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Abstract

We describe electron transport through small metallic grains with Coulomb

blockade e�ects beyond the perturbative regime. For this purpose we study

the real-time evolution of the reduced density matrix of the system. In the

�rst part of the paper we present a diagrammatic expansion for not too high

junction conductance, h=4�2e2Rt
<
�

1, in a basis of charge states. Quan-

tum uctuations renormalize system parameters and lead to �nite lifetime

broadening in the gate-voltage dependent di�erential conductance. We de-

rive analytic results for the spectral density and the conductance in the limit

where only two charge states play a role. In the second part of the paper we

consider junctions with large conductance, h=4e2Rt
>
�

1. In this case contri-

butions from all charge states, which broaden and overlap, become important.

We analyze the problem in a quasiclassical approximation. The two comple-

mentary approaches cover the essential features of electron tunneling for all

parameters.

I. INTRODUCTION

Electron transport through mesoscopic grains is strongly inuenced by the large charging

energy, EC = e2=2C, associated with the low capacitance C of the system [1{4]. An inter-

esting example is the \single-electron transistor" where a small metallic island is coupled

via tunnel junctions to leads and via a capacitor to a gate voltage. At low temperatures,

T � EC, a variety of single-electron phenomena have been observed in this system, including

the Coulomb blockade and oscillations of the conductance as a function of a gate voltage.

If the dimensionless conductance of the tunnel junctions between the island and the lead

electrodes,

�t �
RK

4�2Rt

=
h

4�2e2Rt

; (1)

is small, on a scale de�ned by the quantum resistance RK ' 25:8 k
, the charge of each

island is a well-de�ned variable. In the limit �t � 1, the sequential single-electron tunneling

can be studied in perturbation theory [1,3]; and descriptions based on a master equation or
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equivalent simulations of the stochastic dynamics are su�cient to account for the dominant

features observed in single-electron devices.

Recent experiments beyond the perturbative regime show deviations from the classical

description, e.g. a broadening of the conductance peaks much larger than temperature [5,6].

This indicates that, in general, quantum uctuations and higher-order coherent processes

should be considered. Even in the limit of weak tunneling, �t < 1, nontrivial features

appear in the vicinity of the Coulomb blockade threshold, when two charge states become

nearly degenerate and perturbation theory fails. Several theoretical papers [8{14] dealt with

the problem of higher-order processes, exploiting the physical picture of electron tunneling

via discrete charge states. This includes \inelastic cotunneling" [7,14], where in a second-

order process in the parameter �t electrons tunnel via a virtual state of the island. An

extension of this process, which gains importance near resonances, is \inelastic resonant

tunneling" [10,13], a process where electrons tunnel an arbitrary number of times between the

reservoirs and the islands. The term \inelastic" indicates that with overwhelming probability

di�erent electron states are involved in the di�erent steps of the higher order processes. The

description can been extended to describe strong tunneling through single level quantum

dots [15].

If the conductance of tunnel junctions is not small, �t
>
� 1, the physical picture changes.

In this case the inverse lifetime � = 1=RtC and, hence, the broadening of the excited charge

states due to quantum uctuations exceed the typical level spacing of excited island states,

�h� >
� EC. Thus charge levels overlap and the concept of tunneling via discrete charge

states becomes ill-de�ned, raising the question whether charging e�ects survive under such

conditions or whether they are washed out completely by strong quantum uctuations. In

Refs. [16,17,2,18,19,12] it was demonstrated that at su�ciently low temperatures even for

large values of �t quantum uctuations of the charge do not destroy Coulomb blockade of

tunneling, but they lead to a strong renormalization of the e�ective junction capacitance,

Ce� / C exp(2�2�t). The exponential dependence on �t had been derived independently

by renormalization group arguments [16,12], instanton techniques [18], and Monte Carlo

studies [12,20]. One important consequence of the strong capacitance renormalization with

increasing �t
>
� 1 is the exponential reduction of the temperature limit below which charging

e�ects can be observed.

This article is devoted to the calculation of the conductance of a SET transistor beyond

perturbation theory in �t, in a range of parameters which is accessible to experiments.

The island contains a large number of electrons which are coupled strongly by Coulomb

interactions. We, therefore, cannot proceed with ordinary perturbation theory. Rather,

we reformulate the quantum mechanical many-body problem of these electrons in a real-

time path-integral representation. In order to handle the Coulomb interaction we perform

a Hubbard-Stratonovich transformation which introduces a phase as a collective variable.

We trace out all microscopic degrees of freedom and arrive at an e�ective action of the

system [22,2], similar in structure to that known from the studies of Ohmic dissipation in

quantum mechanics [23]. This procedure is addressed in Section 2.

After a change from the phase to a charge representation we are able to perform for

�t
<
� 1 a diagrammatic expansion of the time evolution of the reduced density matrix. In

a charge representation we can identify sequential, co- and resonant tunneling processes

with certain classes of diagrams. A restriction to two charge states allows us to evaluate

2



the spectral function and the conductance of the system analytically. The results will be

presented in Section 3. At higher temperatures more charge states play a role, which in

general requires a numerical study of the diagrammatic expansion.

In the opposite limit of strong tunneling, �t
>
� 1, many charge states play a role, and a

formulation in terms of the phase, which is canonically conjugated to the charge, is more

convenient. This limit is discussed in Section 4. We analyze quantum dynamics of the

phase variable in a semiclassical (saddle-point) approximation and obtain an expression for

the system conductance valid at not too low temperatures T >
� e2=2Ce� . The exponential

renormalization of the e�ective capacitance for strong tunneling widens this temperature

range substantially. The two approaches cover the essential features of electron tunneling

for all parameters.

In Section 5 we review briey some results obtained earlier within di�erent imaginary

time techniques, e.g. renormalization group and instanton methods, and compare these

results with those of our real time analysis.

