
To appear in: Proceedings of the 3rd International Conference on Knowledge Discovery in Databases. 1

A Guided Tour through the Data Mining Jungle

Robert Engels1, Guido Lindner2 and Rudi Studer1
1 University of Karlsruhe, Institute AIFB, D-76128, Karlsruhe,

Email: fengels,studerg@aifb.uni-karlsruhe.de
2 Daimler Benz AG, Research and Technology, F3S/E
p.o. Mercedes Benz AG, T-402 D-70322 Stuttgart

Email: lindner@str.daimler-benz.com

May 6, 1997

Abstract

An important success factor for the �eld of KDD lies in
the development and integration of methods for sup-
porting the construction and execution of KDD pro-
cesses. Crucial aspects in this context are the (incre-
mental) development of a precise problem description,
a decomposition of this top level problem description
into manageable and compatible subtasks which can
be reused, and a selection and combination of ade-
quate algorithms for solving these subtasks. In this
paper we describe an approach for supporting the sys-
tematic decomposition of a KDD process into subtasks
and for selecting appropriate problem-solving meth-
ods and algorithms for solving these subtasks. We
propose to use pre-/postconditions (i) to characterize
(sub)-tasks and methods, (ii) to guide the decompo-
sition process, and (iii) to handle the dependencies
between the subtasks and the methods. On the other
hand we exploit and integrate techniques to describe
the characteristics of the available (database) data to
further guide the selection of applicable methods and
algorithms. We use statistic measures, measures from
the �eld of machine learning, e.g. missing values or
noise, as well as information available in the database
schemata, e.g. attribute types or the size of relations.
Our approach has been partially integrated into the
CLEMENTINE framework and has been used to de-
velop a real world application in the area of prediction.

Keywords : KDD-processes, User-support, Task

Decompositions, Knowledge Acquisition

1 Introduction

Knowledge Discovery in Databases (KDD) is currently
a fast growing �eld both from an application and from
a research point of view (Fayyad et al. 1996). This is
due to the fact that companies see a high chance for
deriving valuable information from the huge amount
of available data which can then be used for improv-
ing their business. We think that an important success
factor for the KDD �eld lies in the development and

integration of methods for supporting the construction
and execution of KDD processes (compare e.g. (Brach-
man & Anand 1996)). Crucial aspects in this context
are the (incremental) development of a precise problem
description, a decomposition of this top level problem
description into manageable and compatible subtasks
which can be reused, and a selection and combination
of adequate algorithms for solving these subtasks (En-
gels 1996). Therefore, methods and corresponding tool
support are required which assist the developer of a
KDD application in building up a high quality KDD
process with as less e�ort as possible.

In this paper we describe an approach for supporting
the systematic decomposition of a KDD process into
subtasks and for selecting appropriate problem-solving
methods and algorithms for solving these subtasks.
Our approach is on the one hand based on the notion
of task analysis (Chandrasekaran, Johnson, & Smith
1992) and reusable problem-solving methods ((Eriks-
son et al. 1995), (Breuker & van de Velde 1994)). We
propose to use pre-/postconditions (i) to characterize
(sub)-tasks and methods, (ii) to guide the decomposi-
tion process, and (iii) to handle the dependencies be-
tween the subtasks and the methods. On the other
hand we exploit and integrate techniques to describe
the characteristics of the available (database) data to
further guide the selection of applicable methods and
algorithms. We use statistic measures (see e.g. the
result of the STATlog project (Michie, Spiegelhalter,
& Taylor 1994)), measures from the �eld of machine
learning, e.g. missing values or noise, as well as in-
formation available in the data dictionary, e.g. at-
tribute types or the size of relations. Our approach
has been partially integrated into the CLEMENTINE
framework and has been used to develop a real world
application in the area of prediction.

