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Abstract

We propose the existence and study the solitonic excitations in

two kinds of samples in the fractional quantum Hall regime. One is

a strip modulated by a one-dimensional array of gates. The other

is made of two parallel strips coupled by a one-dimensional array of

tunnel barriers. We predict the existence of integer charge solitons in

the �rst case, and fractional charge solitons in the second case. We

study the two cases both in the dissipative and in the inertial limits.

1 Introduction

Samples in the fractional quantum Hall (FQH) regime have been studied ex-
tensively, since they are in a novel quantum state and exhibit an interesting

spectrum of excitations [1]. Here we predict the existence and study the
properties of solitonic excitations in such systems. Motivated by the investi-
gations of uxons in quasi one-dimensional (1D) long Josephson junctions [2]
and charge solitons in 1D arrays of normal [3] and Josephson [4] junctions,
we consider the two systems shown in Fig. (1).

Both systems are made of strips (quasi 1D) of samples in the FQH regime

with imposed geometrical restrictions. This type of devices can be fabricated
and studied experimentally [5]. In the �rst system, an array of gates (narrow
bridges) is imposed on the strip. We refer to this as case I. The second system
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Figure 1: a) The right and left edge currents; b) System I: FQH strip with

gates; c) System II: Two FQH strips connected by tunnel barriers.
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(case II) is composed of two separate parallel strips connected by an array of

tunnel barriers. Both systems can be understood as quasi 1D arrays of FQH

islands connected by tunnel barriers. We include in our model the charging

energy of the islands in the two cases.

In the absence of gates, a strip in the FQH regime is circulated by edge

currents. A gate induces tunneling of quasiparticles between the two edges.

The result is charge localization-like (of an integer charge) and Coulomb

blockade-like e�ects. Hence case I is analogous to a 1D array of serially

coupled normal [3] or Josephson [4] junctions. In this case we predict the

existence of integer charge solitons. We discuss two limits according to the

system's parameters: 1. the dissipative limit, in which the solitons behave

as overdamped classical particles; 2. the inertial limit, in which the kinetic

energy becomes important, and the solitons behave as underdamped semi-

classical or quantum particles.

Case II, in which the charging energy of the islands is included, is analo-

gous to a 1D array of Josephson junctions coupled in parallel. A continuous
version of this system, i.e., two parallel strips coupled by a continuous thin

tunnel barrier (instead of an array of discrete barriers) was considered by
Wen [6]. He showed that the system is in the deep quantum limit. We
�nd that this additional charging energy drives the system towards the semi-
classical regime, and can produce free solitons. Again we consider both the
dissipative and the inertial limits.

2 The model

First we describe the dynamics of edge excitations in the FQH samples. As
was shown by Wen [7], this dynamics is governed by the following chiral

Luttinger liquid Lagrangian:

L = �
�h

4�g

Z
dx(�t + v�x)�x ; (1)

where v is the velocity of the edge excitation, g = � is the �lling factor
and �(x) is a 1-D bosonic �eld, whose physical meaning is given by the two

following relations: � = e�x=2� and j = �e�t=2�. Here � is the charge

density, while j is the edge current. Writing the Lagrangian this way, one

assumes that the edge current direction coincides with the direction of the

x-axis. The model (1) is quantized by assuming the following commutation
relations:

[�(x); �(y)] = �g sgn(x� y) ; (2)

[��(x); �(y)] =
�h

2
�(x� y) ; (3)

where �� � �L=��t. The remarkable property of the edge excitations that
we will be using later is the fact that the non-zero charge density is always

accompanied by the non-zero current, and vice versa.
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Consider two parallel edges with opposite current directions (See Fig.(1a)).

These may be two sides of the same FQH sample or the two edges of di�erent

samples. We will denote these edges by sub-letters R (right moving) and L

(left moving). The R edge is described by the Lagrangian (1):

LR = �
�h

4�g

Z
dx(�Rt + v�Rx)�Rx ; (4)

while for the L edge the current direction is opposite to the x-axis direction.