II. FORMULATION OF THE PROBLEM

We consider a metallic island coupled by two tunnel junctions (L,R) to two leads and

capacitively to an external gate voltage Vg. An applied transport voltage V = VL � VR
drives a current. A microscopic description of this single-electron transistor is based on the

Hamiltonian, H = HL +HR +HI +Hch +Ht;L +Ht;R. Here Hr =
P
k�

�k�ra
y
k�rak�r describes

noninteracting electrons in the left and right lead, r= L,R, and HI =
P
q�
�q�c

y
q�cq� models the

island states. The Coulomb interaction is accounted for in a capacitance model

Hch = EC

 X
q�

cyq�cq� � ng

!2

: (2)

The energy scale EC � e2=(2C) of the transistor depends on the total island capacitance,

C = CL+CR+Cg, determined by the left and right tunnel junction and the gate capacitance.

The charging energy can be tuned continuously by the \gate charge"

Qg � �eng = �(CLVL + CRVR + CgVg) : (3)

The tunneling Hamiltonian Ht;r =
P
kq�

�
T �ra

y
k�rcq� + h:c:

�
describes tunneling between the

island and the left and right leads. The matrix elements are related to the tunnel conduc-

tances by R�1
r = (e2=h)

P
�
N�

r (0)N
�
I (0)jT

�rj2, where N(0) denotes the densities of states of

the island and the leads, respectively. In the following we will consider \wide" metallic

junctions with N � 1 transverse channels. Extending the spin summation they can be

labeled by the index � = 1; :::N . In the following we will put �h = 1 (except when it enters

the quantum of resistance).

Our aim is to study the time-evolution of the density matrix. We shortly sketch the

main steps of the derivation of this description:

{ The time evolution of the density matrix introduces two propagators, a forward and back-

ward propagator, which get coupled when we trace out electron degrees of freedom of the
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reservoirs. The procedure is known from the work of Caldeira and Leggett [23] who, gener-

alizing earlier work of Feynman and Vernon, studied the inuence of Ohmic dissipation on a

quantum system. Similarly the inuence on electron tunneling was described in Refs. [22,2].

Here, we generalize the later work from a single tunnel junction to the transistor.

{ In order to describe the Coulomb interaction between electrons we introduce via a

Hubbard-Stratonovich transformation the electric potential of the island V (t) as a macro-

scopic �eld. The interaction between electrons is replaced in this way by an interaction with

the collective variable.

{ We treat the leads as well as the electrons in the island as large equilibrium reservoirs.

The electrochemical potentials of the reservoirs are �xed, �r = �eVr for r = L,R. The only

uctuating �eld is voltage of the island V (t). The de�nition eV (t) � � _'(t) relates V (t) to

a phase '(t). Its quantum mechanical conjugate is the number of excess electrons n(t) on

the island. As a consequence of the procedure outlined so far, the macroscopic �eld n(t) is

independent of the microscopic degrees of freedom described by cq� and cyq�. At this stage,

the electronic degrees of freedom can be traced out.

{ The time evolution of the reduced density matrix �(t;'1; '2), which depends only on the

phase variable ', can thus be expressed by a double path integral over the phases corre-

sponding to the forward and backward propagators 'j (j = 1; 2)

�c(tf;'1f; '2f) =

1Z
�1

d'1i

1Z
�1

d'2i

'1fZ
'1i

D['1(t)]

'2fZ
'2i

D['2(t)] exp (iS['1(t); '2(t)])�c(ti;'1i; '2i) :

(4)

{ The form (4) describes the situation where charges can take any continuous value and the

phase is an extended variable. However, in our physical system the charge on the island is

quantized in units of the electron charge e. In this case the phase variable is compact (i.e.,

the states ' and ' + 2� are equivalent), and we rewrite (4), introducing integer winding

numbers m1;m2 = 0;�1;�2; : : :,

�d(tf;'1f; '2f) =
X

m1;m2

1Z
�1

d'1i

1Z
�1

d'2i

'1f+2�m1Z
'1i

D['1(t)]

'2f+2�m2Z
'2i

D['2(t)]

exp (iS['1(t); '2(t)]) �d(ti;'1i; '2i) : (5)

The two integrations can be combined to a single integral along the Keldysh contour,

which runs forward and backward between ti and tf along the real-time axis. As a result the

reduced propagator � is written as a single path integral along this contour

� = tr

�
�0 TK exp

�
�i

Z
K
dtH(t)

��
=
Z
D['(t)] exp (iS['(t)]) : (6)

Here the collective variable '(t) and the time integral are de�ned on the Keldysh contour

K, and the time-ordering operator TK orders the following operators accordingly.

The e�ective action entering the propagator is S['(t)] = Sch['(t)] + St['(t)]. The �rst

term represents the charging energy
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Sch['(t)] =
Z
K
dt

2
4C
2

 
_'(t)

e

!2

+ ng _'(t)

3
5 : (7)

Electron tunneling is described by St['(t)], which, in the case of wide metallic junctions, is

expressed by the simplest electron loop connecting two times,

St['(t)] = 2�i
X

r=L;R

Z
K
dt

Z
K
dt0�K

r (t; t
0)ei'(t)e�i'(t

0) : (8)

The kernels �K
r (t; t

0) = ��r (t� t0) for t < t0 (t > t0) depend on the order of the times along

the Keldysh contour. Their Fourier transforms are [2,10,13]

��r (!) = ��t;r

! � �r

exp[�(! � �r)=T ]� 1
: (9)

They are proportional to the dimensionless tunneling conductance �t;r = h=(4�2e2Rr) be-

tween the island and the leads r = L,R.

For large systems, the phase behaves almost like a classical variable while its conjugate

variable, the charge, uctuates strongly. A natural basis is then the phase representation.

In the presence of strong Coulomb interaction, however, the situation is di�erent: the phase

underlies strong uctuations while the time evolution of the charge is almost governed by

classical rates. For this reason, it may be useful to change from the phase to the charge

representation. The time evolution of the density matrix in a charge representation depends

on the propagator from n1 forward to n01 and on the backward branch from n02 backward to

n2. It is given by the matrix element of the reduced propagator [13]

�
n1;n

0

1

n2;n
0

2
=
Z
d'1

Z
d'01

Z
d'02

Z
d'2 e

in1'1e�in
0

1'
0

1ein
0

2'
0

2e�in2'2 (10)

'1;'
0

1Z
'2;'

0

2

D['(t)]
Z
D[n(t)] exp

�
�iSch[n(t)] + iSt['(t)] + i

Z
K
dt n(t) _'(t)

�
:

In the charge representation the charging energy is simply described by Sch[n(t)] =R
K dtEC [n(t)� ng]

2
.

