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Abstract

The aim of this paper is to provide a logic for reasoning about evol-
ving algebras [13, 14]. This is done by extending a variant of dynamic
logic [10, 18] with additional program constructs: update of functions,
extension of universes, and simultaneous execution. A calculus for this
extended dynamic logic can be obtained from a sequent calculus for
(not extended) dynamic logic only by adding further rules, but with-
out modi�cations of original rules. This gives us reason to hope that
the KIV system (Karlsruhe Interactive Veri�er) [21] can be turned
into a tool for reasoning about evolving algebras only by extending it,
i.e. without (substantially) modifying existing code.
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1 Introduction

Evolving algebras, introduced by Gurevich [13, 14], are abstract machines

mainly applied for the speci�cation of several programming languages (e.g.

Prolog [2, 7], Occam [16], C [15]) and of real and virtual architectures (e.g.

APE [3], PVM [5]).

The usefulness of reasoning about evolving algebras is beyond question.

For instance, certain properties of a single evolving algebra can only be gua-

ranteed by formal proof (e.g. determinism, absence of clashes, or so-called

integrity constraints [13]). Another important thing is to prove relations be-

tween evolving algebras (e.g. equivalence). This is the technique of a proof

of the WAM-compiler correctness [6], and some similar work (e.g. [4]). These

are only a few examples in the range of applications of reasoning about evol-

ving algebras. However, to our knowledge, up to now no (powerful) tool

supporting the construction of formal proofs about evolving algebras exists.1

This paper aims to make �rst steps towards such a tool. The basic idea is

to get a deduction system for evolving algebras by appropriately modifying

the KIV system [21].2 This modi�cation basically means a kind of extension

of the logic underlying the KIV system, which is a variant of dynamic logic

[17, 10, 18]. In this paper we provide syntax, semantics and a sequent calcu-

lus for such an extension of dynamic logic. So, our work can be thought of

as a theoretical foundation for adapting the KIV system for reasoning about

evolving algebras.

We start out from the de�nition of a variant of dynamic logic which is

given in the next section. In section 3 this de�nition is extended by three

additional constructs. The resulting extended dynamic logic (EDL) can be

used to represent (statements about) evolving algebras. This is explained

in Section 4. First steps towards a calculus for EDL are made in section 5.

Finally, in the last section we draw conclusions and report on related work.

2 Basic Dynamic Logic

This section presents some basic de�nitions, especially the variant of dynamic

logic we start from (which is quite close to a subset of the logic used in the

KIV system).

1It should be mentioned that it is possible to reason about evolving algebras in some

existing proof systems by `coding' evolving algebras in the logic underlying the system.

This approach was taken e.g. by Schellhorn [22] while doing the WAM case-study [6] in

the KIV system.
2The KIV system (Karlsruhe Interactive Veri�er) is an advanced tool for development

of correct software. Especially, it supports interactive, evolutionary construction of (com-

plicated) proofs.
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De�nition 2.1 (notions for sets of tuples)

Given a set A, n 2 IN, the set of n-tuples of A is denoted by An. We use

a1 � � � an or (a1; : : : ; an) as notations for tuples; the empty tuple (i.e. n = 0)

is written �. Furthermore, we set:

� A+ :=
S
n2INnf0gA

n

� A� :=
S
n2INA

n.

For a set of (so-called) indices I and sets Ai, i 2 I, the family (or system) of

the sets Ai is denoted by (Ai)i2I. For i1 � � � in 2 I
n we de�ne:3

� Ai1���in := Ai1 � � � � �Ain.

De�nition 2.2 (signatures)

A signature SIG = (S;F ) consists of a �nite set S of sorts and a set F of

function symbols where F is the disjoint union of (possibly in�nite4) sets

Fs;s with s 2 S
�, s 2 S. For s = s1 � � � sn, Fs;s is the set of all n-ary function

symbols from sorts s1 � � � sn to sort s.

A system of variables for a signature SIG = (S;F ) is a family X =

(Xs)s2S of (possibly in�nite) pairwise disjoint sets Xs.

De�nition 2.3 (terms)

Given SIG = (S;F ) and a system X of variables for SIG, the family

TF (X) =
�
TF;s(X)

�
s2S

of terms over SIG and X is de�ned as the least

family of sets such that

� � 2 TF;�(X),

� Xs � TF;s(X) for every s 2 S, and

� ft 2 TF;s(X) for every s 2 S�, s 2 S, f 2 Fs;s, t 2 TF;s(X).

De�nition 2.4 (algebras, valuations)

For a signature SIG = (S;F ) a SIG-algebra A is a tuple, written A =�
(As)s2S; (fA)f2F

�
, where (As)s2S is a family of non-empty carrier sets5 (do-

main) and (fA)f2F is a family of interpretations for the function symbols in

F . Given f 2 Fs;s with s 2 S
�; s 2 S, then fA is a total function from As

into As. The set of all SIG-algebras is denoted by Alg(SIG).

For a system X of variables for SIG and an A 2 Alg(SIG) an A-

valuation v = (vs)s2S is a family of total functions vs : Xs ! As. V al(X;A)

is the set of all such A-valuations. For s 2 S, x 2 Xs, and a 2 As, we write

v[x a] for the modi�cation of v which assigns a to x and is otherwise the

same as v.

3Notice that A� = f�g.
4We allow in�nite sets here, because proving with the calculus we introduce in section

5 requires that one has new function symbols and new variables in reserve.
5Note, that the carrier sets for di�erent sorts are not required to be disjoint.
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De�nition 2.5 (disjoint signatures, sum of algebras)

Two signatures SIG = (S;F ), SIG0 = (S0; F 0) are said to be disjoint,

written SIG \ SIG0 = ;, if S \ S0 = ; and F \ F 0 = ;. In this case

SIG[SIG0 := (S[S0; F [F 0) is again a signature, and fromA 2 Alg(SIG),

B 2 Alg(SIG0) a (SIG [ SIG0)-algebra

A+ B :=

��
(A+B)s

�
s2S[S0

;
�
fA+B

�
f2F[F 0

�

can be constructed by (cf. in [8]: amalgamated sum of algebras)

(A+B)s :=

(
As , if s 2 S

Bs , if s 2 S0

f(A+B) :=

(
fA , if f 2 F

fB , if f 2 F 0:

De�nition 2.6 (semantics of terms)

Let SIG = (S;F ) be a signature, X a system of variables for SIG, A 2

Alg(SIG), and v 2 V al(X;A). The value tv;A of a term t 2
S
s2S TF;s(X) in

A under v is given by:

� xv;A := vs(x) for x 2 Xs, s 2 S;

� (ft)v;A := fA(tv;A) for s 2 S
�, s 2 S, f 2 Fs;s, t = t1 � � � tn 2 TF;s(X)

where (t1 � � � tn)v;A := t1v;A � � � tnv;A.

De�nition 2.7 (atomic formulas)

Let SIG = (S;F ) and X be a system of variables for SIG. The set

AT (SIG;X) of atomic formulas over SIG and X is the least set satis-

fying:

� false 2 AT (SIG;X)

� for s 2 S and t1; t2 2 TF;s(X) is (t1 = t2) 2 AT (SIG;X).

De�nition 2.8 (boolean expressions)

Let SIG = (S;F ) and X be a system of variables for SIG. The set

BXP (SIG;X) of boolean expressions over SIG and X is the least set

satisfying:

� AT (SIG;X) � BXP (SIG;X)

� for '; 2 BXP (SIG;X) is

('!  ) 2 BXP (SIG;X).
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In the following de�nition so-called counters are introduced. This is a

special built-in data structure used for inductive arguments about while loops

(see de�nition 2.10 and appendix A) (cf. [18]).

De�nition 2.9 (extension by counters)

For the counter signature CSIG = (fctrg; F�;ctr [ Fctr;ctr) with F�;ctr :=

fczerog and Fctr;ctr := fcsuccg we �x a standard algebra Actr with the carrier

Actr = IN, and which gives czero and csucc their usual meanings, i.e. zero

and successor-function on natural numbers.

We assume all signatures SIG considered in the following to be disjoint

from CSIG. So the standard extension SIG+ := SIG [ CSIG of SIG

is well-de�ned. Correspondingly, we �x a countable, in�nite set Xctr :=

f�; �0; �1; : : :g of variables for sort ctr, and assume all other sets of variables

considered in the following, to be disjoint from Xctr. So we can de�ne the

standard extension X+ := (Xs)s2S[fctrg of a system X = (Xs)s2S of variables

for SIG. The standard extension of an A 2 Alg(SIG) is the SIG+-algebra

A+ := A+Actr.

De�nition 2.10 (programs)

Given a signature SIG = (S;F ), X a system of variables for SIG, and

SIG+ = (S+; F+) and X+ their standard extensions by counters. The set

PROG(SIG;X) of programs over SIG and X is the least set satisfying:6

� (skip)

skip 2 PROG(SIG;X)

� (assignment)

for s 2 S, x 2 Xs, and t 2 TF;s(X) is

(x := t) 2 PROG(SIG;X)

� (nondeterministic choice)

for �; � 2 PROG(SIG;X) is

(� [ �) 2 PROG(SIG;X)

� (composition)

for �; � 2 PROG(SIG;X) is

(�;�) 2 PROG(SIG;X)

� (conditional)

for �; � 2 PROG(SIG;X) and � 2 BXP (SIG;X) is

if � then � else � 2 PROG(SIG;X)

� (while)

for � 2 PROG(SIG;X) and � 2 BXP (SIG;X) is

while � do � 2 PROG(SIG;X)

6Notice that there are no counters involved in assignments or conditions �.
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� (bounded loop)

for � 2 PROG(SIG;X) and t 2 TF+;ctr(X+) is

loop � times t 2 PROG(SIG;X).