Thus, for the L edge:

LL =
�h

4�g

Z
dx(�Lt � v�Lx)�Lx : (5)

The charge density and the current at the L edge are given by �L = �e�Lx=2�

and jL = �e�Lt=2�. Consider now the two edges as a uni�ed dynamical

system. The net charge density and current of the two edges are then:

� � �R + �L =
e(�Rx � �Lx)

2�
; (6)

j � jR + jL = �
e(�Rt + �Lt)

2�
: (7)

The Lagrangian of the combined system is L = LR+LL. Transforming L to

the new variables � = �R � �L, � = �R + �L, one arrives at:

L = �
�h

8�g

Z
dx(�x�t + �x�t + v�2x + v�2x) : (8)

Introducing two conjugate momenta �� = 2�L=��t and �� = 2�L=��t (factor
2 is to compensate for the 1=2 in (3)), one obtains the Hamiltonian in the �

representation:

H0 =
�hv

2

Z
dx

 
�2x
4�g

+ 4�g�2�

!
: (9)

The Hamiltonian (9) corresponds to the usual (non chiral) Luttinger liquid

model [8]. The characteristic energy scale of (9) is the width of the band
of excitations in the edge channels, �h!cut, which is limited by the gap in
the bulk FQH state. As an upper bound to !cut we may take the cyclotron

frequency.

We consider now the two systems sketched in Fig.(1b,c). The �rst consists
of a series of gates imposed on a Hall bar, while the second is a series of tunnel

barriers connecting two FQH bars. In both systems, between each pair of
neighboring barriers there is an island of mesoscopic size (taken to be much

larger than the width of the barrier). We assume, for simplicity, that all

the barriers and islands are equal and we denote by xi the locations of the
barriers.

For every barrier in the system we should add to the Hamiltonian a
tunneling term, describing the tunneling of the charge carriers across the
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barrier (the back-scattering of the edge excitations). This term is usually

taken as: HB /  
y
L(xi) R(xi) + h:c:, where  y is the creation operator for

the tunneling charge carrier. This term might contain a phase shift brought

about by the coupling of the charge carriers to the external magnetic �eld

[9]. In case I the tunneling charge carriers are Laughlin quasiparticles (or

vortices), thus  R
y
/ ei�R (see [7]), and the tunneling Hamiltonian is:

HB;I = VB; I
X
i

cos [�R(xi)� �L(xi)] = VB
X
i

cos[�(xi)] : (10)

Here �i � �(xi) = �R(xi) � �L(xi) describes the charge that was brought

to the barrier at xi. The tunneling energy scale is the height of the barrier,

VB; I � �h!cutjrj
2, where r is the reection amplitude of the barrier. In

this case there is no phase shift in the tunneling Hamiltonian (10). This may

be understood using the Ginsburg-Landau-Chern-Simons (GLCS) mean �eld

theory of the FQH e�ect [10] or the dual form of this theory [11]. The vortices

in the GLCS theory are topological excitations of a charged boson �eld, which
is coupled to a gauge �eld composed of the external magnetic �eld A and a
statistical �eld a. The mean �eld solution implies that < A+ a >= 0. The
charged vortices thus do not feel any average gauge �eld, and do not acquire
any phase while moving through the FQH liquid.

In case II the tunneling particles are electrons,  R
y
/ ei�R=g, and the

tunneling is through potential barriers, where no strongly correlated electron
liquid is present. Therefore the tunneling electrons feel only the external
magnetic �eld and the corresponding phase factor should be taken into ac-
count. The tunneling Hamiltonian is thus:

HB;II = VB; II
X
i

cos

"
�(xi)

g
+
2��i

�0

#
: (11)

Here, VB; II stands for the interbar tunneling energy scale. �i is the magnetic
ux through all the islands (the places not �lled with the FQH liquid) situated
to the left of the tunnel ith barrier, and �0 � h=e is the ux quantum. The

uxes �i are construction dependent. If the magnetic �eld in the islands
is of the same order of magnitude as the magnetic �eld in the FQH strips

