Extending Dynamic Logic for Reasoning about Evolving Algebras

Arno Schönegge
Interner Bericht Nr. 49/95
November 1995

Universität Karlsruhe

Fakultät für Informatik

Institut für Logik, Komplexität und Deduktionssysteme

Extending Dynamic Logic for Reasoning about Evolving Algebras

Arno Schönegge
Universität Karlsruhe
Institut für Logik, Komplexität und Deduktionssysteme
D-76128 Karlsruhe, Germany
email: schoenegge@ira.uka.de
WWW: http://i11www.ira.uka.de/~schoeneg/

Abstract

The aim of this paper is to provide a logic for reasoning about evolving algebras $[13,14]$. This is done by extending a variant of dynamic logic $[10,18]$ with additional program constructs: update of functions, extension of universes, and simultaneous execution. A calculus for this extended dynamic logic can be obtained from a sequent calculus for (not extended) dynamic logic only by adding further rules, but without modifications of original rules. This gives us reason to hope that the KIV system (Karlsruhe Interactive Verifier) [21] can be turned into a tool for reasoning about evolving algebras only by extending it, i.e. without (substantially) modifying existing code.

1 Introduction

Evolving algebras Γ introduced by Gurevich [13Г 14$]$ Г are abstract machines mainly applied for the specification of several programming languages (e.g. Prolog [2Г7] ГOccam [16] $\mathrm{CC}[15]$) and of real and virtual architectures (e.g. APE [3]ГРVM [5]).

The usefulness of reasoning about evolving algebras is beyond question. For instance Certain properties of a single evolving algebra can only be guaranteed by formal proof (e.g. determinismГabsence of clashes Γ or so-called integrity constraints [13]). Another important thing is to prove relations between evolving algebras (e.g. equivalence). This is the technique of a proof of the WAM-compiler correctness [6] Гand some similar work (e.g. [4]). These are only a few examples in the range of applications of reasoning about evolving algebras. However Γ to our knowledge Γ up to now no (powerful) tool supporting the construction of formal proofs about evolving algebras exists. ${ }^{1}$ This paper aims to make first steps towards such a tool. The basic idea is to get a deduction system for evolving algebras by appropriately modifying the KIV system [21]. ${ }^{2}$ This modification basically means a kind of extension of the logic underlying the KIV system Which is a variant of dynamic logic [17Г10Г18]. In this paper we provide syntax Ssemantics and a sequent calculus for such an extension of dynamic logic. So Tour work can be thought of as a theoretical foundation for adapting the KIV system for reasoning about evolving algebras.

We start out from the definition of a variant of dynamic logic which is given in the next section. In section 3 this definition is extended by three additional constructs. The resulting extended dynamic logic (EDL) can be used to represent (statements about) evolving algebras. This is explained in Section 4. First steps towards a calculus for EDL are made in section 5. Finally i in the last section we draw conclusions and report on related work.

2 Basic Dynamic Logic

This section presents some basic definitions Гespecially the variant of dynamic logic we start from (which is quite close to a subset of the logic used in the KIV system).

[^0]
Definition 2.1 (notions for sets of tuples)

Given a set $A \Gamma n \in \mathrm{~N} \Gamma$ the set of n-tuples of A is denoted by A^{n}. We use $a_{1} \cdots a_{n}$ or (a_{1}, \ldots, a_{n}) as notations for tuples; the empty tuple (i.e. $n=0$) is written λ. FurthermoreTwe set:

- $A^{+}:=\bigcup_{n \in \mathbb{N} \backslash\{0\}} A^{n}$
- $A^{*}:=\bigcup_{n \in \mathbb{N}} A^{n}$.

For a set of (so-called) indices I and sets $A_{i} \Gamma i \in I \Gamma$ the family (or system) of the sets A_{i} is denoted by $\left(A_{i}\right)_{i \in I}$. For $i_{1} \cdots i_{n} \in I^{n}$ we define: ${ }^{3}$

- $A_{i_{1} \cdots i_{n}}:=A_{i_{1}} \times \cdots \times A_{i_{n}}$.

Definition 2.2 (signatures)

A signature $S I G=(S, F)$ consists of a finite set S of sorts and a set F of function symbols where F is the disjoint union of (possibly infinite ${ }^{4}$) sets $F_{\underline{s}, s}$ with $\underline{s} \in S^{*} \Gamma s \in S$. For $\underline{s}=s_{1} \cdots s_{n} \Gamma F_{\underline{s}, s}$ is the set of all n-ary function symbols from sorts $s_{1} \cdots s_{n}$ to sort s.

A system of variables for a signature $S I G=(S, F)$ is a family $X=$ $\left(X_{s}\right)_{s \in S}$ of (possibly infinite) pairwise disjoint sets X_{s}.

Definition 2.3 (terms)

Given SIG $=(S, F)$ and a system X of variables for $S I G \Gamma$ the family $T_{F}(X)=\left(T_{F, s}(X)\right)_{s \in S}$ of terms over SIG and X is defined as the least family of sets such that

- $\lambda \in T_{F, \lambda}(X) \Gamma$
- $X_{s} \subseteq T_{F, s}(X)$ for every $s \in S$ Гand
- $f \underline{t} \in T_{F, s}(X)$ for every $\underline{s} \in S^{*} \Gamma s \in S \Gamma f \in F_{\underline{s}, s} \Gamma \underline{t} \in T_{F, \underline{s}}(X)$.

Definition 2.4 (algebras, valuations)

For a signature $S I G=(S, F)$ a $S I G$-algebra \mathcal{A} is a tuple Γ written $\mathcal{A}=$ $\left(\left(A_{s}\right)_{s \in S},\left(f_{\mathcal{A}}\right)_{f \in F}\right)$ Гwhere $\left(A_{s}\right)_{s \in S}$ is a family of non-empty carrier sets ${ }^{5}$ (domain) and $\left(f_{\mathcal{A}}\right)_{f \in F}$ is a family of interpretations for the function symbols in F. Given $f \in F_{\underline{s}, s}$ with $\underline{s} \in S^{*}, s \in S \Gamma$ then $f_{\mathcal{A}}$ is a total function from $A_{\underline{s}}$ into A_{s}. The set of all $S I G$-algebras is denoted by $\operatorname{Alg}(S I G)$.

For a system X of variables for $S I G$ and an $\mathcal{A} \in A \lg (S I G)$ an \mathcal{A} valuation $v=\left(v_{s}\right)_{s \in S}$ is a family of total functions $v_{s}: X_{s} \rightarrow A_{s} . \operatorname{Val}(X, \mathcal{A})$ is the set of all such \mathcal{A}-valuations. For $s \in S \Gamma x \in X_{s} \Gamma$ and $a \in A_{s}$ Гwe write $v[x \leftarrow a]$ for the modification of v which assigns a to x and is otherwise the same as v.

[^1]
Definition 2.5 (disjoint signatures, sum of algebras)

Two signatures $S I G=(S, F) \Gamma S I G^{\prime}=\left(S^{\prime}, F^{\prime}\right)$ are said to be disjoint Γ written $S I G \cap S I G^{\prime}=\emptyset \Gamma$ if $S \cap S^{\prime}=\emptyset$ and $F \cap F^{\prime}=\emptyset$. In this case $S I G \cup S I G^{\prime}:=\left(S \cup S^{\prime}, F \cup F^{\prime}\right)$ is again a signature and from $\mathcal{A} \in A \lg (S I G) \Gamma$ $\mathcal{B} \in \operatorname{Alg}\left(S I G^{\prime}\right)$ a $\left(S I G \cup S I G^{\prime}\right)$-algebra

$$
\mathcal{A}+\mathcal{B}:=\left(\left((A+B)_{s}\right)_{s \in S \cup S^{\prime}},\left(f_{\mathcal{A}+\mathcal{B}}\right)_{f \in F \cup F^{\prime}}\right)
$$

can be constructed by (cf. in [8]: amalgamated sum of algebras)

$$
\begin{aligned}
& (A+B)_{s}:= \begin{cases}A_{s} & \text { } i \text { if } s \in S \\
B_{s} & \text { } i \text { if } s \in S^{\prime}\end{cases} \\
& f_{(\mathcal{A}+\mathcal{B})}:= \begin{cases}f_{\mathcal{A}} & \text { } \\
f_{\mathcal{B}} & \text { Гif } f \in F \\
\text { iif } f \in F^{\prime} .\end{cases}
\end{aligned}
$$

Definition 2.6 (semantics of terms)
Let $S I G=(S, F)$ be a signature ΓX a system of variables for $S I G \Gamma \mathcal{A} \in$ $\operatorname{Alg}(S I G) \operatorname{Cand} v \in \operatorname{Val}(X, \mathcal{A})$. The value $t_{v, \mathcal{A}}$ of a term $t \in \bigcup_{s \in S} T_{F, s}(X)$ in \mathcal{A} under v is given by:

- $x_{v, \mathcal{A}}:=v_{s}(x)$ for $x \in X_{s} \Gamma s \in S$;
- $(f \underline{t})_{v, \mathcal{A}}:=f_{\mathcal{A}}\left(\underline{t}_{v, \mathcal{A}}\right)$ for $\underline{s} \in S^{*} \Gamma s \in S \Gamma f \in F_{\underline{s}, s} \Gamma \underline{t}=t_{1} \cdots t_{n} \in T_{F, \underline{s}}(X)$
where $\left(t_{1} \cdots t_{n}\right)_{v, \mathcal{A}}:=t_{1 v, \mathcal{A}} \cdots t_{n v, \mathcal{A}}$.

Definition 2.7 (atomic formulas)

Let $S I G=(S, F)$ and X be a system of variables for SIG. The set $A T(S I G, X)$ of atomic formulas over $S I G$ and X is the least set satisfying:

- false $\in A T(S I G, X)$
- for $s \in S$ and $t_{1}, t_{2} \in T_{F, s}(X)$ is $\left(t_{1}=t_{2}\right) \in A T(S I G, X)$.

Definition 2.8 (boolean expressions)
Let $S I G=(S, F)$ and X be a system of variables for $S I G$. The set $B X P(S I G, X)$ of boolean expressions over $S I G$ and X is the least set satisfying:

- $A T(S I G, X) \subseteq B X P(S I G, X)$
- for $\varphi, \psi \in B X P(S I G, X)$ is $(\varphi \rightarrow \psi) \in B X P(S I G, X)$.

In the following definition so-called counters are introduced. This is a special built-in data structure used for inductive arguments about while loops (see definition 2.10 and appendix A) (cf. [18]).

Definition 2.9 (extension by counters)

For the counter signature $C S I G=\left(\{\operatorname{ctr}\}, F_{\lambda, c t r} \cup F_{c t r, c t r}\right)$ with $F_{\lambda, c t r}:=$ $\{c z e r o\}$ and $F_{c t r, c t r}:=\{c s u c c\}$ we fix a standard algebra $\mathcal{A}_{c t r}$ with the carrier $A_{\text {ctr }}=$ IN Γ and which gives czero and csucc their usual meaningsTi.e. zero and successor-function on natural numbers.

We assume all signatures $S I G$ considered in the following to be disjoint from CSIG. So the standard extension $S I G_{+}:=S I G \cup C S I G$ of SIG is well-defined. Correspondingly Γ we fix a countable Γ infinite set $X_{c t r}:=$ $\left\{\kappa, \kappa_{0}, \kappa_{1}, \ldots\right\}$ of variables for sort $\operatorname{ctr} \Gamma$ and assume all other sets of variables considered in the following Γ to be disjoint from $X_{\text {ctr }}$. So we can define the standard extension $X_{+}:=\left(X_{s}\right)_{s \in S \cup\{c t r\}}$ of a system $X=\left(X_{s}\right)_{s \in S}$ of variables for $S I G$. The standard extension of an $\mathcal{A} \in \operatorname{Alg}(S I G)$ is the $S I G_{+}$-algebra $\mathcal{A}_{+}:=\mathcal{A}+\mathcal{A}_{\text {ctr }}$.

Definition 2.10 (programs)
Given a signature $S I G=(S, F) \Gamma X$ a system of variables for $S I G \Gamma$ and $S I G_{+}=\left(S_{+}, F_{+}\right)$and X_{+}their standard extensions by counters. The set $\operatorname{PROG}(S I G, X)$ of programs over $S I G$ and X is the least set satisfying: ${ }^{6}$

- (skip)
skip $\in \operatorname{PROG}(S I G, X)$
- (assignment)
for $s \in S \Gamma x \in X_{s}$ Гand $t \in T_{F, s}(X)$ is
$(x:=t) \in \operatorname{PROG}(S I G, X)$
- (nondeterministic choice)
for $\alpha, \beta \in \operatorname{PROG}(S I G, X)$ is
$(\alpha \cup \beta) \in \operatorname{PROG}(S I G, X)$
- (composition)
for $\alpha, \beta \in \operatorname{PROG}(S I G, X)$ is
$(\alpha ; \beta) \in \operatorname{PROG}(S I G, X)$
- (conditional)
for $\alpha, \beta \in \operatorname{PROG}(S I G, X)$ and $\epsilon \in B X P(S I G, X)$ is
if ϵ then α else $\beta \in \operatorname{PROG}(S I G, X)$
- (while)
for $\alpha \in \operatorname{PROG}(S I G, X)$ and $\epsilon \in B X P(S I G, X)$ is while ϵ do $\alpha \in \operatorname{PROG}(S I G, X)$

[^2]- (bounded loop)
for $\alpha \in \operatorname{PROG}(S I G, X)$ and $t \in T_{F_{+}, c t r}\left(X_{+}\right)$is loop α times $t \in \operatorname{PROG}(S I G, X)$.

Definition 2.11 (dynamic logic formulas)

Let $S I G=(S, F) \Gamma X$ a system of variables for $S I G \Gamma$ and $S I G_{+}=\left(S_{+}, F_{+}\right)$ and X_{+}their standard extensions by counters. The set $D L(S I G, X)$ of dynamic logic formulas over $S I G$ and X is the least set satisfying:

- $A T\left(S I G_{+}, X_{+}\right) \subseteq D L(S I G, X)$
- for $\varphi, \psi \in D L(S I G, X)$ is $(\varphi \rightarrow \psi) \in D L(S I G, X)$
- for $\varphi \in D L(S I G, X) \Gamma s \in S_{+}$Гand $x \in X_{s}$ is $\forall x . \varphi \in D L(S I G, X)$
- for $\alpha \in \operatorname{PROG}(S I G, X)$ and $\varphi \in D L(S I G, X)$ is $[\alpha] \varphi \in D L(S I G, X)$.

Definition 2.12 (abbreviations)

We use the following abbreviations:

$$
\begin{array}{ll}
\neg \varphi & : \equiv(\varphi \rightarrow \text { false }) \\
t_{1} \neq t_{2} & : \equiv \neg t_{1}=t_{2} \\
\text { true } & : \equiv \neg \text { false } \\
(\varphi \vee \psi) & : \equiv(\neg \varphi \rightarrow \psi) \\
(\varphi \wedge \psi) & : \equiv \neg(\varphi \rightarrow \neg \psi) \\
(\varphi \leftrightarrow \psi) & : \equiv((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)) \\
\exists x . \varphi & : \equiv \neg \forall x . \neg \varphi \\
\langle\alpha\rangle \varphi & : \equiv \neg[\alpha] \neg \varphi \\
\text { abort } & : \equiv \text { while true do skip } \\
\text { if } \epsilon \text { then } \alpha & : \equiv \text { if } \epsilon \text { then } \alpha \text { else skip. }
\end{array}
$$

Definition 2.13 (semantics of programs and formulas)

Let $S I G=(S, F)$ a signature with a system X of variables Γ and $\mathcal{A} \in$ $\operatorname{Alg}(S I G)$. Let further $S I G_{+}=\left(S_{+}, F_{+}\right) \Gamma X_{+}$Г and \mathcal{A}_{+}be the corresponding standard extensions and $v, v^{\prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$. For $\varphi \in D L(S I G, X)$ we write $\mathcal{A}, v \models \varphi$ if φ is true in \mathcal{A} under $v \Gamma$ and $\mathcal{A}, v \not \vDash \varphi$ otherwise. For $\alpha \in \operatorname{PROG}(S I G, X)$ we write $v \llbracket \alpha \rrbracket_{\mathcal{A}} v^{\prime}$ if v^{\prime} is a valuation that can be reached from v by executing α interpreted under \mathcal{A}. The relation $\llbracket \alpha \rrbracket_{\mathcal{A}} \subseteq \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right) \times \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$describes the input-output behavior of α under \mathcal{A}. These notions are defined simultaneously ${ }^{7}$ as follows:

[^3]- $\mathcal{A}, v \not \vDash$ false
- $\mathcal{A}, v \models t_{1}=t_{2}$ iff $t_{1 v, \mathcal{A}_{+}}=t_{2 v, \mathcal{A}_{+}}$
- $\mathcal{A}, v \models \varphi \rightarrow \psi$ iff $(\mathcal{A}, v \models \varphi$ implies $\mathcal{A}, v \models \psi)$
- $\mathcal{A}, v=\forall x . \varphi$ (where $x \in X_{s}$ for some $s \in S_{+}$) iff $\mathcal{A}, v[x \leftarrow a]=\varphi$ for all $a \in A_{s}$
- $\mathcal{A}, v \vDash[\alpha] \varphi$ iff $\mathcal{A}, v^{\prime} \models \varphi$ for all $v^{\prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$with $\left.v \llbracket \alpha\right]_{\mathcal{A}} v^{\prime}$
- $v \llbracket \operatorname{skip} \rrbracket_{\mathcal{A}} v^{\prime}$ iff $v=v^{\prime}$
- $v \llbracket x:=t \rrbracket_{\mathcal{A}} v^{\prime}$ iff $v^{\prime}=v\left[x \leftarrow t_{v, \mathcal{A}}\right]$
- $v \llbracket(\alpha \cup \beta) \rrbracket_{\mathcal{A}} v^{\prime}$ iff $\left(v \llbracket \alpha \rrbracket_{\mathcal{A}} v^{\prime}\right.$ or $\left.v \llbracket \beta \rrbracket_{\mathcal{A}} v^{\prime}\right)$
- $v \llbracket(\alpha ; \beta) \rrbracket_{\mathcal{A}} v^{\prime}$ iff
there is a $v^{\prime \prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$such that $v \llbracket \alpha \rrbracket_{\mathcal{A}} v^{\prime \prime}$ and $v^{\prime \prime} \llbracket \beta \rrbracket_{\mathcal{A}} v^{\prime}$
- $v \llbracket$ if ϵ then α else $\beta \rrbracket_{\mathcal{A}} v^{\prime}$ iff
either $\mathcal{A}, v \models \epsilon$ and $v \llbracket \alpha \rrbracket_{\mathcal{A}} v^{\prime}$
or else $\mathcal{A}, v \not \models \epsilon$ and $v \llbracket \beta \rrbracket_{\mathcal{A}} v^{\prime}$
- $v \llbracket$ while ϵ do $\alpha]_{\mathcal{A}} v^{\prime}$ iff
$\mathcal{A}, v^{\prime} \not \vDash \epsilon$ and there are some $v_{0}, \ldots, v_{n} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$such that $v_{0}=v \Gamma v_{n}=v^{\prime} \Gamma$ and $\mathcal{A}, v_{i}=\epsilon$ and $v_{i} \llbracket \alpha \rrbracket_{\mathcal{A}} v_{i+1}$ for $i \in\{0, \ldots, n \Leftrightarrow 1\}$
- $v \llbracket \operatorname{loop} \alpha$ times $t]_{\mathcal{A}} v^{\prime}$ iff
with $n:=t_{v, \mathcal{A}_{+}}$there are some $v_{0}, \ldots, v_{n} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$such that $v_{0}=v \Gamma v_{n}=v^{\prime}$ Гand $v_{i} \llbracket \alpha \rrbracket_{\mathcal{A}} v_{i+1}$ for $i \in\{0, \ldots, n \Leftrightarrow 1\}$.

