
Universit�at Karlsruhe

Fakult�at f�ur Informatik

OPTIMIX Language Report

(for OPTIMIX 7.0)

Uwe A�mann

Institut f�ur Programmstrukturen und Datenorganisation

Interner Bericht 31/95
July 20, 1995

Abstract

This is the language manual for OPTIMIX, the optimizer generator. It can be used to generate program

analyses and transformations. Its input language is based on Datalog and graph rewriting. Especially two

new classes of graph rewrite systems are used: edge addition rewrite systems (EARS) and strati�ed graph

rewrite systems (strati�ed GRS).

OPTIMIX has been developed in the Esprit project COMPARE (No. 5399). It is currently not free and

can be used only in the context of the CoSy compiler framework. For a licence, contact the author or

info@ace.nl.

Keywords: Program analysis, program transformation, optimizer generator, Datalog, graph rewriting.

This work has been funded by the ESPRIT project COMPARE (No. 5399).

Address: Uwe A�mann, Universit�at Karlsruhe, IPD, Vincenz-Prie�nitz-Stra�e 3, D-76128 Karlsruhe

Email: assmann@informatik.uni-karlsruhe.de

The address of the author will be, starting from Aug 1, 1995:

Uwe A�mann, INRIA Rocquencourt, Domaine de Voluceau BP 105, 78153 Le Chesnay Cedex, France

Email: Uwe.Assmann@inria.fr

Contents

1 General topics 3

1.1 Design procedure for an optimizer : 3

1.2 Running OPTIMIX from shell : 3

2 An Optimix speci�cation 5

2.1 Outline : 5

2.2 Lexical parts : 5

2.3 Global declarations : 6

2.3.1 Import a at form �le : 6

2.3.2 Inheritance declarations : 7

2.4 Available graph implementations (graph functors) : 7

3 Speci�cation of graph rewrite systems 8

3.1 Program analysis with EARS : 8

3.1.1 Range declarations : 9

3.1.2 Parameters of routines in the generated code : 9

3.1.3 Rule variable declarations : 10

3.1.4 BEGIN and END code for strata and rules : 10

3.1.5 Options for strata and GRS rules : 11

3.1.6 Di�erent kinds of usable predicates in rules : 11

3.1.7 Patterns : 15

3.2 Non-ground fact speci�cation : 15

3.3 Single source path problems (SSPPs) : 16

3.4 Program transformation with graph rewrite systems : 17

3.4.1 Node deletion : 17

3.4.2 Node addition : 18

3.4.3 Addition of edges to new nodes : 18

4 Examples and Miscellaneous 19

4.1 Examples : 19

4.1.1 Live Variables: MAY dataow analysis : 20

4.1.2 BusyVariables: MUST dataow analysis : 21

4.2 The generated code : 21

4.3 Frequently asked questions : 22

2

Chapter 1

General topics

This is the language manual for OPTIMIX, the optimizer generator. It can be used to generate program

analyses and transformations. Its input language is based on Datalog and graph rewriting [A�94b] [A�95].

Especially two new classes of graph rewrite systems are used: edge addition rewrite systems (EARS) and

strati�ed graph rewrite systems (strati�ed GRS).

OPTIMIX has been developed in the Esprit project COMPARE (No. 5399). It is currently not free and

can be used only in the context of the CoSy compiler framework. For a licence, contact the author or

info@ace.nl.

1.1 Design procedure for an optimizer

In order to generate optimizer parts with OPTIMIX we propose the following procedure.

1. Write down all preconditions for a transformation, perhaps in text.

2. De�ne the data model of your application in fSDL [Buh95], i.e. de�ne which parts of the knowledge

you want to present should be objects and which should be graphs (relations).

3. Design of the data manipulation, i.e. formulate graph rewrite systems that compute and transform the

graphs that were de�ned in the data model. Build graphs with edge addition rewrite systems (EARS),

and transform them via general graph rewrite systems (GRS).

4. Think about the implementation of the graphs. Which algorithms does OPTIMIX generate for a

problem and with which graph implementations do these run fastest? Exchange graph implementations

(functor calls) accordingly.

1.2 Running OPTIMIX from shell

OPTIMIX can be run as standalone command, or as a �lter in a pipe. Thus a previous run of cpp can be

used to resolve any conditional #ifdef-commands in a speci�cation.

The options of OPTIMIX are:

3

Option E�ect

-o name use name for output �les

-� name use name for fSDL at form �le

-silent be totally silent

-view name use name as view name of the engine

-v1 be a bit verbose (default)

-v2 be fully verbose

-help (-h) print this message and exit

-v print version number

-poem print a poem and exit

for information/debugging

-nodetypes print all types of rule test graph nodes (variables)

-RTGpaths print all paths of path coverings in rule test graphs. Useful for debugging.

-sigs print all signatures of rules (types of order loop nodes).

-diag name use diagnostic output �le name

-prio int print test outputs that have priority less than int

-write write internal data structures of ox in ASCII format

-writeRTG write all rule test graph in VCG format to �les

-parser run only the parser

for code generation

-nobitsetopt do not generate bitset optimization

-helpfuns produce help functions together with other functions

-helpfun name produce help functions in �le name

Instead of giving the command options on the command line, the user can pass them also via a customization

�le, .optimixrc, which must be located either in the current directory or in the home directory. Each option

(maybe also with a value) has to stand on an extra line in the �le. Empty lines and lines beginning with #

are ignored.

Chapter 2

An Optimix speci�cation

2.1 Outline

Note that the grammar parts we give here are not the actual grammar of the parser; they only show the

layout of an OPTIMIX speci�cation. The outline of an OPTIMIX-speci�cation is the following:

OptimizerSpecification ::= GlobalTargetCodeSections

[fSDLImportDecl] [InheritanceDeclarations] GraphRewriteSystems

GlobalTargetCodeSections ::= ['HFIRST' TargetCode]

['IMPORT' TargetCode]

['EXPORT' TargetCode]

['GLOBAL' TargetCode]

['BEGIN' TargetCode]

['CLOSE' TargetCode]

GraphRewriteSystems ::= [EARS | GRS] *

The global target code sections contain code of the target language C (or Smart). The code is copied

unchanged to certain parts of the generated �les:

HFIRST into .h �le; before any code line. Can be used to manipulate inclusions of �les

IMPORT into .h �le; after the inclusion of stdio.h

EXPORT into .h �le; after IMPORT

GLOBAL into .c �le; after the prologue

BEGIN into .c �le into the begin function <specfile>_Begin()

CLOSE into .c �le into the close function <specfile>_Close()

2.2 Lexical parts

Lexical items of OPTIMIX speci�cations are the following:

String ::= ''' any ''' | '"' any '"'

Digit ::= [0-9]

Integer ::= Digit +

Ident ::= A-z (A-z|Digit)+

Name ::= Ident | String

TargetCode ::= 'f' any 'g'

