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We investigate a chain of capacitively coupled Josephson

junctions in the regime where the charging energy dominates

over the Josephson coupling, exploiting the analogy between
this system and a multi-dimensional crystal. We �nd that

the current-voltage characteristic of the current-driven chain

has a staircase shape, beginning with an (insulating) non-
zero voltage plateau at small currents. This behavior di�ers

qualitatively from that of a single junction, which should show

Bloch oscillations with vanishing dc voltage. The simplest
system where this e�ect can be observed consists of three

grains connected by two junctions. The theory explains the

results of recent experiments on Josephson junction arrays.

PACS numbers: 73.23.-b,74.50.+r

Recent experiments [1] carried out on two-dimensional
Josephson junction arrays in the quantum regime { i.e.
where the charging energy exceeding the Josephson cou-
pling introduces quantum dynamics { showed remark-
able steps of the current-voltage characteristics. Two
voltage steps could be clearly seen, with voltage value
given by the superconducting gap 2�=e. Further struc-
ture at higher voltages is washed out. The purpose of
the present article is to show that these steps can be
naturally explained in the framework of the Bloch os-
cillation description of quantum mechanical Josephson
junctions. Moreover, we argue that the physics of a
chain di�ers qualitatively from that known from single
Josephson junctions [2,3]. In contrast to a current-biased
single-junction, a chain of 1D Josephson junctions has no
zero-voltage state, i.e. the average voltage is greater than
2�=e for any current. The only stable state of the system
has a voltage equal to 2N�=e where N is the number of
junctions. However, for low currents this stable state is
reached only on astronomical time scales,

tZ = 2eI�1 exp(IZ=I);

while the time required for the voltage 2�=e to establish
is

ts � 2e�=IEC � tZ :

Here EC is the charging energy, and IZ is de�ned be-
low. Thus, in realistic experiments metastable I{V char-
acteristic are observed, with voltage steps starting from
the value 2�=e. The time required to achieve the stable
voltage depends strongly on the external current. These

results are a consequence of a lowered symmetry of the
system, and the e�ect shows up already in the system
shown on Fig. 1. We conjecture that the physics of 2D
Josephson junction arrays is similar, which provides an
explanation of the experiments [1].
First we recollect the results of a single Josephson junc-

tion with a capacitance C and Josephson coupling energy
EJ . In the absence of dissipation and for energies below
the superconducting energy gap � it can be described by
the Hamiltonian [2,3]

Ĥ =
Q̂2

2C
� EJ cos�; Q̂ = �2ie

@

@�
; (1)

where Q̂ and �̂ are the charge and the superconducting
phase di�erence operators, respectively. The Hamilto-
nian (1) is equivalent to that of a quantum particle with
a coordinate � in a periodic potential. If the junction is
driven by an external current I (which is an analogue of
an external force for a quantum particle), the junction
charge increases with time, Q = It, until it reaches the
value Q = e. Then the system has two options: either a
Cooper pair tunnels across the junction and the junction
charge is reset from Q = e to Q = �e, or if this does
not happen the charge increases further with time. The
former option is analogue to a Bragg re
ection when a
quantum particle reaches the edge of the Brillouin zone
and is re
ected, thus staying in the lowest energy band.
The latter option is the equivalent of Zener tunneling
across the band gap to a higher band [4]. In the limit
EJ � EC = e2=2C (which will be discussed in this pa-
per) the probability of such Zener tunneling event is [4]

� = exp(�IZ=I); IZ = �eE2
J=8EC: (2)

The question is which of the two options are realized and
how they manifest themselves in an experiment. The
answer depends on the current:
Low currents: In this regime the average time tZ re-

quired for a Zener tunneling event to occur exceeds the
time of the experiment, tZ = 2e(I�)�1 � te. This means
that during the whole experiment the system stays in the
lowest energy band, the charge (and the voltage) across
the junction oscillates with the period 2e=I around zero.
This is the metastable regime of Bloch oscillations [2,3,5].
High currents: In this regime, te � tZ , Zener tunnel-