The rest of the paper is organized as follows: we
�rst describe the application problem and the solution
we have developed using the CLEMENTINE tool. In
section 3 we introduce our approach for supporting the



construction of KDD processes. How we have used this
approach for solving the given application problem is
described in section 4. Finally, we discuss related work
and provide a conclusion.

2 Application Environment

2.1 The KDD-Tool

Our approach is partially integrated in the CITRUS
project of Daimler Benz (Wirth et al. 1997). Tool
support in CITRUS is built on an existing commercial
KDD-Tool, Clementine1. This tool supports all steps
of the KDD-process. In Clementine the KDD-process
is represented as data ows, called streams, which can
be created by the user through a visual programming
interface. The user can select icons which represent
data sources, data manipulation algorithms, data min-
ing algorithms, graphical and statistical data analysis
techniques. These icons are combined into streams.
Part of the CITRUS project deals with user-guidance
to give support during the di�erent stages of the KDD-
process and to interactively construct a KDD-solution
for a given problem in the form of such streams (Engels
1996).

2.2 Application Scenario

This section gives an introduction to a real world ap-
plication which was presented at the KDD96 (Wirth
& Reinartz 1996). We will use this example to illus-
trate our ideas on providing user guidance for KDD-
processes. This example of a multistrategy process was
developed for an early warning system in a quality in-
formation system by Mercedes Benz AG. The approach
is called the early indicator approach. The main idea
is to �nd and characterise sub populations of faulty
cars that already show future behaviour of the whole
car population at a later point in time. Such a sub
population can then be used for prediction.

The early indicator approach is mainly de�ned by three
steps:

1a Construct a fault pro�le for characterising faulty
cars at a certain time TX . Such a fault pro�le is
based on so-called dynamic attributes, i.e. attributes
that have values that change over time. Examples of
these are mileages, number of faults, costs, etc. Dy-
namic attributes are important for the selection pro-
cess that should be able to make predictions, since
they are the attributes that change over time and
thereby provide the possibility to select a dataset

1Trademark by INTEGRAL SOLUTIONS LTD. (ISL)
(Shearer 1996).

for modelling. A model to classify the cars using
those dynamic attributes will result from this step.

1b In the second step one selects faulty cars at an ear-
lier time point (TY , where TY < TX) and classi�es
them using the model from step one. The cars which
have the same characteristic fault pro�le at TY as
the cars at TX are called early indicators cars (EIC).
In the next step one selects static attributes for the
EIC (and NonEIC) concerning the car con�guration
and simple observational attributes concerning top-
ics like the sales area of the cars. Such attributes
are completely independent from the fault pro�le at-
tributes.

2 Now one can learn characterisations for the EIC us-
ing these static attributes. The characterisation can
be used for the fault prediction of another (later)
production period.

In steps 1 and 2 there are di�erent possibilities to
choose a Machine Learning or Data Mining algorithm.
In the original approach a modi�ed implementation of
ECOWEB was used for step one and a CN2 implemen-
tation (Clark & Niblett 1989) as well as the C4.5 algo-
rithm (Quinlan 1993) used in step 2. In �gure 1 a real-
isation of this approach with Clementine is given. Of
the last two algorithms used in the original approach
only C4.5 has been integrated in Clementine.

In �gure 1 two streams are found. The �rst stream
(DLO12-TypeNode-...)is the realisation of step 1a. In
the second stream steps 1b and 2 are realized. The sub-
stream (DLO06-TypeNode-Fault Class) classi�es the
cars at TY and the merge node joins the two data
sources without the fault pro�le attributes. The rest
of the stream is the realization of step 2.

Since we are de�ning a framework for providing user
guidance in Clementine we implemented the approach
mentioned above according to Clementine's possibili-
ties. This implementation has shown to be acceptable
for the domain experts.

Through this example it becomes clear that the
KDD-process is an iterative and recursive process. In
the following sections we will show our approach to
user support.

