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We develop a detailed microscopic analysis of electron
transport in normal di�usive conductors in the presence of

proximity induced superconducting correlation. We calcu-

lated the linear conductance of the system, the pro�le of the
electric �eld and the densities of states. In the case of trans-

parent metallic boundaries the temperature dependent con-

ductance has a non-monotoneous \reentrant" structure. We
argue that this behavior is due to nonequilibrium e�ects oc-

curing in the normal metal in the presence of both supercon-

ducting correlations and the electric �eld there. Low trans-
parent tunnel barriers suppress the nonequilibrium e�ects and

destroy the reentrant behavior of the conductance. If the wire

contains a loop, the conductance shows Aharonov-Bohm os-
cillations with the period �0 = h=2e as a function of the

magnetic 
ux � inside the loop. The amplitude of these os-

cillations also demonstrates the reentrant behavior vanishing
at T = 0 and decaying as 1=T at relatively large temperatures.

The latter behavior is due to low energy correlated electrons

which penetrate deep into the normal metal and \feel" the
e�ect of the magnetic 
ux �. We point out that the density

of states and thus the \strengh" of the proximity e�ect can

be tuned by the value of the 
ux inside the loop. Our results
are fully consistent with recent experimental �ndings.

I. INTRODUCTION

Recent progress in nanolithographic technology re-
vived the interest to both experimental and theoreti-
cal investigation of electron transport in various meso-
scopic proximity systems consisting of superconducting
and normal metallic layers. In such systems the Cooper
pair wave function of a superconductor penetrates into
a normal metal at a distance which increases with de-
creasing temperature1. At su�ciently low temperatures
this distance becomes large and the whole normal metal
may acquire superconducting properties. Although this
phenomenon has been already understood more than
thirty years ago and intensively investigated during past
decades, recently novel physical features of metallic prox-
imity systems have been discovered2{8 and studied the-
oretically (see9{21 and further references therein).
In this paper we study the in
uence of the proxim-

ity e�ect on transport properties of a di�usive conductor
in the limit of relatively low temperatures and voltages.
We will assume that this conductor is brought in a direct
contact to a superconducting reservoir which serves as an
e�ective injector of Cooper pairs into a normalmetal. We
will show that if the system contains no tunnel barriers

there are two di�erent physical regimes which determine
the system conductance in di�erent temperature inter-
vals. It is well known that proximity induced supercon-
ducting correlation between electrons in a di�usive nor-
mal metal survives at a distance of order �N �

p
D=T ,

where D = vF limp=3 is the di�usion coe�cient. As T
is lowered the proximity induced superconductivity ex-
pands into the normalmetal and, consequently, the \nor-
mally conducting" part of the system e�ectively shrinks
in size. This e�ect results in increasing of the conduc-
tance of a normal metal. At su�ciently low temperature
the length �N becomes of order of the size of the nor-
mal layer and the system behavior becomes sensitive to
a physical choice of the boundary condition at the edge
of the normal wire opposite to that attached to a super-
conductor.
One possible choice of this boundary condition corre-

sponds to the assumption that a nontransparent barrier
is present at the edge of this wire. Then electrons can-
not di�use out of the wire, the proximity induced super-
conducting correlation survives everywhere in the system
and a real gap in the quasiparticle spectrum develops
in the N-metal22. The value of this gap is of order of
"g � min(�;D=L2), � is the bulk superconducting gap
and L is the length of the normal wire.
Another possible situation corresponds to the presence

of a big normal reservoir N' directly attached to the N-
wire by means of a highly transparent contact. In this
case even at very low T the proximity induced Cooper
pair amplitude is essentially nonhomogeneous in the N-
metal. Indeed, close to a superconductor this amplitude
is large, whereas in the vicinity of a normal reservoir it
is essentially suppressed. Thus, strictly speaking, the
whole N-wire cannot be characterized by the real gap in
its quasiparticle spectrum. In the absense of a poten-
tial barrier between N and N' this gap is obviously equal
to zero at the NN' interface and { as will be demon-
strated { everywhere in the normal metal. Nevertheless,
it turns out that the density of states in the N-metal
shows a soft pseudogap which is again of the order of
"g . In other words, the spacially averaged normalized
density of states NN (") in the N-wire at small " <� "d
is smaller than its normal state value NN < N (0) but
always remains nonzero. It increases with increasing "
and reaches the value NN = N (0) at " >� "d. This is
the key point for understanding the low temperature be-
havior of the conductance of our system. As the tem-
perature increases from zero, higher and higher values of
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" contribute to the current and the system conductance
{ due to the increase of NN with " { increases with T .
This regime takes place until the temperature reaches the
value T � "d where the crossover to a high temperature
behavior takes place. Note that similar behavior of the
normal metal conductance in the presence of proximity-
induced superconductivity has been recently found by
Nazarov and Stoof23.
An interesting feature of the system without tunnel

barriers is that at T = 0 its conductance exactly co-
incides with that of a normal metal with no proximity
e�ects. This result has been �rst obtained by Arte-
menko, Volkov and Zaitsev24 for the case of a normal-
superconducting constriction. Although it is already
around for many years the physical meaning of this result
{ if any { still needs to be understood. At the �rst sight
the linear conductance of the system at T = 0 should
be smaller than in the normal state because of the pres-
ence of the (pseudo)gap in the normal DOS NN at low
energies. Why is this not the case?
In order to answer this question we should recall the

