A Tutorial for OPTIMIX

Uwe ABmann
Universitat Karlsruhe
Institut flr Programmstrukturen und Datenorganisation

Graph Grammar Handbook, Vol. Il

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

Short version published in

Postfach 69 80, Am Zirkel2, 716128 Karlsruhe, Germany

assmann@ipd.info.uni-karlsruhe.de

November 3, 1998

Abstract

OPTIMIX is a tool for generating algorithms which construct and trans-
form directed relational graphs. In particular, it facilitates many tasks in
program compilation and optimization. OPTIMIX’s input language allows to
specify graph queries which localize analysis information as well as graph
rewrite systems which describe transformations. The generator type-checks
the rewrite systems with a graph data model and tests whether they ful-
fil a termination criterion. This paper explains the advantages of the OPTI-
MIX specification language for compiler writers and demonstrates that OP-
TIMIX can be applied to three major problem classes of program rewrit-
ing: graph reachability problems, context-sensitive pattern match problems, and
mark/transform problems.

Compilation tasks and program optimizations should be specified abstractly
and easily. This is possible with graph rewrite systems [Am96b]. To facilitate
the construction of program transformers and optimizers, tools are desired which
generate algorithms from graph rewrite specifications. OPTIMIX is such a tool.

The central idea of OPTIMIX is to regard all of the information in a compiler
(the intermediate representation) as a set of relational graphs. Program objects, ab-
stract syntax tree nodes, and intermediate code instructions are represented as
nodes; predicates of these program entities are represented as relations. Then,
program analysis and program transformation consist of rewriting graphs. Typi-
cally, analyzing programs means enlarging graphs with new edges which repre-
sent the information while code transformation means rewriting graphs by delet-
ing and attaching subgraphs. Thus the optimization process is divided into a
sequence of graph rewrite system applications, starting with the intermediate
representation given by the front-end, and ending with an intermediate graph
which is handed over to the back-end for code generation.

Hence, OPTIMIX’s specification language is based on relational graph rewrit-
ing. In particular, OPTIMIX supports edge addition rewrite systems (EARS) and ex-
haustive graph rewrite systems (XGRS) [ABMY95] [ABm96al [Am9bb]. EARS only add

Short version published in: Graph Grammar Handbook, Vol. i

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

1T WHAT USERS CAN DO WITH OPTIMIX 2

ths \r: Ihs \':
kids obj /id\ == kidsé]obj ; ':/ p/k'd’\g \\'\\
Y N
kids 7 addr kids addr 3 4t
y oo
G |
kid;M kidsm"/,}/’
Figure 1: Left: Intermediate code of an assignment with its
left- and right-hand side expression trees. Right: after applying

CollectDescendantsOfExpressions. New edges are dashed.

edges to graphs. They can be used to construct graphs and to materialize im-
plicit relations to explicit ones. They are equivalent to a subset of DATALOG
and always yield unique results being congruent [ABm94]. XGRS allow graph ma-
nipulations and may result in multiple normal forms (rewrite results). However,
since each XGRS rule fulfils an edge-termination criterion, the termination of a rule
system can be checked [AbmY96al.

In the following, the advantages of OPTIMIX’s specification language are ex-
plained, with special regard to compiler writers. It is demonstrated that OPTIMIX
can be applied to the following problem classes of program transformation and
optimization: graph reachability problems (next section), context-sensitive pattern
match problems, and mark/transform problems (section 2). Practical experiences
with the tool conclude the paper. The examples use a subset of the intermedi-
ate language CCMIR [AAVS94]!

1 What users can do with Opmimix

The first class of problems OPTIMIX is useful for are graph reachability problems.
Often these can be expressed as queries on a graph database which investi-
gate the structure of a graph, infer new structural knowledge, and materialize
the knowledge by augmenting graphs. An example is the problem of transitive
closure.

Assume that the intermediate language provides a statement which assigns
an object from an expression of operators (see Figure 1). Suppose the user
wants to attach an expression with the set of all descendant expressions. Proba-
bly, he would have a query in mind such as "For each expression, find all reach-
able sub-expressions”. In essence, this means to calculate the transitive closure

1See appendix A. CCMIR is an intermediate language for C, Fortran-90, and Modula-2. All its types
are prefixed by the prefix mir (medium intermediate representation). Some types are renamed for
readability.

Graph Grammar Handbook, Vol. Il

Short version published in

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

1T WHAT USERS CAN DO WITH OPTIMIX 3

blocks blocks
stmits stmits
rhs ths
kids kids descendants

Figure 2: Rule 1 of CollectDescendantsOfExpressions depicted graphically

GRS CollectDescendantsOfExpressions(Procedure:mirProcedure)

{ RULES
blocks(Procedure,Block), stmts(Block,Statement),
Statement ~ mirAssign, // pattern match on mirAssign

rhs(Statement ,Expression), kids(Expression,Kid)
==> descendants (Expression,Kid);
blocks(Procedure,Block), stmts(Block,Statement),
Statement ~ mirAssign, rhs(Statement,Expression),
descendants (Expression,Descendant), kids(Descendant,GrandKid)
==> descendants(Expression,GrandKid), descendants(Descendant,GrandKid);

}

The preconditions of the first rule, found before the delimiter ==>, denote
the following. There must be a procedure body Procedure which has an as-
sociated basic block Block under relation blocks?. This block has a statement
Statement under relation stmts. It is pattern matched to be of type mirAssign
and has a right-hand side expression Expression. Expression has a child Kid
in relation kids. If all these conditions are true, Kid should also be a descen-
dant of Expression, i.e. relation descendants should hold between Expression
and Kid. The second rule describes the transitive case of the closure problem: if
there is a descendant Descendant of expression Expression which has another
child GrandKid then GrandKid should also be a descendant of Expression and
of Descendant.

CollectDescendantsOfExpressionsis an EARS because it only adds edges
of type descendants. According to [Am94] it is congruent, i.e. it terminates and
yields a unique result. The rule system can also be described graphically (rule 1
is depicted in Figure 2). In the figure, edge labels correspond to predicate literals,
the first part of the node labels corresponds to variable names, and the second
part of the node label specifies the node type. In this paper only the OPTIMIX
format, a textual representation, will be used. Consequently, the terms variable

2A basic block is a list of statements without interleaved jumps or conditional jumps.