Special keywords are:1

after any

BEGIN before

CLOSE CONSLIST

DAG DECLARE DELAYEDREMOVE DELETE

1Some of them are not yet used

5

EARS ears END ENDINPUT EXPORTS

FINER first FORALL FREE FUNCTION

GLOBAL GENERIC GRAPH GRS grs

HASH HEADTAILLIST HFIRST

IMPORT IMPORTSDL INDEX INITIAL

KEY

last

MARK

next NOT

pred prev

RANGE REDUCIBLE REMOVE RULES

succ

TARGET THREADED TREE

VIRTUAL

Also the fSDL functors are special keywords which are known to OPTIMIX. These are currently:

LIST DLL SET SETF

EGRAPH SGRAPH HGRAPH SEQCLASS

BIPUNI BITUNI SETFUNI

Delimiter of identi�ers (besides white space (space, newline, tab)) are:

() { } { } . ; : :- >< // /* */ (* *) {* *} {| |} {|| ||}

{# #} (| |) -> ~ !~ == < > ! ? :=

<= ==>

Comments ending at a newline are started by //, other non-nested comments start with /* and end with */

as in C++. There are also nested comments available as in Modula: (* stuff *) It is not allowed to use

the string delimiter characters ' and " in comments. The keyword ENDINPUT ends the input in a speci�cation

�le, i.e. all text after it is regarded to be a comment. This is nice for testing; just move text after ENDINPUT

and OPTIMIX will not see it.

Here we give some syntactical de�nitions we will need in the following:

Type ::= Ident

C-Type ::= FlatFormType | Ident

Variable ::= Ident

GraphName ::= Ident

fSDLDomain ::= Ident

fSDLOperator ::= Ident

fSDLFieldName ::= Ident

FlatFormType ::= Ident

ActualParameter ::= Ident

A FlatFormType is a type in C which results from functor attening. A C-Type is a type which can be

understood by the C-Compiler, i.e. a type of the atform or a normal C type.

2.3 Global declarations

2.3.1 Import a at form �le

Engines which are generated by OPTIMIX are put into COMPARE compilers. For each OPTIMIX speci�-

cation there must be an import speci�cation of the at form �le of that compiler (<compiler>.fdl). The

user can also supply a atform �le via option -ff (see man-page). If engines are to be reused in several

compilers, -� is the normal way of telling OPTIMIX what the atform �le is. The speci�cation in the �le is:

fSDLImportDecl ::= 'IMPORTSDL' [String]

This declares that OPTIMIX should read an fSDL at form �le with name String. fSDL mode is turned on.

2.3.2 Inheritance declarations

InheritanceDeclarations ::= 'FINER' FinerDecl *

FinerDecl ::= Ident // '<' ';'

The atform does not contain the inheritance information of fSDL anymore because domains are attened.

Thus the user can specify inheritance declarations, such that several atform types (domains and operators)

are �ner than others. This is sometimes necessary, when the type inference algorithm of OPTIMIX thinks

that two types are distinct and not compatible (e.g. mirSimpleSTMT mirAssign and mirSTMT mirAssign).

This stems from the fact, that the inheritance relation of mirSimpleSTMT and mirSTMT is lost in the

atform. If the user now speci�es FINER mirSimpleSTMT < mirSTMT;, the type inference algorithm knows

that both types are compatible.

Note that �ner types stand to the left.

2.4 Available graph implementations (graph functors)

OPTIMIX provides graph implementation transparency (functor transparency). This means, it is transparent

from a predicate speci�cation how a graph (a relation/a predicate) is implemented. This means in e�ect that

it is transparent with which kind of functor a graph is implemented (see section 3.1.6). The given predicate

name of the speci�cation is used to analyse the functor call (via the atform) and the code to traverse graphs

is generated accordingly.

OPTIMIX supports functor-created as well as hand-crafted graphs2 . The supported functors are:
Functor ::= HomogeneousGraphFunctor | BipartiteGraphFunctor | SetFunctor

HomogeneousGraphFunctor ::= 'EGRAPH' | 'SGRAPH' | 'HGRAPH' | 'SEQCLASS'

BipartiteGraphFunctor ::= 'BIPUNI' | 'BITUNI' | 'SETFUNI'

SetFunctor ::= 'SET' | 'LIST' | 'SETF' | 'DLL'

If graphs are implemented with these functors, you can test whether certain edges exist, and add or delete

edges from them. OPTIMIX also understands simple pointer �elds. You are allowed to navigate via them

by writing down their �eld name as predicate.

2Within COMPARE they were formerly called explicit and implicit graphs

Chapter 3

Speci�cation of graph rewrite systems

This section describes how graphs can be constructed and manipulated by OPTIMIX. OPTIMIX provides

two kinds of graph rewrite systems for this: edge addition rewrite systems (EARS) and general terminating

graph rewrite systems (GRS).

EARS are equivalent to Datalog with binary predicates [CGT89b] [CGT89a]. Thus we write their rules

down like Datalog rules (similar to Prolog clauses). However, while in Datalog rule bodies (rule tests)

stand on right hand sides, in graphic graph rewrite rules rule tests form left hand sides. In order to avoid

confusion in the following we will denote the left hand side in GRS rules and the right hand side of Datalog

rules with rule test, whereas we will denote the right hand side of GRS rules and the left hand sides of

Datalog rules by rule transformation.

Note that currently the termination of GRS is not checked.

3.1 Program analysis with EARS

OPTIMIX considers program analysis to be graph construction starting from a start graph (axiom). For

this OPTIMIX uses edge addition rewrite systems (EARS). They are equivalent to binary Datalog [A�94b]

[A�95]. EARS construct graphs by building a relation between one or two node sets (e.g. by working on

the node domain of a homogeneous graph or the two node domains of a bipartite graph). Each successful

rule application adds one or more edges to the graph (infers and asserts predicates over the nodes). Because

EARS are conuent and terminating, the process stops and yields the desired graph. You can also say that

EARS have a unique �xpoint.

Ears ::= ('EARS' | 'GRS') Name '(' Parameters ')' RangeDeclarations [RuleVariableDeclarations]

[Options] [BEGINCode] Rules [ENDCode]

| ('EARS' | 'GRS') Name '(' Parameters ')' Stratum *

For each EARS one C routine is generated, having the same name. An EARS can consist of one or several

rule groups, called strata.

One stratum is grouped by { and } brackets. It consists of several rules. They are either in the style of

Datalog, or speci�ed as graph rewrite rules.

Stratum ::= 'f' RangeDeclarations [RuleVariableDeclarations]

[Options] [BEGINCode] Rules [ENDCode] 'g'
Rules ::= 'RULES' (EARSFact | EARSRule | GRSRule) *

EARSRule ::= [Options] [BEGINCode] Predicates ':-' Predicates [ENDCode] '.'

Predicates ::= Predicate // ','

Options ::= '[' Name // ',' ']'

For each stratum range declarations for variables (nodes) have to be made (section 3.1.1). Also variable

declarations (node declarations, section 3.1.3), options (section 3.1.5), BEGIN- and END-Code may be

given (section 3.1.4).