III. EXPANSION IN THE TUNNELING CONDUCTANCE

A diagrammatic description is obtained by expanding the tunneling term exp (iSt['(t)])

in the reduced propagator and integrating over '. Each of the exponentials exp[�i'(t)]

describes tunneling of an electron at time t. These changes occur in pairs in each junction,

r=L,R, and are connected by tunneling lines �K
r (t; t

0). Each term of the expansion can be

visualized by a diagram. Several examples are displayed in Fig. 1. The value of a diagram is

calculated according the rules which follow from the expansion of Eq. (10) and are presented

in detail in Ref. [13].

The propagator from a diagonal state n to another diagonal state n0 is denoted by

�n;n0

n;n0 = �n;n0. It is the sum of all diagrams with the given states at the ends and can
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be expressed by an irreducible self-energy part �n;n0 , de�ned as the sum of all diagrams

in which any vertical line cutting through them crosses at least one tunneling line. The

propagator can be expressed as an iteration in the style of a Dyson equation, �n;n0 =

�(0)
n �n;n0 +

P
n00

�n;n00 �n00;n0 �
(0)

n0 . The term �(0) describes a propagation in a diagonal state

which does not contain a tunneling line. The stationary probability for state n follows from

Pn =
P
n0

P
(0)

n0 �n0;n (in which P (0)
n is the initial distribution) and is not the equilibrium one if

a bias voltage is applied. Our diagram rules then yield

0 =
X
n0

[�Pn�n;n0 + Pn0�n0;n] : (11)

We recover the structure of a stationary master equation with transition rates given by �n0;n.

In general, the irreducible self-energy � yields the rate of all possible correlated tunneling

processes. We reproduce the well-known single-electron tunneling rates by evaluating all

diagrams which contain no overlapping tunneling lines. Similarly cotunneling is described

by the diagrams where two tunneling lines overlapping in time, as shown in Fig. 1.

We calculate the current Ir owing into reservoir r = L;R by adding a source term to the

Hamiltonian and then taking the functional derivative of the reduced propagator with respect

to the source. The result Ir = �ie
R
d! f�+

r (!)C
>(!) + ��r (!)C

<(!)g is expressed by the

correlation functions C>(t; t0) = �ihe�i'(t)ei'(t
0)i and C<(t; t0) = ihei'(t

0)e�i'(t)i describing

charge transfer at di�erent times. These are related to the spectral density for charge

excitations on the island by 2�iA(!) = C<(!)� C>(!).

For sequential tunneling, the current reduces to

Ir =
e

h
4�2

Z
d!
X
r0

�r0(!)�r(!)

�(!)
A(!)[f(! � �r0)� f(! � �r)] (12)

with

A(0)(!) =
1X

n=�1

[Pn + Pn+1]�(! ��n) (13)

and �n = Ech(n + 1) � Ech(n) = EC[1 + 2(n � ng)], where the probabilities follow from

Pn�
+(�n)� Pn+1�

�(�n) = 0.

At the minima of the Coulomb oscillations the system is in the Coulomb blockade regime,

and cotunneling processes determine the conductance [7]. But also at the resonance higher

order terms are important, and the complete theory of cotunneling [14] has to cover both

regimes. The second order processes are described by diagrams as shown in Fig. 1. For

de�niteness, we concentrate on situations where only two charge states, n = 0; 1, need

to be considered. This is the case when the energy di�erence of the two states �0 �

Ech(1)�Ech(0), the bias voltage eV = eVL� eVR, and the temperature T are low compared

to EC.

Using the notations �r(!) = �+
r (!) + ��r (!) and �(!) =

P
r
�r(!), and de�ning

R�(!) =
1

! ��0 + i0+
�

1

! ���1 + i0+
(14)
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we obtain for the \cotunneling" contribution I(2)(�0) =
P3

i=1 I
(2)
i (�0) with

I
(2)
1 (�0) =

Z
d! I(1)(!)�(!)Re

h
P0R�(!)

2 + P1R+(!)
2
i
; (15)

I
(2)
2 (�0) = �I

(1)(�0)
Z
d! Re

X
�=�

��(!)R�(!)
2 ; (16)

I
(2)
3 (�0) = �

@I(1)(�0)

@�0

Z
d! Re

X
�=�

��(!)R�(!) : (17)

Here, I(1)(�0) is the sequential tunneling result (i.e. Eq. (12) with A(0)(!) = �(! ��0)).

The poles at ! = � are regularized in a natural way (it comes out of our theory and is not

added by hand) as Cauchy's principal values and their derivative.

In the Coulomb blockade regime, only the �rst term of I
(2)
1 contributes. At T = 0, the

integrand is zero at the poles, and we can omit the term +i0+. This gives the well-known

result of inelastic cotunneling [7]. At �nite temperature, however, the regularization scheme

is needed which is not provided by previous theories. Our result is also well-de�ned for

T 6= 0.

Furthermore, we are able to describe the system at resonance. In this regime, I
(2)
2 and

I
(2)
3 become important. The origin of the second term may intuitively be interpreted as

the reduction of the �rst order contribution I(1)(�0) since quantum uctuations lead to an

occupation of the adjacent charge states n = �1 and 2. Therefore, the probability of the

system to be in state n = 0 or 1 is decreased. The third term may indicate the appearance

of a renormalization of the excitation energy �0 [10,13,8,12]. Due to this renormalization

the system is e�ectively \closer" to the resonance as the original parameters would suggest.

The current would then, in second order, be roughly given by the derivative of the �rst order

term times the renormalization.

In Fig. 2 we compare our results with recent experiments [5]. The temperature depen-

dence of the Coulomb oscillations were measured for two samples with di�erent conduc-

tances. For one with �0 = 0:015, our results in second-order perturbation theory agree

perfectly in the whole temperature and gate voltage range. Also for the other sample with

�0 = 0:063 the agreement is very good.

