
�
�
� @

@
@

@
@
@ �

�
���������������������

��������������������

@@@@@@@@@@@@@@@@@@@@ ��������������������
��������������������

@@@@@@@@@@@@@@@@@@@@

�
�
�

@
@
@�

�
�

@
@
@

Einf�uhrung in UNIX

W. Alex, G. Bern�or und B. Alex

1998

Universit�at Karlsruhe

Copyright: Wulf Alex, Gerhard Bern�or, Universit�at Karlsruhe, 1994, 1998

Email: wulf.alex@ciw.uni-karlsruhe.de

gerhard.bernoer@ciw.uni-karlsruhe.de

Telefon: 0721/608-2404

Fax: 0721/693965

Ausgabedatum: 20. April 1998.

Gesch�utzte Namen wie UNIX oder Postscript werden ohne Kennzeichnung ver-

wendet.

Geschrieben mit dem Editor vi(1) auf einer Hewlett-Packard 9000/712 unter
HP-UX (UNIX System V), formatiert mit LaTeX auf einem PC unter LINUX,

ausgegeben auf einem Hewlett-Packard Laserjet 4Si unter Verwendung von Post-
script.

Alle Programmbeispiele sind im Internet mittels Anonymous-FTP von

ftp.ciw.uni-karlsruhe.de, Verzeichnis pub/skriptum/... abrufbar, ebenso
die angef�uhrte elektronische Literatur im Verzeichnis pub/docs/... Ferner �n-

den sich unter http://www.ciw.uni-karlsruhe.de/technik.html Hinweise auf
weitere Informationen.

Dies ist ein Skriptum. Es ist unvollst�andig und enth�alt Fehler. Das Skriptum darf

vervielf�altigt, gespeichert und verbreitet werden, vorausgesetzt da�

� die Verfasser genannt werden,

� �Anderungen gekennzeichnet werden,

� kein Gewinn erzielt wird.

Das Skriptum ist bei der Skriptenverkaufsstelle des Studentenwerks der Uni-
versit�at Karlsruhe erh�altlich, au�erdem per Anonymous-FTP als Postscript-File

(100 % logisch abbaubar) im Netz, siehe oben.

Vorwort

There is an old system called UNIX,

suspected by many to do nix,

but in fact it does more

than all systems before,

and comprises astonishing uniques.

Unser Buch wendet sich an Leser mit wenigen Vorkenntnissen in der Elek-

tronischen Datenverarbeitung (EDV); es soll { wie Fritz Reuters Urgeschicht

von Meckelnborg { ok f�or Schaulkinner tau bruken sin. F�ur die wissenschaftliche

Welt zitieren wir aus dem Vorwort zu einem Buch des Mathematikers Richard

Courant: \Das Buch wendet sich an einen weiten Kreis: an Sch�uler und Lehrer,

an Anf�anger und Gelehrte, an Philosophen und Ingenieure.", wobei wir erg�anzen,

da� uns dieser Satz eine noch nicht erreichte Verp
ichtung ist und vermutlich

bleiben wird. Das Nahziel ist eine Vertrautheit mit dem Betriebssystem UNIX,
der Programmiersprache C/C++ und dem internationalen Computernetz Inter-

net, die so weit reicht, da� der Leser selbst�andig weiterarbeiten kann. Ausgelernt
hat man nie.

Der Text besteht aus acht Teilen. Nach anf�anglichen Schritten zur Ein-
gew�ohnung in den Umgang mit dem Computer beschreibt der zweite Teil kurz

die Hardware, der dritte das Betriebssystem UNIX, der vierte die Programmier-
sprache C/C++, der f�unfte das Internet mit Schwerpunkt Netzdienste, der sech-
ste einige Anwendungen und der siebte Rechtsfragen im Zusammenhang mit der

EDV. Ein Anhang enth�alt Fakten, die man immer wieder braucht. F�ur die zweite
Au
age wurden viele Kleinigkeiten verbessert, dem Internet ein eigenes Kapitel
gewidmet und die objektorientierten Zweige von C ber�ucksichtigt. Bei der Sto�-

auswahl haben wir uns von unserer Arbeit als Benutzer und Verwalter internatio-
nal vernetzter UNIX-Systeme sowie als Programmierer vorzugsweise in C/C++

und FORTRAN leiten lassen.

Hinsichtlich vieler Einzelheiten wird auf die Referenz-Handb�ucher zu den Re-

chenanlagen und Programmiersprachen verwiesen. Wir wollen nicht den Text

durch Dinge aufbl�ahen, die man besser dort nachschl�agt. Den Umfang haben wir

auf rund 600 Seiten beschr�ankt, um den Leser nicht durch zu hohe Anforderungen

an seinen Geldbeutel und an seine Zeit abzuschrecken. Alles �uber UNIX, C und

das Internet ist kein Buch, sondern ein B�ucherschrank.

UNIX ist das erste und einzige Betriebssystem, das auf einer Vielzahl von

Computertypen l�auft. Das ist sein gr�o�ter Vorzug. Wir haben versucht, m�oglichst

unabh�angig von einer bestimmten Anlage zu schreiben. �Uber �ortliche Beson-
derheiten m�ussen Sie sich daher aus weiteren Quellen unterrichten. In der

Universit�at Karlsruhe kommt daf�ur das UNIX-Handbuch des Rechenzentrums

(http://www.uni-karlsruhe.de/~rz90/gesamt.dok.html) in Frage. Anderen-
orts gibt es �ahnliche Hilfen. Eng mit UNIX zusammen h�angt das X Window

System (X11), ein netzf�ahiges gra�sches Fenstersystem, das heute fast �uberall die

Kommandozeile als Benutzerschnittstelle ersetzt hat.

v

vi

Die Programmiersprache C mit ihrer Erweiterung C++ ist { im Vergleich

zu BASIC etwa { ziemlich einheitlich. Wir haben die Programmbeispiele unter

mehreren Compilern getestet. Ob C/C++ besser ist als FORTRAN oder PASCAL

oder sonst irgendeine neuere Programmiersprache, dar�uber l�a�t sich end- und

fruchtlos streiten, aber nicht mit uns.

Das Internet ist das gr�o�te internationale Computernetz, eigentlich ein Zu-

sammenschlu� vieler regionaler Netze. Vor allem Universit�aten und Beh�orden sind

eingebunden, zum Teil auch die Industrie. Es ist nicht nur eine Daten-Autobahn,

sondern eine ganze Landschaft. Wir gehen etwas optimistisch davon aus, da� jeder

Leser einen Zugang zum Netz hat. Bei der gegenw�artigen raschen Entwicklung ist

der Netzzugang tats�achlich nur noch eine Zeitfrage. Diesem Buch liegt daher keine

Diskette oder Compact Disk bei, die Programme und erg�anzende Texte stehen im

Netz zur Verf�ugung. UNIX, C/C++ und das Internet k�onnten unabh�angig von-

einander betrachtet werden, in der Praxis jedoch sind sie miteinander ver
ochten.

An einigen Stellen gehen wir au�er auf das Wie auch auf das Warum ein. Von

Zeit zu Zeit sollte man den Blick weg von den B�aumen auf den Wald richten,
sonst h�auft man nur kurzlebiges Wissen an.

Man kann den Gebrauch eines Betriebssystems, einer Programmiersprache

oder der Netzdienste nicht ohne praktische �Ubungen erlernen { das ist wie beim
Klavierspielen oder Kuchenbacken. Die Beispiele und �Ubungen wurden auf einer

Hewlett-Packard 9000/712 unter HP-UX (UNIX V) 10.2 und einem Pentium-PC
der Marke Weingartener Katzenberg Auslese unter Microsoft DOS 6.2 sowie un-
ter LINUX entwickelt. Als Shell wurde die Korn-Shell (11/16/88) bevorzugt, als

Compiler wurden neben den zu den jeweiligen Betriebssystemen geh�orenden Pro-
dukten der GNU gcc 2.6.3 und der Watcom 10.6 verwendet.

Dem Text liegen eigene Erfahrungen aus vier Jahrzehnten Umgang mit elek-

tronischen Rechenanlagen und aus Kursen �uber BASIC, FORTRAN, C/C++ und
UNIX zugrunde. Wir haben auch fremde Hilfe beansprucht und danken Kollegen

in den Universit�aten Karlsruhe und Lyon sowie Mitarbeitern der Firmen IBM und
Hewlett-Packard f�ur schriftliche Unterlagen und m�undliche Hilfe sowie zahlreichen
Studenten f�ur Anregungen und Diskussionen. Dr. iur. Elke L. Barnstedt, ih-

rerzeit Universit�at Karlsruhe, hat freundlicherweise die erste Fassung des Kapitels
Computerrecht beigesteuert. Dar�uber hinaus haben wir nach Kr�aften das Internet

angezapft und viele dort umlaufende Guides, Primers, Tutorials und Sammlungen

von Frequently Asked Questions (FAQs) verwendet. Dem Springer-Verlag danken
wir daf�ur, da� er uns geholfen hat, aus einem lockeren Skriptum ein ernsthaftes

Buch zu machen.
So eine Arbeit wird eigentlich nie fertig, man mu� sie f�ur fertig erkl�aren, wenn

man nach Zeit und Umst�anden das M�oglichste getan hat, um es mit Johann

Wolfgang von Goethe zu sagen (Italienische Reise; Caserta, den 16. M�arz
1787). Wir erkl�aren unsere Arbeit f�ur unfertig und bitten, uns die M�angel

nachzusehen.

Weingarten (Baden), 4. Januar 1998 Wulf Alex

�Ubersicht

1 �Uber den Umgang mit Computern 1

2 UNIX 15

3 Internet 213

A Zahlensysteme 253

B Zeichens�atze 256

C Die wichtigsten UNIX-Kommandos 271

D Besondere UNIX-Kommandos 277

E UNIX-Systemaufrufe 280

F UNIX-Signale 282

G File-Kennungen 284

H Slang im Netz 289

I Formelbeispiele LaTeX 293

J ISO 3166 L�andercodes 302

K Requests For Comment (RFCs) 304

L Frequently Asked Questions (FAQs) 309

M Karlsruher Test 310

N Zeittafel 318

O Literatur 324

Sach- und Namensverzeichnis 343

vii

Zum Gebrauch

� Hervorhebungen im Text werden kursiv dargestellt.

� Zitate und Titel von Ver�o�entlichungen oder Abschnitten werden im Text

kursiv markiert.

� In Aussagen �uber W�orter werden diese kursiv abgesetzt.

� Stichw�orter (wie sie f�ur einen Vortrag oder eine Vorlesung ben�otigt werden)

erscheinen in fetterer Schrift.

� Namen von Personen werden in Kapit�alchen geschrieben.

� Eingaben von der Tastatur und Ausgaben auf den Bildschirm werden in

Schreibmaschinenschrift wiedergegeben.

� Hinsichtlich der deutschen Rechtschreibung be�nden wir uns in einem �Uber-
gangsstadium.

� Hinter UNIX-Kommandos folgt oft in Klammern die Nummer der Sekti-
on des Referenz-Handbuches, in der das Kommando erl�autert wird. Diese
Nummer samt Klammern ist beim Aufruf des Kommandos nicht einzugeben.

� Suchen Sie die englische oder franz�osische �Ubersetzung eines deutschen Fach-
wortes, so �nden Sie diese bei der erstmaligen Erl�auterung des deutschen
Wortes. Die �Ubersetzung folgt in Klammern hinter dem deutschen Wort und

ist nicht durch eine besondere Schrift gekennzeichnet.

� Suchen Sie die deutsche �Ubersetzung eines englischen oder franz�osischen
Fachwortes, so �nden Sie einen Verweis im Sach- und Namensverzeichnis.

� An einigen Stellen wird auf Abschnitte aus dem C/C++-Skriptum verwie-

sen. Dies r�uhrt daher, da� beide Skripten gemeinsam die Grundlage f�ur ein

Buch bilden. Ebenso fehlt in beiden Skripten das Kapitel �uber Hardware.

� UNIX verstehen wir immer im weiteren Sinne als die Familie der aus dem

urspr�unglich bei AT&T um 1970 entwickelten Unix abgeleiteten Betriebs-
systeme, nicht als gesch�utzten Namen eines bestimmten Produktes.

� Wir geben m�oglichst genaue Hinweise auf weiterf�uhrende Dokumente im

Netz. Der Leser sollte sich aber dessen bewu�t sein, da� sich sowohl Inhalte
wie Adressen (URLs) rasch �andern.

� Unter Benutzer , Programmierer , System-Manager usw. verstehen wir immer

auch ihre weiblichen Erscheinungsformen, ohne dies hervorzuheben.

� Wir reden den Benutzer mit Sie an, obwohl unter Studenten und im Netz die

Anrede mit Du �ublich ist. Gegenw�artig erscheint uns diese Wahl passender.

In Zukunft mag sich das �andern.

viii

Inhaltsverzeichnis

1 �Uber den Umgang mit Computern 1

1.1 Was macht ein Computer? . 1

1.2 Woraus besteht ein Computer? 4

1.3 Was mu� man wissen? . 5

1.4 Wie l�auft eine Sitzung ab? . 8

1.5 Wo schl�agt man nach? . 11

1.6 Warum verwendet man Computer (nicht)? 12

2 UNIX 15

2.1 Grundbegri�e . 15

2.1.1 Braucht man ein Betriebssystem? 15

2.1.2 Verwaltung der Betriebsmittel 16

2.1.3 Verwaltung der Daten . 18

2.1.4 Einteilung der Betriebssysteme 18

2.1.5 Laden des Betriebssystems 20

2.2 Das Besondere an UNIX . 21

2.2.1 Die pr�aunicische Zeit . 21

2.2.2 Entstehung . 21

2.2.3 Vor- und Nachteile . 24

2.2.4 UNIX-Philosophie . 26

2.2.5 Aufbau . 26

2.3 Prozesse . 28

2.3.1 Was ist ein Prozess? . 28

2.3.2 Prozesserzeugung (exec, fork) 29

2.3.3 Selbst�andige Prozesse (nohup) 31

2.3.4 Priorit�at (nice) . 32

2.3.5 D�amonen . 32

2.3.5.1 Was ist ein D�amon? 32

2.3.5.2 D�amon mit Uhr (cron) 33

2.3.5.3 Line Printer Scheduler (lpsched) 34

2.3.5.4 Internet-D�amon (inetd) 34

2.3.5.5 Mail-D�amon (sendmail) 34

2.3.6 Interprozess-Kommunikation (IPC) 34

2.3.6.1 IPC mittels Files 34

2.3.6.2 Pipes . 35

2.3.6.3 Named Pipe (FIFO) 35

2.3.6.4 Signale (kill, trap) 36

2.3.6.5 Nachrichtenschlangen 37

2.3.6.6 Semaphore . 37

ix

x Inhaltsverzeichnis

2.3.6.7 Gemeinsamer Speicher 38

2.3.6.8 Sockets . 38

2.3.6.9 Streams . 38

2.3.7 Memo Prozesse . 38

2.3.8 �Ubung Prozesse . 39

2.4 Files . 41

2.4.1 Filearten . 41

2.4.2 File-System { Sicht von unten 41

2.4.3 File-System { Sicht von oben 42

2.4.4 Zugri�srechte . 47

2.4.5 Set-User-ID-Bit . 49

2.4.6 Zeitstempel . 51

2.4.7 Inodes und Links . 52

2.4.8 stdin, stdout, stderr . 55

2.4.9 Schreiben und Lesen von Files 56

2.4.10 Archivierer (tar, gtar) . 56

2.4.11 Packer (compress, gzip) 57

2.4.12 Weitere Kommandos . 58

2.4.13 Memo Files . 61

2.4.14 �Ubung Files . 62

2.5 Shells . 63

2.5.1 Gespr�achspartner . 63

2.5.1.1 Kommandointerpreter 63

2.5.1.2 Umgebung . 68

2.5.1.3 Umlenkung . 72

2.5.2 Shellscripts . 73

2.5.3 Noch eine Scriptsprache: Perl 84

2.5.4 Memo Shells . 86

2.5.5 �Ubung Shells . 87

2.6 Benutzerober
�achen . 88

2.6.1 Lokale Benutzerober
�achen 88

2.6.1.1 Kommandozeilen-Eingabe 88

2.6.1.2 Men�us . 88

2.6.1.3 Fenster, curses-Bibliothek 89

2.6.1.4 Gra�sche Fenster 90

2.6.1.5 Multimediale Ober
�achen 91

2.6.1.6 Software f�ur Behinderte 91

2.6.2 X Window System (X11) 92

2.6.2.1 Zweck . 92

2.6.2.2 OSF/Motif . 94

2.6.3 Memo Ober
�achen, X Window System 96

2.6.4 �Ubung Ober
�achen, X Window System 97

2.7 Writer's Workbench . 98

2.7.1 Zeichens�atze oder die Umlaut-Frage 98

2.7.2 Regul�are Ausdr�ucke . 101

2.7.3 Editoren (ed, ex, vi, elvis, vim) 104

Inhaltsverzeichnis xi

2.7.4 Universalgenie (emacs) . 107

2.7.4.1 Einrichtung . 107

2.7.4.2 Benutzung . 108

2.7.5 Joe's Own Editor (joe) . 108

2.7.6 Stream-Editor (sed) . 109

2.7.7 Listenbearbeitung (awk) 110

2.7.8 Verschl�usseln (crypt) . 112

2.7.8.1 Aufgaben der Verschl�usselung 112

2.7.8.2 Symmetrische Verfahren 113

2.7.8.3 Unsymmetrische Verfahren 114

2.7.8.4 Angri�e . 115

2.7.9 Formatierer (nro�, LaTeX) 116

2.7.9.1 Inhalt, Struktur und Aufmachung 116

2.7.9.2 Ein einfacher Formatierer (adjust) 117

2.7.9.3 UNIX-Formatierer (nro�, tro�) 117

2.7.9.4 LaTeX . 118

2.7.9.5 Computer Aided Writing 124

2.7.10 Weitere Werkzeuge (grep, di�, sort usw.) 125

2.7.11 Text�les aus anderen Welten (DOS, Mac) 128

2.7.12 Druckerausgabe (lp, lpr) 128

2.7.13 Memo Writer's Workbench 131

2.7.14 �Ubung Writer's Workbench 132

2.8 Programmer's Workbench . 133

2.8.1 Nochmals die Editoren . 133

2.8.2 Compiler und Linker (cc, ccom, ld) 134

2.8.3 Unentbehrlich (make) . 135

2.8.4 Debugger (xdb) . 138

2.8.5 Pro�ler (time, gprof) . 139

2.8.6 Archive, Bibliotheken (ar) 141

2.8.7 Weitere Werkzeuge . 143

2.8.8 Programmverwaltung mit RCS und SCCS 144

2.8.9 Memo Programmer's Workbench 149

2.8.10 �Ubung Programmer's Workbench 150

2.9 Gra�kers Atelier . 154

2.9.1 Grundbegri�e . 154

2.9.2 Diagramme (gnuplot) . 155

2.9.3 Zeichnungen (x�g, xpaint) 157

2.9.4 Funktions-Bibliotheken . 157

2.9.4.1 GNU Graphics Library () 157

2.9.4.2 Starbase . 157

2.9.4.3 Graphical Kernel System (GKS) 157

2.9.5 Memo Gra�k . 157

2.9.6 �Ubung Gra�k . 158

2.10 Kommunikation . 158

2.10.1 Message (write, talk) . 158

2.10.2 Mail (mail, mailx, elm) . 159

xii Inhaltsverzeichnis

2.10.3 Neuigkeiten (news) . 160

2.10.4 Message of the Day . 161

2.10.5 Ehrw�urdig: UUCP . 161

2.10.6 Memo Kommunikation . 162

2.10.7 �Ubung Kommunikation . 162

2.11 Systemaufrufe . 163

2.11.1 Was sind Systemaufrufe? 163

2.11.2 Beispiel Systemzeit (time) 164

2.11.3 Beispiel File-Informationen (access, stat, open) 167

2.11.4 Memo Systemaufrufe . 172

2.11.5 �Ubung Systemaufrufe . 172

2.12 Systemverwaltung . 173

2.12.1 Systemgenerierung und -update 173

2.12.2 Systemstart und -stop . 175

2.12.3 Benutzerverwaltung . 176

2.12.4 Ger�ateverwaltung . 178

2.12.4.1 Terminals . 178

2.12.5 Einrichten von D�amonen 180

2.12.6 St�orungen und Fehler . 182

2.12.7 P
ege des File-Systems . 182

2.12.8 Weitere Dienstleistungen 183

2.12.9 Accounting System . 184

2.12.10Sicherheit . 185

2.12.10.1 Betriebssicherheit 185

2.12.10.2 Datensicherheit 186

2.12.11Memo Systemverwaltung 194

2.12.12 �Ubung Systemverwaltung 194

2.13 Echtzeit-Erweiterungen . 195

2.14 GNU is not UNIX . 196

2.15 UNIX auf PCs . 198

2.15.1 AT&T UNIX . 198

2.15.2 MINIX . 199

2.15.3 LINUX . 200

2.15.3.1 Entstehung . 200

2.15.3.2 Distributionen 200

2.15.3.3 Eigenschaften . 201

2.15.3.4 Installation . 202

2.15.3.5 GNU und LINUX 203

2.15.3.6 XFree - X11 f�ur LINUX 204

2.15.3.7 Dokumentation 204

2.15.3.8 Installations-Beispiel 206

2.15.4 386BSD, NetBSD, FreeBSD 206

2.15.5 MKS-Tools und andere . 207

2.16 Exkurs �uber Informationen . 208

Inhaltsverzeichnis xiii

3 Internet 213

3.1 Grundbegri�e . 213

3.2 Schichtenmodell . 215

3.3 Entstehung . 216

3.4 Protokolle (TCP/IP) . 217

3.5 Adressen und Namen, Name-Server 219

3.6 BelWue . 222

3.7 Netzdienste im �Uberblick . 222

3.8 Terminal-Emulatoren (telnet, rlogin, ssh) 223

3.9 File-Transfer (kermit, ftp, fsp) . 224

3.10 Anonymous-FTP . 225

3.11 Electronic Mail (Email) . 228

3.11.1 Grundbegri�e . 228

3.11.2 Mailing-Listen . 234

3.11.3 Privat und authentisch (PGP, PEM) 235

3.12 Neuigkeiten (Usenet, Netnews) . 237

3.13 Netzgeschw�atz (irc) . 241

3.14 Suchhilfen: Archie, Gopher, WAIS 241

3.15 WWW { das World Wide Web 244

3.15.1 Hypertext . 244

3.15.2 Hypertext Markup Language (HTML) 245

3.15.3 Das Web . 246

3.16 Navigationshilfen (nslookup, whois, �nger) 247

3.17 Die Zeit im Netz (ntp) . 249

3.17.1 Aufgabe . 249

3.17.2 UTC { Universal Time Coordinated 249

3.17.3 Einrichtung . 251

A Zahlensysteme 253

B Zeichens�atze 256

B.1 EBCDIC, ASCII, Roman8, IBM-PC 256

B.2 German-ASCII . 261

B.3 ASCII-Steuerzeichen . 262

B.4 Latin-1 (ISO 8859-1) . 263

B.5 Latin-2 (ISO 8859-2) . 268

C Die wichtigsten UNIX-Kommandos 271

D Besondere UNIX-Kommandos 277

D.1 printf(3), scanf(3) . 277

D.2 vi(1) . 277

D.3 emacs(1) . 278

D.4 joe(1) . 278

D.5 ftp(1) . 278

E UNIX-Systemaufrufe 280

xiv Inhaltsverzeichnis

F UNIX-Signale 282

G File-Kennungen 284

H Slang im Netz 289

I Formelbeispiele LaTeX 293

I.1 Gelatexte Formeln . 293

I.2 Formeln im Quelltext . 296

J ISO 3166 L�andercodes 302

K Requests For Comment (RFCs) 304

K.1 Ausgew�ahlte RFCs, ohne FYIs . 304

K.2 Alle FYIs . 307

L Frequently Asked Questions (FAQs) 309

M Karlsruher Test 310

N Zeittafel 318

O Literatur 324

Sach- und Namensverzeichnis 343

Abbildungen

1.1 Aufbau eines Computers . 4

2.1 Aufbau UNIX . 27

2.2 Prozesse . 30

2.3 File-System, untere Ebene . 42

2.4 Filehierarchie . 44

2.5 Harter Link . 53

2.6 Weicher Link . 54

2.7 X Window System . 93

2.8 OSF/Motif-Fenster . 95

2.9 Gra�k-Programme . 155

2.10 gnuplot von (sin x)/x . 156
2.11 �Ubertragung einer Information . 210

3.1 ISO-Schichtenmodell . 215

xv

Programme

2.1 Shellscript Signalbehandlung . 37

2.2 C-Programm Zeitstempel . 52

2.3 Shellscript Sicheres L�oschen . 59

2.4 Shellscript Filehierarchie . 61

2.5 C-Programm Umgebung . 71

2.6 Shellscript Frequenzw�orterliste . 73

2.7 Shellscript Positionsparameter . 75

2.8 Shellscript Benutzerliste . 76

2.9 Shellscript Men�u . 77

2.10 Shellscript Primzahlen . 77

2.11 Shellscript Anzahl Files . 78

2.12 Shellscript Frage . 78

2.13 Shellscript T�urme von Hanoi . 79

2.14 Shellscript /etc/pro�le . 83

2.15 Shellscript /etc/.pro�le . 83

2.16 Perlscript Primzahlen . 85

2.17 Perlscript Anzahl B�ucher . 86

2.18 C-Programm Zeichenumwandlung 100

2.19 Shellscript Textersetzung . 106

2.20 awk-Script Sachregister . 111

2.21 LaTeX-File alex.sty . 122

2.22 LaTeX-File main.tex . 123

2.23 Shellscript Telefonverzeichnis . 125

2.24 Shellscript Stilanalyse . 127

2.25 Shellscript Druckerspooler . 130

2.26 make-File . 135

2.27 Erweitertes make-File . 136

2.28 C-Programm mit Funktionsbibliothek 142

2.29 C-Funktion Mittelwert . 142

2.30 C-Funktion Varianz . 143

2.31 Make�le zum Sortierprogramm 146

2.32 Include-File zum Sortierprogramm 146

2.33 C-Programm Sortieren . 147

2.34 C-Funktion Bubblesort . 149

2.35 C-Programm mit Fehlern . 151

2.36 gnuplot-Script . 156

2.37 C-Programm Systemzeit . 165

2.38 FORTRAN-Programm Systemzeit 166

2.39 C-Programm File-Informationen 171

2.40 Shellscript Home-Verzeichnisse . 183

xvi

Programme xvii

2.41 C-Programm Trojanisches Pferd 189

2.42 Shellscript Backup Kassette . 193

2.43 Shellscript Restore Kassette . 193

2.44 Shellscript Backup Spule . 193

2.45 Shellscript Restore Spule . 193

xviii Programme

1 �Uber den Umgang mit Computern

Rien n'est simple.

Semp�e

1.1 Was macht ein Computer?

Eine elektronische Datenverarbeitungsanlage, ein Computer, ist ein Werkzeug,

mit dessen Hilfe man Informationen

� speichert (�Anderung der zeitlichen Verf�ugbarkeit),

� �ubermittelt (�Anderung der �ortlichen Verf�ugbarkeit),

� erzeugt oder ver�andert (�Anderung des Inhalts).

F�ur Informationen sagt man auch Nachrichten oder Daten1. Sie lassen sich

durch gesprochene oder geschriebene W�orter, Zahlen, Bilder oder im Computer
durch elektrische oder magnetische Zust�ande darstellen. Speichern hei�t, die In-
formation so zu erfassen und aufzubewahren, da� sie am selben Ort zu einem

sp�ateren Zeitpunkt unver�andert zur Verf�ugung steht. �Ubermitteln hei�t, eine
Information unver�andert einem anderen { in der Regel, aber nicht notwendiger-

weise an einem anderen Ort { verf�ugbar zu machen, was wegen der endlichen
Geschwindigkeit aller irdischen Vorg�ange Zeit kostet. Da sich elektrische Trans-
porte jedoch mit Lichtgeschwindigkeit (nahezu 300 000 km/s) fortbewegen, spielt

der Zeitbedarf nur in seltenen F�allen eine Rolle. Die Juristen denken beim �Uber-
mitteln weniger an die Orts�anderung als an die �Anderung der Verf�ugungsgewalt.

Zum Speichern oder �Ubermitteln mu� die physikalische Form der Information
meist mehrmals ver�andert werden, was sich auf den Inhalt auswirken kann, aber
nicht soll. Ver�andern hei�t inhaltlich ver�andern: suchen, ausw�ahlen, verkn�upfen,

sortieren, pr�ufen, sperren oder l�oschen. T�atigkeiten, die mit Listen, Karteien, Re-

chenschemata zu tun haben oder die mit geringen Abweichungen h�au�g wieder-

holt werden, sind mit Computerhilfe schneller und sicherer zu bew�altigen. Com-

puter �nden sich nicht nur in Form grauer K�asten auf oder neben Schreibtischen,

sondern auch versteckt in Fotoapparaten, Waschmaschinen, Heizungsregelungen,

Autos und Telefonen.

Das Wort Computer stammt aus dem Englischen, wo es vor hundert Jahren

eine Person bezeichnete, die berufsm�a�ig rechnete, zu deutsch ein Rechenknecht.

Heute versteht man nur noch die Maschinen darunter. Das englische Wort wieder-
um geht auf lateinisch computare zur�uck, was berechnen, veranschlagen, erw�agen,

�uberlegen bedeutet. Die Franzosen sprechen vom ordinateur , die Spanier vom

1Schon geht es los mit den Fu�noten: Bei genauem Hinsehen gibt es Unterschiede

zwischen Information, Nachricht und Daten, siehe Abschnitt 2.16 Exkurs �uber Informa-

tionen.

1

2 1 �Uber den Umgang mit Computern

ordenador , dessen lateinischer Ursprung ordo Reihe, Ordnung bedeutet. Die Por-

tugiesen { vielleicht um sich von den Spaniern abzuheben { verwenden das Wort

computador . Die Schweden nennen die Maschine dator , analog zu Motor , die Fin-

nen tietokone, wasWissensmaschine hei�t. Hierzulande sprach man eine Zeit lang

von Elektronengehirnen, etwas weniger respektvoll von Blechbregen. Wir ziehen

das englische Wort Computer dem deutschen Wort Rechner vor, weil uns Rechnen

zu eng mit dem Begri� der Zahl verbunden ist.

Die Wissenschaft von der Informationsverarbeitung ist die Informatik, eng-

lisch Computer Science, franz�osisch Informatique. Ihre Wurzeln sind die Mathe-

matik und die Elektrotechnik; kleinere Wurzelausl�aufer reichen auch in Wissen-

schaften wie Physiologie und Linguistik. Sie z�ahlt zu den Ingenieurwissenschaften.

Der Begri� Informatik2 ist rund vierzig Jahre alt, Computer gibt es seit f�unfzig

Jahren, �Uberlegungen dazu stellten Charles Babbage vor rund zweihundert

und Gottfried Wilhelm Leibniz vor vierhundert Jahren an, ohne Erfolg bei

der praktischen Verwirklichung ihrer Gedanken zu haben. Die Bedeutung der In-

formation war dagegen schon im Altertum bekannt. Der L�aufer von Marathon
setzte 490 vor Christus sein Leben daran, eine Information so schnell wie m�oglich
in die Heimat zu �ubermitteln. Neu in unserer Zeit ist die M�oglichkeit, Informatio-

nen maschinell zu verarbeiten.

Informationsverarbeitung ist nicht an Computer gebunden. Insofern k�onnte

man Informatik ohne Computer betreiben und hat das { unter anderen Namen
{ auch getan. Die Informatik beschr�ankt sich insbesondere nicht auf das Herstel-
len von Computerprogrammen. Der Computer hat jedoch die Aufgaben und die

M�oglichkeiten der Informatik ausgeweitet. Unter Technischer Informatik { ge-
legentlich L�otkolben-Informatik gehei�en { versteht man den elektrotechnischen

Teil. Den Gegenpol bildet die Theoretische Informatik { nicht zu verwech-
seln mit der Informationstheorie { die sich mit formalen Sprachen, Grammati-
ken, Semantik, Automaten, Entscheidbarkeit, Vollst�andigkeit und Komplexit�at

von Problemen besch�aftigt. Computer und Programme sind in der Angewand-
ten Informatik zu Hause. Die Grenzen innerhalb der Informatik sowie zu den
Nachbarwissenschaften sind jedoch unscharf und durchl�assig.

Computer sind Automaten, Maschinen, die auf bestimmte Eingaben mit be-
stimmten T�atigkeiten und Ausgaben antworten. Dieselbe Eingabe f�uhrt immer

zu derselben Ausgabe; darauf verlassen wir uns. Deshalb ist es im Grundsatz

unm�oglich, mit Computern Zufallszahlen zu erzeugen (zu w�urfeln). Zwischen ei-
nem Briefmarkenautomaten (Postwertzeichengeber) und einem Computer besteht

jedoch ein wesentlicher Unterschied. Ein Briefmarkenautomat nimmt nur M�unzen
entgegen und gibt nur Briefmarken aus, mehr nicht. Es hat auch mechanische

Rechenautomaten gegeben, die f�ur spezielle Aufgaben wie die Berechnung von

Gescho�bahnen oder Gezeiten eingerichtet waren. Das Verhalten von mechani-
schen Automaten ist durch ihre Mechanik unver�anderlich vorgegeben.

Bei einem Computer hingegen wird das Verhalten durch ein Programm be-
stimmt, das im Ger�at gespeichert ist und leicht ausgewechselt werden kann. Der-

2Die fr�uheste uns bekannte Erw�ahnung des Begri�es �ndet sich in der Firmenzeit-

schrift SEG-Nachrichten (Technische Mitteilungen der Standard Elektrik Gruppe) 1957

Nr. 4, S. 171: Karl Steinbuch, Informatik: Automatische Informationsverarbeitung.

1.1 Was macht ein Computer? 3

selbe Computer kann sich wie eine Schreibmaschine, eine Rechenmaschine, eine

Zeichenmaschine, ein Telefon-Anrufbeantworter, ein Schachspieler oder wie ein Le-

xikon verhalten, je nach Programm. Er ist ein Universal-Automat. Der Verwand-

lungskunst sind nat�urlich Grenzen gesetzt, Ka�ee kochen sie vorl�au�g nicht. Das

Wort Programm ist lateinisch-griechischen Ursprungs und bezeichnet ein �o�entli-

ches Schriftst�uck wie ein Theater- oder Parteiprogramm. Im Zusammenhang mit

Computern ist an ein Arbeitsprogramm zu denken. Die englische Schreibweise ist

programme, Computer ziehen jedoch das amerikanische program vor. Die Gallier

reden h�au�ger von einem logiciel als von einem programme, wobei logiciel das

gesamte zu einer Anwendung geh�orende Programmpaket meint { bestehend aus

mehreren Programmen samt Dokumentation.

Ebenso wie man die Gr�o�e von Massen, Kr�aften oder L�angen mi�t, wer-

den auch Informationsmengen gemessen. Nun liegen Informationen in unter-

schiedlicher Form vor. Sie lassen sich jedoch alle auf Folgen von zwei Zeichen

zur�uckf�uhren, die mit 0 und 1 oder H (high) und L (low) bezeichnet werden. Sie

d�urfen auch Anna und Otto dazu sagen, es m�ussen nur zwei verschiedene Zeichen
sein. Diese einfache Darstellung wird bin�ar genannt, zu lateinisch bini = je zwei.

Die Bin�ardarstellung beliebiger Informationen durch zwei Zeichen darf nicht
verwechselt werden mit der Dualdarstellung von Zahlen, bei der die Zahlen auf

Summen von Potenzen zur Basis 2 zur�uckgef�uhrt werden. Eine Dualdarstellung
ist immer auch bin�ar, das Umgekehrte gilt nicht.

Warum bevorzugen Computer bin�are Darstellungen von Informationen? Als
die Rechenmaschinen noch mechanisch arbeiteten, verwendeten sie das Dezimal-

system, denn es ist einfach, Zahnr�ader mit 20 oder 100 Z�ahnen herzustellen. Viele
elektronische Bauelemente hingegen kennen { von Wackelkontakten abgesehen {
nur zwei Zust�ande wie ein Schalter, der entweder o�en oder geschlossen ist. Mit

bin�aren Informationen hat es die Elektronik leichter. In der Anfangszeit hat man
aber auch dezimal arbeitende elektronische Computer gebaut.

Eine 0 oder 1 stellt eine Bin�arzi�er dar, englisch binary digit, abgek�urzt Bit.
Ein Bit ist das Datenatom. Hingegen ist 1 bit (kleingeschrieben) die Ma�einheit

f�ur die Entscheidung zwischen 0 und 1 im Sinne der Informationstheorie von
Claude Elwood Shannon. Kombinationen von acht Bits spielen eine gro�e

Rolle, sie werden daher zu einem Byte oder Oktett zusammengefa�t. Auf dem

Papier wird ein Byte oft durch ein Paar hexadezimaler Zi�ern { ein Hexp�archen

{ wiedergegeben. Das Hexadezimalsystem { das Zahlensystem zur Basis 16 {

wird uns h�au�g begegnen, in UNIX auch das Oktalsystem zur Basis 8. Durch

ein Byte lassen sich 28 = 256 unterschiedliche Zeichen darstellen. Das reicht f�ur

unsere europ�aischen Buchstaben, Zi�ern und Satzzeichen. Ebenso wird mit einem
Byte eine Farbe aus 256 unterschiedlichen Farben ausgew�ahlt. 1024 Byte ergeben

1 Kilobyte, 1024 Kilobyte sind 1 Megabyte, 1024 Megabyte sind 1 Gigabyte, 1024

Gigabyte machen 1 Terabyte.

Der Computer verarbeitet die Informationen in Einheiten eines Maschinen-

wortes, das je nach der Breite der Datenregister des Prozessors ein bis 16 By-

tes umfa�t. Der durchschnittliche Benutzer kommt mit dieser Einheit selten in

Ber�uhrung; f�ur den Assembler-Programmierer sind die Datentypen am einfach-

sten, die sich gerade in einem Maschinenwort darstellen lassen.

4 1 �Uber den Umgang mit Computern

1.2 Woraus besteht ein Computer?

Der Benutzer sieht von einem Computer vor allem den Bildschirm3 (screen,

�ecran) und die Tastatur (keyboard, clavier), auch Hackbrett genannt. Diese bei-

den Ger�ate werden zusammen als Terminal (terminal, terminal) bezeichnet und

stellen die Verbindung zwischen Benutzer und Computer dar. Mittels der Tastatur

spricht der Benutzer zum Computer, auf dem Bildschirm erscheint die Antwort.

Terminal

Bildschirm Tastatur

�
�
�
�
���A

A
A
A
AAK

Prozessor

Arbeits-

speicher
-� CPU � -

Massen-

speicher

Drucker

?

Netze

@
@

@
@I

@
@R

Abb. 1.1: Aufbau eines Computers

Der eigentliche Computer, die Prozessoreinheit (Zentraleinheit, central unit,

unit�e centrale) ist in die Tastatur eingebaut wie beim Schneider CPC 464 oder

Commodore C64, in das Bildschirmgeh�ause wie beim ersten Apple Macintosh oder
in ein eigenes Geh�ause. Seine wichtigsten Teile sind der Zentralprozessor (CPU,

central processing unit, processeur central) und der Arbeitsspeicher (memory,
m�emoire centrale, m�emoire secondaire).

Um recht in Freuden arbeiten zu k�onnen, braucht man noch einen Massen-

speicher (mass storage, m�emoire de masse), der seinen Inhalt nicht vergi�t, wenn
der Computer ausgeschaltet wird. Nach dem heutigen Stand der Technik arbei-

ten die meisten Massenspeicher mit magnetischen Datentr�agern �ahnlich wie Ton-
oder Videobandger�ate. Tats�achlich verwendeten die ersten Personal Computer

Tonbandkassetten. Weit verbreitet sind scheibenf�ormige magnetische Datentr�ager

3Aus der Fernsehtechnik kommend wird der Bildschirm oft Monitor genannt. Da

dieses Wort hier nicht ganz tri�t und auch ein Programm bezeichnet, vermeiden wir es.

1.3 Was mu� man wissen? 5

in Form von Disketten (
oppy disk, disquette) und Festplatten (hard disk,

disque dur).

Disketten, auch Schlappscheiben genannt, werden nach Gebrauch aus dem

Laufwerk (drive, d�erouleur) des Computers herausgenommen und im Schreib-

tisch vergraben oder mit der Post verschickt. Festplatten verbleiben in ihrem

Laufwerk.

Da man gelegentlich etwas schwarz auf wei� besitzen m�ochte, geh�ort zu den

meisten Computern ein Drucker (printer, imprimante). Ferner ist ein Computer,

der etwas auf sich h�alt, heutzutage durch ein Netz (network, reseau) mit anderen

Computern rund um die Welt verbunden. Damit ist die Anlage vollst�andig.