2.3 The EIC-task Decomposed

For showing how user support works it is necessary
to decompose the scenario of the former section. Fig-
ure 2 and �gure 3 show that decomposition. The three



Figure 1: The example as implemented KDD-process



steps of the EIC approach can be mapped to the KDD-
process model (Reinartz & Wirth 1995) in the follow-
ing way.

Step 1a and step 1b comprise the preprocessing step
of �gure 2, where step 1a and 1b can be further re-
�ned as a KDD-process on its own that selects data on
basis of a learned model. In step 1a we learn such a
model for a certain point in time (Data Mining in �g-
ure 3), whereas in step 1b we deploy that learned model
for data selection and change the representation from
the fault pro�le of the cars to their con�guration data
(Deployment in �gure 3). Step 2 forms the top level
Data Mining step (see �gure 2), that �nally delivers
the interpretable model that is looked for based on the
de�ned set of attributes.

3 The Approach

This section deals with the approach that we take w.r.t.
user guidance for KDD-processes. In (Engels 1996)
we already presented a �rst outline to our approach,
making use of concepts known from the knowledge
acquisition community. In this paper we will extend
upon the terminology and ideas introduced in (Engels
1996). The following sections will deal with the ob-
servation that KDD-processes often have a recursive
nature, something which is compatible with our ap-
proach to task decomposition. Furthermore, the two-
staged process of mapping tasks to algorithm classes as
well as the �nal selection of an algorithm that matches
the task and data characteristics is dealt with.

3.1 Recursiveness in KDD Processes

The decomposition of a task is a re�nement prob-
lem that we solve using a multi-strategy approach. A
framework describing the toplevel decomposition of a
KDD-task is available from (Reinartz & Wirth 1995)
and is used for the toplevel decomposition in �gure 2.
The iterative nature of KDD-processes is certainly not
denied in our point of view, but is less important for
the proposal of initial solutions for a KDD-problem.
This means that in our framework one �nds references
to the iterative nature of KDD-process, e.g. in the
method for the postprocessing subtask marked with
"UI" (User Interaction) in �gure 2.

On the one hand we re�ne the toplevel task accord-
ing to a library of so-called PSMs2 and doing so, reuse
prede�ned methods that solve certain speci�ed tasks.
For other parts of the task decomposition reusable
components might not be available. In such cases we

2Problem Solving Methods. See also: (Breuker & van de
Velde 1994), (Angele, Fensel, & Studer 1996), (Fensel et al.
1996) for more on PSM's.

can either look for a single technique solving the sub-
task or, when that does not solve the problem, use a
planner in order to �nd a series of techniques that can
solve the subtask. Many KDD-processes show recur-
siveness in the sense that a subtask of the task decom-
position really is a (smaller) KDD-process on its own.
This is not to mix up with iterativeness, where cer-
tain subtasks are repeated until a certain criterion is
reached. Recursiveness also shows up in our example
(compare �gure 2 and �gure 3) and let us reuse the
same PSM that describes the KDD-process at the top
level as well as at the data preprocessing stage. A sin-
gular PSM can in this case be retrieved from a library
and reused twice in di�erent instantiations. The sev-
eral stages that are de�ned in such a PSM introduce
certain constraints on its subtasks. Such a framework
then is used to guide an initial decomposition of the
task at hand.

3.2 Assigning Algorithm Classes to Tasks

Decomposing an initial task using PSMs delivers a tree
like structure describing the task at several levels of ab-
straction. Each PSM is described by its preconditions
and postconditions and together they de�ne the func-
tionality of a PSM. Tasks and subtask are described
using the same concept of pre- and postconditions so
that tasks can be mapped on methods.

Given the set of modelling algorithms that is used
in KDD-processes it might occur that only a subset of
them is applicable. A selection of an algorithm class is
then made. The left part of �gure 4 shows the relation
between problem characteristics described by a task
decomposition and the selection of algorithm classes.
Such an algorithm class should later be broken down
until a single algorithm can be proposed.

