charging energy. This value
has been determined independently in the experiments.
In this Letter, we use the real-time diagrammatic tech-

nique to obtain the current in second order in �0 includ-
ing all relevant states. In this case no cut-o� is required;
all terms are regularized in a natural way. This analy-
sis allows an unambiguous comparison with experiments
where only bare system parameters enter. At resonance
we obtain new contributions compared to the earlier the-
ory of electron cotunneling. They emerge from a change
of the occupation probabilities and a renormalization of
the charge excitation energy. For realistic parameters
T=EC � 0:05 and �L0 = �R0 � 0:02 the corrections are of
order 20%. We compare with recent experiments [15] and
�nd excellent agreement without any �tting parameter.
The system is modeled by the Hamiltonian

H = HL +HR +HI +Hch +HT = H0 +HT: (2)

Here Hr =
P

kn �
r
kna

y
rknarkn and HI =

P
qn �qnc

y
qncqn

describe the noninteracting electrons in the two leads
r=L,R and on the island. The wave vectors k and q

numerate the states of the electrons, while n = 1; : : :N
is the transverse channel index which includes the spin.
In the following, we consider \wide" metallic junctions
with N � 1. The Coulomb interaction of the elec-
trons on the island is described by the the capacitance
model Hch = EC(n̂ � nx)

2, where EC = e2=(2C) with
C = CL+CR+Cg. The excess particle number operator
on the island is given by n̂. Furthermore, the 'external
charge' enx = CLVL + CRVR + CgVg, accounts for the
applied gate and transport voltages. The charge transfer
processes are described by the tunneling Hamiltonian

HT =
X
r=L;R

X
kqn

T rn
kq a

y
rkncqne

�i'̂ + h:c: : (3)

The matrix elements T rn
kq are considered independent of

the states k and q. They are related to the tunneling
resistances RT;r of the left and right junction by 1

RT;r
=

N 2�e2

�h
Nr(0)NI (0)jT

rnj2, where NI=r(0) are the density of

states of the island/leads. The operator e�i'̂ changes the
charge on the island by �e.
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We proceed using the diagrammatic technique devel-
oped in Ref. [6,7]. The nonequilibrium time evolution
of the charge degrees of freedom on the island is de-
scribed by a density matrix, which we expand in HT.
The reservoirs are assumed to remain in thermal equilib-
rium (with electrochemical potential �r) and are traced
out using Wick's theorem, such that the Fermion op-
erators are contracted in pairs. For a large number of
channels N , the \simple loop" con�gurations dominate
where the two operators in ay

rkncqn from one term HT are
contracted with the corresponding two operators cyqnarkn
from another term HT, while the contribution of more
complicated con�gurations are small.
The time evolution of the reduced density matrix in a

basis of charge states is visualized in Fig. (1). The for-
ward and backward propagator (on the Keldysh contour)
are coupled by \tunneling lines", representing tunneling
in junction r. In Fourier space they are given by

��
r
(!) = ��r

0

! � �r

exp[��(! � �r)]� 1
: (4)

if the line is directed backward/forward with respect to
the closed time path. Furthermore, we associate with
each tunneling vertex at time t a factor exp (�i�n t) de-
pending on the energy di�erence of the adjacent charge
states �n = Ech(n + 1) � Ech(n). If the vertex lies on
the backward path it acquires a factor �1. We de�ne
�0 =

P
r
�r0 and �(!) =

P
r
�r(!).

The time evolution of the density matrix leads to a
formally exact master equation [6,7]

_pn =
X
n0 6=n

[pn0�n0;n � pn�n;n0] (5)

for the probability pn of charge state n and the tran-
sition rates �n;n0 between n and n0. In the perturba-

tive regime we write pn = p
(0)
n + p

(1)
n + p

(2)
n + : : : and

�n;n0 = �
(1)

n;n0 +�
(2)

n;n0 + �
(3)

n;n0 + : : : where p
(k)
n and �

(k)
n;n0

denotes the term � �k
0
of the expansion. The mas-

ter equation must hold in each order. In lowest order
(sequential tunneling) in the stationary state it reads

p
(0)

n �+(�n) � p
(0)

n+1�
�(�n) = 0: At low temperature at

most two charge states (n = 0; 1) are important, all other
states are suppressed exponentially.
Due to higher-order processes the occupation is mod-

i�ed and also the probability for the other charge states
can be nonzero (they are algebraically suppressed, but
not exponentially). The expansion of the master equa-
tion up to �20 gives a relation between the rates in second

order �
(2)

n;n0 (diagrams with two lines) and the occupa-

tion in �rst order p
(1)

n which lead to a correction in the
average occupation hni =

P
n npn = hni(0)+ hni(1)+ : : :.