For still stronger tunneling higher-order e�ects are relevant. To describe this regime we

include processes of arbitrary high order, but we restrict ourselves to matrix elements of the

density matrix which are at most two-fold o�-diagonal [13]. In this case we can evaluate { in

a conserving approximation { the irreducible self-energy analytically. The following results

are derived in this limit.

We �nd P0 = �� and P1 = �+ with �� =
R
d! ��(!)j�(!)j2 and

�(!) = [! ��0 � �(!)]�1 ; �(!) =

Z
d!0

�(!0)

! � !0 + i0+
: (18)

Again, the current is given by Eq. (12), but the spectral density becomes

A(!) =
�(!)

[! ��0 � Re�(!)]2 + [Im�(!)]2
: (19)
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The following results depend on the parameter

�t =
X
r

�t;r =
h

4�2Rt

; (20)

which also de�nes the parallel tunneling conductance 1=Rt =
P
r
1=Rr. In lowest order in

�t we have A
(0)(!) = �(! ��0), and the classical result is recovered. In general, quantum

uctuations yield energy renormalization and broadening e�ects, which enter in the spectral

density via the complex self-energy �(!) given in Eq. (18). In order to evaluate �(!) we

introduce a Lorentzian cut-o� which we choose equal to EC (since the energy di�erence to

charge states which are not taken into account here is of the order of the charging energy).

In this case we �nd

Re�(!) = �
X
r

�t;r(! � �r)

�
2 ln

�
EC

2�T

�
� 2Re	

�
i
! � �r

2�T

��
(21)

and Im�(!) = ���(!). The e�ect of the quantum uctuations can be estimated from the

spectral density in the limits T � eV; j!j or eV � T; j!j. Then, the spectral density is

A(!) =
Z2�(!)

[! � Z�0]2 + [�Z�(!)]2
; (22)

with

Z�1 = 1 + 2�t ln(EC=maxfeV=2; 2�Tg): (23)

We observe a renormalization of �0 and �t by Z and a broadening given by �Z�(!).

From this result we conclude that lowest order perturbation theory is su�cient for

�t ln (EC=maxfeV=2; 2�Tg)� 1. At larger values, our results for resonant tunneling show

clear deviations from sequential tunneling.

A pronounced signature of quantum uctuations is contained in the di�erential conduc-

tance G = @I=@V . In Figs. 3 and 4 we present our results for the di�erential conductance

in the linear response regime (V = 0). They clearly display the e�ect of resonant tunneling:

{ For comparison, we show on the left hand side of Fig. 3 plots which are obtained from the

master equation description of sequential tunneling,

G(T; ng)

Gas

=
1P

n exp
h
�

EC

T
(n� ng)2

i 1X
n=�1

exp

�
�
EC

T
(n� ng)

2

� EC

T
(1 + 2(n� ng))

exp
h
EC

T
(1 + 2(n� ng))

i
� 1

:

(24)

The asymptotic high-temperature conductance is Gas = 1=(RL+RR). At low temperatures,

when processes involving only two charge states dominate, the maximal classical conductance

saturates at one half of the asymptotic conductances at high temperatures. The width of

the peaks scale linearly with temperature.

{ The situation changes when resonant tunneling processes are taken into account (see the

plots on the right hand side of Fig. 3). The maximal conductance and the peak width are
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renormalized by Z and Z�1 which depend logarithmically on temperature. For this reason,

the conductance peak does not reach one half of the high temperature limit and decreases

with lower temperatures, while the peak width is increased compared to the lowest order

perturbation theory result. For an estimate of the maximal conductance, we use can the

spectral density in the form of Eq. (22) and perform the integral Eq. (12) analytically,

Gmax(T )

Gas

� Z

"
1

2
�

1

�
arctan

 
(�Z�t)

2 � 1

2�Z�t

!#
: (25)

(The results shown in Fig. (4), however, were obtained by numerical analysis based on

Eq. (19).)

Recent experiments [5,6] in systems with junctions with small barriers show, indeed, a

broadening and decreasing height of the linear conductance peaks, which cannot be explained

by thermal smearing and qualitatively agrees with our theory.

The e�ects of quantum uctuations are even more pronounced in the nonlinear di�er-

ential conductance when the transport voltage dominates over temperature. In Fig. 5 we

compare the results of perturbation theory and resonant tunneling at T = 0 assuming that

for eV < 2EC only two charge states n = 0; 1 are involved.

{ The sequential tunneling result for a symmetric transistor with �t;L = �t;R and CL = CR

is

G(V; ng)

Gas

= 2
E2
C(1 � 2ng)

2 + (eV )2=4

(eV )2
�

�
eV

4EC

�

����ng � 1

2

����
�
: (26)

As a function of ng it shows a series of structures of width CV=e with vertical steps at its

edges. The width scales linearly with bias voltage.

{ Resonant tunneling leads to a renormalization of the height and width by Z and Z�1

respectively, which depends now logarithmically on the voltage (see Fig. 5). For this reason,

the height of the structure is below the sequential tunneling result and further decreases at

lower voltages, while the width is enhanced. Furthermore, the sharp edges are smeared out

even in the absence of thermal uctuations (since T = 0).

IV. STRONG TUNNELING

If the junction conductance is high and hence the uctuations in the charge are strong

the phase representation outlined above is a more suitable starting point for the analysis of

the problem. It turns out that the dimensionless conductance appears in the form

~�t =
h

4e2Rt

= �2�t ; (27)

which di�ers from the expansion parameter �t of the weak tunneling expansion by a factor �
2.