Was um den eigentlichen Computer (Prozessoreinheit) herumsteht, wird als

Peripherie bezeichnet. Die peripheren Ger�ate sind �uber Schnittstellen (Daten-

steckdosen, interface) angeschlossen.

In Abb. 1.1 sehen wir das Ganze schematisch dargestellt. In der Mitte die

CPU, untrennbar damit verbunden der Arbeitsspeicher. Um dieses Paar herum die

Peripherie, bestehend aus Terminal, Massenspeicher, Drucker und Netzanschlu�.
Sie k�onnen aber immer noch nichts damit anfangen, allenfalls heizen. Es fehlt
noch die Intelligenz in Form eines Betriebssystems (operating system, syst�eme

d'exploitation) wie UNIX.

1.3 Was mu� man wissen?

Ihre ersten Gedanken werden darum kreisen, wie man dem Computer vern�unftige
Reaktionen entlockt. Sie brauchen keine Angst zu haben: durch Tastatureinga-
ben (au�er Ka�ee und �ahnlichen Programming Fluids) ist ein Computer nicht zu

zerst�oren. Zum Arbeiten mit einem Computer mu� man drei Dinge lernen:

� den Umgang mit der Hardware4,

� den Umgang mit dem Betriebssystem,

� den Umgang mit einem Anwendungsprogramm (application program,

logiciel d'application), zum Beispiel einer Textverarbeitung.

Dar�uber hinaus sind Englischkenntnisse und �Ubung imMaschinenschreiben

n�utzlich. Das Lernen besteht zun�achst darin, sich einige hundert Begri�e anzueig-
nen. Das ist in jedem Wissensgebiet so. Man kann nicht �uber Primzahlen, Wahr-

scheinlichkeitsamplituden, Sonette oder Sonaten nachdenken oder reden, ohne sich

vorher �uber die Begri�e klargeworden zu sein.

4Wir wissen, da� wir ein deutsch-englisches Kauderwelsch gebrauchen, aber wir ha-

ben schon so viele schlechte �Ubersetzungen der amerikanischen Fachw�orter gelesen, da�

wir der Deutlichkeit halber teilweise die amerikanischen W�orter vorziehen. Oft sind auch

die deutschen W�orter mit unerw�unschten Assoziationen befrachtet. Wenn die Medizi-

ner lateinische Fachausdr�ucke verwenden, die Musiker italienische und die Gastronomen

franz�osische, warum sollten dann die Informatiker nicht auch ihre termini technici aus

einer anderen Sprache �ubernehmen d�urfen? Die Gallier sind da streng: Es ist bei Strafe

verboten, in der �O�entlichkeit von Software zu reden. Man hat Logiciel zu sagen.

6 1 �Uber den Umgang mit Computern

Die Hardware (mat�eriel) umschlie�t alles, was aus Kupfer, Eisen, Kunststof-

fen, Glas und dergleichen besteht, was man anfassen kann. Dichterf�urst Fried-

rich von Schiller hat den Begri� Hardware tre�ich gekennzeichnet:

Leicht beieinander wohnen die Gedanken,

doch hart im Raume sto�en sich die Sachen.

Die Verse stehen in Wallensteins Tod im 2. Aufzug, 2. Auftritt. Wallenstein

spricht sie zu Max Piccolomini. Was sich hart im Raume st�o�t, geh�ort zur

Hardware, was leicht beieinander wohnt, die Gedanken, ist Software (logiciel).

Die Gedanken stecken in den Programmen und den Daten. Mit Worten von Ren�e

Descartes (\cogito ergo sum") k�onnte man die Software als res cogitans, die

Hardware als res extensa ansehen, wobei keine ohne die andere etwas bewirken

kann. Er verstand unter der res cogitans allerdings nicht nur das Denken, son-

dern auch das Bewu�tsein und die Seele und h�atte jede Beziehung zwischen einer

Maschine und seiner res cogitans abgelehnt.

Die reine Hardware { ohne Betriebssystem { tut nichts anderes als elektrische
Energie in W�arme zu verwandeln. Sie ist ein Ofen, mehr nicht. Das Betriebs-

system ist ein Programm, das diesen Ofen bef�ahigt, Daten einzulesen und in be-
stimmter Weise zu antworten. Hardware plus Betriebssystem machen den Com-
puter aus. Wir bezeichnen diese Kombination als System. Andere sagen auch

Plattform dazu. Eine bestimmte Hardware kann mit verschiedenen Betriebssyste-
men laufen, umgekehrt kann dasselbe Betriebssystem auch auf unterschiedlicher

Hardware laufen (gerade das ist eine St�arke von UNIX).
Bekannte Betriebssysteme sind MS-DOS und Windows 95 bzw. NT von Micro-

soft sowie IBM OS/2 f�ur IBM-PCs und ihre Verwandtschaft, VMS f�ur die VAXen

der Digital Equipment Corporation (DEC) sowie die UNIX-Familie f�ur eine ganze
Reihe von mittleren Computern verschiedener Hersteller.

Um eine bestimmte Aufgabe zu erledigen { um einen Text zu schreiben oder

ein Gleichungssystem zu l�osen { braucht man noch einAnwendungsprogramm.
Dieses kauft man fertig, zum Beispiel ein Programm zur Textverarbeitung oder

zur Tabellenkalkulation, oder schreibt es selbst. In diesem Fall mu� man eine Pro-
grammiersprache (programming language, langage de programmation) beherr-
schen. Die bekanntesten Sprachen sind BASIC, COBOL, FORTRAN, PASCAL

und C/C++. Es gibt mehr als tausend5.

Das n�otige Wissen kann man auf mehreren Wegen erwerben und auf dem

laufenden halten:

� Kurse, Vorlesungen

� Lehrb�ucher, Skripten

� Zeitschriften

� Electronic Information

� Lernprogramme

� Videob�ander

5Zum Vergleich: es gibt etwa 6000 lebende nat�urliche Sprachen. Die Bibel { oder

Teile von ihr { ist in rund 2000 Sprachen �ubersetzt.

1.3 Was mu� man wissen? 7

Gute Kurse oder Vorlesungen verbinden Theorie und Praxis, das hei�t Unter-

richt und �Ubungen am Computer. Zudem kann man Fragen stellen und bekommt

Antworten. Nachteilig ist der feste Zeitplan. Die schwierigen Fragen tauchen im-

mer erst nach Kursende auf. Viele Kurse sind auch teuer.

Bei den B�uchern mu� man zwischen Lehrb�uchern (Einf�uhrungen, Tutori-

als, Primers, Guides) und Nachschlagewerken (Referenz-Handb�ucher, Referen-

ce Manuals) unterscheiden. Lehrb�ucher f�uhren durch das Wissensgebiet, tre�en

eine Auswahl, werten oder diskutieren und verzichten auf Einzelheiten. Nach-

schlagewerke sind nach Stichw�ortern geordnet, beschreiben alle Einzelheiten und

helfen bei allgemeinen Schwierigkeiten gar nicht. Will man wissen, welche Werk-

zeuge UNIX zur Textverarbeitung bereit h�alt, braucht man ein Lehrbuch. Will

man hingegen wissen, wie man den Editor vi(1) veranla�t, nach einer Zeichenfol-

ge zu suchen, so schl�agt man im Referenz-Handbuch nach. Auf UNIX-Systemen

ist das UNIX-Referenz-Handbuch online verf�ugbar, siehe man(1).

Die Eintr�age in den Referenz-Handb�uchern sind knapp gehalten. Bei einfa-

chen Kommandos wie pwd(1) oder who(1) sind sie dennoch auf den ersten Blick
verst�andlich. Zu Kommandos wie vi(1), sh(1) oder xdb(1), die umfangreiche

Aufgaben erledigen, geh�oren schwer verst�andliche Eintr�age, die voraussetzen, da�
man die wesentlichen Z�uge des Kommandos bereits kennt. Diese Kenntnis ver-

mitteln Einzelwerke, die es zu einer Reihe von UNIX-Kommandos gibt, siehe
Anhang O Literatur.

Ohne Computer bleibt das B�ucherwissen trocken und abstrakt. Man sollte

daher die B�ucher in der N�ahe eines Terminals lesen, so da� man sein Wissen
sofort ausprobieren kann6. Das Durcharbeiten der �Ubungen geh�ort dazu, auch

wegen der Erfolgserlebnisse.

Zeitschriften berichten �uber Neuigkeiten. Manchmal bringen sie auch Kurse

in Fortsetzungsform. Ein Lehrbuch oder Referenz-Handbuch ersetzen sie nicht. Sie
eignen sich zur Erg�anzung und Weiterbildung, sobald man �uber ein Grundwissen
verf�ugt. Von einer guten Computerzeitschrift darf man heute verlangen, da� sie

�uber Email erreichbar ist und ihre Informationen im Netz verf�ugbar macht.

Electronic Information besteht aus Mitteilungen in den Computernetzen.

Das sind Bulletin Boards (Schwarze Bretter), Computerkonferenzen, Electronic
Mail, Netnews, Ver�o�entlichungen, die per Anonymous-FTP kopiert werden, und

�ahnliche Dinge. Sie sind aktueller als Zeitschriften, die Diskussionsm�oglichkeiten

gehen weiter. Neben viel nutzlosem Zeug stehen hochwertige Beitr�age von Fach-

leuten aus Universit�aten und Computer�rmen. Ein guter Tip sind die FAQ-Listen

(Frequently Asked Questions; Foire Aux Questions; Fragen, Antworten, Quellen
der Erleuchtung) in den Netnews. Hauptproblem ist das Filtern der Informations-

ut. Im Internet erscheinen t�aglich (!) mehrere 10.000 Beitr�age.

6Es hei�t, da� von der Information, die man durch H�oren aufnimmt, nur 30 % im

Ged�achtnis haften bleiben. Beim Sehen sollen es 50 % sein, bei Sehen und H�oren zusam-

men 70 %. Vollzieht man etwas eigenh�andig nach { begreift man es im w�ortlichen Sinne

{ ist der Anteil noch h�oher. Hingegen hat das maschinelle Kopieren von Informationen

keine Wirkungen auf das Ged�achtnis und kann daher nicht als Ersatz f�ur die klassischen

Wege des Lernens gelten.

8 1 �Uber den Umgang mit Computern

Das Zusammenwirken von B�uchern oder Zeitschriften mit Electronic Informa-

tion sieht vielversprechend aus. Manchen Computerb�uchern liegt eine Diskette

oder CD bei. Das sind statische Informationen ohne M�oglichkeit zum Dialog mit

den Urhebern. Wir haben einen FTP-Server ftp.ciw.uni-karlsruhe.de einge-

richtet, auf dem erg�anzende Informationen verf�ugbar sind. Auf der WWW-Seite

http://www.ciw.uni-karlsruhe.de/technik.html haben wir { in erster Linie

f�ur unseren eigenen Gebrauch { viele Verweise (Hyperlinks, URLs) zu den Themen

dieses Buchs gesammelt, die zumindest als Einstieg verwendet werden k�onnen.

Unsere Email-Anschrift steht im Impressum des Buches.

Es gibt Lernprogramme zu Hardware, Betriebssystemen und Anwendungs-

programmen. Man k�onnte meinen, da� sich gerade der Umgang mit dem Computer

mit Hilfe des Computers lernen l�a�t. Moderne Computer mitHypertext7, beweg-

ter farbiger Gra�k, Dialogf�ahigkeit und Tonausgabe bieten tats�achlich M�oglich-

keiten, die dem Buch verwehrt sind. Der Aufwand f�ur ein Lernprogramm, das

diese M�oglichkeiten ausnutzt, ist allerdings betr�achtlich, und deshalb sind manche

Lernprogramme nicht gerade ermunternd. Es gibt zwar Programme { sogenann-
te Autorensysteme { die das Schreiben von Lernsoftware erleichtern, aber Arbeit
bleibt es trotzdem. Auch gibt es vorl�au�g keinen befriedigenden Ersatz f�ur Unter-

streichungen und Randbemerkungen, mit denen einige Leser ihren B�uchern eine
pers�onliche Note geben. Erst recht ersetzt ein Programm nicht die Ausstrahlung

eines guten P�adagogen.
�Uber den modernen Wegen der Wissensvermittlung h�atten wir beinahe einen

jahrzehntausendealten, aber immer noch aktuellen Weg vergessen: Fragen. Wenn

Sie etwas wissen wollen oder nicht verstanden haben, fragen Sie, notfalls per Email.
Die meisten UNIX-Wizards (wizard : person who e�ects seeming impossibilities;

man skilled in occult arts; person who is permitted to do things forbidden to
ordinary people) sind nette Menschen und freuen sich �uber Ihren Wissensdurst.
M�oglicherweise bekommen Sie verschiedene Antworten { es gibt in der Informatik

auch Glaubensfragen { doch nur so kommen Sie voran.

Wei� auch Ihr Wizard nicht weiter, k�onnen Sie sich an die �O�entlichkeit wen-
den, das hei�t an die sch�atzungsweise zehn Millionen Usenet-Teilnehmer. Den Weg

dazu �nden Sie unter dem Stichwort Netnews. Sie sollten allerdings vorher Ihre

Handb�ucher gelesen haben und diesen Weg nicht blo� aus Bequemlichkeit w�ahlen.

Sonst erhalten Sie RTFM 8 als Antwort.

1.4 Wie l�auft eine Sitzung ab?

Die Arbeit mit dem Computer vollzieht sich meist im Sitzen vor einem Termi-

nal und wird daher Sitzung (session) genannt. Mittels der Tastatur teilt man

dem Computer seine W�unsche mit, auf dem Bildschirm antwortet er. Diese Ar-

7Hypertext ist ein Text, bei dem Sie erkl�arungsbed�urftige W�orter mit der Maus

anklicken und dann die Erkl�arung auf den Bildschirm bekommen. In Hypertext w�are

diese Fu�note eine solche Erkl�arung. Der Begri� wurde Anfang der 60er Jahre von Ted

Nelson in den USA gepr�agt.
8siehe Anhang H Slang im Netz : Read The Fantastic Manual

1.4 Wie l�auft eine Sitzung ab? 9

beitsweise wird interaktiv genannt und als (Bildschirm-)Dialog bezeichnet, zu

deutsch Zwiegespr�ach. Die Tastatur sieht �ahnlich aus wie eine Schreibmaschinen-

tastatur (weshalb F�ahigkeiten im Maschinenschreiben n�utzlich sind), hat aber ein

paar Tasten mehr. Oft geh�ort auch eine Maus dazu. Der Bildschirm ist ein naher

Verwandter des Fernsehers.

Falls Sie mit einem Personal Computer arbeiten, m�ussen Sie ihn als erstes

einschalten. Bei gr�o�eren Anlagen, an denen mehrere Leute gleichzeitig arbeiten,

hat dies ein wichtiger Mensch f�ur Sie erledigt, der Systemverwalter oder System-

Manager. Sie sollten seine Freundschaft suchen9.

Nach dem Einschalten l�adt der Computer sein Betriebssystem, er bootet, wie

man so sagt. Booten hei�t eigentlich Bootstrappen und das hinwiederum, sich an

den eigenen Stiefelb�andern oder Schn�ursenkeln (bootstraps) aus dem Sumpf der

Unwissenheit herausziehen wie weiland der L�ugenbaron Karl Friedrich Hie-

ronymus Freiherr von M�unchhausen an seinem Zopf10. Zu Beginn kann der

Computer n�amlich noch nicht lesen, mu� aber sein Betriebssystem vom Massen-

speicher lesen, um lesen zu k�onnen.

Ist dieser heikle Vorgang erfolgreich abgeschlossen, gibt der Computer einen
Prompt auf dem Bildschirm aus. Der Prompt ist ein Zeichen oder eine kur-
ze Zeichengruppe { beispielsweise ein Pfeil, ein Dollarzeichen oder C geteilt

durch gr�o�er als { die besagt, da� der Computer auf Ihre Eingaben wartet. Der
Prompt wird auch Systemanfrage, Bereitzeichen oder Eingabeaufforderung ge-
nannt. K�onnen Sie nachemp�nden, warum wir Prompt sagen?

Nun d�urfen Sie in die Tasten greifen. Bei einem Mehrbenutzersystem erwartet

der Computer als erstes Ihre Anmeldung, das hei�t die Eingabe des Namens,
unter dem Sie der System-Manager eingetragen hat. Auf vielen Anlagen gibt es
den Benutzer gast oder guest. Au�er bei G�asten wird als n�achstes die Einga-

be eines Passwortes verlangt. Das Passwort (password, mot de passe) ist der
Schl�ussel zum Computer. Es wird auf dem Bildschirm nicht wiedergegeben. Bei

der Eingabe von Namen und Passwort sind keine Korrekturen zugelassen, Gro�-
und Kleinschreibung wird unterschieden. War Ihre Anmeldung in Ordnung, hei�t
der Computer Sie herzlich willkommen und promptet wieder. Die Arbeit beginnt.

Auf einem PC geben Sie beispielsweise dir ein, auf einer UNIX-Anlage ls. Jede

Eingabe wird mit der Return-Taste (auch mit Enter, CR oder einem geknickten

Pfeil nach links bezeichnet) abgeschlossen11.

Zum Eingew�ohnen f�uhren wir eine kleine Sitzung durch. Suchen Sie sich

ein freies UNIX-Terminal. Bet�atigen Sie ein paar Mal die Return- oder Enter-
Taste. Auf die Au�orderung zur Anmeldung (login) geben Sie den Namen gast

oder guest ein, Return-Taste nicht vergessen. Ein Passwort ist f�ur diesen Be-

9Laden Sie ihn gelegentlich zu Ka�ee und Kuchen oder einem Viertele Wein ein.
10Siehe Gottfried August B�urger, Wunderbare Reisen zu Wasser und zu Lande,

Feldz�uge und lustige Abenteuer des Freiherrn von M�unchhausen, wie er dieselben bei

der Flasche im Zirkel seiner Freunde selbst zu erz�ahlen p
egt. Insel Taschenbuch 207,

Insel Verlag Frankfurt (Main) (1976), im 4. Kapitel
11Manche Systeme unterscheiden zwischen Return-Taste und Enter-Taste, rien n'est

simple. Auf Tastaturen f�ur den kirchlichen Gebrauch tr�agt die Taste die Bezeichnung

Amen.

10 1 �Uber den Umgang mit Computern

nutzernamen nicht vonn�oten. Es k�onnte allerdings sein, da� auf dem System

kein Gast-Konto eingerichtet ist, dann m�ussen Sie den System-Manager fragen.

Nach dem Willkommensgru� des Systems geben wir folgende UNIX-Kommandos

ein (Return-Taste!) und versuchen, ihre Bedeutung mithilfe des UNIX-Referenz-

Handbuchs, Sektion (1) n�aherungsweise zu verstehen:

who

man who

date

man date

pwd

man pwd

ls

ls -l /bin

man ls

exit

Falls auf dem Bildschirm links unten das Wort more erscheint, bet�atigen Sie die
Zwischenraum-Taste (space bar). more(1) ist ein Pager, ein Programm, das einen

Text seiten- oder bildschirmweise ausgibt.

Die Grundform eines UNIX-Kommandos ist (�ahnlich wie bei MS-DOS):

Kommando -Optionen Argumente

Statt Option �ndet man auch die Bezeichnung Parameter, Flag oder Schalter.
Eine Option modi�ziert die Wirkungsweise des Kommandos, beispielsweise wird

die Ausgabe des Kommandos ls ausf�uhrlicher, wenn wir die Option -l (long)
dazuschreiben. Argumente sind Filenamen oder andere Informationen, die das
Kommando ben�otigt, oben der Verzeichnisname /bin. Bei den Namen der UNIX-

Kommandos haben sich ihre Sch�opfer etwas gedacht, nur was, bleibt hin und
wieder im Dunkeln. Hinter manchen Namen steckt auch eine ganze Geschichte, wie

man sie gelegentlich in der Newsgruppe comp.society.folklore im Netz erf�ahrt.

Das Kommando exit beendet die Sitzung. Es ist ein internes Shell-Kommando

und im Handbuch unter der Beschreibung der Shell sh(1) zu �nden.

Jede Sitzung mu� ordnungsgem�a� beendet werden. Es reicht nicht, sich einfach

vom Stuhl zu erheben. Laufende Programme - zum Beispiel ein Editor - m�ussen zu

Ende gebracht werden, auf einer Mehrbenutzeranlage meldet man sich mit einem

Kommando ab, das exit, quit, logoff, logout, stop, bye oder end lautet. Ar-

beiten Sie mit Fenstern, so �ndet sich irgendwo am Rand das Bild eines Knopfes

(button) namens exit. Einen PC d�urfen Sie selbst ausschalten, ansonsten erledigt

das wieder der System-Manager. Das Ausschalten des Terminals einer Mehrbe-

nutzeranlage hat f�ur den Computer keine Bedeutung, die Sitzung l�auft weiter!

Merke: F�ur UNIX und C/C++ sind gro�e und kleine Buchstaben verschiedene
Zeichen. Ferner sind die Zi�er 0 und der Buchstabe O auseinanderzuhalten.

1.5 Wo schl�agt man nach? 11

1.5 Wo schl�agt man nach?

Wenn es um Einzelheiten geht, sind die zu jedem UNIX-System geh�orenden und

einheitlich aufgebauten Referenz-Handb�ucher { auf Papier oder Bildschirm {

die wichtigste Hilfe12. Sie gliedern sich in folgende Sektionen:

� 1 Kommandos und Anwendungsprogramme

� 1M Kommandos zur Systemverwaltung (maintenance)

� 2 Systemaufrufe

� 3C Subroutinen der Standard-C-Bibliothek

� 3M Mathematische Bibliothek

� 3S Subroutinen der Standard-I/O-Bibliothek

� 3X Besondere Bibliotheken

� 4 Fileformate

� 5 Vermischtes (z. B. Filehierarchie, Zeichens�atze)

� 6 Spiele

� 7 Ger�ate�les

� 8 Systemverwaltung

� 9 Glossar

Subroutinen sind in diesem Zusammenhang vorgefertigte Funktionen f�ur eigene
Programme, Standardfunktionen mit anderen Worten. Die erste Seite jeder Sekti-
on ist mit intro betitelt und f�uhrt in den Inhalt der Sektion ein. Beim Erw�ahnen

eines Kommandos wird die Sektion des Handbuchs in Klammern angegeben, da
das gleiche Stichwort in mehreren Sektionen mit unterschiedlicher Bedeutung vor-

kommen kann, beispielsweise cpio(1) und cpio(4). Die Eintragungen zu den
Kommandos oder Stichw�ortern sind wieder gleich aufgebaut:

� Name (Name des Kommandos, Zweck)

� Synopsis, Syntax (Gebrauch des Kommandos)

� Remarks (Anmerkungen)

� Description (Beschreibung des Kommandos)

� Return Value (R�uckgabewert nach Programmende)

� Examples (Beispiele)

� Hardware Dependencies (hardwareabh�angige Eigenheiten)

� Author (Urheber des Kommandos)

� Files (vom Kommando betro�ene Files)

� See Also (�ahnliche oder verwandte Kommandos)

12Real programmers don't read manuals, behauptet das Netz.

12 1 �Uber den Umgang mit Computern

� Diagnostics (Fehlermeldungen)

� Bugs (M�angel, soweit bekannt)

� Caveats, Warnings (Warnungen)

� International Support (Unterst�utzung europ�aischer Absonderlichkeiten)

Bei vielen Kommandos �nden sich nur Name, Synopsis und Description. Der Sinn

oder Nutzen des Kommandos wird verheimlicht; deshalb versuchen wir, diesen

Punkt zu erhellen. Was hilft die Beschreibung eines Schwei�brenners, wenn Sie

nicht wissen, was und warum man schwei�t? Am Fu� jeder Handbuch-Seite steht

das Datum der Ver�o�entlichung des Eintrags. Schlagen Sie unter pwd(1) und

time(2) nach.

Einige Kommandos oder Standardfunktionen haben keinen eigenen Eintrag,

sondern sind mit anderen zusammengefa�t. So �ndet man das Kommando mv(1)

unter der Eintragung f�ur das Kommando cp(1) oder die Standardfunktion

gmtime(3) bei der Standardfunktion ctime(3). In solchen F�allen mu� man das

Sachregister, den Index des Handbuchs befragen.

Mittels des Kommandos man(1) holt man die Eintr�age aus dem gespeicher-
ten Referenz-Handbuch (On-line-Manual, man-pages) auf den Bildschirm oder

Drucker. Das On-line-Manual sollte zu den auf dem System vorhandenen Kom-
mandos passen, w�ahrend das papierne Handbuch �alter sein kann. Versuchen Sie

folgende Eingaben:

man time

man 2 time

man man

man man | col -b | lp

Die Zahlenangabe bei der zweiten Eingabe bezieht sich auf die gew�unschte Sektion.
Die letzte Eingabezeile druckt die Handbuchseiten zum Kommando man(1) auf

dem Default-Drucker aus (fragen Sie vorsichtshalber Ihren Arzt oder Apotheker
oder besser noch Ihren System-Manager, f�ur das Drucken gibt es viele Wege).

Drucken Sie sich aber nicht das ganze Handbuch aus, die meisten Seiten braucht
man selten oder nie.

1.6 Warum verwendet man Computer (nicht)?

Philosophische Interessen sind bei Ingenieuren h�au�g eine Alterserscheinung,

meint der Wiener Computerpionier Heinz Zemanek. Wir glauben, das n�otige

Alter zu haben, um dann und wann das Wort warum in den Mund nehmen oder
in die Tastatur hacken zu d�urfen. Sehr junge Informatiker �au�ern diese Frage auch

gern. Bei der Umstellung einer hergebrachten T�atigkeit auf Computer steht oft die

Zeitersparnis (= Kostenersparnis) im Vordergrund. Zumindest wird sie als Be-
gr�undung f�ur die Umstellung herangezogen. Das ist weitgehend falsch. W�ahrend

der Umstellung mu� doppelgleisig gearbeitet werden, und nach der Umstellung

erfordert das Computersystem eine st�andige P
ege. Einige Arbeiten gehen mit

1.6 Warum verwendet man Computer (nicht)? 13

Computerhilfe schneller von der Hand, daf�ur verursacht der Computer selbst Ar-

beit. Auf Dauer sollte eine Ersparnis herauskommen, aber die Erwartungen sind

oft �uberzogen.

Nach drei bis zehn Jahren Betrieb ist ein Computersystem veraltet. Die weitere

Benutzung ist unwirtschaftlich, das hei�t man k�onnte mit dem bisherigen Aufwand

an Zeit und Geld eine leistungsf�ahigere Anlage betreiben oder mit einer neuen

Anlage den Aufwand verringern. Dann stellt sich die Frage, wie die alten Daten

weiterhin verf�ugbar gehalten werden k�onnen. Denken Sie an die Lochkartenstapel

ver
ossener Jahrzehnte, die heute nicht mehr lesbar sind, weil es die Maschinen

nicht l�anger gibt. Oft mu� man auch mit der Anlage die Programme wechseln. Der
�Ubergang zu einem neuen System ist von Zeit zu Zeit unausweichlich, wird aber

von Technikern und Kaufleuten gleicherma�en gef�urchtet. Auch dieser Aufwand

ist zu ber�ucksichtigen. Mit Papier und Tinte war das einfacher; einen Brief unserer

Urgro�eltern k�onnen wir heute noch lesen.

Deutlicher als der Zeitgewinn ist der Qualit�atsgewinn der Arbeitsergebnisse.

In einer Buchhaltung sind dank der Unterst�utzung durch Computer die Auswer-
tungen aktueller und di�erenzierter als fr�uher. Informationen { zum Beispiel aus

Einkauf und Verkauf { lassen sich schneller, sicherer und einfacher miteinander
verkn�upfen als auf dem Papierweg. Manuskripte lassen sich bequemer �andern und
besser formatieren als zu Zeiten der mechanischen Schreibmaschine. Von techni-

schen Zeichnungen lassen sich mit minimalem Aufwand Varianten herstellen. Mit
Simulationsprogrammen k�onnen Entw�urfe getestet werden, ehe man an echte und
kostspielige Versuche geht. Literaturrecherchen decken heute eine weit gr�o�ere

Menge von Ver�o�entlichungen ab als vor drei�ig Jahren. Gro�e Datenmengen wa-
ren fr�uher gar nicht oder nur mit Einschr�ankungen zu bew�altigen. Solche Aufgaben

kommen beim Suchen oder Sortieren sowie bei der numerischen Behandlung von
Problemen aus der Wettervorhersage, der Str�omungslehre, der Berechnung von
Flugbahnen oder Verbrennungsvorg�angen vor. Das Durchsuchen umfangreicher

Datensammlungen ist eine Lieblingsbesch�aftigung der Computer.

Noch eine Warnung ist angebracht. Die Arbeit wird durch den Computer nur
selten einfacher. Mit einem Bleistift k�onnen die meisten umgehen, die Benutzung

eines Texteditors erfordert in jedem Fall eine Einarbeitung und die Ausnut-

zung aller M�oglichkeiten eines leistungsf�ahigen Textsystems eine lange Einarbei-
tung und st�andigeWeiterbildung. Ein Schriftst�uck wie das vorliegende w�are vor

drei�ig Jahren nicht am Schreibtisch herzustellen gewesen; heute ist das mit Com-
puterhilfe kein Hexenwerk, setzt aber eine eingehende Besch�aftigung mit mehreren

Programmen voraus.

Man darf nicht vergessen, da� der Computer ein Hilfsmittel, ein Werkzeug

ist. Er bereitet Daten auf, interpretiert sie aber nicht. Er �ubernimmt keine Ver-

antwortung und handelt nicht nach ethischen Grunds�atzen. Er rechnet, aber

wertet nicht. Das ist keine technische Unvollkommenheit, die im Lauf der Zeit

ausgeb�ugelt wird, sondern eine grunds�atzliche Eigenschaft. Die F�ahigkeit zur Ver-
antwortung setzt die Willensfreiheit voraus und diese beinhaltet den eigenen

Willen. Ein Computer, der anf�angt, einen eigenen Willen zu entwickeln, ist ein

Fall f�ur die Werkstatt.

Der Computer soll den Menschen ebensowenig ersetzen wie ein Hammer die

14 1 �Uber den Umgang mit Computern

Hand ersetzt, sondern den Menschen erg�anzen. Das h�ort sich banal an, aber

manchmal ist die Aufgabenverteilung zwischen Mensch und Computer schwierig

zu erkennen. Und es ist bequem, die Entscheidung samt der Verantwortung dem

Computer zuzuschieben. Es gibt auch Aufgaben, bei denen der Computer einen

Menschen vielleicht ersetzen kann { wenn nicht heute, dann k�unftig { aber dennoch

nicht soll. Nehmen wir zwei Extremf�alle. Wenn ich die Telefonnummer 0721/19429

anrufe, antwortet ein Automat und teilt mir den Pegelstand des Rheins bei Karls-

ruhe mit. Das ist ok, denn ich will nur die Information bekommen. Ruft man

dagegen die Telefonseelsorge an, erwartet man, da� ein Mensch zuh�ort, wobei das

Zuh�oren wichtiger ist als das �Ubermitteln einer Information. So klar liegen die

Verh�altnisse nicht immer. Wie sieht es mit dem Computer als Lehrer aus? Darf

ein Computer Sch�uler oder Studenten pr�ufen? Soll ein Arzt eine Diagnose vom

Computer stellen lassen? Hat der Computer als Spielpartner einen Ein
u� auf

die seelische Entwicklung seines Benutzers? Ist ein Computer zuverl�assiger als ein

Mensch? Ist die K�unstliche Intelligenz in allen F�allen der Nat�urlichen Dummheit

�uberlegen? Soll man die Entscheidung �uber Krieg und Frieden dem Pr�asidenten
der USA �uberlassen oder besser seinem Computer? Und wenn der Pr�asident zwar
entscheidet, sich aber auf die Ausk�unfte seines Computers verlassen mu�? Wer ist

dann wichtiger, der Pr�asident oder sein Computer?
Je besser die Computer funktionieren, desto mehr neigen wir dazu, die Daten-

welt f�ur ma�gebend zu halten und Abweichungen der realen Welt von der Daten-
welt f�ur St�orungen. H�ort sich �ubertrieben an, ist es auch, aber wie lange noch?
Fachliteratur, die nicht in einer Datenbank gespeichert ist, z�ahlt praktisch nicht

mehr. Texte, die sich nicht per Computer in andere Sprachen �ubersetzen lassen,
gelten als stilistisch mangelhaft. Bei Meinungsverschiedenheiten �uber personen-
bezogene Daten hat zun�achst einmal der Computer recht, und wenn er Briefe

an Herrn Marianne Meier schreibt. Das l�a�t sich kl�aren, aber wie sieht es mit
dem Weltbild aus, das die Computerspiele unseren Kindern vermitteln? Wel-

che Welt ist wirklich? Kann man von Spielgeld leben? Haben die Mitmenschen
ein so einfaches Gem�ut wie die virtuellen Helden? War Der l�angste Tag nur ein
Bildschirmspektakel? Brauchten wir 1945 nur neu zu booten?

Unbehagen bereitet auch manchmal die zunehmende Abh�angigkeit vom
Computer, die bei St�orf�allen unmittelbar zu sp�uren ist { sei es, da� der Com-

puter streikt oder da� der Strom ausf�allt. Da gibt es Augenblicke, in denen sich

die System-Manager fragen, warum sie nicht Minnes�anger oder Leuchtturmw�arter
(oder beides, wie Otto) geworden sind. Nun, der Mensch war immer abh�angig.

In der Steinzeit davon, da� es gen�ugend viele nicht zu starke B�aren gab, sp�ater
davon, da� das Wetter die Ernte beg�unstigte, und heute sind wir auf die Com-

puter angewiesen. Im Unterschied zu fr�uher { als der erfahrene B�arenj�ager die

B�arenlage �uberblickte { hat heute der Einzelne nur ein unbestimmtes Gef�uhl der
Abh�angigkeit von Dingen, die er nicht kennt und nicht beein
ussen kann.

Vermutlich wird es uns mit den Computern �ahnlich ergehen wie mit der Elek-
trizit�at: wir werden uns daran gew�ohnen. Wie man f�ur Stromunterbrechungen eine

Petroleumlampe und einen Campingkocher bereith�alt, sollte man f�ur Computer-

ausf�alle etwas Papier, einen Bleistift und ein gutes, zum Umbl�attern geeignetes
Buch zur�ucklegen.

2 UNIX

Seid einig, einig, einig!

Schiller, Tell

Dieses Kapitel erl�autert das Betriebssystem UNIX samt seinen Familienan-

geh�origen (AIX, HP-UX, LINUX, SINIX, Solaris, ULTRIX usw.). Das zugeh�orige

Referenz-Handbuch oder Online-Manual ist eine unerl�a�liche Begleitlekt�ure.

2.1 Grundbegri�e

2.1.1 Braucht man ein Betriebssystem?

In der fr�uhen Kindheit der Computer { sch�atzungsweise vor 1950 { hatten die Ma-
schinen kein Betriebssystem. Die damaligen Computer waren jedoch trotz ihrer
gewaltigen r�aumlichen Abmessungen logisch sehr �ubersichtlich, die wenigen Be-

nutzer kannten sozusagen jedes Bit pers�onlich. Beim Programmieren mu�te man
sich auch um jedes Bit einzeln k�ummern. Wollte man etwas auf der Fernschreib-

maschine (so hie� das I/O-Subsystem damals) ausgeben, so schob man Bit f�ur Bit

�uber die Treiberstufen zu den Elektromagneten. In heutiger Sprechweise enthielt
jedes Anwendungsprogramm ein eigenes Betriebssystem.

Die Programmierer waren damals schon so arbeitsscheu (e�ektivit�atsbewu�t)
wie heute und bemerkten bald, da� dieses Vorgehen nicht zweckm�a�ig war. Viele
Programmteile wiederholten sich in jeder Anwendung. Man fa�te diese Teile auf

einem besonderen Lochkartenstapel oder Lochstreifen zusammen, der als Vor-
spann zu jeder Anwendung eingelesen wurde. Der n�achste Schritt war, den Vor-
spanns nur noch nach dem Einschalten der Maschine einzulesen und im Speicher

zu belassen. Damit war das Betriebssystem geboren und die Trennung von den
Anwendungen vollzogen.

Heutige Computer sind r�aumlich nicht mehr so eindrucksvoll, aber logisch um

Gr�o�enordnungen komplexer. Man fa�t viele Einzelheiten zu �ubergeordneten Ob-

jekten zusammen, man abstrahiert in mehreren Stufen. Der Benutzer sieht nur

die oberste Schicht der Software, die ihrerseits mit darunterliegenden Software-

Schichten verkehrt. Zuunterst liegt die Hardware. Ein solches Schichtenmodell

�nden wir bei den Netzen wieder. In Wirklichkeit sind die Schichten nicht sauber

getrennt, sondern verzahnt, teils aus historischen Gr�unden, teils wegen E�ekti-

vit�at, teils aus Schlamperei. Neben dem Schichtenmodell werden objektorien-

tierte Ans�atze verfolgt, in denen alle harten und weichen Einheiten abgekapselte

Objekte sind, die �uber Nachrichten miteinander verkehren. Aber auch hier bildet

sich eine Hierarchie aus.

Was mu� ein Betriebssystem als Minimum enthalten? Nach obigem das, was

alle Anwendungen gleicherma�en ben�otigen. Das sind die Verbindungen zur Hard-
ware (CPU, Speicher, I/O) und die Verwaltung von Prozessen und Daten. Es gibt

15

16 2 UNIX

jedoch Bestrebungen, auch diese Aufgaben in Anwendungsprogramme zu verla-

gern und dem Betriebssystem nur noch koordinierende und kontrollierende T�atig-

keiten zu �uberlassen. Vorteile eines solchen Mikro-Kerns sind �Ubersichtlichkeit

und Anpassungsf�ahigkeit.

Wenn ein UNIX-Programmierer heute Daten nach stdout schreibt, setzt er

mehrere Megabyte System-Software in Bewegung, die andere f�ur ihn erstellt ha-

ben. Als Programmierer d�urfte man nur noch im pluralis modestatis reden.

2.1.2 Verwaltung der Betriebsmittel

Ein Betriebssystem vermittelt zwischen der Hardware und den Benutzern. Aus Be-

nutzersicht verdeckt es den m�uhsamen und schwierigen unmittelbaren Verkehr mit

der Hardware. Der Benutzer braucht sich nicht darum zu sorgen, da� zu bestimm-

ten Zeiten bestimmte elektrische Impulse auf bestimmten Leitungen ankommen,

er gibt vielmehr nur das Kommando zum Lesen aus einem File namens xyz. F�ur

den Benutzer stellen Hardware plus Betriebssystem eine virtuelle Maschine mit

einem im Handbuch beschriebenen Verhalten dar. Was auf der Hardware wirklich
abl�auft, interessiert nur den Entwicklungsingenieur. Daraus folgt, da� dieselbe

Hardware mit einem anderen Betriebssystem eine andere virtuelle Maschine bil-
det. Ein PC mit MS-DOS ist ein MS-DOS-Rechner, derselbe PC mit LINUX ist
ein UNIX-Rechner mit deutlich anderen Eigenschaften. Im Schichtenmodell stellt

jede Schicht eine virtuelle Maschine f�ur ihren oberen Nachbarn dar, die oberste
Schicht die virtuelle Maschine f�ur den Benutzer.

Aus der Sicht der Hardware sorgt das Betriebssystem daf�ur, da� die einzelnen
Betriebsmittel (Prozessor, Speicher, Ports f�ur Ein- und Ausgabe) den Benutzern
bzw. deren Programmen in einer geordneten Weise zur Verf�ugung gestellt werden,

so da� sie sich nicht st�oren. Die Programme d�urfen also nicht selbst auf die Hard-
ware zugreifen, sondern haben ihre W�unsche dem Betriebssystem mitzuteilen, das

sie m�oglichst sicher und zweckm�a�ig weiterleitet1

Neben den harten, k�orperlich vorhandenen Betriebsmitteln kann man auch

Software als Betriebsmittel ansehen. F�ur den Benutzer macht es unter UNIX kei-
nen Unterschied, ob er einen Text auf einen Massenspeicher schreibt oder dem
Electronic Mail System �ubergibt, das aus ein paar Dr�ahten und viel Software be-

steht. Schlie�lich gibt es virtuelle Betriebsmittel, die f�ur den Benutzer oder seinen

Prozess scheinbar vorhanden sind, in Wirklichkeit aber durch Hard- und Soft-

ware vorgegaukelt werden. Beipielsweise wird unter UNIX der immer zu kleine
Arbeitsspeicher scheinbar vergr�o�ert, indem man Massenspeicher zu Hilfe nimmt.
Dazu gleich mehr. Auch zwischen harten und virtuellen Druckern sind vielf�altige

Beziehungen herstellbar. Der Zweck dieser Scheinwelt2 ist, den Benutzer von den

Beschr�ankungen der harten Welt zu befreien. Die Kosten daf�ur sind eine erh�ohte

1Ein Nachteil von MS-DOS ist, da� ein Programmierer direkt die Hardware anspre-

chen kann und sich so um das Betriebssystem herummogelt.
2In UNIX kann ein Benutzer, den es nicht gibt, (ein D�amon) ein File, das es nicht

gibt, (eine Oracle-View) auf einem Drucker, den es nicht gibt, (ein logischer Drucker)

ausgeben, und es kommt am Ende ein reales Blatt Papier mit Text heraus.