De�nition 2.11 (dynamic logic formulas)

Let SIG = (S;F ), X a system of variables for SIG, and SIG+ = (S+; F+)

and X+ their standard extensions by counters. The set DL(SIG;X) of

dynamic logic formulas over SIG and X is the least set satisfying:

� AT (SIG+;X+) � DL(SIG;X)

� for '; 2 DL(SIG;X) is

('!  ) 2 DL(SIG;X)

� for ' 2 DL(SIG;X), s 2 S+, and x 2 Xs is

8x:' 2 DL(SIG;X)

� for � 2 PROG(SIG;X) and ' 2 DL(SIG;X) is

[�]' 2 DL(SIG;X).

De�nition 2.12 (abbreviations)

We use the following abbreviations:

:' :� ('! false)

t1 6= t2 :� : t1 = t2
true :� : false

(' _  ) :� (:'!  )

(' ^  ) :� : ('! : )

('$  ) :� (('!  ) ^ ( ! '))

9x:' :� :8x::'

h�i' :� : [�]:'

abort :� while true do skip

if � then � :� if � then � else skip:

De�nition 2.13 (semantics of programs and formulas)

Let SIG = (S;F ) a signature with a system X of variables, and A 2

Alg(SIG). Let further SIG+ = (S+; F+), X+, and A+ be the correspond-

ing standard extensions and v; v0 2 V al(X+;A+). For ' 2 DL(SIG;X)

we write A; v j= ' if ' is true in A under v, and A; v 6j= ' other-

wise. For � 2 PROG(SIG;X) we write v [[�]]A v
0 if v0 is a valuation that

can be reached from v by executing � interpreted under A. The relation

[[�]]A � V al(X+;A+)� V al(X+;A+) describes the input-output behavior of

� under A. These notions are de�ned simultaneously7 as follows:

7Since the semantics of programs and formulas depend on each other, we have to de�ne

it simultaneously.
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� A; v 6j= false

� A; v j= t1 = t2 i� t1v;A+ = t2v;A+

� A; v j= '!  i� (A; v j= ' implies A; v j=  )

� A; v j= 8x:' (where x 2 Xs for some s 2 S+) i�

A; v[x a] j= ' for all a 2 As

� A; v j= [�]' i� A; v0 j= ' for all v0 2 V al(X+;A+) with v [[�]]A v
0

� v [[skip]]A v
0 i� v = v0

� v [[x := t]]A v
0 i� v0 = v[x tv;A]

� v [[(� [ �)]]A v
0 i� (v [[�]]A v

0 or v [[�]]Av
0)

� v [[(�;�)]]A v
0 i�

there is a v00 2 V al(X+;A+) such that v [[�]]A v
00 and v00 [[�]]Av

0

� v [[if � then � else �]]A v
0 i�

either A; v j= � and v [[�]]A v
0

or else A; v 6j= � and v [[�]]A v
0

� v [[while � do �]]A v
0 i�

A; v0 6j= � and there are some v0; : : : ; vn 2 V al(X+;A+) such that

v0 = v, vn = v0, and A; vi j= � and vi [[�]]A vi+1 for i 2 f0; : : : ; n� 1g

� v [[loop � times t]]A v
0 i�

with n := tv;A+ there are some v0; : : : ; vn 2 V al(X+;A+) such that

v0 = v, vn = v0, and vi [[�]]A vi+1 for i 2 f0; : : : ; n� 1g.

3 Extending Dynamic Logic

In this section we de�ne syntax and semantics of EDL (Extended Dynamic

Logic), which extends dynamic logic by three additional program constructs:

extension of domains (universes), function update, and simultaneous execu-

tion.

De�nition 3.1 (syntax of EDL)

Given a signature SIG = (S;F ) and X a system of variables for SIG. The

set EPROG(SIG;X) of extended programs over SIG and X and the

set EDL(SIG;X) of extended dynamic logic formulas over SIG and X

are de�ned just as PROG(SIG;X) and DL(SIG;X) in de�nitions 2.10 and

2.11, except that there are the following additional program constructs:
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� (extension of domains)8

for s 2 S, x 2 Xs, and � 2 EPROG(SIG;X) is

extend s by x with � 2 EPROG(SIG;X)

� (function update)

for s 2 S�, s 2 S, f 2 Fs;s, t 2 TF;s(X), and t 2 TF;s(X) is

(ft := t) 2 EPROG(SIG;X)

� (simultaneous execution)

for �; � 2 EPROG(SIG;X) is

(�; �) 2 EPROG(SIG;X).

Agreement (algebras with error elements). The most intuitive se-

mantics of the extend-construct is de�ned using partial algebras. However,

on the other hand, allowing partial algebras would cause substantial changes

in the semantics (and calculus) of basic dynamic logic. Thus we decided9 to

`simulate' partiality using explicit error elements, i.e. we use total algebras

(as de�ned in 2.4) but demand each domain As to contain a special element

UNDEFs.
10

De�nition 3.2 (extension of domains)

Let SIG = (S;F ) and A =
�
(As)s2S ; (fA)f2F

�
, A0 =

�
(A0s)s2S; (fA0)f2F

�
two

SIG-algebras (containing error elements UNDEFs for each sort s 2 S). Let

further s0 2 S and a 2 A0s0 . If

A0s =

(
As [ fag , if s = s0
As , otherwise

and for f 2 Fs;s (s 2 S
�, s 2 S)

fA0(a) =

(
fA(a) , if a 2 As

UNDEFs , otherwise

then A0 is called the extension of A by a at s0, written A
0 = A+s0 fag.

8Because the sort information is already attached to the variable symbols the explicit

reference to the sort s is a kind of redundancy (which may increase readability). Another

syntax for the extend-construct, which emphasizes the relationship to local variable bind-

ings is used in [19] and looks like let x = new(s) in � endlet.

We use extend s by x1; : : : ; xn with � as an abbreviation for

extend s by x1 with : : : extend s by xn with �:
9Essentially, this decision was enforced by our overall aim, which is to use a modi�cation

of the KIV system for reasoning about evolving algebras. Using error elements instead of

proper partiality minimizes the modi�cations of the KIV system (and is even the technique

used in basic introductions to evolving algebras [13, 14]).
10Notice that we do not explicitly forbid non-strict functions in algebras. However, if

strictness is desired it can be proved as a property (preservation of strictness).
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De�nition 3.3 (update of functions)

Let SIG = (S;F ) a signature, A =
�
(As)s2S; (fA)f2F

�
a SIG-algebra, f0 2

Fs;s (s 2 S
�, s 2 S), a0 2 As, and a0 2 As. Then we call the SIG-algebra

A0 :=
�
(As)s2S; (fA0)f2F

�
where

fA0(a) :=

(
a0 , if f � f0 and a = a0
fA(a) , otherwise

the update of A by setting f0(a0) to a0, and denote it by A[f0(a0) a0].

The crucial point of the program constructs extension of domains and

function update is that executing them a�ects not only the (e)valuation of

variables, but also the evaluation of function symbols (i.e. the evaluation of

terms) and the universes (i.e. the evaluation of quanti�ers). Therefore, we

de�ne states as pairs of algebras and valuations (and not merely as valuations

as it is common practice in dynamic logic).

De�nition 3.4 (states, state changes)

Let SIG a signature and X a system of variables for SIG. Then the set

STATE(SIG;X) of states over SIG and X is de�ned by

STATE(SIG;X) := f(A+; v)jA 2 Alg(SIG); v 2 V al(X+;A+)g:

De�nition 3.5 (operations on states)

Let SIG = (S;F ) a signature, X a system of variables for SIG, and (A; v) 2

STATE(SIG;X).

(A; v) +s fag := (A+s fag; v)

(A; v)[x a] := (A; v[x a]) for x 2 Xs, a 2 As

(A; v)[f(a) a] := (A[f(a) a]; v) for f 2 Fs;s, a 2 As, a 2 As:

In order to declare the semantics of simultaneous execution we de�ne a

join operator on states:11 the join of two states st0; st00 modulo st, written

st0�stst
00, is the state that arises when the e�ects of the state change st; st0

and the state change st ; st00 are combined, provided this is consistent.

Informally, consistency of two state changes means that there are no clashes,

i.e. that

� there are no extensions of the same domain by the same value in both

state changes, i.e. new elements in st0 di�er from new elements in st00,

11This de�nition is partly adopted from Rix Groenboom and Gerard Renardel de

Lavalette de [12].
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� there are no conicting function updates, i.e. if in both state changes a

value of a function value is changed, then these updates of the function

value are the same, and

� there are no conicting assignments to variables, i.e. if in both state

changes a value of a variable is changed, then these assignments to the

variable are the same.

De�nition 3.6 (consistency of state changes)

Let SIG = (S;F ) a signature, X a system of variables for SIG, and st =

(A; v), st0 = (A0; v0), and st00 = (A00; v00) three states from STATE(SIG;X).

If

� A0s \ A
00

s = As for all s 2 S,

� fA0(a) = fA(a) or fA00(a) = fA(a) or fA0(a) = fA00(a)

for all f 2 Fs;s, a 2 As, and

� v0s(x) = vs(x) or v
00

s (x) = vs(x) or v
0

s(x) = v00s (x)

for all x 2 Xs; s 2 S

we say that the state changes st; st0 and st; st00 are consistent.

De�nition 3.7 (join of states)

Let SIG = (S;F ) a signature, X a system of variables for SIG, and st =

(A; v), st0 = (A0; v0), and st00 = (A00; v00) three states from STATE(SIG;X).