3.3 Algorithm Selection using Data
Characteristics

An important part for planning the process is the selec-
tion of the Data Mining techniques (algorithm). The
choice of the algorithm that can be used here depends

on two things.

First it is important which kind of task is identi-
�ed during the task analysis phase, f.e. the task can
be a classi�cation problem or �nding association rules,
etc.. So the task itself determines characteristics that
possibly point to groups of Data Mining techniques.
Furthermore, even for solving a speci�c type of task
several di�erent techniques may be applied in general.

Secondly the data itself includes a lot of informa-
tion on which the selection of a Data Mining tech-
nique should be based (See �gure 4). Since most large
databases comes with a data dictionary, it is natural



UI Result-
analysis

Data Mining PostprocessingData Analysis

generation

task

PSM PSM Model-

Deployment

output
Model-

1st KDD-process decomposition level

Task definition level

Data- UIUI

analysis
Data-

2nd level: PSM matching on subtasks

PSM

Preprocessing

KDD-EIC

KDD-EIC

selection EIC

Figure 2: Composition of task, KDD-process model and PSM's matching on subtasks

Preprocessing

generation
Model-PSM

Data Mining

Data Tx
Import

PSM
Assessment

Postprocessing Deployment

PSM

PSM Data-

subtask

PSM

xData T
Import

supervised

Get Vartypes Goalvariable
Determine Run Algorithm

UI Result-
analysis

Classify
Data

Predict Goalvar
Data Ty

Merge 
staticdyn. and

attributes

selection EIC

2nd KDD-process decomposition level 2

3rd level: PSM matching on subtasks

attributesdynamic
Calculate

Preprocessing

Figure 3: Decomposition of PSM KDD-Datapreselection of �gure 2.



Preconditions

Postconditions

Preconditions

Postconditions

Problem
Decomposition

Preconditions

Postconditions

Preconditions

Postconditions

Data Characteristics

Problem
Characteristics

Figure 4: The process of selecting an algorithm com-
ponent for a task.

to use this data dictionary to extract characteristic in-
formation on the data. Furthermore simple statistic
measures like standard deviations, means, attribute
types and possible sets, possibilities etc. that charac-
terise and describe the data can be calculated. In the
Statlog project (Michie, Spiegelhalter, & Taylor 1994)
such measures were used for determining the applica-
bility of statistical and data mining algorithms. We
aim at using similar measurements for selecting algo-
rithms which �t to the identi�ed subtask.

Third, signi�cant measurement types for character-
ization of datasets are measurements that are proven
to be useful for describing machine learning algorithms
(Michie, Spiegelhalter, & Taylor 1994). Here we want
to exploit information on the percentage of positive
and negative examples that the database contains,
missing values, consistency of the dataset, etc.

4 How to Juggle the Jungle; the Exam-

ple in our Approach

This section aims at clari�cation of some of the parts
concernced with our approach by using the example of
section 2. The decomposition of the application task
in �gure 2 and �gure 3 have their implemented coun-
terpart in �gure 1. After showing the idea of recursive-
ness and iterativeness as represented in our approach
it provides an example on the how and why of assign-
ing algorithm classes to subtask types. There are a few
steps that are basic in our approach:

� A description of his or her application problem.

� Mapping of this initial problem onto an appropriate
task.

� Re�nement of this task until a certain level of re�ne-
ment is reached.

For the next sections we will presume that there al-
ready is a problem description available as well as a
mapping to an initial appropriate task type. We will
use these task characteristics of the example to show
how an initial algorithm class is selected. Then the
same is valid for the last section, where an example is
provided for a case where the data characteristics play
a role in the �nal algorithm selection.