2.1 Grundbegri�e 17

Komplexit�at des Betriebssystems und Zeit. Reichlich reale Betriebsmittel sind

immer noch das Beste.

An fast allen Aktivit�aten des Computers ist der zentrale Prozessor beteiligt.

Ein Prozessor erledigt zu einem Zeitpunkt immer nur eine Aufgabe. Der Vertei-

lung der Prozessorzeit kommt daher eine besondere Bedeutung zu. Wenn in

einem leistungsf�ahigen Betriebssystem wie UNIX mehrere Programme (genau-

er: Prozesse) gleichzeitig Prozessorzeit verlangen, teilt das Betriebssystem jedem

nacheinander eine kurze Zeitspanne zu, die nicht immer ausreicht, das jeweilige

Programm zu Ende zu bringen. Ist die Zeitspanne (im Millisekundenbereich) ab-

gelaufen, beendet das Betriebssystem das Programm vorl�au�g und reiht es wieder

in die Warteschlange ein. Nach Bedienung aller anstehenden Programme beginnt

das Betriebssystem wieder beim ersten, so da� bei den Benutzern der Eindruck

mehrerer gleichzeitig laufender Programme entsteht. Dieser Vorgang l�a�t sich

durch eine gleichm�a�ig rotierende Zeitscheibe veranschaulichen, von der jedes

Programm einen Sektor bekommt. Die Sektoren brauchen nicht gleich gro� zu

sein. Diese Form der Auftragsabwicklung wird pr�aemptives oder verdr�angen-
des Multi-Tasking genannt (lat. praeemere = durch Vorkaufsrecht erwerben).

Das Betriebssystem hat sozusagen ein Vorkaufsrecht auf die Prozessorzeit und
verdr�angt andere Prozesse nach Erreichen eines Zeitlimits.

Einfachere Betriebssysteme (Apple System 7, MS-Windows) verwalten zwar

auch eine Warteschlange von Programmen, vollenden aber einen Auftrag, ehe der
n�achste an die Reihe kommt. Die Programme k�onnen sich kooperativ zeigen
und ihren Platz an der Sonne freiwillig r�aumen, um ihren Mitbewerbern eine

Chance zu geben; das Betriebssystem erzwingt dies jedoch nicht. Versucht ein
nicht-kooperatives Programm, die gr�o�te Primzahl zu berechnen, warten die Mit-
benutzer lange. Noch einfachere Betriebssysteme (MS-DOS) richten nicht einmal

eine Warteschlange ein.

Den Algorithmus zur Verteilung der Prozessorzeit (scheduling algorithm) kann
man verfeinern. So gibt es Programme, die wenig Zeit beanspruchen, diese aber
sofort haben m�ochten (Terminaldialog), andere brauchen mehr Zeit, aber nicht

sofort (Hintergrundprogramme). Ein Programm, das auf andere Aktionen warten
mu�, zum Beispiel auf die Eingabe von Daten, sollte vor�ubergehend aus der Vertei-

lung ausscheiden. Man mu� sich vor Augen halten, da� die Prozessoren heute mit

hundert Millionen Takten und mehr pro Sekunde arbeiten. Mit einem einzelnen

Bildschirmdialog langweilt sich schon ein Prozessor f�ur zwo fu�zich.

Das Programm, das der Prozessor gerade abarbeitet, mu� sich im Arbeits-

speicher be�nden. Wenn der Prozessor mehrere Programme gleichzeitig in Arbeit

hat, sollten sie auch gleichzeitig im Arbeitsspeicher liegen, denn ein st�andiges Ein-
und Auslagern vom bzw. zum Massenspeicher kostet Zeit. Nun sind die Arbeits-

speicher selten so gro�, da� sie bei starkem Andrang alle Programme fassen, also
kommt man um das Auslagern doch nicht ganz herum. Das Auslagern des momen-

tan am wenigsten dringend ben�otigten Programms als Ganzes wird als Swapping

oder Speicheraustauschverfahren bezeichnet. Programm samt momentanen Daten
kommen auf die Swapping Area (Swap-File) des Massenspeichers (Platte). Dieser

sollte m�oglichst schnell sein, Swappen auf Band ist der allerletzte Ausweg. Bei
Bedarf werden Programm und Daten in den Arbeitsspeicher zur�uckgeholt. Ein

18 2 UNIX

einzelnes Programm mit seinen Daten darf nicht gr�o�er sein als der verf�ugbare

Arbeitsspeicher.

Bei einer anderen Technik werden Programme und Daten in Seiten (pages) un-

terteilt und nur die augenblicklich ben�otigten Seiten im Arbeitsspeicher gehalten.

Die �ubrigen Seiten liegen auf dem Massenspeicher auf Abruf. Hier darf eine Seite

nicht gr�o�er sein als der verf�ugbare Arbeitsspeicher. Da ein Programm aus vielen

Seiten bestehen kann, darf seine Gr�o�e die des Arbeitsspeichers erheblich �uberstei-

gen. Dieses Paging oder Seitensteuerungsverfahren hat also Vorteile gegen�uber

dem Swapping.

Bei starkem Andrang kommt es vor, da� der Prozessor mehr mit Aus- und

Einlagern besch�aftigt ist als mit nutzbringender Arbeit. Dieses sogenannte Sei-

ten
attern (trashing) mu� durch eine zweckm�a�ige Kon�guration (Verl�angerung

der einem Prozess minimal zur Verf�ugung stehenden Zeit) oder eine Vergr�o�erung

des Arbeitsspeichers verhindert werden. Auch ein Swapping oder Paging �ubers

Netz ist durch ausreichend Arbeitsspeicher oder lokalen Massenspeicher zu ver-

meiden, da es viel Zeit kostet und das Netz belastet.

2.1.3 Verwaltung der Daten

Die Verwaltung der Daten des Systems und der Benutzer in einem File-System

ist die zweite Aufgabe des Betriebssystems. Auch hier schirmt das Betriebssystem

den Benutzer vor dem unmittelbaren Verkehr mit der Hardware ab. Wie die Daten
physikalisch auf den Massenspeichern abgelegt sind, interessiert ihn nicht, sondern
nur die logische Organisation, beispielsweise in einem Baum von Verzeichnissen.

F�ur den Benutzer ist ein File eine zusammengeh�orige Menge von Daten, die er �uber
den Filenamen anspricht. Da� die Daten eines Files physikalisch �uber mehrere,
nicht zusammenh�angende Bereiche auf der Festplatte verstreut sein k�onnen, geht

nur das Betriebssystem etwas an. Ein File kann sogar �uber mehrere Platten, unter
Umst�anden auf mehrere Computer verteilt sein. Im schlimmsten Fall existiert das

File, mit dem der Benutzer zu arbeiten w�ahnt, �uberhaupt nicht, sondern wird
aus Teilen verschiedener Files bei Bedarf zusammengesetzt. Beim Arbeiten mit
Datenbanken kommt das vor. Zum Benutzer hin sehen alle UNIX-File-Systeme

gleich aus, zur Hardware hin gibt es jedoch Unterschiede. Einzelheiten siehe im

Referenz-Handbuch unter fs(4).

2.1.4 Einteilung der Betriebssysteme

Nach ihrem Zeitverhalten werden Betriebssysteme eingeteilt in:

� Batch-Systeme

� Dialog-Systeme

� Echtzeit-Systeme

wobei gemischte Formen die Regel sind.
In einem Batch-System werden die Auftr�age (Jobs) in eine externe Warte-

schlange eingereiht und unter Beachtung von Priorit�aten und weiteren, der E�zi-

enz und Gerechtigkeit dienenden Gesichtspunkten abgearbeitet, ein Auftrag nach

2.1 Grundbegri�e 19

dem anderen. Einige Tage sp�ater holt der Benutzer seine Ergebnisse ab. Diese

Arbeitsweise war fr�uher { vor UNIX { die einzige und ist heute noch auf Gro�-

rechenanlagen verbreitet. Zur Programmentwicklung mit wiederholten Testl�aufen

und Fehlerkorrekturen ist sie praktisch nicht zu gebrauchen.

Bei einem Dialog-System arbeitet der Benutzer an einem Terminal in un-

mittelbarem Kontakt mit der Maschine. Die Reaktionen auf Tastatur-Eingaben

erfolgen nach menschlichen Ma�st�aben sofort, nur bei �Uberlastung der Anlage

kommen sie z�aher. Alle in die Maschine eingegebenen Auftr�age sind sofort ak-

tiv und konkurrieren um Prozessorzeit und die weiteren Betriebsmittel, die nach

ausgekl�ugelten Gesichtspunkten zugewiesen werden. Es gibt keine externe Warte-

schlange f�ur die Auftr�age. UNIX ist in erster Linie ein Dialogsystem.

In einem Echtzeit-System bestimmt der Programmierer oder System-

Manager das Zeitverhalten v�ollig. F�ur kritische Programmteile wird eine maximale

Ausf�uhrungsdauer garantiert. Das Zeitverhalten ist unter allen Umst�anden vorher-

sagbar. UNIX ist infolge der Pu�erung der Datenstr�ome zun�achst kein Echtzeit-

System. Es gibt aber Erweiterungen, die UNIX f�ur Echtzeit-Aufgaben geeignet

machen, siehe Abschnitt 2.13 Echtzeit-Erweiterungen.

Nach der Anzahl der scheinbar gleichzeitig bearbeiteten Aufgaben { wir haben
dar�uber schon gesprochen { unterscheidet man:

� Single-Tasking-Systeme

� Multi-Tasking-Systeme

{ kooperative Multi-Tasking-Systeme

{ pr�aemptive Multi-Tasking-Systeme

Nach der Anzahl der gleichzeitig angemeldeten Benutzer �ndet man eine Ein-
teilung in:

� Single-User-Systeme

� Multi-User-Systeme

Ein Multi-User-System ist praktisch immer zugleich ein Multi-Tasking-System,

andernfalls k�onnten sich die Benutzer nur gemeinsam derselben Aufgabe widmen.
Das ist denkbar, uns aber noch nie �uber den Weg gelaufen. Ein Multi-User-System

enth�alt vor allem Vorrichtungen, die verhindern, da� sich die Benutzer in die Quere
kommen (Benutzerkonten, Zugri�srechte an Files).

Schlie�lich gibt es, bedingt durch den Wunsch nach immer mehr Rechenlei-

stung, die Vernetzung und die Entwicklung von Computern mit mehreren Zen-

tralprozessoren, seit einigen Jahren:

� Einprozessor-Systeme

� Mehrprozessor-Systeme

Ein Sonderfall der Mehrprozessor-Systeme sind Netzwerk-Betriebssysteme,
die mehrere �uber ein Netz verteilte Prozessoren wie einen einzigen Computer

verwalten, im Gegensatz zu Netzwerken aus selbst�andigen Computern mit jeweils
einer eigenen Kopie eines Betriebssystems, das Netzfunktionen unterst�utzt.

20 2 UNIX

Stellt man die Einteilungen in einem vierdimensionalen Koordinatensystem

dar, so besetzen die wirklichen Systeme l�angst nicht jeden Schnittpunkt, au�erdem

gibt es �Ubergangsformen. MS-DOS ist ein Dialogsystemmit Single-Tasking-F�ahig-

keiten f�ur einen einzelnen Prozessor und einen einzelnen Benutzer. IBM-OS/2

ist ein Dialogsystem mit Multi-Tasking-F�ahigkeiten, ebenfalls f�ur einen einzelnen

Prozessor und einen einzelnen Benutzer. UNIX ist ein Dialogsystem mit Multi-

Tasking-F�ahigkeiten f�ur mehrere Benutzer und verschiedene Prozessorentypen,

in j�ungerer Zeit erweitert um Echtzeit-Funktionen und Unterst�utzung mehrerer

paralleler Prozessoren. Das Betriebssystem Hewlett-Packard RTE VI/VM f�ur die

Maschinen der HP 1000-Reihe war ein echtes Echtzeit-System mit einer einfa-

chen Batch-Verwaltung. Die IBM 3090 lief unter dem Betriebssystem MVS mit

Dialog- und Batch-Betrieb (TSO bzw. Job Control Language). Novell NetWare

ist ein Netzwerk-Betriebssystem, das auf vernetzten PCs anstelle von MS-DOS

oder OS/2 l�auft, wohingegen das Internet aus selbst�andigen Computern unter

verschiedenen Betriebssystemen besteht.

Um einen Brief zu schreiben oder die Primzahlen bis 100000 auszurechnen,
reicht MS-DOS. Soll daneben ein Fax-Programm sende- und empfangsbereit sein

und vielleicht noch die Mitgliederliste eines Vereins sortiert werden, braucht man
IBM OS/2 oder MS Windows NT. Wollen mehrere Benutzer gleichzeitig auf dem

System arbeiten, mu� es UNIX sein. Arbeitet man in internationalen Netzen, ist
UNIX der Standard. UNIX l�auft zur Not auf einem einfachen PC mit Disketten,
aber f�ur das, was man heute von UNIX verlangt, ist ein PC mit einem Intel 80386,

8 MB Arbeitsspeicher und einer 200-MB-Festplatte die untere Grenze.

2.1.5 Laden des Betriebssystems

Ein Betriebssystem wie MS-DOS oder UNIX wird auf B�andern, CD-ROMs, Dis-
ketten oder �uber das Netz geliefert. Die Installation auf den Massenspeicher geh�ort
zu den Aufgaben des System-Managers und wird im Abschnitt 2.12 Systemver-

waltung beschrieben. Es ist mehr als ein einfacher Kopiervorgang.

Uns besch�aftigt hier die Frage, wie beim Starten des Systems die Hardware,
die zun�achst noch gar nichts kann, das Betriebssystem vom Massenspeicher in den
Arbeitsspeicher l�adt. Als kaltes Booten oder Kaltstart bezeichnet man einen

Start vom Einschalten des Starkstroms an, als warmes Booten oder Warmstart

einen erneuten Startvorgang einer bereits laufenden und daher warmen Maschine.
Beim Warmstart entfallen einige der ersten Schritte (Tests).

Nach dem Einschalten wird ein einfaches Leseprogramm entweder Bit f�ur Bit

�uber eine besondere Tastatur eingegeben oder von einem permanenten Speicher

(Boot-ROM) im System geholt. Mittels dieses Leseprogramms wird anschlie�end
das Betriebssystem vom Massenspeicher gelesen, und dann kann es losgehen.

Beim Booten wird das Betriebssystem zun�achst auf einem entfernbaren Da-

tentr�ager (Band, CD-ROM, Diskette) gesucht, dann auf der Festplatte. Auf diese

Weise l�a�t sich in einem bestehenden System auch einmal ein anderes Betriebs-
system laden, zum Beispiel LINUX statt MS-DOS, oder bei Besch�adigung des

Betriebssystems auf der Platte der Start von einer Diskette oder einem Band

durchf�uhren.

2.2 Das Besondere an UNIX 21

2.2 Das Besondere an UNIX

2.2.1 Die pr�aunicische Zeit

Der Gedanke, Rechenvorg�ange durch mechanische Systeme darzustellen, ist alt.

Da� wir heute elektronische Systeme bevorzugen { und vielleicht in Zukunft opti-

sche Systeme { ist ein technologischer Fortschritt, kein grunds�atzlicher. Umgekehrt

hat man Zahlen schon immer dazu benutzt, Gegebenheiten aus der Welt der Dinge

zu vertreten.

Wenn in der Jungsteinzeit ein Hirte { sein Name sei �Otzi { sichergehen woll-

te, da� er abends genau so viel St�uck Vieh heimbrachte, wie er morgens auf die

Weide getrieben hatte, stand ihm nicht einmal ein Zahlensystem zur Verf�ugung,

das nennenswert �uber die Zahl zwei hinausging. Da er nicht dumm war, wu�te er

sich zu helfen und bildete die Menge seines Viehs umkehrbar eindeutig auf eine

Menge kleiner Steinchen ab, die er in einem Beutel bei sich trug. Blieb abends ein

Steinchen �ubrig, fehlte ein St�uck Vieh. Die Erkenntnis, da� Mengen andere Men-
gen in Bezug auf eine bestimmte Eigenschaft (hier die Anzahl) vertreten k�onnen,

war ein gewaltiger Sprung und der Beginn der Angewandten Mathematik.

Mit Zahlensystemen taten sich die Menschen fr�uher schwer. Die Griechen {
denen die Mathematik viel verdankt { hatten zwei zum Rechnen gleicherma�en
ungeeignete Zahlensysteme. Das milesische System bildete die Zahlen 1 bis 9,

10 bis 90, 100 bis 900 auf das Alphabet ab, die Zahl 222 schrieb sich also ���.
Das attische oder akrophonische System verwendete die Anfangsbuchstaben der

Zahlw�orter, die Zehn (deka) wurde als � geschrieben. Einen Algorithmus wie das
Sieb des Erathostenes konnte nur ein Grieche ersinnen, dessen Zahlensystem
vom Rechnen abschreckte.

Die R�omer, deren Zahlenschreibweise wir heute noch allgemein kennen und

f�ur bestimmte Zwecke { siehe die Seitennumerierung zu Anfang des Buches {
verwenden, hatten auch nur bessere Strichlisten. �Uber ihre Rechenweise ist wenig
bekannt. Sicher ist, da� sie wie �Otzi Steinchen (calculi) gebrauchten.

Erst mit dem Stellenwertsystem der Araber und Inder wurde das Rech-

nen einfacher. Mit dem Einspluseins, dem Einmaleins und ein paar Regeln l�ost

heute ein Kind arithmetische Aufgaben, deren Bew�altigung im Altertum Bewun-

derung erregt oder im Mittelalter zu einer thermischen Entsorgung gef�uhrt h�atte.

Versuchen Sie einmal, r�omische Zahlen zu multiplizieren. Dann lernen Sie das
Stellenwertsystem zu sch�atzen.

Seither sind Fortschritte erzielt worden, die recht praktisch sind, aber am We-

sen des Umgangs mit Zahlen nichts �andern. Wir schieben keine Steinchen mehr

�uber Rechentafeln, sondern Bits durch Register. Macht das einen Unterschied?

2.2.2 Entstehung

A long time ago in a galaxy far, far away ... so entstand UNIX nicht. Seine Ent-

stehungsgeschichte ist dennoch ungew�ohnlich. Ende der sechziger Jahre schrieben
sich zwei Mitarbeiter der Bell-Labs des AT&T-Konzerns, Ken Thompson und

22 2 UNIX

Dennis Ritchie, ein Betriebssystem zu ihrem eigenen Gebrauch3. Vorl�aufer rei-

chen bis in den Anfang der sechziger Jahre zur�uck. Ihre Rechenanlage war eine

ausgediente DEC PDP 7. Im Jahr 1970 pr�agte ein dritter Mitarbeiter, Brian

Kernighan, den Namen UNIX (Plural: UNICES oder deutsch auch UNIXe) f�ur

das Betriebssystem, au�erdem wurde die PDP 7 durch eine PDP 11/204 ersetzt,

um ein �rmeninternes Textprojekt durchzuf�uhren.

Der Name UNIX geht auf die indoeurop�aischeWurzel *oinos zur�uck, karlsruhe-

risch oins, neuhochdeutsch eins, mit Verwandten in allen indoeurop�aischen Spra-

chen, die au�er der baren Zahl einzigartig, au�erordentlich bedeuten. UNIX hatte

einen Vorg�anger namens MULTICS (Multiplexed Information and Computing Ser-

vice), der bereits viele Ideen vorwegnahm, aber f�ur die damaligen Hardware- und

Programmierm�oglichkeiten wohl etwas zu komplex war und erfolglos blieb. Ken

Thompsonmagerte MULTICS ab, bis es zuverl�assig im Ein-Benutzer-Betrieb lief,

daher UNIX. Inzwischen hat UNIX wieder zugenommen und ist { imWiderspruch

zu seinem Namen { das Mehr-Benutzer-System.

Dennis Ritchie entwickelte auch eine neue Programmiersprache, die C ge-
tauft wurde (ein Vorg�anger hie� B). Das UNIX-System wurde 1973 weitgehend

auf diese Sprache umgeschrieben, um es besser erweitern und auf neue Computer

�ubertragen zu k�onnen.

1975 wurde UNIX erstmals { gegen eine Schutzgeb�uhr { an andere abgegeben,

haupts�achlich an Universit�aten. Vor allem die University of California in Berkeley
besch�aftigte sich mit UNIX und erweiterte es. Die Berkeley-Versionen { mit der

Abk�urzung BSD (Berkeley Software Distribution) versehen { leiten sich von der
Version 7 von AT&T aus dem Jahr 1979 her.

Seit 1983 wird UNIX von AT&T als System V vermarktet. Die lange Entwick-
lungszeit ohne den Ein
u� kaufm�annischer Interessen ist UNIX gut bekommen.
AT&T vergab Lizenzen f�ur die Nutzung der Programme, nicht f�ur den Namen.

Deshalb mu�te jeder Nutzer sein UNIX anders nennen: Hewlett-Packard w�ahlte
HP-UX, Siemens SINIX, DEC ULTRIX, Sun SunOS und Solaris, Apple A/UX, so-
gar IBM nahm das ungeliebte, weil fremde Kind unter dem Namen AIX auf. Von

den NeXT-Rechnern ist NEXTSTEP �ubriggeblieben, das auf unterschiedlicher
Hardware l�auft, u. a. auf den HP 9000/7*. Eine der Portierungen auf PCs hie�

XENIX und machte vor einigen Jahren die H�alfte aller UNIX-Installationen aus.
UNIX ist heute also zum einen ein gesch�utzter Name, urspr�unglich dem AT&T-
Konzern geh�orend, und zum anderen ein Gattungsname f�ur miteinander verwand-

te Betriebssysteme von AIX bis XINU.

Die UNIX-Abf�ullung von Hewlett-Packard { HP-UX { entstand 1982 und

wurzelt in UNIX System III und Berkeley 4.1 BSD. Hewlett-Packard hat eigene

Beitr�age zur Gra�k, Kommunikation, Datenverwaltung und zu Echtzeitfunktio-
nen geleistet. In Europa gilt Siemens-Nixdorf mit SINIX als f�uhrender UNIX-

Hersteller.

3Eine authentische Zusammenfassung �ndet sich in The Bell System Technical Jour-

nal, Vol. 57, July-August 1978, Nr.6, Part 2, p. 1897 - 2312
4Die PDP 11 hatte einen Adressraum von 64 KByte. Ein heutiger PC/AT hat einen

Adressraum von wenigstens 16 MByte. Wenn UNIX allm�ahlich zu einem Speicherfresser

wird, liegt das nicht am Konzept, sondern daran, da� immer mehr hineingepackt wird.

2.2 Das Besondere an UNIX 23

Im Jahr 1991 hat AT&T die UNIX-Gesch�afte in eine Tochtergesellschaft na-

mens Unix System Laboratories (USL) ausgelagert, mit der der amerikanische

Netzwerkhersteller Novell 1992 ein gemeinsames Unternehmen Univel gegr�undet

hat. Anfang 1993 schlie�lich hat Novell USL �ubernommen. Ende 1993 hat No-

vell den Namen UNIX der Open Software Foundation vermacht. Der Handel geht

weiter.

Die V�ater von UNIX in den Bell Labs von AT&T { vor allem Rob Pike und

Ken Thompson { haben sich nicht auf ihren Lorbeeren ausgeruht und ein neues

experimentelles Betriebssystem namens Plan9 entwickelt, das in bew�ahrter Weise

seit Herbst 1992 an Universit�aten weitergegeben wird. Es beh�alt die Vorteile von

UNIX wie das Klarkommen mit heterogener Hardware bei, l�auft auf vernetzten

Prozessoren (verteiltes Betriebssystem), kennt 16-bit-Zeichens�atze und versucht,

den Aufwand an Software zu minimieren, was angesichts der Entwicklung des

alten UNIX und des X Window Systems als besonderer Vorzug zu werten ist.

Ein �ahnliches Ziel schwebt auch HAX vor, das mit einem einfachen Basissystem

anf�angt und sich durch Skalierbarkeit auszeichnet. Skalierbar hei�t ausbauf�ahig,

an die Bed�urfnisse anpa�bar.

Seit 1985 l�auft an der Carnegie-Mellon-Universit�at in Pittsburgh ein Projekt
mit dem Ziel, einen von Grund auf neuen UNIX-Kernel unter Ber�ucksichtigung
moderner Erkenntnisse und Anforderungen zu entwickeln. Das System namens

Mach l�auft bereits auf einigen Anlagen (z. B. unter dem Namen NeXTstep). Ob
es einen eigenen Zweig begr�unden wird wie seinerzeit das Berkeley-System und
ob dieser im Lauf der Jahre wieder in die Linie von AT&T einm�unden wird, wei�

niemand zu sagen.

Die Open Software Foundation (OSF) arbeitet ebenfalls an einer neuen,
von AT&T unabh�angigen Verwirklichung eines UNIX-Systems unter dem Na-

men OSF/1. Dieses System wird von den Mitgliedern der OSF (IBM, Hewlett-
Packard, DEC, Bull, Siemens u. a.) angeboten werden.

Das amerikanische Institute of Electrical and Electronics Engineers (IEEE)
hat seit 1986 eine Sammlung von Standards namens POSIX (Portable Operating

System Interface for Computer Environments) gescha�en, die die grunds�atzlichen
Anforderungen an UNIX-Systeme beschreibt. POSIX wird von der US-Regierung
und der europ�aischen x/OPEN-Gruppe unterst�utzt und soll dazu f�uhren, da�

Software ohne �Anderungen auf allen POSIX-konformen Systemen l�auft. POSIX

selbst ist also kein Betriebssystem.

Neben diesen kommerziellen UNIXen gibt es mehr oder weniger freie Abk�omm-

linge. An mehreren Universit�aten sind UNIX-Systeme ohne Verwendung des ur-
spr�unglichen UNIX von AT&T entstanden, um sie uneingeschr�ankt im Unterricht

oder f�ur Experimente einsetzen zu k�onnen. Die bekanntesten sind MINIX, LI-

NUX, FreeBSD und NetBSD. Das GNU-Projekt der Free Software Foundation

Inc., einer Stiftung, verfolgt das Ziel, der UNIX-Welt Software im Quellcode oh-

ne Kosten zur Verf�ugung zu stellen. Treibende Kraft ist Richard Matthew

Stallman, the Last of the True Hackers. Der Gedanke hinter dem Projekt ist,

da� jeder UNIX-Programmierer Software schreibt und braucht und unter dem

Strich besser f�ahrt, wenn er sich als Geber und Nehmer an GNU beteiligt. Einige
gro�e Programme (C-Compiler, Gnuplot, Ghostscript) sind bereits ver�o�entlicht,

24 2 UNIX

siehe Abschnitt 2.14 GNU is not UNIX . Der erste Betriebssystem-Kernel namens

Hurd kam 1996 heraus. Viel aus dem GNU-Projekt �ndet sich auch bei LINUX

wieder.

Schlie�lich geh�ort heute zu einem UNIX-System die gra�sche, netzf�ahige Be-

nutzerober
�ache X Window System, die zwar vom Kern her gesehen nur eine

Anwendung und daher nicht notwendig ist, f�ur den Benutzer jedoch das Erschei-

nungsbild von UNIX bestimmt.

Weiteres zur UNIX-Familie �ndet man im World Wide Web (WWW) unter

folgenden Uniform Resource Locators (URLs):

� http://www.pasc.org/abstracts/posix.htm

� http://www.freebsd.org/

� http://wwww.netbsd.org/

� http://www.openbsd.org/

� http://www.linux.org/

� http://plan9.bell-labs.com/plan9/

� http://www.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html

� http://www.cs.utah.edu/projects/flexmach/mach4/html/Mach4-proj.html

� http://www.gnu.org/ (Free Software Foundation)

� http://www.camb.opengroup.org/ (OSF, X Window System)

sowie auf den Seiten der kommerziellen Hersteller.
Alle diese UNIX-Systeme sind in den wesentlichen Z�ugen gleich. Sie bauen

aber auf verschiedenen Versionen von UNIX auf (vor allem unterscheiden sich der
AT&T-Zweig und der Berkeley-Zweig) und weichen daher in Einzelheiten vonein-
ander ab. Dennoch sind die Unterschiede gering im Vergleich zu den Unterschieden

zwischen grunds�atzlich fremden Systemen. Weltweit laufen zur Zeit etwa ein bis
zwei Millionen Installationen.

Bei aller Verwandschaft der UNIXe ist trotzdem Vorsicht geboten, wenn es
hei�t, irgendeine Hard- oder Software sei f�ur UNIX verf�ugbar. Das ist bestenfalls

die halbe Wahrheit. Bei Hardware kann die Verbindung zum UNIX-System schon

an mechanischen Problemen scheitern. Eine Modemkarte f�ur einen IBM-PC pa�t
weder mechanisch noch elektrisch in eine HP 9000/712. Ausf�uhrbare Program-

me sind f�ur einen bestimmten Prozessor kompiliert und nicht �ubertragbar, sie

sind nicht bin�arkompatibel. Nur der Quellcode von Programmen, die f�ur UNIX-
Systeme geschrieben worden sind, l�a�t sich zwischen UNIX-Systemen austauschen,

unter Umst�anden mit leichten Anpassungen.

2.2.3 Vor- und Nachteile

Niemand behauptet, UNIX sei das beste aller Betriebssysteme. Im Gegenteil, man-
che Computerhersteller halten ihre eigenen (propriet�aren) Betriebssysteme f�ur

besser5. Aber: ein IBM-Betriebssystem l�auft nicht auf einem DEC-Rechner und

5Real programmers use IBM OS/370.

2.2 Das Besondere an UNIX 25

umgekehrt. UNIX hingegen stammt von einer Firma, die nicht als Computerher-

steller aufgefallen ist, und l�auft auf den Maschinen vieler Hersteller. Man braucht

also nicht jedesmal umzulernen, wenn man den Computer wechselt. Bei Autos ist

man l�angst so weit.

Diese gute Portierbarkeit r�uhrt daher, da� UNIX mit Ausnahme der Trei-

berprogramme in einer h�oheren Programmiersprache { n�amlich C { geschrieben

ist. Zur Portierung auf eine neue Maschine braucht man also nur einige Treiber

und einen C-Compiler in der maschinennahen und unbequemen Assemblersprache

zu schreiben. Der Rest wird fast unver�andert �ubernommen.

Eng mit dem Gesagten h�angt zusammen, da� UNIX die Verbindung von Hard-

ware unterschiedlicher Hersteller unterst�utzt. Man kann unter UNIX an einen

Rechner von Hewlett-Packard Terminals von Wyse und Drucker von NEC an-

schlie�en. Das ist revolution�ar. Eine Folge dieser Flexibilit�at ist, da� die Eigen-

schaften der gesamten Anlage in vielen Kon�gurations-Files beschrieben sind,

die Speicherplatz und Prozessorzeit verbrauchen. Stimmen die Eintragungen in

diesen Files nicht, gibt es St�orungen. Und meist ist an einer St�orung ein File
mehr beteiligt, als man denkt. Die Kon�gurations-Files sind meist Klartext und

lassen sich mit jedem Editor bearbeiten; sie enthalten auch erkl�arenden Kom-
mentar. Die System-Manager h�uten sie wie ihre Aug�apfel, es steckt viel Arbeit
darin.

Zweitens enth�alt UNIX einige Gedanken, die wegweisend waren. Es war von

Anbeginn ein System f�ur mehrere Benutzer (Multiuser-System). Andere Punk-
te sind die File-Hierarchie, die Umlenkung von Ein- und Ausgabe, Pipes, der

Kommando-Interpreter, das Ansprechen der Peripherie als Files, leistungs- und
erweiterungsf�ahige Werkzeuge und Dienstprogramme (fertige Programme zum Er-
ledigen h�au�g vorkommender Aufgaben). Man mu� den Weitblick der V�ater von

UNIX bewundern.

Die St�arken von UNIX liegen in der Programmierumgebung, in der Kom-
munikation und in der inzwischen etwas zur�uckgebliebenen Textverarbeitung.

Schw�achen von UNIX sind das Fehlen von Gra�k- und Datenbankfunktionen so-
wie eine nur mittlere Sicherheit. Manchen ist die Benutzerober
�ache zu spar-
tanisch6. Wenn UNIX nichts sagt, geht es ihm gut, oder es ist mausetot. Wer

viel am Bildschirm arbeitet, ist f�ur die Schweigsamkeit jedoch dankbar. Es gibt

auch technische Gr�unde f�ur die Zur�uckhaltung: wohin sollten die Meldungen eines

Kommandos in einer Pipe oder bei einem Hintergrundprozess gehen, ohne andere

Prozesse zu st�oren? Die Vielzahl und der Einfallsreichtum der Programmierer, die

an UNIX mitgearbeitet haben und noch weiterarbeiten, hat stellenweise zu einer

etwas un�ubersichtlichen und den Anf�anger verwirrenden F�ulle von Werkzeugen

gef�uhrt. Statt einer Shell gibt es gleich ein halbes Dutzend Geschmacksrichtun-

gen. Nach heutiger Erkenntnis hat UNIX auch Schw�achen theoretischer Art, siehe

Andrew S. Tanenbaum.

UNIX gilt als schwierig im Vergleich zu MS-DOS. In dieser Allgemeinheit tei-

len wir die Meinung nicht. F�ur den Benutzer ist UNIX eher einfacher, weil es mehr

kann, zuverl�assiger ist und viele Dinge selbstt�atig erledigt. Auch f�ur den Anwen-

6Gegen eine kleinen Aufpreis hilft das X Window System aber diesem Mangel ab.

26 2 UNIX

dungsprogrammierer ist UNIX einfacher, insbesondere was die Speicherverwaltung

angeht (f�ur UNIX steht der Speicher zusammenh�angend zur Verf�ugung, und wenn

er nicht reicht, wird geschwoppt). Das System-Management hingegen ist schwieri-

ger. An einer Aufgabe wie Electronic Mail oder Druckerausgabe sind ein Dutzend

Files beteiligt, die zusammenarbeiten m�ussen.

UNIX ist sicherer als MS-DOS oder �ahnliche Betriebssysteme. Den Reset-

Knopf brauchen wir vielleicht einmal im Vierteljahr, und das meist im Zusammen-

hang mit Systemumstellungen, die heikel sein k�onnen. Anwendungsprogramme

eines gew�ohnlichen Benutzers haben gar keine M�oglichkeit, das System abst�urzen

zu lassen (sagen wir vorsichtshalber fast keine). Nicht ohne Grund arbeiten viele

Server im Internet mit UNIX.

2.2.4 UNIX-Philosophie

Unter UNIX stehen einige hundert Dienstprogramme (utility, utilitaire) zur

Verf�ugung. Dienstprogramme werden mit dem Betriebssystem geliefert, geh�oren
aber nicht zum Kern, sondern haben den Rang von Anwendungsprogrammen. Sie

erledigen immer wieder und �uberall vorkommende Arbeiten wie Anzeige von File-
verzeichnissen, Kopieren, L�oschen, Editieren von Texten, Sortieren und Suchen.

Die Dienstprogramme von UNIX erf�ullen jeweils eine �uberschaubare Funktion.
Komplizierte Aufgaben werden durch Kombinationen von Dienstprogrammen ge-
meistert. Eierlegende Wollmilchs�aue widersprechen der reinen UNIX-Lehre, kom-

men aber vor (emacs(1)).

Der Benutzer wird mit unn�otigen Informationen verschont. No news are good
news. R�uckfragen, ob man ein Kommando wirklich ernst gemeint hat, gibt es
nicht. UNIX rechnet mit dem m�undigen B�urger. Ein gewisser Gegensatz zur MS-

Windows-Welt ist zu erkennen.

UNIX geht davon aus, da� alle Benutzer guten Willens sind und f�ordert ih-
re Zusammenarbeit. Es gibt aber Hilfsmittel zur �Uberwachung. Schwarze Schafe

entdeckt ein gewissenhafter System-Manager und sperrt sie ein.

Der US-amerikanische Autor Harley Hahn schreibt Unix is the name of a

culture. �Ubertrieben, aber ein eigener Stil im Umgang mit Benutzern und Daten
ist in der UNIX-Welt und dem von ihr gepr�agten Internet zu erkennen.

2.2.5 Aufbau

Man kann sich ein UNIX-System als ein Geb�aude mit mehreren Stockwerken

vorstellen (Abb. 2.1). Im Keller steht die Hardware. Dar�uber sitzt im Erdge-
scho� der UNIX-Kern (kernel, noyau), der mit der Hardware �uber die Treiber-

programme und mit den h�oheren Etagen �uber die Systemaufrufe (system call,
fonction syst�eme) verkehrt. Au�erdem enth�alt der Kern die Prozessverwaltung

und das File-System. Der betriebsf�ahige Kern ist ein einziges Programm, das im

File-System �nden ist (hpux, vmux, vmlinuz). Hardware und UNIX-Kern bilden

die UNIX-Maschine. Die Grenze des Kerns nach oben (die Systemaufrufe) ist

in der UNIX System V Interface De�nition (SVID) beschrieben. Was aus

den oberen Stockwerken kommt, sind f�ur den UNIX-Kern Benutzer- oder An-

2.2 Das Besondere an UNIX 27

Anwendungen

Kommandointerpreter (Shell)

Kernel

Hardware

Benutzerprogramme

UNIX-Maschine
Systemaufrufe

Treiber

aaaaaaaaaaaaaaaaaaa

!!!!!!!!!!!!!!!!!!!

Abb. 2.1: Schematischer Aufbau von UNIX

wendungsprogramme, auch falls sie zum Lieferumfang von UNIX geh�oren. Die

Anwendungsprogramme sind austauschbar, ver�anderbar, erg�anzbar. F�ur den Be-
nutzer im Dachgescho� ist die Sicht etwas anders. Er verkehrt mit der Maschine

�uber einen Kommandointerpreter, die Shell. Sie nimmt seine W�unsche entgegen
und sorgt f�ur die Ausf�uhrung. UNIX ist f�ur ihn in erster Linie die Shell. Allerdings
k�onnte sich ein Benutzer eine eigene Shell schreiben oder Programme, die ohne

Shell auskommen. Dieses Doppelgesicht des Kommandointerpreters spiegelt seine
Mittlerrolle zwischen Benutzer und Betriebssystem-Kern wider.

Die Verteilung der Aufgaben zwischen Kern und Anwendungen ist in manchen
Punkten willk�urlich. Eigentlich sollte ein Kern nur die unbedingt notwendigen

Funktionen enthalten. Ein Monolith von Kern, der alles macht, ist bei den heutigen
Anforderungen kaum noch zu organisieren. In MINIX und OS/2 beispielsweise

ist das File-System eine Anwendung, also nicht Bestandteil des Kerns. Auch die

Arbeitsspeicherverwaltung { das Memory Management { l�a�t sich auslagern, so
da� nur noch Steuerungs- und Sicherheitsfunktionen im Kern verbleiben.

Wer tiefer in den Aufbau von UNIX oder verwandten Betriebssystemen ein-
dringen m�ochte, sollte mit den im Anhang O Literatur genannten B�uchern von

Andrew S. Tanenbaum beginnen. Der Quellcode zu dem dort beschriebenen

Betriebssystem MINIX ist ebenso wie f�ur LINUX auf Papier, Disketten und im

Netz verf�ugbar, einschlie�lich Treibern und Systemaufrufen. Weiter ist in der Uni-

versit�at Karlsruhe, Institut f�ur Betriebs- und Dialogsysteme ein Betriebssystem

KBS f�ur einen Kleinrechner (Atari) entwickelt worden, das in der Zeitschrift c't

28 2 UNIX

Nr. 2, 3 und 4/1993 beschrieben ist und zu dem ausf�uhrliche Unterlagen erh�altlich

sind. Dieses System ist zwar kein UNIX, sondern etwas kleiner und daher �uber-

schaubarer, aber die meisten Aufgaben und einige L�osungen sind UNIX-�ahnlich.