The real-time path-integral technique discussed above provides an expression for the reduced

density matrix �('1; '2). If the island charge can vary continuously the density matrix

�c('1; '2) is given by Eq. (4). It is normalized
+1R
�1

d'�c(';') = 1, and its time evolution is
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governed by the action S['(t)] =
R
K dtC

2

�
_'(t)

e

�2
+ St['(t)]. In this case the charging energy

does not depend on the gate charge. In the SET transistor, another physical situation is

realized, where the island charge is discrete and quantized in units of e. This situation is

described by the density matrix �d('1; '2), Eq. (5), with a compact phase variable [2]. The

normalization of the density matrix (5) is given by
�R
��

d'�d(';') = 1. It is sensitive to the

gate charge. The comparison of Eq. (4) and (5) shows the following relation

�d(';') = A�1
X

m1;m2

ei2�ng(m1�m2)�c('+ 2�m1; '+ 2�m2) : (28)

Here A is a normalization factor A =
P
m

+1R
�1

d'ei2�ngm�c('+ 2�m;'). The relation (28) can

also be used to establish the connection between the expectation values of physical quantities

for systems with discrete and continuous charge distributions. The expectation value of an

operator Ô('̂), of the discrete-charge system, which is 2�-periodic in ' is

D
Ô
E
d
=

�Z
��

d'O(')�d(';') =
X
m

+1Z
�1

d'O(')ei2�ngm�c('� 2�m;')

=

P
m

D
Ô('̂)ei2�(ng�n̂)m

E
cP

m
hei2�(ng�n̂)mic

: (29)

Here we used an obvious identity
R
d'(:::)�c('� 2�m;') = h(:::)e�2�in̂mic.

Now we are ready to evaluate the tunneling current through a SET transistor. We �rst

derive an expression for the expectation value of the current and then evaluate it with the

aid of Eq. (29). The �rst part of this program will be carried out within the quasiclassical

Langevin equation approach [22,24{27] derived under the assumption that uctuations of

the phase variable are weak or, equivalently, the uctuations of the charges are strong (see

below).

In a semiclassical approximation we �nd for the current through the the left and the

right junctions r = L;R (see Refs. [22,25] for further details)

ir = Cr

�'r

e
+

1

Rr

_'r

e
� ~�r('r) : (30)

It depends on the uctuating voltage di�erences across the junctions, _'r=e = U � Vr for

r = 1; 2. Here U is the voltage of the island. Each current is the sum of displacement

current on the capacitor, a deterministic tunneling current and a shot noise contribution.

The latter can be expressed as a state-dependent noise in the form [22]

~�r = �r1(t) cos'r + �r2(t) sin'r ; (31)

where �ri (i = 1; 2) are two independent Gaussian stochastic variables with correlators

h�ri(0)�r0j(t)i = �r;r0�i;j
1

Rr

Z
d!

2�
ei!t! coth

�
!

2T

�
: (32)
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We consider situations where the external impedance is negligible. In this case the

phases 'r are linked to the transport voltage V by _'L� _'R = eV . We can further assume a

symmetric bias VL = �VR = V=2. In this case the voltage on the island can be expressed as

U = ( _'L+ _'R)=2e = Vg+ _'g=e. Here _'g=e is the voltage across the gate capacitance. Finally,

charge conservation implies iL + iR = �Cg �'g=e. Combining these relations with (30) we

arrive, after averaging over the stochastic variables �, at the expression for the expectation

value of the current

I = hiLi =
V �RL

D
~�L
E
d
�RR

D
~�R
E
d

RL +RR

: (33)

This expression will be evaluated further with the aid of relation (29). If the uctuations of

the charge can be treated as Gaussian the contribution of the m-th winding number to the

expectation value (29) can be estimated as

D
: : : ei2�n̂m

E
c
� exp

�
�2�2

D
�n̂2

E
c
m2
�
: (34)

Thus provided that the charge uctuations are not small h�n̂2ic
>
� 1 it is su�cient to retain

in the expression (29) only terms with winding numbers m = 0;�1. In this approximation

we obtain [26]

D
~�r
E
d
=

D
~�r
E
c
+ 2

D
~�r cos(2�(n̂� ng))

E
c

1 + 2 hcos(2�(n̂� ng))ic
: (35)

In the quasiclassical limit considered here the further analysis requires standard noise aver-

aging of the solutions of Eqs. (30). As these equations are nonlinear in the phase, the exact

solution cannot be constructed in general. However, at not too low temperatures and/or

voltages the uctuations of the phase are small, and it is su�cient to proceed perturbatively

in the noise terms. In order to �nd the corresponding range of parameters we expand the

dissipative term in the action in '. Keeping only the quadratic terms one can easily evaluate

the average h'2i ' (2=~�t) ln(�tEC=max(T; eV )). As long as this value is smaller than one,

the perturbation theory in the noise terms is su�cient (see also [25] for more details). The

same condition, h'2i <� 1, justi�es the above assumption that charge uctuations are strong

and Gaussian. In this limit the problem becomes e�ectively Gaussian for both the phase

and the charge variables.

Making use of (33), (35) under the above conditions we arrive at the following expression

for the current

I(V ) = GasV � I0(V )

�e�F (T;V )
"
[I1(V )� 2I0(V )] cos

 
2�Qav(V )

e

!
+ I2(V ) sin

 
2�Qav(V )

e

!#
; (36)

Here

Qav = he(n̂� ng)ic =
CLRL � CRRR

RL +RR

V + CgVg (37)
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is the average charge of the metallic island. We further introduced the integrals

I0(V ) =
2e

�(RL +RR)

1Z
0

dt

�
�T

sinh �T t

�2
e�W (t;V )K(t) cos

 
e(RR �RL)V t

2(RR +RL)

!
sin

�
eV t

2

�
; (38)

I1(V )

I2(V )
=

4e

�(RL +RR)

1Z
0

dt

�
�T

sinh�T t

�2
e�W (t;V )

"
K(t)

cosh

sinh
(u(t; V ))

+4�C _K(t)
sinh

cosh
(u(t; V ))

#
cos

sin

 
e(RR �RL)V t

2(RR +RL)

!
sin

�
eV t

2

�
; (39)

and we de�ned K(t) = Rt�(t)(1� exp(�t=RtC)), 1=Rt = 1=RL + 1=RR and

W (t; V ) = �
e2

2�

+1Z
�1

dt1

+1Z
�1

dt2

 
�T

sinh�T (t1� t2)

!2

K(t1; t)K(t2; t)

X
r=L;R

1

Rr

cos

 
eRrV (t1 � t2)

RL +RR

!
; (40)

with K(t0; t) � K(t0)�K(t0� t). A principal value of the time integrals in (39), (40) should

be taken where needed.