1T WHAT USERS CAN DO WITH OPTIMIX 4

and predicate are used for nodes and relations in rules; the terms node, edge, and
relation for nodes, edges, and relations of the manipulated host graph.
Predicates need not be written in Datalog style but can be specified in a set-
based form. For instance, CollectDescendantsOfExpressions can be rewrit-
ten as follows, the semantics should be obvious:
grs CollectDescendantsOfExpressions(Procedure:mirProcedure)

{ rules
if Statment in Procedure.blocks.stmts

Graph Grammar Handbook, Vol. II

Short version published in

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

and Statement matches mirAssign
and Kid in Statement.rhs.kids
then Kid in Expression.descendants;

if Statment in Procedure.blocks.stmts
and Statement matches mirAssign
and Expression in Statement.rhs
and Descendant in Expression.descendants
and GrandKid in Descendant.kids

then GrandKid in Expression.descendants
and GrandKid in Descendant.descendants;

The generated code To generate algorithms from the specifications, OPTIMIX
applies DATALOG techniques. The main method is an adapted nested-loop join
algorithm, the order algorithm [ABmY4]. It is efficient on sparse graphs, because
the cost of the algorithm is defined in terms of the maximal out-degree of a node.
For the example system OPTIMIX generates a C routine with the following layout:

void CollectDescendantsOfExpressions(mirProcedure Procedure)
{ int _change = TRUE;
while (_change) { _change = FALSE;
/% code for rule 1: #*/
conslist_LOOP(Procedure->blocks, Block) {
conslist_LOOP(Block->stmts, Statement) {
if ('GRAPHNODE_HAS_TYPE((GRAPHNODE_TYPENAME)Statement,mirAssign)) continue;
Expression = Statement->rhs;
consset_LOOP (Expression->kids, Kid) {
_change |= consset_insert(Expression->descendants,Kid);
} consset_ENDLOOP;
} conslist_ENDLOOP;
} conslist_ENDLOOP;
/* similar code for rule 2: %/
conslist_LOOP(Procedure->blocks, Block) {
conslist_LOOP(Block->stmts, Statement) {
if (!GRAPHNODE_HAS_TYPE((GRAPHNODE_TYPENAME)Statement,mirAssign)) continue;
Expression = Statement->rhs;
consset_LOOP (Expression->descendants, Descendant) {
consset_LOOP (Descendant->kids, GrandKid) {
_change |= consset_insert(Expression->descendants,GrandKid);
_change |= consset_insert(Descendant->descendants,GrandKid);
} consset_ENDLOOP;
} conslist_ENDLOOP;
} conslist_ENDLOOP;
}
}

It is also assumed that all relations in the intermediate representation are rep-
resented by neighbor sets in node types. The generated code instantiates the
variable Expressionto all expressions reachable from the parameter Procedure
and applies the two rules to them. The code navigates on the intermediate rep-
resentation to find an appropriate set of nodes which is linked in those relations
which correspond to the predicates in rules. Hence all relevant neighbor sets
(blocks, stmts, rhs, kids) are traversed with nested loops or dereferencing

Short version published in: Graph Grammar Handbook, Vol. II

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 5

statements. Loops are described by C loop macros which contain the name of
the set data type by which a neighbor set is represented (e.g. conslist). In
the innermost loop a redex is found, i.e. all instantiated nodes belong to a valid
redex. Then the transformation can be applied, which is to add an edge to the
relation Descendant between the currently instantiated node for Expression
and Kid. Because the rules are recursive and one round of the loops does not
uield the desired result, OPTIMIX embeds the rule applications in a fixpoint eval-
uation loop. When this loop stops, each expression contains all reachable sub-
expressions in its set descendants.

1.1 How to develop a specification

The example proposes the following steps how a user should proceed to use
OPTIMIX to generate optimizer parts:

1. First the user should (informally) define graph queries which filter out the
analysis information he wants to know.

2. Together with that a data model of the graphs must be defined. A user has
to specify graph node types (objects), relations, and which C modules are
used to represent the relations.

3. Then the informal queries should be formulated as graph rewrite system
procedures to construct and transform the graphs that were defined in the
data model. This may extend the data model.

Usually an application can be structured into a set of graph rewrite system
procedures. OPTIMIX transform to C procedures, which the user has to call
from his compiler appropriately.

k. Lastly the specification may be rearranged to tune the generated algo-
rithms. Common parts of rules may be factored out, the representations
of the graphs may be exchanged, and certain annotations may be inserted
in the specification.

2 An introduction to Ornimix specifications

Before another example from the domain of context-sensitive pattern match
problems is presented, the basic outline of an OPTIMIX specification is explained.

OPTIMIX-specifications are grouped in modules (data model and graph rewrite
modules) which can be combined and reused flexibly. The data model of the
graphs is defined by a simple extension of the AST data definition language from
the compiler construction toolbox Cocktail [Gro89] so that existing AST data spec-
ifications can be reused and extended. Also, users can connect other tool envi-
ronments easily by implementing an abstract interface module for graphs, nodes,
and edges. OPTIMIX also supports a CoSy-mode in which code is generated for
the CoSy compiler construction environment [AAvS94].

Graph Grammar Handbook, Vol. Il

Short version published in

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS b

OptimixModule ::= ASTDataModule | GraphRewriteModule .
GraphRewriteModule ::= ’MODULE’ ModuleName (UseClause|GraphRewriteProcedure)+ ’END’.
GraphRewriteProcedure ::= GRS’ ProcName ’(’ ParameterDecl // ’,’ ’)’ ProcBody
ProcBody ::= RuleGroup | ’{’ RuleGroup+ ’}’.
ParameterDecl ::= Parameter ’:’ NodeTypelName

| Parameter ’:’ Functor ’(’ NodeTypeName [’,’ NodeTypeName] ’)’.
UseClause ::= ’USE’ ’"’ Filelame ’"’.