2.3 Prozesse

2.3.1 Was ist ein Prozess?

Wir m�ussen { zumindest vor�ubergehend { unterscheiden zwischen einem Pro-

gramm und einem Prozess, auch Task genannt. Ein Programm l�auft nicht, son-

dern ruht als File im File-System. Beim Aufruf wird es in den Arbeitsspeicher

kopiert, mit Daten erg�anzt und bildet dann einen Prozess (process, processus),

der Prozessorzeit anfordert und seine T�atigkeit entfaltet. Man kann den Prozess

als die grundlegende, unteilbare Einheit ansehen, in der Programme ausgef�uhrt

werden. Inzwischen unterteilt man jedoch in bestimmten Zusammenh�angen Pro-

zesse noch feiner (threads), wie auch das Atom heute nicht mehr unteilbar ist.
Ein Prozess ist eine kleine, abgeschlossene Welt f�ur sich, die mit der Au�enwelt

nur �uber wenige, genau kontrollierte Wege Verbindung h�alt.
Ein UNIX-Prozess besteht im Arbeitsspeicher aus drei Teilen: einem Code-

Segment (auch Text-Segment genannt, obwohl aus unlesbarem Maschinenco-

de bestehend), einem Benutzerdaten-Segment und einem Systemdaten-

Segment. Er bekommt eine eindeutige Nummer, die Prozess-ID (PID). Das

Code-Segment wird bei der Erzeugung des Prozesses beschrieben und ist dann vor
weiteren schreibenden Zugri�en gesch�utzt. Das Benutzerdaten-Segment wird vom
Prozess beschrieben und gelesen, das Systemdaten-Segment darf vom Prozess gele-

sen und vom Betriebssystem beschrieben und gelesen werden. Im Benutzerdaten-
Segment �nden sich unter anderem die dem Prozess zugeordneten Pu�er. Unter
die Systemdaten fallen Statusinformationen �uber die Hardware und �uber o�ene

Files. Durch die Verteilung der Rechte wird verhindert, da� ein wildgewordener
Prozess das ganze System lahmlegt7. Ein Booten wegen eines Systemabsturzes ist

unter UNIX �au�erst selten vonn�oten.
Die gerade im System aktiven Prozesse listet man mit dem Kommando ps(1)

mit der Option -ef auf. Die Ausgabe sieht so aus:

UID PID PPID C STIME TTY TIME COMMAND

root 0 0 0 Jan 22 ? 0:04 swapper

root 1 0 0 Jan 22 ? 1:13 init

root 2 0 0 Jan 22 ? 0:00 pagedaemon

root 3 0 0 Jan 22 ? 0:00 statdaemon

root 31 1 0 Jan 22 ? 0:18 /etc/cron

root 46 1 0 Jan 22 console 0:00 sleep

root 48 1 0 Jan 22 console 0:00 sleep

root 59 1 0 Jan 22 ? 0:00 /etc/delog

7In einfacheren Betriebssystemen als UNIX ist es m�oglich, da� ein Programm

w�ahrend der Ausf�uhrung seinen im Arbeitsspeicher stehenden Code ver�andert. Man

k�onnte ein Programm schreiben, da� sich selbst auffri�t.

2.3 Prozesse 29

wualex1 1279 1 0 Feb 4 console 0:00 -ksh [ksh]

root 1820 1 0 00:48:00 tty0p2 0:00 /etc/getty

lp 1879 1 0 00:51:17 ? 0:00 lpsched

root 2476 1 0 13:02:40 tty1p0 0:00 /etc/getty

root 2497 1 0 13:04:31 tty0p1 0:00 /etc/getty

root 2589 1 0 13:31:34 tty1p1 0:00 /etc/getty

wualex1 2595 1279 4 13:32:39 console 0:00 -ksh [ksh]

wualex1 2596 2595 21 13:32:40 console 0:00 ps -ef

wualex1 2597 2595 3 13:32:40 console 0:00 [sort]

Die Spalten bedeuten folgendes:

� UID User-ID, Besitzer des Prozesses

� PID Prozess-ID, Prozessnummer

� PPID Parent Process ID, Nummer des Elternprozesses

� C Prozessorbenutzung (f�ur Scheduler Priority)

� STIME Start Time des Prozesses

� TTY Kontroll-Terminal des Prozesses

� TIME Dauer der Ausf�uhrung des Prozesses

� COMMAND Name des zugeh�origen Programmes

Im obigen Beispiel ist der j�ungste Prozess sort mit der Nr. 2597; er ist zusam-
men mit ps -ef Teil einer Pipe, um die Ausgabe nach der PID sortiert auf den

Bildschirm zu bekommen. Beide sind Kinder einer Shell ksh mit der Nr. 2595.
Die eckigen Klammern um den Namen weisen darauf hin, da� der Prozess bei sei-
ner Erzeugung m�oglicherweise einen anderen Namen hatte, was meist unwichtig

ist. Die Shell ihrerseits ist Kind der Login-Shell mit der Nr. 1279, die aus einem
getty-Prozess mit derselben Nummer entstanden ist. Elternprozess aller getty-

Prozesse ist der D�amon init mit der PID 1, der Urahne der meisten Prozesse auf
dem System. Dieser und noch wenige andere D�amonen wurden vom swapper mit
der PID 0 erzeugt, der den Verkehr zwischen Arbeits- und Massenspeicher regelt.

Man bemerkt ferner die D�amonen cron(1M) und lpsched(1M) sowie zwei schla-

fende Prozesse (Nr. 46 und 48), die die Druckerports o�en halten. Eine Erkl�arung

der hier vorkommenden Begri�e folgt auf den n�achsten Seiten.

Alle Prozesse, die von einem gemeinsamen Vorfahren abstammen, geh�oren

zu einer Prozessgruppe. Sie verkehren mit der Au�enwelt �uber dasselbe Kon-

trollterminal und empfangen bestimmte Signale als Gruppe. Der gemeinsame

Vorfahre ist der Prozessgruppenleiter. �Uber den Systemaufruf setpgrp(2) er-

nennt sich ein Prozess zum Leiter einer neuen Gruppe. Ohne diese M�oglichkeit

g�abe es im System nur eine Prozessgruppe, da alle Prozesse auf init zur�uckgehen.

2.3.2 Prozesserzeugung (exec, fork)

Nehmen wir an, wir h�atten bereits einen Prozess. Dieser kopiert sich, dann haben
wir zwei gleiche Prozesse, einen Elternprozess und einen Kindprozess. Das

30 2 UNIX

?

Zeit

Elternprozess

1. Kindprozess

synchron
2. Kindprozess

synchron

Asynchroner Kindprozess

wartendwartend

Abb. 2.2: Synchrone und asynchrone Prozesse

Codesegment des Kindprozesses wird nun mit dem Code des neuen Kommandos

oder Programmes �uberlagert. Dann wird der Kindprozess ausgef�uhrt, w�ahrend
der Elternprozess wartet. Ist der Kindprozess fertig, wird er im Speicher gel�oscht

und sein Ende dem Elternprozess mitgeteilt, der nun weitermacht. Der Kindpro-
zess kann seinerseits { solange er lebt { wieder Kinder bekommen, so da� einem
lebhaften Familienleben nichts im Wege steht (Abb. 2.2). Durch das Kopieren

erbt der Kindprozess beide Datensegmente des Elternprozesses und kann damit
arbeiten. Eine R�uckvererbung von den Kindern auf die Eltern gibt es im Ge-
gensatz zum b�urgerlichen Recht (BGB, 5. Buch) nicht, die Vererbung ist eher

biologisch aufzufassen. Programmiertechnisch bedeutet die Prozesserzeugung den
Aufruf eines selbst�andigen Programmes (Hauptprogrammes) mittels der System-

aufrufe exec(2) und fork(2) aus einem anderen Programm heraus.

Wie gelangen wir nun zu dem ersten Prozess im System, der zwangsl�au�g

als Vollwaise auf die Welt kommen mu�? Beim Einschalten des Computers l�auft

ein besonderer Vorgang ab, der den Prozess Nr. 0 mit Namen swapper erzeugt.

Der ruft sogleich einige zum Betrieb erforderliche Prozesse ins Leben, darunter
der init-Prozess mit der Nr. 1. init erzeugt f�ur jedes Terminal einen getty-

Prozess, ist also unter Umst�anden Elternteil einer zahlreichen Nachkommenschaft.

Die getty-Prozesse nehmen die Anmeldungen der Benutzer entgegen und erset-

zen sich ohne Erzeugung eines Kindprozesses durch den login-Prozess, der die

Anmeldung pr�uft. Bei Erfolg ersetzt sich der login-Prozess durch den Komman-
dointerpreter, die Shell. Der Elternprozess dieser ersten Shell ist also init, ih-

re Prozess-ID und ihre Startzeit ist die des zugeh�origen getty-Prozesses. Alle

weiteren Prozesse der Sitzung sind Kinder, Enkel, Urenkel usw. der Sitzungs-
shell. Am Ende einer Sitzung stirbt die Sitzungsshell ersatzlos. Der init-Prozess

2.3 Prozesse 31

{ der Urahne { erf�ahrt dies und erzeugt aufgrund eines respawn-Eintrages in

/etc/inittab(4) wieder einen neuen getty-Prozess.

Wenn der Eltern-Prozess mit seiner Arbeit wartet, bis sein Abk�ommling fertig

ist, spricht man beim Kind von einem synchronen oderVordergrund-Prozess.

Das ist der Regelfall. Man kann aber auch als letztes Zeichen der Kommandozeile

das et-Zeichen & geben, dann ist der Elternprozess sofort zu neuen Taten bereit:

myprogram &

Der Kind-Prozess l�auft asynchron oder im Hintergrund. Sinnvoll ist das nur,

falls der Elternprozess nicht die Ergebnisse seines Kindes ben�otigt. Ein im Vor-

dergrund gestarteter Prozess l�a�t sich auf einigen UNIX-Systemen { abh�angig von

Kernel und Shell { mit der Tastenkombination control-z unterbrechen und dann

mit dem Kommando bg prozessid in den Hintergrund schicken. Umgekehrt holt

ihn fg prozessid wieder in den Vordergrund.

Der Benutzer, der einen Prozess aus seiner Sitzung gestartet hat, ist der Be-

sitzer des Prozesses und verf�ugt �uber ihn, insbesondere darf er ihn gewaltsam be-

enden. Das Terminal, von dem der Prozess aus gestartet wurde, ist sein Kontroll-
Terminal /dev/tty, �uber das er seinen Dialog abwickelt.

Das System f�uhrt eine Prozesstabelle, in der f�ur jeden Prozess alle zugeh�ori-
gen Informationen von der Prozess-ID bis zu den Zeigern auf die Speichersegmente
liegen. Das Kommando ps(1) greift auf diese Tabelle zu.

2.3.3 Selbst�andige Prozesse (nohup)

Stirbt ein Elternprozess, so sterben automatisch alle etwa noch lebenden Kind-
prozesse; traurig, aber wahr. Mit dem Ende einer Sitzungsshell ist auch das Ende

aller in der Sitzung erzeugten Prozesse gekommen. Man m�ochte gelegentlich je-
doch Rechenprogramme zum Beispiel �uber Nacht laufen lassen, ohne die Sitzung
w�ahrend der ganzen Zeit fortzusetzen.

Mit dem Vorkommando nohup(1) (no hang up) vor dem Programmaufruf
erreicht man, da� das Programm bei Beendigung der Sitzung weiterl�auft, es ist

von der Sitzung abgekoppelt. Gleichzeitig mu� man es nat�urlich im Hintergrund
(&) laufen lassen, sonst l�a�t sich die Sitzung nicht vom Terminal aus beenden.
Tats�achlich bewirkt das Vorkommando nohup(1), da� das Signal Nr. 1 (SIGHUP,

hangup) ignoriert wird. Der Aufruf sieht so aus:

nohup program &

F�ur program ist der Name des Programmes einzusetzen, das von der Sitzung abge-

koppelt werden soll. Will man nohup auf Kommandofolgen oder Pipes anwenden,
sind sie in ein Shellscript zu verpacken. Die Ausgabe eines nogehupten Program-

mes geht automatisch in ein File namens nohup.out, falls sie nicht umgelenkt

wird.

Starten wir das Shellscript traptest mit nohup traptest & und beenden

unsere Sitzung (zweimal exit geben), so k�onnen wir in einer neuen Sitzung mit
ps -ef feststellen, da� traptest in Form einer Shell und eines sleep-Prozesses

weiterlebt. Besitzer und urspr�ungliches Kontrollterminal werden angezeigt. Wir

sollten die Shell m�oglichst bald mit kill(1) beenden.

32 2 UNIX

2.3.4 Priorit�at (nice)

Ein Dialog-Prozess sollte unverz�uglich antworten, sonst nervt er. Bei einem Re-

chenprozess, der n�achtelang im Hintergrund l�auft, kommt es dagegen auf eine

Stunde mehr oder weniger nicht an. Deshalb werden den Prozessen unterschied-

liche Priorit�aten einger�aumt. In der Schlange der auf Prozessorzeit wartenden

Prozesse kommt ein Prozess hoher Priorit�at vor einem Prozess niedriger Prio-

rit�at, das hei�t er kommt fr�uher an die Reihe. Es bedeutet nicht, da� ihm mehr

Prozessorzeit zugeteilt wird.

Die Priorit�at eines Prozesses, die man sich mit ps -elf oder ps -al anzeigen

l�a�t, setzt sich aus zwei Teilen zusammen. Der Benutzer kann einem Prozess beim

Aufruf einen nice-Faktor mitgeben. Ein hoher Wert des Faktors f�uhrt zu einer

niedrigen Priorit�at. Den zweiten Teil berechnet das System unter dem Gesichts-

punkt m�oglichst hoher Systeme�zienz. In einem Echtzeit-System w�are eine solche

eigenm�achtige Ver�anderung der Priorit�at untragbar.

Die nice-Faktoren haben Werte von 0 bis 39. Der Standardwert eines Vorder-

grundprozesses ist 20. Mit dem Aufruf:

nice myprocess

setzt man den nice-Faktor des Prozesses myprocess auf 30 herauf, seine Priorit�at
im System wird schlechter. Mittels:

nice -19 myprocess

bekommt der nice-Faktor den schlechtesten Wert (39). Gr�o�ere Zahlen werden
als 19 interpretiert. Negative Werte verbessern den nice-Faktor �uber den Stan-

dardwert hinaus und sind dem System-Manager f�ur Notf�alle vorbehalten. Der
nice-Faktor kann nur beim Prozessstart ver�andert werden, die Priorit�at eines be-

reits laufenden Prozesses l�a�t sich nicht mehr beein
ussen. In Verbindung mit
nohup ist nice gebr�auchlich:

nohup nice program &

nohup time nice program &

nohup nice time program &

Im letzten Fall wird auch die Priorit�at des time-Oberprogrammes herabgesetzt,

was aber nicht viel bringt, da es ohnehin die meiste Zeit schl�aft.

Im GNU-Projekt �ndet sich ein Kommando renice, das die Priorit�at eines

laufenden Prozesses zu �andern erm�oglicht. Weitere �Uberlegungen zur Priorit�at
stehen im Abschnitt 2.13 Echtzeit-Erweiterungen.

2.3.5 D�amonen

2.3.5.1 Was ist ein D�amon?

Das griechische Wort ����!� bezeichnet alles zwischen Gott und Teufel, Holde
wie Unholde; die UNIX-D�amonen sind in der Mitte angesiedelt, nicht immer zu

2.3 Prozesse 33

durchschauen und vorwiegend n�utzlich. Es sind Prozesse, die nicht an einen Benut-

zer und ein Kontrollterminal gebunden sind. Das System erzeugt sie auf Veranlas-

sung des System-Managers, meist beim Starten des Systems. Wie Heinzelm�ann-

chen erledigen sie im stillen Verwaltungsaufgaben und stellen Dienstleistungen

zur Verf�ugung. Beispiele sind der Druckerspooler lpsched(1M), Netzdienste wie

inetd(1M) oder sendmail(1M) und der Zeitd�amon cron(1M). D�amonen, die beim

Systemstart von dem Shellscript /etc/rc ins Leben gerufen worden sind, weisen

in der Prozessliste als Kontrollterminal ein Fragezeichen auf. Mittlerweile ist der

Start der D�amonen beim Booten etwas komplizierter geworden und auf eine Kette

von Shellscripts verteilt.

2.3.5.2 D�amon mit Uhr (cron)

Im System waltet ein D�amon namens cron(1M). Der schaut jede Minute8 in

/var/spool/cron/crontabs und /var/spool/cron/atjobs nach, ob zu dem je-

weiligen Zeitpunkt etwas f�ur ihn zu tun ist. Die Files in den beiden Verzeichnissen
sind den Benutzern zugeordnet. In den crontabs stehen periodisch wiederkehren-

de Aufgaben, in den atjobs einmalige.

In die periodische Tabelle tr�agt man Aufr�aumungsarbeiten ein, die regelm�a�ig
wiederkehrend vorgenommen werden sollen. In unserer Anlage werden beispiels-

weise jede Nacht zwischen 4 und 5 Uhr s�amtliche Sitzungen abgebrochen, Files mit
dem Namen core gel�oscht, die tmp-Verzeichnisse geputzt und der Druckerspooler
neu installiert. Das dient zum Sparen von Plattenplatz und dazu, da� morgens

auch bei Abwesenheit der System-Manager die Anlage m�oglichst st�orungsfrei ar-
beitet. Auch f�ur das Ziehen von Backup-Kopien wichtiger Files auf eine zweite

Platte ist die Tabelle gut.

Jeder Benutzer, dem der System-Manager dies erlaubt hat, kann sich eine
solche Tabelle anlegen, Einzelheiten siehe im Handbuch unter crontab(1). Die
Eintragungen haben folgende Form:

50 0 * * * exec /usr/bin/calendar

Das bedeutet: um 0 Uhr 50 an jedem Tag in jedem Monat an jedem Wochentag

f�uhre das Kommando exec /usr/bin/calendar aus. F�ur den Benutzer wichtiger
ist die Tabelle der einmaligen T�atigkeiten. Mit dem Kommando at(1), wieder
die Erlaubnis des System-Managers vorausgesetzt, startet man ein Programm zu

einem beliebigen sp�ateren Zeitpunkt durch den D�amon cron(1M). Der Aufruf

(mehrzeilig!) sieht so aus:

at 2215 Aug 29

$HOME/program

control-d

In diesem Fall wird am 29. August um 22 Uhr 15 Systemzeit (also mitteleu-

rop�aische Sommerzeit) das Programm program aus meinem Homeverzeichnis ge-

startet. Weitere Zeitformate sind m�oglich, siehe Handbuch unter at(1).

8Die UNIX-Uhr z�ahlt Sekunden seit dem 1. Januar 1970, 00:00 Uhr GMT

34 2 UNIX

Weiterhin kann man dem cron seinen Terminkalender anvertrauen. Jeden

Morgen beim Anmelden erf�ahrt man dann die Termine des laufenden und des

kommenden Tages, wobei das Wochenende ber�ucksichtigt wird. Um die Einga-

be der Termine kommt man allerdings nicht herum, de nihilo nihil oder Input

ist aller Output Anfang . Einzelheiten im Handbuch unter calendar(1). Ein sol-

cher Reminder Service kann im Netz zur Koordination von Terminen mehrerer

Benutzer eingesetzt werden, calendar(1) ist jedoch zu schlicht daf�ur.

Das Kommando leave(1) ist ein Wecker. Mit leave hh:mm kann man sich

5 Minuten vor hh:mm Uhr aus seiner Bildschirmarbeit rei�en lassen.

2.3.5.3 Line Printer Scheduler (lpsched)

Der Line-Printer-Scheduler-D�amon oder Druckerspooler lpsched(1M) verwaltet

die Druckerwarteschlangen im System. Er nimmt Druckauftr�age (request) entge-

gen, ordnet sie in die jeweilige Warteschlange ein und schickt sie zur rechten Zeit

an die Drucker. Ohne seine ordnende Hand k�ame aus den Druckern viel Makulatur

heraus. Es darf immer nur ein Druckerspooler laufen; zeigt die Prozessliste mehre-
re an, ist etwas schiefgegangen. Weiteres siehe Abschnitt 2.7.12 Druckerausgabe.

2.3.5.4 Internet-D�amon (inetd)

Der Internet-D�amon inetd(1M) ist ein T�ursteher, der st�andig am Netz lauscht.
Kommt von au�erhalb eine Anfrage mittels ftp(1), lpr(1), telnet(1),

rlogin(1) oder ein Remote Procedure Call, wird er aktiv und ruft einen auf
den jeweiligen Netzdienst zugeschnittenen Unterd�amon auf, der die Anfrage be-

dient. Es darf immer nur ein Internet-D�amon laufen. Weiteres siehe Abschnitt 3.7
Netzdienste im �Uberblick .

2.3.5.5 Mail-D�amon (sendmail)

Email ist ein wichtiger Netzdienst. St�andig kommt Post herein oder wird

verschickt. Die Verbindung des lokalen Mailsystems zum Netz stellt der
sendmail(1M)-D�amon (Mail Transfer Agent) her, der wegen seiner Bedeutung

unabh�angig vom inetd(1M)-D�amon l�auft. sendmail(1M) ist f�ur seine nicht ganz
triviale Kon�guration ber�uchtigt, die vor allem daher r�uhrt, da� die Mail-Welt

sehr bunt ist. Es gibt eben nicht nur das Internet mit seinen einheitlichen Proto-

kollen. Obwohl ein Benutzer unmittelbar mit sendmail(1M) arbeiten k�onnte, ist
fast immer ein Dienstprogramm wie mail(1) oder elm(1) (Mail Delivery Agent)

vorgeschaltet.

2.3.6 Interprozess-Kommunikation (IPC)

2.3.6.1 IPC mittels Files

Mehrere Prozesse k�onnen auf dasselbe File auf dem Massenspeicher lesend und
schreibend zugreifen, wobei es am Benutzer liegt, das Durcheinander in Grenzen

zu halten. Hiervon wird oft bei sogenannten Lock-Files (engl. to lock = zuschlie-
�en, versperren) Gebrauch gemacht. Beipielsweise darf nur ein elm(1)-Prozess

2.3 Prozesse 35

zum Verarbeiten der Electronic Mail pro Benutzer existieren. Also schaut elm(1)

beim Aufruf nach, ob ein Lock-File /tmp/mbox.username existiert. Falls nein, legt

elm(1) ein solches File an und macht weiter. Falls ja, mu� bereits ein elm(1)-

Prozess laufen, und die weiteren Startversuche enden mit einer Fehlermeldung. Bei

Beendigung des Prozesses wird das Lock-File gel�oscht. Wird der Prozess gewalt-

sam abgebrochen, bleibt das Lock-File erhalten und t�auscht einen elm(1)-Prozess

vor. Das Lock-File von Hand l�oschen.

Die Kommunikation �uber Files erfordert Zugri�e auf den Massenspeicher und

ist daher langsam. In obigem Fall spielt das keine Rolle, aber wenn laufend Daten

ausgetauscht werden sollen, sind andere Mechanismen vorzuziehen.

2.3.6.2 Pipes

Man kann stdout eines Prozesses mit stdin eines weiteren Prozesses verbinden

und das sogar mehrmals hintereinander. Eine solche Konstruktion wird Pipe9,

Pipeline oder Flie�band genannt und durch den senkrechten Strich (ASCII-Nr.

124) bezeichnet:

cat filename | more

cat(1) schreibt das File filename in einem St�uck nach stdout, more(1) sorgt
daf�ur, da� die Ausgabe nach jeweils einem Bildschirm angehalten wird. more(1)
k�onnte auf cat(1) verzichten und selbst das File einlesen (anders als in MS-DOS):

more filename

aber in Verbindung mit anderen Kommandos wie ls(1) ist die Pipe mit more(1)

als letztem Glied zweckm�a�ig. Physikalisch ist eine Pipe ein Pu�erspeicher im
System, in den das erste Programm schreibt und aus dem das folgende Programm
liest. Die Pipe ist eine Einbahnstra�e. Das Piping in einer Sitzung wird von der

Shell geleistet; will man es aus einem eigenen Programm heraus erzeugen, braucht
man den Systemaufruf pipe(2).

2.3.6.3 Named Pipe (FIFO)

W�ahrend die eben beschriebene Pipe keinen Namen hat und mit den beteiligten
Prozessen lebt und stirbt, ist die Named Pipe eine selbst�andige Einrichtung. Ihr
zweiter Name FIFO bedeutet First In First Out und kennzeichnet einen Speicher-

typ, bei dem die zuerst einglagerten Daten auch als erste wieder herauskommen

(im Gegensatz zum Stack, Stapel oder Keller, bei dem die zuletzt eingelagerten
Daten als erste wieder herauskommen). Wir erzeugen im aktuellen Verzeichnis

eine Named Pipe:

mknod mypipe p

(mknod(1M) liegt in /bin, /sbin oder /etc) und �uberzeugen uns mit ls -l von

ihrer Existenz. Dann k�onnen wir mit:

9Auf Vektorrechnern gibt es ebenfalls eine Pipe, die mit der hier beschriebenen Pipe

nichts zu tun hat.

36 2 UNIX

who > mypipe &

cat < mypipe &

unsere Pipe zum Datentransport vom ersten zum zweiten Prozess einsetzen. Die

Reihenfolge der Daten ist durch die Eingabe festgelegt, beim Auslesen verschwin-

den die Daten aus der Pipe (kein Kopieren). Die Pipe existiert vor und nach den

beiden Prozessen und ist beliebig weiter verwendbar. Man wird sie mit rm mypipe

wieder los.

2.3.6.4 Signale (kill, trap)

Ein Prozess kann niemals von au�en beendet werden au�er durch Abschalten der

Stromversorgung. Er verkehrt mit seiner Umwelt einzig �uber rund drei�ig Signale.

Ihre Bedeutung ist im Anhang F UNIX-Signale nachzulesen oder im Handbuch

unter signal(2). Ein Prozess reagiert in dreierlei Weise auf ein Signal:

� er beendet sich (Default10) oder

� ignoriert das Signal oder

� verzweigt zu einem anderen Prozess.

Mit dem Kommando kill(1) (ungl�ucklich gew�ahlter Name) wird ein Signal an

einen Prozess gesendet. Jedes der Kommandos

kill -s 15 4711

kill -s SIGTERM 4711

schickt das Signal Nr. 15 (SIGTERM) an den Prozess Nr. 4711 und fordert ihn

damit h�o
ich auf, seine Arbeit zu beenden und aufzur�aumen. Das Signal Nr. 9
(SIGKILL) f�uhrt zum sofortigen Selbstmord des jeweiligen Prozesses. Mit der
Prozess-ID 0 erreicht man alle Prozesse der Sitzung. Die Eingabe

kill -s 9 0

ist also eine etwas brutale Art, sich abzumelden. Mit kill -l erh�alt man eine
�Ubersicht �uber die Signale mit Nummern und Namen, jedoch ohne Erkl�arungen.

Wie ein Programm bzw. Shellscript (was das ist, folgt in Abschnitt 2.5.2 Shell-

scripts) auf ein Signal reagiert, legt man in Shellscripts mit dem internen Shell-
Kommando trap und in Programmen mit dem Systemaufruf signal(2) fest. Ei-

nige wichtige Signale wie Nr. 9 k�onnen nicht ignoriert oder umfunktioniert werden.
Das trap-Kommando hat die Form

trap "Kommandoliste" Signalnummer

Empf�angt die das Script ausf�uhrende Shell das Signal mit der jeweiligen Num-
mer, wird die Kommandoliste ausgef�uhrt. Das exit-Kommando der Shell wird

als Signal Nr. 0 angesehen, so da� man mit

10F�ur viele Gr�o�en im System sind Werte vorgegeben, die solange gelten, wie man

nichts anderes eingibt. Auch in Anwenderprogrammen werden solche Vorgaben verwen-

det. Sie hei�en Defaultwerte, w�ortlich Werte, die f�ur eine fehlende Eingabe einspringen.

2.3 Prozesse 37

trap "echo Arrivederci; exit" 0

im File /etc/profile die Sitzungsshell zu einem freundlichen Abschied veranlas-

sen kann. Das nackte trap-Kommando zeigt die gesetzten Traps an. Ein Beispiel

f�ur den Gebrauch von Signalen in einem Shellscript namens traptest:

trap "print Abbruch durch Signal; exit" 15
trap "print Lass den Unfug!" 16
while :
do
sleep 1
done

Programm 2.1 : Shellscript traptest mit Signalbehandlung

Setzen Sie die Zugri�srechte mit chmod 750 traptest. Wenn Sie das Shell-

script mit traptest im Vordergrund starten, verschwindet der Prompt der Sit-

zungsshell, und Sie k�onnen nichts mehr eingeben, weil traptest unbegrenzt l�auft

und die Sitzungsshell auf das Ende von traptest wartet. Allein mit der Break-
Taste (Signal 2) werden Sie traptest wieder los. Starten wir das Shellscript mit

traptest & im Hintergrund, kommt der Prompt der Sitzungsshell sofort wieder,
au�erdem erfahren wir die PID der Shell, die traptest abarbeitet, die PID mer-
ken! Mit ps -f sehen wir uns unsere Prozesse an und �nden den sleep-Prozess aus

dem Shellscript. Schicken wir nun mit kill -16 PID das Signal Nr. 16 an die zwei-
te Shell, antwortet sie mit der Ausf�uhrung von print Lass den Unfug!. Da das
Shellscript im Hintergrund l�auft, kommt m�oglicherweise vorher schon der Prompt

der Sitzungsshell wieder. Schicken wir mit kill -15 PID das Signal Nr. 15, f�uhrt
die zweite Shell die Kommandos print Abbruch durch Signal; exit aus, das

hei�t sie verabschiedet sich. Auch hier kann der Sitzungsprompt schneller sein.

Wenn ein Prozess gestorben ist, seine Leiche aber noch in der Prozesstabelle

herumliegt, wird er Zombie genannt. Zombies sollten nicht auf Dauer in der
Prozesstabelle auftauchen. Notfalls booten.

Die weiteren Mittel zur Kommunikation zwischen Prozessen geh�oren in die
Systemprogrammierung und gehen �uber den Bereich dieses Buches hinaus. Wir

erw�ahnen sie kurz, um Ihnen Stichw�orter f�ur die Suche in der Literatur an die

Hand zu geben.

2.3.6.5 Nachrichtenschlangen

Nachrichtenschlangen (message queue) sind keine Konkurrenz der Brieftauben,

sondern im Systemkern gehaltene verkettete Listen mit jeweils einem Identi�er,

deren Elemente kurze Nachrichten sind, die durch Typ, L�ange und Inhalt gekenn-
zeichnet sind. Auf die Listenelemente kann au�er der Reihe zugegri�en werden.

2.3.6.6 Semaphore

Semaphore sind Z�ahlvariablen im System, die entweder nur die Werte 0 und 1
oder Werte von 0 bis zu einem systemabh�angigen n annehmen. Mit ihrer Hilfe

38 2 UNIX

lassen sich Prozesse synchronisieren. Beispielsweise kann man Schreib- und Lese-

zugri�e auf dasselbe File mit Hilfe eines Semaphores in eine geordnete Abfolge

bringen (wenn ein Prozess schreibt, darf kein anderer lesen oder schreiben).

2.3.6.7 Gemeinsamer Speicher

Verwenden mehrere Prozesse denselben Bereich des Arbeitsspeichers zur Ablage

ihrer gemeinsamen Daten, so ist das der schnellste Weg zur Kommunikation, da

jeder Kopiervorgang entf�allt. Nat�urlich mu� auch hierbei f�ur Ordnung gesorgt

werden.

Shared Memory ist nicht auf allen UNIX-Systemen verf�ugbar. Man probiere

folgende Eingabe, die die Manualseite zu dem Kommando ipcs(1) (Interprocess

Communication Status) erzeugt:

man ipcs

Bei Erfolg d�urften Nachrichtenschlangen, Semaphore und Shared Memory einge-

richtet sein.

2.3.6.8 Sockets

Sockets sind ein Mechanismus zur Kommunikation zwischen zwei Prozessen
auf derselben oder auf vernetzten Maschinen in beiden Richtungen. Die Socket-
Schnittstelle besteht aus einer Handvoll Systemaufrufe, die von Benutzerprozessen

in einheitlicher Weise verwendet werden. Darunter liegen die Protokollstapel, das
hei�t die Programmmodule, die die Daten entsprechend den Schichten eines Netz-

protokolls aufbereiten, und schlie�lich die Ger�atetreiber f�ur die Netzkarten oder
sonstige Verbindungen.

2.3.6.9 Streams

Ein Stream ist eine Verbindung zwischen einem Prozess und einem Ger�atetreiber
zum Austausch von Daten in beiden Richtungen (vollduplex). Der Ger�atetreiber
braucht nicht zu einem physikalischen Ger�at (Hardware) zu f�uhren, sondern kann

auch ein Pseudotreiber sein, der nur bestimmte Funktionen zur Verf�ugung stellt. In
den Stream lassen sich nach Bedarf dynamisch Programmmodule zur Bearbeitung
der Daten einf�ugen, beispielsweise um sie einem Netzprotokoll anzupassen (was

bei Sockets nicht m�oglich ist). Das Streams-Konzept erh�oht die Flexibilit�at der

Ger�atetreiber und erlaubt die mehrfache Verwendung einzelner Module auf Grund

genau spezi�zierter Schnittstellen.
Die Terminalein- und -ausgabe wird in neueren UNIXen mittels Streams ver-

wirklicht. Auch Sockets k�onnen durch Streams nachgebildet (emuliert) werden

ebenso wie die Kommunikation zwischen Prozessen auf derselben Maschine oder

auf Maschinen im Netz.

2.3.7 Memo Prozesse

� Ein Prozess ist die Form, in der ein Programm ausgef�uhrt wird. Er liegt im

Arbeitsspeicher und verlangt Prozessorzeit.

2.3 Prozesse 39

� Ein Prozess wird erzeugt durch den manuellen oder automatischen Aufruf

eines Programmes (Ausnahme Prozess Nr. 0).

� Ein Prozess endet entweder auf eigenen Wunsch (wenn seine Arbeit fertig

ist) oder infolge eines von au�en kommenden Signals.

� Prozesse k�onnen untereinander Daten austauschen. Der einfachste Weg ist

eine Pipe (Einbahnstra�e).

� Das Kommando ps(1) mit verschiedenen Optionen zeigt die Prozessliste an.

� Mit dem Kommando kill wird ein Signal an einen Prozess geschickt. Das

braucht nicht unbedingt zur Beendigung des Prozesses zu f�uhren.

2.3.8 �Ubung Prozesse

Suchen Sie sich ein freies Terminal. Melden Sie sich als gast oder guest an.

Ein Passwort sollte dazu nicht erforderlich sein. Falls Sie schon als Benutzer auf

der Anlage eingetragen sind, verwenden Sie besser Ihren Benutzernamen samt
Passwort. Passw�orter d�urfen nicht zu einfach sein, eine Kombination aus sechs
Buchstaben und zwei Zi�ern oder Satzzeichen ist gut. Bei Schwierigkeiten wenden

Sie sich an den System-Manager.

Gro�- und Kleinbuchstaben sind in UNIX verschiedene Zeichen. Auch die Leer-
taste (space) ist ein Zeichen. Bei rechtzeitig (vor dem Tippen von RETURN oder

ENTER) bemerkten Tippfehlern geht man mit der Taste BS oder BACKSPACE
zur�uck { nur nicht beim Anmelden, da mu� alles stimmen.

Nach der Eingabe eines Kommandos ist immer die RETURN- oder ENTER-
Taste zu bet�atigen. Hierauf wird im folgenden nicht mehr hingewiesen. Erst mit
dieser Taste wird das Kommando wirksam. Man kann allerdings Programme so

schreiben, da� sie auf die Eingabe eines Zeichens ohne RETURN antworten (siehe
curses(3)).

Lesen Sie w�ahrend der Sitzung im Referenz-Handbuch die Bedeutung der Kom-
mandos nach. Wenn der Prompt (das Dollarzeichen) kommt, ist der Computer be-
reit zum Empfangen neuer Kommandos. Geben Sie nacheinander folgende Kom-

mandos ein, warten Sie die Antwort des Systems ab:

who (wer arbeitet zur Zeit?)

who -H (wer arbeitet zur Zeit?)

who -a (wer arbeitet zur Zeit?)

who -x (falsche Option)

id (wer bin ich?)

whoami (wer bin ich?)

date (Datum und Uhrzeit?)

zeit (lokales Kommando)

leave hhmm (hhmm 10 min nach jetzt eingeben)

cal (Kalender)

cal 12 2000 (die letzten Tage des Jahrtausends)

40 2 UNIX

cal 9 1752 (Geschichte sollte man k�onnen)

tty (mein Terminal?)

pwd (Arbeitsverzeichnis?)

ls (Inhalt des Arbeitsverzeichnisses?)

man ls (Handbucheintrag zu ls)

ps -ef (verfolgen Sie die Ahnenreihe vom

Prozess Nr.1 { init { bis zu Ihrem

neuesten Prozess ps -ef)

ps -elf (noch mehr Informationen)

sh

sh

ps -f (wieviele Shells haben Sie nun?)

date

ps

exec date

ps

exec date

ps

exec date (Damit ist Ihre erste Shell weg, warum?)

wieder anmelden

ps (PID Ihrer Shell merken)

kill PID (Das reicht nicht)

kill -9 PID (Shell wieder weg)

erneut anmelden

sh

PS1="XXX " (neuer Prompt)

set

exec date

set (Erbfolge beachten)

nice -19 date (falls Betrieb herrscht,

warten Sie lange auf die Zeit)

ls -l & (Prompt kommt sofort wieder,

samt PID von ls)

exit (abmelden)

2.4 Files 41

2.4 Files

2.4.1 Filearten

Eine Datei (�le, �chier) ist eine Menge zusammengeh�origer Daten, auf die mittels

eines Filenamens zugegri�en wird. Wir bevorzugen das Wort File, weil das Wort

Datei { das auch nicht rein deutsch ist { mit nicht immer zutre�enden Assozia-

tionen wie Daten und Kartei behaftet ist. Das englische Wort geht auf lateinisch

�lum = Draht zur�uck und bezeichnete fr�uher eine auf einem Draht aufgereih-

te Sammlung von Schriftst�ucken. Man kann ein File als einen Datentyp h�oherer

Ordnung auffassen. Die Struktur ist in dem File enthalten oder wird durch das

schreibende bzw. lesende Programm einem an sich strukturlosen Zeichenstrom

(byte stream) aufgepr�agt. In UNIX ist das letztere der Fall.

Im UNIX-File-System kommen im wesentlichen drei Arten von Files vor:

gew�ohnliche Files (normales File, regular �le, �chier regulair), Verzeichnisse (Ka-

talog, directory, data set, folder, r�epertoire) und Ger�ate�les (special device �-
le, �chier sp�ecial). Gew�ohnliche Files enthalten Me�daten, Texte, Programme.
Verzeichnisse sind Listen von Files, die wiederum allen drei Gruppen angeh�oren

k�onnen. Ger�ate�les sind eine Besonderheit von UNIX, das periphere Ger�ate
(Laufwerke, Terminals, Drucker) formal als Files ansieht. Die gesamte Datenein-

und -ausgabe erfolgt �uber einheitliche Schnittstellen. Alle Ger�ate�les �nden sich
im Ger�ateverzeichnis /dev, das insofern eine Sonderstellung einnimmt (device =
Ger�at).

Dar�uber hinaus unterscheidet man bei gew�ohnlichen Files noch zwischen les-
baren und bin�aren Files. Lesbare Files (text �le) enthalten nur lesbare ASCII-
Zeichen und k�onnen auf Bildschirm oder Drucker ausgegeben werden. Bin�are Fi-

les (binary) enthalten ausf�uhrbaren (kompilierten) Programmcode, Gra�ken oder
gepackte Daten und sind nicht lesbar. Der Versuch, sie auf dem Bildschirm dar-

zustellen oder sie auszudrucken, f�uhrt zu sinnlosen Ergebnissen und oft zu einem
Blockieren des Terminals oder erheblichem Papierverbrauch. Intelligente Lese-
oder Druckprogramme unterscheiden beide Arten und weigern sich, bin�are Files

zu verarbeiten. Auch bei �Ubertragungen im Netz wird zwischen ASCII-Files und
bin�aren Files unterschieden, siehe Abschnitt 3.9 File-Transfer .

2.4.2 File-System { Sicht von unten

Alle Daten sind auf dem Massenspeicher in einem File-System abgelegt, wobei
auf einer Platte ein oder mehrere File-Systeme eingerichtet sind. In modernen
Anlagen kann ein File-System auch �uber mehrere Platten gehen (spanning). Jedes

UNIX-File-System besteht aus einem Boot-Block am Beginn der Platte (Block 0),

einem Super-Block, einer Inode-Liste und dann einer Vielzahl von Datenbl�ocken,

siehe Abb. 2.3. Der Boot-Block enth�alt Software zum Booten des Systems und
mu� der erste Block im File-System sein. Er wird nur im root-System gebraucht

{ also einmal auf der ganzen Anlage { ist aber in jedem File-System vorhanden.

Er wird beim Einrichten des File-Systems mittels der Kommandos mkfs(1M) oder

newfs(1M) angelegt.