well known fact that in the presence of nonequilibrium ef-
fects the current 
owing in a superconductor depends not
only on the normal DOS but is characterized by a set of
generalized DOS25. Our problem is just a particular ex-
ample of a nonequilibrium superconductor: on one hand
superconducting correlation penetrates into the normal
metal and the Cooper pair amplitude is nonzero there, on
the other hand in the absence of low transparent tunnel
barriers the electric �eld also penetrates into the N-metal
and drives the quasiparticle distribution function out of
equilibrium. We will argue that in this situation one of
the generalized DOS (below we de�ne it as NS(")) { that
is nonzero in the N-layer due to the presence of proxim-
ity induced superconducting correlation at low energies {
plays an important role and also contributes to the sys-
tem conductance. In other words, in the presence of the
electric �eld inside the system both uncorrelated and cor-

related electrons contribute to a dissipative current. This
is the reason why in the presence of proximity induced su-
perconductivity the system conductance is never smaller
than its normal state value although the normal DOS
NN (") < N (0) at low energies26.
We would like to emphasize that the situation is en-

tirely di�erent in the presence of low transparent tunnel
barriers. Provided their resistances are much larger than
that of the N-metal the whole voltage drop takes place
at these barriers and the electric �eld does not penetrate
into the N-layer. In this case only uncorrelated electrons
contribute to the dissipative current and therefore only
the normal DOS NN matters. As a result the tempera-
ture dependence of the system conductance changes. We
will demonstrate that with lowering the barrier trans-
parency the crossover takes place to the e�ective conduc-
tance decreasing monotonously with T, characteristic for
two serial NIS' tunnel junctions (S' is now the di�usive
normal conductor with the proximity-induced gap).
Note that both types of the behavior, namely reen-

trant and monotonously decreasing with T conductance
have been observed in the experiments3;7;8. Furthermore,
we would like to point out that both densities of states
NN (") and NS(") can be investigated in one experiment.
We will come back to this point further below.
When the system contains a mesoscopic loop of a nor-

mal metal, the conductance as a function of the magnetic

ux through the loop shows oscillations with the period
�0 = h=2e (superconducting 
ux quantum). Although
the Cooper pair amplitude (and thus the supercurrent)
in the ring is exponentially small at T � �d, the am-
plitude of these oscillations decays only as / 1=T . This
again illustrates an important di�erence in the behavior
of kinetic (conductance) and thermodynamic (supercur-
rent) quantities. Below we will argue that in the systems
considered here even at large T � �d the behavior of the
�rst quantity is dominated by correlated low energy elec-
trons with � <� �d penetrating far into the normal metal
whereas the contribution of electrons with � � T to the
second one is only important. Again the presence of the
electric �eld inside the N-metal is crucially important
for this e�ect. At low T the oscillation amplitude again
shows the reentrant behavior and vanishes in the limit
T ! 0 as T 2. A clear experimental evidence for a 1=T
decay of the conductance oscillations has been recently
reported in Ref. 6.
Finally we point out that making use of the the geom-

etry with a metallic loop one can easily tune the den-
sities of states of the system by applying a magnetic

ux � inside this loop. We will show that e.g. for
� = �0=2 the proximity e�ect in the normal region \af-
ter" the loop is completely suppressed and the normal
DOSNN (�) = N (0) there. This e�ect can be investigated
experimentally and used for further studies of proximity
induced superconductivity in normal metullic structures.
The structure of our paper is as follows. In Section II

we brie
y describe the general kinetic approach based on
quasiclassical Green functions in the Keldysh technique
and de�ne the physical quantities of interest. Then a de-
tailed analysis of this quantities (conductance { Section
III, DOS { Section IV, elecric �eld { Section V) will be
presented. Sections VI and VII are devoted to the ex-
tension of our analysis to the proximity systems contain-
ing mesoscopic normal metal loops with a magnetic 
ux.
The main results of the present paper are summarized in
Section VIII. Further details related to di�erent geomet-
ric realizations of the proximity systems with loops are
presented in Appendix.

II. KINETIC ANALYSIS

A. General formalism

Let us consider a quasi-one-dimensional normal con-
ductor of a length 2L with a superconducting strip of a
thickness 2ds attached to a normal metal on the top of
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it and two normal reservoirs attached to its edges (see
�g.1). The length L is assumed to be much larger than
the elastic mean free path limp but much shorter than the
inelastic one. This geometrical realization has a direct re-
lation to that investigated in the experiments3;5;8. Two
big normal reservoirs N' are assumed to be in thermody-
namic equilibrium at the potentials V and 0 respectively.
In contrast to the case of a ballistic constriction27;28 the
potential drop within the system is distributed between
the interfaces and the conductor itself. The general ap-
proach to calculate the conductance of these structures
was developed in9;10;12. In what follows we shall apply
this method to analyse the temperature dependence of
the NS proximity structure of �g. 1.

x=0

N‘ N‘N NS‘

2L

dn 2ds dn

S

FIG. 1. The experimental system under consideration

Such an experimental realization allows to prepare a
structure without e�ective tunnel barriers in the direc-
tion of the current 
ow. Even with \perfect" samples in
a usual sandwich geometry, a natural barrier shows up
due to the inevitable mismatch of Fermi velocities be-
tween di�erent materials. This could well be one of the
reasons why in the previous experiments with sandwich-
like structures, the reentrant behavior of the conductance
was not detected29.
The electron transport through the metallic system can

be described by the equations for a matrix of quasiclas-

sical Green functions
_
G in the contact30;31:

_
G =

0
@ ^

G
R ^

G
K

0
^
G
A

1
A (1)

where
^
GA,

^
GR and

^
GK are respectively the impurity-

averaged advanced, retarded and Keldysh Green func-
tions. These functions are in turn matrices in the Nambu
space:

^
GR=

^
�z g

R+
^
i�y f

R;
^
GA= �(

^
GR)�and

^
GK=

^
GR

^
f �

^
f
^
GA :