3 Extending Dynamic Logic

In this section we define syntax and semantics of EDL (Extended Dynamic Logic) which extends dynamic logic by three additional program constructs: extension of domains (universes) 「function updateГand simultaneous execution.

Definition 3.1 (syntax of EDL)

Given a signature $S I G=(S, F)$ and X a system of variables for $S I G$. The set $E P R O G(S I G, X)$ of extended programs over $S I G$ and X and the set $E D L(S I G, X)$ of extended dynamic logic formulas over $S I G$ and X are defined just as $P R O G(S I G, X)$ and $D L(S I G, X)$ in definitions 2.10 and

- $(\text { extension of domains })^{8}$
for $s \in S \Gamma x \in X_{s}$ Гand $\alpha \in E P R O G(S I G, X)$ is
extend s by x with $\alpha \in E P R O G(S I G, X)$
- (function update)
for $\underline{s} \in S^{*} \Gamma s \in S \Gamma f \in F_{\underline{s}, s} \Gamma \underline{t} \in T_{F, \underline{s}}(X) \Gamma$ and $t \in T_{F, s}(X)$ is
$(f \underline{t}:=t) \in E P R O G(S I G, X)$
- (simultaneous execution)
for $\alpha, \beta \in E P R O G(S I G, X)$ is
$(\alpha, \beta) \in E P R O G(S I G, X)$.
Agreement (algebras with error elements). The most intuitive semantics of the extend-construct is defined using partial algebras. However Γ on the other hand「allowing partial algebras would cause substantial changes in the semantics (and calculus) of basic dynamic logic. Thus we decided ${ }^{9}$ to 'simulate' partiality using explicit error elements 「i.e. we use total algebras (as defined in 2.4) but demand each domain A_{s} to contain a special element UNDEF ${ }_{s} .{ }^{10}$

Definition 3.2 (extension of domains)

Let $S I G=(S, F)$ and $\mathcal{A}=\left(\left(A_{s}\right)_{s \in S},\left(f_{\mathcal{A}}\right)_{f \in F}\right) \Gamma \mathcal{A}^{\prime}=\left(\left(A_{s}^{\prime}\right)_{s \in S},\left(f_{\mathcal{A}^{\prime}}\right)_{f \in F}\right)$ two $S I G$-algebras (containing error elements $U N D E F_{s}$ for each sort $s \in S$). Let further $s_{0} \in S$ and $a \in A_{s_{0}}^{\prime}$. If

$$
A_{s}^{\prime}= \begin{cases}A_{s} \cup\{a\} & \text { Гif } s=s_{0} \\ A_{s} & \text { Гotherwise }\end{cases}
$$

and for $f \in F_{\underline{s}, s}\left(\underline{s} \in S^{*} \Gamma s \in S\right)$

$$
f_{\mathcal{A}^{\prime}}(\underline{a})= \begin{cases}f_{\mathcal{A}}(\underline{a}) & \Gamma \text { if } \underline{a} \in A_{\underline{s}} \\ U N D E F_{s} & \text { Гotherwise }\end{cases}
$$

then \mathcal{A}^{\prime} is called the extension of \mathcal{A} by a at $s_{0} \Gamma$ written $\mathcal{A}^{\prime}=\mathcal{A}+_{s_{0}}\{a\}$.

[^4]
Definition 3.3 (update of functions)

Let $S I G=(S, F)$ a signature $\Gamma \mathcal{A}=\left(\left(A_{s}\right)_{s \in S},\left(f_{\mathcal{A}}\right)_{f \in F}\right)$ a $S I G$-algebra $\Gamma f_{0} \in$ $F_{\underline{s}, s}\left(\underline{s} \in S^{*} \Gamma s \in S\right) \Gamma \underline{a}_{0} \in A_{\underline{s}} \Gamma$ and $a_{0} \in A_{s}$. Then we call the $S I G$-algebra $\mathcal{A}^{\prime}:=\left(\left(A_{s}\right)_{s \in S},\left(f_{\mathcal{A}^{\prime}}\right)_{f \in F}\right)$ where

$$
f_{\mathcal{A}^{\prime}}(\underline{a}):= \begin{cases}a_{0} & \text { } \operatorname{\text {if}} f \equiv f_{0} \text { and } \underline{a}=\underline{a}_{0} \\ f_{\mathcal{A}}(\underline{a}) & \text { Гotherwise }\end{cases}
$$

the update of \mathcal{A} by setting $f_{0}\left(\underline{a}_{0}\right)$ to a_{0} Гand denote it by $\mathcal{A}\left[f_{0}\left(\underline{a}_{0}\right) \leftarrow a_{0}\right]$.
The crucial point of the program constructs extension of domains and function update is that executing them affects not only the (e)valuation of variablesTbut also the evaluation of function symbols (i.e. the evaluation of terms) and the universes (i.e. the evaluation of quantifiers). Therefore we define states as pairs of algebras and valuations (and not merely as valuations as it is common practice in dynamic logic).

Definition 3.4 (states, state changes)

Let SIG a signature and X a system of variables for $S I G$. Then the set $\operatorname{STATE}(S I G, X)$ of states over SIG and X is defined by

$$
\operatorname{STATE}(S I G, X):=\left\{\left(\mathcal{A}_{+}, v\right) \mid \mathcal{A} \in \operatorname{Alg}(S I G), v \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)\right\} .
$$

Definition 3.5 (operations on states)

Let $S I G=(S, F)$ a signature ΓX a system of variables for $S I G$ Гand $(\mathcal{A}, v) \in$ $\operatorname{STATE}(S I G, X)$.

$$
\begin{array}{lll}
(\mathcal{A}, v)+_{s}\{a\} & :=\left(\mathcal{A}+{ }_{s}\{a\}, v\right) & \\
(\mathcal{A}, v)[x \leftarrow a] & :=(\mathcal{A}, v[x \leftarrow a]) & \\
\text { for } x \in X_{s} \Gamma a \in A_{s} \\
(\mathcal{A}, v)[f(\underline{a}) \leftarrow a] & :=(\mathcal{A}[f(\underline{a}) \leftarrow a], v) & \text { for } f \in F_{\underline{s}, s} \Gamma \underline{a} \in A_{\underline{s}} \Gamma a \in A_{s} .
\end{array}
$$

In order to declare the semantics of simultaneous execution we define a join operator on states: ${ }^{11}$ the join of two states $s t^{\prime}$, st $t^{\prime \prime}$ modulo st Γ written $s t^{\prime} \oplus_{s t} s t^{\prime \prime} \Gamma i s$ the state that arises when the effects of the state change $s t \sim s t^{\prime}$ and the state change st $\leadsto s t^{\prime \prime}$ are combined Γ provided this is consistent. Informally $\mathrm{Cconsistency} \mathrm{of} \mathrm{two} \mathrm{state} \mathrm{changes} \mathrm{means} \mathrm{that} \mathrm{there} \mathrm{are} \mathrm{no} \mathrm{clashes} \Gamma$ i.e. that

- there are no extensions of the same domain by the same value in both state changes Γ i.e. new elements in $s t^{\prime}$ differ from new elements in $s t^{\prime \prime} \Gamma$

[^5]- there are no conflicting function updatesTi.e. if in both state changes a value of a function value is changed Γ then these updates of the function value are the same Гand
- there are no conflicting assignments to variablesTi.e. if in both state changes a value of a variable is changed Γ then these assignments to the variable are the same.

Definition 3.6 (consistency of state changes)

Let $S I G=(S, F)$ a signature ΓX a system of variables for $S I G \Gamma$ and $s t=$ $(\mathcal{A}, v) \Gamma s t^{\prime}=\left(\mathcal{A}^{\prime}, v^{\prime}\right)$ Гand $s t^{\prime \prime}=\left(\mathcal{A}^{\prime \prime}, v^{\prime \prime}\right)$ three states from STATE $(S I G, X)$. If

- $A_{s}^{\prime} \cap A_{s}^{\prime \prime}=A_{s}$ for all $s \in S \Gamma$
- $f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})$ or $f_{\mathcal{A}^{\prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})$ or $f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}^{\prime \prime}}(\underline{a})$ for all $f \in F_{\underline{s}, s} \Gamma \underline{a} \in A_{\underline{s}} \Gamma$ and
- $v_{s}^{\prime}(x)=v_{s}(x)$ or $v_{s}^{\prime \prime}(x)=v_{s}(x)$ or $v_{s}^{\prime}(x)=v_{s}^{\prime \prime}(x)$
for all $x \in X_{s}, s \in S$
we say that the state changes $s t \leadsto s t^{\prime}$ and $s t \leadsto s t^{\prime \prime}$ are consistent.

Definition 3.7 (join of states)

Let $S I G=(S, F)$ a signature ΓX a system of variables for $S I G \Gamma$ and $s t=$ $(\mathcal{A}, v) \Gamma s t^{\prime}=\left(\mathcal{A}^{\prime}, v^{\prime}\right)$ Гand $s t^{\prime \prime}=\left(\mathcal{A}^{\prime \prime}, v^{\prime \prime}\right)$ three states from $\operatorname{STATE}(S I G, X)$. If the state changes $s t \leadsto s t^{\prime}$ and $s t \leadsto s t^{\prime \prime}$ are not consistent then the join of $s t^{\prime}$ and $s t^{\prime \prime}$ modulo $s t \Gamma$ written $s t^{\prime} \oplus_{s t} s t^{\prime \prime} \Gamma$ is undefined; otherwise it is a state from STATE (SIG, X) Гdefined by:

$$
\begin{aligned}
s t^{\prime} \oplus_{s t} s t^{\prime \prime} & :=\left(\mathcal{A}^{\oplus}, v^{\oplus}\right) \\
\mathcal{A}^{\oplus} & :=\left(\left(A_{s}^{\oplus}\right)_{s \in S},\left(f_{\mathcal{A} \oplus}\right)_{f \in F}\right)
\end{aligned}
$$

with $\left(s \in S, f \in F_{\underline{s}, s}, x \in X_{s}\right)$

$$
\begin{aligned}
& A_{s}^{\oplus} \quad:=A_{s}^{\prime} \cup A_{s}^{\prime \prime}
\end{aligned}
$$

The reader may check that the join is in fact well-defined provided the state changes are consistent.

Fact 3.8 (basic properties of join)
Let $S I G=(S, F)$ a signature, X a system of variables for $S I G$, and st $=$ (\mathcal{A}, v), st $t^{\prime}=\left(\mathcal{A}^{\prime}, v^{\prime}\right)$, st $t^{\prime \prime}=\left(\mathcal{A}^{\prime \prime}, v^{\prime \prime}\right)$, and $s t^{\prime \prime \prime}=\left(\mathcal{A}^{\prime \prime \prime}, v^{\prime \prime \prime}\right)$ states from STATE $(S I G, X)$.
(a) commutativity:

If the state changes st $\leadsto s t^{\prime}$ and st $\leadsto s t^{\prime \prime}$ are consistent, then

$$
s t^{\prime} \oplus_{s t} s t^{\prime \prime}=s t^{\prime \prime} \oplus_{s t} s t^{\prime} .
$$

(b) associativity:

The state changes $s t \leadsto s t^{\prime}$ and $s t \leadsto s t^{\prime \prime}$, and the state changes st \leadsto $\left(s t^{\prime} \oplus s t s t^{\prime \prime}\right)$ and $s t \leadsto s t^{\prime \prime \prime}$ are consistent iff the state changes st $\leadsto s t^{\prime \prime}$ and $s t \leadsto s t^{\prime \prime \prime}$, and the state changes st $\leadsto s t^{\prime}$ and $s t \leadsto\left(s t^{\prime \prime} \oplus_{s t} s t^{\prime \prime \prime}\right)$ are consistent. In this case it holds

$$
\left(s t^{\prime} \oplus_{s t} s t^{\prime \prime}\right) \oplus_{s t} s t^{\prime \prime \prime}=s t^{\prime} \oplus_{s t}\left(s t^{\prime \prime} \oplus_{s t} s t^{\prime \prime \prime}\right)
$$

(c) neutral element:

If the state changes st $\leadsto s t$ and $s t \leadsto s t^{\prime}$ are consistent, then

$$
s t \oplus_{s t} s t^{\prime}=s t^{\prime} .
$$

Proof. The proof for this factГespecially for (b) (which is in no way obvious) is quite technical and long. So we have postponed it to appendix B.2.

We are now prepared to define the semantics of programs and formulas of EDL. One major difference between definition 2.13 is that the input-output behavior $\llbracket \alpha \rrbracket$ of a program α is not a binary relation on valuations only Pbut on states.

Definition 3.9 (semantics of programs and formulas)

Let $S I G=(S, F)$ a signature with a system X of variables and st, st $t^{\prime} \in$ $\operatorname{STATE}(S I G, X) \Gamma$ st $=(\mathcal{A}, v)$. For $\varphi \in \operatorname{EDL}(S I G, X)$ we write st $\models \varphi$ if φ is true in $s t \Gamma$ and st $\not \vDash \varphi$ otherwise. For $\alpha \in E P R O G(S I G, X)$ we write $s t \llbracket \alpha \rrbracket s t^{\prime}$ if the state $s t^{\prime}$ can be reached from state st by executing α. The relation $\llbracket \alpha \rrbracket \subseteq S T A T E(S I G, X) \times S T A T E(S I G, X)$ describes the inputoutput behavior of α. These notions are defined simultaneously as follows:

- st $\not \models$ false
- $s t \vDash t_{1}=t_{2}$ iff $^{12} s t\left(t_{1}\right)=s t\left(t_{2}\right)$
- st $\models \varphi \rightarrow \psi$ iff $(s t \models \varphi$ implies $s t \models \psi)$
- $s t \vDash \forall x . \varphi$ (where $x \in X_{s}$ for some $s \in S$) iff $s t[x \leftarrow a] \models \varphi$ for all $a \in A_{s}$
- $s t \models[\alpha] \varphi$ iff $s t^{\prime} \models \varphi$ for all $s t^{\prime} \in \operatorname{STATE}(S I G, X)$ with $s t \llbracket \alpha \rrbracket s t^{\prime}$
- $s t \llbracket$ skip $\rrbracket s t^{\prime}$ iff $s t=s t^{\prime}$
- $s t \llbracket x:=t \rrbracket s t^{\prime}$ iff $s t^{\prime}=s t[x \leftarrow s t(t)]$
- $s t \llbracket f \underline{t}:=t \rrbracket s t^{\prime}$ iff $s t^{\prime}=s t[f(s t(\underline{t})) \leftarrow s t(t)]$
- st $\llbracket(\alpha \cup \beta) \rrbracket s t^{\prime}$ iff $\left(s t \llbracket \alpha \rrbracket s t^{\prime}\right.$ or $\left.s t \llbracket \beta \rrbracket s t^{\prime}\right)$
- st $\llbracket(\alpha ; \beta) \rrbracket s t^{\prime}$ iff
there is some st $t^{\prime \prime} \in \operatorname{STATE}(S I G, X)$
such that st $\llbracket \alpha \rrbracket s t^{\prime \prime}$ and $s t^{\prime \prime} \llbracket \beta \rrbracket s t^{\prime}$
- st $\llbracket(\alpha, \beta) \rrbracket s t^{\prime} \mathrm{iff}^{13}$
there are some $s t_{\alpha}, s t_{\beta} \in \operatorname{STATE}(S I G, X)$ such that
$s t \llbracket \alpha \rrbracket s t_{\alpha} \Gamma s t \llbracket \beta \rrbracket s t_{\beta}$ Гand the state changes
$s t \leadsto s t_{\alpha}$ and $s t \leadsto s t_{\beta}$ are consistent with $s t^{\prime}=s t_{\alpha} \oplus_{s t} s t_{\beta}$
- st $\llbracket \mathrm{if} \epsilon$ then α else $\beta \rrbracket$ st ${ }^{\prime}$ iff
either st $\vDash \epsilon$ and st $\llbracket \alpha \rrbracket s t^{\prime}$
or else $s t \not \vDash \epsilon$ and $s t \llbracket \beta \rrbracket s t^{\prime}$
- $s t \llbracket$ extend s by x with $\alpha \rrbracket s t^{\prime}$ (where $x \in X_{s}$) iff
there is some $s t^{\prime \prime}=\left(\mathcal{A}^{\prime \prime}, v^{\prime \prime}\right) \in \operatorname{STATE}(S I G, X)$ and an ${ }^{14} a \in A_{s}^{\prime \prime} \backslash A_{s}$ such that $\left.\left(\left(s t+_{s}\{a\}\right)[x \leftarrow a]\right) \llbracket \alpha\right] s t^{\prime \prime}$ and $^{15} s t^{\prime}=s t^{\prime \prime}[x \leftarrow s t(x)]$
- st \llbracket while ϵ do $\alpha \rrbracket s t^{\prime}$ iff
st $\not \not \neq \epsilon$ and there are some $s t_{0}, \ldots, s t_{n} \in \operatorname{STATE}(S I G, X)$ such that $s t_{0}=s t \Gamma s t_{n}=s t^{\prime} \Gamma$ and $s t_{i} \models \epsilon$ and $s t_{i} \llbracket \alpha \rrbracket s t_{i+1}$ for $i \in\{0, \ldots, n \Leftrightarrow 1\}$

[^6]- st $[\operatorname{loop} \alpha \text { times } t]_{\mathcal{A}}$ st' iff
with $n:=s t(t)$ there are some $s t_{0}, \ldots, s t_{n} \in \operatorname{STATE}(S I G, X)$ such that $s t_{0}=s t \Gamma s t_{n}=s t^{\prime} \Gamma$ and $s t_{i} \llbracket \alpha \rrbracket s t_{i+1}$ for $i \in\{0, \ldots, n \Leftrightarrow 1\}$.