If the state changes st ; st0 and st ; st00 are not consistent then the join

of st0 and st00 modulo st, written st0�st st
00, is unde�ned; otherwise it is a

state from STATE(SIG;X), de�ned by:

st0 �st st
00 := (A�; v�)

A� :=
�
(A�s )s2S; (fA�)f2F

�
with (s 2 S; f 2 Fs;s; x 2 Xs)

A�s := A0s [ A
00

s

fA�(a) :=

8>>>>>>>><
>>>>>>>>:

UNDEFs , if a 2 A�s n (A
0

s [A
00

s)

fA0(a) , if a 2 A0s nAs

fA00(a) , if a 2 A00s nAs

fA0(a) , if a 2 As and fA0(a) 6= fA(a)

fA00(a) , if a 2 As and fA00(a) 6= fA(a)

fA(a) , otherwise

v�s (x) :=

8><
>:
v0s(x) , if v0s(x) 6= vs(x)

v00s (x) , if v00s (x) 6= vs(x)

vs(x) , otherwise.
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The reader may check that the join is in fact well-de�ned provided the

state changes are consistent.

Fact 3.8 (basic properties of join)

Let SIG = (S;F ) a signature, X a system of variables for SIG, and st =

(A; v), st0 = (A0; v0), st00 = (A00; v00), and st000 = (A000; v000) states from

STATE(SIG;X).

(a) commutativity:

If the state changes st; st0 and st; st00 are consistent, then

st0 �st st
00 = st00 �st st

0:

(b) associativity:

The state changes st ; st0 and st ; st00, and the state changes st ;

(st0 �st st
00) and st; st000 are consistent i� the state changes st; st00

and st ; st000, and the state changes st ; st0 and st ; (st00 �st st
000)

are consistent. In this case it holds

(st0 �st st
00)�st st

000 = st0 �st (st
00 �st st

000):

(c) neutral element:

If the state changes st; st and st; st0 are consistent, then

st�st st
0 = st0:

Proof. The proof for this fact, especially for (b) (which is in no way obvi-

ous) is quite technical and long. So we have postponed it to appendix B.2.

We are now prepared to de�ne the semantics of programs and formulas of

EDL. One major di�erence between de�nition 2.13 is that the input-output

behavior [[�]] of a program � is not a binary relation on valuations only, but

on states.

De�nition 3.9 (semantics of programs and formulas)

Let SIG = (S;F ) a signature with a system X of variables and st; st0 2

STATE(SIG;X), st = (A; v). For ' 2 EDL(SIG;X) we write st j= '

if ' is true in st, and st 6j= ' otherwise. For � 2 EPROG(SIG;X) we

write st [[�]] st0 if the state st0 can be reached from state st by executing �.

The relation [[�]] � STATE(SIG;X)�STATE(SIG;X) describes the input-

output behavior of �. These notions are de�ned simultaneously as follows:

� st 6j= false

11



� st j= t1 = t2 i�
12 st(t1) = st(t2)

� st j= '!  i� (st j= ' implies st j=  )

� st j= 8x:' (where x 2 Xs for some s 2 S) i�

st[x a] j= ' for all a 2 As

� st j= [�]' i� st0 j= ' for all st0 2 STATE(SIG;X) with st [[�]] st0

� st [[skip]] st0 i� st = st0

� st [[x := t]] st0 i� st0 = st[x st(t)]

� st [[ft := t]] st0 i� st0 = st[f(st(t)) st(t)]

� st [[(� [ �)]] st0 i� (st [[�]] st0 or st [[�]] st0)

� st [[(�;�)]] st0 i�

there is some st00 2 STATE(SIG;X)

such that st [[�]] st00 and st00 [[�]] st0

� st [[(�; �)]] st0 i�13

there are some st�; st� 2 STATE(SIG;X) such that

st [[�]] st�, st [[�]] st�, and the state changes

st; st� and st; st� are consistent with st0 = st� �st st�

� st [[if � then � else �]] st0 i�

either st j= � and st [[�]] st0

or else st 6j= � and st [[�]] st0

� st [[extend s by x with �]] st0 (where x 2 Xs) i�

there is some st00 = (A00; v00) 2 STATE(SIG;X) and an14 a 2 A00s nAs

such that
�
(st+s fag)[x a]

�
[[�]]st00 and15 st0 = st00[x st(x)]

� st [[while � do �]] st0 i�

st0 6j= � and there are some st0; : : : ; stn 2 STATE(SIG;X) such that

st0 = st, stn = st0, and sti j= � and sti [[�]] sti+1 for i 2 f0; : : : ; n� 1g

12For st = (A; v) we abbreviate st(t) := tv;A.
13Especially combined with composition or while loops this is not simultaneous exe-

cution (as one intuitively might think of), because we look at the executions of � and

� as separate black boxes, i.e. the intermediate states passed through while executing �

and the intermediate states passed through while executing � are regarded as completely

independent from each other.
14Notice, that there is no operation for discarding elements from domains.
15After the execution of the extend construct x is bound to its original value.
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� st [[loop � times t]]A st
0 i�

with n := st(t) there are some st0; : : : ; stn 2 STATE(SIG;X) such

that st0 = st, stn = st0, and sti [[�]] sti+1 for i 2 f0; : : : ; n� 1g.

The following theorem illustrates that the `simultaneous execution' con-

struct behaves as simultaneous execution where the programs to be executed

can be viewed as black boxes, i.e. there is no communication despite shared

variables.

Theorem 3.10 (properties of simultaneous execution semantics)

Let SIG a signature, X a system of variables for SIG, and �;�1; �2; �3; � 2

EPROG(SIG;X).

(a) [[(�; �)]] = [[(�; �)]]

(b) [[((�1; �2); �3)]] = [[(�1; (�2; �3))]]

(c) [[(skip; �)]] = [[�]]

(d) [[((�1 [ �2); �)]] = [[((�1; �) [ (�2; �))]]

(e) [[(if � then �1 else �2; �)]] = [[if � then (�1; �) else (�2; �)]]

(f) [[(extend s by x with �; �)]] = [[extend s by x0 with (�x0

x ; �)]]

where16 x0 2 Xs is a variable not occurring in � or �.

Proof. (a), (b), and (c) follow from fact 3.8. (d) and (e) can be shown

simply by unfolding the de�nitions. The proof of (f) is more complicated

and requires some auxiliary lemmata. It is given in full detail in appendix

B.3.

4 Representing Evolving Algebras

This section is intended to describe how (statements about) evolving algebras

can be formalized in (a subset of) EDL. We start with a notion of evolving

algebra rules (which is quite general: especially one is allowed to arbitrar-

ily nest indeterministic choice and simultaneous execution). The following

de�nition essentially coincides with the de�nition of extended programs (cf.

3.1), but without while and loop.

De�nition 4.1 (evolving algebra rules)

Let SIG = (S;F ) a signature and X a system of variables for SIG. The set

EAR(SIG;X) of evolving algebra rules over SIG and X is the least set

satisfying:

16�x0

x denotes the result of syntactically replacing x by x0 in �.
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� (skip)17

skip 2 EAR(SIG;X)

� (assignment)

for s 2 S, x 2 Xs, and t 2 TF;s(X) is

(x := t) 2 EAR(SIG;X)

� (function update)

for s 2 S�, s 2 S, f 2 Fs;s, t 2 TF;s(X), and t 2 TF;s(X) is

(ft := t) 2 EAR(SIG;X)

� (nondeterministic choice)

for �; � 2 EAR(SIG;X) is

(� [ �) 2 EAR(SIG;X)

� (simultaneous execution)

for �; � 2 EAR(SIG;X) is

(�; �) 2 EAR(SIG;X)

� (conditional)

for �; � 2 EAR(SIG;X) and � 2 BXP (SIG;X) is

if � then � else � 2 EAR(SIG;X)

� (extension of domains)

for s 2 S, x 2 Xs, and � 2 EAR(SIG;X) is

extend s by x with � 2 EAR(SIG;X).

The semantics of evolving algebra rules is de�ned just as in de�nition 3.9.

Formal reasoning about evolving algebras requires a formal representa-

tion, i.e. we have to de�ne syntax and semantics for evolving algebras.

De�nition 4.2 (evolving algebras)

An evolving algebra EA = (SIG;X; I; F; �) consists of a signature SIG, a

system X of variables for SIG, a formula I 2 EDL(SIG;X), a boolean ex-

pression F 2BXP (SIG;X), and an evolving algebra rule �2EAR(SIG;X).

The formula I describes the initial states, F is the stopping condition.18

The semantics of an evolving algebra is the set of its runs.

17The skip construct is needed to simulate if � then � by if � then � else skip.
18The stopping condition F is restricted to be a boolean expression (instead of an

arbitrary formula from EDL(SIG;X)) because this allows :F to be used as condition of

a while loop or a conditional | as done in the examples on page 17.
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De�nition 4.3 (runs)

Let EA = (SIG;X; I; F; �) be an evolving algebra. A terminating run

of EA is a �nite sequence st0; : : : ; stn of states over SIG and X such that

st0 j= I, stn j= F , and stk 6j= F and stk[[�]]stk+1 for all k 2 f0; : : : ; n � 1g.

An in�nite sequence st0; st1; : : : of states over SIG and X is called a non-

terminating run of EA if st0 j= I, and stk 6j= F and stk[[�]]stk+1 for all

k 2 f0; : : :g.

There are several di�erences to other common de�nitions of evolving al-

gebras:

� many-sorted signature:

Instead of modeling sorts by means of predicate symbols (ranging over

a so-called super-universe) as e.g. in [13, 14], we prefer to use a many-

sorted signature. Thus, we loose a little bit of expressiveness (e.g.

allowing objects which are elements of more than one universe), but

avoid keeping track of sorting information while constructing proofs.

� initial states:

Mostly no syntactic representation for initial states is given. In the

de�nition above initial states are restricted to those algebras which

can be (uniquely up to isomorphism) described with a �nite set of

formulas from EDL(SIG;X). However we believe that this class is

su�cient to cope with most evolving algebras in practice.19 While in

most de�nitions an evolving algebra has exactly one initial state, we

permit a set of initial states, namely all st 2 STATE(SIG;X) with

st j= I.

� �nal states:

In some publications (e.g. [6]) the set of �nal (terminal) states is im-

plicitly de�ned to be the states which are reachable from the initial

state(s) by applying rules, but in which no further rule is applicable.