ing event [6] takes place during the experiment. In the
absence of dissipation the system { after it jumps to the
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second energy band { will continue to rise in energy [7]
until its energy reaches the value 2� + EC (the average
voltage across the junction at this point is V0 � 2�=e
[3]). A further increase is not possible because of dis-
sipation due to single electron tunneling that sets in as
soon as the voltage exceeds the value 2�=e. Then the
voltage will oscillate around the stable value 2�=e [3].
Thus the di�erence between the two above regimes

is quite clear: the �rst one corresponds to metastable
zero-voltage state of the junction whereas in the sec-
ond regime a �nite stable voltage V � 2�=e is mea-
sured. The crossover between these two regimes occurs
at I � IZ= ln(Ite=2e).
Experimentally it is more convenient to study charging

e�ects in systems containing several (or many) Josephson
junctions. Hence one can ask whether the simple physical
picture discussed above remains valid also in the case
of two or more coupled Josephson junctions. Intuitively
one could expect that for su�ciently low currents 
owing
through the chain of Josephson junctions the system will
stay in the zero voltage state �V � 0 similarly to the case
of a single junction.
In this paper we argue that the behavior of already two

capacitively coupled Josephson junctions is qualitatively

di�erent: a �nite voltage drop V ' V0 � 2�=e across the
system will be measured no matter how low the external

current is. This conclusion remains valid for an arbitrary
number of junctions in the chain N > 1. To understand
this result we use the analogy between our system and
an electron in a multidimensional crystal. If the self-
capacitance C0 of the superconducting islands is non-
zero the symmetry of the corresponding Brillouin zone is
lowered in a way which prevents the system from staying
in the lowest energy band for any non-zero current I.
Zener tunneling in at least one of the junctions occurs
immediately after the current is applied and the system
switches to a �nite voltage state. The resulting current-
voltage characteristics of the Josephson junction chain
has a form of a staircase. Our results can explain the low
voltage behavior of two-dimensional Josephson junction
arrays recently reported in Ref. [1].

(b)

(a)

FIG. 1. (a) Two capacitively coupled Josephson junctions;

(b) An experimental realization of the same system.

For the sake of simplicitywe �rst consider the system of
three superconducting grains with phases �i, i = 1; 2; 3,
connected by two Josephson junctions (Fig. 1a). The

relevant variables for description of this system are linear
combinations of the phases (cf. e.g. [8])

�1 = �1 � �2; �2 = �2 � �3; �3 = (�1 + �2 + �3)=3:

We can also introduce the junction charge operators
Q̂i = �2ie@=@�i, i = 1; 2, and the \center-of-mass

charge" Q̂3 = �2ie@=@�3. Then the Hamiltonian reads
as

Ĥ =
Q̂2
3

6C0

+
1

2

X

ij

Q̂i(Ĉ
�1)ijQ̂j �EJ

X

i

cos �i; (3)

and the e�ective 2�2 capacitance matrix Ĉ has elements
C11 = C22 = C + 2C0=3; C12 = C21 = C0=3. The
center-of-mass dynamics is independent of that of both
junctions. The latter is essentially the motion of an elec-
tron in a 2D periodic potential. In the limiting case
EJ � e2=maxfC0; Cg (nearly-free-electron model) the
Josephson term in the Hamiltonian (3) can be consid-
ered as a perturbation. We assume furthermore that
2� > e2=maxfC0; Cg. The eigenfunctions of the un-
perturbed Hamiltonian are \plain waves",

 0(� ) = exp(iQ� =2e+ iQ3�3=2e):

Here we have introduced two-dimensional vectors � =
(�1; �2) and Q = (Q1; Q2).
Now we can clarify the meaning of the charges Q1

and Q2. Introducing the grain charge operators q̂i =
�2ie@=@�i, i = 1; 2; 3, with the eigenvalues qi, we obtain

q1 = Q1+Q3=3; q2 = �Q1+Q2+Q3=3; q3 = �Q2+Q3=3:

The charge Q3 is just a total charge of the chain. It is
conserved, and from now on we put it equal to zero [9]. In
the current-bias regime the charge q1 grows linearly with
time, except for the jumps by 2e due to Cooper pair
tunneling (CPT) through junction 1 (see below). The
charge q3 decreases linearly with time, except for CPT
through junction 2, while the charge q2 keeps constant
except for CPT through the either junction. In other
words, the system can move only along lines Q1 � Q2 =
2en, with n being an integer, and CPT processes are
responsible for the jumps of the system between these
lines. The time evolution of the system starts from the
line Q1 = Q2 = It.
The eigenvalues of the unperturbed Hamiltonian are

E0(Q) =
1

2

X

ij

Qi(Ĉ
�1)ijQj : (4)

The Josephson coupling plays a role only in the vicin-
ity of \critical surfaces", E0(Q) = E0(Q � K), with
K = (2pe; 2eq) (p and q are integer numbers) being the
reciprocal lattice vectors. In lowest (second) order in EJ

only vectors K with p = �1; q = 0 and p = 0; q = �1 are
essential, and the Josephson coupling creates gaps equal
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to EJ on the critical surfaces. For the spectrum (4) these
are given by

1) Q1 � �Q2 = �e; 2) Q2 � �Q1 = �e;

with � = (C0=3)(C + 2C0=3)
�1. Note that 0 � � � 1=2;

the limits � = 0 and � = 1=2 correspond to the cases
C0 = 0 and C = 0, respectively. Thus, the critical sur-
faces are just two pairs of parallel straight lines. The
romb formed by these lines is the �rst Brillouin zone.
The Bragg re
ection processes are possible on the crit-
ical surfaces, i.e. the system can jump by a vector K.
The energy is periodic in Q-plane with two orthogonal
periods equal to 2e. It will be convenient for us to use the
extended band picture. The voltage across the junction
i is given by Vi = @E=@Qi.
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FIG. 2. The motion of the current-biased system in the

plane (Q1;Q2); C0 = 0. The critical surfaces are shown by
boldface lines; the �rst Brillouin zone is a square ABCD. In

the weak current regime the system moves along the line AC.

Possible trajectories for the cases of strong currents, � � 1,
are shown by dotted lines.

For C0 = 0 the Hamiltonian (3) is just a sum of two
Hamiltonians (1) of isolated junctions, and the behavior
of the chain is trivial. The critical surfaces are Qi = �e,
i = 1; 2 (Fig. 2). For low currents a possible time evo-
lution (with large probability (1 � �)2) is simultaneous
Bloch oscillations in two junctions [10], i.e. Bragg re
ec-
tion from point A= (e; e) to point C= (�e;�e). The
mean voltage is zero for this process. Another possibil-
ity (with probability �(1 � �)) is the re
ection to the
point B= (�e; e), with subsequent motion along the line

(Q;Q+2e),Q > �e. This means Zener tunneling in junc-
tion 2, and Bloch oscillations in junction 1. Eventually
the system reaches the critical surface in the point (e; 3e),
where it is re
ected to the point (�e; 3e) and so on. The
voltage across junction 1 V1 = Q1=C oscillates with fre-
quency I=2e, while the voltage across junction 2 grows
linearly in time. The third possibility (with equal proba-
bility �(1��)) is an equivalent process, where the system
is initially re
ected to the point (e;�e). Finally, the last
possibility (with probability �2) is to proceed along the
line (Q;Q) without any re
ection. This corresponds to
Zener tunneling in two junctions simultaneously, i.e. the
voltage grows across both junctions.

(b)
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FIG. 3. The same as Fig. 2, C0 6= 0. The �rst Brillouin
zone is a romb ABCD. In the weak current regime the system

moves along the dashed line BF.