The following theorem illustrates that the 'simultaneous execution' construct behaves as simultaneous execution where the programs to be executed can be viewed as black boxesTi.e. there is no communication despite shared variables.

Theorem 3.10 (properties of simultaneous execution semantics)

Let SIG a signature, X a system of variables for $S I G$, and $\alpha, \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta \in$ $E P R O G(S I G, X)$.
(a) $\llbracket(\alpha, \beta) \rrbracket=\llbracket(\beta, \alpha) \rrbracket$
(b) $\llbracket\left(\left(\alpha_{1}, \alpha_{2}\right), \alpha_{3}\right) \rrbracket=\llbracket\left(\alpha_{1},\left(\alpha_{2}, \alpha_{3}\right)\right) \rrbracket$
(c) $\llbracket($ skip,$\alpha) \rrbracket=\llbracket \alpha \rrbracket$
(d) $\llbracket\left(\left(\alpha_{1} \cup \alpha_{2}\right), \beta\right) \rrbracket=\llbracket\left(\left(\alpha_{1}, \beta\right) \cup\left(\alpha_{2}, \beta\right)\right) \rrbracket$
(e) $\llbracket\left(\right.$ if ϵ then α_{1} else $\left.\alpha_{2}, \beta\right) \rrbracket=\llbracket$ if ϵ then $\left(\alpha_{1}, \beta\right)$ else $\left(\alpha_{2}, \beta\right) \rrbracket$
(f) $\llbracket($ extend s by x with $\alpha, \beta) \rrbracket=\llbracket$ extend s by x^{\prime} with $\left(\alpha_{x}^{x^{\prime}}, \beta\right) \rrbracket$ where ${ }^{16} x^{\prime} \in X_{s}$ is a variable not occurring in α or β.

Proof. (a) Γ (b) Γ and (c) follow from fact 3.8. (d) and (e) can be shown simply by unfolding the definitions. The proof of (f) is more complicated and requires some auxiliary lemmata. It is given in full detail in appendix B.3.

4 Representing Evolving Algebras

This section is intended to describe how (statements about) evolving algebras can be formalized in (a subset of) EDL. We start with a notion of evolving algebra rules (which is quite general: especially one is allowed to arbitrarily nest indeterministic choice and simultaneous execution). The following definition essentially coincides with the definition of extended programs (cf. 3.1) Гbut without while and loop.

Definition 4.1 (evolving algebra rules)

Let $S I G=(S, F)$ a signature and X a system of variables for $S I G$. The set $E A R(S I G, X)$ of evolving algebra rules over $S I G$ and X is the least set satisfying:

[^7]- $(\text { skip })^{17}$
$\operatorname{skip} \in E A R(S I G, X)$
- (assignment)
for $s \in S \Gamma x \in X_{s}$ Гand $t \in T_{F, s}(X)$ is $(x:=t) \in E A R(S I G, X)$
- (function update)
for $\underline{s} \in S^{*} \Gamma s \in S \Gamma f \in F_{\underline{s}, s} \Gamma \underline{t} \in T_{F, \underline{s}}(X) \Gamma$ and $t \in T_{F, s}(X)$ is $(f \underline{t}:=t) \in E A R(S I G, X)$
- (nondeterministic choice)
for $\alpha, \beta \in E A R(S I G, X)$ is $(\alpha \cup \beta) \in E A R(S I G, X)$
- (simultaneous execution)
for $\alpha, \beta \in E A R(S I G, X)$ is $(\alpha, \beta) \in E A R(S I G, X)$
- (conditional)
for $\alpha, \beta \in E A R(S I G, X)$ and $\epsilon \in B X P(S I G, X)$ is
if ϵ then α else $\beta \in \operatorname{EAR}(S I G, X)$
- (extension of domains)
for $s \in S \Gamma x \in X_{s} \Gamma$ and $\alpha \in E A R(S I G, X)$ is extend s by x with $\alpha \in \operatorname{EAR}(S I G, X)$.

The semantics of evolving algebra rules is defined just as in definition 3.9.
Formal reasoning about evolving algebras requires a formal representation「i.e. we have to define syntax and semantics for evolving algebras.

Definition 4.2 (evolving algebras)

An evolving algebra $E A=(S I G, X, I, F, \alpha)$ consists of a signature $S I G \Gamma a$ system X of variables for $S I G \Gamma$ a formula $I \in E D L(S I G, X)$ Гa boolean expression $F \in B X P(S I G, X)$ Гand an evolving algebra rule $\alpha \in E A R(S I G, X)$. The formula I describes the initial states ΓF is the stopping condition. ${ }^{18}$

The semantics of an evolving algebra is the set of its runs.

[^8]
Definition 4.3 (runs)

Let $E A=(S I G, X, I, F, \alpha)$ be an evolving algebra. A terminating run of $E A$ is a finite sequence $s t_{0}, \ldots, s t_{n}$ of states over $S I G$ and X such that $s t_{0} \models I \Gamma s t_{n} \models F \Gamma$ and $s t_{k} \not \equiv F$ and $s t_{k} \llbracket \alpha \rrbracket s t_{k+1}$ for all $k \in\{0, \ldots, n \Leftrightarrow 1\}$. An infinite sequence $s t_{0}, s t_{1}, \ldots$ of states over SIG and X is called a nonterminating run of $E A$ if $s t_{0} \models I \Gamma$ and $s t_{k} \not \models F$ and $s t_{k} \llbracket \alpha \rrbracket s t_{k+1}$ for all $k \in\{0, \ldots\}$.

There are several differences to other common definitions of evolving algebras:

- many-sorted signature:

Instead of modeling sorts by means of predicate symbols (ranging over a so-called super-universe) as e.g. in [13Г14] Гwe prefer to use a manysorted signature. Thus Γ we loose a little bit of expressiveness (e.g. allowing objects which are elements of more than one universe) Γ but avoid keeping track of sorting information while constructing proofs.

- initial states:

Mostly no syntactic representation for initial states is given. In the definition above initial states are restricted to those algebras which can be (uniquely up to isomorphism) described with a finite set of formulas from $\operatorname{EDL}(S I G, X)$. However we believe that this class is sufficient to cope with most evolving algebras in practice. ${ }^{19}$ While in most definitions an evolving algebra has exactly one initial state Γ we permit a set of initial states Γ namely all st $\in \operatorname{STATE}(S I G, X)$ with $s t \mid=I$.

- final states:

In some publications (e.g. [6]) the set of final (terminal) states is implicitly defined to be the states which are reachable from the initial state(s) by applying rules Cbut in which no further rule is applicable. In other definitions final states are not defined at all. As e.g. in [19] we prefer to make final states explicit「namely as a boolean expression describing a stopping condition. Below we give some illustration for the use of these stopping conditions.

- further rule constructors:

It is often convenient to allow some further constructors in evolving algebra rules besides the basic ones from definition 4.1. For instance a let construct is frequently used. Integrating it in EDL will make no serious problems. Sometimes even sequential execution is useful in

[^9]evolving algebra rules (e.g. in [6]). EDL already provides such a construct for sequential execution of programs (composition). ${ }^{20}$ There are a lot of further constructs that may be desirable in certain applications (cf. [14]: chooseГduplicateГ...). We do not discuss them here.

- one rule only:

Usually an evolving algebra is defined to contain a finite set of rules $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. In some publications a computation step is defined as firing one Γ indeterministically chosen rule Cin other publications (e.g. [13]) a computation step is defined as firing all rules simultaneously. We avoid excluding one of these approaches Γ but prefer to combine all rules in a single one Γ which an advocate of the first definition would write as $\alpha:=\left(\alpha_{1} \cup \cdots \cup \alpha_{n}\right)$ Гand an advocate of the second definition would write as $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

- clash handling:

In [13] executing conflicting updates is defined to indeterministically choose one of the greatest subsets of non-conflicting updates. Some more recent publications (e.g. [14]) define a clash to behave just like skip. However $\Gamma i t$ is commonly accepted that a detection of an inconsistency should manifest itself in some way. In our opinion it should even not be possible to continue a computation if a clash has occurred. Therefore we define conflicting updates to have no next stateएi.e. a clash manifests itself in (local) non-termination.

In the following we discuss how to cope with some of the possible evolving algebra semantics (proposed elsewhere) using the notion of evolving algebras as defined in 4.2. This is done on an example with three rules.

$$
\begin{aligned}
& \text { if } \epsilon_{1} \text { then } \alpha_{1} \\
& \text { if } \epsilon_{2} \text { then } \alpha_{2} \\
& \text { if } \epsilon_{3} \text { then } \alpha_{3}
\end{aligned}
$$

If a semantics (of evolving algebra computation) is taken Γ where in each step any of the rules is chosen indeterministically Γ then we set in $E A=$ $(S I G, X, I, F, \alpha)$:

$$
\begin{aligned}
F:= & \text { false } \\
\alpha:= & \left(\text { (if } \epsilon_{1} \text { then } \alpha_{1}\right) \\
& \cup\left(\text { if } \epsilon_{2} \text { then } \alpha_{2}\right) \\
& \left.\cup\left(\text { if } \epsilon_{3} \text { then } \alpha_{3}\right)\right) .
\end{aligned}
$$

[^10]If the semantics is to indeterministically apply rules until no rule is applicable Γ we set:

$$
\begin{aligned}
F:= & \neg \epsilon_{1} \wedge \neg \epsilon_{2} \wedge \neg \epsilon_{3} \\
\alpha:= & \left(\text { (if } \epsilon_{1} \text { then } \alpha_{1}\right) \\
& \cup\left(\text { if } \epsilon_{2} \text { then } \alpha_{2}\right) \\
& \left.\cup\left(\text { if } \epsilon_{3} \text { then } \alpha_{3}\right)\right) .
\end{aligned}
$$

Otherwise if the semantics is to indeterministically choose one of the applicable rules (cf. e.g. [6]) Ithen we set:

$$
\begin{array}{rll}
F:= & \neg \epsilon_{1} \wedge \neg \epsilon_{2} \wedge \neg \epsilon_{3} & \\
\alpha:= & \text { if } \epsilon_{1} \wedge \epsilon_{2} \wedge \epsilon_{3} & \text { then }\left(\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}\right) \\
& \text { else if } \epsilon_{1} \wedge \epsilon_{2} & \text { then }\left(\alpha_{1} \cup \alpha_{2}\right) \\
& \text { else if } \epsilon_{1} \wedge \epsilon_{3} & \text { then }\left(\alpha_{1} \cup \alpha_{3}\right) \\
& \text { else if } \epsilon_{2} \wedge \epsilon_{3} & \text { then }\left(\alpha_{2} \cup \alpha_{3}\right) \\
& \text { else if } \epsilon_{1} & \text { then } \alpha_{1} \\
& \text { else if } \epsilon_{2} & \text { then } \alpha_{2} \\
& \text { else } & \alpha_{3} .
\end{array}
$$

The expressiveness of EDL is best demonstrated by formalizing some statements about evolving algebras. Let $E A=(S I G, X, I, F, \alpha)$ and $E A^{\prime}=$ $\left(S I G, X, I, F^{\prime}, \alpha^{\prime}\right)$.

- $E A$ has a terminating run:

$$
I \rightarrow\langle\text { while } \neg F \text { do } \alpha\rangle \text { true }
$$

- every terminating run of $E A$ stops in a situation where φ holds:

$$
I \rightarrow[\text { while } \neg F \text { do } \alpha] \varphi
$$

- if there is some terminating run stopping in a situation where φ holds Γ then every terminating run stops in a situation where φ holds (global determinism):

$$
I \rightarrow(\langle\text { while } \neg F \text { do } \alpha\rangle \varphi \rightarrow[\text { while } \neg F \text { do } \alpha] \varphi)
$$

- in any reachable state of $E A$ the formula φ holdsTi.e. φ is an invariance property:

$$
I \rightarrow \forall \kappa[\text { loop if } \neg F \text { then } \alpha \text { times } \kappa] \varphi
$$

The following two examples are special cases of the one aboveГi.e. φ is more specialized.

- every reachable state interprets the function symbol $f \in F_{s_{1} \ldots s_{n}, s}$ as a strict function: ${ }^{21}$

$$
\begin{aligned}
& I \rightarrow \forall \kappa \text {.[loop if } \neg F \text { then } \alpha \text { times } \kappa] \\
& \quad \forall x_{1} \ldots \forall x_{n} .\left(x_{1}=\perp_{s_{1}} \vee \cdots \vee x_{n}=\perp_{s_{n}} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=\perp_{s}\right)
\end{aligned}
$$

- for any reachable state it holds that if φ is true in some next state Γ then φ is true in all possible next states (local determinism):

$$
\begin{aligned}
& I \rightarrow \forall \kappa[\text { [loop if } \neg F \text { then } \alpha \text { times } \kappa] \\
& \quad(\langle\text { if } \neg F \text { then } \alpha\rangle \varphi \rightarrow[\text { if } \neg F \text { then } \alpha] \varphi)
\end{aligned}
$$

- whenever there is a terminating run of $E A$ stopping in a situation where φ holds 5 then there is also a terminating run of $E A^{\prime}$ stopping in a situation where ψ holds:

$$
I \rightarrow\left(\langle\text { while } \neg F \text { do } \alpha\rangle \varphi \rightarrow\left\langle\text { while } \neg F^{\prime} \text { do } \alpha^{\prime}\right\rangle \psi\right) .
$$

5 Towards a Calculus for EDL

In this section first steps towards a sequent calculus for EDL are made. It turns out that the rules for not-extended dynamic logic remain valid. We propose rules for reasoning about the additional constructs (update of functions Γ extension of universes and simultaneous execution). These rules are based on the idea of symbolic execution.

Definition 5.1 (sequents)

Let $S I G=(S, F)$ and X a system of variables for $S I G$. The set of extended dynamic logic sequents over $S I G$ and X is defined by

$$
S E Q(S I G, X):=\left\{\Gamma \Rightarrow \Delta \mid \Gamma, \Delta \in E D L(S I G, X)^{*}\right\} .
$$

For a sequent $\Gamma \Rightarrow \Delta$ we call Γ its antecedent and Δ its succedent.

Definition 5.2 (semantics of sequents)

Let $S I G=(S, F)$ and X a system of variables for $S I G$. A sequent seq $=$ $\left(\left(\varphi_{1}, \ldots, \varphi_{n}\right) \Rightarrow\left(\psi_{1}, \ldots, \psi_{n}\right)\right) \in S E Q(S I G, X)$ is said to be true Γ written \models seqГif ${ }^{22}$ st $\models\left(\varphi_{1} \wedge \cdots \wedge \varphi_{n}\right) \rightarrow\left(\psi_{1} \vee \cdots \vee \psi_{n}\right)$ for all st $\in \operatorname{STATE}(S I G, X)$.

[^11]
Definition 5.3 (inference rules, theorems)

Let $S I G=(S, F)$ and X a system of variables for $S I G$. An (inference) rule r over SIG and X is a tuple $r=\left(p r_{1} \cdots p r_{n}\right.$, concl $)$ with $p r_{1}, \ldots, p r_{n}$, concl \in $S E Q(S I G, X)$. The sequents $p r_{i}$ are called the premises of r and concl is called the conclusion of r. We use the following notation for rules:

$$
\frac{p r_{1} \cdots p r_{n}}{\text { concl }}(\mathrm{r})
$$

A rule $r=\left(p r_{1} \cdots p r_{n}\right.$, concl $)$ over SIG and X is called correct if whenever $\vDash p r_{i}$ for all $i \in\{1, \ldots, n\}$ then also \vDash concl .