8

Each rule of a stratum leads to the generation of several rule test loops over the nodes of the mentioned

graphs. How the rules are evaluated within a strata, is decided by OPTIMIX according to the evaluation

strategy for EARS [A�94b]. The code for the stratas is generated in their source order. Currently EARS(k),

k > 1 are allowed. 1

Also note that if a predicate has a left node type A (which refers to some nodes in a graph G) and another

predicate refers also to left node type A, then the user must guarantee that these node domains are the

same, i.e. that the graphs consist of the same nodes. We call this equality on graph universes. We need this

restriction that the order algorithm of [A�94b] works.

An EARS or a stratum is recursive, if it de�nes a predicate (assigns a graph) which is also used (tested).

Then the generated code contains a �xpoint loop to detect the �xpoint. For non-recursive EARS or strata

no �xpoint loop is generated.

3.1.1 Range declarations

Code generation for EARS relies on the concept of EARS order . The order of an EARS is roughly the same

as the number of source nodes in rule tests (rule left hand sides) which have di�erent types. These nodes

(thes variables) are called order loop nodes). For each order loop node there has to be a range declaration,

i.e. a declaration to which range or node set the order loop node is initialized.

RangeDeclarations ::= 'RANGE' RangeDeclaration *

RangeDeclaration ::= Variable '<=' GraphName ['.' 'TARGET']

| Variable '<=' SetFunctor '(' fSDLDomain ')'

| Variable ':' fSDLDomain '><' Variable '<=' SetFunctor '(' fSDLDomain ')'

| Variable ':' fSDLDomain

Currently order loop nodes can be initialized to three ranges (node sets):

� node sets of graphs.

Then the order loop range is initialized to the node domain of a (tested or modi�ed) graph. If the

modi�er .TARGET is speci�ed, the target node domain (domain 2) of a bipartite graph functor is taken,

otherwise the source domain (domain 1).

� sets.

If the range is declared to be an application of a set functor, it is assumed that the user wants to hand

over a set or list as parameter to the generated routine. This set is then taken to initialize the order

loop nodes.

� single source path problem (SSPP) initialization.

The range of an order loop node can also be only one single parameter object. Then the rule which

contains the order loop node is considered to be an SSPP rule with a single source node and a result

solution set which contains all nodes that ful�l the SSPP problem (section 3.3). The result set is thus

the second part of the declaration. Source node of the SSPP as well as the result set are inserted

automatically as parameters of the generated routine.

� single parameters.

Then the order loop domain is just a variable, which is included automatically in the parameter list of

the generated routine.

3.1.2 Parameters of routines in the generated code

For each EARS one C routine with the same name is generated. For these routines OPTIMIX generates

parameter lists which consist of three subsets of parameters: explicitly speci�ed parameters, parameters

stemming from range declarations and parameters which are graphs that are tested in rule tests or assigned

in rule transformations.

1However, if k > 2, these EARS have not been tested yet. It may be that if the signatures of the rules do not overlap in list
form, incorrect code is generated. However, most EARS are have order smaller than 3.

Explicit parameter speci�cation

Parameters ::= Parameter // ','

Parameters ::= Variable ':' C-Type

Explicit parameter speci�cations serve to hand help variables over to the generated routine. They can serve

to pass the engine state, or other variables that may be used in target predicates. Their type must be a

C-Type (which can also be a FlatFormType).

Parameters stemming from range declarations

Each range declaration (section 3.1.1) delivers one or two parameter declarations for the generated routine.

Parameters stemming from graph usage

Each graph tested or manipulated by a rule must be passed as parameter of the generated routine. However,

the user need not provide declarations for these; OPTIMIX automatically generates a correct parameter list.

The graph parameter list is ordered alphabetically.

The user has to take care that these parameter graphs are prepared correctly:

� tested graphs must have nodes (and edges if they are not empty)

� if predicates are stated over the same variable, the universes of the corresponding graphs must be the

same. Otherwise unexpected results can occur.

� assigned graphs must have their nodes already, i.e. the nodes must have been added to the graph by

calling addnode-functions of the graph functors. Then the edges are �lled in by the generated routine.

� Note that currently it is very simple to add multiple edges between the same nodes in EGRAPHs.

Then the result of the generated routine may be unexpected.

3.1.3 Rule variable declarations

OPTIMIX infers types for variables by looking the predicates up as �elds in the atform. Sometimes it is

able only to infer a domain of a variable (e.g. mirSTMT) whereas at certain points in the code generation

also operators are needed (e.g. for generating access functions). In other situations several types are infered

for variables. Then the user can help OPTIMIX by giving additional declarations for variables. They hold

for all rules of a GRS.

RuleVariableDeclarations ::= 'DECLARE' VariableDeclaration *

VariableDeclaration ::= IdentList ':' DomainOperatorSpec ';'

DomainOperatorSpec ::= fSDLDomain | fSDLOperator | fSDLDomain '@' fSDLOperator

Such a declaration is much like a variable declaration in Modula; however, as type domains and/or operators

have to be given. OPTIMIX then incooperates these declarations into his type inference.

3.1.4 BEGIN and END code for strata and rules

Strata as well as rules can be annotated by a BEGIN and an END target code. This code is printed right

after the variable declarations for a stratum (rule), or just before the stratum (rule) end, respectively.

BEGINCode ::= 'BEGIN' TargetPredicate

ENDCode ::= 'END' TargetPredicate

3.1.5 Options for strata and GRS rules

EARS, strata and rules may also be annotated with an option list (options). This is a list of strings, enclosed

in square brackets []. If such a property is set, the semantical analysis, optimization and code generation

phases of OPTIMIX are steered in a rule speci�c way.

Current available rule options are:

� JOIN Use join code generation mode, even if on-the-y was analysed.

� LocalTests Perform the pattern matching on a node always, if an instance of the node is traversed.

This option results in more pattern matching tests, but fewer traversals, because the join search space

of path problems is diminished.

3.1.6 Di�erent kinds of usable predicates in rules

A rule in an OPTIMIX speci�cation contains a number of predicates, which can be of di�erent forms:

Predicate ::= PredicateName '(' Pattern ',' Pattern ')'

| 'FORALL' Variable ':' Predicate

| 'NOT' Predicate

| '?' ProcedureCall

| TargetPredicate

| SmartTargetPredicate

| TargetCodeLine

| PatternMatchStatement

| EqualityTest

PredicateName ::= Ident ['@' DomainOperatorSpec2] ['.' GraphFieldModifier] ['.' OrderIndicator]

DomainOperatorSpec2 ::= fSDLDomain '@' fSDLOperator

Simple predicates

Simple predicates are always binary because they refer to graphs. Simple predicates contain patterns or

variables as arguments.

Predicate names must exist as the name of a �eld in an operator in a certain domain. The predicate

.. :- p(X,Y),..

is true if the object Y is contained in the set X.p. Also (in the generated code) the predicate p(X,Y) delivers

all objects Y which are linked under �eld (or graph) p to object X.