4.1 Recursiveness in the Example

Our example clearly shows the recursive nature of
KDD-tasks. On the top level the KDD-process is de-
composed according to the steps of a standard KDD-
process (see �gure 2). Upon decomposition the need
for a preprocessing step arises in order to be able to
build a model with user de�ned characteristics in the
modeling subtask (Data Mining in �gure 2). Such
characteristics can be dynamic attributes from the
dataset3. In our case it is required to redescribe the
dataset (subtask "calculate dynamic attributes" of �g-
ure 3) since the preconditions of the modeling subtask
are not satis�able using the data in the dataset. Rel-
evant attributes (i.e. the average mileage between re-
pairs), can be calculated from the database. The PSM
that is selected for performing this preprocessing in
our example resembles a KDD-process of its own (�g-
ure 3). Requirements here are that one uses dynamic
attributes to model the dataset. This subset is taken
from a certain time point. The generated model in
this step (PSMmodelgeneration in �gure 3) is then used
to extract those examples out of a second data sub-
set (from an earlier point in time) that show the same
behaviour on these dynamic attributes. Lateron the
static attributes (like the model, type, engine, acce-
sories, etc.) are merged with the data subset resulting
of this extraction ("merge" step in �gure 3). During
this preprocessing subtask all the subtasks of a KDD-
process are found, except for the data analysis subtask.
Figure 5 shows how the elements of �gure 1 �t onto

the toplevel task decomposition. From the �gure one
can also see the complexity of the preprocessing stage,
which is decomposed as a KDD-process of its own.
It is clear that in order to be able to derive such

a re�nement structure one needs to de�ne the func-
tionality of tasks and use them for selecting the ap-
propriate PSMs and �nally the right algorithms. Part
of this retrieval is supported by annotations of KDD-
processes and algorithms. A prototypical implemen-
tation in Clementine for annotation and retrieval is

3Dynamic attributes are required since they represent
the changing characteristics of the dataset concept.



UI Result-
analysis

Data Mining PostprocessingData Analysis

generation
PSM PSM Model-

Deployment

output
Model-

Data preselection

Data- UIUI

analysis
Data-

PSM
KDD-EIC

selection EIC

Figure 5: Toplevel decomposition mapped on Clemen-
tine stream.

made. The next two sections will deal with an exam-
ple of this process as shown in �gure 4.

4.2 Assigning Algorithm Classes to our
Task

From a problem description one can retract pre- and
postconditions. We will use a small set of such (infor-
mally represented) conditions in this section. Accord-
ing to our initial task description we are dealing with
a problem where we are looking for:

1. 9 Dataset (DS)

2. DynamicAttribs (DA) in DS

3. StaticAttribs (SA) in DS

4. 9 Attrib (A) describing time

5. Possible classes that are marked as interesting by the
user

Such characteristics are collected through the user
guidance interface. An example of such a condition is
the last user provided input, where we learn that there
are classes known by the user that could be interesting
for a �rst approach to the problem. First let us look for
a way to reach the user's goals (also retrieved through
the same interface):

1. model(M) should be usable for prediction.

2. model(M) should be interpretable by an expert (in
this case in the form of production rules).

3. model(M) should model temporal dependency TY <

TX

For the �rst round we can decide to take a class of
supervised learning algorithms due to the fact that a
domain specialist provided input that there are classes
known that might be used for learning and that there
is a need for an interpretable model. This leaves us
with a set of algorithms that are possibly interesting,
namely the set of supervised learning algorithms that
generate interpretable models. Now we need to close in
on one of them in order to guide the task decomposition
process.

4.3 Closing in on a speci�c Algorithm
using Data Characteristics

In the dataset that is used for the EIC approach there
are certain characteristics of data available. So now we
can just follow a kind of 'strike-through' approach and
eliminate algorithms that would not work in our case.
An example of this would be to eliminate neural nets
from the class of supervised learning methods, since
our problem characteristics require an interpretable
model. We can now retrieve the PSMDataselectionEIC