In other de�nitions �nal states are not de�ned at all. As e.g. in [19]

we prefer to make �nal states explicit, namely as a boolean expression

describing a stopping condition. Below we give some illustration for

the use of these stopping conditions.

� further rule constructors:

It is often convenient to allow some further constructors in evolving

algebra rules besides the basic ones from de�nition 4.1. For instance

a let construct is frequently used. Integrating it in EDL will make

no serious problems. Sometimes even sequential execution is useful in

19At least all computable algebras can be uniquely (up to isomorphism) described by a

�nite set of EDL formulas (cf. [1, 23]).
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evolving algebra rules (e.g. in [6]). EDL already provides such a con-

struct for sequential execution of programs (composition).20 There are

a lot of further constructs that may be desirable in certain applications

(cf. [14]: choose, duplicate, : : : ). We do not discuss them here.

� one rule only:

Usually an evolving algebra is de�ned to contain a �nite set of rules

f�1; : : : ; �ng. In some publications a computation step is de�ned as

�ring one, indeterministically chosen rule, in other publications (e.g.

[13]) a computation step is de�ned as �ring all rules simultaneously.

We avoid excluding one of these approaches, but prefer to combine all

rules in a single one, which an advocate of the �rst de�nition would

write as � := (�1 [ � � � [ �n), and an advocate of the second de�nition

would write as � := (�1; : : : ; �n).

� clash handling:

In [13] executing conicting updates is de�ned to indeterministically

choose one of the greatest subsets of non-conicting updates. Some

more recent publications (e.g. [14]) de�ne a clash to behave just like

skip. However, it is commonly accepted that a detection of an incon-

sistency should manifest itself in some way. In our opinion it should

even not be possible to continue a computation if a clash has occurred.

Therefore we de�ne conicting updates to have no next state, i.e. a

clash manifests itself in (local) non-termination.

In the following we discuss how to cope with some of the possible evolving

algebra semantics (proposed elsewhere) using the notion of evolving algebras

as de�ned in 4.2. This is done on an example with three rules.

if �1 then �1

if �2 then �2

if �3 then �3

If a semantics (of evolving algebra computation) is taken, where in each

step any of the rules is chosen indeterministically, then we set in EA =

(SIG;X; I; F; �):

F := false

� := ( (if �1 then �1)

[ (if �2 then �2)

[ (if �3 then �3) ):

20However, the calculus presented in this paper (cf. section 5) is not su�cient for se-

quential execution involved in simultaneous execution.
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If the semantics is to indeterministically apply rules until no rule is applicable,

we set:

F := : �1 ^ : �2 ^ : �3

� := ( (if �1 then �1)

[ (if �2 then �2)

[ (if �3 then �3) ):

Otherwise, if the semantics is to indeterministically choose one of the appli-

cable rules (cf. e.g. [6]), then we set:

F := : �1 ^ : �2 ^ : �3

� := if �1 ^ �2 ^ �3 then (�1 [ �2 [ �3)

else if �1 ^ �2 then (�1 [ �2)

else if �1 ^ �3 then (�1 [ �3)

else if �2 ^ �3 then (�2 [ �3)

else if �1 then �1

else if �2 then �2

else �3:

The expressiveness of EDL is best demonstrated by formalizing some

statements about evolving algebras. Let EA = (SIG;X; I; F; �) and EA0 =

(SIG;X; I; F 0; �0).

� EA has a terminating run:

I ! hwhile :F do �itrue

� every terminating run of EA stops in a situation where ' holds:

I ! [while :F do �]'

� if there is some terminating run stopping in a situation where ' holds,

then every terminating run stops in a situation where ' holds (global

determinism):

I !
�
hwhile :F do �i'! [while :F do �]'

�

� in any reachable state of EA the formula ' holds, i.e. ' is an invariance

property:

I ! 8�:[loop if :F then � times �]'

The following two examples are special cases of the one above, i.e. ' is more

specialized.
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� every reachable state interprets the function symbol f 2 Fs1���sn;s as a

strict function:21

I ! 8�:[loop if :F then � times �]

8x1 : : :8xn:
�
x1=?s1 _ � � � _ xn=?sn ! f(x1; : : : ; xn) =?s

�

� for any reachable state it holds that if ' is true in some next state,

then ' is true in all possible next states (local determinism):

I ! 8�:[loop if :F then � times �]�
hif :F then �i'! [if :F then �]'

�

� whenever there is a terminating run of EA stopping in a situation

where ' holds, then there is also a terminating run of EA0 stopping in

a situation where  holds:

I !
�
hwhile :F do �i'! hwhile :F 0 do �0i 

�
:

5 Towards a Calculus for EDL

In this section �rst steps towards a sequent calculus for EDL are made.

It turns out that the rules for not-extended dynamic logic remain valid.

We propose rules for reasoning about the additional constructs (update of

functions, extension of universes and simultaneous execution). These rules

are based on the idea of symbolic execution.

De�nition 5.1 (sequents)

Let SIG = (S;F ) and X a system of variables for SIG. The set of extended

dynamic logic sequents over SIG and X is de�ned by

SEQ(SIG;X) :=
n
�) �

��� �;� 2 EDL(SIG;X)�
o
:

For a sequent �) � we call � its antecedent and � its succedent.

De�nition 5.2 (semantics of sequents)

Let SIG = (S;F ) and X a system of variables for SIG. A sequent seq =

(('1; : : : ; 'n)) ( 1; : : : ;  n)) 2 SEQ(SIG;X) is said to be true, written

j= seq, if22 st j= ('1^� � �^'n)! ( 1_� � �_ n) for all st 2 STATE(SIG;X).

21Here we assume the signature SIG to provide constant symbols ?s naming the error

elements UNDEFs.
22As usual, the empty conjunction is de�ned to be true, the empty disjunction is de�ned

to be false.
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De�nition 5.3 (inference rules, theorems)

Let SIG = (S;F ) and X a system of variables for SIG. An (inference) rule

r over SIG and X is a tuple r = (pr1 � � � prn; concl) with pr1; : : : ; prn; concl 2

SEQ(SIG;X). The sequents pri are called the premises of r and concl is

called the conclusion of r. We use the following notation for rules:

pr1 � � � prn
concl

(r)

A rule r = (pr1 � � � prn; concl) over SIG and X is called correct if whenever

j= pri for all i 2 f1; : : : ; ng then also j= concl.

Let R be a set of rules over SIG and X. A sequent seq 2 SEQ(SIG;X)

is called theorem of R, written `R seq, if it is member of the least set

THMR � SEQ(SIG;X) satisfying

� for (pr1 � � � prn; concl) 2R and pr1; : : : ; prn 2 THMR is concl 2 THMR.

R is called correct if `R seq implies j= seq for all seq 2 SEQ(SIG;X).

Fact 5.4 A set of rules is correct if all its rules are correct.

Thus we can concentrate on the correctness of single inference rules. It

turns out that (most of) the rules known from (not extended) dynamic logic

are correct for EDL too. Appendix A gives a proposal for a sequent calculus,

which is based on the idea of symbolic execution. Propositional rules, equal-

ity rules, quanti�er rules, and rules for basic program constructs are adopted

from (not extended) dynamic logic, and their correctness is quite obvious. So,

it remains to introduce inference rules for the additional program constructs.

From theorem 3.10 we can derive the following rules:23

[(�; �)]';�) �

[(�; �)]';�) �
(sim com l)

�) [(�; �)]';�

�) [(�; �)]';�
(sim com r)

[(�1; (�2; �3))]';�) �

[((�1; �2); �3)]';�) �
(sim ass l)

�) [(�1; (�2; �3))]';�

�) [((�1; �2); �3)]';�
(sim ass r)

[�]';�) �

[(skip; �)]';�) �
(sim skip l)

�) [�]';�

�) [(skip; �)]';�
(sim skip r)

[((�1; �) [ (�2; �))]';�) �

[((�1 [ �2); �)]';�) �
(sim choice l)

23The schematic notation of rules is described at the beginning of appendix A.
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�) [((�1; �) [ (�2; �))]';�

�) [((�1 [ �2); �)]';�
(sim choice r)

[if � then (�1; �) else (�2; �)]';�) �

[(if � then �1 else �2; �)]';�) �
(sim if l)

�) [if � then (�1; �) else (�2; �)]';�

�) [(if � then �1 else �2; �)]';�
(sim if r)

[extend s by x0 with (�x0

x ; �)]';�) �

[(extend s by x with �; �)]';�) �
(sim extend l)

�) [extend s by x0 with (�x0

x ; �)]';�

�) [(extend s by x with �; �)]';�
(sim extend r)

where x0 2 Xs is a variable not occurring in � or �.

We do not give rules for programs where compositions or (while) loops

are involved in simultaneous execution for two reasons: �rstly, such situation

does not appear in evolving algebras (cf. de�nition 4.1)24, and secondly such

rules would be quite nasty (including renaming of a lot of signature symbols

and subtle formulas for capturing clashes of function updates and domain

extensions).

For the rules dealing with simultaneous execution of assignments and

function updates some preparatory is needed. Firstly, a notational one: we

write simply (f1t1 := t1; : : : ; fntn := tn) to denote a simultaneous execution

of assignments and function updates. That is (due to theorem 3.10(b)) we

omit the brackets and we do not di�er (syntactically) between assignments

and function updates, i.e. the fi in fiti := ti may be variable symbols, which

is possible by using x� := t (where � is the empty term tuple) as a notation

for an assignment x := t. Thus, syntactically variables are treated just as

constants (0-ary function symbols), which enables a compact and convenient

notation.

Secondly, we de�ne a formula25

affects
�
ft := t; gx

�
:�

(
x = t , if f � g

false , otherwise

24However, allowing constructs for sequential execution in evolving algebra rules is some-

times convenient, as e.g. in [6].
25We use (t1; : : : ; tn) = (t0

1
; : : : ; t0n) as an abbreviation for the conjunction of equations

t1 = t0
1
^ � � � ^ tn = t0n.
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which is true if the function update (or assignment) ft := t a�ects the value

of the term gx, and a formula

clash
�
f1t1 := t1; f2t2 := t2

�
:�

(
t1 = t2 ^ t1 6= t2 , if f1 � f2
false , otherwise

which is true if the function updates (or assignments) f1t1 := t1 and f2t2 := t2
clash.