In fSDL mode a predicate in a rule test or rule transformation refers to

� a �eld which has the type of a graph functor call (graph �eld)

� a �eld which has the type of a set/list functor call (set �eld)

� a �eld which has the type of a simple domain (non-graph) (pointer �eld).

Type inference

OPTIMIX looks up the �eld name in the atform and annotates with the predicate a set of types (opera-

tor/domain pairs). This is a set of types because a �eld can turn up in a lot of operators and again these

are in a lot of domains.

These sets of alternative types are then intersected and uni�ed against each other during the ongoing type

inference. OPTIMIX always tries to retain �ner types, i.e. more speci�c types, which then provides better

information for code generation. The rules according two types are compared are the following:

� an operator is �ner than a containing domain.

� an operator/domain pair is �ner than the domain.

� a domain is �ner than another if it has been declared so in an FINER inheritance declaration.

At the end of the type inference process there should be unique types for all variables in rules. If not,

OPTIMIX will prompt an error. Either this is a real typing error or the user can give more type information

to OPTIMIX by providing inheritance declarations (section 2.3.2) or variable declarations (section 3.1.3).

However, this scheme currently has one restriction. If a �eld is contained in several operators, and is not a

shared �eld, then the user has to specify with the �eld a domain/operator speci�cation. E.g. in the CCMIR

the �eld Then occurs in operator mirIf as well as in mirTryAcquire. A predicate using it in domain mirIf

should look like:

Then@mirSimpleSTMT@mirIf(Stmt, ThenPart)

If the �eld is a shared �eld between all operators that use it, the �eld alone is su�cient as predicate name.

Graph �eld modi�ers

GraphFieldModifier ::= 'succ' | 'pred'

From OPTIMIX's point of view a functor-created graph de�nes two default �elds for the parameter

domains of the functor application. These two default �elds can be used as predicates in clauses.

For instance, if the �eld name of the graph in mirProcBody is BlockGraph (in a �eld de�nition like

Procedure < BlockGraph: EGRAPH(mirBasisBlock,EgraphEdge) >;) and the node domain/operator is

mirBasicBlock, then for each mirBasicBlock two default �elds BlockGraph and BlockGraph.pred are vir-

tually created. These �eld names denote all successor resp. predecessors of a mirBasicBlock concerning the

functor-created graph BlockGraph.

pred is an example of an fSDL �eld modi�er. It serves to indicate which kind of DMCP calls should be

generated in the code. With p.succ or p the successor relation of graph p is denoted, with p.pred the

predecessor relation is denoted.

Order indicators

OrderIndicator ::= 'first' | 'last' | 'next' | 'prev' | 'before' | 'after' | 'any'

If users speci�es predicates that refer to �elds of LIST-functor type, these neighbor sets are ordered. Then

special order indicators can be used to �nd out certain special elements of the list, e.g. the �rst or last

element, or the next or previous element.

The order indicators refer to �elds which have an ordered set functor type (like LIST) and generate a

loop over a speci�c element of a list or an access to a speci�c list element. There are the following types,

exempli�ed by the statements of a block:

� Stmts.after(Block,S1,S2) generates a loop over all successors S2 of S1 in the Stmts of Block.

� Stmts.before(Block,S1,S2) generates a loop over all predecessors S2 of S1 in the Stmts of Block.

� Stmts.next(Block,S1,S2) generates an access to the successor S2 of S1 in the Stmts of Block.

� Stmts.prev(Block,S1,S2) generates an access to the predecessor S2 of S1 in the Stmts of Block.

� Stmts.first(Block,S1) generates an access to the �rst element S1 in the Stmts of Block.

� Stmts.last(Block,S1) generates an access to the last element S1 in the Stmts of Block.

� Stmts.any(Block,S1) generates an access to an arbitrary element S1 in the Stmts of Block. For sets

this is chosen by the choose-function of the set functor; for lists the head of the list is taken.

Block must be an already known variable.

Note that the arity of several ordered predicates is 3.

All quanti�ed predicates

Normally all predicates are existentially quanti�ed in their variables. However, one predicate in a rule is

allowed to be preceeded by an all quanti�er, e.g. FORALL V: p(X, V), where the variable V must be the right

variable of the predicate. Predicates in the head of a rule cannot be allquanti�ed.

However, currently the concept of allquanti�ers is rather restricted. Actually it works only in two situations:

� The allquanti�ed variable is the middle variable of a path with two predicates and the rule test is a

single path. This is the standard situation for MUST dataow analyses.

� The allquanti�ed variable is the sink of an RTG. This RTG must also be either a path or a dag (see

example engine copyprop).

Negated predicates

If a predicate is preceeded by a NOT, it is negated. Negation is allowed in the following contexts:

� In rule transformations. Then in the code an item of the denoted graph is deleted, not added.

� In rule tests if predicates are used that are graph functor instantiations. Negation can only be performed

if a universe is known against the completion of a set of nodes is performed. This is the case only for

graph functors, where the set of graph nodes represents this universe.

Negation is performed by a loop over the universe, skipping those nodes which are the neighbor set of

the predicate.

� In rule tests for bitset predicates. They also have a universe which consists of all nodes the bits refer

to. Negation is performed by a bitset complement.

Checked calls to external predicate functions

ProcedureCall ::= Ident '(' ActualParameter // ',' ['==>' ActualParameter // ','] ')'

If a predicate starts with a ?, then OPTIMIX assumes that the rest is a call to a C function returning a

boolean. Thus it generates this call and checks its result with TRUE. If the called predicate fails, also the

rule fails. Otherwise the rule test is continued.

The list of actual parameters to a call must consist of simple variables. There is an IN parameter list

(before the ==>) and an OUT parameter list (after the ==>). The IN parameters are considered to be

pattern variables which are handed over to the called routine. The OUT parameters are also handed over

as reference parameters, i.e. their addresses are handed over.

Target code predicates

TargetPredicate ::= 'f*' any '*g'
SmartTargetPredicate ::= 'f||' any '||g'

It is possible to specify C and Smart target code in the place of a predicate. This code is copied unchanged

to the generated �le. If the code is embraced by Smart-like alternative brackes ({|| and ||}) the Smart

code is also copied unchanged except that an new alternative is appended at the outer level ({| and |}

are reserved for future use). By this Smart code never fails on outer level and at least enters this last

alternative. In this alternative a continue statement is encountered, which then continues the next loop

iteration of OPTIMIX-generated code. Otherwise, if a Smart pattern match would fail, it would never return

to the OPTIMIX-generated code. If the user wants a di�erent behaviour than continue, he must give a last

default alternative himself.

Target predicates normally are attached to their preceeding predicates and thus are copied after the code

that was generated for that predicate, i.e. normally in a loop which was caused by that predicate. If a target

predicate appears as �rst predicate of a rule test part, it is copied at the beginning of the rule test, right

after the declaration of all rule test variables. Thus the user can de�ne his own variables for use in target

predicates.