A graph rewrite module consists of use clauses and graph rewrite procedures.
A use clause specifies a module to be imported. A graph rewrite procedure con-
tains one or several groups of graph rewrite rules. For each rewrite procedure,
OPTIMIX generates a C routine with the same name. A list of parameters can be
specified to pass graphs, sets of nodes, or other variables to the generated C
routine.

OPTIMIX coalesces the data modules into a single data model and collects the
graph rewrite system procedures into one list. Then it type-checks the graph
rewrite rules with the data model and checks the termination of the systems.
Finally, OPTIMIX generates C code.

2.1 Rule groups in rewrite procedures

RuleGroup ::= ’{’ [RangeDeclarations] ’RULES’ Rule+ ’}’.

RangeDeclarations ::= ’RANGE’ (Variable ’<=’ Parameter ’;’ | ’REUSE’ Variable ’;’)+

A rewrite procedure contains a sequence of rule groups. Such a sequence
can be used to master non-terminating or non-confluent rule sets. Often, such
a set can be split into several groups. [f each of them is terminating and/or
confluent also the sequence of groups terminates and/or yields a unique result.
Hence rule groups are executed in textual order. For a single rule group, the
rules are applied intermingledly; the code is generated according to the order
algorithm scheme, a variant of a nested-loop-join [Am%4]. Rule groups may also
be nested: in preconditions or transformations of rule tests it is allowed to open
additional rule groups so that common parts of rules are factored out.

Range declarations for rule groups To achieve efficient code, it is useful to
apply a rule group instead to the entire intermediate representation to a spe-
cific set of nodes. Since OPTIMIX’s order algorithm scheme is a graph search
and navigation algorithm it has to be told at which nodes the navigation should
start. Such a declaration is called a range declaration. To find out which range
declarations are necessary, rule left hand sides are analyzed. A left-hand side
can regarded as a graph containing some roots (nodes with indegree 0) which
match redex root nodes. Since the order algorithm starts to lookup redexes at
potential redex root nodes, each rule variable that is a root node of the left-hand
side’s graph needs a range declaration, telling from which node domain the re-
dex root nodes can be instantiated. In example 2 the only root node of the left
hand side is Statement, and for this variable a range declaration is required.

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 7

Root variables of left-hand sides may be instantiated from:

o A single node parameter of the graph rewrite procedure. This is assumed
as default. In the example from section 1 all redexes start with the param-
eter Statement, 50 this parameter is automatically predefined as range for
variable Statement.

o A set parameter of the procedure or a node set of a parameter graph.
In the first case the nodes are instantiated from the parameter set, in the
second case from the node set of the parameter graph.

Short version published in: Graph Grammar Handbook, Vol. I

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

¢ A variable in an outer rule group of a rule group nesting, a reuse.

Termination check for rule groups OPTIMIX can check termination for certain
graph rewrite rule groups, which economizes paper proofs. Rule groups that
only add edges are EARS and terminate automatically [ABm94]. Other groups
are checked with the edge-accumulative termination criterion of XGRS [ABm96al.
For those OPTIMIX finds the set of edge-accumulative-termination labels which
causes termination. In the case of our example this would be the edge label
set {descendants}.

OPTIMIX may be used to specify more general graph transformation problems
than XGRS, but it cannot check whether the specified rule groups terminate.
Also, a problem with an unknown number of redexes may have a larger number
of normal forms, i.e. may provide a larger degree of indeterminism. While the
generated algorithms may yield correct results, these may be unexpected. Thus,
for such specifications it is up to the user to ensure termination and to cope
with indeterminism. Nevertheless the generated algorithm may yield reasonable
results.

2.2 Type-checking rules

Rule ::= RuleTest ’==>’ RuleTransformation ’.’.

RuleTest ::= (Predicate | PatternMatch | TargetCodel)* .

Predicate ::= [’NOT’] PredicateName ’(’ Variable ’,’ Variable ’)’.
PatternMatch ::= Variable ’~’ Pattern | Variable (’==’ | ’!=’) Variable .
Pattern ::= NodeTypeName [’{’ (FieldName ’=>’ [Variable ’:=’] Pattern) // ’,
TargetCode ::= ’{*’ any_C_charx ’%}’.

To understand the semantics of rules with regard to the data model, their
type-checking has to be explained. Each rule consists of a rule test part (speci-
fying rule preconditions) and a rule transformation part (specifying rule actions).
Preconditions and actions are specified as predicates, combined in conjunction,
as in DATALOG. However, each predicate must be binary because it must corre-
spond to a graph defined in the data model. Looking up the predicates as graphs
in the data model, OPTIMIX infers types for rule variables, and finds out the fea-
tures of the used relations, e.q. whether relations are one- or multi-valued.

Graph Grammar Handbook, Vol. II

Short version published in

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 8

Object Type 0

predicate4:graph(ObjectType1,0bjectType2);

L Object Type |

predicatel: ObjectType2;

predicate3:set(ObjectType2);

_____ Object Type 2

predicate2:set(ObjectTypel);

Rewrite Rule

variable type

4 X I J , N o T
predi atel(VariaUlel Variable2),)
I_ B | predicate type
predicate2(Variable2,Variable3) |
|
|
predicate3(Variable3,Variable4)
==> predicate4(Variable1l,Variable4).
. /

Figure 3: Type-checking a part of a rewrite rule against the data model. Predi-
cates refer to field names (dotted arrows), variables to node types. Inclusion of
node types denotes simple inheritance (see app. A).

Short version published in: Graph Grammar Handbook, Vol. II

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 9

To define relations in the data model, parametrized set, list, or graph data
types must be used (functors). Functors are instantiated by one or two node
types to specify a concrete graph or set. OPTIMIX's functor library provides cons-
cell-style lists and sets, hash sets, bitvectors, unipartite, and bipartite graphs.
Graphs may be explicit or implicit. Explicit graphs provide an explicit root node
for the graph, an explicit set of nodes, and their relations. Implicit graphs are rep-
resented only by the relation, which is embedded as neighbor sets in the nodes
(adjacency sets/lists). In section 1 all graphs were implicit, since they were en-
coded as neighbor sets into the graph nodes.