The function F (T; V ) = 2�2h�n2i determines the temperature and voltage dependence of

the charge uctuations in the Gaussian approximation. It is given by an expression similar to

W (t; V ) (40) with the substitution K(t1; t)K(t2; t) ! (4�2C2=e4) _K(t1) _K(t2). Analogously

u(t; V ) is de�ned by (40) after the substitution K(t1; t)!�(4�C2=e2) _K(t1).

We can simplify these expressions observing that in the limit of su�ciently high temper-

atures and/or voltages

maxfeV; Tg � w0 =
2~�tEC

�2
exp(�2~�t + ); (41)

(here  = 0:5772::: is Euler's constant) the results can be simpli�ed further, since the time

integration in (40) is e�ectively cut o� at short times. SinceW (t = minf1=T; 1=eV g; V )� 1

we can set in the parameter range (41) in leading order approximation W (t; V ) = 0. With

this simpli�cation the above integrals can be evaluated analytically. We obtain

I0(V ) =
eR0

RL +RR

X
r=L;R

(
eRrV

�(RL +RR)

"
Re	

 
1 +

1

2�TR0C
� i

eRrV

2�T (RL +RR)

!

�Re	

 
1� i

eRrV

2�T (RL +RR)

!#)

�
1

�R0C

X
r=L;R

Im	

 
1 +

1

2�TR0C
� i

eRrV

2�T (RL +RR)

!
; (42)

and
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F (T; V ) = F (0; 0) +
2�2CT

e2
+

2�

e2R0

ln

�
1

2�TR0C

�
�

2�

e2

X
r=L;R

Re

"
1

RL

�
1 � i

eRrR0C

RL +RR

V

�
	

 
1 +

1

2�TR0C
� i

eRrV

2�T (RL +RR)

!#
: (43)

Here 	(x) = �0(x)=�(x) is the digamma function.

The last expression determines the temperature and voltage dependence of the charge

uctuations h�n2i at not too low T and/or V . At T = 0 and V = 0 the integral over time in

F (T; V ) diverges logarithmically at high frequencies. This divergence indicates a failure of

the quasiclassical Langevin equation in this limit. The problem can be cured by observing

that in thermodynamic equilibrium (zero voltage) in Gaussian approximation

e�F (0;0) = hcos(2�n̂)i =

R
d'�eq(2� + ';')R
d'�eq(';')

: (44)

The expectation value involving the equilibrium density matrix can be evaluated [26] with

the result

F (0; 0) ' 2~�t : (45)

The functions I1(V ) and I2(V ) cannot be evaluated analytically even in the limit (41).

Due to a fast decay of the exponential factor exp[�F (T; V )] in (36) with increasing V and

T it is su�cient to evaluate I1 and I2 in the low voltage and temperature limit. In this limit

the integral (39) reduces to

I1(V )� 2I0(V ) � gGasV; g =
1:22

~�t

+ 11:29: (46)

whereas the function I2(V ) turns out to be small I2(V ) � V 2 � 0 and will be neglected

below.

We thus arrive at the following result for the I-V characteristics of a SET transistor

I(V ) = GasV � I0(V )� gGasV e
�F (T;V ) cos

 
2�Qav(V )

e

!
: (47)

The current is reduced below the classical result GasV by an amount I0(V ) and is modulated

in a periodic way by the gate voltage. In the limit considered the modulation is a pure

cos-modulation. The result (47) also describes the oscillatory behavior of the current as a

function of the transport voltage, which is usually referred to as a \Coulomb staircase". The

amplitude of these oscillations decays exponentially with increasing voltage and temperature.

We also recover the fact that the Coulomb staircase is pronounced only in asymmetric SET

transistors. In a symmetric case the transport voltage drops out from the expression for the

gate charge (3).

The linear conductance of a SET transistor can be easily derived from Eq. (47) in the

limit V ! 0. We �nd

G(T )

Gas

= 1� f(T )� ge�F (T;0) cos (2�ng) ; (48)
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where ng = CgVg=e and

f(T ) =
1

2~�t

�
 +

2~�tEC

�2T
	

0

�
1 +

2~�tEC

�2T

�
+	

�
1 +

2~�tEC

�2T

��
: (49)

These results are displayed in Fig. 6 in the temperature range T >
� 10w0, where we estimate

the approximations used above to be justi�ed.

In the high-temperature limit the conductance becomes independent of the gate charge,

but due to charging e�ects it is still reduced below the asymptotic value by

G(T )

Gas

= 1�
EC

3T
+

 
6�(3)

�4
~�t + �

!�
EC

T

�2
� ::: (50)

For high temperatures this expression is valid for all (including small) values of ~�t. The �rst

nontrivial term in this expansion does not depend on ~�t. The coe�cient of the square term

also contains an ~�t-independent contribution �. Within the approximation W = 0 used

here we have � = 0. An improved approximation is obtained by expanding in W (t; V ), or

alternatively by treating the general expression for the system conductance perturbatively

in ~�t and then expanding in EC=T . This procedure yields � = 1=15, which for large ~�t can

be neglected against the �rst term 6�(3)~�t=�
4.

At lower temperatures the conductance is further suppressed by charging e�ects and

it can be modulated by the gate charge Qg. In the �gure the minimum and maximum

conductance values are presented corresponding to Qg = 0 and Qg = e=2, as well as the

Qg-averaged conductance. The modulation with Qg becomes more pronounced as the tem-

perature is lowered, however, it is exponentially suppressed with increasing ~�t (cf. Fig. 6).

For ~�t
>
� 4 the modulation e�ect can hardly be resolved while the overall suppression of the

system conductance G is very pronounced.