If a target code predicate appears in the rule transformation of a rule it is printed after the addition/deletion

of the preceeding edge in the innermost rule test loop. If it appears as �rst predicate in a rule transformation,

it is printed at every addition/deletion of an edge.

Target code lines

If a target predicate consists of one line of C code there is a special syntactic alternative for it. Target code

lines consist of arbitrary C text, terminated by a newline character. The newline also simulates a ',' token

to the parser, so that within predicate lists no additional commas are necessary.

TargetCodeLine ::= '*' any Newline

A very nice use for target predicates is the test and set of node attributes or the printing of debug information.

E.g. the following rule tests whether a node is marked as deleted and removes it from some graphs:

GRS DeleteFromStatementLists()

{

RANGE Proc <= mirProcGlobal >< list_of_definitions: SET(mirSTMT);

RULES

{* /* This target code is printed after the definition */

/* of rule test variables */ *},

Body(Proc,PBody),

LinearBlocks(PBody,B),

* /* and this here is a single line of target code */

Stmts(B,Ass),

Ass ~ mirAssign{},

{* /* target predicate to test, whether a node was really deleted */

/* is copied to the rule test after the pattern match on mirAssign */

if (!mirSimpleSTMT_mirAssign_get_deleted(Ass))

continue;

*}

==>

DELETE Ass FREE; // really deallocate Ass

==>

* printf("deleting copy statement %s",mirSTMT_provide_label(Ass));

NOT Stmts(B,Ass), NOT list_of_definitions(Proc,Ass),

.

}

Pattern match statements

PatternMatchStatement ::= Variable ('~' | '!~') Pattern

Instead of a predicate also pattern match statements on rule test nodes (rule test variables) are allowed. If

a variable is linked to a pattern with ~ (see 3.1.7) this pattern match statement succeeds if the variable has

the form of the pattern. If a variable is linked to a pattern with !~ the pattern match statement succeeds if

the variable has not the form of the pattern.

Equality tests

EqualityTest ::= PatternVarEqualityTest | RTGNodeEqualityTest

PatternVarEqualityTest ::= Variable BoolOp Variable

RTGNodeEqualityTest ::= Variable EqualOp Variable

BoolOp ::= EqualOp | '<' | '>' | '<=' | '>='

EqualOp ::= '==' | '!='

Apart from pattern matching equality tests on pattern variables or on rule test graph nodes are allowed.

In the �rst case they lead to the generation of equality/inequality functions of the opaque types of the

attributes, in the second case DMCP_equal is used.

3.1.7 Patterns

In predicates of rule tests2 or in pattern match statements patterns may appear.

Pattern ::= OperatorDomainSpec

| OperatorDomainSpec

| OperatorDomainSpec 'f' InnerPattern // ',' 'g'
InnerPattern ::= fSDLField '=>' InnerPattern

| fSDLField '=>' Variable ('~' | '!~') InnerPattern

| fSDLField '=>' Variable

InnerPattern ::=

Variables in patterns are arbitrary identi�ers, contary to Prolog, where each variable has to begin with a

capital letter. An OPTIMIX pattern match is similar to a Smart pattern match: it compares a structure with

a term pattern. There are two kinds of patterns: outer patterns are allowed in pattern match statements,

where they match already de�ned variables. They are also allowed in left or right parameters of simple

predicates, however, only at the outer level.

Inner patterns are allowed to occur only in an outer pattern or in another inner pattern. They perform

�eld pattern matching and also variable assignment3 . Because (due to the fSDL domain calculus) no order

is de�ned on the �elds of an fSDL operator, no positional pattern matching is possible, only matching

with a �eld name is allowed. Variable assignment assigns a variable to the �eld, if the pattern match was

successful. If no variable assignment is given, OPTIMIX assigns a temporary variable to the successfully

matched subtree.

For instance, the pattern match

S ~ mirIf{Then => A ~ mirAssign{}}

tests whether a variable S consists of a mirIf where the �eld Then is a mirAssign. The variable A is assigned

to the assignment statement.

Note that the variables which are de�ned in patterns are not allowed to be used for further navigation, only

for the use in target predicates, e.g. to test attributes. This is a restriction of the current implementation.

3.2 Non-ground fact speci�cation

EARSFact ::= [Options] [BEGINCode] Predicates [ENDCode] '.'

In OXDML non-ground facts may be speci�ed analogously to Coral [RSS92]. Non-ground facts are facts

that contain variables. Non-ground facts in a stratum are always evaluated before other rules of the it are

evaluated. Non-ground facts serve to initialize a graph with certain values before other rules manipulate the

graph. This can be used especially for data ow analysis: the initialization statements there are non-ground

facts. As example consider the speci�cation of available expression dataow analysis, the �rst two rules are

non-ground facts:

// Find available expressions

EARS AvailableExpressions ()

{

RANGE b <= AVIN; e <= AVIN.TARGET;

AVIN(b,e). // non-ground facts: initiallization to FULL set.

AVOUT(b,e).

// EARS rules.

2In rule transformations pattern matching is not allowed.
3This is new compared to Smart

AVIN(b,e) :- FORALL p: Blocks.pred(b,p), AVOUT(p,e).

AVOUT(b,e) :- COMPOUT(b,e).

AVOUT(b,e) :- TRANSP(b,e), AVIN(b,e).

}

Rules that contain empty rule tests (containing only a single target predicate) are also considered facts.

Thus the following two rules are equivalent:

AVIN(b,e).

AVIN(b,e) :- {* blabla *}.

However, if pattern matching or other predicates occur in the rule test, the rule is not considered a fact.

Also self-edge facts may be speci�ed which draw self edges on nodes:

EARS ComputeDominators()

{

RANGE b: mirBasicBlock;

Dominators(b,b). // self-edge fact: each block is dominated by itself

..

}

Non-ground facts also may be negated. Then OPTIMIX generates loops over the graph nodes that delete

edges which might have existed earlier.

There are all in all several possibilities, how to initialize a graph:

� make a full graph with a non-ground fact.

� make a graph with self edges with a self-edge fact.

� delete all edges in a graph by a negated fact.

� delete all self edges by a negated self-edge fact.

Before and after facts target predicates can be written. If a target predicate is written before the fact, it

is copied directly before the edge addition. If it is written after the fact, it is copied direcly after the edge

addition.

3.3 Single source path problems (SSPPs)

There is a special variant of EARS which can solve single source path problems (SSPPs) [Tar81]. An SSPP

is a path problem in a graph which is described by a path expression (or a set of predicates, like in EARS)

and which is applied to one single source node of the graph. It delivers all nodes which are reachable from

the source node under the predicates (the path expression). These nodes are called result set .

EARS can contain several SSPP rules. The order loop node (the source node of the SSPP) and the result set

of such a rule have to be declared with an SSPP range declaration (section 3.1.1). The node is then initialized

to the corresponding parameter of the generated routine, and the parameter set of the range declaration is

used as the result set.

SSPP rule tests are applied to the start graph starting with one node. They are not printed among those

rule tests which result from normal rules (in the order loops). Instead they are extracted and printed after

them4 .