To check a rewrite procedure against the data model, all predicates are
looked up as a field in a node type (Figure 3). The type of the field may be
the following:

node type (pointer type) (rhs in Figure 3) Then the relation is one-valued. The
node type which contains the field determines the type of the left variable
of the predicate. The type of the field is the type of the right variable of
the predicate.

set/list functor type (kids and descendants in Figure 3) Then the relation is
multi-valued and represented as implicit graph, embedded as neighbor
sets. The node type which contains the field determines the type of the
left variable of the predicate. The parameter of the functor determines
the type of the right variable of the predicate. In case of a list functor the
neighbor set is ordered.

graph functor type (equiv_exprs in Figure 3) Then the relation is an explicit
graph on two node types. The first functor parameter determines the type
of the left variable, the second the type of the right variable. The root
node of the graph is accessible via an node of the node type which con-
tains the field.

These steps deliver a set of typing constraints which are solved to infer the
actual typing of predicates and variables.

Rules may contain more complex tests. Predicates may be negated. Then the
generated code tests that no edge exists between two instantiated nodes. Also
pattern matches on variables are allowed. They match variables on node types,
select field values of nodes into variables, or match fields against constant val-
ues. Finally, it is possible to specify arbitrary C target code in place of a predicate.
Target codes allow arbitrary custom checks and are copied unchanged to the
generated file.

OPTIMIX specifications provide graph representation transparency. It is trans-
parent by which functor a predicate is represented since the functor can be
changed in the data model, and OPTIMIX's code generation is adapted automat-
ically. OPTIMIX uses the type information to generate correct navigation and ma-
nipulation code, generating calls to macros and functions from its functor library
(loop macros on neighbor sets, operations to add edges, delete edges, delete
nodes, add nodes, and test existence of edges). Functor parametrization does

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 10

not lead to code explosion because OPTIMIX expands functors only internally. All
generated function calls invoke the same library module, passing objects as void-
pointers. This is type-safe because specifications are type-checked by OPTIMIX
anywau.

Furthermore, OPTIMIX allows users to define their own functors. For such
functors, a user has to write a C module which supports the same functions
as a standard functor. OPTIMIX provides a node-macro interface that manipulates
nodes in the generated code. Suppose, a user wants to use a tool T instead of
AST. Then he has to redefine the node-macro interface to map to T's node ma-
nipulation functions. Since OPTIMIX only generates calls to the macro interface,

Graph Grammar Handbook, Vol. Il

Short version published in

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

the generated code allocates and manipulates T-ncdes automatically.

Other elements of rule conditions [n rule tests not only binary predicates
may be combined in conjunction, but several other actions or tests may be per-
formed.

In place of predicates external functions may be called. These functions must
be declared; they must take a node and return a node or a set of nodes. Then
OPTIMIX generates calls to these functions, and uses their results for further nav-
igation. For further details see [ABMY98]. Also external functions delivering a
boolean may be called. These are called during the navigation.

Problem class: context-sensitive pattern match problems OPTIMIX-rules al-
low to specify context-sensitive pattern match problems. Often subgraphs of
the intermediate representation have to be compared to subgraphs that are
not directly linked, i.e. are remote. Context-sensitive matching is possible if a
rule’s left-hand side consists of disconnected predicate conjunctions (i.e. the
graph of the left-hand side consists of disconnected subgraphs). Such a rule can
match subgraphs in remote parts of the intermediate representation. In this way,
context-dependent knowledge can be accessed very easily and can be made
explicit.

An important subclass are structure-based equivalence class problems ("Are two
subgraphs in the intermediate representation equivalent?™). A typical example calcu-
lates structurally equivalent expressions (value numbering) [ABm96b]. Consider
the following rule from a specification of value numbering. The rule relates all
integer constant nodes which carry the same value in the field intvalue. These
expressions need not be linked directly; the range of the expressions, i.e. the pa-
rameter set, is searched exhaustively for integer constant nodes whose values
are equal.

GRS StructuralEquivalence(expressions:consset(mirExpression))
{ RANGE Exprl <= expressions; Expr2 <= expressions; RULES
Exprl ~ mirIntConst{intvalue => Vall}, // pattern match on type mirIntConst

Expr2 ~ mirIntConst{intvalue => Val2},

Vall == Val2, // are values equal?

hasType (Exprl,Typel) ,hasType (Expr2,Type2),

Typel == Type2, // are pointers equal?

==> equiv_exprs(Exprl, Expr2),
{* printf(“heureka, two equivalent expressions found!\n"); *} ;

=000 NG WN =

S
v

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 1

Line 2 shows the range declaration which instantiates the variables Expri
and Expr2 to nodes of the parameter set expressions. Line 3 and 4 show two
pattern matches. Line 8 in the rule action links the two expressions under a new
relation equiv_exprs for further processing. Line 9 shows a target code with a
print statement which is inserted into the output file after the code for line 8.

Problem class: filtering by pattern matching OPTIMIX allows to specify pattern
matching in queries in order to filter out certain nodes or paths during graph
navigation. The following example collects all reachable nodes in the expres-

Graph Grammar Handbook, Vol. Il

Short version published in

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

sion trees of an assignment into two relations uses and assigns. The first rule
represents the query "Find all objects in the right-hand side of assigns and connect
them to the assign under relation uses”, the second the query "Find the object in
a left hand side and connect it to the assign under the relation assign”. In our case,
there is only one node on a left-hand side, i.e. assign is @ one-valued relation.
GRS AttachObjectsToAssigns(Procedure:mirProcedure)
{ RULES
blocks (Procedure,Block), stmts(Block,Assign),
Assign ~ mirAssign{ rhs => Expression },
descendants (Expression,Descendant),
Descendant ~ mirObjectAddr { obj => Object, deleted => FALSE }
==>
uses(Assign,Object)

blocks (Procedure,Block), stmts(Block,Assign),

Assign ~ mirAssign{ lhs => Expression },

descendants (Expression,Descendant),

Descendant ~ mirObjectAddr { obj => Object, deleted => FALSE }
==>

assigns(Assign,Object)

}

In graph reachability problems, testing attributes of nodes (pattern matching)
may be used tofilter out certain subgraphs for further processing. Many prepara-
tory work for program analysis consists in filtering out interesting parts of the
intermediate representation and transforming them into a shape which can be
used for further analysis.