(the most probable experimental situation) the ux through an island is very

large, so the phase factor in the tunneling Hamiltonian is random (modulus
2�). One may think, however, of a di�erent experimental setup where the

uxes �i are under control. Consider, for example, two FQH strips parallel
to the x�y plane shifted vertically (in the z direction) from each other. If the

modulations at the edges of the two strips overlap, the tunneling between the
edges is in the z direction. In such a system all �i's are zero. In what follows

we concentrate on this (zero phase shifts) situation. The random phase shifts

situation resembles the e�ect of o�set charges in Josephson junction arrays

[9], and seems to produce a completely di�erent physics. We will consider

this situation elsewhere.
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Next, we should take into account the real charging energy of the system,

caused by local charge uctuations in the array. For a discrete system (like

ours), we �nd it natural to de�ne the charging energy per island. Thus we

add to the Hamiltonian:

HC0
=
X
i

EC0

(2�)2
[�(xi)� �(xi+1)]

2 ; (12)

which is the charging energy of the islands. Its energy scale is EC0
= e2=2C0,

where C0 is either the capacitance of an island to a substrate or the self

capacitance of the island. In the �rst case, this capacitance scales like l (l is

the length of the island) for a given width of the system. In the second case,

it scales with the linear size of the island.

So far, we considered three energy scales. An additional energy scale

which plays a role is the energy level spacing of the edge states within each

island, �� � �hv=l. We show below that the role of this scale is to determine

the crossover between inertial and dissipative behavior of the system.

3 Description in terms of barriers' degrees of

freedom

Following the procedure used in [12], we can integrate out the degrees of
freedom at positions other than the barriers. We thus obtain an e�ective
Euclidean action in terms of the variable �i. The charging energy and the
back-scattering terms do not change:

SC0
=
X
i

Z
d�

EC0

(2�)2
(�i � �i+1)

2 ; (13)

SB;I = �
X
i

Z
d� VB;I cos(�i) : (14)

SB;II = �
X
i

Z
d� VB;II cos (�i=g) : (15)

In the new coordinates, the self charging and the back-scattering energies may
be understood as a longitudinal coupling energy between the barriers, and

as a potential energy, respectively. The potential energy is in the form of a

periodic charging energy resulting from non-linear capacitor with capacitance
CB; I = e2=(2�)2VB;I in case I and CB; II = (ge)2=(2�)2VB;II in case II.

The integration in the free parts of the Hamiltonian gives:

S0 =
kBT

�h

X
i

X
n

�hv

2(4�g)

"
�n

tanh(�nl)

�
j�inj

2 + j�i+1n j
2
�

�
�n

sinh(�nl)
2Re(��in�i+1n)

#
; (16)
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where kB is Boltzman's constant, �n � !n=v, !n are Matsubara frequencies,

and �in is a Fourier component of �(� ). The coe�cients of expression (16)

have a crossover from parabolic to linear behavior at a critical frequency


cr = v=l. This critical frequency corresponds to ��. When !1 > 
cr, i.e.,

for long islands and high temperature, the action (16) becomes dissipative:

S0
diss

=
kBT

�h

X
i

X
n

�h

4�g
j!njj�inj

2 : (17)

This dissipation is of the standard, ohmic form[13], and it is a generaliza-

tion of the result obtained in [12]. If, on the other hand, several !n are in

the parabolic section (short islands and low temperature), we get instead of

dissipation a coupling term

S0C =
X
i

Z
d�

1

2

�hv

(4�g)l
(�i � �i+1)

2 ; (18)

and a kinetic term

S0
kin

=
X
i

Z
d�

1

2

�hl

(4�g)v

1

3
(�2i;t + �2i+1;t + �i;t�i+1;t) : (19)

If the length of the islands is of the order of 103�A, the temperature which
separating dissipative from inertial behavior is of the order of 1K. Regard-

ing the two terms in the inertial limit as a charging and an inductive en-
ergy terms, respectively, we can de�ne an internal Hall (or Luttinger) ca-
pacitance, CH = ge2l=��hv, and an internal Hall (or Luttinger) inductance,
LH = ��hl=gve2. We can express these two properties in a very simple way
by using the propagation time in the grains, �P = l=v, and the Hall (or Lut-

tinger) resistance, RH = h=ge2: CH = 2�P =RH , and LH = �PRH=2. The
total charging energy of the system, ~EC0

= e2=2 ~C0, is the sum of the internal
and the islands charging energies. The total capacitance is ~C0 = CH=G

2,
where G2 � 1 + CH=C0.