The following example solves a SSPP for a procedure and all its statements. It collects all assignments that

are in the blocks' statement lists.

EARS PrepareReachingDefinitions()

{

RANGE Proc <= mirProcGlobal >< list_of_definitions: SET(mirSTMT);

RULES

list_of_definitions(Proc,Ass) :-

Body(Proc,PBody),

LinearBlocks(PBody,B),

4This may change.

Stmts(B,Ass),

Ass ~ mirAssign{}

.

}

SSPP rules can also be used nicely to write down walking e.g. over statement lists and perform actions

on them. We can easily add to the end of the rule a target predicate that performs a side e�ect (here

adds the assignment statement to a globall class of de�nitions for objects). This global class is attached

to the state handle of the engine, which must then be passed as parameter to the generated routine

PrepareReachingDefinitions.

EARS PrepareReachingDefinitions(state: reachingdefsStateType)

{

RANGE Proc <= mirProcGlobal >< list_of_definitions: SET(mirSTMT);

RULES

list_of_definitions(Proc,Ass) :-

Body(Proc,PBody),

LinearBlocks(PBody,B),

Stmts(B,Ass),

Ass ~ mirAssign{},

{* EnterInDefinitionClasses(state,Ass); *}

.

}

3.4 Program transformation with graph rewrite systems

Rules of a GRS may be speci�ed in a similar way to an EARS rule, however, they have an additional

transformational part. This transformational part consists of node deletions, node additions, edge deletions

and edge additions, also to the newly created nodes.

GRSRule ::= [Options] [BEGINCode] RuleTest '==>'

[[NodesToBeDeleted] [NodesToBeAdded] '==>'] Predicates [ENDCode] '.'

| [Options] [BEGINCode] RuleTest '==>' Predicates [ENDCode] '.'

Strata, strata options, rule options, BEGIN- and END-Code behave in the same way as with EARS rules.

Note that the user himself has to guarantee the termination of a GRS. There is no automatic check for that,

neither a test for conuence. See also the article [A�94a].

3.4.1 Node deletion

NodesToBeDeleted ::= 'DELETE' IdentList DeleteProperty *

DeleteProperty ::= 'MARK' | 'FREE' | 'REMOVE' | 'DELAYEDREMOVE'

Nodes from the rule test which have to be deleted are speci�ed after the keyword DELETE. The deletion can

be done in four modes, which can be combined, e.g. it is possible to specify MARK REMOVE with some nodes.

The mark mode just markes the nodes, which are in a successfully matched redex, by setting the �eld

deleted. This is a �eld which the user has to add to all domains of objects which have to be deleted. Once

the nodes are marked like this, they can be recognized as being invalid. Marking is necessary when a node

belongs to a lot of graphs, not only those that were tested in the rule. Then subsequent passes over these

graphs can remove all incident edges, and in the last pass also the node can be deallocated.

The remove mode does not deallocate the nodes but only removes the node from all there containing graphs

concerning the rule test. Thus it deletes all incident edges of graphs of the rule test. There still might be

other graphs the node is in.

The delayed-remove mode is special. It generates a second, arti�cial EARS, only containing the rule in

question. This rule walks the graphs of the rule test a second time, tests on deleted (marked) nodes and then

performs removal of incident edges. The walking is done via ITERLIST-LOOPs, not with LIST-LOOPs.

This was due to an early restriction of the LIST functor which could not delete nodes from lists when walking

the lists themselvs via LIST-LOOP.5

The free mode really deallocates the nodes, i.e. calls DMCP_delete.

3.4.2 Node addition

NodesToBeAdded ::= 'ADD' VariableDeclarations
Nodes which are added by the rule, have to be declared

in a similar way as rule local variable declarations. However, it is necessary to specify domains and operators

for new nodes, otherwise the correct node allocation function call cannot be generated.

3.4.3 Addition of edges to new nodes

The part following the ADD declaration consists again of a sequence of predicates, which speci�es edge

additions and deletions. Edge additions can refer to new nodes as well as to old nodes; edge deletions can

of course only refer to items from the rule test.

5It may be that in the current version this is obsolete; so also delayed-remove mode is obsolete. This needs further testing.

Chapter 4

Examples and Miscellaneous

4.1 Examples

Within COMPARE several example engines have been developed as OPTIMIX applications:

� reachdef: compute reaching de�nitions on CCMIR.

� livecopies: compute live copy statements.

� copyprop: do copy propagation on copy statements.

� exprtab: do value numbering and global structural equivalence on mirEXPR.

Here we will present only some other short examples.

We assume a basic block graph is de�ned in a procedure as follows (this can be done in a view speci�cation

of an engine). We assume a edge type which carries an integer and that the basic block graph has already

been constructed (can be done with an EARS(2)).

domain EgraphEdge: { EgraphEdge < value: INT > };

domain mirProcBody <

Blocks: EGRAPH(mirBasicBlock,EgraphEdge),

ReverseBlocks: EGRAPH(mirBasicBlock,EgraphEdge),

ReachableBlocks: EGRAPH(mirBasicBlock,EgraphEdge),

Dominators: SGRAPH(mirBasicBlock),

SelfDom: SGRAPH(mirBasicBlock),

USED: BIPUNI(mirBasicBlock,mirLocal),

Livein: BITUNI(mirBasicBlock,mirLocal,Livein),

Liveout: BITUNI(mirBasicBlock,mirLocal,Liveout)

>;

and the at form �le is example.fdl, then we may write the following speci�cations.

IMPORTSDL "example.fdl"

/* Compute the inverse of the basic block */

EARS ComputeReverse()

{

RANGE b <= Blocks;

RULES

ReverseBlocks(b,b1) :- Blocks(b1,b).

}

This EARS of order 1 just builds up the reverse basic block graph, all edges in the new graph ReverseBlocks

are inverted. The range declaration tells that the order loop variable is to be initialized from the node domain

of graph Blocks. The following shows how the generated routine may be called from C code:

19

Blocks = mirProcBody_get_Blocks(procbody);

mirProcBody_set_ReverseBlocks(EGRAPH_mirBasicBlock_EgraphEdge_create());

ReverseBlocks = mirProcBody_get_ReverseBlocks(procbody);

CopyNodes (Blocks, ReverseBlocks); // copies the nodes of the EGRAPH

ComputeReverse (Blocks, ReverseBlocks);

The order of the parameter graphs to ComputeReverse is alphabetically.

The next example computes the initialization of a dominator analysis. Here all nodes initially dominate all

others except that the entry node does not dominate anyone.
EARS DominatorInit()

{

RANGE b: Dominators; b1: Dominators;

RULES

Dominators(b,b1) :- Blocks.pred(b,PredecessorBlock).

// initially a node dominates each other node.

// The dominators of the entry node, however, are left empty.

SelfDom(b,b). // this predicate is used for adding each node to a

// set Dominators during the processing in ComputeDominators

}

Then the �nal dominator analysis can be called, which is described by the following EARS.