Here the distribution function
^
f= fl+

^
�z ft, where

fl = tanh("=2T ) and ftdescribes deviation from equi-
librium. Taking advantage of the normalization con-
dition for the normal and the anomalous Green func-
tions (gR)2 � (fR)2 = 1 it is convenient to parametrize
gR = cosh �; fR = sinh �, where � � �1+i�2 is a complex

function. Deep in the bulk superconductor it is equal
to �s = 1=2 ln [(� + ")=(�� ")] � i�=2 for " < � and
�s = (1=2) ln [(" +�)=("��)]=2 for " > � (here and
below we omit the indices R(A)).
The current I and the electrostatic potential � are ex-

pressed through
_
G as

I =
�DS
2

Z 1

�1
d" Sp

�
^
�z

_
G @x

_
G

�K
; (2)

�(x) =

Z 1

0

d"TrĝK(x; ") =

Z 1

0

d" ft(x; ")�"(x); (3)

where � is the the density of states, �"(x) = <(gR" (x))
and S is the crossection area of N conductor.
Being expressed in terms of the function �("; x) the

equations30;31 for the Green functions and the distribu-
tion function for the N-metal take a particularly simple
form

D@2x� + 2i" sinh � = 0 (4)

@x
�D(cosh2 �1)@xft� = 0; (5)

x is the coordinate along the N-conductor. Here we
neglected the processes of inelastic relaxation and put
the pair potential in the normal metal equal to zero
�N = 0 assuming the absence of electron-electron in-
teraction there.
Before we come to a detailed solution of the problem let

us point out that the conclusion about the anomalous be-
havior of the system conductance can be reached already
from the form of eq. (5). Indeed it is quite clear from (5)
that the e�ective di�usion coe�cient De� = D cosh2 �1
increases in the N-regions with proximity-induced super-
conductivity and, therefore, the electric �eld is partially
expelled from these regions. This energy dependent �eld
modulation is controlled by the solution for �("; x) and
is directly related to the physical origin of the anoma-
lous temperature dependence of the system conductance
discussed below.
The equations (4) and (5) should be supplemented by

the boundary conditions at the interfaces of the normal
metal N. Assuming that the anomalous Green function
of big normal reservoirs N' is equal to zero from32;10 we
obtain

��N
B@x� = � sinh �;
��N
B cosh �1@xft = � cosh �2(ft � ft(x = 0; 2L));

(6)

where 
B = Rb=�N �
�
N is the interface resistance parame-

ter, Rb is the speci�c resistance of the interface between
the N-conductor and the N'-reservoirs, �N is the resistiv-
ity of the N-metal, and ��N =

p
DN=2�Tc is the temper-

ature independent characteristic length scale in N (note

that the coherence length in N �N (T ) =
p
DN=2�T is

T-dependent).
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In general we should also �x the boundary condition
at the interface between the N-metal and the supercon-
ductor. For the case of a perfect transparency of this
interface and for typical thickness of the normal layer
wN �

p
S, Cooper pairs easily penetrate into it due to

the proximity e�ect and the Green functions of the N-
metal at relatively low energies for d � x � d + 2ds are
equal to those of a bulk superconductor � = �s (the in-

uence of �nite transparency of the NS-contact will be
discussed below). In this sence the region of a normal
metal situated directly under the superconductor can be
also treated as a piece of a superconductor S' and the
solution of (4), (5) needs to be found only for 0 < x < d
(without loss of generality we will stick to a symmetric
con�guration).
Cooper pairs penetrate into the normal conductor also

in the case of a not perfectly transparent NS interface.
As it is demonstrated below, the energy gap is induced
in S' region in this case. As a result, for a su�ciently
long N-wire, which is only considered here, the presence
of the barrier at the NS interface will not in
uence the
results derived for the system conductance.

B. Physical quantities of interest

Proceeding along the same lines as it has been done in
ref.12 we arrive at the �nal expression for the current

I =
1

2R

Z 1

0

d"

�
tanh

�
" + eV

2T

�
� tanh

�
"� eV

2T

��
D(");

(7)

where D(") de�nes the e�ective transparency of the
system12

D(") =
1 + r

r
cosh �1(x=0;") cos �2(x=0;")

+ 1
L

R L
0
dx sech2�1(x; ")

;

(8)

R = Rb + RN and r = Rb=RN � 
B�
�
N=L , RN is the

resistance of the N-metal.
Let us consider the case of a su�ciently long normal

conductor d2�D=�. Then at low temperatures T � �
the interesting energy interval is restricted to " � �.
For such values of " the contribution of the S0-part of the
normal conductor shows no structure and can be easily
taken into account with the aid of obvious relationsZ L

0

dx sech2�1(x; ") =

Z d

0

dx sech2�1(x; ") + dssech
2�s;1

(9)

and sech2�s;1 =
�
1� "2

�2

�
(no barrier at the NS interface)

or sech2�s;1 = (1� "2

�2

gN

) (the barrier is present at the NS

interface). Due to this reason we will discuss only the

properties of the N -part (0 < x < d). For the sake of
completeness we will also demonstrate the e�ect of �nite
ds in the end of our calculation.
For the di�erential conductance of the N -part 0 � x �

d normalized to its normal (\non-proximity") value in
the zero bias limit eq. (7) yields

�GN =

�
RdI

dV

�
V=0

=
1

2T

Z 1

0

d"D(")sech2("=2T ): (10)

Analogously the normalized zero-bias electrostatic poten-
tial distribution reads

�0(x) = lim
V!0

�(x)

V
=

1

2Td

Z 1

0

d"D(")�"(x)sech
2("=2T )�

�
Z d

x

dx0 sech2(�1(x
0)) (11)

The normal density of states is given by the nor-
mal Green's function via the standard relation ��(x) =
N (0)<(g�(x)) which enters into the conductance in the
form cosh2 �1 = (<g)2 + (=f)2 together with a 'corre-
lation DOS' ��(x) = N (0)=(f�(x)). The importance of
the latter quantity for understanding the e�ects discussed
here has been already pointed out in the Introduction.
We will discuss the features of these local densities as
well as the averaged ones:

NN (�) =

Z
d�x��(�x)

NS (�) =

Z
d�x��(�x)

As it has been already mentioned the \correlation
DOS" � belongs to the set of generalized densities of
states familiar from the standard theory of nonequilib-
rium superconductivity25;34. It re
ects the presence of
superconducting correlations at low energies. E.g. in a

BCS superconductor this function reads � = ��(���)p
�2��2 .