for the preprocessing subtask based on the set of re-
quirements and constraints that is formed by the triple
< DC;UR;BPC >, where DC are the data character-
istics, UR are the user-requirements, and BPC are the
backpropagated constraints that follow from earlier de-
cisions as shown below. We retrieve data characteris-
tics from the Data Dictionary or using the parameters
that are de�ned in the Statlog project. The software
that was developed during the course of the Statlog
project is also integrated in our tool. Doing so we get
information on the set of classes that comprises our
class descriptions (which are provided by the user, see
point 5 section 4.2). In our case this set was not so
large (4 items), otherwise we should have started user-
interaction in order to decrease the number of classes,
or maybe to ignore the concept and start data analysis
without it. In our example one could think of replacing
the data mining step of the preprocessing subtask with
a subtree that enables unsupervised learning. A match
on algorithm classes would in such a case f.e. refer to
a set of clustering algorithms instead of the supervised
learning techniques used in the example.

In the last section we showed a few conditions that
play a role in our example. Some of those lead to the
advice to take a certain learning algorithm (C4.5 in
our case) for the Data Mining step of �gure 2 (step 2
in section 2.2), since:

1. There are interesting classes that are provided by
the user.

2. Those classes are not represented as numeric at-
tributes.



3. The results can be represented either in the form of
a decision tree, or as a set of production rules (this
also starts further user interaction in order to make
such decisions).

Such a decision for a speci�c algorithm then speci�es
the constraints (postconditions) for the prior step in
our decomposition, together with the constraints that
follow fromdata characteristics and the user input. For
example, in our case, we got the requirement to predict
some concept's attributes over time, and get some time
depending data from our dataset. Together with the
requirements from the Data Mining subtask, the need
to model over static attributes and the availability of
dynamic attributes we can de�ne a preprocessing sub-
task that delivers a dataset that exactly provides the
data with the required characteristics.
An additional feature of task decompositions is that

we make use of the context that such a decomposition
represents. It provides us possibilities to set parame-
ters of algorithms (once they are selected) along the
lines of the context they have to function in (f.e. one
might set pruning, quality and iteration parameters
according to data characteristics known or altered in
other stream parts). In the end, such a process stream
is what we want to provide to our user.

5 Related Work

Approaches that include the user as the key-factor
for succesfully performing data analysis problems are
found in the �eld of machine learning ((Piatetsky-
Shapiro et al. 1996), (Fayyad et al. 1996), (Craw et

al. 1992)), and the �eld of statistics ((Hand 1994b),
(Hand 1994a)). Although this literature outline pos-
sibilities or needs for a stronger inclusion of the user,
there are no applications mentioned where the ideas
are tested, as is the case in our approach.
Breaking down a task's complexity by decomposition

is an approach that is known from the �eld of Knowl-
edge Acquisition, and is found in approaches such as
KADS (Wielinga, Schreiber, & Breuker 1992), MIKE
(Angele, Fensel, & Studer 1996) and Generic Tasks
(Chandrasekaran, Johnson, & Smith 1992)). Those
ideas combine very well with our aim to provide a user
with a possibility to reuse parts of previous problem so-
lutions and also provide a means for storage of newly
de�ned KDD-processes.
From the KDD point of view there is also a need

for de�ning a method for performing KDD. A few
approaches in this direction can be found ((Brodley
1995), (Reinartz & Wirth 1995)). The steps that are
de�ned in such methodologies can form the basics for
our task decompositions and thus enable a �rst step
decomposition, as shown in this paper. Furthermore,

there seems to be more and more interest in ML appli-
cations. One particular survey dealt with the question
if and how companies apply inductive logic techniques
(Verdenius 1995). This research shares the conclu-
sion with many other papers like (Piatetsky-Shapiro
et al. 1996) and (Brodley 1995) that the process of
machine learning application should primarily be user-
driven, instead of data- or technology driven. Unfor-
tunately, as (Verdenius 1995) also endorses, there are
a fair amount of approaches that do show a data- or
technology driven process, something which might be
caused by a lack of methodology (see also (Piatetsky-
Shapiro et al. 1996), (Brachman & Anand 1996)).