EARS ComputeDominators()

{

RANGE b <= Blocks;

RULES

// a node dominates another if all predecessors dominate the other

Dominators(b,b1) :- FORALL p: Blocks.pred(b,p), Dominators(p,b1).

Dominators(b,b1) :- SelfDom(b,b1).

}

Blocks.pred(b,p) denotes all predecessors of b in the graph Blocks. For these p also the dominator relation

to b1 must hold. Note that b and b1 are existentially quanti�ed variables while p is allquanti�ed. The rule

with predicate SelfDom is necessary because currently additions of single nodes to sets (in clauses) is not

possible, everything has to be expressed in terms of edges (predicates).

Note that OPTIMIX provides functor transparency , i.e. it is transparent which functors have been used to

implement the graphs. This is automatically infered from the atform. The code for the graph navigations

(functor method calls, access function calls) is generated accordingly.

The call sequence in a calling program could be:
mirProcBody_set_Dominators(EGRAPH_mirBasicBlock_EgraphEdge_create());

Dominators = mirProcBody_get_Dominators();

CopyNodes (Blocks, Dominators);

DominatorInit(Dominators, SelfDom);

ComputeDominators(Dominators, SelfDom, Blocks);

We also can specify DominatorInit and ComputeDominators together; the non-ground facts are always

computed �rst. Alternatively you can also use two strata.

Last example is a transitive closure over basic blocks. This time we have speci�ed the �eld modi�er succ

explicitly; it can be left out.
EARS ComputeReachableBlocks()

{

RANGE b <= Blocks;

RULES

ReachableBlocks(b,b1) :- Blocks.succ(b,b1).

ReachableBlocks(b,b1) :- Blocks.succ(b,p), ReachableBlocks(p,b1).

}

4.1.1 Live Variables: MAY dataow analysis

It is also possible to specify MAY data ow analysis. For that we need a bipartite graph functor: BIPUNI. It

serves to represent the information which variables live at which basic block, here at which entry and exit of

which block (LIVEIN, LIVEOUT). We also need the information per each basic block, which local variables

have been used in a basic block (USED).

EARS LiveVariables()

{

RANGE b <= LIVEOUT;

RULES

LIVEOUT(b,o) :- Blocks.succ(b,b1), LIVEIN(b1,o).

LIVEIN(b,o) :- USED(b,o).

LIVEIN(b,o) :- LIVEOUT(b,o).

}

A variable is live at the entry of a block, if it is used in the block, or if it is live at the exit of the block. A

variable is live a the exit of the block, if it lives at the entry of a successor block.

4.1.2 BusyVariables: MUST dataow analysis

If we want to solve a MUST dfa (intersection over all predecessors), we have to use an all quanti�er. The

following EARS computes busy local variables, e.g. variables that are used in all successor blocks or ar used

in the block itself. The change is minimal.

EARS BusyVariables()

{

RANGE b <= BUSYIN;

RULES

BUSYOUT(b,o) :- FORALL b1: Blocks.succ(b,b1), BUSYIN(b1,o).

BUSYIN(b,o) :- USED(b,o).

BUSYIN(b,o) :- BUSYOUT(b,o).

}

In similar fashion available expressions or busy expressions can be solved.

4.2 The generated code

Manipulation and debugging of the generated code

We have tried to make the generated code as readable as possible. We hope users are able to read it and

also make modi�cations. One can use optimix to get a skeleton for one's algorithm and then modify and

re�ne it by hand. A lot of typing can be avoided in this respect.

Note that RCS and SCCS ids are already generated, so that �les directly can be imported under change

control.

OPTIMIX generates some test code which is dependent on the ag OXDEBUG. If you set this manually in the

code or set the -D ag during a make, the running code will produce some test output. Users also can insert

target predicates with print-statements and #ifdef-switches in order to print debug information.

However, the actual printing of the test output is dependent on the value of some option/variable of/in the

engine. This is

� -DUSE SEQPAR COSY If this compilation switch is set (within COMPARE CoSy), then a query

in the option database of the engine is done for the string "oxdebug". Thus, if the engine has got the

option "oxdebug", then test output is printed.

In order to test the option, optimix generates a call to engineStateGet, which delivers the engine

state. It is assumed to have a �eld options, which contains the engine option database. Thus the

query is

if (engineStateGet->options != NULL)

/* test output */

Note that users must save the options into the engine state at engine initialization.

� -UUSE SEQPAR COSY If this compilation switch is not set then the global variable int oxdebug;

is queried if output is to be printed. Note that this is useful within CoSy only if everything is clustered

into one process.

There is a second test print system which works in the same way. However, it prints less test output

and is dependent on the engine option "oxblip", or the global variable int oxblip;, respectively.

Unknown types in the generated code

Navigations in the generated code OPTIMIX need that some internal variables are de�ned. Sometimes

their types are not known when the user compiles a generated �le. This is often the case e.g. for

SET_mirBasicBlock, because the functor application SET(mirBasicBlock) does not appear in the CCMIR.

However, the generated �le needs de�nitions of this type, because sets of mirBasicBlock are constructed

during the navigations. The solution is that the user has to instruct fsdc to generate the domain with a

use-clause. Alternatively in some operator a dummy de�nition for SET(mirBasicBlock) can be introduced

so that the fsdc generates this type as a result of this functor call.

4.3 Frequently asked questions

Q: For a certain variable OPTIMIX infers 'type mismatched', i.e. multiple types. What can I

do?

A: There are several reasons for this. Reason 1: OPTIMIX infers two domains that are compatible in fSDL,

but not in the at form anymore, because in there the inheritance information of fSDL is lost. Then state a

FINER assertion that one domain is �ner than the other and it should work.

Reason 2: There are really two di�erent domains/types. Then help OPTIMIX by stating a type for that

variable. You can do this either by a DECLARE variable declaration, which holds for all rules of an EARS.

Or you can introduce pattern matching statements, whose type informations are then exploited for the type

check. Or you qualify a predicate name by a domain/operator speci�cation.

Reason 3: It really was a aw in your speci�cation. Look into the atform �le, which types occur for your

�elds.

Q: My speci�cation results in a larger order for my EARS than expected.

A: Maybe OPTIMIX has infered domains for the types of the source nodes of the rules which are di�erent,

however are compatible according to the domain calculus. Then insert a FINER statement at the beginning

of the speci�cation to tell OPTIMIX that two domains are compatible. OPTIMIX will then choose the coarser

domain as type of the source node.

A: Maybe your FINER speci�cation must be more detailed. Currently there is no union over di�erent FINER

speci�cations which contain the same tails. Be sure that you really specify all �ner domains of a domain in

one line.

Q: I try to compile the generated engine with -DOXDEBUG. However, it does not compile, because

the oxdebug �eld is unknown.

A: In order to use OXDEBUG you have to annotate the engine's state struct with a �eld int state->oxdebug.