In our case this function is not only energy- but also
space-dependent due to the fact that the proximity in-
duced superconducting correlation decays inside the nor-
mal metal. But the physical meaning of it remains the
same as in standard nonequilibrium superconductivity
theory25: � plays a role whenever the quasiparticle dis-
tribution function of a superconductor is driven out of
equilibrium. It happens e.g. in the well-known problems
of charge relaxation34 and imbalance35. It happens also
here due to a simultaneous presence of the electric �eld
and the proximity induced superconducting correlation
in the normal metal.

C. In
uence of �nite barrier transparency at the top

NS-interface

Let us consider the e�ect of a tunnel barrier at the NS
interface in more details.
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As it was already pointed out for relatively long normal
conductors and at low T only the energies " � � give
an important contribution to the conductance. In this
case the typical energy scale is de�ned by the Thouless
energy �d = D=d2 � �;�gN . For these energies we can
set �S = �i�=2. Let us �rst put T = 0. Then the thermal
distribution factor sech2("=2T )=(2T ) reduces to a delta
function and we have

�GN (T = 0) = D(0); (18)

i.e. we only need the solution of (4) with boundary con-
ditions (15) at " = 0, which is � = �i�2 �x. This does not
depend on D, so the correlations are destroyed by the
in
uence of the boundary conditions but not by thermal
excitation or by impurity scattering. From here, we can
calculate the conductance

�GN (T = 0) = 1; (19)

i.e. at T = 0 the system conductance exactly coincides
with its normal state value (cf.24;23. This result, however,
by no means implies the destruction of the proximity
induced superconductivity in the N-layer. Later on, we
will demonstrate, that the DOS and the electrical �eld
are completely di�erent from their values in the normal
state and in fact only due the additional contribution of
correlated electrons the system conductance does not fall
below its normal state value.
In the case T � "d we can calculate � perturbatively.

From D@2x� = �2i" sinh �0(x) and (15) we get

� = � 8

�2
"

"d
[�x� sin(�x�=2)]� i

�

2
�x:

Keeping only leading order terms in �
�d
, we get

��N = 1 +A
T 2

�2d
; (20)

where A = 64
3�4

�
5
6 � 8

�2

� � 0:049 is a universal con-

stant. This means, that for low temperatures �GN (T )
grows quadratically on the scale of "d and approaches
the crossover towards the high temperature regime dis-
cussed below.
In the limit T � �d (where we still have T � �),

the contribution of the low energy components to the
thermally weighted integral for �GN (T ) is / 1=T as we
will see below and can therefore be neglected. We only
have to take into account the solutions of (4) for energies
�� �d. It is well known (see e.g.12), that for this energy
range the solution of (4) together with (15) reads

tanh(�(�x)=4) = tanh

�
i�

8

�
ek(�x�1) (21)

where k = d
p
�2i"=D. By using obvious substitutions

and multiple-argument relations for hyperbolic functions,
we arrive at the following identity:

Z 1

�x

d�x sech2(�1(�x)) = (1� �x) � 4

r
"d

"

<(k)(1��x)Z
0

q(y) dy

(1 + q(y))2

(22)

where q(y) = 4(3 + 2
p
2)e�2y sin2 y=

�
e�2y + 3 + 2

p
2
�2
.

For calculating D(") we can, as the integrand becomes
exponentially small for y � <(k) � 1, take the upper
bound to in�nity, such that it becomes a universal con-
stant. From there we can calculate the conductance in
this limit

�GN (T ) = 1 + B

r
"d

T
; (23)

where again B = 0:42 is a universal constant.
These results has a simple physical interpretation. Su-

perconductivity penetrates into the normal part up to

�N =
q

D
2�T , whereas the rest stays normal, so the total

voltage drops over a reduced distance d � �N . Thus the
resistance of the structure is reduced according to the
Ohm law. In terms of the conductance, this means

�GN = 1 + B0
�N

d
(24)

which is equivalent to (23).
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FIG. 3. Local e�ective di�usion constant

Let us point out, that at both edges of the N-metal the
local e�ective di�usion constant De� = cosh2 �1D is not
enhanced (see Fig. 3) in comparison to its normal state
value, because either the Cooper pair amplitude (at the
NN' boundary) or the electric �eld (at the NS boundary)
is equal to zero due to the imposed boundary conditions.
Inside the N-metal the value De� becomes higher due to
nonequilibrium e�ects in the presence of superconducting
correlations (� 6= 0). This e�ect is small at very low
energies and becomes more pronounced at " � "d.
For temperatures comparable to "d the problem was

treated numerically. The results show an excellent agree-
ment with our analytical expressions obtained in the cor-
responding limits.
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FIG. 4. Conductance in the case of transparent barriers

The numerical results (see �g. 4) con�rm, that for
"d � � the universal scaling with T