Two approaches exist that deal with the support of
selecting data mining algorithms for a certain task.
One approach (Brazdil, Gama, & Henery 1994) is
based on learning of a decision tree for the applicabil-
ity of algorithms given data characteristics. The other
approach is the more user centered Consultant part of
the MLT-project (Consortium 1993).

6 Conclusions and Future work

The approach taken in this paper shows some strengths
and some weaknesses. Most of all, we are dealing with
a huge unknown factor, and that is the user himself.
The problem is that the user might be unaware of some
important problem characteristics himself. Although
providing feedback to the user in such cases is aimed
at, it can happen that the system choses the wrong
track due to his ignorance in those areas where it relies
on user provided information.

Given this uncertainty we propose to extract some
of the most important characteristics of such a user's
problem, get hold of the characteristics in the data that
he or she provides, and make use of a library contain-
ing reusable task decomposition parts that have been
de�ned priorly.

Decomposing tasks, as done in our approach, means
to the user that he gets a better overview of what
he/she should do, and also enables us to reuse parts
of the decomposition.

Preconditions and postconditions help us to make
choices on which PSM's we can possibly join together
in order to de�ne an initial task decomposition. Such
pre- and postconditions are also used for providing
feedback to the user. In our example this happens
when, based on the users problem description, a data
mining step is de�ned that poses certain assumptions
on its preceeding steps. These assumptions can re-
quire more user interaction such as de�nition of cer-
tain concepts, or redescription of attributes and so on.
Our approach is not only applicable for processes as
mentioned but is of course also valid for other algo-



rithm classes (such as (conceptual) clustering, regres-
sion analysis, etc.).

For the future we will extend upon this framework
and possibly incorporate a planning mechanism that
can �ll gaps in cases that there are no PSM's available
from the (user de�ned-) library. Furthermore we will
have to deal with the problem of �nding a uniform rep-
resentation for data mining algorithms and correspond-
ing task characteristics. Finally, a knowledge base is
needed that can help instantiate algorithms once their
context is de�ned, in order to reduce the amount of
e�ort that is needed to �nd a succesful approach as
much as possible.

Although there is plenty to do, we think that concen-
trating more on the human in KDD-processes is worth
the e�ort.

Acknowledgements
We want to thank Daimler Benz for granting and pro-
viding the possibility to get industrial input in the form
of real world problems. Furthermore we thank our col-
legues for many fruitful discussions and Udo Grimmer
for integrating the Analyst software in Clementine.

References
Angele, J.; Fensel, D.; and Studer, R. 1996. Domain
and Task Modelling in MIKE. In Proceedings of the
IFIP WG8.1/13.2 Joint Working Conference on Domain
Knowledge for Interactive System Design.

Brachman, R. J., and Anand, T. 1996. The Process
of Discovery in Databases: Human-Centered Approach.
In Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.; and
Uthurasamy, R., eds., Advances in Knowledge Discovery
and Data Mining. MIT Press.

Brazdil, P.; Gama, J.; and Henery, B. 1994. Character-
izing the Applicability of Classi�cation Algorithms Using
Meta-Level Learning. Proceedings of the European Con-
ference on Machine Learning 784:83 { 102.

Breuker, J., and van de Velde, W. 1994. CommonKADS
Library for Expertise Modelling. IOS Press.

Brodley, C. 1995. Applying Classi�cation Algorithms
in Practice. In Aha, D., and Riddle, P., eds., Work-
ing Notes for Applying Machine Learning in Practice: A
Workshop at the Twelvth International Machine Learn-
ing Conference. Washington, DC: Naval Research Lab-
oratory, Navy Center for Applied Research in Arti�cial
Intelligence.: (Technical Report AIC-95-023).

Chandrasekaran, B.; Johnson, T. R.; and Smith, J. W.
1992. Task-Structure Analysis for Knowledge Modeling.
Communications of the ACM 35(9):124{137.