The stationary current Ir = �ie
P

n;n0 pn�
r+

n;n0

through reservoir r uses the rates �r+

n;n0 where the right-
most tunneling line corresponds to reservoir r and is an

outgoing (incoming) one if the rightmost vertex lies on
the upper (lower) propagator (and vice versa for �r�

n;n0).
There are two types of diagrams contributing to the
second-order correction of the current I(2): those of the
form p(0)�(2) and others like p(1)�(1). The �rst ones cor-
respond to the cotunneling processes derived by Averin
and Nazarov [4]. The second ones are due to changes in
the occupation probabilities in higher orders. They have
not been considered in previous theories, but is equally
important as the �rst one.
In lowest order the average occupation hni(0) =

�+(�0)=�(�0) is smeared only by temperature. Quan-
tum uctuations yield in next order

hni(1) =
1

2EC

@

@nx

h
p
(0)

0
(�0 � ��1) + p

(0)

1
(�1 � �0)

i
(6)

where �n =
P

r
�r0(�n��r)Re	

�
i �
2�
(�n � �r)

�
and 	

denotes the digamma function.
In equilibrium, i.e. at V = 0, the transistor is equiva-

lent to the single-electron box. A systematic perturbative
expansion of the partition function (up to order �2

0
) was

performed by Grabert [12]. The result Eq. (6) is iden-
tical to his result in order �0, which at T = 0 reads
hni(1) = �0 ln[(1 + 2nx)=(1 � 2nx)]. Eq. (6) generalizes
the analysis to nonequilibrium situation, i.e. V 6= 0.
The current I = IL = �IR is in lowest order given by

I(1)(�0) =
4�2e

h

�L(�0)�R(�0)

�(�0)
[fR(�0)� fL(�0)] : (7)

The total second order, \cotunneling" contribution can

be divided into three parts I(2)(�0) =
P3

i=1 I
(2)

i (�0)

I
(2)

1
(�0) =

Z
d! I(1)(!)�(!)

Re
h
p
(0)

0
R�(!)

2 + p
(0)

1
R+(!)

2

i
; (8)

I
(2)

2
(�0) = �I(1)(�0)

Z
d!Re

X
�=�

��(!)R�(!)
2 ; (9)

I
(2)

3
(�0) = �

@I(1)(�0)

@�0

Z
d!Re

X
�=�

��(!)R�(!) ; (10)

where we used the de�nition R�(!) = 1

!��0+i0+
�

1

!���1+i0+
. The poles at ! = � are regularized in a

natural way (it comes out of our theory and is not added
by hand) as Cauchy's principal values Re 1

x+i0+
= P 1

x

and their derivative Re 1

(x+i0+)2
= � d

dx
P 1

x
.

In the Coulomb blockade regime, we have p
(0)

0
= 1,

p
(0)

1
= 0 and I(1)(�0) = 0. Consequently, only the �rst

term of I
(2)

1
contributes. At T = 0, the integrand is zero

at the poles, and we can omit the term +i0+. This gives
the well-known result of inelastic cotunneling [4]. At �-
nite temperature, however, the regularization scheme is
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needed which is not provided by previous theories [16].
Our result is also well-de�ned for T 6= 0.
Furthermore, we are able to describe the system at

resonance. In this regime, I
(2)

2
and I

(2)

3
become impor-

tant. The origin of the second term may intuitively be
interpreted as the reduction of the �rst order contribu-
tion I(1)(�0) since quantum uctuations lead to an oc-
cupation of the adjacent charge states n = �1 and 2.
Therefore, the probability of the system to be in state
n = 0 or 1 is decreased. The third term may indicate the
appearance of a renormalization of the excitation energy
�0 [6,7,9,11]. Due to this renormalization the system is
e�ectively \closer" to the resonance as the original pa-
rameters would suggest. The current would then, in sec-
ond order, be roughly given by the derivative of the �rst
order term times the renormalization.
The behavior of the system at resonance (and its

crossover to the Coulomb blockade regime) was also de-
scribed in Ref. [6,7] within the resonant tunneling ap-
proximation for the two charge state model. Therefore,
the expansion of the resonant tunneling formula up to
�2
0
yields Eqs. (8) - (10) if we omit all terms with �1