"d
is excellently ful-

�lled, the conductance peak with the height of about 9%
takes place at T � 5"d (cf.23). This peak becomes smaller
if we take into account the in
uence of �nite dS keeping
d �xed (�g. 5) The qualitative features, however, remain
the same.
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FIG. 5. Conductance normalized to the total length of the

normal wire. � := dS=d, �d = 10�5�

B. Tunnel barriers

Let us now assume that a tunnel barrier is present
at the N'-N interface. If one lowers the transparency
of this barrier the crossover takes place to the behav-
ior demonstrating monotonously decreasing conductance
with T (Fig. 6), which is typical for two serial NIS tun-
nel junctions. Fig. 6 demonstrates the crossover with
increasing r = 
B�

�
N=d. Inset shows the Arrenius plot

for the case of 
B�
�
N=d � 1 which illustrates the acti-

vated tunnel-like behavior.
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FIG. 6. Conductance in the presence of tunneling barriers

Formally this is due to the term r= cosh �1(x =
0; ") cos �2(x = 0; ") in the denominator of Eq.(8), i.e. the
contribution of the barrier at the N'-N interface. In the
small transparency limit r� 1 the expression (8) reduces
to the standard tunnel formula. The physical reason for
this behavior is transparent. For r � 1 the presence of
a tunnel barrier is not important, the electric �eld pene-
trates inside the normal metal and we come back to the
picture discussed above for perfectly transparent bound-
aries in which case both normal and correlation DOS play
a signi�cant role. If, however, the resistance of a tunnel
barrier dominates over the Drude resistance of the nor-
mal metal r� 1, the whole voltage drop is concentrated
at the barrier, nonequilibrium e�ects in the N-metal are
absent and therefore only the normal density of states
enters into the system conductance.
An additional e�ect is that a real gap instead of a soft

pseudogap develops in the case low transparent tunnel
barriers. The crossover between these two regimes is dis-
cussed in more detail below.
Note that both types of behavior, namely nonmonoto-

neous and monotonously decreasing with T conductance
have been observed in the experiments3.
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IV. DENSITY OF STATES

A. Averaged density

From our approximative solutions of the preceeding
sections, the densities of states can be easily calcu-
lated. For � = 0 we have NN = NS = N (0) 2

�
.

At low energies � � �d there are quadratic correc-

tions: NN=S = N (0)

�
2
�
�A1=2

�
�
�d

�2�
with A1 =

64
�5

�
1� 8

�2

� � 0:0396 and A2 = 16
�4

�
1 + 2

�5

� � 0:198.
For high energies, the densities approach their nor-
mal values, again with square-root corrections NN =
N (0)

�
1�B1

p
�d
�

�
and NS = B2

p
�d
�
with B1 � 0:321

and B2 � 0:75.
Together with our numerical data (see Fig. 7), this

demonstrates the presence of a soft pseudogap in the den-
sity of states below the energy �d. Similar results have
also been discussed in22.
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FIG. 8. Local DOS for di�erent N-N0-boundaries. Top:

Transparent, Bottom: Non-transparent

B. Spatial dependence and tunneling experiments

It is also interesting to investigate the spatial depen-
dence of the DOS in the normal layer. Fig. 8 show lo-
cal normal DOS NN calculated for perfectly transparent
(
B = 0) and nontransparent (
B = 1) NN' interfaces,
respectively, at di�erent distances from the NS boundary:
x=d= 0.1, 0.2, ..., 1. The di�erence between these two
cases is quite obvious: whereas for 
B = 0 the normal
DOS at low energies is always �nite, becoming larger at
larger values of x, for 
B = 1 a real gap in the density
of states clearly shows up at all energies. Similar results
have been recently discussed in Refs.39{41. The overall
behavior of the local correlation DOS at each value of x
is similar to its average value.
It is important to emphasize that both �(x) and �(x)

are measurable quantities and can be directly probed
in experiments. Recently the spatial and energy depen-
dence of the normal DOS has been studied in tunneling
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experiments42. The data42 show a qualitative agreement
with theoretical predictions. The results obtained here
suggest that much better agreement can be achieved if
one takes into account smearing of the proximity induced
gap in the normal metal due to the di�usion of normal
electrons from the external circuit (which plays the role
of the N' reservoir) through the NN' boundary. For non-
transparent NN' boundaries (
B = 1) this process can
be neglected and a real gap develops in the N-metal (Fig.
8 (b)). As no such gap was found in42 we believe that
di�usion of normal excitations into the N-layer from the
external circuit should play an important role in these
experiments. In other words, the experimental situation
appears to be closer to that described by the boundary
condition 
B = 0 with a soft pseudogap (Fig. 8 (a)) than
to the case 
B = 1 (see e.g. Ref. 41). The dependence
of this e�ect on the size of the N-layer is depicted in Fig.
9.
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FIG. 9. Size e�ect on the local normal DOS. Here, the
density of states at a �xed distance x = 0:5 from the

NS-boundary is plotted for di�erent values of the total length

L of the N-part.

Making use of the Usadel equation one can easily re-
cover simple analytic expressions for the density of states
at a distance x0 away from the NS-boundary. For a N-
wire of the total length d at �� �d we obtain

NN (�; x0)

N (0)
= �+

�2

�2d
� (25)

where � and � describe the size e�ect

� = sin
��
2

x0

d

�
� =

32

�4
�
�
1� x0

d
� cos

��
2

x0

d

��2
:

Thus for x0 � d the normal DOS at zero energy and
x = x0 is proportional to 1=d. Neglecting the charging
e�ects (which in principle can also be important42) for
the di�erential conductance of the tunneling probe we
�nd

RT

dI

dV

����
V=0

= �+
2�2

3

T 2

�2d
� (26)

These our results demonstrate that the depairing e�ect of
the N'-reservoir needs to be taking into account on equal
footing with pairbreaking due to inelastic scattering41;42.
Let us also point out that one can also extract infor-

mation about the correlation DOS by making two kinds
of measurements with the same sample. Indeed, by mea-
suring the conductance of the system (or a part of it)
with no tunnel barriers one obtains information about
the combination of NN and NS entering the expression
for the system conductance G, whereas performing the
tunnel experiments42 one probes only the normal DOS
NN . Then the correlation DOS can be easily recovered.