The above discussion suggests that, under the condition we assume here,

the array can be represented by the equivalent circuit shown in Fig. (2).
The non-linear capacitors represent the backwards scattering at the barri-

ers, and the linear capacitors represent the charging energy of the islands

which couples neighboring barriers. The islands are represented by inductors
or by resistors, according to whether the system is inertial or dissipative,
respectively.

In the limit ~EC0
� VB, the characteristic length scale over which the

variable �i changes is much larger than the length of the unit cell of the
array (which is, approximately, the size of an island, l). If we assume that
the uxes through the islands, �i, are all zero (constant) in both cases, we

can take the continuum limit by replacing (�i��i+1)
2 by l2(@x�)

2, and obtain

a pure or an overdamped sine-Gordon model for the inertial or the dissipative
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Figure 2: Equivalent circuit of the system. The black box is an inductor in

the inertial regime and a resistor in the dissipative regime.

regimes, respectively. In the inertial limit, the pure sine-Gordon Lagrangian

is

LI;II =
�hvC

2

1

�2I;II

Z
dx

(
1

v2C
�2t I;II � �2xI;II�

1

�2
C; I;II

[1� cos(�I;II)]

)
; (20)

where
�I = g�II = � ; (21)

�2I = g2�2II =
4�g

G2
; (22)

v2C = v2G2 =
l

LH ~C0

; (23)

�2

C; I =
�hvlG2

4�gVB; I
= l2

CB; I

~C0

: (24)

�2

C; II =
�hvlgG2

4�VB;II
= l2

CB; II

~C0

: (25)

The meaning of the parameters �2, vC and �C is explained below. We see that
in both cases the charging energy of the islands renormalizes the parameters
of the system.

4 Charge Solitons

The two sine-Gordon models presented above admit the existence of topo-

logical solitons, connecting two adjacent minima of the potential. As � is a
charge �eld, these are charge solitons. In case I, where the tunneling charge

is ge, the soliton's charge is e, as follows from Eq. (6). The soliton of case I is
thus an integer charge soliton. It represents the e�ect of an excess electron in

the system, similar to charge solitons in arrays of normal [3] and Josephson

[4] junctions. The number of these solitons can be controlled by introducing
a gate voltage to one of the islands. However, in contrast to charge solitons
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in arrays of tunnel junctions, the integer charge soliton we study here in-

volves current loops in the system, even in a static con�guration. As was

mentioned above, a non-zero charge density must be accompanied by a pro-

portional current along the edge. Thus to have the inhomogeneous charge

density needed for the soliton, the corresponding edge currents must be par-

tially shortened by tunnel currents at the barriers. As a consequence, the

integer charge soliton carries a magnetic ux as well. One should not confuse

this ux with the additional external magnetic ux "occupied" by the FQH

liquid due to the existence of the soliton. When an electron is injected into

the system, the incompressible FQH liquid expands in order to maintain its

charge density, and "occupies" an additional external magnetic ux of �0=g.

In case II, where the tunneling charge is e, the soliton's charge is ge ((6),

(21)). Therefore it is a fractional charge soliton. As such, it can not represent

the e�ect of an external (integer) charge. In fact it exists in a neutral system.

This fractional charge soliton is basically a Laughlin vortex located between

the FQH strips, and it can be created by changing the external magnetic �eld.
Thus the fractional charge soliton carries a magnetic ux as well, which is

equal to �0. This soliton can be viewed as an analogue to a uxon in a 1D
array of parallely coupled Josephson junctions.

The width of the two kind of solitons, �C; I;II ((24),(25)), is the char-
acteristic length scale of the charge density (or current) modulations. The
condition for assuming the continuum limit can thus be written as �C; I;II � l

[4]. If this condition is not satis�ed, the discreteness nature of the systems
should be observed [5], [14]. Here we study only the continuum limit.