Our proposal for a rule for symbolic execution of simultaneous function

updates and assignments is as follows:26

f 0
1
t1 = t1; : : : ; f

0

ntn = tn;V
1�i�n 8xi:

� V
1�j�n : affects

�
fjtj := tj; fixi

�
! f 0ixi = fixi

�
;

�) '
f 0
1
;:::;f 0n

f1;:::;fn
;�

�) [(f1t1 := t1; : : : ; fntn := tn)]';�
(sim update r)

where the f 0
1
; : : : ; f 0n are new

27 function symbols (or new variables in the case

of assignments) with the same sorting as f1; : : : ; fn, and with f 0i � f 0j i�

fi � fj . For fi 2 Fs;s, xi 2 Xs is a vector of distinct new variables.28

This rule needs some explanation. The new function symbols (or vari-

ables) f 0i play the part of the functions resulting from updating the functions

fi. With this in mind the premise of the rule (sim update r) can be read as:

If the new functions behave as imposed by the updates

f 0
1
t1 = t1; : : : ; f

0

ntn = tn;

and behave on all locations not a�ected by any update just as the original

functions V
1�i�n 8xi:

� V
1�j�n : affects

�
fjtj := tj; fixi

�
! f 0ixi = fixi

�
;

and if all other assumptions hold

�

then follows that

)

26'
f 0

1
;:::;f 0

n

f1;:::;fn
is the formula resulting from syntactically replacing the function symbols (or

variables) f1; : : : ; fn by the function symbols (or variables) f 0
1
; : : : ; f 0n in '.

27Here and in all what follows, new means \not occurring in the conclusion of the rule".
28Given (x1; : : : ; xn) 2 Xs then 8(x1; : : : ; xn):' is an abbreviation for 8x1:(: : :8xn:').

For the empty tuple of variables � we de�ne 8�:' :� true.
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the formula ' where the updated functions are used holds

'
f 0
1
;:::;f 0

n

f1;:::;fn
;

or one of the other conjectures holds

�:

Notice that

f 0
1
t1 = t1; : : : ; f

0

ntn = tn !

V
1�i�n

V
i<j�n : clash

�
fiti := ti; fjtj := tj

�
:

There is no need for a premise dealing with the case a clash occurs: re-

member that a clash is de�ned to behave like non-termination, i.e. [(f1t1 :=

t1; : : : ; fntn := tn)]' is true in this case.

The following rule for symbolic execution of a simultaneous update in the

antecedent is very similar to the above.

f 0
1
t1 = t1; : : : ; f

0

ntn = tn;V
1�i�n 8xi:

� V
1�j�n : affects

�
fjtj := tj; fixi

�
! f 0ixi = fixi

�
;

'
f 0
1
;:::;f 0

n

f1;:::;fn
;�) �W

1�i�n

W
i<j�n clash

�
fiti := ti; fjtj := tj

�
;�) �

[(f1t1 := t1; : : : ; fntn := tn)]';�) �
(sim update l)

The �rst premise di�ers from the one in (sim update r) only in the position

of the occurrence of '
f 0
1
;:::;f 0n

f1;:::;fn
. The second premise deals with the case a clash

occurs. Notice that in the case of a single assignment the rules (sim update l,

sim update r) degenerate to the ordinary assignment rules (assign l, assign r)

(cf. appendix A).

Finally, here is our proposal for rules for the extend construct.

new(x0; freevars; fcts); [�x0

x ]';�
jx0 ) �jx

0

[extend s by x with �]';�) �
(extend l)

new(x0; freevars; fcts);�jx
0

) [�x0

x ]';�
jx0

�) [extend s by x with �]';�
(extend r)

where x0 2 Xs is a new variable of sort s, freevars denotes the set of all

variables occurring free in the conclusion and fcts denotes the set of all

function symbols occurring in the conclusion. �jx
0

;�jx
0

are constructed from
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�;� by recursively replacing all quanti�ed subformulas 8y: with y 2 Xs by

8y:(y = x0 _  jx
0

). Given any system of �nite sets of variables ~X � X and

any �nite set of function symbols ~F � F , then the formula

new(x0; ~X; ~F ) :�

V
y2 ~Xs

�
y 6= x0

�
^

V
s2S�

V
f2 ~Fs;s

8y:
�
fy 6= x0

�
is true in a state if the value of x0 di�ers from the values of all variables in ~Xs

and from all values of functions in [s2S� ~Fs;s. The correctness of (extend l)

and (extend r) is not obvious. So this necessitates a proof. We start with

the following lemma.

Lemma 5.5 (extension)

Let SIG = (S;F ) a signature, X a system of variables for SIG, s 2 S,

� 2 EPROG(SIG;X), ' 2 EDL(SIG;X), and x; x0 2 Xs with x0 6� x and

x0 does not occur in � or '. Furthermore let st = (A; v) 2 STATE(SIG;X).

(a) there is an a 62 As with (st+s fag)[x a] j= ' i�

(st+s fag)[x a] j= ' for all a 62 As

(b) (st+s fag)[x
0 a] j= new(x0; ~X; ~F )

for all a 62 As and �nite ~X � X, ~F � F

(c) st j= ' i� for all a 62 As is (st+s fag)[x
0 a] j= 'jx

0

where 'jx
0

is constructed from ' by recursively replacing all quanti�ed

subformulas 8y: with y 2 Xs by 8y:(y = x0 _  jx
0

)

(d) st j= [extend s by x with �]' i�

(st+s fag)[x
0 a] j= [�x0

x ]' for all a 62 As.

Proof. (a) holds because for a; b 62 As the states (st +s fag)[x  a] and

(st +s fbg)[x  b] are isomorphic. (b) is obvious. (c) can be shown by

structural induction on the formula '. The proof of (d) is a little bit tricky

and needs more e�ort. It is given in appendix B.4.

Theorem 5.6 (correctness of extend rules)

The rules (extend l) and (extend r) are correct.

Proof. Let SIG = (S;F ) a signature, X a system of variables for SIG.

To prove correctness of rule (extend l) we have to show that for all s 2 S,

� 2 EPROG(SIG;X), ' 2 EDL(SIG;X), and x; x0 2 Xs with x
0 6� x and

x0 does not occur in � or ' it holds that

j= new(x0; freevars; fcts); [�x0

x ]';�
jx0 ) �jx

0

(A)

implies

j= [extend s by x with �]';�) �: (B)
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Assuming (A) we get that for all st = (A; v) 2 STATE(SIG;X) and all

a 62 As holds

(st+s fag)[x
0 a] j= new(x0; freevars; fcts); [�x0

x ]';�
jx0 ) �jx

0

:

Together with lemma 5.5(a) follows that for all st at least one of the following

cases happens:29

� (st+s fag)[x
0 a] 6j= new(x0; freevars; fcts) for all a 62 As

� (st+s fag)[x
0 a] 6j= [�x0

x ]' for all a 62 As

� (st+s fag)[x
0 a] 6j= �jx

0

for all a 62 As

� (st+s fag)[x
0 a] j= �jx

0

for all a 62 As.

By applying lemma 5.5(b){(d) one gets that for all st at least one of the

following cases happens:

� st 6j= [extend s by x with �]'

� st 6j= �

� st j= �

which means that

st j= [extend s by x with �]';�) �

for all states st, i.e. (B) holds.

The correctness proof for (extend r) works very similar.

We conclude this section with some remarks.

Remark (completeness)

The rules presented here are not su�cient for a complete calculus. There are

several reasons for this incompleteness:

� Just as in ordinary dynamic logic there is no (e�ective) complete ax-

iomatization for the while construct.

� We have not given any rules for symbolic execution of programs where

compositions or (while) loops are involved in simultaneous execution.

29For simplicity but without loss of generality we assume � and � to be single formulas

(instead of tuples of formulas).
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� The rules dealing with domain extension (extend l, extend r) are not

equivalence preserving. Presumably, this can be achieved by adding for-

mulas 8x1; : : : ; xn:f(x1; : : : ; x
0; : : : ; xn) = UNDEFs to the antecedent

of the premise. These formulas impose the value of functions at the

new created element x0 to be unde�ned.30

However, we believe (and hope to demonstrate it in the foreseeable future)

that these kinds of incompleteness do not seriously restrict reasoning about

evolving algebras in practice.

Remark (economy of rules)

Possibly, the proposed rules lead to non-economic proofs. Especially, intro-

ducing new function symbols or variables (cf. sim update l, sim update r)

and doubling of parts of the program (cf. sim choice l, sim choice r, sim if l,

sim if r) (which might cause doubling of parts of proofs), should be avoided

whenever possible. In the next future we will work on such improvements of

the calculus.

Remark (separating static and dynamic part)

The function symbols from the signature of an evolving algebra can be dis-

tinguished into so-called dynamic functions, which might be updated during

a run of the evolving algebra, and so-called static functions, for which no

update exists in the rules of the evolving algebra. (The same distinction

is possible for variables.) In practice it is reasonable to make this separa-

tion explicit in the signature, a technique which is used e.g. in [19]. Besides

methodological merits one also gains advantages in (interactive) reasoning

about evolving algebras: All the information (axioms and derived lemmata)

about the static part can be kept globally, so that the current (sub-)goals in

a proof have only to keep information concerning the dynamic part. So the

goals become more readable and more tractable.

6 Conclusion and Related Work

We have de�ned syntax and semantics of EDL, an extension of dynamic logic

by update of functions, extension of universes and simultaneous execution.