Problem class: data-flow analysis Interestingly, [RHS95] has shown that classi-
cal data-flow problems can be expressed as graph reachability problems. Then
both the flow graph and the values of the semi-lattice of the data-flow prob-
lem need to be encoded in graphs. Given some basic reachability rules, these
problems ask: "Which data-flow nodes can be reached from which statements in the
flow graph?”. In data-flow analysis theory, the reachability rules are described
by linear dependency equations and model a set of functions on a (powerset)
lattice. In graph rewriting, the rules are described by graph rewrite rules on a
graph-lattice, and the reachability problem reduces to solving the rewrite rules
on the initial graph [ABmMY4]. The following system calculates a simple bitparallel
data-flow analysis for reaching definitions.

GRS ReachingDefinitions(ReachdefIN, ReachdefOUT, ReachdefTRANSP:
graph(mirBasicBlock,mirStatement))

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 12

RULES

ReachdefGEN(b,s) ==> Reachdef0UT(b,s);
ReachdefIN(b,s), ReachdefTRANSP(b,s) ==> Reachdef0UT(b,s);
blocks.pred(b,bl), ReachdefOUT(bl,s) ==> ReachdefIN(b,s);

t

If-expressions and path expressions give to the same set of rules a nice look:

grs ReachingDefinitions(ReachdefIN, ReachdefOUT, ReachdefTRANSP:
graph(mirBasicBlock,mirStatement))

{ range b <= ReachdefIN;
rules
if s in b.ReachdefGEN then s in b.Reachdef0OUT;
if s in b.ReachdefIN
&% s in b.ReachdefTRANSP then s in b.Reachdef(QUT;

if s in b.blocks.pred.ReachdefOUT then s in b.ReachdeflIN;

2.3 Transformation actions in rules

RuleTransformation ::=

NadeaTaRaNalatrad - -=
nNOGesiopeveLetea T

esToBeDeleted] [NodesToBeAdded] Predicate+ ’.7.
™

[o]
TETE? aaiald o /7 3 3 OMARK) I ERER Y | D RTNRY
aalall LAY vasLiawvie [/ » \ TNARD S | vl | LA

(?

n
v
NodesToBeAdded ::= ’NEW’ (Variable // ’,’ ’:’ NodeTypeName ’;’) * 7,7,

This section demonstrates OPTIMIX's capabilities for program transformation.
Transformational parts of rules may contain - besides edge additions - edge
deletions, node additions, and node deletions. If a predicate appears negated
in a rule transformation, between the two nodes that instantiate the rule’s vari-
ables a potentially existing edge is deleted. Nodes which are added have to
be declared together with their types. OPTIMIX generates appropriate calls to
allocation macros.

Nodes are deleted in different modes, which can also be combined. The
free-mode deallocates the node by calling a deallocation macro. The mark-mode
marks the nodes by setting a default node field deleted. Then they can be
recognized by other rules as being invalid. Marking is necessary when a node
belongs to several graphs, not only those that were tested in the rule. Then
subsequent navigations can remove all incident edges from those graphs before
the node is deallocated. The redex-remove-mode removes the node from its redex
context automatically, i.e. from all containing graphs which are mentioned in the
rule test.

The delayed-remove mode is important when nodes together with incident
edges have to be deleted. In a first pass this mode deletes the attached edges
of deleted nodes. Then in a second pass nodes are removed from containing
graphs. When these rules test and delete edges of the same graphs, the deletion
of edges may destroy redexes which otherwise would have been valid. which
are candidates for deletion should be deleted delayed should be used for further
navigation. Thus this mode generates a second XGRS which is executed after
the original one. This XGRS walks the graphs of the rule test a second time, tests
on deleted (marked) nodes and then performs removal of incident edges.

In rule transformation parts also negated predicates may be specified. They
specify edge deletions.

Graph Grammar Handbook, Vol. Il

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

Short version published in

) 1998.

3
3

Graph Grammar Handbook, Vol. Il

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c

Short version published in

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 13

Non-ground facts Rules without preconditions correspond to non-ground facts
in DATALOG-databases, e.g. in Coral [RSS92]. Non-ground facts are like facts
which refer to a certain domain of nodes. Since they will always match
these rules may be used to initialize graphs. Negated non-ground facts
may be used to empty graphs. As example consider an initialization of the
copies_to_be_replaced-relation with a non-ground fact:

{ RANGE Statementl <= copies_to_be_replaced;
Statement2 <= copies_to_be_replaced.target;
RULES
copies_to_be_replaced(Statementl,Statement2); // initialization to complete graph

GRS InitializeGraph(copies_to_be_replaced:graph(mirStatement))

}

Problem class: mark/transform-problems Mark/transform-problems mark a finite
set of subgraphs in an intermediate representation where transformations have
to be applied. A subsequent phase performs the transformations, reducing all
redexes in the graph. XGRS model this kind of transformation because their ter-
mination criterion requires that during the reduction only a finite number of re-
dexes appear in the graph [Akm96al. Example problems are code motion, common
subexpression elimination (structure sharing), or copy propagation.
GRS CopyPropagation{(copies_to_be_replaced:graph(mirStatement))
{ RANGE CopyAssign <= copies_to_be_replaced; RULES
copies_to_be_replaced(CopyAssign, Usinglssign),
CopyAssign ~ mirAssign{rhs=>mir0ObjectAddr{obj=>0riginal},
lhs=>mirContent{addr=>mirQObjectAddr{obj=>CopyObj}}}
rhs (UsingAssign,RhsExpr), descendants(RhsExpr,UsingExpression),
UsingExpression ~ mirObjectAddr{obj=>ReplaceObj}
ReplaceObj == CopyObj
==> DELETE CopyAssign, CopyObj MARK REDEXREMOVE, // mark and cut out

obj(UsingExpression,Original); // Replace all CopyObj objects by Original
}

In copy propagation, i.e. elimination of useless copy assignments, first all
copy statements are assembled, then reaching-definitions and live-copy data-
flow analysis calculate which copies of definitions reach a certain statement.
Here it is assumed that this information has been marked in the relation
copies_to_be_replaced. Then the following system can be used to remove
all useless copy assignments and to replace the useless copied program object
by the original program object. The system finds all expressions which use the
copy object of the copy assignment, instantiating variable UsingExpression. |t
also replaces the use of the copy by the use of the original by redefining the one-
valued-relation obj between the variables UsingExpression and Original.