V. ELECTRIC FIELD AND CHARGE

In this section we shall discuss only the case of perfectly
transparent interfaces.
>From our solutions we can calculate the electric �eld

and the charge by using (11) and the Poisson's equation.
The �eld shows essentially non-monotoneous behavior.
At T = 0 we have E(�x) = cos(�x�=2)� �

2 (�x�1) sin(�x�=2).
At high temperatures T � �d, the �eld is constant E = 1
far from the superconductor where no correlation remains
(1 � �x � ��) and it changes linearly near the supercon-

ductor: E(�x) = B4(1� �x)
q

T
�d

with B4 � 2:59, however,

it still overshoots in between these regimes (see Fig. 10).
We see that close to the superconductor the electric

�eld monotoneously decreases with temperature as su-
perconductivity becomes stronger there. Further from
the NS boundary the �eld shows a complicated behav-
ior overshooting the normal state value (the total volt-
age drop is �xed!) in the region where superconducting
correlation starts decaying either due to thermal e�ects
(high T ) or due to the presence of a normal reservoir
(low T ). The local resistivity is maximally lowered there
and the layer of polarization charges is formed (see Fig.
10). These results emphasize again the importance of
nonequilibrium e�ects for understanding the behavior of
the system conductance.
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FIG. 10. Electrostatics within the wire

VI. EXTENSION TO SYSTEMS CONTAINING A

LOOP

Recently, the properties of proximity wires contain-
ing a loop have attracted much experimental6{8 and
theoretical44;47 interest.

Φ
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js
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FIG. 11. The system under consideration. S and N are

respectively superconducting and normal reservoirs. The wire

is made of normal conducting material.

If the wire was a real superconductor, the magnetic 
ux
would induce a supercurrent into the ring. As a function
of �, this current has a period of the superconducting 
ux
quantum �0 = h=2e.
To describe these type of systems, our kinetic scheme

has to be extended in several points.
We de�ne the Green's functions in the loop as

G = cosh u� F = sinhu�e
i'� '� = �� � 2e

Z ~x

0

d~l ~A(~l)

where the integration goes along the loop. In the pres-
ence of a vector potential, we have to introduce gauge
independent derivatives

r �! r� 2ie ~A:

This means, that instead of solving the Usadel equation
with a vector potential, we can perform a gauge trans-
formation and map onto a system without magnetic �eld
having phase � instead of �. As the de�nition of the
Green's functions has to be unique everywhere in the
loop, we have limx!0+ '(x) = limx!0� '(x) ( mod 2�)
or

lim
x!0+

�(x)� lim
x!0�

�(x) =
2e�

�h
( mod 2�)

after gauge transformation. Here, � is the magnetic 
ux
in the ring.
This mapping shows, that the magnetic �eld induces a

supercurrent jS� (screening current) into the system. We
want to neglect any conversion between this supercur-
rent and the dissipative current, so both are conserved
seperately. This allows the application of the kinetic
scheme which has been developed for systems without
phase gradient12 but can be generalized to any system
where the dissipative current is conserved.
The Usadel equation then reads43;21

D d2

dx2
u� = �2i� sinhu� + D

2

�
d��

dx

�2
sinh 2u� (27)

and has to be solved together with the equation for the
conservation of the supercurrent

d

dx
jS� = 0 jS� = j sinhu�j2d��

dx
(28)

In order to match the Green's functions at branching
poits we use the standard continuity condition as no tun-
nel barriers are assumed to be there. >From the Usadel
equation in matrix form

Dr( �g�r �g�) + i�[�z; �g�] = 0

follows for any branching point (see also44)

NX
i=1

Ai �g�
@

@xi
�g� = 0
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where the sum runs over matching branches, @
@xi

denotes
the derivative in the direction of branch i and Ai is the
cross-section area of branch i. Using our de�nitions, we
get

X
i

Ai

@u�

@xi
= 0

X
i

Ai

@��

@xi
= 0 (29)

These conditions are equivalent to current conservation,
so this is a \Green's functions Kirchho� law". For N = 1
Zaitsev's boundary condition45 for a Normal-Vacuum
boundary is reproduced, N = 2 is equivalent to the triv-
ial statement, that the Green's functions' derivatives are
continuous within a branch.
For the calculation of the total transparency D = 1=m,

we can use the fact, that the mi ful�ll Ohm's law just by
their de�nition:

m =
d1m1 + d4m4 + ( 1

d2m2

+ 1
d3m3

)�1

(d1 + (1=d2 + 1=d3)�1 + d4)

VII. MAGNETORESISTANCE OSCILLATIONS

The equations (27) and (28) together with boundary
conditions (6) and branching conditions (29) have been
solved numerically and also analitically in some limit-
ing cases. For numerics, the problem was mapped onto
a simpler boundary value problem without any �tting
point. As the system of equations is unstable, we used
the relaxation method46 instead of shooting.
For convenience, we have chosen d1 = d2 = d3 = d4

and A1 = 2A2 = 2A3 = A4, which simpli�es the condi-
tions 29. The e�ect of geometry on the conductance oscil-
lations will be discussed in the appendix. The Thouless
energy of just one branch will be labeled as �d =

D
d2
i

.