In the inertial limit the soliton is a relativistic object with a limiting
velocity vC (23) and a mass

M0; I;II =
8

(2�)2
e2
LH

l

1

�C; I;II

: (26)

Both vC and M0; I;II depend on EC0
. Typically, vC is about two orders of

magnitude less than the vacuum light velocity, and M0; I;II is several orders

of magnitude less than the electron rest mass.

The existence of solitons in the inertial limit depends on the value of the
coupling constant �2. When �2 = 8� the ground state of the sine-Gordon
model becomes unstable [15]. This is a point of a phase transition in the

corresponding X-Y model [16]. In the �2 < 8� phase, isolated solitons can

exist. In the �2 > 8� phase, solitons and anti-solitons are bound in dipoles.

From the expression for �2 (22), we notice that for a negligible self charging
energy (EC0

= 0) the �rst system is in the free solitons phase, while the
second one is in the bound solitons phase (if g < 1=2). However, when EC0

increases, the value of �2 decreases. Thus we �nd that a �nite self charging

energy drives the system towards the free solitons phase. System I remains
in its initial phase when EC0

increases, but system II undergoes a phase

transition: when C0 < CH2g=(1 � 2g), it is in the free solitons phase.

An exact treatment of the non linear e�ects, in the presence of dissipation,
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is not possible. We can, however, integrate out the high frequency degrees of

freedom, by the methods used, separately, for the inertial sine-Gordon chain

and for the dissipative single Luttinger junction. The e�ects of dissipation

are formally the same as those induced by the presence of an in�nite number

of junctions. Let us integrate out the modes with frequencies !cut � d!cut <

! < !cut, lying in the corresponding shell of the wave numbers k. From (12)

and (17) we �nd that we have to replace �2

C; I;II by:

�0�2
C; I;II = ��2

C; I;IIe
�K=2 ; (27)

where:

K =
Z
d!cut

dk

2�

d!

2�

"
2EC0

lk2

(2�)2�h
+
j!j

2�gl

#�1
: (28)

The integral over ! should be understood as an approximation to a sum over

Matsubara frequencies in the case of low temperatures. The double integral

in (28) (over k and !), combined with the extra term in the denominator,
implies that the relative strength of the cosine term (that is, in units of !cut)
always grows, suppressing the uctuations in the �i's. Thus, in the presence
of dissipation, solitons are always in the semiclassical regime.

The small mass of the soliton and the absence of dissipation in the under-

damped regime suggests that the soliton can propagate coherently over the
entire array. The soliton can be quantized semi-classically using collective
coordinates, as was done in [4]. Quantum e�ects of solitons in this regime
will be studied elsewhere.

In the overdamped sine-Gordon case (the dissipative regime) one needs

to apply an external voltage in order to obtain propagation of solitons, i.e.,
a current. If we assume that this voltage is low enough so that the soliton
is not deformed, the steady state current is proportional to the voltage with
an e�ective resistance

Re�; I;II =
8

(2�)2
L2

tot

�C; I;II l
RH ; (29)

where Ltot is the length of the array. If we assume Ltot � 10�C , and l �

103�A, the e�ective resistance is larger than the internal resistance by three

orders of magnitude. Here, as well, a future study is needed.

5 Conclusions

We have studied the charge dynamics in arrays of junctions in systems which
are in the fractional quantum Hall regime. The arrays exhibit quantized

charge transport, like in arrays of low capacitance Josephson or normal tunnel

junctions. The unit of charge, however, can be fractional, reecting the
nature of the excitations of the system.

The existence of quantized charge solitons makes possible the use of these

devices for the same purposes as the single electron circuits (electrometers,
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transistors, turnstiles) widely discussed in the literature. It is interesting to

note that, in the present case, cotunneling e�ects are sharply reduced, with

respect to devices based on independent electron tunneling. The non Fermi

nature of the charge carriers leads to hopping amplitudes which scale to zero

at small frequencies or temperatures. Hence, coherent transport across two

junctions (cotunneling) is suppressed by extra powers, with respect to the

case of normal electrons.
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