Although the validity of the Langevin description description is restricted to high temper-

atures and/or voltages, T; eV � w0, the validity range rapidly expands as ~�t increases. E.g.

for the parameters EC � 1 K and ~�t � 2, we get w0 in the range 15 mK. Further increase

of ~�t rapidly brings w0 below 1 mK. Therefore we can conclude that in the strong tunneling

regime ~�t > 2 � 3 our theory covers the experimentally accessible temperatures. Indeed a

quantitative agreement without �tting parameters exists between our results (48-50) and

those of the Saclay group [5] in the high temperature regime. For lower temperatures the

quasiclassical Langevin equation approach can be applied only to sample 4 of Ref. [5] with

~�t ' 1:8. Other samples studied in Ref. [5] have substantially lower conductance, and their

low-temperature behavior is well described by the expansion in �t presented in Section 3.

V. RELATION TO OTHER WORK

In a number of earlier papers [16,18,19,12] the combination of charging and strong tun-

neling e�ects in metallic junctions has been analyzed within imaginary time approaches. In

the limit of strong tunneling, ~�t � 1, a renormalization group equation for ~�t can be derived

[16,2]

d~�t=d ln!c = �(~�t) ; (51)
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where in the lowest order in ~�t one has �(~�t) = 1=2. Already this scaling approach captures

the tendency of the e�ective junction conductance to decrease with decreasing T due to

charging e�ects. In order to see that one should proceed with scaling from !c � EC to

!C � T and identify the (dimensionless) junction conductance with the renormalized value

~�t(!c � T ). This approach is su�cient for strong tunneling at high temperatures, namely

if the �nal renormalized tunneling conductance still satis�es ~�t(!c � T ) >� 1. In general

the strong tunneling approach may lead to a small renormalized conductance such that (51)

ceases to be valid. For weak tunneling other scaling approaches, derived in an expansion

in the tunneling conductance and equivalent to what we described in Section III, can be

applied. In this situation, Falci et al. [12] suggested a 2-stage scaling procedure, where

the renormalized conductance after the strong tunneling rescaling was used as an entry

parameter for the weak tunneling scaling.

Various theoretical approaches led to the conclusion that the strong electron tunneling

~�t � 1 reduces the charging energy, i.e. the e�ective capacitance is renormalized. Panyukov

and Zaikin [18] treated the problem by means of instanton techniques. They concluded that

electron tunneling a�ects both the scale and the functional dependence of the ground state

energy E(Qg). At not too low temperatures T >
� w they �nd

E(Qg) = �
w

2
cos(

2�Qg

e
) (52)

with [18]

w =
32~�tEC

�2
exp(�2~�t + ): (53)

A similar result, di�ering only in the numerical coe�cient, has been obtained in a semiclas-

sical analysis of the e�ective action [12].

With the aid of relations (52), (53) we can derive the �rst order correction in 1=~�t in the

renormalization group equation (51)

�(~�t) = 1=2 + 1=4~�t: (54)

This result has been �rst derived in [18] by means of the instanton technique [29] and was

very recently rederived by a two-loop RG calculation [28]. Note, that the RG procedure

based on the equations (51,54) can be applied only at temperatures and/or energies above

the typical scale ~�tEC exp(�2~�t). At lower energies the renormalized value of ~�t becomes

of order one and the expansion of the �-function in ~�t breaks down. Thus { in contrast to

the statement in Ref. [28] { the value of the renormalized capacitance at low T can not be

derived from the RG analysis (51) and (54) [30].

At lower temperatures the form of the lowest energy band E(Qg) turns out to be even

more complicated [18,12] and the ~�t-dependence of the prefactor of the expression for w

changes from linear in ~�t for T > w to quadratic in ~�t for T = 0. Instanton techniques [18]

yield

EC;e� = 16~�2
tEC exp(�2~�t + ) : (55)

The exponential dependence on ~�t for su�ciently large ~�t has been con�rmed by renormal-

ization group arguments [16,2,12] as well as Monte Carlo methods [12,20,28], see Figs. 7
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and 8 where the results of instanton calculations [18,21] were plotted together with the

Monte Carlo data [20,28]. The prefactor remains a point of controversial discussions in the

literature (cf. [18] and [21], see also Figs. 7 and 8). Irrespective of this detail an impor-

tant consequence of the strong capacitance renormalization for �t
>
� 1 is the exponential

reduction of the temperature range where charging e�ects are observable.

A consequence of the renormalization group approach (51) has been pointed out in Ref.

[18]. It relies on the assumption that the system linear conductance is determined by the

renormalized value ~�t(!c � T ) as

G =
2e2

��h
~�t(!c � T ) : (56)

Combining the above scaling approach, the high temperature expansion (50) (with � = 0),

and the expression (54) for � to �rst order in 1=�t we get for the Qg-averaged conductance

G

Gas

= 1�
1

2~�t

(
ln

 
1 +

4~�2
t

3(1 + 2~�t)

Ec

T

!
+ ln

"
1 +

1

2~�t

ln

 
1 +

4~�2
t

3(1 + 2~�t)

EC

T

!#)
: (57)

Although the above scaling approach to the conductance calculation is intuitively attractive

(and the result (57) �ts reasonably with the available experimental data [5,6]) it has to be

stressed that it depends on the unproven assumption (56).

In contrast, the real-time path-integral techniques presented here are free from this ambi-

guity and allow for a direct evaluation of the I-V characteristics and the system conductance.

We note, furthermore, that the results obtained within the real and imaginary time methods

are consistent with each other. E.g. the renormalization of the e�ective energy di�erence

between the two lowest charge states, derived in Ref. [12], is contained in the self-consistent

solution presented in Section 3. Furthermore, comparing the expressions for w0 (41) and the

bandwidth w (53) we immediately see that these two parameters coincide up to a numerical

coe�cient: w = 16w0. This means the requirement for the validity of the quasiclassical

Langevin equation (41) roughly coincides with the requirement that the temperature (or

voltage) is larger than the e�ective bandwidth w.

Still no quantitative theory for the conductance at lower temperatures and not too low

values ~�t
>
� 1 has been provided. Although the two limiting descriptions presented here do

not allow for a quantitative description of this parameter range it satisfactory to notice that

both show the same qualitative trend in this range.