A. T-dependent Amplitude of h=2e-Oscillations

For T = 0, only quasiparticles with the energy � = 0
contribute to the conductance. From 27 and 6 we can
conclude, that u�=0 is a purely imaginary function, so the
total conductance of the system is equal to its normal
state value, being independent of �. In other words,
there exist no conductance oscillations at T = 0 (cf.38;47).
At nonzero temperatures the system conductance de-

pends on the magnetic 
ux inside the loop with the pe-
riod equal to the 
ux quantum �0 (see �g. 12). With
the aid of simple analytic arguments (see Appendix) one
can conclude that at low temperatures the amplitude of
the conductance oscillations increases as T 2 (see �g. 13).
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T=0.2εd

T=0.5εd

T=1εd

T=2εd

T=5εd

T=0

FIG. 12. h=2e-periodic structure of the conductance, nor-
malized to the zero-�eld conductance

In order to establish the temperature dependence of
this amplitude at higher T � �d it is convenient to make
use of the fact that for electrons with su�ciently large
energies � >� �d superconducting correlation is destroyed
already before they reach the loop. Thus at such energies
the transparency of the whole structure D(�) should be
insensitive to the particular value of the 
ux inside the
loop. In other words, calculating the 
ux-dependent part
of the system conductance we can take into account only
the contribution of low energy quasiparticles which re-
main correlated in the loop area. E.g. for the amplitude
of the conductance oscillations we get

�G(T ) = Gh=4e(T )� G0(T )

=
1

2T

Z 1

0

d� (Dh=4e(�)�D0(�))sech
2(�=2T )

� 1

2T

Z �c

0

d� (Dh=4e(�) �D0(�))sech
2(�=2T )

� �c

2T
�Dav (30)

where �c is the cuto� parameter of order �d, and �Dav

is constant.
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FIG. 13. Oscillation amplitude
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FIG. 14. Temperature dependence of tranport properties
at di�erent 
uxes

The results of our numerical analysis fully support the
simple analytic arguments presented above. The system
transparency D(�) is depicted in Fig. 14 (a) for di�erent
values of the 
ux �. The value D(�) depends on � only
at low energies, whereas for � >� �d all curves merge. In
accordance to our simple estimate (30) this leads to a
1=T decay of the oscillation amplitude �G at large T
(see Figs. 14 (b) and 12). Also the T 2 behavior of �G
in the low temperature limit is recovered (Fig. 12).
The 1=T behavior of �G has been also found in recent

experiments6;7. We would like to point out that a slow
power-law decay of the conductance due to a dominating
contribution of low energy quasiparticles just emphasizes
the physical di�erence between kinetic and thermody-
namic quantities, like supercurrent which decays expo-
nentially with increasing T .

B. Flux-Dependent DOS

As it was already discussed the simultaneous presence
of correlated electrons and the electric �eld in the nor-
mal metal causes nontrivial nonequilibrium e�ects, the
description of which involves two densities of states �(x)
and �(x). In the presence of the normal metal loop with
the magnetic 
ux � in our system there appeas a possibil-
ity to tune both normal and correlation DOS by changing
the value of �. For the system depicted in Fig. 11 these
densities of states can be easily calculated. As one might
expect for the region between the superconductor and
the loop (between the points A and B) this dependence
is quite weak and both DOS practically coincide with
those calculated above for a wire without the loop. On
the other hand, in the region between the loop and the
normal reservoir N' (between the points C and D) the
quantities �(x) and �(x) are very sensitive to the 
ux �.
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FIG. 15. Flux-dependence of the two densities of states in
point C of the system

The normal and correlation DOS for the point C (Fig.
11) are presented in Fig. 15. We see that with increas-
ing the value of the magnetic 
ux the proximity induced
pseudogap decreases and vanishes completely as the 
ux
approaches the value �0=2. For such value of � the prox-
imity e�ect in the region \after" the loop is completely
destroyed, the pseudogap is fully suppressed and the nor-
mal DOS coincides with N (0) at all energies. Accord-
ingly the correlation DOS vanishes at � = �0=2. Thus
in this case the resistance of the region between the points
C and D is equal to its normal state value at all T .
These results demonstrate that \the strength" of the

proximity e�ect in our system can be regulated by the ex-
ternal magnetic 
ux. This might serve as an additional
experimental tool for investigation of proximity induced
superconductivity in normal metalic structures. In par-
ticular we believe that it would be interesting to repeat
the tunneling experiments42 in the presence of the loop
with the magnetic 
ux. Such experiments would provide
a direct probe of the dependence of the densities of states
on � (Fig. 15 (a)).

VIII. SUMMARY AND OUTLOOK

We have used a microscopic kinetic analysis to describe
the transport properties of superconductor-normal metal
proximity structures. In the case of transparent inter-
metallic boundaries we demonstrated a reentrant behav-
ior of the system conductance with temperature. This be-
havior was attributed to nonequilibrium e�ects occuring
in the normal metal in the presence of proximity induced
superconductivity and the electric �eld. We argued that
under these conditions both uncorrelated (\normal") and
correlated (\superconducting") electrons contribute to
the system conductance which is henceforth de�ned by a
combination of two densities of states { the normal DOS
NN and the correlation DOS NS . The latter is known
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to play an important role whenever the quasiparticle dis-
tribution function in a superconductor is driven out of
equilibrium25.
We studied the energy dependence of both these quan-

tities and demonstrated that if the normal metal is
brought in a direct contact to a superconductor on one
side and a big normal reservoir N' on the other side the
normal DOS NN shows a soft pseudogap at energies be-
low the Thouless energy �d. This e�ect is due to an
interplay between correlated and uncorrelated electrons
penetrating into the N-layer respectively from a super-
conductor and a normal reservoir. If a low transparency
tunnel barrier is present at the NN' interface the di�usion
of normal excitations into the N-metal is suppressed, the
in
uence of a superconductor prevails and a real gap in
the density of states develops.
Low transparent tunnel barriers also prevent the elec-

tric �eld from penetration into the N-layer thus sup-
pressing nonequilibrium e�ects there. We demonstrated
that with the aid of a proper combination of the systems
with and without tunnel barriers one can directly probe
both energy and spacial dependencies of both densities
of states NN and NS in one experiment.
We extended our analysis to proximity systems con-