and ��1. The integrals, then, become divergent and a
cut-o� (of the order of the charging energy) has to be in-
troduced. In this Letter, however, we took into account
all processes, and, therefore, no cut-o� is needed.
In Fig. 2 we show the second-order contribution to the

linear di�erential conductance G = @I=@V (in the follow-
ing we choose �L0 = �R0 ). In Figs. 3 and 4 a comparison of
the �rst order, the sum of the �rst and second order, and
the resonant tunneling approximation (where the cut-o�
is adjusted at EC) is displayed for the linear and non-
linear regime. The deviation from sequential tunneling
is signi�cant and of the order 20%. The agreement with
the resonant tunneling approximation provides a clear
criterium for the choice of the bandwidth cut-o�. Fur-
thermore, and most importantly, it shows the existence
of a parameter regime where renormalizations of EC, �0,
and �0 by higher-order charge states can be neglected al-
though the current deviates signi�cantly from the classi-
cal result. We have checked the signi�cance of third order
terms � �30 by using the resonant tunneling formula [6,7]
and exact results for the average charge in third-order at
zero temperature [12]. For the parameter sets used in the
�gures, the deviations to the sum of �rst and second or-
der terms were smaller than about 2%. Therefore, at not
too low temperatures, second-order perturbation theory
is a good approximation even if the tunneling resistance
approaches the quantum resistance.
In Fig. 5 we compare our results with recent experi-

ments [15]. The temperature dependence of the Coulomb
oscillations were measured for two samples with di�erent
conductances. For one with �0 = 0:015, our results in
second-order perturbation theory agree perfectly in the
whole temperature and gate voltage range. Also for the

other sample with �0 = 0:063 the agreement is very good.
For still stronger tunneling higher-order e�ects such as
the inelastic resonant tunneling [7] would be relevant.
We emphasize, that only bare values for �0 and EC

have been used here, as determined unambiguously in
the experiment. In contrast the resonant tunneling ap-
proximation with the bare value of the charging energy
would lead to a deviation from the experiment by about
10%. Thus, the inclusion of higher-order charge states
within second-order perturbation theory, as presented in
this Letter, is an important improvement of the theory.
The peak conductance shown in Fig. 5 depends loga-

rithmically on temperature. From Eqs. (8) - (10) we �nd
at low temperature Gmax=Gas =

1

2
��0

�
 + log

�
EC
�T

��
+

O(�20) with  being Euler's constant and Gas = 1=(RL+
RR) the asymptotic high temperature limit. This re-
sult may be interpreted as a renormalization of Gas or
�0 [6,7,9,11]. It shows a typical logarithmic temperature
dependence since, at least in the equilibrium situation,
the low-energy behavior of the system is expected to be
that of the multichannel Kondo model [9]. While at res-
onance the new terms are crucial, the Coulomb blockade
regime is su�ciently described by Eq. (8) to �nd a very
good agreement between theory and experiment.
In conclusion we have presented a consistent calcula-

tion of the current of the single-electron transistor up
to second-order perturbation theory (cotunneling). The
approach is free of any divergences and provides cut-o�
independent results. At resonance we �nd new terms
which are signi�cant for experimentally realistic parame-
ters and are responsible for logarithmic behavior. A com-
parison with experiments shows good quantitative agree-
ment without renormalization of system parameters.
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FIG. 1. A diagram showing contributions to sequential tun-

neling (�
L;�
0;1 and �

R;+
1;0 ) and cotunneling (�

R;+
0;0 and �

L;�
0;0 ).
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FIG. 2. The second-order contribution of the di�erential

conductance G(2)
=

P3

i=1
G
(2)
i for T=EC = 0:05, �0 = 0:04

and V = 0.
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FIG. 3. The di�erential conductance for T=EC = 0:05,

�0 = 0:04 and V = 0: sequential tunneling, sequential plus

cotunneling, and resonant tunneling approximation.
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FIG. 4. The di�erential conductance for T=EC = 0:01,

�0 = 0:02 and V=EC = 0:2: sequential tunneling, sequen-

tial plus cotunneling, and resonant tunneling approximation.
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FIG. 5. Maximal and minimal linear conductance for

EC = 1:47K and �0 = 0:015, and EC = 1K and �0 = 0:063.

The dots are experimental data from Ref. [15].
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