This extension allows to directly represent (statements about) evolving al-

gebras. We have indicated that a calculus for EDL can be obtained from

a sequent calculus for (not extended) dynamic logic only by adding further

rules, but without modi�cations of original rules. This gives us reason to hope

that the KIV system, which supports interactive, evolutionary construction

30We have omitted these formulas, since we believe that in most practical reasoning

(about software) there is no need for inference steps like: \if a certain value is unde�ned,

then ...".
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of (complicated) dynamic logic proofs, can be turned into a powerful tool for

reasoning about evolving algebras only by extending it, i.e. without (substan-

tially) modifying existing code. This tool will be useful for proving certain

properties of single evolving algebras or relations between (two or more) evol-

ving algebras, and even for proving relations between PASCAL-like programs

and evolving algebras, and relations between algebraic �rst-order speci�ca-

tions and evolving algebras.

The work most close to ours, and with the same aim | which is to make

�rst steps towards (a system for) formal reasoning about evolving algebras

(and related speci�cation formalisms, e.g. COLD [9]) | was done by Groen-

boom and Renardel de Lavalette [11, 12]. In [11] Groenboom and Renardel

de Lavalette present MLCM (Modal Logic of Creation and Modi�cation),

which is (as EDL) a derivation from traditional dynamic logic. On the basis

of MLCM they developed a Formal Language for Evolving Algebras (FLEA2)

[12]. Though closely related there are substantial di�erences to our approach.

The semantics of FLEA2 is de�ned using a so-called super-universum (cf.

[14]) and special pre-de�ned functions (e.g. Reserve). Furthermore a rep-

etition construct is available only in MLCM but not in FLEA2. A minor

di�erence is that in the semantics of the extend construct presented here

the variable is bound locally and not globally. The axiomatization for MLCM

and FLEA2 considerably di�ers from the sequent calculus proposed in this

paper (which is based on the idea of symbolic execution). While the aim of

Groenboom and Renardel de Lavalette is to get an axiomatization which is

as complete as possible, we have presented a calculus designed for practical

use (in the KIV system).

Another proposal for reasoning about evolving algebras, restricted to in-

variance properties of single evolving algebras, can be found in Poetzsch-

He�ter's work on deriving partial correctness logics from evolving algebras

[20]. In order to prove that an evolving algebra has an invariance property

INV , one has to show that INV holds in the initial state, in formulas

START ! INV;

(the formula START describes the relevant properties of the initial state)

and that INV is invariant during computation, in formulas

INV ! wb[INV ]:

Here wb is a weakest backward transformer in the style of the weakest pre-

condition transformer of Hoare logic, i.e. the (�rst-order) formula wb[INV ]

expresses that INV holds in all states that can be reached by �ring one of

the rules of the evolving algebra.

Another work, which has strongly stimulated our interest in the topic, is

that of Schellhorn and Ahrendt [22]. Their aim is to reconstruct the WAM
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compiler correctness proofs outlined in [6] in a rigorous way supported by de-

duction systems. In doing so, the KIV system has already been successfully

applied for reasoning about (a representation of a certain class of) evolving

algebras. For this purpose the KIV system was not adapted in any way, but

evolving algebras are simulated by formalizing dynamic functions as associ-

ation lists, i.e. as explicit data. (A similar technique is used in [20]).
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A Inference Rules for EDL

Notations

We assume a given signature SIG = (S;F ) with a system X of variables,

and use the following meta-variables:

t; t1; t2; t
0

1
; t0

2
; : : : for terms from TF (X)

x; x0; x1; x2; : : : for variables from X

f; f1; f2; : : : for function symbols from F

s for sorts from S

'; for formulas from EDL(SIG;X)

� for boolean expressions from BXP (SIG;X)

�;� for tuples of formulas from EDL(SIG;X)

�; �; �1; �2; �3 for programs from EPROG(SIG;X).

Thus each item below represents an in�nite set of rules, with the range of

meta-variables as just de�ned.

A relaxed notation for sequences is used. E.g. denotes

';�) �;  

the sequence with antecedent (';�) which results from attaching the formula

' in front of the tuple �, and with succedent (�;  ) which results from

attaching the formula  at the end of the tuple �.

Propositional Rules

';�) ';�
(ax)

false;�) �
(false l)

�) ';�  ;�) �

'!  ;�) �
(imp l)

';�)  ;�

�) '!  ;�
(imp r)

�) ';� ';�) �

�) �
(cut)

Structure Rules

�) �
';�) �

(weakening l) �) �
�) ';�

(weakening r)

�; ') �

';�) �
(rotate l)

�) �; '

�) ';�
(rotate r)
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Equality Rules31

) t = t
(reexivity)

t1 = t2) t2 = t1
(symmetry)

t1 = t2; t2 = t3) t1 = t3
(transitivity)

t1 = t0
1
; : : : ; tn = t0n ) f(t1; : : : ; tn) = f(t0

1
; : : : ; t0n)

(congruence)

Counter Rules

czero = csucc(�))
(minimal element)

csucc(�1) = csucc(�2)) �1 = �2
(injectivity of csucc)

'(czero);8�0:
�
'(�0)! '(csucc(�0))

�
) 8�:'(�)

(induction),32�0 new

Quanti�er Rules

[�]';8x:';�) �

8x:';�) �
(all l), � 2 33PROG(SIG;X) with34asg(�) � fxg

�) 'x0

x ;�

�) 8x:';�
(all r), x0 new

31In the KIV system equational reasoning is (mainly) done by the so called simpli�er

tactic, which works in the manner of a rewrite system.
32'(czero) is the formula resulting from substituting all free occurrences of � by czero

in '(�), etc.
34Notice that � is not any program from EPROG(SIG;X), e.g. function updates and

domain extensions are not allowed in it.
34asg(�) is the set of all variables occurring on the left-hand side of assignments in a

program � 2 PROG(SIG;X).
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Rules for Basic Program Constructs

';�) �

[skip]';�) �
(skip l)

�) ';�

�) [skip]';�
(skip r)

x0 = t; 'x0

x ;�) �

[x := t]';�) �
(assign l)

x0 = t;�) 'x0

x ;�

�) [x := t]';�
(assign r), x0 new

[�]'; [�]';�) �

[(� [ �)]';�) �
(choice l)

�) [�]';� �) [�]';�

�) [(� [ �)]';�
(choice r)

[�][�]';�) �

[(�;�)]';�) �
(comp l)

�) [�][�]';�

�) [(�;�)]';�
(comp r)

�; [�]';�) � [�]';�) �;�

[if � then � else �]';�) �
(cond l)

�;�) [�]';� �) �; [�]';�

�) [if � then � else �]';�
(cond r)

8�:[loop if � then � times �](� _ ');�) �

[while � do �]';�) �
(while l), � new

�) [loop if � then � times �](� _ ');�

�) [while � do �]';�
(while r), � new

[�]8�:[loop � times �]';';�) �

8�:[loop � times �]';�) �
(loop unwind)

';�) �

[loop � times czero]';�) �
(czero loop l)

�) ';�

�) [loop � times czero]';�
(czero loop r)

[�][loop � times �]';�) �

[loop � times csucc(�)]';�) �
(csucc loop l)

�) [�][loop � times �]';�

�) [loop � times csucc(�)]';�
(csucc loop r)
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Rules for Additional Program Constructs

f 0
1
t1 = t1; : : : ; f

0

ntn = tn;V
1�i�n 8xi:

� V
1�j�n : affects

�
fjtj := tj; fixi

�
! f 0ixi = fixi

�
;

'
f 0
1
;:::;f 0n

f1;:::;fn
;�) �W

1�i�n

W
i<j�n clash

�
fiti := ti; fjtj := tj

�
;�) �

[(f1t1 := t1; : : : ; fntn := tn)]';�) �
(sim update l)

f 0
1
t1 = t1; : : : ; f

0

ntn = tn;V
1�i�n 8xi:

� V
1�j�n : affects

�
fjtj := tj; fixi

�
! f 0ixi = fixi

�
;

�) '
f 0
1
;:::;f 0

n

f1;:::;fn
;�

�) [(f1t1 := t1; : : : ; fntn := tn)]';�
(sim update r)

where the f 0
1
; : : : ; f 0n are new function symbols (or new variables), the xi are

tuples of new distinct variables, and

affects
�
fjtj := tj; fixi

�
:�

(
x = tj , if fj � fi
false , otherwise

clash
�
fiti := ti; fjtj := tj

�
:�

(
ti = tj ^ ti 6= tj , if fi � fj
false , otherwise

[(�; �)]';�) �

[(�; �)]';�) �
(sim com l)

�) [(�; �)]';�

�) [(�; �)]';�
(sim com r)

[(�1; (�2; �3))]';�) �

[((�1; �2); �3)]';�) �
(sim ass l)

�) [(�1; (�2; �3))]';�

�) [((�1; �2); �3)]';�
(sim ass r)

[�]';�) �

[(skip; �)]';�) �
(sim skip l)

�) [�]';�

�) [(skip; �)]';�
(sim skip r)

[((�1; �) [ (�2; �))]';�) �

[((�1 [ �2); �)]';�) �
(sim choice l)
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�) [((�1; �) [ (�2; �))]';�

�) [((�1 [ �2); �)]';�
(sim choice r)

[if � then (�1; �) else (�2; �)]';�) �

[(if � then �1 else �2; �)]';�) �
(sim if l)

�) [if � then (�1; �) else (�2; �)]';�

�) [(if � then �1 else �2; �)]';�
(sim if r)

[extend s by x0 with (�x0

x ; �)]';�) �

[(extend s by x with �; �)]';�) �
(sim extend l), x0 new

�) [extend s by x0 with (�x0

x ; �)]';�

�) [(extend s by x with �; �)]';�
(sim extend r), x0 new

new(x0; freevars; fcts); [�x0

x ]';�
jx0 ) �jx

0

[extend s by x with �]';�) �
(extend l)

new(x0; freevars; fcts);�jx
0

) [�x0

x ]';�
jx0

�) [extend s by x with �]';�
(extend r)

where x0 2 Xs is a new variable of sort s, freevars denotes the set of all

variables occurring free in the conclusion and fcts denotes the set of all

function symbols occurring in the conclusion. �jx
0

;�jx
0

are constructed from

�;� by recursively replacing all quanti�ed subformulas 8y: with y 2 Xs by

8y:(y = x0 _  jx
0

). For any system of �nite sets of variables ~X � X and any

�nite set of function symbols ~F � F the formula new(x0; ~X; ~F ) is de�ned by

new(x0; ~X; ~F ) :�

V
y2 ~Xs

�
y 6= x0

�
^

V
s2S�

V
f2 ~Fs;s

8y:
�
fy 6= x0

�
:
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B Postponed Proofs

This section presents the more complicated and technical proofs. It starts

with providing some facts or lemmata used later.