42 2 UNIX

Boot-

block

Super-

block
Inode-Liste Datenbl�ocke

..

..

Abb. 2.3: UNIX-File-System, untere Ebene

Der Super-Block wird ebenfalls bei der Einrichtung des File-Systems ge-

schrieben und enth�alt Informationen zu dem File-System als Ganzem wie die

Anzahl der Datenbl�ocke, die Anzahl der freien Datenbl�ocke und die Anzahl der

Inodes.

Die Inode-Liste enth�alt alle Informationen zu den einzelnen Files au�er den
File-Namen. Zu jedem File geh�ort eine Inode mit einer eindeutigen Nummer.

Einzelheiten siehe Abschnitt 2.4.7 Inodes und Links. Die Files selbst bestehen nur
aus den Daten.

Der Daten-Block ist die kleinste Einheit, in der blockorientierte Ger�ate {
vor allem Platten { Daten schreiben oder lesen. In den Daten-Bl�ocken sind die

Files einschlie�lich der Verzeichnisse untergebracht. Die Blockgr�o�e betr�agt 512
Bytes oder ein Vielfaches davon. Gro�e Bl�ocke erh�ohen die Schreib- und Lesege-
schwindigkeit, verschwenden aber bei kleinen Files Speicherplatz, weil jedem File

mindestens ein Block zugeordnet wird.

Ein MS-DOS-Filesystem beginnt mit dem Boot-Sektor, gefolgt von mehreren
Sektoren mit der File Allocation Table (FAT), dem Root-Verzeichnis und schlie�-

lich den Sektoren mit den Files, also �ahnlich, wenn auch wegen des fehlenden
Inode-Konzeptes nicht gleich. Es gibt weitere File-Systeme, wobei mit gr�o�er wer-
denden Massenspeichern die Zugri�sgeschwindigkeit eine immer wichtigere Rolle

spielt.

2.4.3 File-System { Sicht von oben

Selbst auf einer kleinen Anlage kommt man leicht auf zehntausend Files. Da mu�
man Ordnung halten. Unter UNIX werden zum Benutzer hin alle Files in einer

File-Hierarchie, einer Baumstruktur angeordnet, siehe Abb. 2.4. An der Spitze

steht ein Verzeichnis namens root11, das nur mit einem Schr�agstrich bezeichnet
wird. Dieses Verzeichnis enth�alt einige gew�ohnliche Files und vor allem weitere

11root ist der Name des obersten Verzeichnisses und zugleich der Name des System-

Managers. Das Verzeichnis root ist genau genommen gar nicht vorhanden, sondern be-

zeichnet eine bestimmte Adresse auf dem Massenspeicher, auf der der Filebaum beginnt.

F�ur den Benutzer scheint es aber wie die anderen Verzeichnisse zu existieren. W�ahrend

alle anderen Verzeichnisse in ein jeweils �ubergeordnetes Verzeichnis eingebettet sind, ist

root durch eine Schleife sich selbst �ubergeordnet.

2.4 Files 43

Verzeichnisse. Die Hierarchie kann viele Stufen enthalten, der Benutzer verliert

die �Ubersicht eher als der Computer. In der Wurzel des Filebaumes, dem root-

Verzeichnis, �nden sich folgende Unterverzeichnisse:

� bin (UNIX-Kommandos und -Programme)

� dev (Ger�ate�les)

� etc (Kon�gurations�les, Kommandos zur Systemverwaltung)

� homes (Home-Verzeichnisse der Benutzer)

� lib (Bibliotheken)

� lost+found (Fundb�uro)

� mnt (Mounting Point)

� opt (optionale Software, Compiler, Editoren)

� sbin (Kommandos zur Systemverwaltung)

� tmp (tempor�are Files)

� usr (Fortsetzung von bin)

� var (Verschiedenes)

und noch einige spezielle Verzeichnisse und Files f�ur die Systemverwaltung. Diese
Gliederung ist auf allen UNIX-Systemen anzutre�en. Mit den wachsenden An-

forderungen an UNIX (X11, Netze) �andert sich von Zeit zu Zeit die Einteilung
etwas. Das Verzeichnis mit den Homes der Benutzer, hier homes, hei�t woanders
home, user, users oder auch mnt, ist aber auf jeden Fall vorhanden. Ein Moun-

ting Point ist ein leeres Verzeichnis, in das die Wurzel eines weiteren Filesystems
eingeh�angt werden kann. Auf diese Weise l�a�t sich der urspr�ungliche Filebaum
nahezu unbegrenzt erweitern. Das Verzeichnis /usr enth�alt einige wichtige Unter-

verzeichnisse:

� adm (Systemverwaltung, Accounting)

� bin (UNIX-Kommandos und -Programme)

� contrib (Beitr�age des Computerherstellers)

� lib (Bibliotheken und Kommandos)

� local (lokale Kommandos)

� mail (Mailsystem)

� man (Referenz-Handbuch)

� news (News, Nachrichten an alle)

� tmp (weitere tempor�are Files)

� spool (Drucker-Spoolsystem, cron-Files)

44 2 UNIX

/

bin mnt

wualex gebern

unix cprog

text bilder

bild1.tex

bild2.tex
.
.

unix1.tex

unix2.tex
.
.

aaaaa
!!!!!

aaaaa
!!!!!

aaaaa
!!!!!

XXXXXXXX

��������

Abb. 2.4: UNIX-Filehierarchie

und weitere Unterverzeichnisse f�ur spezielle Zwecke.

Die Eintragungen im Ger�ate-Verzeichnis /dev weichen von denen in anderen
Verzeichnissen ab. Sie enthalten zus�atzlich Angaben �uber den Treiber und den

I/O-Port, an den das jeweilige Ger�at angeschlossen ist. Dasselbe Ger�at kann am
selben Port mit anderem Treiber unter einem anderen Namen erscheinen. Ins-
besondere erscheinen Massenspeicher einmal als blockorientiertes und einmal als

zeichenorientiertes Ger�at. Blockorientierte Ger�ate �ubertragen nicht einzelne Zei-
chen, sondern Bl�ocke von 512 oder mehr Zeichen. Die Namen sind zwar beliebig,

es haben sich aber gewisse Regeln eingeb�urgert:

� console Konsol-Terminal des Systems

� ct Cartridge Tape als Block Device

� dsk Platte als Block Device (blockorientiert)

� lan Netz-Interface

� lp Drucker (line printer)

� mt Magnetband als Block Device

� null Papierkorb (bit bucket)

� pty Pseudo-Terminal

2.4 Files 45

� rct Cartridge Tape als Character Device

� rdsk Platte als Character Device (raw, zeichenorientiert)

� rmt Magnetband als Character Device

� tty Kontrollterminal eines Prozesses

� tty1p2 Terminal an Multiplexer 1, Port 2

Bei umfangreicher Peripherie ist das /dev-Verzeichnis in Unterverzeichnisse geglie-

dert. Beim Schreiben nach /dev/null verschwinden die Daten unwiederbringlich

in einem Schwarzen Loch im Informationsraum, das Lesen aus /dev/null liefert

ein EOF-Zeichen (end of �le).

Nach der Anmeldung landet der Benutzer in seinem Home-Verzeichnis (ho-

me directory, r�epertoire principal). Dort darf er nach Herzenslust Files und Un-

terverzeichnisse anlegen und l�oschen. Das Kommando ls(1) listet ein Verzeichnis

auf und ist das UNIX-Kommando mit den meisten Optionen. Die Form ll(1) ist

gleichwertig ls -l. Sollte sie auf Ihrem System nicht verf�ugbar sein, l�a�t sie sich
durch ein Alias oder ein Shellscript verwirklichen, ebenso andere Varianten von
ls(1).

Das Home-Verzeichnis ist zu Beginn das Arbeits-Verzeichnis oder aktuelle
Verzeichnis (working directory, r�epertoire courant, r�epertoire de travail), dessen
Files unmittelbar �uber ihren Namen ohne die bei root beginnende Verzeichnis-

kette verf�ugbar sind. Man kann jedes Unterverzeichnis seines Home-Verzeichnisses
vor�ubergehend zum Arbeits-Verzeichnis machen, auch andere Verzeichnisse, so-

fern man dazu berechtigt ist. Mit cd(1) wechselt man in ein anderes Arbeits-
Verzeichnis. Nach einer Faustregel soll man ein Verzeichnis weiter unterteilen,
wenn es mehr als 100 Eintragungen enth�alt. Das Kommando pwd(1) nennt das

Arbeits-Verzeichnis, falls man die Orientierung verloren hat.

DerName eines Files wird entweder absolut angegeben, ausgehend von root.
Dann beginnt er mit dem Schr�agstrich und wird auch Pfad (path, chemin d'acc�es)

genannt. Oder er wird relativ zum augenblicklichen Arbeits-Verzeichnis nur mit
seinem letzten Namensteil (basename) angegeben:

/mnt/wualex/buch/unix/einleitung/vorwort.tex

vorwort.tex

Das Kommando basename(1) verk�urzt einen absoluten Namen auf seinen letzten

Namensteil und wird in Shellscripts gebraucht. Umgekehrt zieht das Kommando

dirname(1) aus einem absoluten Filenamen alle Vorderglieder (= Namen von

Verzeichnissen) heraus.

Filenamen d�urfen 14 Zeichen12 lang sein und sollen nur Buchstaben (keine

Umlaute), Zi�ern sowie die Zeichen Unterstrich, Bindestrich oder Punkt enthal-

ten. Es ist �ublich, Kleinbuchstaben zu verwenden, Gro�buchstaben nur f�ur Namen,
die au�allen sollen (README). Die Verwendung von TAB, Backspace, Space, Stern,

ESC und dergleichen ist nicht verboten, f�uhrt aber zu lustigen E�ekten. Verboten

12Es gibt UNIX-Systeme, die 255 Zeichen erlauben. Wird bei der Einrichtung des

Filesystems festgelegt. Vierzehn Zeichen sind heutzutage knapp.

46 2 UNIX

sind nur der Schr�agstrich, der als Trennzeichen in der Pfadangabe dient, und das

Zeichen ASCII-Nr. 0, das einen String abschlie�t. Filenamen sollten mindestens

vier Zeichen lang sein, um die Gefahr einer Verwechslung mit UNIX-Kommandos

zu verringern. Innerhalb eines Verzeichnisses darf ein Name nur einmal vorkom-

men; der gleiche Name in verschiedenen Verzeichnissen benennt verschiedene Files,

zum Beispiel /bin/passwd(1) und /etc/passwd(4). Bei Shellkommandos, die

Filenamen als Argument ben�otigen, kann man in den Filenamen Jokerzeichen

verwenden, siehe Abschnitt 2.5.1.1 Kommandointerpreter .

Die Verwendung von Namenserweiterungen (file.doc, file.dat,

file.bak) oder Kennungen (extension) ist erlaubt, aber nicht so gebr�auchlich

wie unter MS-DOS. Programme im Quellcode bekommen eine Erweiterung (.c f�ur

C-Quellen, .f f�ur FORTRAN-Quellen, .p f�ur PASCAL-Quellen), ebenso imObjekt-

code (.o). Der Formatierer LaTeX verwendet auch Erweiterungen. Es d�urfen auch

Kennungen mit mehr als drei Zeichen oder eine Kette von Kennungen verwendet

werden wie myprogram.c.backup.old. Sammlungen gebr�auchlicher Kennungen

�nden sich im Netz und im Anhang.

Das jeweilige Arbeits-Verzeichnis wird mit einem Punkt bezeichnet, das un-

mittelbar �ubergeordnete Verzeichnis mit zwei Punkten (wie in MS-DOS). Das
Kommando cd .. f�uhrt also immer eine Stufe h�oher in der Filehierarchie. Mit
cd ../.. kommt man zwei Stufen h�oher. Will man erzwingen, da� ein Komman-

do aus dem Arbeitsverzeichnis ausgef�uhrt wird und nicht ein gleichnamiges aus
/bin, so stellt man Punkt und Schr�agstrich voran wie bei ./cmd.

Beim Arbeiten im Netz ist zu bedenken, da� die Beschr�ankungen der File-

namen von System zu System unterschiedlich sind. MS-DOS gestattet beispiels-
weise nur acht Zeichen, dann einen Punkt und nochmals drei Zeichen. Ferner
unterscheidet es nicht zwischen Gro�- und Kleinschreibung. In der Macintosh-

Welt sind Filenamen aus mehreren W�ortern gebr�auchlich. Will man sicher gehen,
so pa�t man die Filenamen von Hand an, ehe man sich auf irgendwelche Automa-

tismen der �Ubertragungsprogramme verl�a�t.

In den Home-Verzeichnissen werden einige Files vom System erzeugt und ver-
waltet. Diese interessieren den Benutzer selten. Ihr Name beginnt mit einem Punkt
(dot), zum Beispiel .profile, daher werden sie von ls(1) nicht angezeigt. Gibt

man ls(1) mit der Option -a, so erscheinen auch sie. Solche Files (dot�le) werden
als verborgen (hidden) bezeichnet, sind aber in keiner Weise geheim.

Ein Verzeichnis wird mit dem Kommando mkdir(1) erzeugt, mit rmdir(1)

l�oscht man ein leeres Verzeichnis, mit rm -r (r = rekursiv) ein volles samt Unter-

verzeichnissen. Frage: Was passiert, wenn Sie gleich nach der Anmeldung rm -r *

eingeben? Die Antwort nicht experimentell ermitteln!

Ein Arbeiten mit Laufwerken wie unter MS-DOS ist unter UNIX nicht vor-

gesehen. Man hat es stets nur mit einer einzigen File-Hierarchie zu tun. Weitere

File-Hierarchien { zum Beispiel auf Disketten oder Platten, lokal oder im Netz

{ k�onnen vor�ubergehend in die File-Hierarchie des Systems eingeh�angt werden.
Dabei wird das Wurzel-Verzeichnis des einzuh�angenden File-Systems auf ein Ver-

zeichnis, einen Mounting Point des root-File-Systems abgebildet. Dieses Verzeich-

nis mu� bereits vorhanden sein, darf nicht in Gebrauch und soll leer sein. Falls es
nicht leer ist, sind die dort enthaltenen Files und Unterverzeichnisse so lange nicht

2.4 Files 47

verf�ugbar, wie ein File-System eingeh�angt ist. Man nennt das mounten, Kom-

mando mount(1M). Mountet man das File-System eines entfernbaren Datentr�agers

(Diskette) und entfernt diesen, ohne ihn vorher mittels umount(1M) unzumoun-

ten (zu unmounten?), gibt es �Arger. Beim Mounten treten Probleme mit den

Zugri�srechten auf. Deshalb gestatten die System-Manager dem Benutzer diese

M�oglichkeit nur auf besonderen Wunsch. File-Systeme k�onnen auch �uber das Netz

gemountet werden, siehe Network File System (NFS). Wir mounten beispielsweise

sowohl lokale File-Systeme von weiteren Platten und CD-Laufwerken wie auch

Verzeichnisse von Servern aus unserem Rechenzentrum in die root-Verzeichnisse

unserer Workstations. Das Weitermounten �uber das Netz gemounteter Verzeich-

nisse ist �ublicherweise nicht gestattet. Auch werden Superuser-Rechte meist nicht

�uber das Netz weitergereicht. Man sollte sich bewu�t sein, da� die Daten von �uber

das Netz gemounteten Filesystemen unverschl�usselt durch die Kabel gehen und

mitgelesen werden k�onnen.

Auf einen entfernbaren Datentr�ager { ob Diskette oder Band ist unerheb-

lich { kann auf zwei Arten zugegri�en werden. Ist auf dem Datentr�ager mittels

newfs(1M) oder mkfs(1M) ein Filesystem eingerichtet, mu� dieses in das beim
Systemstart ge�o�nete root-Filesystem an irgendeiner Stelle mit dem Komman-

do mount(1M) in ein vorhandenes Verzeichnis gemountet werden und wird damit
vor�ubergehend ein Zweig von diesem. Ist der Datentr�ager dagegen nur formatiert
(Kommando mediainit(1)), d. h. zum Lesen und Schreiben eingerichtet, ohne

da� ein Filesystem angelegt wurde, so kann man mit den Kommandos cpio(1)
oder tar(1) darauf zugreifen. Kommandos wie cd(1) oder ls(1) machen dann

keinen Sinn, es gibt auch keine Inodes. Der Datentr�ager ist �uber den Namen
des Ger�ate�les anzusprechen, beispielsweise /dev/rfd.0 oder /dev/rmt/0m, mehr
wei� das System nicht von ihm. Wer sowohl unter MS-DOS wie unter UNIX ar-

beitet, mache sich den Unterschied zwischen einem Wechsel des Laufwerks (A, B,
C ...) unter MS-DOS und dem Mounten eines File-Systems sorgf�altig klar.

2.4.4 Zugri�srechte

Auf einem Mehrbenutzersystem ist es untragbar, da� jeder Benutzer mit allen
Files alles machen darf. Jedes File einschlie�lich der Verzeichnisse wird daher in

UNIX durch einen Satz von neun Zugri�srechten (permission, droit d'acc�es)

gesch�utzt.

Die Benutzer werden eingeteilt in den Besitzer (owner, propri�etaire), seine

Gruppe (group, groupe) und die Menge der sonstigen Benutzer (ohne den Be-

sitzer und seine Gruppe), auch Rest der Welt (others) genannt. Die Rechte
werden ferner nach Lesen (read), Schreiben (write) und Suchen/Ausf�uhren

(search/execute) unterschieden. Bei einem gew�ohnlichen File bedeutet execute

Ausf�uhren (was nur bei Programmen Sinn macht), bei einem Verzeichnis Durch-

suchen. Jedes Zugri�srecht kann nur vom Besitzer erteilt und wieder entzogen

werden. Und nat�urlich { wie immer { vom System-Manager.

Der Besitzer eines Files ist zun�achst derjenige, der es erzeugt hat. Mit dem

Kommando chown(1) l�a�t sich jedoch der Besitz an einen anderen Benutzer �uber-
tragen (ohne da� dieser zuzustimmen braucht). Entsprechend �andert chgrp(1)

48 2 UNIX

die zugeh�orige Gruppe. Will man ein File f�ur andere lesbar machen, so reicht es

nicht, dem File die entsprechende Leseerlaubnis zuzuordnen oder den Besitzer zu

wechseln. Vielmehr m�ussen alle �ubergeordneten Verzeichnisse von / an l�uckenlos

das Suchen gestatten. Das wird oft vergessen.

Die Zugri�srechte lassen sich in Form einer dreistelligen Oktalzahl angeben,

und zwar hat

� die read-Erlaubnis den Wert 4,

� die write-Erlaubnis den Wert 2,

� die execute/search-Erlaubnis den Wert 1

Die drei Stellen der Oktalzahl sind in folgender Weise den Benutzern zugeordnet:

� links der Besitzer (owner),

� in der Mitte seine Gruppe (group), ohne Besitzer

� rechts der Rest der Welt (others), ohne Besitzer und Gruppe

Eine sinnvolle Kombination ist, dem Besitzer alles zu gestatten, seiner Gruppe

das Lesen und Suchen/Ausf�uhren und dem Rest der Welt nichts. Die Oktalzahl
750 bezeichnet diese Empfehlung. Oft wird auch von den Gruppenrechten kein

Gebrauch gemacht, man setzt sie gleich den Rechten f�ur den Rest der Welt, also
die Oktalzahl auf 700. Das Kommando zum Setzen der Zugri�srechte lautet:

chmod 750 filename

Setzt man die Zugri�srechte auf 007, so d�urfen der Besitzer und seine Gruppe

gar nichts machen. Alle �ubrigen (Welt minus Besitzer minus Gruppe) d�urfen das
File lesen, �andern und ausf�uhren. Der Besitzer kann nur noch die Rechte auf

einen vern�unftigeren Wert setzen. Mit der Option -R werden die Kommandos
chmod(1), chown(1) und chgrp(1) rekursiv und beein
ussen ein Verzeichnis samt
allem, was darunter liegt. Bei chmod(1) ist jedoch aufzupassen: meist sind die

Zugri�srechte f�ur Verzeichnisse anders zu setzen als f�ur gew�ohnliche Files. Es gibt
noch weitere Formen des chmod(1)-Kommandos. Aus Sicherheitsgr�unden soll man
die Zugri�srechte m�oglichst einschr�anken. Will ein Benutzer auf ein File zugreifen

und darf das nicht, wird er sich schon r�uhren. Mittels des Kommandos:

ls -l filename

erf�ahrt man die Zugri�srechte eines Files. Die Ausgabe sieht so aus:

-rw-r----- 1 wualex1 users 59209 May 15 16:21 unix.tex

Die Zugri�srechte hei�en hier also read und write f�ur den Besitzer wualex1, read
f�ur seine Gruppe users und f�ur den Rest der Welt nichts. Die Zahl 1 ist der Wert

des Link-Z�ahlers, siehe Abschnitt 2.4.7 Inodes und Links. Dann folgen Besitzer
und Gruppe sowie die Gr�o�e des Files in Bytes. Das Datum gibt die Zeit des

letzten schreibenden (ver�andernden) Zugri�s an. Schlie�lich der Name. Ist das

Argument des Kommandos ls(1) der Name eines Verzeichnisses, werden die Files
des Verzeichnisses in alphabetischer Folge aufgelistet.

2.4 Files 49

Beim Kopieren mu� man Zugang zum Original (Sucherlaubnis f�ur alle �uber-

geordneten Verzeichnisse) haben und dieses lesen d�urfen. Besitzer der Kopie wird

der Veranlasser des Kopiervorgangs. Er kann anschlie�end die Zugri�srechte der

Kopie �andern, die Kopie geh�ort ihm. Leserecht und Kopierrecht lassen sich nicht

trennen. Das Kommando zum Kopieren lautet:

cp originalfile copyfile

Falls das File copyfile schon vorhanden ist, wird es ohne Warnung �uberschrieben.

Ist das Ziel ein Verzeichnis, wird die Kopie dort eingeh�angt. Der Versuch, ein File

auf sich selbst zu kopieren { was bei der Verwendung von Jokerzeichen oder Links

vorkommt { f�uhrt zu einer Fehlermeldung.

Die Default-Rechte werden mittels des Kommandos umask(1) im File

/etc/profile oder $HOME/.profile gesetzt. Das Kommando braucht als Ar-

gument die Erg�anzung der Rechte auf 7. Beispielsweise setzt

umask 077

die Default-Rechte auf 700, ein g�angiger Wert. Ohne Argument aufgerufen zeigt

das Kommando den aktuellen Wert an.

Gelegentlich m�ochte man einzelnen Benutzern Rechte erteilen, nicht gleich
einer ganzen Gruppe. W�ahrend so etwas unter Windows NT vorgesehen ist, geh�ort

es nicht zum Standard von UNIX. Unter HP-UX l�a�t sich jedoch einem File eine
Access Control List zuordnen, in die Sonderrechte eingetragen werden, N�aheres
mittels man 5 acl.

F�ur das System ist ein Benutzer im Grunde nur ein B�undel von Rechten. Ob
dahinter eine nat�urliche oder juristische Person, eine Gruppe von Personen oder
ein D�amon steht, ist unwesentlich. Es gibt Betriebssysteme wie Windows NT

oder Datenbanken wie Oracle, die st�arker di�erenzieren { sowohl nach der Art
der Rechte wie nach der Einteilung der Benutzer - aber mit diesem Satz von
neun Rechten kommt man schon weit. Die st�arkere Di�erenzierung ist schwieriger

zu �uberschauen und birgt die Gefahr, Sicherheitsl�ucken zu �ubersehen. In Netzen
sind die Zugangswege und damit die �Uberlegungen zur Sicherheit komplexer. Der

Superuser oder Privileged User mit der User-ID 0 { der System-Manager oder
Administrator �ublicherweise { ist an die Zugri�srechte nicht gebunden. Wollen Sie

Ihre h�ochst private Mail vor seinen Augen sch�utzen, m�ussen Sie sie verschl�usseln.

Merke: Damit jemand auf ein File zugreifen kann, m�ussen zwei Bedingungen

erf�ullt sein:

� Er mu� einen ununterbrochenen Suchpfad vom Root-Verzeichnis (/) bis zu

dem File haben, und

� er mu� die entsprechenden Rechte an dem File haben.

2.4.5 Set-User-ID-Bit

Vor den drei Oktalzi�ern der Zugri�srechte steht eine weitere Oktalzi�er, die man
ebenfalls mit dem Kommando chmod(1) setzt. Der Wert 1 ist das Sticky Bit

50 2 UNIX

(klebrige Bit), das bei Programmen, die gleichzeitig von mehreren Benutzern be-

nutzt werden (sharable programs), dazu f�uhrt, da� die Programme st�andig im

Arbeitsspeicher verbleiben und somit sofort verf�ugbar sind. Wir haben das Sticky

Bit eine Zeitlang beim Editor vi(1) verwendet. Bei einem Verzeichnis f�uhrt das

Sticky Bit dazu, da� nur noch der Besitzer eines darin eingeordneten Files dieses

l�oschen oder umbenennen kann, auch wenn die �ubrigen Zugri�srechte des Ver-

zeichnisses diese Operationen f�ur andere erlauben, Beispiel /tmp. Das Sticky Bit

kann nur der Superuser vergeben.

Der Wert 2 ist das Set-Group-ID-Bit, der Wert 4 das Set-User-ID-Bit,

auch Setuid-Bit oder Magic Bit genannt. Sind diese gesetzt, so hat das Programm

die Zugri�srechte des Besitzers (owner), die von den Zugri�srechten dessen, der

das Programm aufruft, abweichen k�onnen. Ein h�au�ger Fall ist, da� ein Pro-

gramm ausf�uhrbar f�ur alle ist, der root geh�ort und bei gesetztem suid-Bit auf

Files zugreifen darf, die der root vorbehalten sind. Wohlgemerkt, nur das Pro-

gramm bekommt die erweiterten Rechte, nicht der Aufrufende. Man sagt, der aus

dem Programm hervorgegangene Prozess laufe e�ektiv mit der Benutzer-ID des
Programmbesitzers, nicht wie �ublich mit der des Aufrufenden.

Das UNIX-Kommando /bin/passwd(1) geh�ort der root, ist f�ur alle ausf�uhr-
bar, sein suid-Bit ist gesetzt:

-r-sr-xr-x 1 root bin 112640 Nov 22 1989 /bin/passwd

Damit ist es m�oglich, da� jeder Benutzer sein Passwort in dem File

/etc/passwd(4) �andern darf, ohne die Schreiberlaubnis f�ur dieses File zu be-
sitzen:

---r--r--r 1 root other 3107 Dec 2 10:39 /etc/passwd

Da durch das Programm der Umfang der �Anderungen begrenzt wird (n�amlich
auf die �Anderung des eigenen Passwortes), erh�alt der Benutzer nicht die vollen

Rechte des Superusers. F�ur das sgid-Bit gilt Entsprechendes. Beide k�onnen nur
f�ur ausf�uhrbare (kompilierte) Programme vergeben werden, nicht f�ur Shellscripts,
aus Sicherheitsgr�unden. Das Setzen dieser beiden Bits f�ur Verzeichnisse f�uhrt auf

unseren Anlagen zu Problemen, die Verzeichnisse sind nicht mehr verf�ugbar. Wer

aufgepa�t hat, k�onnte auf folgende Gedanken kommen:

� Ich kopiere mir den Editor vi(1). Besitzer der Kopie werde ich.

� Dann setze ich mittels chmod 4555 vi das suid-Bit. Das ist erlaubt.

� Anschlie�end schenke ich mittels chown root vi meinen vi dem Superuser,
warum nicht. Das ist ebenfalls erlaubt.

Nun habe ich einen von allen ausf�uhrbaren Editor, der Superuser-Rechte hat,

also beispielsweise das File /etc/passwd(4) unbeschr�ankt ver�andern darf. Der
Gedankengang ist zu naheliegend, als da� nicht die V�ater von UNIX auch schon

darauf gekommen w�aren. Probieren Sie es aus.
Falls Sie schon Kap. ?? Programmieren in C/C++ verinnerlicht haben, k�onn-

ten Sie weiterdenken und sich ein eigenes Kommando mychown schreiben wollen.

Dazu brauchen Sie den Systemaufruf chown(2); die Inode-Liste, die den Namen

2.4 Files 51

des File-Besitzers enth�alt, ist nicht direkt mittels eines Editors beschreibbar. Lei-

der steht im Referenz-Handbuch, da� der Systemaufruf bei gew�ohnlichen Files das

suid-Bit l�oscht. Sie geben nicht auf und wollen sich einen eigenen Systemaufruf

chmod(2) schreiben: Das bedeutet, sich einen eigenen UNIX-Kern zu schreiben.

Im Prinzip m�oglich, aber dann ist unser Buch unter Ihrem Niveau. Dieses Leck ist

also dicht, aber Programme mit suid-Bit { zumal wenn sie der root geh�oren { sind

immer ein bi�chen verd�achtig. Ein gewissenhafter System-Manager beauftragt da-

her den D�amon cron(1M) mit ihrer regelm�a�igen �Uberwachung. Da das suid-Bit

selten vergeben wird, k�onnte der System-Manager auch ein eingeschr�anktes chmod-

Kommando schreiben und die Ausf�uhrungsrechte des urspr�unglichen Kommandos

eingrenzen.

Sticky Bit, suid-Bit und sgid-Bit werden beim Kommando ls -l durch Mo-

di�kationen der Anzeige der Zugri�srechte kenntlich gemacht. Das Sticky-Bit ist

an einem t bei dem execute-Recht f�ur alle zu erkennen, suid-Bit und sgid-Bit an

einem s bei den execute-Rechten f�ur Besitzer beziehungsweise Gruppe.

2.4.6 Zeitstempel

Zu jedem UNIX-File geh�oren drei Zeitangaben, die Zeitstempel genannt und au-
tomatisch verwaltet werden:

� die Zeit des j�ungsten lesenden Zugri�s (access time),

� die Zeit der j�ungsten schreibenden Zugri� (modi�cation time),

� die Zeit der j�ungsten �Anderung des Filestatus (status change time).

Der Filestatus umfa�t den Fileinhalt, die Zugri�srechte und den Linkz�ahler. Ein

Schreibzugri� �andert also zwei Zeitstempel. Bei Verzeichnissen gilt das Durchsu-
chen nicht als lesender Zugri�, L�oschen oder Hinzuf�ugen von Files gilt als schrei-
bender Zugri�.

Das Kommando ls -l zeigt das Datum des j�ungsten schreibenden Zugri�s an,

mit ls -lu erf�ahrt man das Datum des j�ungsten lesenden Zugri�s, mit ls -lc

das Datum der j�ungsten �Anderung des Status. Das folgende C-Programm gibt
zu einem Filenamen alle drei Zeitstempel aus, falls DEBUG de�niert ist, auch in

Rohform als Sekunden seit UNIX Geburt:

/* Information ueber die Zeitstempel einer Datei */

/* #define DEBUG */

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>

int main(int argc, char *argv[])

{
struct stat buffer;
struct tm *p;

52 2 UNIX

if (argc < 2) {
puts("Dateiname fehlt"); return (-1);

}

if (!access(argv[1], 0)) {
if (!(stat(argv[1], &buffer))) {

#ifdef DEBUG
puts(argv[1]);
printf("atime = %ld\n", buffer.st atime);
printf("mtime = %ld\n", buffer.st mtime);
printf("ctime = %ld\n\n", buffer.st ctime);

#endif

p = localtime(&(buffer.st atime));
printf("Gelesen: %d. %d. %d %2d:%02d:%02d\n",

p->tm mday, p->tm mon + 1, p->tm year, p->tm hour, p->tm min, p->tm sec);

p = localtime(&(buffer.st mtime));
printf("Geschrieben: %d. %d. %d %2d:%02d:%02d\n",

p->tm mday, p->tm mon + 1, p->tm year, p->tm hour, p->tm min, p->tm sec);

p = localtime(&(buffer.st ctime));
printf("Status geaendert: %d. %d. %d %2d:%02d:%02d\n",

p->tm mday, p->tm mon + 1, p->tm year, p->tm hour, p->tm min, p->tm sec);

}
else {

puts("Kein Zugriff auf Inode (stat)"); return (-1);
}
}
else {

puts("File existiert nicht (access)"); return (-1);
}
return 0;
}

Programm 2.2 : C-Programm zur Anzeige der Zeitstempel eines Files

Der Zeitpunkt der Erscha�ung eines Files wird nicht festgehalten und ist auch

aus technischer Sicht uninteressant. �Anderungen an den Daten hingegen sind f�ur

Werkzeuge wie make(1) wichtig.

2.4.7 Inodes und Links

Die Verzeichnisse enthalten nur die Zuordnung File-Name zu einer File-Nummer,

die als Inode-Nummer (Index-Node) bezeichnet wird. In der Inode-Liste, die

vom System verwaltet wird, stehen zu jeder Inode-Nummer alle weiteren Infor-
mationen �uber ein File einschlie�lich der Startadresse und der Gr�o�e des Daten-

bereiches. Insbesondere sind dort die Zugri�srechte und die Zeitstempel vermerkt.

Einzelheiten sind im Handbuch unter inode(5) und fs(5) zu �nden. Das Kom-

2.4 Files 53

mando ls -i zeigt die Inode-Nummern an. Wie die Informationen der Inode in

eigenen Programmen abgefragt werden, steht in Abschnitt 2.11.3 Beispiel File-

Informationen.

Diese Zweiteilung in Verzeichnisse und Inode-Liste erlaubt eine n�utzliche Kon-

struktion, die in MS-DOS oder IBM-OS/2 bei aller sonstigen �Ahnlichkeit nicht

m�oglich ist. Man kann einem File sprich einer Inode-Nummer n�amlich mehre-

re Filenamen, unter Umst�anden in verschiedenen Verzeichnissen, zuordnen. Das

nennt man linken13. Das File, auf das mehrere Filenamen gelinkt sind, existiert

nur einmal (deshalb macht es keinen Sinn, von einem Original zu reden), aber

es gibt mehrere Zugangswege, siehe Abb. 2.5. Zwangsl�au�g geh�oren zu gelinkten

Filenamen dieselben Zeitstempel und Zugri�srechte, da den Namen nur eine ein-

zige Inode zugrunde liegt. Das Kommando zum Linken zweier Filenamen lautet

ln(1):

ln oldname newname

Auf diese Weise spart man Speicher und braucht beim Aktualisieren nur ein ein-
ziges File zu ber�ucksichtigen. Die Kopie eines Files mittels cp(1) hingegen ist ein

eigenes File mit eigener Inode-Nr., dessen weiterer Lebenslauf unabh�angig vom
Original ist. Beim Linken eines Files wird sein Linkz�ahler um eins erh�oht. Beim
L�oschen eines Links wird der Z�ahler herabgesetzt; ist er auf Null angekommen,

wird der vom File belegte Speicherplatz freigegeben. Bei einem Verzeichnis hat

Directory 1

Name Inode

abc 4711

Directory 2

Name Inode

xyz 4711

Q
Q
Q
Q
Q
Q
QQs

�
�
�
�
�
�
�
��

Inode-Liste

Inode 4711 - File

Abb. 2.5: Harter Link

13Das Wort linken hat eine zweite Bedeutung im Zusammenhang mit dem Kompilieren

von Programmen.

54 2 UNIX

der Linkz�ahler immer den Wert 2, da jedes Verzeichnis einen Link auf sich selbst

enth�alt, dargestellt durch den Punkt beim Au
isten. So ist die wichtigste Informa-

tion �uber ein Verzeichnis { seine Inode-Nummer { doppelt gespeichert, n�amlich

im �ubergeordneten Verzeichnis und im Verzeichnis selbst. Ebenso ist in jedem

Verzeichnis an zweiter Stelle die Inode-Nummer des �ubergeordneten Verzeichnis-

ses abgelegt. Jedes Verzeichnis wei� selbst, wie es hei�t und wohin es geh�ort. Das

erm�oglicht Reparaturen des Filesystems bei Unf�allen. Als Benutzer kann man

Verzeichnisse weder kopieren noch linken, sondern nur die in einem Verzeichnis

versammelten Files. Old Root kann nat�urlich wieder mehr, siehe link(1M) und

link(2).

Dieser sogenannte harte Link kann sich nicht �uber die Grenze eines File-

Systems erstrecken, auch falls es gemountet sein sollte. Der Grund ist einfach:

jedes File-System verwaltet seine eigenen Inode-Nummern und hat seinen eigenen

Lebenslauf. Es kann heute hier und morgen dort gemountet werden. Ein Link �uber

die Grenze k�onnte dem Lebenslauf nicht folgen.

Im Gegensatz zu den eben erl�auterten harten Links d�urfen sich symbolische
Links oder weiche Links �uber die Grenze eines File-Systems erstrecken und
sind auch bei Verzeichnissen erlaubt und beliebt. Sie werden mit dem Kommando

ln(1) mit der Option -s erzeugt. Ein weicher Link ist ein File mit eigener Inode-
Nummer, das einen Verweis auf einen weiteren absoluten oder relativen Filenamen

enth�alt, siehe Abb. 2.6. Das Kommando ls -l zeigt weiche Links folgenderma�en
an:

lrwx------ 1 wualex1 manager 4 Jun 2 17:13 scriptum -> unix

Das Verzeichnis scriptum ist ein weicher Link auf das Verzeichnis unix. Zugri�s-
rechte eines weichen Links werden vom System nicht beachtet, das Kommando

chmod(1) wirkt auf das zugrunde liegende File, rm(1) gl�ucklicherweise nur auf den
Link. Weiteres siehe ln(1) unter cp(1), symlink(2) und symlink(4). Links

Directory 1

Name Inode

abc 4043

Directory 2

Name Inode

xyz 4104

abc : siehe xyz

@
@
@
@@R �

�
�
���

Abb. 2.6: Weicher, Symbolischer oder Soft Link

d�urfen geschachtelt werden. Im Falle des harten Links ist es ohnehin gleich, von

2.4 Files 55

welchem Namen der Inode man ausgeht, es gibt ja kein Original, sondern nur ein

einziges File. Bei weichen Links wird auch eine Kette von Verweisen richtig verar-

beitet. Insbesondere erkennt das Kopierkommando cp(1) die Links und verweigert

ein Kopieren eines Files auf seinen Link. Mit den Systemaufrufen lstat(2) und

readlink(2) wird auf einen weichen Link direkt zugegri�en, w�ahrend die Sys-

temaufrufe stat(2) und read(2) auf das dem Link zugrunde liegende File zielen.

Wird einem weichen Link sein File weggenommen, besteht er weiter, Zugri�e �uber

den Link auf das File sind erfolglos. Hat man die Wahl zwischen einem harten

und einem weichen Link, so d�urfte der harte geringf�ugig schneller im Zugri� sein.

Eine �ahnliche Aufgabe erf�ullt die alias-Funktion der Kornshell. Ein alias

lebt und stirbt jedoch mit der Shell, w�ahrend ein Link im File-System verankert

ist und f�ur alle Benutzer gilt.

Merke: Nach einem Kopiervorgang hat man zwei voneinander unabh�angige

Files, das Original und die Kopie. Nach einem Linkvorgang hat man zwei Namen

f�ur dasselbe File.

2.4.8 stdin, stdout, stderr

Drei Files sind f�ur jede Sitzung automatisch ge�o�net: stdin (in der Regel die

Tastatur), stdout (in der Regel der Bildschirm) und stderr (in der Regel ebenfalls
der Bildschirm). Wir erinnern uns, Ger�ate werden von UNIX formal als Files

angesprochen. Andere Systeme kennen noch stdaux (Standard Auxiliary Device)
und stdprn (Standard Printer Device).

Zu den File-Pointern stdin, stdout und stderr geh�oren die File-Deskriptoren
0, 1 und 2. File-Pointer sind Namen (genauer Namen von Pointern auf eine C-
Struktur vom Typ FILE), File-Deskriptoren fortlaufende Nummern der f�ur ein

Programm ge�o�neten Files. Microsoft bezeichnet in MS-DOS die Deskriptoren
als Handles. In Programmen wird durch einen open-Aufruf einem Filenamen

ein File-Pointer oder ein File-Deskriptor zugeordnet, mit dem dann die weiteren
Anweisungen arbeiten. Die UNIX-Systemaufrufe (2) verwenden File-Deskriptoren,
die C-Standardfunktionen (3) File-Pointer. Beispiele �nden sich im C-Programm

2.39 File-Informationen.

Werkzeuge soll man m�oglichst so schreiben, da� sie von stdin lesen, ihre Aus-

gabe nach stdout und ihre Fehlermeldungen nach stderr schreiben. Dann sind sie

allgemein verwendbar und passen zu den �ubrigen Werkzeugen. Solche Programme

werden als Filter bezeichnet.

Ein leeres File wird mit der Umlenkung > filename, mit cat(1) oder

touch(1) angelegt. Zum Leeren eines Files kopiert man /dev/null dorthin.