Let R be a set of rules over $S I G$ and X. A sequent seq $\in S E Q(S I G, X)$ is called theorem of $R \Gamma$ written \vdash_{R} seq Γ if it is member of the least set $T H M_{R} \subseteq S E Q(S I G, X)$ satisfying

- for $\left(p r_{1} \cdots p r_{n}\right.$, concl $) \in R$ and $p r_{1}, \ldots, p r_{n} \in T H M_{R}$ is concl $\in T H M_{R}$.
R is called correct if \vdash_{R} seq implies $\vDash s e q$ for all seq $\in S E Q(S I G, X)$.
Fact 5.4 A set of rules is correct if all its rules are correct.
Thus we can concentrate on the correctness of single inference rules. It turns out that (most of) the rules known from (not extended) dynamic logic are correct for EDL too. Appendix A gives a proposal for a sequent calculus Γ which is based on the idea of symbolic execution. Propositional rulesTequality rules Гquantifier rules 「and rules for basic program constructs are adopted from (not extended) dynamic logic Гand their correctness is quite obvious. So Γ it remains to introduce inference rules for the additional program constructs. From theorem 3.10 we can derive the following rules: ${ }^{23}$

$$
\begin{array}{cl}
\frac{[(\beta, \alpha)] \varphi, \Gamma \Rightarrow \Delta}{[(\alpha, \beta)] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_com_l) } & \frac{\Gamma \Rightarrow[(\beta, \alpha)] \varphi, \Delta}{\Gamma \Rightarrow[(\alpha, \beta)] \varphi, \Delta}(\text { sim_com_r) } \\
\frac{\left[\left(\alpha_{1},\left(\alpha_{2}, \alpha_{3}\right)\right)\right] \varphi, \Gamma \Rightarrow \Delta}{\left[\left(\left(\alpha_{1}, \alpha_{2}\right), \alpha_{3}\right)\right] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_ass_ }) & \frac{\Gamma \Rightarrow\left[\left(\alpha_{1},\left(\alpha_{2}, \alpha_{3}\right)\right)\right] \varphi, \Delta}{\Gamma \Rightarrow\left[\left(\left(\alpha_{1}, \alpha_{2}\right), \alpha_{3}\right)\right] \varphi, \Delta}(\text { sim_ass_r) } \\
\frac{[\alpha] \varphi, \Gamma \Rightarrow \Delta}{[(\operatorname{skip}, \alpha)] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_skip_l) } & \frac{\Gamma \Rightarrow[\alpha] \varphi, \Delta}{\Gamma \Rightarrow[(\operatorname{skip}, \alpha)] \varphi, \Delta}(\text { sim_skip_r) } \\
\frac{\left[\left(\left(\alpha_{1}, \beta\right) \cup\left(\alpha_{2}, \beta\right)\right)\right] \varphi, \Gamma \Rightarrow \Delta}{\left[\left(\left(\alpha_{1} \cup \alpha_{2}\right), \beta\right)\right] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_choice_l) }
\end{array}
$$

[^12]\[

$$
\begin{gathered}
\frac{\Gamma \Rightarrow\left[\left(\left(\alpha_{1}, \beta\right) \cup\left(\alpha_{2}, \beta\right)\right)\right] \varphi, \Delta}{\Gamma \Rightarrow\left[\left(\left(\alpha_{1} \cup \alpha_{2}\right), \beta\right)\right] \varphi, \Delta}(\text { sim_choice_r) } \\
\frac{\left[\text { if } \epsilon \text { then }\left(\alpha_{1}, \beta\right) \text { else }\left(\alpha_{2}, \beta\right)\right] \varphi, \Gamma \Rightarrow \Delta}{\left[\left(\text { if } \epsilon \text { then } \alpha_{1} \text { else } \alpha_{2}, \beta\right)\right] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_if_l }) \\
\frac{\Gamma \Rightarrow\left[\text { if } \epsilon \text { then }\left(\alpha_{1}, \beta\right) \text { else }\left(\alpha_{2}, \beta\right)\right] \varphi, \Delta}{\Gamma \Rightarrow\left[\left(\text { if } \epsilon \text { then } \alpha_{1} \text { else } \alpha_{2}, \beta\right)\right] \varphi, \Delta}(\text { sim_if_r }) \\
\frac{\left[\text { extend } s \text { by } x^{\prime} \text { with }\left(\alpha_{x}^{x^{\prime}}, \beta\right)\right] \varphi, \Gamma \Rightarrow \Delta}{[(\text { extend } s \text { by } x \text { with } \alpha, \beta)] \varphi, \Gamma \Rightarrow \Delta} \text { (sim_extend_l) } \\
\frac{\Gamma \Rightarrow\left[\text { extend } s \text { by } x^{\prime} \text { with }\left(\alpha_{x}^{x^{\prime}}, \beta\right)\right] \varphi, \Delta}{\Gamma \Rightarrow[(\text { extend } s \text { by } x \text { with } \alpha, \beta)] \varphi, \Delta} \text { (sim_extend_r) }
\end{gathered}
$$
\]

where $x^{\prime} \in X_{s}$ is a variable not occurring in α or β.
We do not give rules for programs where compositions or (while) loops are involved in simultaneous execution for two reasons: firstly Γ such situation does not appear in evolving algebras (cf. definition 4.1) ${ }^{24}$ Гand secondly such rules would be quite nasty (including renaming of a lot of signature symbols and subtle formulas for capturing clashes of function updates and domain extensions).

For the rules dealing with simultaneous execution of assignments and function updates some preparatory is needed. Firstly Fa notational one: we write simply ($f_{1} \underline{t}_{1}:=t_{1}, \ldots, f_{n} \underline{t}_{n}:=t_{n}$) to denote a simultaneous execution of assignments and function updates. That is (due to theorem 3.10(b)) we omit the brackets and we do not differ (syntactically) between assignments and function updates Γ i.e. the f_{i} in $f_{i} \underline{t}_{i}:=t_{i}$ may be variable symbols Γ which is possible by using $x \lambda:=t$ (where λ is the empty term tuple) as a notation for an assignment $x:=t$. Thus Γ syntactically variables are treated just as constants (0 -ary function symbols) Which enables a compact and convenient notation.

Secondly「we define a formula ${ }^{25}$

$$
\operatorname{affects}(f \underline{t}:=t, g \underline{x}): \equiv \begin{cases}\underline{x}=\underline{t} & \text { } i f ~ \\ \text { false } & \text { Гotherwise }\end{cases}
$$

[^13]which is true if the function update (or assignment) $f \underline{t}:=t$ affects the value of the term $g \underline{x}$ Гand a formula
\[

\operatorname{clash}\left(f_{1} t_{1}:=t_{1}, f_{2} t_{2}:=t_{2}\right): \equiv $$
\begin{cases}\underline{t}_{1}=\underline{t}_{2} \wedge t_{1} \neq t_{2} & \text { } \\ \text { falf } f_{1} \equiv f_{2} \\ \text { false } & \text { } o t h e r w i s e ~\end{cases}
$$
\]

which is true if the function updates (or assignments) $f_{1} \underline{t}_{1}:=t_{1}$ and $f_{2} \underline{t}_{2}:=t_{2}$ clash.

Our proposal for a rule for symbolic execution of simultaneous function updates and assignments is as follows: ${ }^{26}$

$$
\begin{aligned}
& f_{1}^{\prime} \underline{t}_{1}=t_{1}, \ldots, f_{n}^{\prime} \underline{t}_{n}=t_{n}, \\
& \bigwedge_{1 \leq i \leq n} \forall \underline{x}_{i} \cdot\left(\bigwedge_{1 \leq j \leq n} \neg \operatorname{affects}\left(f_{j} \underline{t}_{j}:=t_{j}, f_{i} \underline{x}_{i}\right)\right. \\
& \left.\rightarrow f_{i}^{\prime} \underline{x}_{i}=f_{i} \underline{x}_{i}\right), \\
& \frac{\Gamma \Rightarrow \varphi_{f_{1}, \ldots, f_{n}}^{f_{1}^{\prime}, \ldots, f_{n}^{\prime}}, \Delta}{\Gamma \Rightarrow\left[\left(f_{1} \underline{t}_{1}:=t_{1}, \ldots, f_{n} \underline{t}_{n}:=t_{n}\right)\right] \varphi, \Delta} \text { (sim_update_r) }
\end{aligned}
$$

where the $f_{1}^{\prime}, \ldots, f_{n}^{\prime}$ are new ${ }^{27}$ function symbols (or new variables in the case of assignments) with the same sorting as $f_{1}, \ldots, f_{n} \Gamma$ and with $f_{i}^{\prime} \equiv f_{j}^{\prime}$ iff $f_{i} \equiv f_{j}$. For $f_{i} \in F_{\underline{s}, s} \Gamma \underline{x}_{i} \in X_{\underline{s}}$ is a vector of distinct new variables. ${ }^{28}$

This rule needs some explanation. The new function symbols (or variables) f_{i}^{\prime} play the part of the functions resulting from updating the functions f_{i}. With this in mind the premise of the rule (sim_update_r) can be read as:

If the new functions behave as imposed by the updates

$$
f_{1}^{\prime} \underline{t}_{1}=t_{1}, \ldots, f_{n}^{\prime} \underline{t}_{n}=t_{n}
$$

and behave on all locations not affected by any update just as the original functions

$$
\bigwedge_{1 \leq i \leq n} \forall \underline{x}_{i} \cdot\left(\widehat{1 \leq j \leq n}^{\left.\operatorname{laffects}\left(f_{j} \underline{t}_{j}:=t_{j}, f_{i} \underline{x}_{i}\right) \rightarrow f_{i}^{\prime} \underline{x}_{i}=f_{i} \underline{x}_{i}\right), ~, ~}\right.
$$

and if all other assumptions hold
Γ
then follows that

$$
\Rightarrow
$$

[^14]the formula φ where the updated functions are used holds
$$
\varphi_{f_{1}, \ldots, f_{n}}^{f_{1}^{\prime}, \ldots, f_{n}^{\prime}},
$$
or one of the other conjectures holds

Δ.

Notice that

$$
f_{1}^{\prime} \underline{t}_{1}=t_{1}, \ldots, f_{n}^{\prime} \underline{t}_{n}=t_{n} \rightarrow \bigwedge_{1 \leq i \leq n} \bigwedge_{i<j \leq n} \neg \operatorname{clash}\left(f_{i} \underline{t}_{i}:=t_{i}, f_{j} \underline{t}_{j}:=t_{j}\right) .
$$

There is no need for a premise dealing with the case a clash occurs: remember that a clash is defined to behave like non-terminationTi.e. [$\left(f_{1} \underline{t}_{1}:=\right.$ $\left.\left.t_{1}, \ldots, f_{n} \underline{t}_{n}:=t_{n}\right)\right] \varphi$ is true in this case.

The following rule for symbolic execution of a simultaneous update in the antecedent is very similar to the above.

$$
\begin{aligned}
& f_{1}^{\prime} \underline{t}_{1}=t_{1}, \ldots, f_{n}^{\prime} \underline{t}_{n}=t_{n}, \\
& \bigwedge_{1 \leq i \leq n} \forall \underline{x}_{i} .\left(\bigwedge_{1 \leq j \leq n} \neg \operatorname{affects}\left(f_{j} \underline{t}_{j}:=t_{j}, f_{i} \underline{x}_{i}\right)\right. \\
& \left.\rightarrow f_{i}^{\prime} \underline{x}_{i}=f_{i} \underline{x}_{i}\right), \\
& \varphi_{f_{1}, \ldots, f_{n}}^{f_{1}^{\prime}, \ldots, f_{n}^{\prime}}, \Gamma \Rightarrow \Delta \\
& \frac{\bigvee_{1 \leq i \leq n} \bigvee_{i<j \leq n} \operatorname{clash}\left(f_{i} \underline{t}_{i}:=t_{i}, f_{j} \underline{t}_{j}:=t_{j}\right), \Gamma \Rightarrow \Delta}{\left[\left(f_{1} \underline{t}_{1}:=t_{1}, \ldots, f_{n} \underline{t}_{n}:=t_{n}\right)\right] \varphi, \Gamma \Rightarrow \Delta} \text { (sim_update_l) }
\end{aligned}
$$

The first premise differs from the one in (sim_update_r) only in the position of the occurrence of $\varphi_{f_{1}, \ldots, f_{n}}^{f_{n}^{\prime}, \ldots, f_{n}^{\prime}}$. The second premise deals with the case a clash occurs. Notice that in the case of a single assignment the rules (sim_update_ 1Γ sim_update_r) degenerate to the ordinary assignment rules (assign_1 ${ }^{\text {assign_r }) ~}$ (cf. appendix A).

Finally There is our proposal for rules for the extend construct.

$$
\begin{aligned}
& \frac{\text { new }\left(x^{\prime}, \text { freevars, } f c t s\right),\left[\alpha_{x}^{x^{\prime}}\right] \varphi, \Gamma^{\mid x^{\prime}} \Rightarrow \Delta^{\mid x^{\prime}}}{[\text { extend } s \text { by } x \text { with } \alpha] \varphi, \Gamma \Rightarrow \Delta} \text { (extend_l) } \\
& \frac{\text { new }\left(x^{\prime}, \text { freevars, } f c t s\right), \Gamma^{\mid x^{\prime}} \Rightarrow\left[\alpha_{x}^{x^{\prime}}\right] \varphi, \Delta^{\mid x^{\prime}}}{\Gamma \Rightarrow[\text { extend } s \text { by } x \text { with } \alpha] \varphi, \Delta} \text { (extend_r) }
\end{aligned}
$$

where $x^{\prime} \in X_{s}$ is a new variable of sort $s \Gamma$ freevars denotes the set of all variables occurring free in the conclusion and fcts denotes the set of all function symbols occurring in the conclusion. $\Gamma^{\mid x^{\prime}}, \Delta^{\mid x^{\prime}}$ are constructed from
Γ, Δ by recursively replacing all quantified subformulas $\forall y . \psi$ with $y \in X_{s}$ by $\forall y .\left(y=x^{\prime} \vee \psi^{\mid x^{\prime}}\right)$. Given any system of finite sets of variables $\tilde{X} \subseteq X$ and any finite set of function symbols $\tilde{F} \subseteq F \Gamma$ then the formula

$$
\operatorname{new}\left(x^{\prime}, \tilde{X}, \tilde{F}\right): \equiv \bigwedge_{y \in \bar{X}_{s}}\left(y \neq x^{\prime}\right) \wedge \bigwedge_{\underline{s} \in S^{*} f \in \hat{F}_{\underline{s}, s}} \forall \underline{y} \cdot\left(f \underline{y} \neq x^{\prime}\right)
$$

is true in a state if the value of x^{\prime} differs from the values of all variables in \tilde{X}_{s} and from all values of functions in $\cup_{\underline{s} \in S^{*}} \tilde{F}_{\underline{s}, s}$. The correctness of (extend_l) and (extend_r) is not obvious. So this necessitates a proof. We start with the following lemma.

Lemma 5.5 (extension)

Let $S I G=(S, F)$ a signature, X a system of variables for $S I G, s \in S$, $\alpha \in E P R O G(S I G, X), \varphi \in E D L(S I G, X)$, and $x, x^{\prime} \in X_{s}$ with $x^{\prime} \not \equiv x$ and x^{\prime} does not occur in α or φ. Furthermore let st $=(\mathcal{A}, v) \in \operatorname{STATE}(S I G, X)$.
(a) there is an $a \notin A_{s}$ with $\left(\right.$ st $\left.+_{s}\{a\}\right)[x \leftarrow a] \models \varphi$ iff $(s t+s\{a\})[x \leftarrow a] \models \varphi$ for all $a \notin A_{s}$
(b) $\left(s t+{ }_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \models \operatorname{new}\left(x^{\prime}, \tilde{X}, \tilde{F}\right)$
for all $a \notin A_{s}$ and finite $\tilde{X} \subseteq X, \tilde{F} \subseteq F$
(c) st $\vDash \varphi$ iff for all $a \notin A_{s}$ is $\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \models \varphi^{\mid x^{\prime}}$
where $\varphi^{\mid x^{\prime}}$ is constructed from φ by recursively replacing all quantified subformulas $\forall y . \psi$ with $y \in X_{s}$ by $\forall y .\left(y=x^{\prime} \vee \psi^{\mid x^{\prime}}\right)$
(d) $s t=[$ extend s by x with $\alpha] \varphi$ iff
$(s t+s\{a\})\left[x^{\prime} \leftarrow a\right] \vDash\left[\alpha_{x}^{x^{\prime}}\right] \varphi$ for all $a \notin A_{s}$.
Proof. (a) holds because for $a, b \notin A_{s}$ the states $(s t+s\{a\})[x \leftarrow a]$ and $\left(s t+_{s}\{b\}\right)[x \leftarrow b]$ are isomorphic. (b) is obvious. (c) can be shown by structural induction on the formula φ. The proof of (d) is a little bit tricky and needs more effort. It is given in appendix B.4.

Theorem 5.6 (correctness of extend rules)

The rules (extend_l) and (extend_r) are correct.
Proof. Let $S I G=(S, F)$ a signature ΓX a system of variables for $S I G$. To prove correctness of rule (extend_l) we have to show that for all $s \in S \Gamma$ $\alpha \in E P R O G(S I G, X) \Gamma \varphi \in E D L(S I G, X) \Gamma$ and $x, x^{\prime} \in X_{s}$ with $x^{\prime} \not \equiv x$ and x^{\prime} does not occur in α or φ it holds that

$$
\begin{equation*}
\vDash \operatorname{new}\left(x^{\prime}, \text { freevars }, \text { fcts }\right),\left[\alpha_{x}^{\left.x^{\prime}\right]}\right] \varphi, \Gamma^{\mid x^{\prime}} \Rightarrow \Delta^{\mid x^{\prime}} \tag{A}
\end{equation*}
$$

implies

$$
\begin{equation*}
\models[\text { extend } s \text { by } x \text { with } \alpha] \varphi, \Gamma \Rightarrow \Delta . \tag{B}
\end{equation*}
$$

Assuming (A) we get that for all st $=(\mathcal{A}, v) \in \operatorname{STATE}(S I G, X)$ and all $a \notin A_{s}$ holds

$$
\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \vDash \operatorname{new}\left(x^{\prime}, \text { freevars, fcts }\right),\left[\alpha_{x}^{x^{\prime}}\right] \varphi, \Gamma^{\mid x^{\prime}} \Rightarrow \Delta^{\mid x^{\prime}}
$$

Together with lemma 5.5(a) follows that for all st at least one of the following cases happens: ${ }^{29}$

- $\left(s t+{ }_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \not \models n e w\left(x^{\prime}\right.$, freevars, $\left.f c t s\right)$ for all $a \notin A_{s}$
- $\left(s t+{ }_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \not \models\left[\alpha_{x}^{x^{\prime}}\right] \varphi$ for all $a \notin A_{s}$
- $\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \not \vDash \Gamma^{\mid x^{\prime}}$ for all $a \notin A_{s}$
- $\left(s t+{ }_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \vDash \Delta^{\mid x^{\prime}}$ for all $a \notin A_{s}$.

By applying lemma $5.5(\mathrm{~b})-(\mathrm{d})$ one gets that for all st at least one of the following cases happens:

- st $\not \forall[$ extend s by x with $\alpha] \varphi$
- st $\not \vDash \Gamma$
- $s t \vDash \Delta$
which means that

$$
\text { st } \models[\text { extend } s \text { by } x \text { with } \alpha] \varphi, \Gamma \Rightarrow \Delta
$$

for all states $s t$ Ti.e. (B) holds.
The correctness proof for (extend_r) works very similar.
We conclude this section with some remarks.