Since the delete statement applies mark-mode, both CopyAssign and CopyObj
are not deallocated, but marked as deleted. This might be necessary in order to
remove dangling edges later on. Since also redex-remove-mode is specified, the
generated code removes both nodes automatically from all graphs that were
mentioned in the rule test, e.g. copies_to_be_replaced.

The following system could be executed subsequently and removes the
a useless copy assignment which had been marked from the graphs dep,
isLiveCopy.

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 14

GRS RemoveEdgesFromGraphs(copies_to_be_replaced:graph(mirStatement),
dep:graph(mirStatement),
isLiveCopy:graph(mirStatement))

{

RANGE CopyAssign <= copies_to_be_replaced;
RULES

copies_to_be_replaced(CopyAssign, Usinglssign),
CopyAssign ~ mirAssign{ deleted => TRUE }

==>

NOT dep(CopyAssign, UsingAssign),

NOT isLiveCopy{(CopyAssign, UsingAssign)

Short version published in: Graph Grammar Handbook, Vol. Il

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

2.3.1 Fixpoint checking for rule groups

For rule groups it must be checked when the fixpoint is reached. This is done
by comparing old and new values of certain parts of the graphs. OPTIMIX can
generate different kinds of fixpoint detection:

direct fixpoint check This method checks whether calls to edge-addition func-
tions change the graph. Because it works without memoization it is the
fastest method, but can only be used if the functions for edge addition re-
turn a flag, when something changed. This is the case for all functors from
the OPTIMIX-graph-library.

central neighbor set comparison This method compares the neighbor sets cer-
tain nodes before and after a fixpoint loop iteration. Thus it has to mem-
orize the old values of neighbor sets which may be expensive. However,
it can be used with arbitrary functors.

2.4 Some techniques to accelerate the generated code

Although the order algorithm for XGRS works well for sparse graphs in many
cases, it may be that the code is too slow for an appliation, in particular when
the preconditions of a rule are very complex. Then there are some other meth-
ods to speed up the code.

Rule annotations for code generation [n case the standard order algorithm is
too slow users can annotate rules with rule options so that OPTIMIX uses other
code generation strategies. Annotating a rule with the element-test-join option
replaces some inner loops by testing membership of nodes in node sets. Because
some set representations allow membership tests in constant time, often the cost
of a join can be reduced. Annctating a rule with the option pre-select-filtering
inserts pre-select-operations in the generated code which cut down the search
space for joins. This corresponds to the principle of selections-before-joins in
databases. Since each of these options may not pay off in all cases, users have
to write them explicitly.

Graph Grammar Handbook, Vol. Il

Short version published in

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

2 AN INTRODUCTION TO OPTIMIX SPECIFICATIONS 15

Factoring out common parts of rules In certain cases algorithms generated
from a rule group can be speeded up by rule factoring. Normally code is gen-
erated for each graph rewrite rule separately. Hence many parts of the inter-
mediate representation are traversed repeatedly, which could be economized.
To this end, OPTIMIX allows to factor out common parts of rules by nesting rule
groups. In place of rules or predicates complete rule groups can be specified.
The code for the nested rule group is generated after the code for the textu-
ally proceeding rule or predicate. For nested rule groups, variables from outer
rule groups can be reused in range declarations. For instance, the example from
section 1 can be modified to:

GRS CollectDescendants0fExpressions(Procedure:mirProcedure)
{ RULES
blocks(Procedure,Block), stmts(Block,Statement),
Statement ~ mirAssign, rhs(Statement,Expression),
{ RANGE REUSE Expression; RULES
kids(Expression,Kid) ==> descendants(Expression,Kid) .
descendants (Expression,Descendant), kids(Descendant,GrandKid)
==> descendants(Expression,GrandKid), descendants(Descendant,GrandKid) ;
}
==> /* empty transformation */;

}

Then the relations blocks, stmts, and rhs are traversed only once for the
evaluation of both rules, and the generated algorithm should be almost twice as
fast:

void CollectDescendantsOfExpressions(mirProcedure Procedure)
{ int _change = TRUE;
while (_change) { _change = FALSE;
conslist_LOOP(Procedure->blocks, Block) {
conslist_LOOP(Block->stmts, Statement) {
if ('GRAPHNODE_HAS_TYPE((GRAPHNODE_TYPENAME)Statement,mirAssign)) continue;
Expression = Statement->rhs;
/* code for rule 1: %/
consset_LOOP (Expression->kids, Kid) {
_change |= consset_insert(Expression->descendants,Kid);
} consset_ENDLOOP;
/* code for rule 2: */
consset_LOOP (Expression->descendants, Descendant) {
consset_LOOP (Descendant->kids, GrandKid) {
_change |= consset_insert(Expression->descendants,GrandKid);
_change |= consset_insert(Descendant->descendants,GrandKid);
} conslist_ENDLOOP;
} conelist_ENDLOOP;
} conslist_ENDLOOP;

Factoring with choice rule groups Choice-rule-groups allow to specify alterna-
tive rule conditions, in particular for pattern matching alternatives. Such a rule
group consists of a number of rules that are tried in textual order until the first
redex is found; rules are not evaluated until a fixpoint is found. If choice-rule-
groups are nested into other rule groups, they allow to specify graph queries
with complex preconditions. The following system shows a nested choice-rule-
group which tests several pattern matching alternatives. Common rule precon-
ditions are factored out.