Das Kommando tee(1) liest von stdin, schreibt nach stdout und gleichzeitig

eine Kopie der Ausgabe in ein File, wie ein T-St�uck sozusagen:

who | tee whofile

�Uber das Verbinden von stdout eines Prozesses mit stdin eines zweiten Pro-

zesses mittels einer Pipe wurde bereits in Abschnitt 2.3.6.2 Pipes gesprochen.

56 2 UNIX

2.4.9 Schreiben und Lesen von Files

Files werden mit einem Editor, z. B. dem vi(1), geschrieben (siehe Abschnitt 2.7.3

Editoren), von Compilern oder anderen Programmen erzeugt oder laufen einem

�uber das Netz zu. Zum Lesen von Files auf dem Bildschirm stehen die Kommandos

cat(1), more(1), pg(1), view(1) und vis(1) zur Verf�ugung. cat(1) liest von

stdin und schreibt nach stdout. Lenkt man die Eingabe mit cat < filename

um, bekommt man das File filename auf den Bildschirm. Die Pager more(1) und

pg(1) arbeiten �ahnlich, halten aber nach jeweils einer Bildschirmseite an. view(1)

ist der Editor vi(1) im Lesemodus, vis(1) wandelt etwaige nicht sichtbare Zei-

chen in ASCII-Nummern um. Der Versuch, Files zu lesen, die etwas anderes als in

Zeilen gegliederten Text enthalten, f�uhrt in manchen F�allen zu einem Blockieren

des Terminals.

Will man sich den Inhalt eines beliebigen Files genau ansehen, so schreibt

man mit od(1), gegebenenfalls mit der Option -c, einen Dump nach stdout,

bei Schwierigkeiten n�utzlich. Ein Dump ist eine zeichengetreue Wiedergabe des

Speicher- oder Fileinhalts ohne jede Bearbeitung. Begn�ugt man sich mit dem
Anfang oder Ende eines Files, leisten die Kommandos head(1) und tail(1) gute

Dienste.

2.4.10 Archivierer (tar, gtar)

Files werden oft mit drei Werkzeugen behandelt, die nichts miteinander zu tun

haben, aber h�au�g kombiniert werden. Diese sind:

� Archivierer wie tar(1),

� Packer (Komprimierer) wie compress(1) oder gzip(1),

� Verschl�usseler wie crypt(1).

Um Archivierer geht es in diesem Abschnitt, um Packer im folgenden. Verschl�usselt

werden in erster Linie Text�les, daher kommen wir im Abschnitt 2.7 Writer's

Workbench zu diesem Thema. Mit der Verschl�usselung h�angen weitere Fragen
zusammen, die in Netzen eine Rolle spielen; im Abschnitt 3.11 Electronic Mail

wird der Punkt nochmals aufgerollt.

Zum Aufbewahren oder Verschicken von ganzen Filegruppen ist es oft

zweckm�a�ig, sie in ein einziges File zu verpacken. Diesem Zweck dient das Kom-

mando tar(1). Der Aufruf

tar -cvf name.tar name*

stopft alle Files des Arbeits-Verzeichnisses, auf die das Namensmuster (Jokerzei-

chen!) zutri�t, in ein File name.tar, das als Archiv bezeichnet wird. Die Option
c bedeutet create, mit der Option v wird tar(1) geschw�atzig (verbose), und f

weist den Archivierer an, das n�achste Argument als Ziel der Packerei aufzufassen.
Das zweite Argument darf auch ein Verzeichnis sein. Eine Kompression oder Ver-

schl�usselung ist damit nicht verbunden. Bei der Wahl der Argumente ist etwas

Nachdenken angebracht. Das frisch erzeugte Archiv darf nicht zum Kreis der zu
archivierenden Files geh�oren, sonst bei�t sich tar(1) unter Umst�anden in den

2.4 Files 57

Schwanz. Ferner h�alt sich tar(1) genau an die Namensvorgaben, absolute oder

relative Namen werden auch als solche verpackt:

tar -cvf unix.tar *.tex # (im Verzeichnis /buch/unix)

tar -cvf unix.tar ./*.tex # (im Verzeichnis /buch/unix)

tar -cvf unix.tar unix/*.tex # (im Verzeichnis /buch)

tar -cvf unix.tar /buch/unix/*.tex # (an beliebiger Stelle)

archivieren zwar dieselben Files, aber unter verschiedenen Namen, was beim Aus-

packen zu verschiedenen Ergebnissen f�uhrt. Die erste und zweite Form lassen sich

in einem beliebigen Verzeichnis auspacken. Die dritte Form kann an beliebiger

Stelle entpackt werden und erzeugt dort ein Unterverzeichnis namens unix. Die

vierte Form ist un
exibel und f�uhrt zu demselben absoluten Pfad wie beim Packen.

Zum Auspacken dient das Kommando (x = extract):

tar -xvf name.tar

Zweckm�a�ig kopiert man das auszupackende Archiv in ein eigenes Verzeichnis,
weil hinterher unter Umst�anden ein umfangreicher Verzeichnisbaum an Stelle
des Archivs gr�unt. Manchmal legt das Archiv beim Auspacken dieses Verzeich-

nis selbst an, am besten in einem tempor�aren Verzeichnis ausprobieren. Ein tar-
Archiv�le kann mit einem beliebigen Packer verdichtet werden (erst archivieren,
dann packen). Das ist im Netz �ublich, um den �Ubertragungsaufwand zu verrin-

gern. Das GNU-Kommando gtar(1) archiviert und komprimiert bei entsprechen-
der Option in einem Arbeitsgang:

gtar -cvzf myarchive.tar.gz filenames

2.4.11 Packer (compress, gzip)

Die meisten Files enthalten �uber
�ussige Zeichen. Denken Sie an mehrere aufein-

anderfolgende Leerzeichen, f�ur die die Angabe des Zeichens und deren Anzahl
aureichen w�urde. Um Speicherplatz und �Ubertragungszeit zu sparen, verdichtet
man solche Files. Das Standard-Kommando daf�ur ist compress(1), ein j�ungeres

und wirkungsvolleres Kommando gzip(1) aus dem GNU-Projekt. Das urpsr�ung-
liche File wird gel�oscht, das verdichtete File bekommt die Kennung .Z oder .gz.

Zum Verd�unnen auf die urspr�ungliche Konzentration ruft man uncompress(1)

oder gunzip(1) mit dem Filenamen auf. Das Packen ist vollkommen umkehr-
bar14. Probieren Sie folgende Kommandofolge aus (textfile sei ein mittelgro�es

Text�le):

cp textfile textfile1

cp textfile textfile2

ll textfile*

compress textfile1

gzip textfile2

14Im Zusammenhang mit dem Speichern von Bildern oder Kl�angen gibt es auch ver-

lustbehaftete Kompressionsverfahren.

58 2 UNIX

ll textfile*

uncompress textfile1.Z

gunzip textfile2.gz

ll textfile*

cmp textfile textfile1

cmp textfile textfile2

Auch bin�are Files lassen sich verdichten. Ein mehrfaches Verdichten ist nicht zu

empfehlen. In der MS-DOS-Welt gibt es eine Vielzahl anderer Packprogramme,

teils frei, teils gegen Bares.

2.4.12 Weitere Kommandos

Mit mv(1) benennt man ein File um und verschiebt es gegebenenfalls in ein anderes

Verzeichnis, seine Inode-Nummer bleibt:

mv alex blex

mv alex ../../alex

ls | xargs -i -t mv {} subdir/{}

In der dritten Form listet ls(1) das Arbeitsverzeichnis auf. Die Ausgabe wird
durch eine Pipe dem Kommando xargs(1) �ubergeben, das wegen der Option -i

(insert) die �ubernommenen Argumente in die beiden Klammernpaare einsetzt {

und zwar einzeln { und dann das Kommando mv(1) aufruft, erforderlichenfalls
mehrmals. Die Option -t (trace) bewirkt die Anzeige jeder Aktion auf stderr.

Auf diese Weise lassen sich alle Files eines Verzeichnisses oder eine Auswahl davon
verschieben. Ebenso l�a�t sich ein Verzeichnis umbennen, ohne es zu verschieben.
Das Kommando mvdir(1M) verschiebt ein Verzeichnis an eine andere Stelle in sel-

ben Filesystem und ist dem System-Manager vorbehalten, da bei unvorsichtigem
Gebrauch geschlossene Wege innerhalb des Filebaums entstehen.

Zum L�oschen von Files bzw. Verzeichnissen dienen rm(1) und rmdir(1).
Ein leeres Verzeichnis wird mit rmdir(1) gel�oscht, ein volles samt allen Unter-

verzeichnissen mit rm -r, Vorsicht bei der Verwendung von Jokerzeichen! UNIX
fragt nicht, sondern handelt { beinhart und gnadenlos. Gef�ahrlich sind vor allem

die Kommandos rm * und rm -r directoryname, die viele Files auf einen Schlag

l�oschen. Das L�oschen eines Files mittels rm(1) erfordert die Schreiberlaubnis im

zugeh�origen Verzeichnis, aber keine Rechte am File selbst. Gel�oscht wird zun�achst
logisch, d. h. die angesprochene Inode samt zugeh�origem Speicherplatz wird frei-

gegeben, die Bits bleiben noch auf der Platte, sind aber nicht mehr erreichbar.

Erst bei Bedarf an freiem Speicherplatz werden die Bits �uberschrieben, womit die

Daten auch physikalisch beseitigt sind. Deshalb wird bei hohen Anforderungen

an die Sicherheit ein File zun�achst �uberschrieben und dann gel�oscht.

Ein mit rm(1) gel�oschtes File kann nicht wiederhergestellt werden, anders

als unter MS-DOS. Der als frei markierte Bereich auf dem Massenspeicher wird

im n�achsten Augenblick von anderen Benutzern, einem D�amon oder vom Sys-

tem erneut belegt. Wer dazu neigt, die Reihenfolge von Denken und Handeln zu

verkehren, sollte sich ein Alias f�ur rm einrichten, das vor dem L�oschen zur�uckfragt:

2.4 Files 59

alias -x del='rm -i'

oder das L�oschen durch ein Verschieben in ein besonderes Verzeichnis ersetzen,

welches am Ende der Sitzung oder nach einer bestimmten Frist (cron(1) und

find(1)) geleert wird:

Shellscript saferm zum verzoegerten Loeschen 05.12.96
Verzeichnis /saferm 333 root root erforderlich

case $1 in
-*) option=$1; shift;;
*) ;;

esac

/bin/cp $* /saferm
/bin/rm $option $*

Programm 2.3 : Shellscript saferm zum verz�ogerten L�oschen von Files

Zum Leeren eines Files, ohne es zu l�oschen, verwendet man am einfachsten

folgende Zeile:

> filename

Das File hat anschlie�end die Gr�o�e 0 Bytes. Eine andere M�oglichkeit ist das
Kopieren von /dev/null in das File.

Nun zu einem Dauerbrenner in der entsprechenden Gruppe der Netnews. Wie

werde ich ein File mit einem absonderlichen Namen los? In UNIX-Filenamen
k�onnen { wenn es mit rechten Dingen zugeht { alle Zeichen au�er dem Schr�agstrich
und dem ASCII-Zeichen Nr. 0 vorkommen. Der Schr�agstrich trennt Verzeichnis-

namen voneinander, die ASCII-0 beendet einen Filenamen, einen String. Escape-
Folgen, die den Bildschirm l�oschen oder die Tastatur blockieren, sind erlaubte,

wenn auch unzweckm�a�ige Namen. Aber auch die beiden genannten Zeichen f�angt
man sich gelegentlich �uber das Netz ein. Erzeugen Sie ein paar absonderlich be-
namte Files, am besten in einem f�ur Experimente vorgesehenen Verzeichnis:

touch -abc

touch ' '

touch 'x y'

touch '/'

und schauen Sie sich Ihr Verzeichnis mit:

ls -aliq

an. Wenn Sie vorsichtig sind, kopieren oder transportieren Sie alle vern�unftigen
Files in ein anderes Verzeichnis, ehe Sie dem �Ubel zu Leibe r�ucken. Das File -abc,

dessen Name mit einem Bindestrich wie bei einer Option beginnt, wird man mit
einem der folgenden Kommandos los (ausprobieren):

rm ./-abc

rm - -abc

rm -- -abc

60 2 UNIX

Enthalten die Namen Zeichen, die f�ur die Shell eine besondere Bedeutung haben

(Metazeichen), hilft Einrahmen des Namens in Apostrophe (Quoten mit Single

Quotes), siehe oben. Zwei weitere, meist gangbare Wege sind:

rm -i *

find . -inum 12345 -ok rm '{}' \;

Das erste Kommando l�oscht alle Files im Arbeitsverzeichnis, fragt aber zuvor bei

jedem einzelnen File um Erlaubnis. Das zweite Kommando ermittelt im Arbeits-

verzeichnis das File mit der Inode-Nummer 12345, fragt um Erlaubnis und f�uhrt

gegebenenfalls das abschlie�ende Kommando rm(1) aus. Die geschweiften Klam-

mern, der Backslash und das Semikolon werden von find(1) verlangt. Wollen Sie

das widerspenstige File nur umbennen, sieht das Kommando so aus:

find . -inum 12345 -ok mv '{}' anstaendiger_name \;

Filenamen mit einem Schr�agstrich oder ASCII-Null kommt man so jedoch nicht

bei. In diesem Fall kopiert man s�amtliche gesunden Files in ein anderes Verzeichnis,
l�oscht mittels clri(1M) die Inode des schwarzen Schafes, f�uhrt einen File System

Check durch und holt sich die Daten aus lost+found zur�uck. Man kann auch {
sofern man kann { mit einem File System Debugger den Namen im Verzeichnis edi-
tieren. Weiteres siehe in der FAQ-Liste der Newsgruppe comp.unix.questions.

Zur Zeit besteht sie aus acht Teilen und wird von Ted Timar gep
egt. Unbedingt
lesenswert, auch wenn man keine Probleme hat.

Der System-Manager kann eine Inode mit dem Kommando clri(1M) l�oschen,

etwaige Verzeichniseintr�age dazu bleiben jedoch erhalten und m�ussen mit rm(1)
oder fsck(1M) beseitigt werden. Das Kommando ist eigentlich dazu gedacht, In-

odes zu l�oschen, die in keinem Verzeichnis mehr aufgef�uhrt sind.
Zum Au�nden von Files dienen which(1), whereis(1) und find(1).

which(1) sucht nach ausf�uhrbaren Files (Kommandos), whereis(1) nach Kom-

mandos, deren Quell�les und man-Seiten. type(1) und whence(1) geben �ahnliche
Informationen:

which ls

whereis ls

type ls

whence ls

Das Werkzeug find(1) ist vielseitig und hat daher eine umfangreiche Syntax:

find . -name vorwort.* -print

find . -name '*.conf' | xargs grep -i hallo

find $HOME -size |1000 -print

find / -atime +32 -print

Das Kommando der ersten Zeile sucht im Arbeits-Verzeichnis und seinen Un-
terverzeichnissen (rekursiv) nach Files mit dem Namen vorwort.* und gibt die

Namen auf stdout aus. Eigentlich sollte man vorwort.* in Hochkommas (Apo-
strophe, Single Quotes) setzen, da das Jokerzeichen nicht von der Sitzungsshell,

2.4 Files 61

sondern von find(1) ausgewertet werden soll, aber es funktioniert auch so. In der

n�achsten Zeile setzen wir die Quotes und schicken die Ausgabe durch eine Pipe

zu dem Kommando xargs(1). Dieses f�ugt die Ausgabe von find(1) an die Argu-

mentliste von grep(1) an und f�uhrt grep(1) aus. xargs(1) ist also ein Weg unter

mehreren, die Argumentliste eines Kommandos aufzubauen. In der dritten Zeile

wird im Home-Verzeichnis und seinen Unterverzeichnissen nach Files gesucht, die

gr�o�er als 1000 Bl�ocke (zu 512 Bytes) sind. Der vierte Aufruf sucht im ganzen

File-System nach Files, auf die seit mehr als 32 Tagen nicht mehr zugegri�en wur-

de (access time, Zeitstempel). Der Normalbenutzer erh�alt bei diesem Kommando

einige Meldungen, da� ihm der Zugri� auf Verzeichnisse verwehrt sei, aber der

System-Manager benutzt es gern, um Ladenh�uter aufzusp�uren.

Ein Kommando wie MS-DOS tree zur Anzeige des Filebaumes gibt es in

UNIX leider nicht. Deshalb hier ein Shellscript f�ur diesen Zweck, das wir irgendwo

abgeschrieben haben:

dir=${1:-$HOME}
(cd $dir; pwd)
find $dir -type d -print |
sort -f |
sed -e "s,^$dir,," -e "/^$/d" -e \
"s,[^/]*/\([^/]*\)$,\---->\1," -e "s,[^/]*/, | ,g"

Programm 2.4 : Shellscript tree zur Anzeige der Filehierarchie

Die Zwischenr�aume und T�uttelchen sind wichtig; fragen sie bitte jetzt noch
nicht nach ihrer Bedeutung. Schreiben Sie das Shellscript in ein File namens

tree und rufen Sie zum Testen tree usr| auf. Ohne die Angabe eines Ver-
zeichnisses zeigt tree das Home-Verzeichnis. Unter MINIX dient das Kommando
traverse(1) demselben Zweck.

Der System-Manager (nur er, wegen der Zugri�srechte) verscha�t sich mit:

/etc/quot -f myfilesystem

eine �Ubersicht dar�uber, wieviele Kilobytes von wievielen Files eines jeden Besit-
zers im Filesystem myfilesystem belegt werden. Das Filesystem kann das root-
Verzeichnis, ein gemountetes Verzeichnis oder ein Unterverzeichnis sein. Das Kom-

mando geht nicht �uber die Grenze eines Filesystems hinweg.

2.4.13 Memo Files

� Unter UNIX gibt es gew�ohnliche Files, Verzeichnisse und Ger�ate�les.

� Alle Files sind in einem einzigen Verzeichnis- und Filebaum untergebracht,

an dessen Spitze (Wurzel) das root-Verzeichnis steht.

� Jedes File oder Verzeichnis geh�ort einem Besitzer und einer Gruppe.

� Die Zugri�srechte bilden eine Matrix von Besitzer - Gruppe - Rest der Welt

und Lesen - Schreiben - Ausf�uhren/Durchsuchen.

62 2 UNIX

� Jedes File oder Verzeichnis besitzt eine Inode-Nummer. In der Inode stehen

die Informationen �uber das File, in den Verzeichnissen die Zuordnung Inode-

Nummer - Name.

� Ein harter Link ist ein weiterer Name zu einer Inode-Nummer. Ein weicher

Link ist ein File mit einem Verweis auf ein anderes File oder Verzeichnis.

� Ein Filesystem kann in einen Mounting Point (leeres Verzeichnis) eines an-

deren Filesystems eingeh�angt (gemountet) werden.

� Ein Archivierprogramm wie tar(1) packt mehrere Files oder Verzeichnisse

ins ein einziges File (Archiv).

� Ein Packprogramm wie gzip(1) verdichtet ein File ohne Informationsverlust

(reversibel).

2.4.14 �Ubung Files

Melden Sie sich unter Ihrem Benutzernamen an. Ihr Passwort wissen Sie ho�ent-
lich noch. Geben Sie folgende Kommandos ein:

id (Ihre pers�onlichen Daten)

who (Wer ist zur Zeit eingeloggt?)

users (dito, nur anders)

tty (Wie hei�t mein Terminal?)

pwd (Wie hei�t mein Arbeits-Verzeichnis?)

ls (Arbeits-Verzeichnis au
isten)

ls -l oder ll

ls -li

ls / (root-Verzeichnis au
isten)

ls /bin (bin-Verzeichnis)

ls /usr (usr-Verzeichnis)

ls /dev (dev-Verzeichnis, Ger�ate�les)

ls /mnt (mnt-Verzeichnis, enth�alt die Home-Verzeichnisse)

cat lsfile (ls�le lesen)

news -a (alle News anzeigen)

mail (Falls Ihnen Mail angezeigt wird, kommen
Sie mit RETURN weiter.)

mail root (Nun k�onnen Sie dem System-Manager einen

Brief schreiben. Ende mit RETURN, control-d)

mkdir privat (Verzeichnis erzeugen)

cd privat (dorthin wechseln)

cp /mnt/student/beispiel beispiel

(Das File /mnt/student/beispiel ist bei uns ein

kurzes, allgemein lesbares Text�le. Fragen Sie

2.5 Shells 63

Ihren System-Manager.)

cat beispiel (File anzeigen)

head beispiel (Fileanfang anzeigen)

more beispiel (File bildschirmweise anzeigen)

pg beispiel (File bildschirmweise anzeigen)

od -c beispiel (File als ASCII-Text dumpen)

od -x beispiel (File hexadezimal dumpen)

file beispiel (Filetyp ermitteln)

file /bin/cat

whereis /bin/cat (File suchen)

ln beispiel exempel (linken)

cp beispiel uebung (File kopieren)

ls -i

mv uebung schnarchsack

(File umbenennen)

ls

pg schnarchsack

rm schnarchsack (File l�oschen)

(Auf die Frage mode? antworten Sie y)

vi text1 (Editor aufrufen)

a

Schreiben Sie einen kurzen Text. Dr�ucken Sie die ESCAPE-Taste.

:wq (Editor verlassen)

pg text1

lp text1 (Fragen Sie Ihren System-Manager nach
dem �ublichen Druckkommando)

Abmelden mit exit

2.5 Shells

2.5.1 Gespr�achspartner

2.5.1.1 Kommandointerpreter

Wenn man einen Dialog mit dem Computer f�uhrt, mu� im Computer ein Pro-

gramm laufen, die rohe Hardware antwortet nicht. Der Gespr�achspartner ist ein

Kommandointerpreter, also ein Programm, das unsere Eingaben als Komman-
dos oder Befehle auffa�t und mit Hilfe des Betriebssystems und der Hardware

ausf�uhrt. Man �ndet auch den Namen Bediener f�ur ein solches Programm, das

zwischen Benutzer und Betriebssystem vermittelt. Dieses erste Dialogprogramm

64 2 UNIX

einer Sitzung wird aufgrund der Eintragung im File /etc/passwd(4) gestartet;

es ist der Elternprozess aller weiteren Prozesse der Sitzung und fast immer eine

Shell, die Sitzungsshell, bei uns /bin/ksh(1) auf HP-Maschinen, bash(1) unter

Linux.

Ein solcher Kommandointerpreter geh�ort zwar zu jedem dialogf�ahigen Be-

triebssystem, ist aber im strengen Sinn nicht dessen Bestandteil (Abb. 2.1). Er ist

ein Programm, das f�ur das Betriebssystem auf gleicher Stufe steht wie vom Anwen-

der geschriebene Programme. Er ist ersetzbar, es d�urfen auch mehrere Komman-

dointerpreter gleichzeitig verf�ugbar sein (aber nicht mehrere Betriebssysteme).

Unter MS-DOS hei�t der Standard-Kommandointerpreter command.com. Auf

UNIX-Anlagen sind es die Shells. Im Anfang war die Bourne-Shell sh(1) oder

bsh(1), geschrieben von Stephen R. Bourne. Als Programmiersprache ist sie

ziemlich m�achtig, als Kommando-Interpreter l�a�t sie W�unsche o�en. Dennoch ist

sie die einzige Shell, die auf jedem UNIX-System vorhanden ist.

Aus Berkeley kam bald die C-Shell csh(1), geschrieben von Bill Joy, die

als Kommando-Interpreter mehr leistete, als Programmiersprache infolge ihrer

Ann�aherung an C ein Umgew�ohnen erforderte. Sie enthielt auch anfangs mehr
Fehler als ertr�aglich. So entwickelte sich der unbefriedigende Zustand, da� vie-

le Benutzer als Interpreter die C-Shell, zum Abarbeiten von Shellscripts aber
die Bourne-Shell w�ahlten (was die doppelte Aufgabe der Shell verdeutlicht). Alle
neueren Shells lassen sich auf diese beiden zur�uckf�uhren. Eine Weiterentwicklung

der C-Shell (mehr Funktionen, weniger Fehler) ist die tc-Shell tcsh(1). Wer bei
der C-Syntax bleiben m�ochte, sollte sich diese Shell ansehen.

Die Korn-Shell ksh(1) von David G. Korn verbindet die Schreibweise
der Bourne-Shell mit der Funktionalit�at der C-Shell. Einige weitere Funktionen,

die sich inzwischen als zweckm�a�ig erwiesen hatten, kamen hinzu. Der Umstieg
von Bourne nach Korn ist einfach, manche Benutzer merken es nicht einmal. Die
Korn-Shell ist propriet�ar, sie wird nur gegen Bares abgegeben. Die Windowing-

Korn-Shell wksh(1) ist eine gra�sche Version der Korn-Shell, die vom XWindow
System Gebrauch macht; in ihren Shellscripts werden auch X-Window-Funktionen
aufgerufen.

Das GNU-Projekt stellt die Bourne-again-Shell bash(1) frei zur Verf�ugung,

die in vielem der Korn-Shell �ahnelt. LINUX verwendet diese Shell. Die Z-Shell

zsh(1) kann mehr als alle bisherigen Shells zusammen. Wir haben sie auf unserer

Anlage eingerichtet, benutzen sie aber nicht, da uns bislang die Korn-Shell reicht

und wir den Aufwand der Umstellung scheuen. Dann gibt es noch eine rc-Shell,

die klein und schnell sein soll. Hinter uns steht kein Shell-Test-Institut, wir enthal-
ten uns daher einer Bewertung. Im �ubrigen gibt es zu dieser Frage eine monatliche

Mitteilung in der Newsgruppe comp.unix.shell.

Wem das nicht reicht, dem steht es frei, sich eine eigene Shell zu schreiben. Die

Korn-Shell gibt es auch f�ur MS-DOS-Rechner (siehe Abschnitt 2.15.5 MKS-Tools

und andere), was die Austauschbarkeit des Kommandointerpreters unterstreicht.

Im folgenden halten wir uns an die Korn-Shell ksh(1).

Einige der Kommandos, die Sie der Shell �ubergeben, f�uhrt sie pers�onlich aus.

Sie werden interne oder eingebaute Kommandos genannt. Die Kommandos

cd(1) und pwd(1) geh�oren dazu, unter MS-DOS beispielsweise dir. Das dir ent-

2.5 Shells 65

sprechende, externe UNIX-Kommando ls(1) hingegen ist ein eigenes Programm,

das wie viele andere Kommandos vom Interpreter aufgerufen wird und irgendwo

in der File-Hierarchie zu Hause ist (/bin/ls oder /usr/bin/ls). Welche Kom-

mandos intern und welche extern sind, ist eine Frage der Zweckm�a�igkeit. Die

internen Kommandos �nden Sie unter sh(1) beziehungsweise ksh(1), Abschnitt

Special Commands. Die Reihe der externen Kommandos k�onnen Sie durch eigene

Programme beliebig erweitern. Falls Sie f�ur die eigenen Kommandos Namen wie

test(1) oder pc(1) verwenden, die durch UNIX schon belegt sind, gibt es �Arger.

Die �ubliche Form eines UNIX- oder Shell-Kommandos sieht so aus:

command -options argument1 argument2 (RETURN-Taste!)

Die Optionen modi�zieren die Wirkung des Kommandos. Es gibt Komman-

dos ohne Optionen wie pwd(1) und Kommandos mit un�uberschaubar vielen wie

ls(1). Mehrere gleichzeitig gew�ahlte Optionen d�urfen meist zu einem einzigen Op-

tionswort zusammengefa�t werden. Unter Argumenten werden Filenamen oder

Strings verstanden, soweit das Sinn macht. Die Reihenfolge von Optionen und Ar-

gumenten ist bei vielen Kommandos beliebig, aber da die UNIX-Kommandos auf
Programmierer mit unterschiedlichen Vorstellungen zur�uckgehen, hilft im Zwei-
felsfall nur der Blick ins Referenz-Handbuch. Kommandoeingabe per Men�u ist

un�ublich, aber machbar, siehe Programm 2.9 Shellscript f�ur ein Men�u. Die Ver-
wendung einer Maus setzt erweiterte curses-Funktionen voraus, siehe Abschnitt
2.6.1.3 Fenster (Windows), curses-Bibliothek , oder das X Window System.

Die Namen von UNIX-Kommandos unterliegen nur den allgemeinen Regeln f�ur
Filenamen, eine besondere Kennung wie .exe oder .bat ist nicht notwendig oder

�ublich. Eine Eingabe wie karlsruhe veranla�t die Shell zu folgenden T�atigkeiten:

� Zuerst pr�uft die Shell, ob das Wort ein Aliasname ist (wird bald erkl�art).
Falls ja, wird es ersetzt.

� Ist das { unter Umst�anden ersetzte { Wort ein internes Kommando, wird es
ausgef�uhrt.

� Falls nicht, wird ein externes Kommando { ein File also { in einem der in der
PATH-Variablen (wird auch bald erkl�art) genannten Verzeichnisse gesucht.

Bleibt die Suche erfolglos, erscheint eine Fehlermeldung: not found.

� Dann werden die Zugri�srechte untersucht. Falls diese das Lesen und

Ausf�uhren gestatten, geht es weiter. Andernfalls: cannot execute.

� Das File sei gefunden und ein Shellscript (wird auch bald erkl�art) oder

ein ausf�uhrbares (kompiliertes) Programm. Dann l�a�t die Shell es in einem

Kindprozess ausf�uhren. Das Verhalten bei Syntaxfehlern (falsche Option,

fehlendes Argument) ist Sache des Shellscripts oder Programmes, h�angt also

davon ab, was sich der Programmierer gedacht hat. Ein guter Programmierer

l�a�t den Benutzer nicht ganz im Dunkeln tappen.

� Das File sei gefunden, sei aber ein Text�le wie ein Brief oder eine Programm-

quelle. Dann bedauert die Shell, damit nichts anfangen zu k�onnen, d. h. sie

sieht den Text als ein Shellscript mit furchtbar vielen Fehlern an. Das gleiche

gilt f�ur Ger�ate�les oder Verzeichnisse.

66 2 UNIX

Die Shell vermutet also hinter dem ersten Wort einer Kommandozeile immer ein

Kommando. Den Unterschied zwischen einem Shellscript und einem �ubersetzten

Programm merkt sie schnell. Um sich ein Text�le anzusehen, gibt man ein ent-

sprechendes Kommando (more(1), pg(1) oder view(1)) mit dem Namen des

Text�les als Argument ein. In der Maus-und-Fenster-Welt ist die Denkweise an-

ders, sofern Denken �uberhaupt noch n�otig ist. karlsruhe war ein leeres File mit

den Zugri�srechten 777. Was h�atten Sie als Shell damit gemacht?

In Filenamen erm�oglicht die Shell den Gebrauch von Jokerzeichen, auch

Wildcards genannt. Diese Zeichen haben nichts mit regul�aren Ausdr�ucken zu tun,

sie sind eine Besonderheit der Shell. Die Auswertung der Joker hei�t Globbing.

Ein Fragezeichen bedeutet genau ein beliebiges Zeichen. Ein Filename wie

ab?c

tri�t auf Files wie

ab1c abXc abcc ab_c

zu. Ein Stern bedeutet eine beliebige Anzahl beliebiger Zeichen. Das Kommando

ls abc*z

listet alle Files des augenblicklichen Arbeits-Verzeichnisses auf, deren Name mit
abc beginnt und mit z endet, beispielsweise

abcz abc1z abc123z abc.z abc.fiz abc_z abc_xyz

Der Stern allein bedeutet alle Files des Arbeitsverzeichnisses. Eine Zeichenmenge

in eckigen Klammern wird durch genau ein Zeichen aus der Menge ersetzt. Der
Name

ab[xyz]

tri�t also zu auf

abx aby abz

In der Regel setzt die Shell die Jokerzeichen um, es ist aber auch programmierbar,

da� das aufgerufene Kommando diese Arbeit �ubernimmt. Dann mu� man beim
Aufruf des Kommandos die Jokerzeichen quoten (unwirksam machen). Was be-

wirken die Kommandos rm a* und rm a * (achten Sie auf den Space im zweiten
Kommando)? Also Vorsicht bei rm in Verbindung mit dem Stern! Das Kommando

{ hier rm(1) { bekommt von der Shell eine Liste der g�ultigen Filenamen, sieht

also die Jokerzeichen gar nicht.
Es gibt weitere Zeichen, die f�ur die Shells eine besondere Bedeutung haben.

Schauen Sie im Handbuch unter sh(1), Abschnitt File Name Generation and
Quoting oder unter ksh(1), Abschnitt De�nitions, Metazeichen nach. Will

man den Metazeichen ihre besondere Bedeutung nehmen, mu� man sie quoten15.

15englisch quoting im Sinne von anf�uhren, zitieren wird in den Netnews gebraucht.

Ferner gibt es einen quota(1)-Mechanismus zur Begrenzung der Belegung des Massen-

speichers. Hat nichts mit dem Quoten von Metazeichen zu tun.

2.5 Shells 67

Es gibt drei Stufen des Quotens, Sperrens, Zitierens, Entwertens oder Maskierens.

Ein Backslash quotet das nachfolgende Zeichen mit Ausnahme von Newline (line

feed). Ein Backslash-Newline-Paar wird einfach gel�oscht und kennzeichnet daher

die Fortsetzung einer Kommadozeile. Anf�uhrungszeichen (double quotes) quoten

alle Metazeichen au�er Dollar, back quotes, Backslash und Anf�uhrungszeichen.

Einfache Anf�uhrungszeichen (Hochkomma, Apostroph, single quotes) quoten alle

Metazeichen au�er dem Apostroph oder Hochkomma (sonst k�ame man nie wieder

aus der Quotung heraus). Ein einzelnes Hochkomma wird wie eingangs gesagt

durch einen Backslash gequotet. Probieren Sie folgende Eingaben aus (echo oder

f�ur die Korn-Shell print):

echo TERM

echo $TERM

echo \$TERM

echo "$TERM"

echo '$TERM'

Wenn man jede Interpration einer Zeichenfolge durch die Shell verhindern will,
setzt man sie meist der Einfachheit halber in Single Quotes, auch wenn es vielleicht

nicht n�otig w�are.
Schlie�lich gibt es noch die back quotes (accent grave). F�ur die Shell bedeuten

sie Ersetze das Kommando in den back quotes durch sein Ergebnis. Sie erkennen
die Wirkung an den Kommandos

print Mein Verzeichnis ist pwd.

print Mein Verzeichnis ist `pwd`.

Im Druck kommt leider der Unterschied zwischen dem Apostroph und dem Accent

grave meist nicht deutlich heraus; f�ur die Shell liegen Welten dazwischen.
Die C-Shell und die Korn-Shell haben einen History-Mechanismus, der die

zuletzt eingetippten Kommandos in einem File .sh_history (bei der Korn-Shell,
lesbar) speichert. Mit dem internen Kommando fc greift man in der Korn-Shell
darauf zur�uck. Die Kommandos lassen sich editieren und erneut ausf�uhren. Tippt

man nur fc ein, erscheint das j�ungste Kommando als Text in dem Editor, der
mittels der Umgebungsvariablen FCEDIT festgelegt wurde, meist im vi(1). Man
editiert das Kommando und verl�a�t den Editor auf die �ubliche Weise, den vi(1)

also mit :wq. Das editierte Kommando wird erneut ausgef�uhrt und in das History-

File geschrieben. Das Kommando fc -l -20 zeigt die 20 j�ungsten Kommandos

an, das Kommando fc -e - wiederholt das j�ungste Kommando unver�andert. Wei-
teres im Handbuch unter ksh(1), Special Commands.

Der Ablauf einer Sitzung l�a�t sich festhalten, indem man zu Beginn das Kom-

mando script(1) gibt. Alle Bildschirmausgaben werden gleichzeitig in ein File

typescript geschrieben, das man sp�ater lesen oder drucken kann. Die Wirkung

von script(1) wird durch das shellinterne Kommando exit beendet. Wir ver-
wenden script(1) bei Literaturrecherchen im Netz, wenn man nicht sicher sein

kann, da� alles bis zum gl�ucklichen Ende nach Wunsch verl�auft.

Mittels des shellinternen Kommandos alias (sprich ejlias) { das aus der C-

Shell stammt { lassen sich f�ur bestehende Kommandos neue Namen einf�uhren.

68 2 UNIX

Diese haben G�ultigkeit f�ur die jeweilige Shell und je nach Option f�ur ihre Abk�omm-

linge. Der Aliasname wird von der Shell buchst�ablich durch die rechte Seite der Zu-

weisung ersetzt; dem Aliasnamen mitgegebene Optionen oder Argumente werden

an den Ersatz angeh�angt. Man �uberlege sich den Unterschied zu einem gelinkten

Zweitnamen, der im File-System verankert ist. Ein weiterer Unterschied besteht

darin, da� interne Shell-Kommandos zwar mit einem Aliasnamen versehen, aber

nicht gelinkt werden k�onnen, da sie nicht in einem eigenen File niedergelegt sind.

Gibt man in der Sitzungsshell folgende Kommandos:

alias -x dir=ls

alias -x who='who | sort'

alias -x r='fc -e -'

so steht das Kommando dir mit der Bedeutung und Syntax von ls(1) zur

Verf�ugung, und zwar zus�atzlich. Ein Aufruf des Kommandos who f�uhrt zum Auf-

ruf der Pipe, das echte who(1) ist nur noch �uber seinen absoluten Pfad /bin/who

erreichbar. Dieses who-Alias hat einen Haken. Ruft der nichtsahnende Benutzer
who mit einer Option auf, so wird die Zeichenfolge who durch das Alias ersetzt,
die Option mithin an sort angeh�angt, das meist nichts damit anfangen kann und

eine Fehlermeldung ausgibt. Der Aufruf von r wiederholt das j�ungste Kommando
unver�andert, entspricht also der F3-Taste auf PCs unter MS-DOS. Die Option

-x veranla�t den Export des Alias in alle Kindprozesse; sie scheint jedoch nicht

�uberall verf�ugbar zu sein. Die Quotes sind notwendig, sobald das Kommando
Trennzeichen (Space) enth�alt. Das Kommando alias ohne Argumente zeigt die

augenblicklichen Aliases an. Mittels unalias wird ein Alias aufgehoben. Aliases
lassen sich nur unter bestimmten Bedingungen schachteln.

Einige Shells bieten Shellfunktionen als Alternative zu Aliasnamen an. In der

Bourne- und der Kornshell kann man eine Funktion dir() de�nieren:

dir () { pwd; ls -l $*; }

(die Zwischenr�aume um die geschweiften Klammern sind wichtig) die wie ein
Shellkommando aufgerufen wird. Einen Weg zum Exportieren haben wir nicht

gefunden. Mittels unset dir wird die Funktion gel�oscht.

Die durch die Anmeldung erzeugte erste Shell { die Sitzungsshell { ist gegen

einige Eingabefehler besonders gesch�utzt. Sie l�a�t sich nicht durch das Signal

Nr. 15 (SIGTERM) beenden, auch nicht durch die Eingabe von EOF (File-Ende,

�ublicherweise control-d, festgelegt durch stty(1) in $HOME/.profile), sofern
dies durch das Kommando set -o ignoreeof eingestellt ist.

2.5.1.2 Umgebung

Die Shells machen noch mehr. Sie stellen f�ur jede Sitzung eine Umgebung (envi-

ronment) bereit. Darin sind eine Reihe von Parametern enthalten, die der Benut-
zer bzw. seine Programme immer wieder brauchen, beispielsweise die Namen des

Home-Verzeichnisses und der Mailbox, der Terminaltyp, der Prompt, der Such-

pfad f�ur Kommandos, die Zeitzone. Mit dem internen Kommando set holen Sie

2.5 Shells 69

Ihre Umgebung auf den Bildschirm. Sie k�onnen die Umgebung ver�andern und aus

Programmen oder Shellscripts heraus abfragen.

Einige dieser Parameter werden von der Sitzungsshell erzeugt und auf alle

Kindprozesse vererbt. Sie gelten global f�ur die ganze Sitzung bis zu ihrem Ende.

F�ur diese Parameter besteht eine implizite oder explizite export-Anweisung; sie

werden als Umgebungs-Variable bezeichnet. Die anderen Parameter gelten nur

f�ur die jeweilige Shell, sie werden nicht vererbt und als Shell-Variable bezeichnet.

Eine Umgebung, wie sie set auf den Bildschirm bringt, sieht etwa so aus:

CDPATH=:..:/mnt/alex

EDITOR=/usr/bin/vi

EXINIT=set exrc

FCEDIT=/usr/bin/vi

HOME=/mnt/alex

IFS=

LOGNAME=wualex1

MAIL=/usr/mail/wualex1

MAILCHECK=600

OLDPWD=/mnt/alex

PATH=/bin:/usr/bin:/usr/local/bin:/usr/contrib/bin::

PPID=1

PS1=A

PS2=>

PS3=#?