Remark (completeness)

The rules presented here are not sufficient for a complete calculus. There are several reasons for this incompleteness:

- Just as in ordinary dynamic logic there is no (effective) complete axiomatization for the while construct.
- We have not given any rules for symbolic execution of programs where compositions or (while) loops are involved in simultaneous execution.

[^15]－The rules dealing with domain extension（extend＿l equivalence preserving．Presumably「this can be achieved by adding for－ mulas $\forall x_{1}, \ldots, x_{n} . f\left(x_{1}, \ldots, x^{\prime}, \ldots, x_{n}\right)=U N D E F_{s}$ to the antecedent of the premise．These formulas impose the value of functions at the new created element x^{\prime} to be undefined．${ }^{30}$

However「we believe（and hope to demonstrate it in the foreseeable future） that these kinds of incompleteness do not seriously restrict reasoning about evolving algebras in practice．

Remark（economy of rules）

Possibly 1 the proposed rules lead to non－economic proofs．Especially「intro－ ducing new function symbols or variables（cf．sim＿update＿1 1Γ sim＿update＿r） and doubling of parts of the program（cf．sim＿choice＿1 1 sim＿choice＿r Γ sim＿if＿l Γ sim＿if＿r）（which might cause doubling of parts of proofs）Гshould be avoided whenever possible．In the next future we will work on such improvements of the calculus．

Remark（separating static and dynamic part）

The function symbols from the signature of an evolving algebra can be dis－ tinguished into so－called dynamic functions Γ which might be updated during a run of the evolving algebra Γ and so－called static functions Γ for which no update exists in the rules of the evolving algebra．（The same distinction is possible for variables．）In practice it is reasonable to make this separa－ tion explicit in the signatureГa technique which is used e．g．in［19］．Besides methodological merits one also gains advantages in（interactive）reasoning about evolving algebras：All the information（axioms and derived lemmata） about the static part can be kept globally「so that the current（sub－）goals in a proof have only to keep information concerning the dynamic part．So the goals become more readable and more tractable．

6 Conclusion and Related Work

We have defined syntax and semantics of EDLГan extension of dynamic logic by update of functions Γ extension of universes and simultaneous execution． This extension allows to directly represent（statements about）evolving al－ gebras．We have indicated that a calculus for EDL can be obtained from a sequent calculus for（not extended）dynamic logic only by adding further rulesTbut without modifications of original rules．This gives us reason to hope that the KIV systemГwhich supports interactiveГevolutionary construction

[^16]of (complicated) dynamic logic proofs Γ can be turned into a powerful tool for reasoning about evolving algebras only by extending it i.e. without (substantially) modifying existing code. This tool will be useful for proving certain properties of single evolving algebras or relations between (two or more) evolving algebras \bar{a} and even for proving relations between PASCAL-like programs and evolving algebras Γ and relations between algebraic first-order specifications and evolving algebras.

The work most close to ours Fand with the same aim - which is to make first steps towards (a system for) formal reasoning about evolving algebras (and related specification formalismsTe.g. COLD [9]) - was done by Groenboom and Renardel de Lavalette [11Г12]. In [11] Groenboom and Renardel de Lavalette present MLCM (Modal Logic of Creation and Modification) Γ which is (as EDL) a derivation from traditional dynamic logic. On the basis of MLCM they developed a Formal Language for Evolving Algebras (FLEA ${ }^{\square}$) [12]. Though closely related there are substantial differences to our approach. The semantics of FLEA ${ }^{\square}$ is defined using a so-called super-universum (cf. [14]) and special pre-defined functions (e.g. Reserve). Furthermore a repetition construct is available only in MLCM but not in FLEA ${ }^{\square}$. A minor difference is that in the semantics of the extend construct presented here the variable is bound locally and not globally. The axiomatization for MLCM and FLEA ${ }^{\square}$ considerably differs from the sequent calculus proposed in this paper (which is based on the idea of symbolic execution). While the aim of Groenboom and Renardel de Lavalette is to get an axiomatization which is as complete as possibleएwe have presented a calculus designed for practical use (in the KIV system).

Another proposal for reasoning about evolving algebrasTrestricted to invariance properties of single evolving algebras Γ can be found in PoetzschHeffter's work on deriving partial correctness logics from evolving algebras [20]. In order to prove that an evolving algebra has an invariance property $I N V$ Tone has to show that INV holds in the initial state「in formulas

$$
S T A R T \rightarrow I N V,
$$

(the formula START describes the relevant properties of the initial state) and that $I N V$ is invariant during computation Гin formulas

$$
I N V \rightarrow \mathrm{wb}[I N V] .
$$

Here wb is a weakest backward transformer in the style of the weakest precondition transformer of Hoare logicГi.e. the (first-order) formula wb[INV] expresses that $I N V$ holds in all states that can be reached by firing one of the rules of the evolving algebra.

Another workTwhich has strongly stimulated our interest in the topicГis that of Schellhorn and Ahrendt [22]. Their aim is to reconstruct the WAM
compiler correctness proofs outlined in [6] in a rigorous way supported by deduction systems. In doing so T the KIV system has already been successfully applied for reasoning about (a representation of a certain class of) evolving algebras. For this purpose the KIV system was not adapted in any way lbut evolving algebras are simulated by formalizing dynamic functions as association lists「i.e. as explicit data. (A similar technique is used in [20]).

Acknowledgments

I am indebted to Thomas Fuch β FGerhard SchellhornГand Wolfgang Ahrendt for many valuable discussions on the topic of this paper. Thomas FuchßГ Martin GieseГElmar Habermalz and Roland Preiß have made helpful comments on an earlier draft.

References

[1] J.A. Bergstra and J.V. Tucker. Algebraic specifications of computable and semicomputable data types. Theoret. Comput. Sci., 50:137-181, 1987.
[2] E. Börger. A logical operational semantics for full Prolog. In E. Börger, H. Kleine-Büning, and M.M. Richter, editors, Proceedings of the CSL's9, volume 440 of Lecture Notes in Computer Science, pages 36-64. Springer Verlag, 1990.
[3] E. Börger, G. Del Castillo, P. Galvan, and D. Rosenzweig. Towards a mathematical specification of the APE100 architecture: The APESE model. In B. Pehrson and I. Simon, editors, Proceedings of the IFIP 13th World Computer Congress, volume I: Technology/Foundations, pages 396-401. Elsevier Science Publishers B. V., 1994.
[4] E. Börger, I. Durdanovic, and D. Rosenzweig. Occam: Specification and compiler correctness. In U. Montanari and E.-R. Olderog, editors, Proceedings of the IFIP Working Conference on Programming Concepts, Methods and Calculi (PROCOMET 94). North Holland, 1994.
[5] E. Börger and U. Glässer. A formal specification of the PVM architecture. In B. Pehrson and I. Simon, editors, Proceedings of the IFIP 13th World Computer Congress, volume I: Technology/Foundations. Elsevier Science Publishers B. V., 1994.
[6] E. Börger and D. Rosenzweig. The WAM - definition and compiler correctness. Technical Report TR-14/92, Universita degli Studi di Pisa, Dipartimento di Informatika, 1992.
[7] E. Börger and D. Rosenzweig. A mathematical definition of full Prolog. Science of Computer Programming, 1994.
[8] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, Equations and Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer Verlag, 1985.
[9] L.M.G. Feijs and H.B.M. Jonkers. Formal Specification and Design, volume 35 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1994.
[10] R. Goldblatt. Axiomatizing the Logic of Computer Programming, volume 130 of Lecture Notes in Computer Science. Springer Verlag, 1982.
[11] R. Groenboom and G.R. Renardel de Lavalette. Reasoning about dynamic features in specification languages: A modal view on creation and modification. In D.J. Andrews, J.F. Groote, and C.A. Middelburg, editors, Proceedings of the Workshop in Semantics of Specification Languages, Utrecht, 1993. Springer Verlag, 1994.
[12] R. Groenboom and G.R. Renardel de Lavalette. A formalization of evolving algebras. In Proceedings of Accolade 1995, forthcoming.
[13] Y. Gurevich. Evolving algebras. A tutorial introduction. In Bulletin of the European Association for Theoretical Computer Science, volume 43, pages 264-284, 1991.
[14] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specification and Validation Methods. Oxford University Press, 1994.
[15] Y. Gurevich and J. Huggins. The semantics of the C programming language. In Proceedings of the CSL, volume 702 of Lecture Notes in Computer Science, pages 273-309. Springer Verlag, 1993.
[16] Y. Gurevich and L. Moss. Algebraic operational semantics and Occam. In E. Börger, H. Kleine-Büning, and M.M. Richter, editors, Proceedings of the CSL'89, volume 440 of Lecture Notes in Computer Science, pages 176-192. Springer Verlag, 1990.
[17] D. Harel. First Order Dynamic Logic. Lecture Notes in Computer Science. Springer Verlag, 1979.
[18] M. Heisel, W. Reif, and W. Stephan. A dynamic logic for program verification. In Logical Foundations of Computer Science, volume 363 of Lecture Notes in Computer Science, pages 134-145. Springer Verlag, 1989.
[19] A. Kappel. Algebraische operationale Semantik und ihre Anwendung auf Prolog. Master's thesis, Universität Dortmund, Lehrstuhl Informatik V, 1990.
[20] A. Poetzsch-Heffter. Deriving partial correctness logics from evolving algebras. In B. Pehrson and I. Simon, editors, IFIP 13 th World Computer Congress 1994, Volume I: Technology/Foundations. Elsevier Amsterdam, 1994.
[21] W. Reif. The KIV-system: Systematic construction of verified software. In Proceedings of the 11th International Conference on Automated Deduction, volume 607 of Lecture Notes in Computer Science. Springer Verlag, 1992.
[22] G. Schellhorn. <unknown title> (report on a case study with KIV which deals with proving WAM-compiler correctness), 1996 forthcoming.
[23] M. Wirsing. Algebraic Specification, volume B of Handbook of Theoretical Computer Science, chapter 13, pages 675-788. Elsevier Science Publishers B. V., 1990.

A Inference Rules for EDL

Notations

We assume a given signature $S I G=(S, F)$ with a system X of variables Γ and use the following meta-variables:

$$
\begin{array}{ll}
t, t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime}, \ldots & \text { for terms from } T_{F}(X) \\
x, x^{\prime}, x_{1}, x_{2}, \ldots & \text { for variables from } X \\
f, f_{1}, f_{2}, \ldots & \text { for function symbols from } F \\
s & \text { for sorts from } S \\
\varphi, \psi & \text { for formulas from } E D L(S I G, X) \\
\epsilon & \text { for boolean expressions from } B X P(S I G, X) \\
\Gamma, \Delta & \text { for tuples of formulas from } E D L(S I G, X) \\
\alpha, \beta, \alpha_{1}, \alpha_{2}, \alpha_{3} & \text { for programs from } E P R O G(S I G, X) .
\end{array}
$$

Thus each item below represents an infinite set of rules Γ with the range of meta-variables as just defined.

A relaxed notation for sequences is used. E.g. denotes

$$
\varphi, \Gamma \Rightarrow \Delta, \psi
$$

the sequence with antecedent (φ, Γ) which results from attaching the formula φ in front of the tuple $\Gamma \Gamma$ and with succedent (Δ, ψ) which results from attaching the formula ψ at the end of the tuple Δ.

Propositional Rules

$$
\begin{gathered}
\overline{\varphi, \Gamma \Rightarrow \varphi, \Delta}(\mathrm{ax}) \quad \overline{\text { false }, \Gamma \Rightarrow \Delta}(\text { false_l }) \\
\frac{\Gamma \Rightarrow \varphi, \Delta \quad \psi, \Gamma \Rightarrow \Delta}{\varphi \rightarrow \psi, \Gamma \Rightarrow \Delta}(\text { imp_l }) \quad \frac{\varphi, \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \rightarrow \psi, \Delta}(\text { imp_r }) \\
\frac{\Gamma \Rightarrow \varphi, \Delta \varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}(\mathrm{cut})
\end{gathered}
$$

Structure Rules

$$
\begin{array}{cl}
\frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta}(\text { weakening_1) } & \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \varphi, \Delta} \text { (weakening_r) } \\
\frac{\Gamma, \varphi \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta}(\text { rotate_1) } & \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \varphi, \Delta} \text { (rotate_r) }
\end{array}
$$

Equality Rules ${ }^{31}$

$$
\begin{gathered}
\overline{\Rightarrow t=t} \text { (reflexivity) } \\
\overline{t_{1}=t_{2} \Rightarrow t_{2}=t_{1}}(\text { symmetry }) \\
\overline{t_{1}=t_{2}, t_{2}=t_{3} \Rightarrow t_{1}=t_{3}} \text { (transitivity) } \\
\overline{t_{1}=t_{1}^{\prime}, \ldots, t_{n}=t_{n}^{\prime} \Rightarrow f\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)}(\text { congruence })
\end{gathered}
$$

Counter Rules

$$
\begin{gathered}
\overline{\operatorname{czero}=\operatorname{csucc}(\kappa) \Rightarrow} \text { (minimal_element) } \\
\frac{\operatorname{csucc}\left(\kappa_{1}\right)=\operatorname{csucc}\left(\kappa_{2}\right) \Rightarrow \kappa_{1}=\kappa_{2}}{} \text { (injectivity_of_csucc) } \\
\frac{\varphi(\operatorname{czero}), \forall \kappa^{\prime} \cdot\left(\varphi\left(\kappa^{\prime}\right) \rightarrow \varphi\left(\operatorname{csucc}\left(\kappa^{\prime}\right)\right)\right) \Rightarrow \forall \kappa \cdot \varphi(\kappa)}{} \text { (induction) } \mathrm{P}^{2} \kappa^{\prime} \text { new }
\end{gathered}
$$

Quantifier Rules

$$
\begin{gathered}
\frac{[\alpha] \varphi, \forall x . \varphi, \Gamma \Rightarrow \Delta}{\forall x . \varphi, \Gamma \Rightarrow \Delta}(\text { all_1 }) \Gamma \alpha \in{ }^{33} P R O G(S I G, X) \text { with }^{34} \operatorname{asg}(\alpha) \subseteq\{x\} \\
\frac{\Gamma \Rightarrow \varphi_{x}^{x^{\prime}}, \Delta}{\Gamma \Rightarrow \forall x . \varphi, \Delta}(\text { all_r }) \Gamma x^{\prime} \text { new }
\end{gathered}
$$

[^17]
Rules for Basic Program Constructs

$$
\begin{aligned}
& \frac{\varphi, \Gamma \Rightarrow \Delta}{[\text { skip }] \varphi, \Gamma \Rightarrow \Delta}(\text { skip_l }) \quad \frac{\Gamma \Rightarrow \varphi, \Delta}{\Gamma \Rightarrow[\text { skip }] \varphi, \Delta}(\text { skip_r }) \\
& \frac{x^{\prime}=t, \varphi_{x}^{x^{\prime}}, \Gamma \Rightarrow \Delta}{[x:=t] \varphi, \Gamma \Rightarrow \Delta}\left(\text { assign_1) } \quad \frac { x ^ { \prime } = t , \Gamma \Rightarrow \varphi _ { x } ^ { x ^ { \prime } } , \Delta } { \Gamma \Rightarrow [x : = t] \varphi , \Delta } \left(\text { assign_r) } \Gamma x^{\prime}\right.\right. \text { new } \\
& \frac{[\alpha] \varphi,[\beta] \varphi, \Gamma \Rightarrow \Delta}{[(\alpha \cup \beta)] \varphi, \Gamma \Rightarrow \Delta}(\text { choice_l }) \quad \frac{\Gamma \Rightarrow[\alpha] \varphi, \Delta \quad \Gamma \Rightarrow[\beta] \varphi, \Delta}{\Gamma \Rightarrow[(\alpha \cup \beta)] \varphi, \Delta} \text { (choice_r) } \\
& \frac{[\alpha][\beta] \varphi, \Gamma \Rightarrow \Delta}{[(\alpha ; \beta)] \varphi, \Gamma \Rightarrow \Delta}(\text { comp_1 }) \quad \frac{\Gamma \Rightarrow[\alpha][\beta] \varphi, \Delta}{\Gamma \Rightarrow[(\alpha ; \beta)] \varphi, \Delta}(\text { comp_r }) \\
& \frac{\epsilon,[\alpha] \varphi, \Gamma \Rightarrow \Delta \quad[\beta] \varphi, \Gamma \Rightarrow \epsilon, \Delta}{[\text { if } \epsilon \text { then } \alpha \text { else } \beta] \varphi, \Gamma \Rightarrow \Delta}(\text { cond_l }) \\
& \frac{\epsilon, \Gamma \Rightarrow[\alpha] \varphi, \Delta \quad \Gamma \Rightarrow \epsilon,[\beta] \varphi, \Delta}{\Gamma \Rightarrow[\text { if } \epsilon \text { then } \alpha \text { else } \beta] \varphi, \Delta} \text { (cond_r) } \\
& \frac{\forall \kappa \text {. [loop if } \epsilon \text { then } \alpha \text { times } \kappa](\epsilon \vee \varphi), \Gamma \Rightarrow \Delta}{[\text { while } \epsilon \operatorname{do} \alpha] \varphi, \Gamma \Rightarrow \Delta}(\text { while_1) } \Gamma \kappa \text { new } \\
& \frac{\Gamma \Rightarrow[\text { loop if } \epsilon \text { then } \alpha \text { times } \kappa](\epsilon \vee \varphi), \Delta}{\Gamma \Rightarrow[\text { while } \epsilon \text { do } \alpha] \varphi, \Delta} \text { (while_r) } \Gamma \kappa \text { new } \\
& \frac{[\alpha] \forall \kappa[\text { loop } \alpha \text { times } \kappa] \varphi, \varphi, \Gamma \Rightarrow \Delta}{\forall \kappa \cdot[\operatorname{loop} \alpha \text { times } \kappa] \varphi, \Gamma \Rightarrow \Delta} \text { (loop_unwind) } \\
& \frac{\varphi, \Gamma \Rightarrow \Delta}{[\text { loop } \alpha \text { times czero }] \varphi, \Gamma \Rightarrow \Delta}(\text { czero_loop_l }) \\
& \frac{\Gamma \Rightarrow \varphi, \Delta}{\Gamma \Rightarrow[\operatorname{loop} \alpha \operatorname{times} \text { czero }] \varphi, \Delta} \text { (czero_loop_r) } \\
& \frac{[\alpha][\text { loop } \alpha \operatorname{times} \kappa] \varphi, \Gamma \Rightarrow \Delta}{[\operatorname{loop} \alpha \operatorname{times} \operatorname{csucc}(\kappa)] \varphi, \Gamma \Rightarrow \Delta}(\text { csucc_loop_1) } \\
& \frac{\Gamma \Rightarrow[\alpha][\operatorname{loop} \alpha \text { times } \kappa] \varphi, \Delta}{\Gamma \Rightarrow[\operatorname{loop} \alpha \operatorname{times} \operatorname{csucc}(\kappa)] \varphi, \Delta} \text { (csucc_loop_r) }
\end{aligned}
$$