{ blocks(Procedure,Block), stmts(Block,Assign), Assign ~ mirAssign,

5 EXPERIENCES 16

rhs(Assign,RhsExpression), descendants(RhsExpression,Expression),
{| RANGE REUSE Expression; RULES
Expression ~ mirMult ==> {* printf("mult op"); *};
Expression ~ mirObjectAddr { obj=>NULL }
==> {* printf("no object for address"); *}.
Expression ~ mirObject ==> {* printf("object"); *};
1} ==> /* empty transformation */ ;

t

5 Experiences

OPTIMIX has been used for several areas in program optimization, such as data-

Graph Grammar Handbook, Vol. Il

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

Short version published in

flow analysis, lazy code motion, and copy propagation. Additionally, it can
be used for arbitary program rewriting tasks, also semantical analysis or code
generation. Typically, a program analysis specification requires only around 30-
40 rules, indicating that program rewriting and optimization is facilitated with
OPTIMIX. The following table shows the approximate number of rules for several
analysis and transformation examples. Some analyses are rather complex: e.q.
lazy code motion data-flow analysis contains 7 data-flow equation systems. Typ-
ically, a program analysis specification requires more rules than a transformation
since it has to handle a lot of complicated cases.

component problem class appr. #rules
data-flow analysis live copies reachability 20
data-flow analysis lazy code motion reachability 40
structural expression equivalence cont.-sens. matching 30
termination check in OPTIMIX cont.-sens. matching 7
transformation copy propagation mark/transform 5
kernel of lazy code motion transform. | mark/transform 5

For a lot of standard problems, the generated code is satisfactorily fast.
In particular, reachability problems, such as data-flow analyses, are almost as
fast as hand-written ones; numbers have been published already [ARm96b].
With context-sensitive graph problems and mark/transform problems, the perfor-
mance of the code depends on how complex rule preconditions are and how
large the intermediate representation is. In complex cases, the code generation
can be tuned by rule options. Also, OPTIMIX integrates several automatic opti-
mizations to accelerate the generated code. Also many other DATALOG eval-
uation strategies could be used (top-down evaluation, semi-naive evaluation,
query-subquery [CGT89]). Better fixpoint checking strategies should be applied,
e.g. checking fixpoints only at the critical points of a weak topological ordering
[Bou93l.

OPTIMIX generates code that optionally emits debug output. Also, all func-
tors provide routines to print a graph to a file to be displayed with VCG [San95].
This facilitates debugging of optimizations enormously. Figure 4 on page 20 con-
tains a relation which represents live copy information between statements, and
which is automatically generated by OPTIMIX’s functor library.

4 CONCLUSION 17

OPTIMIX eases the development of an optimization. Since the specifications
are abstract they can be better read and understood. The core of the spec-
ifications, the graph rewrite systems, forms a declarative language. Precon-
ditions and transformations are specified in widely-known DATALOG-oriented
style. Since OPTIMIX infers types for predicates and variables, specifications tend
to contain only the essential information. This pays off especially in program
optimization, since optimizers tend to be complex, hard to write, and hard to
understand. It is possible to start an optimizer by simply stating informal queries.
These queries can subsequently be refined and extended, and the generator
supports the development process by its type-checking capabilities. In essence,

Short version published in: Graph Grammar Handbook, Vol. I

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

with OPTIMIX optimizer development can be viewed as a kind of graph database
development which makes it much more comprehensible for the average pro-
grammer.

OPTIMIX is not the only tool to implement graph rewrite problems. However,
PROGRES [SWZ95] as well as its variant UBS-systems [D&r95] require control-flow
to be stated together with the rules to quarantee termination. Other systems are
oriented towards interactive graph rewriting [LB93]. Also, none of these seems
to have been applied to program rewriting.

Also in artificial intelligence rule-based systems have been built. Among
the newer works are [CM95] [For94] [Mir] and [Pac95], which embed produc-
tion rules into C++ and Smalltalk. These systems use the RETE/LEAPS pattern
match algorithms to find rule matches in their workspace. However, it is un-
clear whether these systems can be used for graph rewriting because their data
model is not graph-based. The specifications cannot be checked for termination
and the code generation does not use standard database techniques. It is un-
clear how RETE/LEAPS compares to join algorithms in practice, although theo-
retical works exist [AIb89].

4 Conclusion

With OPTIMIX optimizer development can be viewed as a kind of graph database
development. It is possible to start an optimizer by simply stating informal
queries. These queries can subsequently be refined and extended, and the gen-
erator supports the development process by its type-checking capabilities.
Hence OPTIMIX eases the development of program rewriting and optimiza-
tion. It allows the specification of graph reachability problems, context-sensitive
pattern match problems, and mark-transform problems. Since the language core,
the graph rewrite rules, consists of a rule-based declarative language, rewrite
specifications are concise and easy to read. Rules can be arranged in rule groups
to master difficult specifications. The rewrite systems can be checked for termi-
nation. On the other hand, specifications are open and flexible, since C code
can be embedded. Rules can be nested, and complex pattern matching is possi-
ble. OPTIMIX allows specification of arbitrary data models, i.e. intermediate rep-
resentations, and can be adapted to new tool environments. It allows the user
to speed up the generated code by rule factoring and rule options. Hence we

Graph Grammar Handbook, Vol. II

Short version published in

Ed. G. Rozenberg, G. Engels, H. J. Kreowski (c) 1998.

REFERENCES 18

believe that OPTIMIX provides a valuable practical tool which saves a lot of cod-
ing work in program transformation. A free version of the tool can be fetched
from its home page [ABRmM98].

The work on OPTIMIX opens a wide field for further investigations. On
the theoretical side more general graph rewrite systems should be investigated
whether more general termination and confluence criteria can be found. Termi-
nation criteria in graph rewrite systems are a new field [Plu95] and one could try
to take over the work in term rewrite systems [DJ90]. Another important work
is to annotate rules with a cost function. This could be used to select deriva-
tions in non-confluent systems, just as in code-generator generators [NKWAJ6]
[NK9¢]. Also, the automatic choice of graph representations could be tackled so
that users could be sure that the generator selects both the best possible graph
representation and an appropriate solution algerithm. This would be an enor-
mous improvement on Prolog, because in Prolog the layout of graph structures
is fixed.

RAalmcmn ~m e
neieielces

[AAVS9E] M. Alt, U. ABmann, and H. van Someren. Cosy Compiler Phase Embedding with the CoSy
Compiler Model. InP. A. Fritzson, editor, Compifer Construction ({CC), volume 786 of Lecture
Notes in Computer Science, pages 278-293, Heidelberg, April 1994. Springer.