taining the normal metal loop with the magnetic 
ux �.
We demonstrated that the conductance of such systems
as a function of � oscillates with the period equal to the

ux quantum �0 = h=2e. The amplitude of these oscilla-
tions �G also shows the reentrant behavior being equal
to zero at T = 0, increasing as T 2 at T <� �d and de-
caying as 1=T at T >� �d. We argued that even at high
temperatures T � �d low energy electrons with � <� �d
are only responsible for the conductance oscillations lead-
ing to the power law decay of �G at large T . We pointed
out that the densities of states NN and NS can be tuned
(decreased) by applying the magnetic 
ux �. In partic-
ular, if the 
ux in the loop is equal to the half of the 
ux
quantum � = �0 the proximity e�ect in the region \af-
ter" the loop is completely suppressed, the normal DOS
NN = N (0) at all energies and NS = 0. This e�ect
can be also directly probed in tunneling experiments and
used for further studies of proximity induced supercon-
ductivity in normal metallic systems.
We acknowledge useful discussions with
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APPENDIX A: A CLOSER LOOK AT THE

H/2E-OSCILLATIONS

Here we present further details related to the e�ect of
geometry on the behavior of the proximity NS systems

containing a mesoscopic normalmetal loop with the mag-
netic 
ux (see Fig. 11). In the �rst three sections we will
keep A1 = 2A2 = 2A3 = A4 for simplicity allowing di�er-
ent values for the di but restricting ourself to symmetric
loops d2 = d3.

1. Low temperature behavior

For examining the low energy range, which is dominant
for the conductance oscillations at any temperature as
stated above, we proceed perturbatively from the case
� = 0, � = 0 �rst to �nite 
ux, then to �nite �. As the
Usadel equation is quadratic in d�

dx
, the value u does not

distinguish between the upper and the lower branches
of the ring (2 or 3 in Fig. 11), so we will not make a
di�erence in the notation.
We start from � = 0;� = 0, where u is purely imag-

inary and therefore yields D = 1. For a �nite value of
the 
ux but � = 0, we get a purely imaginary correction
and therefore D�;0 = 1. This correction is quadratic in
the 
ux as the r.h.s. of the equation is quadratic in the
phase. The �nite energy correction at zero 
ux is a real
function and is quadratic in �.
Thus proceeding perturbatively we �nd <u / ��2, and

from the expansion

u = �i �x
2d�

+ i�2gd1;d2;d3;d4 (x) + �hd1;d2;d3;d4 (x)

+��2kd1;d2;d3;d4(x) + i��2ld1;d2;d3;d4(x)

with d� = d1 + d2 + d4, in the leading order we get

D(�) =

 
1

d�

Z d�

0

dx

cosh2(u1(x))

!�1

=

 
1

d�

Z d�

0

dx

�
1� �2

2
(h +�2k)2

�
+ O(�4; �4)

!�1

=
1

d�

�
1 +

�2

2
(�d1;:::;d4 � �2�d1;:::;d4

�
+O(�4; �4)

where the coe�cients are de�ned as

� =

Z d�

0

dxh2(x)

� = 4

Z d�

0

dxh(x)k(x):

Thus at low T both the transparency and the conduc-
tance depend quadratically on energy and 
ux. Further
analytic expressions are presented in48.
It is remarkable, that for d3 = 0 due to (6) we have

sinhu = 0 at the point C. Therefore, the current conser-
vation condition (28) can be ful�lled for j = 0, � = ��=2
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(di�erent signs refer to di�erent branches), so the phase
gradient is zero almost everywhere and the Usadel equa-
tion does not contain the phase any more. Thus no mag-
netoresistance oscillations occur in this case.

2. Cuto� energy

Let us estimate the cuto� energy �c.
Consider the case � � �d1+d2 = D

(d1+d2)2
. For � = 0

we again have (21) u = 4arctan
�
i�
8 e

�kRx
�
, so for small

� we can proceed perturbutavely. As the supercurrent is
exponentially small, we can approximate the phase pro-
�le as

d�

dx
=

1

2 sinhk1d2
ek1(x�d1�d2=2);

so the in
uence of the magnetic 
ux is concentrated
within a distance maxf�N;�; d2g from the point C (see
Fig. 11). However, as u is exponentially small there,
the oscillations of the transparency are exponentially sur-
pressed, so we can estimate �c � �d1+d2 , which depends
only on the sum of these length, but not on d1 alone (see
also �g. 16).
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FIG. 16. Size e�ects onto the conductance oscilla-
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Medium:d1 = d2 = d3 = d4 = 1, Big: d1 = d4 = 0:8,

d2 = d31:4.

The key feature of Fig. 16 (b) is the strong 
ux-
dependence for systems with small rings. This fact can
be also recovered from the Usadel equation: for d2 � d
one estimates d�

dx
� �

2�0d2
. As this enters quadratically

and in the end we have to integrate over the ring only
once, the contribution of the ring is roughly / 1=d2.

3. Cross section e�ect

For the sake of simplicity above we have sticked to
the case 2A2 = A1 = A3. As this condition might
not be ful�lled in real experiments it is worthwhile to
check whether the main features of our analysis survive
for other values of A1;2;3. In order to do that we per-
formed calculations also for the case A1 = A2 = A3. The
results are similar to those obtained before, showing an
additional dip structure in the transparency at interme-
diate energies (Fig. 17 (a)) and a slightly deformed G in
the same energy interval ( Fig. 17 (b)).
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FIG. 17. Transport quantities for the system with

A1 = A2 = A3 = A4 and d1 = d2 = d3 = d4 displaying
the cross-section e�ect.
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