Rules for Additional Program Constructs

$$
\begin{aligned}
& f_{1}^{\prime} \underline{t}_{1}=t_{1}, \ldots, f_{n}^{\prime} t_{n}=t_{n}, \\
& \widehat{1 \leq i \leq n}^{\forall \underline{x}_{i}} \cdot\left(\hat{1}_{1 \leq j \leq n} \neg \operatorname{affects}\left(f_{j} \underline{t}_{j}:=t_{j}, f_{i} \underline{x}_{i}\right)\right. \\
& \left.\rightarrow f_{i}^{\prime} \underline{x}_{i}=f_{i} \underline{x}_{i}\right), \\
& \varphi_{f_{1}, \ldots, f_{n}}^{f_{1}^{\prime}, \ldots, f_{n}^{\prime}} \Gamma \Rightarrow \Delta \\
& \left.\left.\frac{\underset{1 \leq i \leq n}{\bigvee} \sum_{i<j \leq n} \text { clash }\left(f_{i} t_{i}:=t_{i}, f_{j} t_{j}\right.}{}:=t_{j}\right), \Gamma \Rightarrow \Delta \mid\left(f_{1} \underline{t}_{1}:=t_{1}, \ldots, f_{n} t_{n}:=t_{n}\right)\right] \varphi, \Gamma \Rightarrow \Delta \text { (sim_update_l) } \\
& f_{1}^{\prime} \underline{t}_{1}=t_{1}, \ldots, f_{n}^{\prime} t_{n}=t_{n} \text {, } \\
& \bigwedge_{1 \leq i \leq n} \forall \underline{x}_{i} \cdot\left(\bigwedge_{1 \leq j \leq n} \neg \operatorname{affects}\left(f_{j} \underline{t}_{j}:=t_{j}, f_{i} \underline{x}_{i}\right)\right. \\
& \left.\rightarrow f_{i}^{\prime} \underline{x_{i}}=f_{i} \underline{x}_{i}\right), \\
& \left.\left.\frac{\Gamma \Rightarrow \varphi_{f_{1}, \ldots, f_{n}}^{f_{1}^{\prime}, f_{n}^{\prime}}, \Delta}{\Gamma \Rightarrow\left[\left(f_{1} \underline{t}_{1}:=t_{1}, \ldots, f_{n} t_{n}\right.\right.}:=t_{n}\right)\right] \varphi, \Delta \quad \text { (sim_update_r) }
\end{aligned}
$$

where the $f_{1}^{\prime}, \ldots, f_{n}^{\prime}$ are new function symbols (or new variables) Γ the \underline{x}_{i} are tuples of new distinct variables Cand

$$
\begin{aligned}
& \operatorname{affects}\left(f_{j} \underline{t}_{j}:=t_{j}, f_{i} \underline{x}_{i}\right): \equiv \begin{cases}\underline{x}=\underline{t}_{j} & \text { Гif } f_{j} \equiv f_{i} \\
\text { false } & \text { Гotherwise }\end{cases} \\
& \operatorname{clash}\left(f_{i} t_{i}:=t_{i}, f_{j} \underline{t}_{j}:=t_{j}\right): \equiv \begin{cases}\underline{t}_{i}=\underline{t}_{j} \wedge t_{i} \neq t_{j} & \text { } \\
\text { faif } f_{i} \equiv f_{j} \\
\text { false } & \text { Гotherwise }\end{cases} \\
& \frac{[(\beta, \alpha)] \varphi, \Gamma \Rightarrow \Delta}{[(\alpha, \beta)] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_com_l }) \quad \frac{\Gamma \Rightarrow[(\beta, \alpha)] \varphi, \Delta}{\Gamma \Rightarrow[(\alpha, \beta)] \varphi, \Delta}(\text { sim_com_r }) \\
& \frac{\left[\left(\alpha_{1},\left(\alpha_{2}, \alpha_{3}\right)\right)\right] \varphi, \Gamma \Rightarrow \Delta}{\left[\left(\left(\alpha_{1}, \alpha_{2}\right), \alpha_{3}\right)\right] \varphi, \Gamma \Rightarrow \Delta}\left(\text { sim_ass_1) } \quad \frac{\Gamma \Rightarrow\left[\left(\alpha_{1},\left(\alpha_{2}, \alpha_{3}\right)\right)\right] \varphi, \Delta}{\Gamma \Rightarrow\left[\left(\left(\alpha_{1}, \alpha_{2}\right), \alpha_{3}\right)\right] \varphi, \Delta}(\text { sim_ass_r) }\right. \\
& \frac{[\alpha] \varphi, \Gamma \Rightarrow \Delta}{[(\text { skip }, \alpha)] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_skip_l }) \quad \frac{\Gamma \Rightarrow[\alpha] \varphi, \Delta}{\Gamma \Rightarrow[(\operatorname{skip}, \alpha)] \varphi, \Delta}(\text { sim_skip_r}) \\
& \frac{\left[\left(\left(\alpha_{1}, \beta\right) \cup\left(\alpha_{2}, \beta\right)\right)\right] \varphi, \Gamma \Rightarrow \Delta}{\left[\left(\left(\alpha_{1} \cup \alpha_{2}\right), \beta\right)\right] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_choice_l) }
\end{aligned}
$$

$$
\begin{gathered}
\frac{\Gamma \Rightarrow\left[\left(\left(\alpha_{1}, \beta\right) \cup\left(\alpha_{2}, \beta\right)\right)\right] \varphi, \Delta}{\Gamma \Rightarrow\left[\left(\left(\alpha_{1} \cup \alpha_{2}\right), \beta\right)\right] \varphi, \Delta}(\text { sim_choice_r }) \\
\frac{\left[\text { if } \epsilon \text { then }\left(\alpha_{1}, \beta\right) \text { else }\left(\alpha_{2}, \beta\right)\right] \varphi, \Gamma \Rightarrow \Delta}{\left[\left(\text { if } \epsilon \text { then } \alpha_{1} \text { else } \alpha_{2}, \beta\right)\right] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_if_1) } \\
\frac{\Gamma \Rightarrow\left[\text { if } \epsilon \text { then }\left(\alpha_{1}, \beta\right) \text { else }\left(\alpha_{2}, \beta\right)\right] \varphi, \Delta}{\Gamma \Rightarrow\left[\left(\text { if } \epsilon \text { then } \alpha_{1} \text { else } \alpha_{2}, \beta\right)\right] \varphi, \Delta}(\text { sim_if_r }) \\
\frac{\left[\text { extend } s \text { by } x^{\prime} \text { with }\left(\alpha_{x}^{x^{\prime}}, \beta\right)\right] \varphi, \Gamma \Rightarrow \Delta}{[(\text { extend } s \text { by } x \text { with } \alpha, \beta)] \varphi, \Gamma \Rightarrow \Delta}(\text { sim_extend_l }) \Gamma x^{\prime} \text { new } \\
\frac{\Gamma \Rightarrow\left[\text { extend } s \text { by } x^{\prime} \text { with }\left(\alpha_{x}^{x^{\prime}}, \beta\right)\right] \varphi, \Delta}{\Gamma \Rightarrow[(\text { extend } s \text { by } x \text { with } \alpha, \beta)] \varphi, \Delta}(\text { sim_extend_r }) \Gamma x^{\prime} \text { new } \\
\frac{n e w\left(x^{\prime}, \text { freevars, fcts }\right),\left[\alpha_{x}^{x^{\prime}}\right] \varphi, \Gamma^{\mid x^{\prime}} \Rightarrow \Delta^{\mid x^{\prime}}}{[\text { extend } s \text { by } x \text { with } \alpha] \varphi, \Gamma \Rightarrow \Delta}(\text { extend_l) } \\
\frac{n e w\left(x^{\prime}, \text { freevars }, \text { fcts }\right), \Gamma^{\mid x^{\prime}} \Rightarrow\left[\alpha_{x}^{x^{\prime}}\right] \varphi, \Delta^{\mid x^{\prime}}}{\Gamma \Rightarrow[\text { extend } s \text { by } x \text { with } \alpha] \varphi, \Delta}(\text { extend_r })
\end{gathered}
$$

where $x^{\prime} \in X_{s}$ is a new variable of sort $s \Gamma$ freevars denotes the set of all variables occurring free in the conclusion and fcts denotes the set of all function symbols occurring in the conclusion. $\Gamma^{\mid x^{\prime}}, \Delta^{\mid x^{\prime}}$ are constructed from Γ, Δ by recursively replacing all quantified subformulas $\forall y . \psi$ with $y \in X_{s}$ by $\forall y .\left(y=x^{\prime} \vee \psi^{\mid x^{\prime}}\right)$. For any system of finite sets of variables $\tilde{X} \subseteq X$ and any finite set of function symbols $\tilde{F} \subseteq F$ the formula new $\left(x^{\prime}, \tilde{X}, \tilde{F}\right)$ is defined by

$$
\operatorname{new}\left(x^{\prime}, \tilde{X}, \tilde{F}\right): \equiv \bigwedge_{y \in \bar{X}_{s}}\left(y \neq x^{\prime}\right) \wedge \bigwedge_{\underline{s} \in S^{*}} \bigwedge_{f \in \bar{F}_{\underline{s}, s}} \forall \underline{y} \cdot\left(f \underline{y} \neq x^{\prime}\right) .
$$

B Postponed Proofs

This section presents the more complicated and technical proofs. It starts with providing some facts or lemmata used later.

B. 1 Useful Lemmata

Fact B. 1 (program semantics and state operations)

Let $S I G=(S, F)$ a signature, X a system of variables for $S I G, s \in S$, $x \in X_{s}, \alpha \in \operatorname{EPROG}(S I G, X)$, and st $=(\mathcal{A}, v)$ and $s t^{\prime}=\left(\mathcal{A}^{\prime}, v^{\prime}\right)$ states from $\operatorname{STATE}(S I G, X)$. Then it holds:
(a) If st $\llbracket \alpha \rrbracket$ st', $a \in A_{s}$, and x does not occur in α then $(s t[x \leftarrow a]) \llbracket \alpha \rrbracket\left(s t^{\prime}[x \leftarrow a]\right)$.
(b) If st $\llbracket \alpha \rrbracket$ st t^{\prime} and $a \notin A_{s} \cup A_{s}^{\prime}$ then $^{35}(s t+s\{a\}) \llbracket \alpha \rrbracket\left(s t^{\prime}+{ }_{s}\{a\}\right)$.
(c) If $(s t[x \leftarrow a]) \llbracket \alpha \rrbracket$ st t^{\prime} and $x^{\prime} \in X_{s}$ does not occur in α then $\left(s t\left[x^{\prime} \leftarrow a\right]\right) \llbracket \alpha_{x}^{x^{\prime}} \rrbracket\left(s t^{\prime}[x \leftarrow s t(x)]\left[x^{\prime} \leftarrow s t^{\prime}(x)\right]\right)$.
(d) If $(s t[x \leftarrow a]) \llbracket \alpha \rrbracket$ st' and x does not occur in α then st $\llbracket \alpha \rrbracket s t^{\prime}([x \leftarrow s t(x)])$.
(e) If $\left(s t+_{s}\{a\}\right) \llbracket \alpha \rrbracket s t^{\prime}$ then there is some state st $t^{\prime \prime} \in \operatorname{STATE}(S I G, X)$ such that $s t \llbracket \alpha \rrbracket s t^{\prime \prime}$ and $s t^{\prime}=s t^{\prime \prime}+{ }_{s}\{a\}$ for some $a \in A_{s}^{\prime} \backslash A_{s}^{\prime \prime}$.

Proof. All proofs work by structural induction on programs α.
Lemma B. 2 (join and other state operations)
Let $S I G=(S, F)$ a signature, X a system of variables for $S I G, s \in S$, $x \in X_{s}$, and st, st', and st states from STATE (SIG, X).
(a) If $s t^{\prime \prime}(x)=s t(x), a \in A_{s} \cap A_{s}^{\prime \prime}$, and st $\leadsto s t^{\prime}$ and st \leadsto st $t^{\prime \prime}$ are consistent then are $s t[x \leftarrow a] \leadsto s t^{\prime}$ and $s t[x \leftarrow a] \leadsto s t^{\prime \prime}[x \leftarrow a]$ consistent with $s t^{\prime} \oplus_{s t[x \leftarrow a]} s t^{\prime \prime}[x \leftarrow a]=s t^{\prime} \oplus_{s t} s t^{\prime \prime}$.
(b) If $a \in A_{s}^{\prime} \backslash A_{s}^{\prime \prime}$ and the state changes st $\leadsto s t^{\prime}$ and st $\leadsto s t^{\prime \prime}$ are consistent then are $\left(s t+_{s}\{a\}\right) \leadsto s t^{\prime}$ and $\left(s t+_{s}\{a\}\right) \leadsto\left(s t^{\prime \prime}+_{s}\{a\}\right)$ consistent with $s t^{\prime} \oplus_{(s t+s\{a\})}\left(s t^{\prime \prime}+_{s}\{a\}\right)=s t^{\prime} \oplus_{s t} s t^{\prime \prime}$.
(c) If $s t^{\prime \prime}(x)=s t(x), a \in A_{s}^{\prime}$, and the state changes $s t \sim s t^{\prime}$ and st $\sim s t^{\prime \prime}$ are consistent then are st $\leadsto s t^{\prime}[x \leftarrow a]$ and st $\leadsto s t^{\prime \prime}$ consistent with $\left(s t^{\prime}[x \leftarrow a]\right) \oplus_{s t} s t^{\prime}=\left(s t^{\prime} \oplus_{s t} s t^{\prime \prime}\right)[x \leftarrow a]$.

[^18](d) If $a \in A_{s}^{\prime} \backslash\left(A_{s}^{\prime \prime} \cup A_{s}\right)$ and the state changes $\left(\right.$ st $\left.+_{s}\{a\}\right) \leadsto s t^{\prime}$ and $\left(s t+{ }_{s}\{a\}\right) \leadsto\left(s t^{\prime \prime}+_{s}\{a\}\right)$ are consistent then are $s t \leadsto s t^{\prime}$ and $s t \leadsto s t^{\prime \prime}$ consistent with $s t^{\prime} \oplus_{s t} s t^{\prime \prime}=s t^{\prime} \oplus_{(s t+s\{a\})}\left(s t^{\prime \prime}+_{s}\{a\}\right)$.

Proof. Essentially「the proofs work by simply unfolding the definitions.

B. 2 Proof for Fact 3.8

Proof. (a) follows obviously from (the symmetry in) definitions 3.6 and 3.7. The proof of (b) needs more effort. We start by unfolding the definition of consistency.

- state changes $s t \leadsto s t^{\prime}$ and $s t \leadsto s t^{\prime \prime} \Gamma$ and
state changes $s t \leadsto\left(s t^{\prime} \oplus_{s t} s t^{\prime \prime}\right)$ and $s t \leadsto s t^{\prime \prime \prime}$ are consistent
\Leftrightarrow
(1a) $A_{s}^{\prime} \cap A_{s}^{\prime \prime}=A_{s}$

$$
\left(A_{s}^{\prime} \cup A_{s}^{\prime \prime}\right) \cap A_{s}^{\prime \prime \prime}=A_{s}
$$

(2a) if $\underline{a} \in A_{\underline{s}}$ then:

$$
f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a}) \text { or } f_{\mathcal{A}^{\prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a}) \text { or } f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}^{\prime \prime}}(\underline{a})
$$

$f_{\mathcal{A}^{\prime}}(\underline{a}) \neq f_{\mathcal{A}}(\underline{a})$ implies
$\left(f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})\right.$ or $f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})$ or $\left.f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})\right)$
$f_{\mathcal{A}^{\prime \prime}}(\underline{a}) \neq f_{\mathcal{A}}(\underline{a})$ implies
$\left(f_{\mathcal{A}^{\prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})\right.$ or $f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})$ or $\left.f_{\mathcal{A}^{\prime \prime}}(\underline{a})=f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})\right)$
$f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}^{\prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})$ implies
$\left(f_{\mathcal{A}}(\underline{a})=f_{\mathcal{A}}(\underline{a})\right.$ or $f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})$ or $\left.f_{\mathcal{A}}(\underline{a})=f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})\right)$
(3a) $v_{s}^{\prime}(x)=v_{s}(x)$ or $v_{s}^{\prime \prime}(x)=v_{s}(x)$ or $v_{s}^{\prime}(x)=v_{s}^{\prime \prime}(x)$
$v_{s}^{\prime}(x) \neq v_{s}(x)$ implies
$\left(v_{s}^{\prime}(x)=v_{s}(x)\right.$ or $v_{s}^{\prime \prime \prime}(x)=v_{s}(x)$ or $\left.v_{s}^{\prime}(x)=v_{s}^{\prime \prime \prime}(x)\right)$
$v_{s}^{\prime \prime}(x) \neq v_{s}(x)$ implies
$\left(v_{s}^{\prime \prime}(x)=v_{s}(x)\right.$ or $v_{s}^{\prime \prime \prime}(x)=v_{s}(x)$ or $\left.v_{s}^{\prime \prime}(x)=v_{s}^{\prime \prime \prime}(x)\right)$
$v_{s}^{\prime}(x)=v_{s}^{\prime \prime}(x)=v_{s}(x)$ implies
$\left(v_{s}(x)=v_{s}(x)\right.$ or $v_{s}^{\prime \prime \prime}(x)=v_{s}(x)$ or $\left.v_{s}(x)=v_{s}^{\prime \prime \prime}(x)\right)$