Another question of interest is the conductance at very large ~�t � 1 and very low

T <
� w0. In the limit ~�t � 1 the conductance oscillations with Qg are exponentially small

(cf. (48)). Then for all Qg from (48,45) we have

G(T � w0)=Gas ' b=~�t; b � 1: (58)

Thus we can conjecture that the low temperature maximum conductance of a SET transis-

tor is universal in the limit of large ~�t being of the order of the inverse quantum resistance

unit 2e2=��h. This conjecture is also consistent with the scaling analysis of Refs. [16,18,12]

combined with the results of Section 3. Starting from large ~�t � 1 we �rst use the renor-

malization group procedure (51,54) which should be cut at ~�t(!c) � 1. In the second stage
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we expand in �t � 1=�2 as described in Section 3 { starting with the renormalized value

instead of the bare one. Apart from logarithmic corrections we thus arrive at the maximum

conductance of order of the inverse quantum resistance, no matter how large the initial

conductance is.

VI. CONCLUSIONS

In this paper we have described single-electron tunneling in systems with strong charging

e�ects beyond perturbation theory in the tunneling conductance. For this purpose we con-

sidered the real-time evolution of the reduced density matrix of the system. We presented

two approximation schemes:

In the �rst part, valid for not too strong tunneling, �t
<
� 1, we presented a systematic

diagrammatic expansion, which allowed us to identify the di�erent contributions, sequen-

tial tunneling, inelastic cotunneling and inelastic resonant tunneling. When we restricted

ourselves to diagrams corresponding to maximally two-fold o�-diagonal matrix elements of

the density matrix we can formulate a self-consistent resummation of diagrams. At low

temperatures we, furthermore, can restrict our attention to two consecutive charge states.

In this limit, there exist no crossing diagrams, and we can evaluate the summation in closed

form. The most important results are a renormalization of system parameters and a life-time

broadening of the conductance peaks. These two approximations are justi�ed for tunneling

conductances satisfying �t ln (EC=maxfeV=2; 2�Tg) <� 1 and allow for a qualitative analysis

of the system conductance also for larger values of �t.

In the second part of the paper we developed an alternative approach based on quasi-

classical Langevin equations for the junction phase '. This approach assumes that uctu-

ations of the phase are small and that the noise can be treated perturbatively. This is a

suitable approximation for large values ~�t = �2�t or in the high temperature limit. For

weak tunneling ~�t
<
� 1 this scheme turns out to be justi�ed only for high temperatures

and/or voltages max(T; eV ) � EC, whereas for stronger tunneling, ~�t
>
� 1, phase uctua-

tions are substantially suppressed. The results derived in this approach are valid, provided

maxfT; eV g � ~�tEC exp(�2~�t). This range expands rapidly with increasing ~�t.

In conclusion, we found an e�ective action description of a single-electron transistor.

We analyzed it in two limits. The charge representation, which is valid as long as �t
<
� 1,

provides the basis for a systematic diagrammatic description of coherent tunneling processes

including resonant tunneling. The phase representation is suitable at large values of ~�t
>
� 1.

In both cases we calculated the gate-voltage and temperature-dependent conductance of a

single electron transistor. The dimensionless parameters in the two limits di�er by a factor

�2�t = ~�t. As a result the range of validity of the two approaches overlaps and, at least

qualitatively, the two approaches cover the whole range of parameters.
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FIG. 1. A diagram showing from left to right: sequential tunneling in the left and right junction,

a term preserving the norm, a cotunneling process, and resonant tunneling.
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FIG. 2. The sequential plus cotunneling contribution to the maximal and minimal linear con-

ductance for EC = 1:47K and �0 = 0:015, and EC = 1K and �0 = 0:063. The data points are

experimental data from Ref. [5].
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FIG. 3. The linear di�erential conductance normalized to the high temperature limit.

Left hand side: result from a master equation in lowest order perturbation theory with

T=EC = 0:01; 0:05; 0:1; 0:2; 0:3; 0:4; 0:5; 0:75; 1; 2; 5, and 10. In this limit the scaled conduc-

tance is independent of �t. Right hand side: result of resonant tunneling with �t = 0:2 and

T=EC = 0:01; 0:05, and 0:1.
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FIG. 4. The maximum linear di�erential conductance normalized to the high temperature limit

for �t = 0:001; 0:01; 0:1; 0:2 (from top to bottom). For comparison we also show the result obtained

from lowest order perturbation theory (dashed line and inset).
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FIG. 5. The normalized nonlinear di�erential conductance for �t = 0:1 and

eV=EC = 0:05; 0:2; 0:5 at zero temperature. The inset shows the result from a master equation in

lowest order perturbation theory for eV=EC = 0:5.
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FIG. 6. Maximum and minimum linear conductance of a SET transistor as a function of tem-

perature obtained from the Langevin equation analysis (eq. (48)) for ~�t = 2. The intermediate

curve shows the linear conductance averaged over all values of the gate charge. Inset: Conductance

as a function of the gate charge for the same ~�t at di�erent temperatures T=EC = 0.15 (a), 0.5

(b), 1 (c) and 2 (d).
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FIG. 7. Comparison between various theoretical predictions and Monte Carlo data for the

renormalized capacitance Ceff in the strong tunneling regime ~�t >
�

2. The Monte Carlo data by

Hofstetter and Zwerger [28] are denoted by crosses. The data obtained by Wang et al. [20] at

EC=T = 100, 200 and 500 are indicated respectively by circles, squares and triangles. At ~�t = 5

the data points [20] for EC=T = 100 and 200 essentially coincide with that of [28]. The curve (a)

shows the perturbative result by Grabert [11]. For all values of ~�t < 2 (not shown here) this result

agrees well with the Monte Carlo data [20] and [28]. The curves (b), (c) and (d) indicate the results

obtained by means of the instanton technique at su�ciently large ~�t: the results by Panyukov and

Zaikin [18] obtained at su�ciently high T (the curve (b) { eqs. (52), (53)) and at T = 0 (the curve

(c) { eq. (55) of this paper), as well as the T = 0 results by Wang and Grabert (eq. (10) of [21]).
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FIG. 8. The same data as in �g. 7 on a logarithmic scale.
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