B.1 Useful Lemmata

Fact B.1 (program semantics and state operations)

Let SIG = (S;F ) a signature, X a system of variables for SIG, s 2 S,

x 2 Xs, � 2 EPROG(SIG;X), and st = (A; v) and st0 = (A0; v0) states

from STATE(SIG;X). Then it holds:

(a) If st [[�]] st0, a 2 As, and x does not occur in � then

(st[x a]) [[�]] (st0[x a]).

(b) If st [[�]] st0 and a 62 As [A
0

s then35 (st+s fag) [[�]] (st
0+s fag).

(c) If (st[x a]) [[�]] st0 and x0 2 Xs does not occur in � then

(st[x0 a]) [[�x0

x ]] (st
0[x st(x)][x0 st0(x)]).

(d) If (st[x a]) [[�]] st0 and x does not occur in � then

st [[�]] st0([x st(x)]).

(e) If (st +s fag) [[�]] st
0 then there is some state st00 2 STATE(SIG;X)

such that st [[�]] st00 and st0 = st00 +s fag for some a 2 A0s nA
00

s .

Proof. All proofs work by structural induction on programs �.

Lemma B.2 (join and other state operations)

Let SIG = (S;F ) a signature, X a system of variables for SIG, s 2 S,

x 2 Xs, and st, st
0, and st00 states from STATE(SIG;X).

(a) If st00(x) = st(x), a 2 As\A
00

s , and st; st0 and st; st00 are consistent

then are st[x a] ; st0 and st[x a]; st00[x  a] consistent with

st0 �st[x a] st
00[x a] = st0 �st st

00.

(b) If a 2 A0snA
00

s and the state changes st; st0 and st; st00 are consistent

then are (st +s fag) ; st0 and (st +s fag) ; (st00 +s fag) consistent

with st0 �(st+sfag) (st
00 +s fag) = st0 �st st

00.

(c) If st00(x) = st(x), a 2 A0s, and the state changes st; st0 and st; st00

are consistent then are st ; st0[x  a] and st ; st00 consistent with

(st0[x a])�st st
0 = (st0 �st st

00)[x a].

35This does not hold if random assignments | which are fortunately not available in

EDL | occur in �!
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(d) If a 2 A0s n (A
00

s [ As) and the state changes (st +s fag) ; st0 and

(st+sfag); (st00+sfag) are consistent then are st; st0 and st; st00

consistent with st0 �st st
00 = st0 �(st+sfag) (st

00 +s fag).

Proof. Essentially, the proofs work by simply unfolding the de�nitions.

B.2 Proof for Fact 3.8

Proof. (a) follows obviously from (the symmetry in) de�nitions 3.6 and

3.7. The proof of (b) needs more e�ort. We start by unfolding the de�nition

of consistency.

� state changes st; st0 and st; st00, and

state changes st; (st0 �st st
00) and st; st000 are consistent

,

(1a) A0s \A
00

s = As

(A0s [A
00

s) \A
000

s = As

(2a) if a 2 As then:

fA0(a) = fA(a) or fA00(a) = fA(a) or fA0(a) = fA00(a)

fA0(a) 6= fA(a) implies�
fA0(a) = fA(a) or fA000(a) = fA(a) or fA0(a) = fA000(a)

�
fA00(a) 6= fA(a) implies�

fA00(a) = fA(a) or fA000(a) = fA(a) or fA00(a) = fA000(a)
�

fA0(a) = fA00(a) = fA(a) implies�
fA(a) = fA(a) or fA000(a) = fA(a) or fA(a) = fA000(a)

�
(3a) v0s(x) = vs(x) or v

00

s (x) = vs(x) or v
0

s(x) = v00s (x)

v0s(x) 6= vs(x) implies�
v0s(x) = vs(x) or v

000

s (x) = vs(x) or v
0

s(x) = v000s (x)
�

v00s (x) 6= vs(x) implies�
v00s (x) = vs(x) or v

000

s (x) = vs(x) or v
00

s (x) = v000s (x)
�

v0s(x) = v00s (x) = vs(x) implies�
vs(x) = vs(x) or v

000

s (x) = vs(x) or vs(x) = v000s (x)
�

� state changes st; st00 and st; st000, and

state changes st; st0 and st; (st00�st st
000) are consistent

,

(1b) A00s \ A
000

s = As

A0s \ (A
00

s [A
000

s ) = As

(2b) if a 2 As then:

fA00(a) = fA(a) or fA000(a) = fA(a) or fA00(a) = fA000(a)
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fA00(a) 6= fA(a) implies�
fA0(a) = fA(a) or fA00(a) = fA(a) or fA0(a) = fA00(a)

�
fA000(a) 6= fA(a) implies�

fA0(a) = fA(a) or fA000(a) = fA(a) or fA0(a) = fA000(a)
�

fA00(a) = fA000(a) = fA(a) implies�
fA0(a) = fA(a) or fA(a) = fA(a) or fA0(a) = fA(a)

�
(3b) v00s (x) = vs(x) or v

000

s (x) = vs(x) or v
00

s (x) = v000s (x)

v00s (x) 6= vs(x) implies�
v0s(x) = vs(x) or v

00

s (x) = vs(x) or v
0

s(x) = v00s (x)
�

v000s (x) 6= vs(x) implies�
v0s(x) = vs(x) or v

000

s (x) = vs(x) or v
0

s(x) = v000s (x)
�

v00s (x) = v000s (x) = vs(x) implies�
v0s(x) = vs(x) or vs(x) = vs(x) or v

0

s(x) = vs(x)
�

We proceed with proving

(1a) , (1b)

(2a) , (2b)

(3a) , (3b).

(1a) ,

A0s � As

A00s � As

A000s � As

A0s \ A
00

s � As

A0s \ A
000

s � As

A00s \ A
000

s � As

, (1b):

(2a) ,

fA0(a) = fA(a) or fA00(a) = fA(a) or fA0(a) = fA00(a)

fA0(a) = fA(a) or fA000(a) = fA(a) or fA0(a) = fA000(a)

fA00(a) = fA(a) or fA000(a) = fA(a) or fA00(a) = fA000(a)

,

fA00(a) = fA(a) or fA000(a) = fA(a) or fA00(a) = fA000(a)

fA0(a) = fA(a) or fA00(a) = fA(a) or fA0(a) = fA00(a)

fA0(a) = fA(a) or fA000(a) = fA(a) or fA0(a) = fA000(a)

, (2b):

(3a) ,

v0s(x) = vs(x) or v00s (x) = vs(x) or v0s(x) = v00s (x)

v0s(x) = vs(x) or v000s (x) = vs(x) or v0s(x) = v000s (x)

v00s (x) = vs(x) or v000s (x) = vs(x) or v00s (x) = v000s (x)

,

v00s (x) = vs(x) or v000s (x) = vs(x) or v00s (x) = v000s (x)

v00s (x) = vs(x) or v0s(x) = vs(x) or v0s(x) = v00s (x)

v000s (x) = vs(x) or v0s(x) = vs(x) or v0s(x) = v000s (x)

, (3b):
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It remains to show that

stll := (st0 �st st
00)| {z }

=:stl

�stst
000 = st0 �st (st

00 �st st
000)| {z }

=:str

=: strr

if the corresponding state changes are consistent. With

stll = (All; vll)

stl = (Al; vl)

strr = (Arr; vrr)

str = (Ar; vr)

it holds

All
s = (A0s [A

00

s) [A
000

s

= A0s [ (A
00

s [A
000

s )

= Arr
s :

Furthermore

fAll(a) =

8>>>>>>>><
>>>>>>>>:

UNDEFs , if a 2 All
s n (A

l
s [A

000

s )

fAl(a) , if a 2 Al
s nAs

fA000(a) , if a 2 A000s nAs

fAl(a) , if a 2 As and fAl(a) 6= fA(a)

fA000(a) , if a 2 As and fA000(a) 6= fA(a)

fA(a) , otherwise

=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

UNDEFs , if a 2 All
s n (A

0

s [A
00

s [ A
000

s )

fA0(a) , if a 2 A0s nAs

fA00(a) , if a 2 A00s nAs

fA000(a) , if a 2 A000s nAs

fA0(a) , if a 2 As and fA0(a) 6= fA(a)

fA00(a) , if a 2 As and fA00(a) 6= fA(a)

fA000(a) , if a 2 As and fA000(a) 6= fA(a)

fA(a) , otherwise

=

8>>>>>>>><
>>>>>>>>:

UNDEFs , if a 2 Arr
s n (A

0

s [A
r
s)

fA0(a) , if a 2 A0s nAs

fAr(a) , if a 2 Ar
s nAs

fA0(a) , if a 2 As and fA0(a) 6= fA(a)

fAr(a) , if a 2 As and fAr(a) 6= fA(a)

fA(a) , otherwise

= fArr (a)
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where we have used that

fAll(a) = UNDEFs

, a 2
�
All

s n (A
l
s [A

000

s )
�
[
�
Al

s n (A
0

s [ A
00

s)
�

, a 2 All
s n (A

0

s [A
00

s [A
000

s )

, a 2 Arr
s n (A

0

s [A
00

s [A
000

s )

, a 2
�
Arr

s n (A
0

s [A
r
s)
�
[
�
Ar

s n (A
00

s [A
000

s )
�

, fArr (a) = UNDEFs:

Finally it holds

vlls (x) =

8><
>:
vls(x) , if vls(x) 6= vs(x)

v000s (x) , if v000s (x) 6= vs(x)

vs(x) , otherwise

=

8>>><
>>>:
v0s(x) , if v0s(x) 6= vs(x)

v00s (x) , if v00s (x) 6= vs(x)

v000s (x) , if v000s (x) 6= vs(x)

vs(x) , otherwise

=

8><
>:
v0s(x) , if v0s(x) 6= vs(x)

vrs(x) , if vrs(x) 6= vs(x)

vs(x) , otherwise

= vrrs (x):

which �nishes the proof of stll = strr and so of (b).