OPTIMIX-generated code then compares engineStateGet->oxdebug with the value of the given command-

line option option. If the state does not have such a �eld, the engine does not compile. Also do not forget

to save the value of the command-line option oxdebug in the state.

Bibliography

[A�94a] Uwe A�mann. Program Optimization with Congruent and Strati�able Graph Rewrite Systems.

Technical report, University Karlsruhe, COMPARE consortium, internal paper, 1994.

[A�94b] A�mann, Uwe. On Edge Addition Rewrite Systems and Their Relevance to Program Analysis. In

J. Cuny, editor, 5th Workshop on Graph Grammars and Their Application To Computer Science,

Nov 1994.

[A�95] Uwe A�mann.Generierung von Programmoptimierungen mit Graphersetzungssystemen. PhD thesis,

Universit�at Karlsruhe, Kaiserstr. 12, 7500 Karlsruhe, Germany, July 1995.

[Buh95] Claus-Thomas Buhl. fSDL Language Report. Technical report, COMPARE Consortium, 1995.

[CGT89a] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer Verlag, 1989.

[CGT89b] S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to Know About Datalog (And

Never Dared to Ask). IEEE Transactions on Knowledge And Data Engineering, 1(1):146{166,

March 1989.

[RSS92] R. Ramakrishnan, D Srivastava, and S. Sudarshan. CORAL - Control, Relations and Logic. In

Proceedings of the 18th VLDB Conference, 1992.

[Tar81] R. E. Tarjan. A uni�ed approach to path problems. Journal of the ACM, 28(3):577{593, July 1981.

23

Syntax

OptimizerSpecification ::= GlobalTargetCodeSections

[fSDLImportDecl] [InheritanceDeclarations] GraphRewriteSystems

GlobalTargetCodeSections ::= ['HFIRST' TargetCode]

['IMPORT' TargetCode]

['EXPORT' TargetCode]

['GLOBAL' TargetCode]

['BEGIN' TargetCode]

['CLOSE' TargetCode]

GraphRewriteSystems ::= [EARS | GRS] *

String ::= ''' any ''' | '"' any '"'

Digit ::= [0-9]

Integer ::= Digit +

Ident ::= A-z (A-z|Digit)+

Name ::= Ident | String

TargetCode ::= 'f' any 'g'

Type ::= Ident

C-Type ::= FlatFormType | Ident

Variable ::= Ident

GraphName ::= Ident

fSDLDomain ::= Ident

fSDLOperator ::= Ident

fSDLFieldName ::= Ident

FlatFormType ::= Ident

ActualParameter ::= Ident

fSDLImportDecl ::= 'IMPORTSDL' [String]

InheritanceDeclarations ::= 'FINER' FinerDecl *

FinerDecl ::= Ident // '<' ';'

Functor ::= HomogeneousGraphFunctor | BipartiteGraphFunctor | SetFunctor

HomogeneousGraphFunctor ::= 'EGRAPH' | 'SGRAPH' | 'HGRAPH' | 'SEQCLASS'

BipartiteGraphFunctor ::= 'BIPUNI' | 'BITUNI' | 'SETFUNI'

SetFunctor ::= 'SET' | 'LIST' | 'SETF' | 'DLL'

Ears ::= ('EARS' | 'GRS') Name '(' Parameters ')' RangeDeclarations [RuleVariableDeclarations]

[Options] [BEGINCode] Rules [ENDCode]

| ('EARS' | 'GRS') Name '(' Parameters ')' Stratum *

Stratum ::= 'f' RangeDeclarations [RuleVariableDeclarations]

[Options] [BEGINCode] Rules [ENDCode] 'g'
Rules ::= 'RULES' (EARSFact | EARSRule | GRSRule) *

EARSRule ::= [Options] [BEGINCode] Predicates ':-' Predicates [ENDCode] '.'

Predicates ::= Predicate // ','

Options ::= '[' Name // ',' ']'

24

RangeDeclarations ::= 'RANGE' RangeDeclaration *

RangeDeclaration ::= Variable '<=' GraphName ['.' 'TARGET']

| Variable '<=' SetFunctor '(' fSDLDomain ')'

| Variable ':' fSDLDomain '><' Variable '<=' SetFunctor '(' fSDLDomain ')'

| Variable ':' fSDLDomain

Parameters ::= Parameter // ','

Parameters ::= Variable ':' C-Type

RuleVariableDeclarations ::= 'DECLARE' VariableDeclaration *

VariableDeclaration ::= IdentList ':' DomainOperatorSpec ';'

DomainOperatorSpec ::= fSDLDomain | fSDLOperator | fSDLDomain '@' fSDLOperator

BEGINCode ::= 'BEGIN' TargetPredicate

ENDCode ::= 'END' TargetPredicate

Predicate ::= PredicateName '(' Pattern ',' Pattern ')'

| 'FORALL' Variable ':' Predicate

| 'NOT' Predicate

| '?' ProcedureCall

| TargetPredicate

| SmartTargetPredicate

| TargetCodeLine

| PatternMatchStatement

| EqualityTest

PredicateName ::= Ident ['@' DomainOperatorSpec2] ['.' GraphFieldModifier] ['.' OrderIndicator]

DomainOperatorSpec2 ::= fSDLDomain '@' fSDLOperator

GraphFieldModifier ::= 'succ' | 'pred'

OrderIndicator ::= 'first' | 'last' | 'next' | 'prev' | 'before' | 'after' | 'any'

ProcedureCall ::= Ident '(' ActualParameter // ',' ['==>' ActualParameter // ','] ')'

TargetPredicate ::= 'f*' any '*g'
SmartTargetPredicate ::= 'f||' any '||g'

TargetCodeLine ::= '*' any Newline

PatternMatchStatement ::= Variable (' ' | '! ') Pattern

EqualityTest ::= PatternVarEqualityTest | RTGNodeEqualityTest

PatternVarEqualityTest ::= Variable BoolOp Variable

RTGNodeEqualityTest ::= Variable EqualOp Variable

BoolOp ::= EqualOp | '<' | '>' | '<=' | '>='

EqualOp ::= '==' | '!='

Pattern ::= OperatorDomainSpec

| OperatorDomainSpec

| OperatorDomainSpec 'f' InnerPattern // ',' 'g'
InnerPattern ::= fSDLField '=>' InnerPattern

| fSDLField '=>' Variable (' ' | '! ') InnerPattern

| fSDLField '=>' Variable

InnerPattern ::=

EARSFact ::= [Options] [BEGINCode] Predicates [ENDCode] '.'

GRSRule ::= [Options] [BEGINCode] RuleTest '==>'

[[NodesToBeDeleted] [NodesToBeAdded] '==>'] Predicates [ENDCode] '.'

| [Options] [BEGINCode] RuleTest '==>' Predicates [ENDCode] '.'

NodesToBeDeleted ::= 'DELETE' IdentList DeleteProperty *

DeleteProperty ::= 'MARK' | 'FREE' | 'REMOVE' | 'DELAYEDREMOVE'

NodesToBeAdded ::= 'ADD' VariableDeclarations