- state changes $s t \leadsto s t^{\prime \prime}$ and $s t \leadsto s t^{\prime \prime \prime} \Gamma$ and state changes $s t \leadsto s t^{\prime}$ and $s t \leadsto\left(s t^{\prime \prime} \oplus_{s t} s t^{\prime \prime \prime}\right)$ are consistent \Leftrightarrow
(1b) $A_{s}^{\prime \prime} \cap A_{s}^{\prime \prime \prime}=A_{s}$ $A_{s}^{\prime} \cap\left(A_{s}^{\prime \prime} \cup A_{s}^{\prime \prime \prime}\right)=A_{s}$
(2b) if $\underline{a} \in A_{\underline{s}}$ then:
$f_{\mathcal{A}^{\prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})$ or $f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})$ or $f_{\mathcal{A}^{\prime \prime}}(\underline{a})=f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})$

$$
\begin{aligned}
& f_{\mathcal{A}^{\prime \prime}}(\underline{a}) \neq f_{\mathcal{A}}(\underline{a}) \text { implies } \\
& \quad\left(f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a}) \text { or } f_{\mathcal{A}^{\prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a}) \text { or } f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}^{\prime \prime}}(\underline{a})\right) \\
& f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a}) \neq f_{\mathcal{A}}(\underline{a}) \text { implies } \\
& \quad\left(f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a}) \text { or } f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a}) \text { or } f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})\right) \\
& f_{\mathcal{A}^{\prime \prime}}(\underline{a})=f_{\mathcal{A}^{\prime \prime \prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a}) \text { implies } \\
& \quad\left(f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a}) \text { or } f_{\mathcal{A}}(\underline{a})=f_{\mathcal{A}}(\underline{a}) \text { or } f_{\mathcal{A}^{\prime}}(\underline{a})=f_{\mathcal{A}}(\underline{a})\right)
\end{aligned}
$$

(3b) $v_{s}^{\prime \prime}(x)=v_{s}(x)$ or $v_{s}^{\prime \prime \prime}(x)=v_{s}(x)$ or $v_{s}^{\prime \prime}(x)=v_{s}^{\prime \prime \prime}(x)$
$v_{s}^{\prime \prime}(x) \neq v_{s}(x)$ implies

$$
\left(v_{s}^{\prime}(x)=v_{s}(x) \text { or } v_{s}^{\prime \prime}(x)=v_{s}(x) \text { or } v_{s}^{\prime}(x)=v_{s}^{\prime \prime}(x)\right)
$$

$v_{s}^{\prime \prime \prime}(x) \neq v_{s}(x)$ implies

$$
\left(v_{s}^{\prime}(x)=v_{s}(x) \text { or } v_{s}^{\prime \prime \prime}(x)=v_{s}(x) \text { or } v_{s}^{\prime}(x)=v_{s}^{\prime \prime \prime}(x)\right)
$$

$$
v_{s}^{\prime \prime}(x)=v_{s}^{\prime \prime \prime}(x)=v_{s}(x) \text { implies }
$$

$$
\left(v_{s}^{\prime}(x)=v_{s}(x) \text { or } v_{s}(x)=v_{s}(x) \text { or } v_{s}^{\prime}(x)=v_{s}(x)\right)
$$

We proceed with proving

$$
\begin{aligned}
& \text { (1a) } \Leftrightarrow \text { (1b) } \\
& (2 a) \Leftrightarrow(2 b) \\
& (3 a) \Leftrightarrow(3 b) \text {. } \\
& (1 a) \Leftrightarrow\left[\begin{array}{r}
A_{s}^{\prime} \supseteq A_{s} \\
A_{s}^{\prime \prime} \supseteq A_{s} \\
A_{s}^{\prime \prime} \supseteq A_{s} \\
A_{s}^{\prime} \cap A_{s}^{\prime \prime} \subseteq A_{s} \\
A_{s}^{\prime} \cap A_{s}^{\prime \prime \prime} \subseteq A_{s} \\
A_{s}^{\prime \prime} \cap A_{s}^{\prime \prime \prime} \subseteq A_{s}
\end{array}\right] \Leftrightarrow(1 b) .
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow(2 b) \text {. } \\
& \begin{aligned}
(3 a) & \Leftrightarrow \begin{array}{llll}
v_{s}^{\prime}(x)=v_{s}(x) & \text { or } & v_{s}^{\prime \prime}(x)=v_{s}(x) & \text { or } \\
v_{s}^{\prime}(x)=v_{s}^{\prime \prime}(x) \\
v_{s}^{\prime}(x)=v_{s}(x) & \text { or } & v_{s}^{\prime \prime \prime}(x)=v_{s}(x) & \text { or } \\
v_{s}^{\prime \prime}(x)=v_{s}^{\prime \prime \prime}(x) \\
v_{s}^{\prime \prime}(x)=v_{s}(x) & \text { or } & v_{s}^{\prime \prime \prime}(x)=v_{s}(x) & \text { or } \\
v_{s}^{\prime \prime}(x)=v_{s}^{\prime \prime \prime}(x)
\end{array} \\
& \Leftrightarrow \begin{array}{llll}
v_{s}^{\prime \prime}(x)=v_{s}(x) & \text { or } & v_{s}^{\prime \prime \prime}(x)=v_{s}(x) & \text { or } \\
v_{s}^{\prime \prime}(x)=v_{s}^{\prime \prime \prime}(x) \\
v_{s}^{\prime \prime}(x)=v_{s}(x) & \text { or } & v_{s}^{\prime}(x)=v_{s}(x) & \text { or } \\
v_{s}^{\prime}(x)=v_{s}^{\prime \prime}(x) \\
v_{s}^{\prime \prime \prime}(x)=v_{s}(x) & \text { or } & v_{s}^{\prime}(x)=v_{s}(x) & \text { or } \\
v_{s}^{\prime}(x)=v_{s}^{\prime \prime \prime}(x)
\end{array} \\
& \Leftrightarrow(3 b) .
\end{aligned}
\end{aligned}
$$

It remains to show that

$$
s t^{l l}:=\underbrace{\left(s t^{\prime} \oplus_{s t} s t^{\prime \prime}\right)}_{=: s t^{l}} \oplus s t s t^{\prime \prime \prime}=s t^{\prime} \oplus_{s t} \underbrace{\left(s t^{\prime \prime} \oplus_{s t} s t^{\prime \prime \prime}\right)}_{=: s t^{r}}=: s t^{r r}
$$

if the corresponding state changes are consistent. With

$$
\begin{aligned}
s t^{l l} & =\left(\mathcal{A}^{l l}, v^{l l}\right) \\
s t^{l} & =\left(\mathcal{A}^{l}, v^{l}\right) \\
s t^{r r} & =\left(\mathcal{A}^{r r}, v^{r r}\right) \\
s t^{r} & =\left(\mathcal{A}^{r}, v^{r}\right)
\end{aligned}
$$

it holds

$$
\begin{aligned}
A_{s}^{l l} & =\left(A_{s}^{\prime} \cup A_{s}^{\prime \prime}\right) \cup A_{s}^{\prime \prime \prime} \\
& =A_{s}^{\prime} \cup\left(A_{s}^{\prime \prime} \cup A_{s}^{\prime \prime \prime}\right) \\
& =A_{s}^{r r} .
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
& \left(\begin{array}{ll}
U N D E F_{s} & \Gamma i f \\
\underline{a} & \in A_{\underline{s}}^{l l} \backslash\left(A_{\underline{s}}^{\prime} \cup A_{\underline{s}}^{\prime \prime} \cup A_{\underline{s}}^{\prime \prime \prime}\right)
\end{array}\right. \\
& f_{\mathcal{A}^{\prime}}(\underline{a}) \quad \text { if } \underline{a} \in A_{\underline{s}}^{\underline{s}} \backslash A_{\underline{s}}^{\underline{s}}
\end{aligned}
$$

$$
\begin{aligned}
& =f_{\mathcal{A}^{r v}}(\underline{\underline{a}})
\end{aligned}
$$

where we have used that

$$
\begin{aligned}
& f_{\mathcal{A}^{l}}(\underline{a})=U N D E F_{s} \\
& \quad \Leftrightarrow \underline{a} \in\left(A_{\underline{s}}^{l l} \backslash\left(A_{\underline{s}}^{l} \cup A_{\underline{s}}^{\prime \prime \prime}\right)\right) \cup\left(A_{\underline{s}}^{l} \backslash\left(A_{\underline{s}}^{\prime} \cup A_{\underline{s}}^{\prime \prime}\right)\right) \\
& \quad \Leftrightarrow \underline{a} \in A_{\underline{s}}^{l l} \backslash\left(A_{\underline{s}}^{\prime} \cup A_{\underline{s}}^{\prime \prime} \cup A_{\underline{s}}^{\prime \prime \prime}\right) \\
& \quad \Leftrightarrow \underline{a} \in A_{\underline{s}}^{r r} \backslash\left(A_{\underline{s}}^{\prime} \cup A_{\underline{s}}^{\prime \prime} \cup A_{\underline{s}}^{\prime \prime \prime}\right) \\
& \quad \Leftrightarrow \quad \underline{a} \in\left(A_{\underline{s}}^{r r} \backslash\left(A_{\underline{s}}^{\prime} \cup A_{\underline{s}}^{r}\right)\right) \cup\left(A_{\underline{s}}^{r} \backslash\left(A_{\underline{s}}^{\prime \prime} \cup A_{\underline{s}}^{\prime \prime \prime}\right)\right) \\
& \quad \Leftrightarrow f_{\mathcal{A}^{r r}}(\underline{a})=U N D E F_{s} .
\end{aligned}
$$

Finally it holds

$$
\begin{aligned}
& v_{s}^{l l}(x)= \begin{cases}v_{s}^{l}(x) & \text { } \\
v_{s}^{\prime \prime \prime}(x) & \text { 㟨 } v_{s}^{l \prime \prime}(x) \neq v_{s}(x) \\
v_{s}(x) & \text { Гotherwise }\end{cases} \\
& =\left\{\begin{array}{ll}
v_{s}^{\prime}(x) & \text { }
\end{array}= \begin{cases}v_{s}^{\prime \prime}(x) & v_{s}^{\prime}(x) \neq v_{s}(x) \\
v_{s}^{\prime \prime}(x) & \text { } i \text { if } v_{s}^{\prime \prime}(x) \neq v_{s}(x) \\
v_{s}^{\prime \prime}(x) & \text { (otherwise }\end{cases} \right. \\
& = \begin{cases}v_{s}^{\prime}(x) & \text { Гif } v_{s}^{\prime}(x) \neq v_{s}(x) \\
v_{s}^{r}(x) & \text { Гif } v_{s}^{r}(x) \neq v_{s}(x) \\
v_{s}(x) & \text { Гotherwise }\end{cases} \\
& =v_{s}^{r r}(x) .
\end{aligned}
$$

which finishes the proof of $s t^{l l}=s t^{r r}$ and so of (b).
In (c) the consistency of the state changes $s t \leadsto s t$ and $s t \leadsto s t^{\prime}$ is quite obvious.

$$
s t^{\oplus}:=s t \oplus_{s t} s t^{\prime}=s t^{\prime} \text { where } s t^{\oplus}=:\left(\mathcal{A}^{\oplus}, v^{\oplus}\right)
$$

follows from:

$$
\begin{aligned}
& A_{s}^{\oplus}=A_{s} \cup A_{s}^{\prime}=A_{s}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =f_{\mathcal{A}^{\prime}}(\underline{a}) \\
& v_{s}^{\oplus}(x)= \begin{cases}v_{s}^{\prime}(x) & \text { } i \text { if } v_{s}^{\prime}(x) \neq v_{s}(x) \\
v_{s}^{\prime}(x) & \text { iif } v_{s}^{\prime}(x)=v_{s}(x)\end{cases} \\
& =v_{s}^{\prime}(x) .
\end{aligned}
$$

This concludes the proof for fact 3.8 .

B. 3 Proof for Theorem 3.10

Proof. (a) $\Gamma(b)$ Гand (c) follow directly from fact 3.8. In (c) it is employed that no program from $E P R O G(S I G, X)$ is able to discard elements from universes.

The proof for (d) works as follows:
$s t \llbracket\left(\left(\alpha_{1} \cup \alpha_{2}\right), \beta\right) \rrbracket s t^{\prime}$
\Leftrightarrow there are $s t_{\alpha} \Gamma s t_{\beta}$ such that $\left(s t \llbracket \alpha_{1} \rrbracket s t_{\alpha}\right.$ or $\left.s t \llbracket \alpha_{2} \rrbracket s t_{\alpha}\right)$ and $s t \llbracket \beta \rrbracket s t_{\beta} \Gamma$ and the state changes $s t \leadsto s t_{\alpha}$ and $s t \leadsto s t_{\beta}$ are consistent with $s t^{\prime}=s t_{\alpha} \oplus_{s t} s t_{\beta}$
$\Leftrightarrow \quad$ (there are $s t_{\alpha} \Gamma s t_{\beta}$ such that $s t \llbracket \alpha_{1} \rrbracket s t_{\alpha}$ and $s t \llbracket \beta \rrbracket s t_{\beta} \Gamma$ and the state changes $s t \leadsto s t_{\alpha}$ and $s t \leadsto s t_{\beta}$ are consistent with $\left.s t^{\prime}=s t_{\alpha} \oplus_{s t} s t_{\beta}\right)$
or
(there are $s t_{\alpha} \Gamma s t_{\beta}$ such that st $\llbracket \alpha_{2} \rrbracket s t_{\alpha}$ and st $\llbracket \beta \rrbracket s t_{\beta} \Gamma$
and the state changes $s t \leadsto s t_{\alpha}$ and $s t \leadsto s t_{\beta}$ are consistent
with $\left.s t^{\prime}=s t_{\alpha} \oplus_{s t} s t_{\beta}\right)$
$\Leftrightarrow s t \llbracket\left(\left(\alpha_{1}, \beta\right) \cup\left(\alpha_{2}, \beta\right)\right) \rrbracket s t^{\prime}$
(e) can be proved very similar to (d). It remains to show (f) Twhich is done in the rest of this subsection. The two implications of the equivalence $s t \llbracket($ extend s by x with $\alpha, \beta) \rrbracket s t^{\prime} \Leftrightarrow s t \llbracket$ extend s by x^{\prime} with $\left(\alpha_{x}^{x^{\prime}}, \beta\right) \rrbracket s t^{\prime}$ are proven separately. For the first one we assume

$$
\text { st } \llbracket(\text { extend } s \text { by } x \text { with } \alpha, \beta) \rrbracket s t^{\prime}
$$

which means that there are states $s t_{\alpha}, s t_{\beta}, s t^{\prime \prime}$ and an $a \in A_{s}^{\prime \prime} \backslash A_{s}$ such that
(1) $\left(s t+_{s}\{a\}\right)[x \leftarrow a] \llbracket \alpha \rrbracket s t^{\prime \prime}$
(2) $s t_{\alpha}=s t^{\prime \prime}[x \leftarrow s t(x)]$
(3) $s t \llbracket \beta \rrbracket s t_{\beta}$
(4) $s t \sim s t_{\alpha}$ and $s t \leadsto s t_{\beta}$ consistent with $s t_{\alpha} \oplus_{s t} s t_{\beta}=s t^{\prime}$.

By applying fact B.1(c) on (1) and choosing

$$
\overline{s t_{\alpha}}:=s t^{\prime \prime}[x \leftarrow s t(x)]\left[x^{\prime} \leftarrow s t^{\prime \prime}(x)\right]
$$

we get
(1') $\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \llbracket \alpha_{x}^{x^{\prime}} \rrbracket \overline{s t_{\alpha}}$.
By applying fact B.1(b) and B.1(a) on (3) and choosing

$$
\overline{s t_{\beta}}:=\left(s t_{\beta}+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right]
$$

we get
$\left(2^{\prime}\right)\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \llbracket \beta \rrbracket \overline{s t_{\beta}}$.
If we further set $\overline{s t^{\prime \prime}}:=\left(s t_{\alpha} \oplus_{s t} s t_{\beta}\right)\left[x^{\prime} \leftarrow s t^{\prime \prime}(x)\right]$ it follows
(3') $s t^{\prime}=\overline{s t^{\prime \prime}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right]$
from (4) and the fact that x^{\prime} does not occur in α or β. Applying lemma B.2(b) and B.2(a) on (4) yields that the state changes $\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \leadsto s t_{\alpha}$ and $\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \leadsto \overline{s t_{\beta}}$ are consistent with

$$
s t_{\alpha} \oplus_{(s t+s\{a\})\left[x^{\prime} \leftarrow a\right]} \overline{s t_{\beta}}=s t_{\alpha} \oplus_{s t} s t_{\beta} .
$$

Together with lemma B.2(c) and the fact that $s t_{\alpha}\left[x^{\prime} \leftarrow s t^{\prime \prime}(x)\right]=\overline{s t_{\alpha}}$ (which is due to (2)) follows that
(4') $\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \leadsto \overline{s t_{\alpha}}$ and $\left(s t+{ }_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \leadsto \overline{s t_{\beta}}$ are consistent with $\overline{s t_{\alpha}} \oplus_{(s t+s\{a\})\left[x^{\prime} \leftarrow \alpha\right]} \overline{s t_{\beta}}=\overline{s t^{\prime \prime}}$.