In (c) the consistency of the state changes st; st and st; st0 is quite

obvious.

st� := st�st st
0 = st0 where st� =: (A�; v�)

follows from:

A�s = As [ A
0

s = A0s

fA�(a) =

8>>>><
>>>>:
UNDEFs , if a 2 A�s n (As [ A

0

s) = ;

fA0(a) , if a 2 A0s nAs

fA0(a) , if a 2 As and fA0(a) 6= fA(a)

fA(a) , if a 2 As and fA0(a) = fA(a)

= fA0(a)

v�s (x) =

(
v0s(x) , if v0s(x) 6= vs(x)

v0s(x) , if v0s(x) = vs(x)

= v0s(x):

This concludes the proof for fact 3.8.
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B.3 Proof for Theorem 3.10

Proof. (a), (b), and (c) follow directly from fact 3.8. In (c) it is employed

that no program from EPROG(SIG;X) is able to discard elements from

universes.

The proof for (d) works as follows:

st [[((�1 [ �2); �)]] st
0

, there are st�, st� such that (st [[�1]] st� or st [[�2]] st�) and st [[�]] st�,

and the state changes st; st� and st; st� are consistent

with st0 = st� �st st�

, (there are st�, st� such that st [[�1]] st� and st [[�]] st�,

and the state changes st; st� and st; st� are consistent

with st0 = st� �st st�)

or

(there are st�, st� such that st [[�2]] st� and st [[�]] st�,

and the state changes st; st� and st; st� are consistent

with st0 = st� �st st�)

, st [[((�1; �) [ (�2; �))]] st
0

(e) can be proved very similar to (d). It remains to show (f), which is

done in the rest of this subsection. The two implications of the equivalence

st[[(extend s by x with �; �)]]st0 , st[[extend s by x0 with (�x0

x ; �)]]st
0

are proven separately. For the �rst one we assume

st [[(extend s by x with �; �)]] st0

which means that there are states st�; st�; st
00 and an a 2 A00s nAs such that

(1) (st+s fag)[x a] [[�]] st00

(2) st� = st00[x st(x)]

(3) st [[�]] st�

(4) st; st� and st; st� consistent with st� �st st� = st0.

By applying fact B.1(c) on (1) and choosing

st� := st00[x st(x)][x0 st00(x)]

we get
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(1') (st+s fag)[x
0 a] [[�x0

x ]] st�.

By applying fact B.1(b) and B.1(a) on (3) and choosing

st� := (st� +s fag)[x
0 a]

we get

(2') (st+s fag)[x
0 a] [[�]] st�.

If we further set st00 := (st� �st st�)[x
0 st00(x)] it follows

(3') st0 = st00[x0 st(x0)]

from (4) and the fact that x0 does not occur in � or �. Applying lemmaB.2(b)

and B.2(a) on (4) yields that the state changes (st +s fag)[x
0  a] ; st�

and (st+s fag)[x
0 a]; st� are consistent with

st� �(st+sfag)[x0 a] st� = st� �st st�:

Together with lemma B.2(c) and the fact that st�[x
0 st00(x)] = st� (which

is due to (2)) follows that

(4') (st+s fag)[x
0 a]; st� and (st+s fag)[x

0 a]; st� are consistent

with st� �(st+sfag)[x0 a] st� = st00:

Summarizing, we have shown that there are states st00; st�; st� and an a 2

A00s nAs such that (1'), (2'), (3') and (4') hold. By de�nition this implies

st [[extend s by x0 with (�x0

x ; �)]] st
0:

For the proof of the other implication we assume

st [[extend s by x0 with (�x0

x ; �)]] st
0

i.e. that there are states st00; st�; st� and an a 2 A00s nAs with

(1') (st+s fag)[x
0 a] [[�y

x]] st�

(2') (st+s fag)[x
0 a] [[�]] st�

(3') st0 = st00[x0 st(x0)]

(4') (st+s fag)[x
0 a]; st� and (st+s fag)[x

0 a]; st� are consistent

with st� �(st+sfag)[x0 a] st� = st00.

By applying fact B.1(c) on (1') and choosing

st00 := st�[x
0 (st+s fag)(x

0)][x st�(x)]

we get
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(1) (st+s fag)[x a] [[�]] st00

since (�x0

x )
x
x0 � �. Because of (1') is st�(x) = st(x), and so

st�[x
0 st(x0)] = st�[x

0 st(x0)][x st(x)]

= st00[x st(x)]

Thus we get

(2) st� = st00[x st(x)]

for st� := st�[x
0 st(x0)]. Applying fact B.1(d) on (2') yields

(st+s fag) [[�]] st�[x
0 (st+s fag)(x

0)]:

Together with fact B.1(e) follows that there is a state st� with

(3) st [[�]] st�

and st� +s fag = st�[x
0  st(x0)] (for an a 62 A�

s ). From (4') follows that

(st +s fag) ; st�[x
0  st(x0)] and (st +s fag) ; st�[x

0  st(x0)] are

consistent with

st�[x
0 st(x0)]�(st+sfag) st�[x

0 st(x0)] = st00[x0 st(x0)]

where the last equation is due to (3'). which means that (st +s fag); st�
and (st+sfag); (st�+sfag) are consistent with st��(st+sfag)(st�+sfag) =

st00[x0 st(x0)] = st0, where the last equation is due to (3'). Applying lemma

B.2(d) results in

(4) st; st� and st; st� are consistent with st� �st st� = st0.

Summarizing, we have shown that there are three states st�; st�; st
00 and an

a 2 A00s nAs such that (1), (2), (3) and (4) hold. By de�nition this implies

st [[(extend s by x with �; �)]] st0:

This concludes the proof of theorem 3.10.

B.4 Proof for Lemma 5.5

Proof. Intuitively, (a) holds because the states (st +s fag)[x  a] and

(st +s fbg)[x b] are isomorphic whenever a; b 62 As . Technically, (a) can

be proved by structural induction on the formula '.

(b) is clear, since a 62 As.
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The proof of (c) works by structural induction on the formula '. We

present only the most interesting case, i.e. where ' � 8x: for some x 2 Xs,

 2 EDL(SIG;X):

st j= 8x: 

, st[x b] j=  for all b 2 As

,
�
st[x b] +s fag

�
[x0 a] j=  jx

0

for all b 2 As

, (st+s fag)[x
0 a][x b] j=  jx

0

for all b 2 As

,
�
b = a or (st+s fag)[x

0 a][x b] j=  jx
0
�
for all b 2 As [ fag

, (st+s fag)[x
0 a][x b] j= (x = x0 _  jx

0

) for all b 2 As [ fag

, (st+s fag)[x
0 a] j= 8x:(x= x0 _  jx

0

):

Here the second equivalence is due to the induction hypothesis.

It remains to show (d). Due to the following equivalences

st j= [extend s by x with �]'

, st0 j= ' for all st0 such that there is an st00 and an a 2 A00s nAs

with (st+s fag)[x a] [[�]] st00 and st0 = st00[x st(x)]

, st00[x st(x)] j= ' for all st00 such that there is an a 2 A00s nAs

with (st+s fag)[x a] [[�]] st00 (A)

(st+s fag)[x
0 a] j= [�x0

x ]' for all a 62 As

, st0 j= ' for all st0 and all a 2 A0s nAs

with (st+s fag)[x
0 a] [[�x0

x ]] st
0

, st0 j= ' for all st0 such that there is an a 2 A0s nAs

with (st+s fag)[x
0 a] [[�x0

x ]] st
0 (B)

it is su�cient to prove

(A) , (B):

Assuming (A) and choosing st00 = st0[x0  st(x0)][x  st0(x0)] one gets

that

st0[x0 st(x0)][x st0(x0)][x st(x)] j= '

for all st0 such that there is an a 2 A0s nAs with

(st+s fag)[x a] [[(�x0

x )
x
x0]] st

0[x0 st(x0)][x st0(x0)]:
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Together with fact B.1(c) follows that

st0[x0 st(x0)][x st(x)] j= '

for all st0 such that there is an a 2 A0s nAs with

(st+s fag)[x
0 a] [[�x0

x ]] st
0:

Since x0 does not occur in ' and st0(x) = st(x) (because x does not occur in

�x0

x ) it follows

st0[x0 st(x0)][x st(x)] j= ' , st0 j= '

and thus (B).

On the other hand, assuming (B) and choosing

st0 = st00[x st(x)][x0 st00(x)]

leads to

st00[x st(x)][x0 st00(x)] j= '

for all st00 such that there is an a 2 A00s nAs with

(st+s fag)[x
0 a] [[�x0

x ]] st
00[x st(x)][x0 st00(x)]:

Again with fact B.1(c) follows that

st00[x st(x)][x0 st00(x)] j= '

for all st00 such that there is an a 2 A00s nAs with

(st+s fag)[x a] [[�]] st00:

Since x0 does not occur in ' it is

st00[x st(x)][x0 st00(x)] j= ' , st00[x st(x)] j= '

and thus (A).

This concludes the proof of lemma 5.5.
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