PWD=/mnt/alex/unix

RANDOM=2474

SECONDS=11756

SHELL=/bin/ksh

TERM=ansi

TMOUT=0

TN=console

TTY=/dev/console

TZ=MSZ-2

_=unix.tex

Das bedeutet im einzelnen:

� CDPATH legt einen Suchpfad f�ur das Kommando cd(1) fest. Die Namen
von Verzeichnissen, die sich im Arbeits-Verzeichnis, im �ubergeordneten oder

im Home-Verzeichnis /mnt/alex be�nden, k�onnen mit ihrem Grundnamen

(relativ) angegeben werden.

� EDITOR nennt den Editor, der standardm�a�ig zur �Anderung von Komman-

dozeilen aufgerufen wird.

� EXINIT veranla�t den Editor vi(1), beim Aufruf das zugeh�orige
Kon�gurations-Kommando auszuf�uhren.

70 2 UNIX

� FCEDIT gibt den Editor an, mit dem Kommandos bearbeitet werden, die

�uber den History-Mechanismus zur�uckgeholt worden sind (Kommando fc).

� HOME nennt das Home-Verzeichnis.

� IFS ist das Trennzeichen, der interne Feld-Separator, der die Bestandteile

von Kommandos trennt, in der Regel space, tab und newline.

� LOGNAME (auch USER) ist der beim Einloggen benutzte Name.

� MAIL ist die Mailbox.

� MAILCHECK gibt in Sekunden an, wie h�au�g die Shell die Mailbox auf

Zug�ange abfragt.

� OLDPWD nennt das vorherige Arbeits-Verzeichnis.

� PATH ist die wichtigste Umgebungsvariable. Sie gibt den Suchpfad f�ur Kom-

mandos an. Die Reihenfolge spielt eine Rolle. Der zweite Doppelpunkt am

Ende bezeichnet das jeweilige Arbeits-Verzeichnis.

� PPID ist die Parent Process-ID der Shell, hier also der init-Prozess.

� PS1 ist der erste Prompt, in der Regel das Dollarzeichen, hier individuell
abgewandelt. PS2 und PS3 entsprechend.

� PWD nennt das augenblickliche Arbeits-Verzeichnis.

� RANDOM ist eine Zufallszahl zur beliebigen Verwendung.

� SECONDS ist die Anzahl der Sekunden seit dem Aufruf der Shell.

� SHELL nennt die Shell.

� TERM nennt den Terminaltyp, wie er in der terminfo(4) steht. Wird vom
vi(1) und den curses(3)-Funktionen ben�otigt.

� TMOUT gibt die Anzahl der Sekunden an, nach der die Shell sich beendet,
falls kein Zeichen eingegeben wird. Der hier gesetzte Wert 0 bedeutet kein

Timeout. �Ublich: 1000.

� TN ist das letzte Glied aus TTY, eine lokale Er�ndung.

� TTY ist die Terminalbezeichnung aus dem Verzeichnis /dev, wie sie das

Kommando tty(1) liefert.

� TZ ist die Zeitzone, hier mitteleurop�aische Sommerzeit, zwei Stunden �ostlich

Greenwich.

� (underscore) enth�alt das letzte Argument des letzten asynchronen Kom-

mandos.

Unter MS-DOS gibt es eine �ahnliche Einrichtung, die ebenfalls mit dem Komman-

do set auf dem Bildschirm erscheint.
Zum �Andern oder Anlegen einer Variablen geben Sie ein Kommando folgender

Art ein (keine Spaces um das Gleichheitszeichen):

TERM=hp2393

NEU=Unsinn

2.5 Shells 71

Danach hat die bereits vorher vorhandene Variable TERM den Wert hp2393, und

eine neue Variable NEU mit dem Wert Unsinn ist angelegt worden. Die Namen

der Variablen werden �ublicherweise gro� geschrieben. Die ganze Gleichung ist ein

String, dessen rechter Teil auch leer sein darf. In diesem Fall wird die Variable

gel�oscht. Soll der String Leerzeichen enthalten, mu� er in G�ansef�u�chen gesetzt

werden:

PS1="A "

In der Korn-Shell kann man dem Prompt etwas Arbeit zumuten (back quotes):

PS1='${pwd##*/}> '

Er zeigt dann den Grundnamen des augenblicklichen Arbeitsverzeichnisses an, was

viele Benutzer vom PC her gewohnt sind. Soll eine Variable f�ur die ganze Sitzung
gelten, mu� sie in der Sitzungsshell { also nicht in einer Subshell { eingerichtet
und exportiert werden (zwei Schreibweisen):

NEU=Unsinn; export NEU

export NEU=Unsinn

Meist setzt man individuelle Variable in einem Shellscript namens .profile im

Home-Verzeichnis entsprechend autoexec.bat unter MS-DOS. Ein C-Programm
zur Anzeige der Umgebung �ahnlich dem Kommando set sieht so aus:

/* umgebung.c, Programm zur Anzeige der Umgebung */

#include <stdio.h>

int main(argc, argv, envp)
int argc;
char *argv[], *envp[];

{
int i;

for (i = 0; envp[i] != NULL; i++)
printf("%s\n", envp[i]);

return 0;
}

Programm 2.5 : C-Programm zur Anzeige der Umgebung

Die Umgebung ist ein Array of Strings namens envp, dessen Inhalt genau das

ist, was set auf den Bildschirm bringt. In der for-Schleife werden die Elemente

des Arrays sprich Zeilen ausgegeben, bis das Element NULL erreicht ist. Statt die
Zeilen auszugeben, kann man sie auch anders verwerten.

72 2 UNIX

2.5.1.3 Umlenkung

Beim Aufruf eines Kommandos oder Programmes lassen sich Ein- und Ausgabe

durch die Umlenkungszeichen < und > in Verbindung mit einem Filenamen in

eine andere Richtung umlenken. Beispielsweise liest das Kommando cat(1) von

stdin und schreibt nach stdout. Lenkt man Ein- und Ausgabe um:

cat < input > output

so liest cat(1) das File input und schreibt es in das File output. Das Einlesen

von stdin oder dem File input wird beendet durch das Zeichen EOF (End Of

File) oder control-d. Etwaige Fehlermeldungen erscheinen nach wie vor auf dem

Bildschirm, stderr ist nicht umgeleitet.

Doppelte Pfeile zur Umlenkung der Ausgabe veranlassen das Anh�angen der

Ausgabe an einen etwa bestehenden Inhalt des Files, w�ahrend der einfache Pfeil

das File von Beginn an beschreibt. Existiert das File noch gar nicht, wird es in

beiden F�allen erzeugt.

Die Pfeile lassen sich auch zur Verbindung von File-Deskriptoren verwenden.
Beispielsweise verbindet

command 2>&1

den File-Deskriptor 2 (in der Regel stderr) des Kommandos command mit dem
File-Deskriptor 1 (in der Regel stdout). Die Fehlermeldungen von command landen

im selben File wie die eigentliche Ausgabe. Lenkt man noch stdout um, so spielt
die Reihenfolge der Umlenkungen eine Rolle. Die Eingabe

command 1>output 2>&1

lenkt zun�achst stdout (File-Deskriptor 1) in das File output. Anschlie�end wird
stderr (File-Deskriptor 2) in das File umgelenkt, das mit dem File-Deskriptor
1 verbunden ist, also nach output. Vertauscht man die Reihenfolge der beiden

Umlenkungen, so wird zun�achst stderr nach stdout (Bildschirm) umgelenkt

(was wenig Sinn macht, weil stderr ohnehin der Bildschirm ist) und anschlie-

�end stdout in das File output. Im File output �ndet sich nur die eigentliche

Ausgabe. Sind Quelle und Ziel einer Umlenkung identisch:

command >filename <filename

so hat das unabh�angig von der Reihenfolge in der Kommandozeile die unerw�unsch-

te Wirkung, da� das File geleert wird.

Die Umlenkungen werden von der Shell geleistet. Das Kommando erh�alt von
der Shell die bereits umgelenkten File-Deskriptoren. Das hat den Vorteil, da� man

sich beim Schreiben eigener Kommandos nicht um den Umlenkungsmechanismus

zu k�ummern braucht.

2.5 Shells 73

2.5.2 Shellscripts

Wenn man eine Folge von Kommandos h�au�ger braucht, schreibt man sie in ein

File und �ubergibt dem Kommandointerpreter den Namen dieses Files. Unter MS-

DOS hei�t ein solches File Stapeldatei oder Batch�le, unter UNIX Shellscript

und bei manchen Verfassern Kommandoprozedur, Makro oder Makrobefehl. Es

ist nicht selbstverst�andlich, aber zweckm�a�ig, f�ur die Shellscripts dieselbe Kom-

mandosprache zu verwenden wie im Dialog. Der Teil der Shell, der Shellscripts ab-

arbeitet, wird auch als Abwickler bezeichnet. Es gibt weitere Scriptsprachen { vor

allem Perl (nicht Pearl, das ist eine andere Geschichte) { anstelle der Shellsprache.

Shellscripts d�urfen geschachtelt werden (ohne call wie in MS-DOS). Die exter-

nen UNIX-Kommandos sind teils unlesbare kompilierte Programme, teils lesbare

Shellscripts.

Es gibt zwei Wege, ein Shellscript auszuf�uhren. Falls es nur lesbar, aber nicht

ausf�uhrbar ist, �ubergibt man es als Argument einer Subshell:

sh shellscript

Ist es dagegen les- und ausf�uhrbar, reicht der Aufruf mit dem Namen allein:

shellscript

Bei der ersten M�oglichkeit kann man eine andere als die augenblickliche Sitzungs-
shell aufrufen, also beispielsweise Bourne statt Korn. Es soll auch leichte Unter-

schiede in der Vererbung der Umgebung geben, die Literatur { so weit wie wir sie
kennen { h�alt sich mit klaren Aussagen zur�uck. Experimentell konnten wir nur

einen Unterschied hinsichtlich der Umgebungsvariablen EDITOR feststellen.

Der Witz an den Shellscripts ist, da� sie weit mehr als nur Programmaufrufe
enthalten d�urfen. Die Shells verstehen eine Sprache, die an BASIC heranreicht; sie
sind programmierbar. Es gibt Variable, Schleifen, Bedingungen, Ganzzahlarithme-

tik, Zuweisungen, Funktionen, nur keine Gleitkommarechnung. Die Syntax gleicht
einer Mischung von BASIC und C. Man mu� das Referenz-Handbuch sorgf�altig
lesen, gerade wegen der �Ahnlichkeiten.Kommentar wird mit einem Doppelkreuz

eingeleitet und wirkt bis zum Zeilenende. Das folgende Beispiel zeigt, wie man eine
l�angere Pipe in ein Shellscript verpackt:

Shellscript frequenz, Frequenzwoerterliste
cat $* |
tr [A-Z] [a-z] |
tr -sc "[a-z]" "[\012*]" |
sort |
uniq -c |
sort -nr

Programm 2.6 : Shellscript Frequenzw�orterliste

Dieses Shellscript { in einem File namens frequenz { nimmt die Namen von

einem oder mehreren Text�les als Argument entgegen, liest die Files mittels cat,

ersetzt alle Gro�buchstaben durch Kleinbuchstaben, ersetzt weiterhin alle Zeichen,

74 2 UNIX

die keine Buchstaben sind, durch Linefeeds (d. h. schreibt jedes Wort in eine ei-

gene Zeile), sortiert das Ganze, wirft mit Hilfe von uniq mehrfache Eintragungen

hinaus, z�ahlt dabei die Eintragungen und sortiert schlie�lich die Zeilen nach der

Anzahl der Eintragungen, die gr�o�te Zahl zuv�orderst. Der Aufruf des Scripts er-

folgt mit frequenz filenames. Es ist zugleich ein sch�ones Beispiel daf�ur, wie

man durch eine Kombination einfacher Werkzeuge eine komplexe Aufgabe l�ost.

Das Zur�uckf�uhren der verschiedenen Formen eines Wortes auf die Grundform

(In�nitiv, Nominativ) mu� von Hand geleistet werden, aber einen gro�en und

stumpfsinnigen Teil der Arbeit beim Aufstellen einer Frequenzw�orterliste erledigt

unser p��ges Werkzeug.

Bereinigt man unser Vorwort (�altere Fassung, nicht nachz�ahlen) von allen

LaTeX-Konstrukten und bearbeitet es mit frequenz, so erh�alt man eine W�orter-

liste, deren Beginn so aussieht:

16 der

16 und

9 das

9 die

8 wir

7 mit

7 unix

6 fuer

6 in

6 man

5 auf

5 zu

4 aus

Solche Frequenzw�orterlisten verwendet man bei Stiluntersuchungen, zum Anlegen
von Stichwortverzeichnissen und beim Lernen von Fremdsprachen.

Auf Variable greift man in einem Shellscript zur�uck, indem man ein Dollarzei-
chen vor ihren Namen setzt. Das Shellscript

print TERM

print $TERM

print TERM = $TERM

schreibt erst die Zeichenfolge TERM auf den Bildschirm und in der n�achsten Zeile

den Inhalt der Variablen TERM, also beispielsweise hp2393. Die dritte Zeile kombi-

niert beide Ausgaben. Weiterhin kennen Shellscripts noch benannte Parameter
{ auch Schl�usselwort-Parameter gehei�en { und Positionsparameter. Benannte

Parameter erhalten ihren Wert durch eine Zuweisung

x=3

P1=lpjet

w�ahrend die Positionsparameter von der Shell erzeugt werden. Ihre Namen und

Bedeutungen sind:

2.5 Shells 75

� $0 ist das erste Glied der Kommandozeile, also das Kommando selbst ohne

Optionen oder Argumente,

� $1 ist das zweite Glied der Kommandozeile, also eine Option oder ein Ar-

gument,

� $2 ist das dritte Glied der Kommandozeile usw.

� $# ist die Anzahl der Positionsparameter,

� $* ist die gesamte Kommandozeile ohne das erste Glied $0, also die Folge

aller Optionen und Argumente.

Die Bezi�erung der Positionsparameter geht bis 9, die Anzahl der Glieder der

Kommandozeile ist nahezu unbegrenzt. Die Glieder jenseits der Nummer 9 werden

in einem Sumpf verwahrt, aus dem sie mit einem shift-Kommando herausgeholt

werden k�onnen. Hier ein Shellscript, das zeigt, wie man auf Umgebungsvariable

und Positionsparameter zugreift:

Shellscript posparm zur Anzeige von Umgebungsvariablen und
Positionsparametern, 30.08.91

print Start $0
x=4711
print $*
print $#
print $1
print $2
print ${9:-nichts}
print $x
print $TERM
print Ende $0

Programm 2.7 : Shellscript zur Anzeige von Positionsparametern

Nun ein umfangreicheres Beispiel. Das Shellscript userlist wertet die Files
/etc/passwd und /etc/group aus und erzeugt zwei Benutzerlisten, die man sich
ansehen oder ausdrucken kann:

Shellscript userlist, 30. Okt. 86

Dieses Shellskript erzeugt eine formatierte Liste der User
und schreibt sie ins File userlist. Voraussetzung ist, dass
die Namen der User aus mindestens einem Buchstaben und
einer Ziffer bestehen. Usernamen wie root, bin, who, gast
werden also nicht in die Liste aufgenommen. Die Liste ist
sortiert nach der UID. Weiterhin erzeugt das Skript eine
formatierte Liste aller Gruppen und ihrer Mitglieder und
schreibt sie ins File grouplist.

cat liest /etc/passwd
cut schneidet die gewuenschten Felder aus
grep sortiert die gewuenschten Namen aus
sort sortiert nach der User-ID

76 2 UNIX

sed ersetzt die Doppelpunkte durch control-i (tabs)
expand ersetzt die tabs durch spaces

print Start /etc/userlist

print "Userliste vom `date '+%d. %F %y'` \n" > userlist

cat /etc/passwd | cut -f1,3,5 -d: |
grep '[A-z][A-z]*[0-9]' | sort +1.0 -2 -t: |
sed -e "s/[:]/ /g" | expand -12 >> userlist

print "\n`cat userlist | grep '[A-z][A-z]*[0-9]' |
cut -c13-15 | uniq |
wc -l` User. Userliste beendet" >> userlist

cat liest /etc/group
cut schneidet die gewuenschten Felder aus
sort sortiert numerisch nach der Group-ID
sed ersetzt : oder # durch control I (tabs)
expand ersetzt tabs durch spaces

print "Gruppenliste vom `date '+%d. %F %y'` \n" > grouplist

cat /etc/group | cut -f1,3,4 -d: |
sort -n +1.0 -2 -t: | sed -e "s/:/ /g" |
sed -e "s/#/ /g" | expand -12 >> grouplist

print "\nGruppenliste beendet" >> grouplist

print Ende userlist

Programm 2.8 : Shellscript zur Erzeugung einer Benutzerliste

Das folgende Shellscript schreibt ein Men�u auf den Bildschirm und wertet die

Antwort aus, wobei man statt der Ausgabe mittels echo oder print irgendetwas
Sinnvolles tun sollte:

Shellscript menu zum Demonstrieren von Menues, 30.08.91

clear
print "\n\n\n\n\n\n"
print "\tMenu"
print "\t====\n\n\n"
print "\tAuswahl 1\n"
print "\tAuswahl 2\n"
print "\tAuswahl 3\n\n\n"
print "\tBitte Ziffer eingeben: \c"; read z
print "\n\n\n"
case $z in

1) print "Sie haben 1 gewaehlt.\n\n";;
2) print "Sie haben 2 gewaehlt.\n\n";;
3) print "Sie haben 3 gewaehlt.\n\n";;
*) print "Ziffer unbekannt.\n\n";;

2.5 Shells 77

esac

Programm 2.9 : Shellscript f�ur ein Men�u

Im obigen Beispiel wird dieAuswahl case - esac verwendet, die der switch-

Anweisung in C entspricht. Es gibt weiterhin die Bedingung oder Verzweigung

mit if - then - else - fi, die das folgende Beispiel zeigt. Gleichzeitig wird

Arithmetik mit ganzen Zahlen vorgef�uhrt:

Shellscript primscript zur Berechnung von Primzahlen, 26.05.92

typeset -i ende=100 # groesste Zahl, max. 3600
typeset -i z=5 # aktuelle Zahl
typeset -i i=1 # Index von p
typeset -i p[500] # Array der Primzahlen, max. 511
typeset -i n=2 # Anzahl der Primzahlen

p[0]=2; p[1]=3 # die ersten Primzahlen

while [z -le ende]
do

if [z%p[i] -eq 0] # z teilbar
then

z=z+2
i=1

else # z nicht teilbar
if [p[i]*p[i] -le z]
then

i=i+1
else

p[n]=z; n=n+1
z=z+2
i=1

fi
fi

done

i=0 # Ausgabe des Arrays
while [i -lt n]
do

print ${p[i]}
i=i+1

done

print Anzahl: $n

Programm 2.10 : Shellscript zur Berechnung von Primzahlen

Eine geschachtelte Verzweigung wie in obigem Shellscript darf auch k�urzer

mit if - then - elif - then - else - fi geschrieben werden. Man gewinnt

jedoch nicht viel damit.

Die for-Schleife hat in Shellscripts eine andere Bedeutung als in C. Im fol-

78 2 UNIX

genden Shellskript ist sie so aufzufassen: f�ur die Argumente in dem Positionspa-

rameter $* (der Name user ist beliebig) f�uhre der Reihe nach die Kommandos

zwischen do und done aus.

Shellscript filecount zum Zaehlen der Files eines Users, 06.11.91

for user in $*
do
print $user `find /mnt -user $user -print | wc -l`
done

Programm 2.11 : Shellscript zum Z�ahlen der Files eines Benutzers

Es gibt weiterhin die while-Schleife mit while - do - done, die der gleich-

namigen Schleife in anderen Programmiersprachen entspricht. Auf while folgt

eine Liste von Kommandos, deren Ergebnis entweder true oder false ist (also

nicht ein logischer Ausdruck wie in den Programmiersprachen). true(1) ist hier

kein logischer oder boolescher Wert, sondern ein externes UNIX-Kommando, das
eine Null (= true) zur�uckliefert (entsprechend auch false(1)):

Shellscript mit Funktion zum Fragen, 21.05.1992
nach Bolsky + Korn, S. 183, 191

Funktion frage

function frage
{
typeset -l antwort # Typ Kleinbuchstaben
while true

do read "antwort?$1" || return 1
case $antwort in
j|ja|y|yes|oui) return 0;;
n|nein|no|non) return 1;;
*) print 'Mit j oder n antworten';;
esac

done
}

Anwendung der Funktion frage

while frage 'Weitermachen? '
do

date # oder etwas Sinnvolleres
done

Programm 2.12 : Shellscript mit einer Funktion zum Fragen

Eine Schleife wird abgebrochen, wenn

� die R�ucksprung- oder Eintrittsbedingung nicht mehr erf�ullt ist oder

� im Rumpf der Schleife das shellinterne Kommando exit, return, break

oder continue erreicht wird.

2.5 Shells 79

Die Kommandos zeigen unterschiedliche Wirkungen. exit gibt die Kontrolle an

das aufrufende Programm (Sitzungsshell) zur�uck. Au�erhalb einer Funktion hat

return die gleiche Wirkung. break beendet die Schleife, das Shellscript wird nach

der Schleife fortgesetzt wie bei einer Verletzung der Bedingung. continue hinge-

gen f�uhrt zu einem R�ucksprung an den Schleifenanfang. F�ur die gleichnamigen

C-Anweisungen gilt dasselbe.

Shellscripts lassen sich durch Funktionen strukturieren, die sogar rekursiv

aufgerufen werden d�urfen, wie das folgende Beispiel zeigt:

Shellscript hanoiscript (Tuerme von Hanoi), 25.05.1992
Aufruf hanoi n mit n = Anzahl der Scheiben
nach Bolsky + Korn S. 84

Funktion, rekursiv

function fhanoi
{

typeset -i x=$1-1
((x>0)) && fhanoi $x $2 $4 $3
print "\tvon Turm $2 nach Turm $3"
((x>0)) && fhanoi $x $4 $3 $2

}

Hauptscript

case $1 in
[1-9] | [1][0-6])

print "\nTuerme von Hanoi (Shellscript)"
print "Start Turm 1, Ziel Turm 2, $1 Scheiben\n"
print "Bewege die oberste Scheibe"
fhanoi $1 1 2 3;;

*) print "Argument zwischen 1 und 16 erforderlich"
exit;;

esac

Programm 2.13 : Shellscript T�urme von Hanoi, rekursiver Funktionsaufruf

Die T�urme von Hanoi sind ein Spiel und ein beliebtes Programmbeispiel, bei
dem ein Stapel unterschiedlich gro�er Scheiben von einem Turm auf einen zweiten

Turm gebracht werden soll, ein dritter Turm als Zwischenlager dient, mit einem

Zug immer nur eine Scheibe bewegt werden und niemals eine gr�o�ere Scheibe �uber
einer kleineren liegen darf. Das Spiel wurde 1883 von dem franz�osischen Mathe-

matiker Franc�ois Eduouard Anatole Lucas erdacht. Im obigen Shellscript
ist die Anzahl der Scheiben auf 16 begrenzt, weil mit steigender Scheibenzahl die

Zeiten lang werden (Anzahl der Z�uge minimal 2n � 1).

Das Hauptscript ruft die Funktion fhanoi mit vier Argumenten auf. Das erste
Argument ist die Anzahl der Scheiben, die weiteren Argumente sind Start-, Ziel-

und Zwischenturm. Die Funktion fhanoi setzt die Integervariable x auf den um

1 verminderten Wert der Anzahl, im Beispiel also zun�achst auf 2. Diese Variable

begrenzt die Rekursionstiefe. Ist der Wert des ersten Argumentes im Aufruf bei 1

80 2 UNIX

angekommen, ruft sich die Funktion nicht mehr auf, sondern gibt nur noch aus.

Die Zeile:

((x>0)) && fhanoi $x $2 $4 $3

ist in der Korn-Shell so zu verstehen:

� berechne den Wert des booleschen Ausdrucks x > 0,

� falls TRUE herauskommt, rufe die Funktion fhanoi mit den jeweiligen Ar-

gumenten auf, wobei $2 das zweite Argument ist usw.

Schreiben wir uns die Folge der Funktionsaufrufe untereinander, erhalten wir:

fhanoi 3 1 2 3

fhanoi 2 1 3 2

fhanoi 1 1 2 3 -> print 1 2

print 1 3

fhanoi 1 2 3 1 -> print 2 3

print 1 2

fhanoi 2 3 2 1

fhanoi 1 3 1 2 -> print 3 1

print 3 2

fhanoi 1 1 2 3 -> print 1 2

Die Ausgabe des Scripts f�ur n = 3 sieht folgenderma�en aus:

Tuerme von Hanoi (Shellscript)

Start Turm 1, Ziel Turm 2, 3 Scheiben

Bewege die oberste Scheibe

von Turm 1 nach Turm 2

von Turm 1 nach Turm 3

von Turm 2 nach Turm 3

von Turm 1 nach Turm 2

von Turm 3 nach Turm 1

von Turm 3 nach Turm 2

von Turm 1 nach Turm 2

F�ur n = 1 ist die L�osung trivial, f�ur n = 2 o�ensichtlich, f�ur n = 3 �uberschau-

bar, sofern die Sterne g�unstig und die richtigen Getr�anke in Reichweite stehen.

Bei gr�o�eren Werten mu� man systematisch vorgehen. Ein entscheidender Mo-
ment ist erreicht, wenn nur noch die unterste (gr�o�te) Scheibe im Start liegt und

sich alle �ubrigen Scheiben im Zwischenlager be�nden, geordnet nat�urlich. Dann

bewegen wir die gr�o�te Scheibe ins Ziel. Der Rest ist nur noch, den Stapel vom

Zwischenlager ins Ziel zu bewegen, eine Aufgabe, die wir bereits beim Transport

der n � 1 Scheiben vom Start ins Zwischenlager bew�altigt haben. Damit haben
wir die Aufgabe von n auf n� 1 Scheiben reduziert. Das Rezept wiederholen wir,

bis wir bei n = 2 angelangt sind. Wir ersetzen also eine vom Umfang her nicht zu

l�osende Aufgabe durch eine gleichartige mit geringerem Umfang so lange, bis die

2.5 Shells 81

Aufgabe einfach genug geworden ist. Das Problem liegt darin, sich alle angefange-

nen, aber noch nicht zu Ende gebrachten Teilaufgaben zu merken, aber daf�ur gibt

es Computer. Mit der Entdeckung eines Algorithmus, der mit Sicherheit und in

k�urzestm�oglicher Zeit zum Ziel f�uhrt, ist der Charakter des Spiels verloren gegan-

gen, es ist nur noch ein Konzentrations- und Ged�achtnistest. Beim Schach liegen

die Verh�altnisse anders.

Dieses Progr�ammchen haben wir etwas ausf�uhrlich erkl�art, weil Rekursionen

f�ur manchen Leser ungewohnt sind. Versuchen Sie, die Aufgabe ohne Rekursion zu

l�osen (nicht alle Programmiersprachen kennen die Rekursion) und suchen Sie mal

im WWW nach Towers of Hanoi und recurs und ihren deutschen �Ubersetzungen.

Beim Anmelden werden automatisch zwei Shellscripts ausgef�uhrt, die Sie sich

als Beispiele ansehen sollten: /etc/profile wird f�ur jeden Benutzer ausgef�uhrt,

das Script .profile im Home-Verzeichnis f�ur die meisten.

/etc/profile @(#) $Revision: 64.2, modifiziert 02.10.90

Default system-wide profile file (/bin/ksh initialization).
This should be kept to the bare minimum every user needs.

trap "" 1 2 3 # ignore HUP, INT, QUIT

PATH=/rbin:/usr/rbin: # default path
CDPATH=:..:$HOME
TZ=MEZ-1

TTY=`/bin/tty` # TERM ermitteln
TN=`/bin/basename $TTY`
TERM=`/usr/bin/fgrep $TN /etc/ttytype | /usr/bin/cut -f1`

if [-z "$TERM"] # if term is not set,
then #

TERM=vt100 # default terminal type
fi

TMOUT=500
LINES=24 # fuer tn3270
PS1="mvmhp " # Prompt
GNUTERM=hp2623A # fuer gnuplot
HOSTALIASES=/etc/hostaliases

export PATH CDPATH TZ TERM TMOUT LINES PS1
export GNUTERM HOSTALIASES

initialisiere Terminal gemaess TERMINFO-Beschreibung

/usr/bin/tset -s

set erase to ^H , kill to ^X , intr to ^C, eof to ^D

/bin/stty erase "^H" kill "^X" intr "^C" eof "^D"

Set up shell environment:

82 2 UNIX

trap clear 0

Background-Jobs immer mit nice und andere Optionen

set -o bgnice -o ignoreeof

Schirm putzen und Begruessung

/usr/rbin/clear
print " * Willkommen * "

if [$TN = "tty2p4"] # Modem
then
print
/usr/local/bin/speed
fi

if [$LOGNAME != root -a $LOGNAME != adm]
then

print
if [-f /etc/motd]
then

/bin/cat /etc/motd # message of the day.
fi

if [-f /usr/bin/news]
then /usr/bin/news # display news.
fi

print "\nHeute ist `/rbin/zeit`"

if [-r $HOME/.logdat -a -w $HOME/.logdat]
then
print "Letzte Anmeldung am \c"; /bin/cat $HOME/.logdat
fi
/bin/zeit > $HOME/.logdat

print "\nIhr Home-Directory $HOME belegt \c"
DU=`/bin/du -s $HOME | /usr/bin/cut -f1`
print "`/bin/expr $DU / 2` Kilobyte.\n"
unset DU

/bin/sleep 4

/usr/bin/elm -azK
print

fi

cd
umask 077

2.5 Shells 83

/bin/mesg y 2>/dev/null

/usr/rbin/clear

if [$LOGNAME != gast]
then
print y | /bin/ln /mnt/.profile $HOME/.profile 2>/dev/null
/bin/ln /mnt/.exrc $HOME/.exrc 2>/dev/null
fi

trap 1 2 3 # leave defaults in environment

Programm 2.14 : Shellscript /etc/pro�le

Das Shellscript .profile in den Home-Verzeichnissen dient pers�onlichen An-

passungen. Auf unserem System wird es allerdings vom System-Manager verwal-

tet, da es einige wichtige Informationen enth�alt, die der Benutzer nicht �andern

soll. Seine Phantasie darf der Benutzer in einem File .autox ausleben. Das File

.logdat speichert den Zeitpunkt der Anmeldung, so da� man bei einer erneuten
Anmeldung feststellen kann, wann die vorherige Anmeldung stattgefunden hat,
eine Sicherheitsma�nahme.

.profile zum Linken in die HOME-Directories der Benutzer
von /etc kopieren nach /mnt/.profile, von dort linken
ausser gast und dergleichen. 16.02.1993

EDITOR=vi
FCEDIT=vi
TMOUT=1000
PATH=/bin:/usr/bin:/usr/local/bin:/oracle/bin:$HOME/bin::

PS1="mvmhp> " # Prompt
PS1='${PWD#$HOME/}> '
PS1='${PWD##*/}> '

export FCEDIT PATH PS1

alias h='fc -l'

if [-f .autox]
then

. .autox
fi

Programm 2.15 : Shellscript /etc/.pro�le

In dem obigen Beispiel /etc/.profile wird ein weiteres Script namens .autox

mit einem vorangestellten und durch einen Zwischenraum (Space) abgetrennten

Punkt aufgerufen. Dieser Punkt ist ein Shell-Kommando und hat nichts mit dem
Punkt von .autox oder .profile zu tun. Als Argument �ubernimmt der Punktbe-

fehl den Namen eines Shellscripts. Er bewirkt, da� das Shellscript nicht von einer

Subshell ausgef�uhrt wird, sondern von der Shell, die den Punktbefehl entgegen-

84 2 UNIX

nimmt. Damit ist es m�oglich, in dem Shellscript beispielsweise Variable mit Wir-

kung f�ur die derzeitige Shell zu setzen, was in einer Subshell wegen der Unm�oglich-

keit der Vererbung von Kinderprozessen r�uckw�arts auf den Elternprozess nicht

geht. Ein mit dem Punkt-Befehl aufgerufenes Shellscript wird als Punktscript

bezeichnet, obwohl der Aufruf das Entscheidende ist, nicht das Script.

F�ur den Prompt stehen in .profile drei M�oglichkeiten zur Wahl. Die erste

setzt den Prompt auf einen festen String, den Netznamen der Maschine. Die zwei-

te verwendet den Namen des aktuellen Verzeichnisses, verk�urzt um den Namen

des Home-Verzeichnisses. Die dritte, nicht auskommentierte zeigt den Namen des

Arbeits-Verzeichnisses ohne die �ubergeordneten Verzeichnisse an.

Das waren einige Shellscripts, die vor Augen f�uhren sollten, was die Shell

leistet. Der Umfang der Shellsprache ist damit noch lange nicht ersch�opft. Die

M�oglichkeiten von Shellscripts voll auszunutzen erfordert eine l�angere �Ubung. Die

Betonung liegt auf voll, einfache Shellscripts schreibt man schon nach wenigen

Minuten �Uben.

Wir haben uns vorstehend mit der Korn-Shell ksh(1) befa�t, die man heute

als die Standardshell ansehen kann (Protest von Seiten der csh(1)-Anh�anger).
Verwenden Sie die Shell, die auf Ihrer Anlage �ublich ist, im Zweifelsfall die Bourne-

Shell sh(1), und wechseln Sie auf eine leistungsf�ahigere Shell, wenn Sie an die
Grenzen der Bourne-Shell sto�en. Die Bourne-Shell kennengelernt zu haben, ist auf
keinen Fall verkehrt. Wir erinnern daran, da� die UNIX-Shells sowohl interaktive

Kommando-Interpreter als auch Programmiersprachen f�ur Shellscripts sind, zwei
zun�achst verschiedene Aufgaben.

2.5.3 Noch eine Scriptsprache: Perl

Perl ist eine j�ungere Alternative zur Shell als Scriptsprache (nicht als Kommando-

interpreter) und vereint Z�uge von sh(1), awk(1), sed(1) und der Programmier-
sprache C. Sie ist optimiert f�ur Textverarbeitung und Systemverwaltung. Perl-

Interpreter sind im Netz frei unter der GNU General Public License verf�ugbar.
Einzelheiten sind einem Buch oder der man-Page (eher schon ein man-Booklet)
zu entnehmen, hier wollen wir uns nur an zwei kleinen Beispielen eine Vorstellung

von Perl verscha�en. Dazu verwenden wir das in Perl umgeschriebene Shellscript

zur Berechnung von Primzahlen.

#!/usr/local/bin/perl
perl-Script zur Berechnung von Primzahlen, 28. Nov. 1996

$ende = 10000; # groesste Zahl
$z = 5; # aktuelle Zahl
$i = 1; # Index von p
@p = (2, 3); # Array der Primzahlen
$n = 2; # Anzahl der Primzahlen

while ($z <= $ende) {
if ($z % @p[$i] == 0) { # z teilbar

$z = $z + 2;
$i = 1;

2.5 Shells 85

}
else { # z nicht teilbar

if (@p[$i] * @p[$i] <= $z) {
$i++;

}
else {

@p[$n] = $z;
$n++;
$z = $z + 2;
$i = 1;

}
}

}

Ausgabe des Arrays

$i = 0;
while ($i < $n) {

print(@p[$i++], "\n");
}

print("Anzahl: ", $n, "\n");

Programm 2.16 : Perlscript zur Berechnung von Primzahlen

Man erkennt, da� die Struktur des Scripts gleich geblieben ist. Die Unter-

schiede r�uhren von syntaktischen Feinheiten her:

� Die erste Zeile mu� wie angegeben den Perl-Interpreter verlangen.

� Die Namen von Variablen beginnen mit Dollar, Buchstabe.

� Die Namen von Arrays beginnen mit dem at-Zeichen (Klammera�e).

� Die Kontrollstrukturen erinnern an C, allerdings mu� der Anweisungsteil in

geschweiften Klammern stehen, selbst wenn er leer ist.

� Zur Ausgabe auf stdout wird eine Funktion print() verwendet.

Der Perl-Interpreter unterliegt nicht den engen Grenzen des Zahlenbereiches und

der Arraygr�o�e der Shell. Die Stellenzahl der gr�o�ten ganzen Zahl ist maschinen-

abh�angig und entspricht ungef�ahr der Anzahl der g�ultigen Stellen einer Gleitkom-

mazahl. Zum Perl-Paket geh�oren auch Konverter f�ur awk(1)- und sed(1)-Scripts,

allerdings bringt das Konvertieren von Hand elegantere Ergebnisse hervor.

Im zweiten Beispiel soll aus dem Katalog einer Institutsbibliothek die Anzahl

der B�ucher ermittelt werden. Zu jedem Schriftwerk geh�ort eine Zeile im Katalog,

jede Zeile enth�alt ein Feld zur Art des Werkes: "BUC" hei�t Buch, "DIP" Diplom-

arbeit, "ZEI" Zeitschrift. Das Perlscript verwendet ein assoziatives Array, dessen

Elemente als Index nicht Ganzzahlen, sondern beliebige Strings gebrauchen. �Uber

die Anordnung der Elemente im Array braucht man sich keine Gedanken zu ma-

chen. Das Perlscript:

#!/usr/local/bin/perl
perl-Script zum Zaehlen in Buecherliste, 28. Nov. 1996

86 2 UNIX

Verwendung eines assoziativen Arrays

%anzahl = ("BUC", 0, "ZEI", 0, "DIP", 0);

Leseschleife

while ($input = <STDIN>) {
while ($input =~ /BUC|ZEI|DIP/g) {

$anzahl{$&} += 1;
}

}

Ausgabe

foreach $item (keys(%anzahl)) {
print("$item: $anzahl{$item}\n");

}

Programm 2.17 : Perlscript zur Ermittlung der Anzahl der B�ucher usw. in einem

Katalog

In der ersten ausf�uhrbaren Zeile wird ein assoziatives Array namens %anzahl
mit drei Elementen de�niert und initialisiert. Die �au�ere while-Schleife liest Zei-
len von stdin, per Umlenkung mit dem Katalog verbunden. Die innere while-

Schleife z�ahlt das jeweilige Element des Arrays um 1 hoch, jedesmal wenn in der
aktuellen Zeile ein Substring "BUC" oder "ZEI" oder "DIP" gefunden wird. Die
Perl-Variable $& enth�alt den gefundenen Substring und wird deshalb als Index

ausgenutzt. Die foreach-Schleife zur Ausgabe gleicht der gleichnamigen Schleife
der C-Shell oder der for-Schleife der Bourne-Shell.

Was man mit Shell- oder Perlscripts macht, l�a�t sich auch mit Programmen {

vorzugsweise in C { erreichen. Was ist besser? Ein Script ist schnell geschrieben
oder ge�andert, braucht nicht kompiliert zu werden (weil es interpretiert wird),

l�auft aber langsamer als ein Programm. Ein Script eignet sich daher f�ur kleine
bis mittlere Aufgaben zur Textverarbeitung oder Systemverwaltung, wobei Perl
mehr kann als die Shell. F�ur umfangreiche Rechnungen oder falls die Laufzeit

entscheidet, ist ein kompiliertes Programm besser. Oft schreibt man auch zun�achst

ein Script, probiert es eine Zeitlang aus und ersetzt es dann durch ein Programm.

Gelegentlich spielt die Portierbarkeit auf andere Betriebssysteme eine Rolle. Ein

UNIX-Shellscript l�auft nur auf Systemen, auf denen eine UNIX-Shell verf�ugbar ist,
Perl setzt den Perl-Interpreter voraus, ein C-Programm l�auft auf jedem System,

f�ur das ein C-Compiler zur Verf�ugung steht. Und schlie�lich hat man auch seine

Gewohnheiten.

2.5.4 Memo Shells

� Die Shell { ein umfangreiches Programm { ist der Gespr�achspartner (Kom-

mandointerpreter) in einer Sitzung. Es gibt mehrere Shells zur Auswahl, die
sich in Einzelheiten unterscheiden.

2.5 Shells 87

� Die Shell fa�t jede Eingabe als Kommando (internes K., externes Kommando

= Shellscript oder Programm) auf.

� Die Shell stellt f�ur die Sitzung eine Umgebung bereit, die eine Reihe von

Werten (Strings) enth�alt, die von Shellscripts und anderen Programmen

benutzt werden.

� Die Shell ist zweitens ein Interpreter f�ur Shellscripts, eine Art von Pro-

grammen, die nicht kompiliert werden. Shellscripts k�onnen alles au�er

Gleitkomma-Arithmetik.

� Perl ist eine Scriptsprache alternativ zur Shell als Sprache, nicht als Kom-

mandointerpreter. Sie setzt den Perl-Interpreter voraus.