The behavior is quite di�erent in the presence of a �-
nite self-capacitance C0. The system again starts from
the point (0; 0) and reaches the critical surface in the
point A= (e�; e�), � = (1 � �)�1, 1 < � � 2 (Fig. 3),
beyond the point (e; e). Consequently, it has only three
possibilities of further motion. The �rst one (with proba-
bility (1��2)=2, where � is given by the same expression
(2) with EC = e2=2(C + C0)) is to be re
ected to the
point G= (e(� � 2); e�). It corresponds to Zener tun-
neling in junction 2. The subsequent evolution of the
system is voltage growth across junction 2 and Bloch os-
cillations in junction 1. The equivalent possibility is to
be re
ected to the point H(= e�; e(� � 2)). Finally, the
last allowed process (with probability �2) is to continue
the motion along the line (It; It) without any re
ection,
i.e. Zener tunneling takes place in both junctions. Note
that the simultaneous occurrence of Bloch oscillations in
both junctions is impossible. This is a consequence of a
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lowered symmetry: while the case C0 = 0 has the same
symmetry group as a square, the introduction of C0 low-
ers the latter to that of a romb.
Thus, the situation di�ers qualitatively from that of a

single junction. Still two scenarios exist, low and high
currents. The second one yields the mean voltage 2V0,
which one could expect. However, the low current sce-
nario leads now to a �nite mean voltage V0, in contrast to
the single-junction case. The time ts � 2e�=IEC � tZ ,
required for this metastable value to establish, is very
short. Hence at the beginning of experiment the mean
value V0 is observed. The time of order tZ , which can
be extremely long, is required to obtain the stable value
2V0.

1
0

2 3

I

V/V
FIG. 4. A sketch of voltage-current characteristic of the

system of coupled junctions. All �ne structure of oscillations

is eliminated, and only the mean value �V in units of V0 is

shown.

The above approach can be generalized to the case of
the Josephson chain consisting of N + 1 grains and N

junctions. The relevant variables are phases of junctions
�i = �i � �i+1, 1 � i � N , and the center-of-mass co-
ordinate �N+1 = (N + 1)�1(�1 + �2 + : : :+ �N+1), with
�i being the phases of the grains. The problem is equiv-
alent to the motion of an electron in an N -dimensional
periodic potential; the chain is represented by a point
Q in the space of junction charges Qi; i = 1; : : : ; N . A
charge-neutral system moves along the lines

(Q1 + 2eN1; Q2 + 2en2; : : : ; QN + 2enN ); nk 2 Z:

It starts from the coordinate origin and can jump be-
tween the lines only as a result of \Bragg re
ection" on
the critical surfaces, given by (l = 1; : : : ; N )

X

i

Qi(C
�1)il = �e(C

�1)ll; (5)

where the N �N capacitance matrix is given by

Ckl = Clk = C�kl + C0

k(N + 1� l)

N + 1
; k < l: (6)

An analysis for arbitrary relation between capacitances
C and C0 would require the inversion of the capacitance
matrix Ĉ. However, both cases C = 0 and C0 � C

allow an analytical solution and show the same symmetry
lowering causing a �nite (metastable) voltage V0 across
the chain.
Thus, the current-voltage characteristics can be de-

scribed as follows. The stable value of the mean volt-
age for any value of current is NV0. However, the time
required to achieve this stable voltage is astronomical
(exponentially long) for low currents, and may exceed
the duration of the experiment te. Hence one observes
the metastable value V0. The main e�ect of an increasing
current is a decrease of the time tZ . For high currents one
has tZ � te and observes the stable voltage. There are
some intermediate regimes between, and metastable volt-
ages kV0, k = 2; 3; : : :; N � 1 can be measured (Fig. 4).
This dependence is essentially a low-voltage that ob-
served in the experiments [1].
In conclusion, we predict that a current-biased chain

of N capacitively coupled Josephson junctions always is
in a �nite voltage �V � 2�=e state no matter how low the
external current is [11]. This conclusion di�ers qualita-
tively from that reached for a single Josephson junction.
It is based on simple symmetry arguments. While for
vanishing on-site capacitance C0 = 0 the structure of the
Brillouin zone for a Josephson \particle" corresponds to
that for an N-dimensional cubic crystal, the crystal sym-
metry is lowered for any non-zero C0. As a result Bloch
oscillations in the lowest Brillouin zone cease to occur
and the system \jumps" to higher bands due to Zener
tunneling. This value of the voltage is metastable, but
can be measured experimentally since the time scale re-
quired to observe the stable value NV0 is very long for
low currents. We found a staircase-like shape of the I-V
curve of the system and argue that our predictions can
explain the observed low-voltage behavior of Josephson
junction arrays [1].
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