Summarizing Γ we have shown that there are states $\overline{s t^{\prime \prime}}, \overline{s t_{\alpha}}, \overline{s t_{\beta}}$ and an $a \in$ $\overline{A_{s}^{\prime \prime}} \backslash A_{s}$ such that $\left(1^{\prime}\right) \Gamma\left(2^{\prime}\right) \Gamma\left(3^{\prime}\right)$ and (4^{\prime}) hold. By definition this implies

$$
\text { st } \llbracket \text { extend } s \text { by } x^{\prime} \text { with }\left(\alpha_{x}^{x^{\prime}}, \beta\right) \rrbracket s t^{\prime}
$$

For the proof of the other implication we assume

$$
\text { st } \llbracket \text { extend } s \text { by } x^{\prime} \text { with }\left(\alpha_{x}^{x^{\prime}}, \beta\right) \rrbracket s t^{\prime}
$$

i.e. that there are states $\overline{s t^{\prime \prime}}, \overline{s t_{\alpha}}, \overline{s t_{\beta}}$ and an $a \in \overline{A_{s}^{\prime \prime}} \backslash A_{s}$ with
$\left(1{ }^{\prime}\right)\left(s t+{ }_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \llbracket \alpha_{x}^{y} \rrbracket \overline{s t_{\alpha}}$
(2') $\left.\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \llbracket \beta\right] \overline{s t_{\beta}}$
(3') $s t^{\prime}=\overline{s t^{\prime \prime}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right]$
(4') $\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \leadsto \overline{s t_{\alpha}}$ and $\left(s t+{ }_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \leadsto \overline{s t_{\beta}}$ are consistent with $\overline{s t_{\alpha}} \oplus_{(s t+s\{a\})\left[x^{\prime} \leftarrow a\right]} \overline{s t_{\beta}}=\overline{s t^{\prime \prime}}$.

By applying fact B.1(c) on (1') and choosing

$$
s t^{\prime \prime}:=\overline{s t_{\alpha}}\left[x^{\prime} \leftarrow\left(s t+_{s}\{a\}\right)\left(x^{\prime}\right)\right]\left[x \leftarrow \overline{s t_{\alpha}}(x)\right]
$$

we get
(1) $\left.\left(s t+_{s}\{a\}\right)[x \leftarrow a] \llbracket \alpha\right] s t^{\prime \prime}$
since $\left(\alpha_{x}^{x^{\prime}}\right)_{x^{\prime}}^{x} \equiv \alpha$. Because of ($\left.1^{\prime}\right)$ is $\overline{s t_{\alpha}}(x)=\operatorname{st}(x)$ Гand so

$$
\begin{aligned}
\overline{s t_{\alpha}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right] & =\overline{s t_{\alpha}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right][x \leftarrow s t(x)] \\
& =s t^{\prime \prime}[x \leftarrow s t(x)]
\end{aligned}
$$

Thus we get
(2) $s t_{\alpha}=s t^{\prime \prime}[x \leftarrow s t(x)]$
for $s t_{\alpha}:=\overline{s t_{\alpha}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right]$. Applying fact B.1(d) on (2') yields

$$
\left.\left(s t+{ }_{s}\{a\}\right) \llbracket \beta \rrbracket \overline{s t_{\beta}} x^{\prime} \leftarrow\left(s t+_{s}\{a\}\right)\left(x^{\prime}\right)\right] .
$$

Together with fact B.1(e) follows that there is a state $s t_{\beta}$ with
(3) $s t \llbracket \beta \rrbracket s t_{\beta}$
and $s t_{\beta}+_{s}\{a\}=\overline{s t_{\beta}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right]$ (for an $a \notin A_{s}^{\beta}$). From (4') follows that $\left(s t+_{s}\{a\}\right) \leadsto \overline{s t_{\alpha}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right]$ and $\left(s t+_{s}\{a\}\right) \leadsto \overline{s t_{\beta}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right]$ are consistent with

$$
\overline{s t_{\alpha}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right] \oplus_{(s t+s\{a\})} \overline{s t_{\beta}}\left[x^{\prime} \leftarrow \operatorname{st}\left(x^{\prime}\right)\right]=\overline{s t^{\prime \prime}}\left[x^{\prime} \leftarrow \operatorname{st}\left(x^{\prime}\right)\right]
$$

where the last equation is due to $\left(3^{\prime}\right)$. which means that $\left(s t+_{s}\{a\}\right) \leadsto s t_{\alpha}$ and $\left(s t+_{s}\{a\}\right) \leadsto\left(s t_{\beta}+_{s}\{a\}\right)$ are consistent with $s t_{\alpha} \oplus_{(s t+s\{a\})}\left(s t_{\beta}+_{s}\{a\}\right)=$ $\overline{s t^{\prime \prime}}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right]=s t^{\prime}$ Twhere the last equation is due to (3^{\prime}). Applying lemma B.2(d) results in
(4) $s t \leadsto s t_{\alpha}$ and $s t \leadsto s t_{\beta}$ are consistent with $s t_{\alpha} \oplus_{s t} s t_{\beta}=s t^{\prime}$.

Summarizing Twe have shown that there are three states $s t_{\alpha}, s t_{\beta}, s t^{\prime \prime}$ and an $a \in A_{s}^{\prime \prime} \backslash A_{s}$ such that (1) $\Gamma(2) \Gamma(3)$ and (4) hold. By definition this implies $s t \llbracket($ extend s by x with $\alpha, \beta) \rrbracket s t^{\prime}$.

This concludes the proof of theorem 3.10.

B. 4 Proof for Lemma 5.5

Proof. Intuitively $\boldsymbol{C}(\mathbf{a})$ holds because the states $\left(s t+_{s}\{a\}\right)[x \leftarrow a]$ and $\left(s t+{ }_{s}\{b\}\right)[x \leftarrow b]$ are isomorphic whenever $a, b \notin A_{s}$. Technically $\Gamma(\mathbf{a})$ can be proved by structural induction on the formula φ.
(b) is clear Γ since $a \notin A_{s}$.

The proof of (c) works by structural induction on the formula φ. We present only the most interesting caseГi.e. where $\varphi \equiv \forall x . \psi$ for some $x \in X_{s} \Gamma$ $\psi \in E D L(S I G, X):$

$$
\begin{aligned}
\text { st } & \models \forall x . \psi \\
& \Leftrightarrow \text { st }[x \leftarrow b] \models \psi \text { for all } b \in A_{s} \\
& \Leftrightarrow\left(\text { st }[x \leftarrow b]+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \models \psi^{\mid x^{\prime}} \text { for all } b \in A_{s} \\
& \Leftrightarrow\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right][x \leftarrow b] \models \psi^{\mid x^{\prime}} \text { for all } b \in A_{s} \\
& \Leftrightarrow\left(b=a \text { or }\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right][x \leftarrow b] \mid=\psi^{\mid x^{\prime}}\right) \text { for all } b \in A_{s} \cup\{a\} \\
& \Leftrightarrow\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right][x \leftarrow b] \models\left(x=x^{\prime} \vee \psi^{\mid x^{\prime}}\right) \text { for all } b \in A_{s} \cup\{a\} \\
& \Leftrightarrow\left(s t+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \models \forall x .\left(x=x^{\prime} \vee \psi^{\mid x^{\prime}}\right) .
\end{aligned}
$$

Here the second equivalence is due to the induction hypothesis.
It remains to show (d). Due to the following equivalences

$$
\begin{align*}
s t & \vDash \\
\Leftrightarrow & \text { extend } s \text { by } x \text { with } \alpha] \varphi \\
& s t^{\prime} \models \varphi \text { for all } s t^{\prime} \text { such that there is an } s t^{\prime \prime} \text { and an } a \in A_{s}^{\prime \prime} \backslash A_{s} \\
& \text { with } \left.\left(s t+_{s}\{a\}\right)[x \leftarrow a] \llbracket \alpha\right] s t^{\prime \prime} \text { and } s t^{\prime}=s t^{\prime \prime}[x \leftarrow s t(x)] \\
\Leftrightarrow & s t^{\prime \prime}[x \leftarrow s t(x)] \models \varphi \text { for all } s t^{\prime \prime} \text { such that there is an } a \in A_{s}^{\prime \prime} \backslash A_{s} \tag{A}\\
& \text { with }(s t+s\{a\})[x \leftarrow a] \llbracket \alpha \rrbracket s t^{\prime \prime}
\end{align*}
$$

$$
\begin{align*}
&(s t+s\{a\})\left[x^{\prime} \leftarrow a\right] \models\left[\alpha_{x}^{x^{\prime}}\right] \varphi \text { for all } a \notin A_{s} \\
& \Leftrightarrow \text { st } t^{\prime} \models \varphi \text { for all } s t^{\prime} \text { and all } a \in A_{s}^{\prime} \backslash A_{s} \\
& \text { with }\left(\text { st }+_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \llbracket \alpha_{x}^{x^{\prime}} \rrbracket s t^{\prime} \\
& \Leftrightarrow \text { st } t^{\prime} \models \varphi \text { for all st such that there is an } a \in A_{s}^{\prime} \backslash A_{s} \\
& \text { with }\left(s t+{ }_{s}\{a\}\right)\left[x^{\prime} \leftarrow a\right] \llbracket \alpha_{x}^{x^{\prime}} \rrbracket s t^{\prime} \tag{B}
\end{align*}
$$

it is sufficient to prove

$$
(\mathrm{A}) \Leftrightarrow(\mathrm{B})
$$

Assuming (A) and choosing $s t^{\prime \prime}=s t^{\prime}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right]\left[x \leftarrow s t^{\prime}\left(x^{\prime}\right)\right]$ one gets that

$$
s t^{\prime}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right]\left[x \leftarrow s t^{\prime}\left(x^{\prime}\right)\right][x \leftarrow s t(x)] \models \varphi
$$

$$
\text { for all } s t^{\prime} \text { such that there is an } a \in A_{s}^{\prime} \backslash A_{s} \text { with }
$$

$$
\left.\left(s t+{ }_{s}\{a\}\right)[x \leftarrow a] \llbracket\left(\alpha_{x}^{x^{\prime}}\right)_{x^{\prime}}^{x}\right] s t^{\prime}\left[x^{\prime} \leftarrow \operatorname{st}\left(x^{\prime}\right)\right]\left[x \leftarrow s t^{\prime}\left(x^{\prime}\right)\right] .
$$

Together with fact B.1(c) follows that

$$
\begin{aligned}
& s t^{\prime}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right][x \leftarrow \operatorname{st}(x)]=\varphi \\
& \text { for all st' such that there is an } a \in A_{s}^{\prime} \backslash A_{s} \text { with } \\
& (s t+s\{a\})\left[x^{\prime} \leftarrow a\right] \llbracket \alpha_{x}^{x^{\prime}} \rrbracket s t^{\prime} .
\end{aligned}
$$

Since x^{\prime} does not occur in φ and $s t^{\prime}(x)=\operatorname{st}(x)$ (because x does not occur in $\alpha_{x}^{x^{\prime}}$) it follows

$$
s t^{\prime}\left[x^{\prime} \leftarrow s t\left(x^{\prime}\right)\right][x \leftarrow s t(x)] \models \varphi \quad \Leftrightarrow \quad s t^{\prime} \models \varphi
$$

and thus (B).
On the other hand 「assuming (B) and choosing

$$
s t^{\prime}=s t^{\prime \prime}[x \leftarrow s t(x)]\left[x^{\prime} \leftarrow s t^{\prime \prime}(x)\right]
$$

leads to

$$
\begin{aligned}
& s t^{\prime \prime}[x \leftarrow s t(x)]\left[x^{\prime} \leftarrow s t^{\prime \prime}(x)\right] \models \varphi \\
& \text { for all } s t^{\prime \prime} \text { such that there is an } a \in A_{s}^{\prime \prime} \backslash A_{s} \text { with } \\
& (s t+s\{a\})\left[x^{\prime} \leftarrow a\right] \llbracket \alpha_{x}^{x^{\prime}} \rrbracket s t^{\prime \prime}[x \leftarrow s t(x)]\left[x^{\prime} \leftarrow s t^{\prime \prime}(x)\right] .
\end{aligned}
$$

Again with fact B.1(c) follows that

$$
\begin{aligned}
& s t^{\prime \prime}[x \leftarrow s t(x)]\left[x^{\prime} \leftarrow s t^{\prime \prime}(x)\right] \models \varphi \\
& \text { for all } s t^{\prime \prime} \text { such that there is an } a \in A_{s}^{\prime \prime} \backslash A_{s} \text { with } \\
& (s t+s\{a\})[x \leftarrow a] \llbracket \alpha \rrbracket s t^{\prime \prime} .
\end{aligned}
$$

Since x^{\prime} does not occur in φ it is

$$
s t^{\prime \prime}[x \leftarrow s t(x)]\left[x^{\prime} \leftarrow s t^{\prime \prime}(x)\right] \models \varphi \quad \Leftrightarrow \quad s t^{\prime \prime}[x \leftarrow s t(x)] \models \varphi
$$

and thus (A).
This concludes the proof of lemma 5.5.

[^0]: ${ }^{1}$ It should be mentioned that it is possible to reason about evolving algebras in some existing proof systems by 'coding' evolving algebras in the logic underlying the system. This approach was taken e.g. by Schellhorn [22] while doing the WAM case-study [6] in the KIV system.
 ${ }^{2}$ The KIV system (Karlsruhe Interactive Verifier) is an advanced tool for development of correct software. Especially, it supports interactive, evolutionary construction of (complicated) proofs.

[^1]: ${ }^{3}$ Notice that $A_{\lambda}=\{\lambda\}$.
 ${ }^{4}$ We allow infinite sets here, because proving with the calculus we introduce in section 5 requires that one has new function symbols and new variables in reserve.
 ${ }^{5}$ Note, that the carrier sets for different sorts are not required to be disjoint.

[^2]: ${ }^{6}$ Notice that there are no counters involved in assignments or conditions ϵ.

[^3]: ${ }^{7}$ Since the semantics of programs and formulas depend on each other, we have to define it simultaneously.

[^4]: ${ }^{8}$ Because the sort information is already attached to the variable symbols the explicit reference to the sort s is a kind of redundancy (which may increase readability). Another syntax for the extend-construct, which emphasizes the relationship to local variable bindings is used in [19] and looks like let $x=$ new (s) in α endlet.

 We use extend s by x_{1}, \ldots, x_{n} with α as an abbreviation for extend s by x_{1} with \ldots extend s by x_{n} with α.
 ${ }^{9}$ Essentially, this decision was enforced by our overall aim, which is to use a modification of the KIV system for reasoning about evolving algebras. Using error elements instead of proper partiality minimizes the modifications of the KIV system (and is even the technique used in basic introductions to evolving algebras [13, 14]).
 ${ }^{10}$ Notice that we do not explicitly forbid non-strict functions in algebras. However, if strictness is desired it can be proved as a property (preservation of strictness).

[^5]: ${ }^{11}$ This definition is partly adopted from Rix Groenboom and Gerard Renardel de Lavalette de [12].

[^6]: ${ }^{12}$ For $s t=(\mathcal{A}, v)$ we abbreviate $s t(t):=t_{v, \mathcal{A}}$.
 ${ }^{13}$ Especially combined with composition or while loops this is not simultaneous execution (as one intuitively might think of), because we look at the executions of α and β as separate black boxes, i.e. the intermediate states passed through while executing α and the intermediate states passed through while executing β are regarded as completely independent from each other.
 ${ }^{14}$ Notice, that there is no operation for discarding elements from domains.
 ${ }^{15}$ After the execution of the extend construct x is bound to its original value.

[^7]: ${ }^{16} \alpha_{x}^{x^{\prime}}$ denotes the result of syntactically replacing x by x^{\prime} in α.

[^8]: ${ }^{17}$ The skip construct is needed to simulate if ϵ then α by if ϵ then α else skip.
 ${ }^{18}$ The stopping condition F is restricted to be a boolean expression (instead of an arbitrary formula from $E D L(S I G, X)$) because this allows $\neg F$ to be used as condition of a while loop or a conditional - as done in the examples on page 17.

[^9]: ${ }^{19}$ At least all computable algebras can be uniquely (up to isomorphism) described by a finite set of EDL formulas (cf. [1, 23]).

[^10]: ${ }^{20}$ However, the calculus presented in this paper (cf. section 5) is not sufficient for sequential execution involved in simultaneous execution.

[^11]: ${ }^{21}$ Here we assume the signature $S I G$ to provide constant symbols \perp_{s} naming the error elements $U N D E F_{s}$.
 ${ }^{22}$ As usual, the empty conjunction is defined to be true, the empty disjunction is defined to be false.

[^12]: ${ }^{23}$ The schematic notation of rules is described at the beginning of appendix A.

[^13]: ${ }^{24}$ However, allowing constructs for sequential execution in evolving algebra rules is sometimes convenient, as e.g. in [6].
 ${ }^{25}$ We use $\left(t_{1}, \ldots, t_{n}\right)=\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ as an abbreviation for the conjunction of equations $t_{1}=t_{1}^{\prime} \wedge \cdots \wedge t_{n}=t_{n}^{\prime}$.

[^14]: ${ }^{26} \varphi_{f_{1}, \ldots, f_{n}}^{f_{1}^{\prime}, \ldots, f_{n}^{\prime}}$ is the formula resulting from syntactically replacing the function symbols (or variables) f_{1}, \ldots, f_{n} by the function symbols (or variables) $f_{1}^{\prime}, \ldots, f_{n}^{\prime}$ in φ.
 ${ }^{27}$ Here and in all what follows, new means "not occurring in the conclusion of the rule".
 ${ }^{28}$ Given $\left(x_{1}, \ldots, x_{n}\right) \in X_{\underline{s}}$ then $\forall\left(x_{1}, \ldots, x_{n}\right) \cdot \varphi$ is an abbreviation for $\forall x_{1} \cdot\left(\ldots \forall x_{n} \cdot \varphi\right)$. For the empty tuple of variables λ we define $\forall \lambda . \varphi: \equiv$ true.

[^15]: ${ }^{29}$ For simplicity but without loss of generality we assume, and Δ to be single formulas (instead of tuples of formulas).

[^16]: ${ }^{30}$ We have omitted these formulas，since we believe that in most practical reasoning （about software）there is no need for inference steps like：＂if a certain value is undefined， then ．．．＂．

[^17]: ${ }^{31}$ In the KIV system equational reasoning is (mainly) done by the so called simplifier tactic, which works in the manner of a rewrite system.
 ${ }^{32} \varphi($ czero $)$ is the formula resulting from substituting all free occurrences of κ by czero in $\varphi(\kappa)$, etc.
 ${ }^{34}$ Notice that α is not any program from $\operatorname{EPROG}(S I G, X)$, e.g. function updates and domain extensions are not allowed in it.
 ${ }^{34} \operatorname{asg}(\alpha)$ is the set of all variables occurring on the left-hand side of assignments in a program $\alpha \in \operatorname{PROG}(S I G, X)$.

[^18]: ${ }^{35}$ This does not hold if random assignments - which are fortunately not available in EDL - occur in α !