[AIb89] Luc Albert. Average case complexity analysis of RETE pattern-match algorithm and aver-
age size of join in databases. In Foundations of Software Technology and Theoretical Computer
Science, number 405 in Lecture Notes in Computer Science, pages 223-241, Heidelberg,

December 1989. Springer.

[ABm94] Uwe ABmann. On Edge Addition Rewrite Systems and Their Relevance to Program Anal-
ysis. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, 5th Int. Workshop on Graph
Grammars and Their Application To Computer Science, Williamsburg, volume 1073 of Lecture
Notes in Computer Science, pages 321-335, Heidelberg, November 1994. Springer.

[ABmI5] Uwe ARmann. Generierung von Programmoptimierungen mit Graphersetzungssystemen. PhD
thesis, Universitat Karlsruhe, Oldenbourg-Verlag, Minchen, July 1995. GMD-Bericht 262.

[ABm%ba] Uwe ABmann. Graph Rewrite Systems For Program Optimization. Technical Report RR-
2955, INRIA Rocquencourt, 1996.

[ABmIbb] Uwe ABmann. How To Uniformly Specify Program Analysis and Transformation. In P. A.
Fritzson, editor, Compiler Construction (CC), volume 1060 of Lecture Notes in Computer Sci-
ence, pages 121-135, Heidelberg, 1996. Springer.

[ABm9I8] Uwe ABmann. OPTIMIX Language Manual (for OPTIMIX 2.5). Technical Re-
port 15, Universitdt Karlsruhe, 1998. Available at http://itbwww.info.uni-
karlsruhe.de/™assmann/optimix.html.

[Bou93] Francois Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proceedings of
the International Conference on Formal Methods in Programming and their Applications, volume
735 of Lecture Notes in Computer Science, pages 128-141. Springer, 1993.

[CGT891 S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to Know About Datalog (And
Never Dared to Ask). IEEE Transactions on Knowledge And Data Engineering, 1(1):146-166,
March 1989.

[CM95] Stephen Correl and Daniel P. Miranker. Integrating database concurrency control into
the venus rule language. Technical Report UTEXAS.CS//CS-TR-95-16, The University of
Texas at Austin, Department of Computer Sciences, April 1995.

REFERENCES 19

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, pages 243-320, Amsterdam, 1990. Elsevier Science
Publishers.
[Dor95] Heiko Dérr. Efficient Graph Rewriting and Its Implementation, volume 922 of Lecture Notes in
Computer Science. Springer, Heidelberg, 1995.
[For94] Charles L. Forgy. RAL/C and RAL/C++, Rule-Based Extensions to C and C++. July 1994,
[Gro89] Josef Grosch. Ast - A Generator for Abstract Syntax Trees. Technical report, Gesell-
— schaft fuer Mathematik und Datenverarbeitung, Forschungstelle Karlsruhe, August 1989.
- Language manual.
© [LB93] Michael Léwe and Martin Beyer. AGG — an implementation of algebraic graph rewriting.
> In Rewriting Techniques and Applications, volume 690 of Lecture Notes in Computer Science,
~ pages 45T-456. Springer, 1993.
o . [Mir] Daniel P. Miranker. Encapsulating rules. The University of Texas at Austin, Department
_8 8 of Computer Sciences.
el [NK98] Albert Nymeyer and Joost-Pieter Katoen. Code Generation based on formal BURS theory
% : and heuristic search. Technical report inf 95-42, University of Twente, 1996.
I 3 [NKWA96] Albert Nymeyer, Joost-Pieter Katoen, Ymte Westra, and Henk Alblas. Code Generation =
P A* + BURS. volume 1060 of Lecture Notes in Computer Science, pages 160-176, Heidelberg,
© f, April 1996, Springer.
€ = [Pac95] Francois Pachet. On the embeddability of production rules in object-oriented languages.
% 8 Journal of Object-Oriented Programming (JOOP), pages 19-24, July 1995,
R [Plu95] Detlef Plump. On Termination of Graph Rewriting. In Graph Theoretic concepts in Computer
Ox Science, Lecture Notes in Computer Science, Heidelberg, 1995. Springer.
'g_ = [RHS95] T Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
© I reachability. In ACM Symposium on Principles of Programming Languages, volume 22, pages
6 49-61, San Francisco, California, January 1995, ACM.
gl [RSS92] R. Ramakrishnan, D Srivastava, and S. Sudarshan. CORAL - Control, Relations and Logic.
% In Proceedings of the 18th VLDB Conference, 1992.
c [San95] Georg Sander. Graph Layout through the VCG Tool. In Graph Drawing, DIMACS Interna-
il timmnal Winebchmm AT miimbar Q0L i | smbiiees Nntae im et tar Coinmen aamac 10L_20NEK
Liuriut vvor R.)IIU’J AL/, TTIUTNUTT U7 1N LU 1o i \.UIII'JU[C‘I SLITTILE, }JGHC‘) LI A A4 V30 N
Springer, 1995.
[SWZ95] Andreas Schirr, Andreas J. Winter, and Albert Zarndorf. Graph Grammar Engineering

Short version published in
Ed. G. Rozenberg, G. E

with PROGRES. In European Software Engineering Conference ESEC 5, volume 989 of Lecture
Notes in Computer Science, pages 219-234, Heidelberg, September 1995. Springer.

Appendix A

The data definition syntax of OPTIMIX is similar to the syntax of the data structure
generator AST [Gro89]. Node types (classes) are composed from a collection of
typed fields. Inner classes in angle brackets <> inherit from outer classes (simple
inheritance). Fields may consist of set and graph attributes in brackets ().

MODULE AssigmentData TREE IntermediateRep RULES

mirProcedure = // the procedure type
(blocks:list(mirBasicBlock)) // a list of basic blocks
(equiv_exprs:graph(mirExpression,mirExpression)) // a graph of expressions

(copies_to_be_replaced:graph(mirStatement,mirStatement)) // a graph of statements

(ReachdefIN:graph(mirBasicBlock,mirStatement))

(ReachdefQUT: graph(mirBasicBlock,mirStatement)) // reaching definitions block exits
(ReachdefTRANSP : graph(mirBasicBlock,mirStatement)) // transparents

// reaching definitions block entries