Clark, P., and Niblett, T. 1989. The CN2 Induction
Algorithm. Machine Learning 3:261{283.

Consortium, M. 1993. Final public report. Technical
report. Esprit II Project 2154.

Craw, S.; Sleeman, D.; Granger, N.; Rissakis, M.; and
Sharma, S. 1992. CONSULTANT: Providing Advice for
the Machine Learning Toolbox. In Bramer, M., and Milne,
R., eds., Research and Development in Expert Systems, 5{
23.

Engels, R. 1996. Planning tasks for Knowledge Discovery
in Databases; Performing Task-oriented User-Guidance.
In E. Simounis, J. H., and Fayyad, U., eds., Proceedings
of the 2nd Int. Conference on Knowledge Discovery in
Databases.

Eriksson, H.; Shahar, Y.; Tu, S.; Puerta, A.; and Musen,
M. 1995. Task Modeling with Reusable Problem-Solving
Methods. Arti�cial Intelligence 79(2):293{326.

Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.; and
Uthurasamy, R. 1996. Advances in Knowledge Discovery
and Data Mining. Cambridge, London: MIT press.

Fensel, D.; Schoenegge, A.; Groenboom, R.; and Wielinga,
B. 1996. Speci�cation and Veri�cation of Knowledge-
Based Systems. Proceedings of the 10th Ban� Knowl-
edge Acquisition for Knowledge-Based Systems Workshop
(KAW-96). Calgary, Ban�.

Hand, D. 1994a. Decomposing Statistical Questions.
Journal of the Royal Statistical Society 317{356.

Hand, D. 1994b. Statistical Strategy: step 1. In Cheese-
man, P., and Oldford, R. W., eds., Selecting Models from
Data: Arti�cial Intelligence and Statistics IV, volume 89,
3{9. Lecture Notes in Statistics.

Michie, D.; Spiegelhalter, D.; and Taylor, C. 1994. Ma-
chine Learning, Neural and Statistical Classi�cation. Ellis
Horwood.

Piatetsky-Shapiro, G.; Brachman, R.; Khabaza, T.;
Kloesgen, W.; and Simoudis, E. 1996. An Overview of
Issues in Developing Industrial Data Mining and Knowl-
edge Discovery Applications. In Han, J.; Simoudis, E.;
and Fayyad, U., eds., Proceedings of the 2nd Int. Confer-
ence on Knowledge Discovery in Databases, 89{95. Menlo
Park, California: AAAI press.

Quinlan, J. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufman.

Reinartz, T., and Wirth, R. 1995. Towards a task model
for KDD-processes. In Kodrato�, Y.; Nakhaiezadeh, G.;
and Taylor, C., eds., Workshop notes Statistics, Machine
Learning, and Knowledge Discovery in Databases. MLNet
Familiarisation Workshop, 19{24.

Shearer, C. 1996. Using Driven Data Mining. In Unicom
Data Mining Conference.

Verdenius, F. 1995. Applications of Inductive Learning
Techniques: State of the Art. In Proceedings of the 7th
Dutch AI Conference (NAIC-95).

Wielinga, B.; Schreiber, A.; and Breuker, J. 1992. KADS:
A modelling approach to knowledge engineering. Special
Issue "The KADS approach to knowledge engineering".
Knowledge Acquisition 4(1):5{53.

Wirth, R., and Reinartz, T. 1996. Detecting Early Indi-
cator Cars in an Automotive Database: A Multi-Strategy
Approach. In Han, J.; Simounis, E.; and Fayyad, U., eds.,
Proceedings of the 2nd Int. Conference on Knowledge Dis-
covery in Databases.



Wirth, R.; Shearer, C.; Grimmer, U.; Reinartz, T.;
Schloesser, J.; Breitner, C.; Engels, R.; and Lindner, G.
1997. Towards Process-Oriented Tool Support for KDD.
submitted to PKDD97.