2.5.5 �Ubung Shells

Melden Sie sich { wie inzwischen gewohnt { unter Ihrem Benutzernamen an. Die

folgende Sitzung l�auft mit der der Korn-Shell. Die Shells sind umfangreiche Pro-

gramme mit vielen M�oglichkeiten, wir kratzen hier nur ein bi�chen an der Ober-

�ache.

set (Umgebung anzeigen)

PS1="zz " (Prompt aendern)

NEU=Unsinn (neue Variable setzen)

set

pwd (Arbeits-Verzeichnis?)

print Mein Arbeits-Verzeichnis ist pwd

(Satz auf Bildschirm schreiben)

print Mein Arbeits-Verzeichnis ist `pwd`

(Kommando-Substitution)

print Mein Home-Verzeichnis ist $HOME

(Shell-Variable aus Environment)

pg /etc/profile (Shellscript anschauen)

pg .profile

Schreiben Sie mit dem Editor vi(1) in Ihr Home-Verzeichnis ein File

namens .autox mit folgendem Inhalt:

PS1="KA "

trap "print Auf Wiedersehen!" 0

/usr/bin/clear

print

/usr/bin/banner " UNIX"

und schreiben Sie in Ihr File .profile folgende Zeilen:

if [-f .autox]

then

. .autox

88 2 UNIX

fi (Die Spaces und Punkte sind wichtig. Die Zeilen

rufen das File .autox auf, falls es exisitiert.

Wenn das funktioniert, richten Sie in .autox einige Aliases nach

dem Muster von Abschnitt 2.5.1.1 Kommandointerpreter ein.

Was passiert, wenn in .autox das Kommando exit vorkommt?

Schreiben Sie ein Shellscript namens showparm nach dem Muster

aus dem vorigen Abschnitt und variieren es. Rufen Sie showparm mit

verschiedenen Argumenten auf, z. B. showparm eins zwei drei.

2.6 Benutzerober
�achen

2.6.1 Lokale Benutzerober
�achen

2.6.1.1 Kommandozeilen-Eingabe

Unter einer Benutzer-Ober
�ache (user interface) versteht man nicht die Haut,

aus der man nicht heraus kann, sondern die Art, wie sich ein Terminal (Bild-
schirm, Tastatur, Maus) dem Benutzer darstellt, wie es ausschaut (look) und wie
es auf Eingaben reagiert (feel). Lokal bedeutet nicht-netzf�ahig, beschr�ankt auf

einen Computer { im Gegensatz zum X Window System.

Im einfachsten Fall tippt man seine Kommandos zeilenweise ein, sie werden
auf dem alphanumerischen Bildschirm geechot und nach dem Dr�ucken der Return-
Taste ausgef�uhrt. Die Ausgabe des Systems erfolgt ebenfalls auf den Bildschirm,

Zeile f�ur Zeile nacheinander.

Diese Art der Eingabe hei�t Kommandozeilen-Eingabe. Sie stellt die ge-
ringsten Anforderungen an Hard- und Software und ist mit Einschr�ankungen so-
gar auf druckenden Terminals (ohne Bildschirm) m�oglich. Vom Benutzer verlangt

sie die Kenntnis der einzugebenden Kommandos und das zielsichere Landen auf
den richtigen Tasten. Die Programme bieten einfache Hilfen an, die �ublicherweise
durch die Tasten h (wie help), ? oder die Funktionstaste F1 aufgerufen werden.

Bei UNIX-Kommandos ist es eine gute Gep
ogenheit, da� sie { fehlerhaft

aufgerufen { einen Hinweis zum richtigen Gebrauch (usage) geben. Probieren Sie
folgende fehlerhafte Eingaben aus, auch mit anderen Kommandos:

who -x

who -?

who --help

Schreibt man selbst Programme, sollte man wenigstens diese Hilfe einbauen. Eine

zus�atzliche man-Seite w�are die Krone.

2.6.1.2 Men�us

Ein erster Schritt in Richtung Benutzerfreundlichkeit ist die Verwendung von

Men�us. Die erlaubten Eingaben werden in Form einer Liste { einem Men�u {

2.6 Benutzerober
�achen 89

angeboten, der Benutzer w�ahlt durch Eintippen eines Zeichens oder durch ent-

sprechende Positionierung des Cursors die gew�unschte Eingabe aus. Der Cursor

wird mittels der Cursortasten oder einer Maus positioniert.

Men�us haben zwei Vorteile. Der Benutzer sieht, was erlaubt ist, und macht bei

der Eingabe kaum syntaktische Fehler. Nachteilig ist die beschr�ankte Gr�o�e der

Men�us. Man kann nicht mehrere hundert UNIX-Kommandos in ein Men�u packen.

Ein Ausweg sind Men�u-Hierarchien, die auf h�ochstens drei Ebenen begrenzt wer-

den sollten, um �ubersichtlich zu bleiben. Einfache Men�us ohne Gra�k und Maus-

unterst�utzung stellen ebenfalls nur geringe Anforderungen an Hard- und Software.

Men�us lassen sich nicht als Filter in einer Pipe verwenden, weil stdin innerhalb

einer Pipe nicht mehr mit der Tastatur, sondern mit stdout des vorhergehenden

Gliedes verbunden ist.

F�ur den unge�ubten Benutzer sind Men�us eine gro�e Hilfe, f�ur den ge�ubten

ein Hindernis. Deshalb sollte man zus�atzlich zum Men�u immer die unmittelbare

Kommandozeilen-Eingabe zulassen. Zu den am h�au�gsten ausgew�ahlten Punkten

m�ussen kurze Wege f�uhren. Man kann Defaults vorgeben, die nur durch Bet�atigen
der RETURN-Taste ohne weitere Zeichen aktiviert werden.

Wir haben beispielsweise f�ur die Druckerausgabe ein Menu namens p geschrie-

ben, das dem Benutzer unsere M�oglichkeiten anbietet und aus seinen Angaben das
lp(1)-Kommando mit den entsprechenden Optionen zusammenbaut. Der Benut-

zer braucht diese gar nicht zu kennen. In �ahnlicher Weise verbergen wir den Dialog
mit unserer Datenbank hinter Menus, die SQL-Scripts aufrufen. Das Eingangsme-
nu f�ur unsere Datenbank sieht so aus:

Oracle-Hauptmenu (21.03.97 A)

================

Bibliothek 1

Buchaltung 2

Personen 3

Projekte 4

Bitte Ziffer eingeben:

Nach Eingabe einer g�ultigen Zi�er gelangt man ins erste Untermenu usf. Hinter

dem Menu steckt ein Shellscript mit einer case-Anweisung, das letzten Endes
die entsprechenden Shell- und SQLscripts aufruft. Der Benutzer braucht weder

von der Shell noch von SQL etwas zu verstehen. Er bekommt seine Daten nach

Wunsch entweder auf den Bildschirm oder einen Drucker.

2.6.1.3 Fenster, curses-Bibliothek

Bildschirme lassen sich in mehrere Ausschnitte aufteilen, die Fenster oder Win-

dows genannt werden. In der oberen Bildschirmh�alfte beispielsweise k�onnte man

bei einem Benutzerdialog mittels write den eigenen Text darstellen, in der unteren

die Antworten des Gespr�achspartners. Das UNIX-Kommando write(1) arbeitet
leider nicht so. Ein anderer Anwendungsfall ist das Korrigieren (Debuggen) von

Programmen. In der oberen Bildschirmh�alfte steht der Quellcode, in der unteren
die zugeh�orige Fehlermeldung.

90 2 UNIX

F�ur den C-Programmierer stellt die curses(3)-Bibliothek Funktionen zum

Einrichten und Verwalten von monochromen, alphanumerischen Fenstern ohne

Mausunterst�utzung zur Verf�ugung. Die curses(3) sind halt schon etwas �alter.

Ein Beispiel �ndet sich in Kap. ?? Programmieren in C/C++. Dar�uberhinaus

gibt es weitere, kommerzielle Fenster- und Men�ubibliotheken, vor allem im PC-

Bereich. An die Hardware werden keine besonderen Anforderungen gestellt, ein

alphanumerischer Bildschirm mit der M�oglichkeit der Cursorpositionierung reicht

aus.

Wer seinen Bildschirm modern mit Farbe und Maus gestalten will, greift zum

XWindow System und seinen Bibliotheken. Das kann man auch lernen, aber nicht

in einer Viertelstunde.

2.6.1.4 Gra�sche Fenster

Im Xerox Palo Alto Research Center ist die Verwendung von Men�us und Fenstern

weiterentwickelt worden zu einer gra�schen Benutzerober
�ache (graphical

user interface, GUI), die die Arbeitsweise des Benutzers wesentlich bestimmt. Die-

se gra�sche Fenstertechnik ist von Programmen wie SMALLTALK und Microsoft
Windows sowie von Computerherstellern wie Apple �ubernommen und verbreitet
worden. Wer't mag, dei mag't, un wer't nich mag, dei mag't jo woll nich m�agen.

Ein klassisches UNIX-Terminal gestattet die Er�o�nung genau einer Sitzung,
deren Kontroll-Terminal es dann wird. Damit sind manche Benutzer noch nicht

ausgelastet. Sie stellen sich ein zweites und drittes Terminal auf den Tisch und
er�o�nen auf diesen ebenfalls je eine Sitzung. Unter UNIX k�onnen mehrere Sitzun-
gen unter einem Benutzernamen gleichzeitig laufen. Dieses Vorgehen wird begrenzt

durch die Tisch
�ache und die Anzahl der Terminalanschl�usse. Also teilt man ein
Terminal in mehrere virtuelle Terminals auf, die Fenster oder Windows ge-

nannt werden, und er�o�net in jedem Window eine Sitzung. Auf dem Bildschirm
geh�ort jedes Fenster zu einer Sitzung, Tastatur und Maus dagegen k�onnen nicht
aufgeteilt werden und sind dem jeweils aktiven Fenster zugeordnet. Die Fenster

lassen sich vergr�o�ern, verkleinern und verschieben. Sie d�urfen sich �uberlappen,
wobei nur das vorderste Fenster vollst�andig zu sehen ist. Wer viel mit Fenstern
arbeitet, sollte den Bildschirm nicht zu klein w�ahlen, 17 Zoll Bildschirmdiagonale

ist die untere Grenze. Ein Schreibtisch hat eine Diagonale von 80 Zoll.

Was ein richtiger Power-User ist, der hat so viele Fenster gleichzeitig in Betrieb,

da� er f�ur den Durchblick ein Werkzeug wie das Visual User Environment

(VUE) von Hewlett-Packard braucht. Dieses setzt auf dem X Window System

auf und teilt die Fenster in vier oder mehr Gruppen ein, von denen jeweils eine

auf dem Schirm ist. Zwischen den Gruppen wird per Mausklick umgeschaltet. Die

Gruppen k�onnen beispielsweise

� Allgemeines

� Verwaltung

� Programmieren

� Internet

� Server A

2.6 Benutzerober
�achen 91

� Server B

hei�en und stellen virtuelle Schreibtische f�ur die jeweiligen Arbeitsgebiete dar.

Man kann sich sehr an das Arbeiten mit solchen Umgebungen gew�ohnen und

beispielsweise { ohne es zu merken { dasselbe Text�le gleichzeitig in mehreren

Fenstern oder Gruppen editieren. Ein gewisser Aufwand an Hard- und Software

(vor allem Arbeitsspeicher) steckt dahinter, aber sechs Schreibtische sind ja auch

was. Den anklickbaren Papierkorb gibt es gratis dazu.

2.6.1.5 Multimediale Ober
�achen

Der Mensch hat nicht nur Augen und Finger, sondern auch noch Ohren, eine

Nase, ein Zunge und eine Stimme. Es liegt also nahe, zum Gedankenaustausch

mit dem Computer nicht nur den optischen und mechanischen �Ubertragungsweg

zu nutzen, sondern auch den akustischen und zumindest in Richtung vom Com-

puter zum Benutzer auch dessen Geruchssinn16. Letzteres wird seit altersher bei

der ersten Inbetriebnahme elektronischer Ger�ate aller Art gemacht (smoke test),

weniger w�ahrend des ordnungsgem�a�en Betriebes. Der akustische Weg wird in
beiden Richtungen vor allem in solchen F�allen genutzt, in denen Augen oder Fin-
ger anderweitig besch�aftigt sind (Fotolabor, Operationssaal) oder fehlen. In den

n�achsten Jahren wird die Akustik an Bedeutung gewinnen. �Uber die Nutzung des
Geschmackssinnes wird noch nachgedacht (wie soll das Terminal aussehen bzw.
ausschmecken?).

Im Ernst: unter einer multimedialen Ober
�ache versteht man bewegte Gra�-

ken plus Ton, digitales Kino mit Dialog sozusagen. Der Computer gibt nicht nur
eine d�urre Fehlermeldung auf den Bildschirm aus, sondern l�a�t dazu That ain't

right mit Fats Waller am Piano ert�onen. Lesen Sie Ihre Email, singt im Hinter-

grund Ella Fitzgerald Email special . Umgekehrt beantworten Sie die Frage
des vi(1), ob er ohne Zur�uckschreiben aussteigen soll, nicht knapp und b�undig
mit einem Ausrufezeichen, sondern singen wie Edith Piaf Je ne regrette rien.

Die eint�onige Arbeit am Terminal entwickelt sich so zu einem anspruchsvollen
kulturellen Happening. Die Zukunft liegt bei multisensorischen Schnittstellen, die

mit Menschen auf zahlreichen kognitiven und physiologischen Ebenen zusammen-
arbeiten (Originalton aus einem Prospekt).

2.6.1.6 Software f�ur Behinderte

Das Thema Behinderte und Computer hat mehrere Seiten. An Behinderungen
kommen vor allem in Betracht:

� Behinderungen des Sehverm�ogens

� Behinderungen des H�orverm�ogens

� Behinderungen der k�orperlichen Beweglichkeit

16Nachricht in Markt & Technik vom 31. M�arz 1994: IBM entwickelt k�unstliche Nase.

Vielleicht fordert Sie ihr Computer demn�achst auf, die Socken zu wechseln oder den

Ka�ee etwas st�arker anzusetzen.

92 2 UNIX

Die Benutzung eines Computers durch einen Behinderten erfordert eine besonde-

re Anpassung der Maschine, insbesondere des Terminals. Andererseits kann ein

Computer als Hilfsmittel bei der Bew�altigung allt�aglicher Probleme dienen, zum

Beispiel beim Telefonieren. Der bekannteste behinderte Benutzer ist der Physiker

Stephen Hawking, der sich mit seiner Umwelt per Computer verst�andigt.

Im Netz �nden sich einige Server, die Software und Informationen f�ur Behin-

derte sammeln:

� ftp://ftp.th-darmstadt.de/pub/machines/ms-dos/SimTel/msdos/

� ftp://ftp.tu-ilmenau.de/pub/msdos/CDROM1/msdos/handicap/

� http://seidata.com/~marriage/rblind.html

sowie die Newsgruppen misc.handicap und de.soc.handicap, allerdings mit

mehr Fragen als Antworten. Eine archie-Suche nach dem Substring handicap

brachte �uberwiegend Material zum Golfspiel. In der Universit�at Karlsruhe bem�uht

sich das Studienzentrum f�ur Sehgesch�adigte, diesen das Studium der Informatik
zu erleichtern: http://szswww.ira.uka.de/.

2.6.2 X Window System (X11)

2.6.2.1 Zweck

Das X Window System (nicht : Windows) ist ein netzf�ahiges, hardware- und

betriebssystem-unabh�angiges, gra�sches Fenstersystem, das am Massachusetts
Institute of Technology (MIT) im Projekt Athena entwickelt wurde und frei

verf�ugbar ist. Im Jahr 1988 wurde die Version 11 Release 2 ver�o�entlicht. Heu-
te wird es vom X Consortium betreut. Weitere korrekte Bezeichnungen sind X
Version 11, X11 und X, gegenw�artig als sechstes Release X11R6. Eine freie Por-

tierung auf Intel-Prozessoren hei�t XFree86. Netzf�ahig bedeutet, da� die Rechnun-
gen (die Client-Prozesse) auf einer Maschine im Netz laufen k�onnen, w�ahrend die
Terminal-Ein- und -Ausgabe (der Server-Prozess) �uber eine andere Maschine im

Netz erfolgen (Client-Server-Modell). Ein Client ist ein Prozess, der irgend-
welche Dienste verlangt, ein Server ein Prozess, der Dienste leistet. Die Trennung

einer Aufgabe in einen Client- und einen Server-Teil erh�oht die Flexibilit�at und
erm�oglicht das Arbeiten �uber Netz. Man mu� sich dar�uber klar sein, da� die Daten

ohne zus�atzliche Ma�nahmen unverschl�usselt �uber das Netz gehen und abgeh�ort

werden k�onnen. Das X Window System enth�alt nur minimale Sicherheitsvorkeh-
rungen. Der Preis f�ur die Flexibilit�at ist ein hoher Bedarf an Speicherkapazit�at

und Prozessorzeit, propriet�are L�osungen waren bescheidener.

Das X Window System stellt die Funktionen bereit, um gra�sche Benutzero-

ber
�achen zu gestalten, legt aber die Art der Ober
�ache nur in Grundz�ugen fest.

Die Einzelheiten der Ober
�ache sind Sache besonderer Funktionsbibliotheken wie

Motif bzw. Sache bestimmter Programme, der Window-Manager, die nicht im-
mer Bestandteil des X Window Systems sind und teilweise auch Geld kosten.

Der in X11 enthaltene Window-Manager ist der Tab Window Manager twm(1),

Hewlett-Packard f�ugt seinen Systemen den Motif Window Manager mwm(1X) und

den VUE Window Manager vuewm(1) bei, unter LINUX �ndet sich der Win95

2.6 Benutzerober
�achen 93

Window Manager fvwm95(1), dessen Fenster an Microsoft Windows 95 erinnern.

Das X Window System ist also keine Benutzerober
�ache, sondern hat eine oder

sogar mehrere.

Die X-Clients verwenden X11-Funktionen zur Ein- und Ausgabe, die in um-

fangreichen Funktionsbibliotheken wie Xlib und Xtools verf�ugbar sind. Es bleibt

immer noch einiges an Programmierarbeit �ubrig, aber schlie�lich arbeitet man

unter X11 mit Farben, Fenstern, M�ausen und Symbolen, was es fr�uher zu Zeiten

der einfarbigen Kommandozeile nicht gab. Inzwischen machen schon viele Anwen-

dungsprogramme von den M�oglichkeiten von X11 Gebrauch.

Host 1
(Client 1)
(Client 3)

Host 2
Host 3
(Client 2)

X-Ter-

minal 1

X-Terminal 2 (Server 2)

Window 1

Window 3

Window 2

Abb. 2.7: X-Window-Computer und -Terminals, durch einen Ethernet-Bus ver-

bunden

Der X-Server l�auft als einziges Programm auf einem kleinen, spezialisier-

ten Computer, dem X-Terminal, oder als eines unter vielen auf einem UNIX-

Computer. Ein X-Server kann gleichzeitig mit mehreren X-Clients verkehren.

Mit dem X Window System kann man auf dreierlei Weise zu tun bekommen:

� als Benutzer eines fertig eingerichteten X Window Systems (das gilt f�ur

wachsende Kreise von UNIX-Benutzern),

� als System-Manager, der ein X Window System auf mehreren Netzknoten
einrichtet,

� als Programmierer, der Programme schreibt, die unmittelbar im Programm-

code vom X Window System Gebrauch machen, also nicht wie gew�ohnliche

UNIX-Programme in einer Terminal-Emulation (xterm(1), hpterm(1X))

laufen.

94 2 UNIX

Der Benutzer mu� vor allem zwei Kommandos kennen. Auf der Maschine, vor der

er sitzt (wo seine Sitzung l�auft, der X-Server), gibt er mit

xhost abcd

der entfernten Maschine namens abcd (wo seine Anwendung l�auft, der X-Client)

die Erlaubnis zum Zugri�. Das Kommando ohne Argument zeigt wie �ublich die

augenblicklichen Einstellungen an. Auf der entfernten Maschine abcd setzt er mit

export DISPLAY=efgh:0.0

die Umgebungsvariable DISPALY auf den Namen efgh und die Fensternummer 0.0

des X-Servers. Erst dann kann ein Client-Programm, eine Anwendung �uber das

Netz den X-Server als Terminal nutzen. Die Fensternummer besteht aus Display-

nummer und Screennummer und hat nur auf Maschinen mit mehreren Terminals

auch Werte gr�o�er null. Unter der Secure Shell ssh(1) werden beide Kommandos

automatisch abgesetzt.

F�ur den Programmierer stehen umfangreiche X11-Bibliotheken zur Verf�ugung,
das hei�t X11-Funktionen zur Verwendung in eigenen Programmen, so da� diese

mit einem X-Server zusammenarbeiten.

Wer tiefer in das X Window System eindringen m�ochte, beginnt am besten
mit man X, geht dann zu http://www.camb.opengroup.org/tech/desktop/x/

ins WWW und landet schlie�lich bei den ebenso zahl- wie umfangreichen B�anden
des Verlages O'Reilly.

2.6.2.2 OSF/Motif

OSF/Motif von der Open Software Foundation ist ein Satz von Regeln zur
Gestaltung einer gra�schen Benutzerober
�ache f�ur das X Window System, ei-
ne Bibliothek mit Funktionen gem�a� diesen Regeln sowie eine Sammlung dar-

aus abgeleiteter Programme. Die Open Software Foundation OSF ist ein Zusam-
menschlu� mehrerer Hersteller und Institute, die Software f�ur UNIX-Anlagen her-

stellen. Motif ist heute in der UNIX-Welt die am weitesten verbreitete gra�sche
Benutzerober
�ache und f�ur viele Systeme verf�ugbar, leider nicht kostenlos. Aber

es gibt freie Nachbauten. Das Common Desktop Environment (CDE), eine in-

tegrierte Benutzerober
�ache, baut auf Motif auf. Es schieben sich immer mehr

Schichten zwischen die CPU und den Benutzer.

Programme, die Motif benutzen, stellen sich dem Benutzer in einheitlicher

Weise dar. Ihre Benutzung braucht man nur einmal zu lernen. Motif ben�otigt eine

Maus oder ein anderes Zeigeger�at (pointing device). Die Maustasten haben drei

Funktionen:

� select (linker Knopf),

� menu (mittlerer Knopf bzw. bei einer Maus mit zwei Tasten beide gleich-
zeitig),

� custom (rechter Knopf).

2.6 Benutzerober
�achen 95

Titel

Restore
Move
Resize
Minimize
Maximize
Lower
Raise

Close

linke obere Ecke

verschieben

?

linke untere Ecke

verschieben

6

rechte obere Ecke

verschieben

?

rechte untere Ecke

verschieben

6

linke Kante

verschieben
-

rechte Kante

verschieben
�

obere Kante

verschieben

?

untere Kante
verschieben

6

Fenster

verschieben

6

Minimize

6

Maximize

6

Fenster-

Men�u
-

@
@@R

Abb. 2.8: OSF/Motif-Fenster

Durch Verschieben der Maus auf einer Unterlage bewegt man eine Marke (Pointer,

Cursor) auf dem Bildschirm. Die Marke nimmt je nach Umgebung verschiedene
Formen an: Kreuz, Pfeil, Sanduhr, Motorradfahrer usw. Zeigen (to point) hei�t,
die Marke auf ein Bildschirmobjekt zu bewegen. Unter Klicken (to click) ver-

steht man das kurze Bet�atigen einer Taste der ruhenden Maus. Zwei kurze Klicks
unmittelbar nacheinander hei�en Doppel-Klick (double-click). Ziehen (to drag)

bedeutet Bewegen der Maus mit gedr�uckter Taste. In einigen Systemen lassen sich
die Mauseingaben durch Tastatureingaben ersetzen, aber das ist nur ein Behelf.

Falls das UNIX-System entsprechend kon�guriert ist, startet nach der An-

meldung automatisch das X Window System und darin wiederum der Motif

Window Manager mvm(1). Unter UNIX sind das Prozesse. Der Motif Win-
dow Manager erzeugt standardm�a�ig zun�achst einen Terminal-Emulator samt zu-

geh�origem Fenster auf dem Bildschirm. Dieses Fenster kann man seinen W�unschen

anpassen. Es besteht aus einer Kop
eiste (title bar), dem Rahmen (frame) und

der Fenster- oder Arbeits
�ache. Die Kop
eiste enth�alt links ein kleines Feld mit
einem Minuszeichen (menu button). Rechts �nden wir ein Feld mit einem winzigen
Quadrat (minimize button) und ein Feld mit einem gr�o�eren Quadrat (maximize

button) (Abb. 2.8).

Ehe ein Fenster bzw. der mit ihm verbundene Proze� Eingaben annimmt, mu�

es durch Anklicken eines beliebigen Teils mit der Select-Maustaste aktiviert wer-

den. Dabei �andert sich die Rahmenfarbe. Gibt man nun auf der Tastatur Zeichen
ein, erscheinen sie im Fenster und gelangen auch zum Computer. Es ist immer nur

96 2 UNIX

ein Fenster aktiv. Ein Fenster wird deaktiviert, wenn ein anderes Fenster aktiviert

wird oder der Mauscursor das aktive Fenster verl�a�t.

Ein Fenster wird auf dem Bildschirm verschoben, indem man seine Kop
eiste

mit der Select-Maustaste in die neue Position zieht. Nach Loslassen der Taste

verharrt das Fenster an der neuen Stelle. Die Gr�o�e eines Fenster wird durch

Ziehen einer Rahmenseite ver�andert. Zieht man eine Ecke, �andern sich die beiden

angrenzenden Seiten gleichzeitig.

Gelegentlich m�ochte man ein Fenster vor�ubergehend beiseite legen, ohne es

jedoch ganz zu l�oschen, weil mit ihm noch ein laufender Proze� verbunden ist.

In diesem Fall klickt man mit der Select-Maustaste den Minimize-Button an,

und das Fenster verwandelt sich in ein Sinnbild, Symbol oder Icon. Das ist ein

Rechteck von Briefmarkengr�o�e am unteren Bildschirmrand. Der zugeh�orige Pro-

ze� l�auft weiter, nimmt aber keine Eingaben von der Tastatur mehr an. Icons

lassen sich auf dem Bildschirm verschieben. Um aus dem Icon wieder ein Fenster

zu machen, klickt man es doppelt mit der Select-Maustaste an.

Durch Anklicken des Maximize-Buttons bringt man ein Fenster auf volle
Bildschirmgr�o�e, so da� kein weiteres Fenster mehr zu sehen ist. Das emp�ehlt
sich f�ur l�angere Arbeiten in einem Fenster. Auf die vorherige Fenstergr�o�e zur�uck

kommt man durch nochmaliges Anklicken des Maximize-Buttons.
Jetzt fehlt noch der Men�u-Button. Klickt man ihn an, erscheint unterhalb

der Kop
eiste ein Men�u (Pull-down-Men�u) mit einigen Funktionen zur Fenster-
gestaltung. Eine zur Zeit nicht verf�ugbare oder sinnlose Funktion erscheint grau.

Falls Sie nautisch vorbelastet sind und runde Fenster, sogenannte Bullaugen,

bevorzugen, sollten Sie einmal nach HAX/Rotif Ausschau halten, eine vielver-
sprechende Entwicklung aus fernerer Zukunft.

2.6.3 Memo Ober
�achen, X Window System

� Die Ober
�ache mit den geringsten Anspr�uchen an das System ist die Kom-
mandozeile.

� Der erste Schritt in Richtung Benutzerfreundlichkeit sind Menus. Man kann
allerdings nicht alle Kommandos in Menus verpacken.

� Das X Window System ist ein netzf�ahiges, gra�sches Fenstersystem. Die
Netzf�ahigkeit unterscheidet es von anderen gra�schen Fenstersystemen.

� Der X-Server sorgt f�ur die Ein- und Ausgabe auf einem gra�schen Terminal.

� X-Clients sind die Anwendungsprogramme.

� X-Server und X-Clients k�onnen auf verschiedenen Computern im Netz lau-

fen, aber auch auf demselben.

� Das Aussehen und Verhalten (look and feel) wird von dem X Window Ma-

nager bestimmt. Es gibt verschiedene X Window Manager.

� Die Motif-Ober
�ache (Motif-Bibliothek, Motif Window Manager) hat sich
in der UNIX-Welt durchgesetzt.

� Auf der Motif-Ober
�ache baut das Common Desktop Environment (CDE)

auf, das zus�atzliche Arbeitshilfen bietet.

2.6 Benutzerober
�achen 97

� F�ur Programmierer stehen umfangreiche X- und Motif-Bibliotheken zur

Verf�ugung.

2.6.4 �Ubung Ober
�achen, X Window System

Die folgende �Ubung setzt in ihrem letzten Teil voraus, da� Sie an einem X-

Window-f�ahigen Terminal arbeiten, ein an einen seriellen Multiplexer angeschlos-

senes Terminal reicht nicht.

Melden Sie sich unter Ihrem Benutzernamen an. Der Verlauf der Sitzung h�angt

davon ab, welche M�oglichkeiten Ihr UNIX-System bietet. Wir beginnen mit der

Kommandozeilen-Eingabe:

who ?

help who

who -x

who -a

primes 0 100

factor 5040

Programme mit Men�us sind nicht standardm�a�ig in UNIX vorhanden. Wir geben
daher das Shellscript menu ein und ver�andern es. Insbesondere ersetzen wir die
Ausgabe der gew�ahlten Zi�er durch den Aufruf eines Kommandos.

Um mit Fenstern und der curses(3)-Bibliothek arbeiten zu k�onnen, m�ussen

wir in C programmieren. Hierzu l�a�t sich das Beispiel aus Kap. ?? Programmieren
in C/C++ heranziehen.

Das Arbeiten mit der Benutzerober
�ache OSF/Motif setzt voraus, da� diese
eingerichtet ist. Auf vernetzten UNIX-Workstations ist das oft der Fall. In der Re-
gel startet Motif mit einer Terminalemulation, beispielsweise xterm oder hpterm.

Geben Sie in diesem Fenster zun�achst einige harmlose UNIX-Kommandos ein.

Verschieben Sie das Fenster, indem Sie mit der Maus den Cursor in die Ti-

telleiste bringen und dann bei gedr�uckter linker Maustaste das Fenster bewegen
(ziehen).

Ver�andern Sie die Gr�o�e des Fensters, indem Sie mit der Maus den Cursor auf

einen Rand bringen und dann bei gedr�uckter linker Maustaste den Rand bewegen

(ziehen).

Reduzieren Sie das Fenster, indem Sie mit der Maus den Cursor auf den
Minimize-Button (rechts oben) bringen und dann die linke Maustaste dr�ucken.

Verschieben Sie das Icon. Stellen Sie das Fenster wieder her, indem Sie den Cur-
sor auf das Icon bringen und zweimal die linke Maustaste dr�ucken.

Bringen Sie das Fenster auf die maximale Gr�o�e, indem Sie den Cursor auf

den Men�u-Button (links oben) bringen und dann mit gedr�uckter linker Maustaste

maximize w�ahlen. Stellen Sie die urspr�ungliche Gr�o�e durch erneute Anwahl von

maximize (Men�u oder Button) wieder her.

Erzeugen Sie ein zweites Fenster, indem Sie den Cursor aus dem ersten Fenster

herausbewegen und mit dem linken Mausknopf eine Terminalemulation w�ahlen.

98 2 UNIX

Bewegen Sie den Cursor abwechselnd in das erste und zweite Fenster, klicken Sie

links und achten Sie auf die Farbe der Rahmen.

Tippen Sie im aktiven Fenster

xterm -bg red -fg green -fn cr.12x20 &

ein. Nach Erscheinen eines Rahmens nochmals RETURN dr�ucken. Die Optionen

bedeuten background, foreground und font. Warum mu� das et-Zeichen eingege-

ben werden? Tippen Sie

xclock &

ein und veschieben Sie die Uhr in eine Ecke.

Schlie�en Sie ein Fenster, indem Sie den Cursor auf den Men�u-Button bringen

und mit gedr�uckter linker Maustaste close w�ahlen. Verlassen Sie Motif mit der

Kombination control-shift-reset (System-Manager fragen) und beenden Sie

Ihre Sitzung mittels exit aus der Kommandozeile, wie gewohnt.

2.7 Writer's Workbench

Unter der Werkbank des Schreibers werden Werkzeuge zur Textverarbeitung zu-

sammengefa�t. UNIX bietet eine ganze Reihe davon. Man darf jedoch nicht ver-
gessen, da� UNIX kein Textsystem, sondern ein Betriebssystem ist.

2.7.1 Zeichens�atze oder die Umlaut-Frage

Wenn es um Texte geht, mu� man sich leider zuerst mit dem Problem der Zei-
chens�atze (character set, data code, code de caract�ere) herumschlagen. Das hat
nichts mit UNIX zu tun, sondern tritt au�erhalb des englischen Sprachraumes

�uberall auf.
Der Computer kennt nur Bits. Die Bedeutung erhalten die Bits durch die

Programme. Ob eine Bitfolge eine Zahl, ein Wort oder einen Schn�orkel darstellt,
entscheidet die Software.

Zu Zeiten, als Bits noch knapp waren, haben die Yankees17 eine Tabelle aufge-

stellt, in der die ihnen bekannten Buchstaben, Zi�ern und Satzzeichen zuz�uglich

einiger Steueranweisungen wie Zeilen- und Seitenvorschub mit sieben Bits dar-

gestellt werden. Das war Sparsamkeit am falschen Platz. Mit sieben Bits unter-

scheide ich 27 = 128 Zeichen, numeriert von 0 bis 127. Diese Tabelle ist unter
dem Namen American Standard Code for Information Interchange ASCII weit

verbreitet. Genau hei�t sie 7-bit-US-ASCII. Jeder Computer kennt sie.

Die ersten 32 Zeichen der ASCII-Tabelle dienen der Steuerung der Ausgabe-
ger�ate, es sind unsichtbare Zeichen. Auf der Tastatur werden sie entweder in Form

ihrer Nummer oder mit gleichzeitig gedr�uckter control-Taste erzeugt. Die Zi�ern
0 bis 9 tragen die Nummern 48 bis 57, die Gro�buchstaben die Nummern 65 bis

17Yankee im weiteren, au�erhalb der USA gebr�auchlichen Sinne als Einwohner der

USA. Die Yankees im weiteren Sinne verstehen unter Yankee nur die Bewohner des

Nordostens der USA.

2.7 Writer's Workbench 99

90. Die Kleinbuchstaben haben um 32 h�ohere Nummern als die zugeh�origen Gro�-

buchstaben. Der Rest sind Satzzeichen. Im Anhang ist die ASCII-Tabelle samt

einigen weiteren Zeichens�atzen wiedergegeben. Der Zeichensatz legt also fest, wel-

che Zeichen verf�ugbar sind und welche Nummern ihnen zugeordnet werden. Es

besagt nichts �uber das Aussehen der Zeichen.

Textausgabeger�ate wie Bildschirme oder Drucker erhalten vom Computer die

ASCII-Nummer eines Zeichens und setzen diese mithilfe einer fest eingebauten

Software in das entsprechende Zeichen um. So wird beispielsweise die ASCII-

Nr. 100 in den Buchstaben d umgesetzt. Die Ausgabe der Zahl 100 erfordert das

Abschicken der ASCII-Nr. 49, 48, 48.

Die US-ASCII-Tabelle enth�alt nicht die deutschen Umlaute und andere eu-

rop�aische Absonderlichkeiten. Es gibt einen Ausweg aus dieser Klemme, leider

sogar mehrere. Bleibt man bei den sieben Bits, mu� man einige nicht unbe-

dingt ben�otigte US-ASCII-Zeichen durch nationale Sonderzeichen ersetzen. F�ur

deutsche Zeichen ist eine Ersetzung gem�a� Anhang B.2 German ASCII �ublich.

F�ur Frankreich oder Schweden lautet die Ersetzung anders. Diese Ersatztabel-

le liegt nicht im Computer, sondern im Ausgabeger�at, das die Umsetzung der
ASCII-Nummern in Zeichen vornimmt. Deshalb kann ein entsprechend ausge-
statteter Bildschirm oder Drucker dasselbe Text�le einmal mit amerikanischen

ASCII-Zeichen ausgeben, ein andermal mit deutschen ASCII-Zeichen.

Spendiert man ein Bit mehr, so lassen sich 28 = 256 Zeichen darstellen. Das ist

der bessere Weg. Hewlett-Packard hat die nationalen Sonderzeichen den Nummern
128 bis 255 zugeordnet und so den Zeichensatz ROMAN8 gescha�en, dessen

untere H�alfte mit dem ASCII-Zeichensatz identisch ist. Das hat den Vorzug, da�
reine ASCII-Texte genau so verarbeitet werden wie ROMAN8-Texte. Leider hat
sich dieser Zeichensatz nicht allgemein durchgesetzt.

Die Firma IBM hat schon fr�uhzeitig bei gr�o�eren Anlagen den Extended Binary
Coded Decimal Interchange Code EBCDIC mit acht Bits verwendet, der aber

nirgends mit ASCII �ubereinstimmt. H�atte sich dieser Zeichensatz statt ASCII
durchgesetzt, w�are uns Europ�aern einige M�uhe erspart geblieben.

Die internationale Normen-Organisation ISO hat mehrere 8-bit-Zeichens�atze
festgelegt, von denen einer unter dem Namen Latin-1 (ISO 8859-1) Verbreitung

gewonnen hat, vor allem in weltweiten Netzdiensten. Seine untere H�alfte ist wieder
mit US-ASCII identisch. Polnische und tschechische Sonderzeichen sind in Latin-

2 enthalten.

Bei ihren PCs schlie�lich wollte IBM au�er nationalen Sonderzeichen auch

einige Halbgra�kzeichen wie Mondgesichter, Herzchen, Noten und Linien unter-

bringen und schuf einen weiteren Zeichensatz IBM-PC, der in seinem Kern mit
ASCII �ubereinstimmt, ansonsten aber weder mit EBCDIC noch mit ROMAN8.

Auch wenn die Ausgabeger�ate 8-bit-Zeichens�atze kennen, ist noch nicht si-

cher, da� man die Sonderzeichen benutzen kann. Die Programme m�ussen ebenfalls

mitspielen. Der hergebrachte vi(1)-Editor, die curses(3)-Bibliothek f�ur Bild-

schirmfunktionen und einige Mail-Programme verarbeiten nur 7-bit-Zeichen. Erst

neuere Versionen von UNIX mitNative Language Support unterst�utzen 8-bit-

Zeichens�atze. Textverarbeitende Software, die 8-bit-Zeichens�atze vertr�agt, wird

als 8-bit-clean bezeichnet. Bei Text�ubertragungen zwischen Computern ist Mi�-

100 2 UNIX

trauen angebracht. Die Konsequenz hei�t in kritischen F�allen Beschr�ankung auf

7-bit-US-ASCII.

Was macht man, wenn es zu viele Standards gibt? Man er�ndet einen neuen,

der eine Obermenge der bisherigen ist. So wird zur Zeit ein internationaler Zei-

chensatz entwickelt, der mit 16 Bits alle abendl�andischen Zeichen ber�ucksichtigt.

Dieser Intercode ist aber noch nicht weit verbreitet. Und da sich immer Leute

�nden, die etwas besser machen, ist noch ein weltweiter Unicode mit �ahnlicher

Zielsetzung in der Mache.

Zur Umsetzung von Zeichen gibt es mehrere UNIX-Werkzeuge wie tr(1) und

sed(1). Ein C-Programm f�ur diesen Zweck ist andererseits einfach:

/* Programm zum Umwandeln von bestimmten Zeichen eines
Zeichensatzes in Zeichen eines anderen Zeichensatzes,
hier ROMAN8 nach LaTeX. Als Filter (Pipe) einfuegen.
Die Zeichen werden durch ihre dezimale Nr. dargestellt. */

#include <stdio.h>

int main()
{

int c;

while ((c = getchar()) != EOF)
switch (c) {

case 189:
putchar(92);
putchar(83);
break;

case 204:
putchar(34);
putchar(97);
break;

.

.

.
case 219:

putchar(34);
putchar(85);
break;

case 222:
putchar(92);
putchar(51);
break;

default:
putchar(c);

}
}

Programm 2.18 : C-Programm zur Zeichenumwandlung

Aus dem GNU-Projekt stammt ein Filter namens recode(1), da� etwa hun-

dert Zeichens�atze ineinander umrechnet:

2.7 Writer's Workbench 101

recode --help

recode -l

recode ascii-bs:EBCDIC-IBM textfile

Man beachte jedoch, da� beispielsweise ein HTML-Text, der mit ASCII-

Ersatzdarstellungen f�ur die Umlaute (ä f�ur a-Umlaut) geschrieben ist, bei

Umwandlung nach ASCII unver�andert bleibt. Es werden Zeichens�atze umge-

wandelt, mehr nicht. Auch werden LaTeX-Formatanweisungen nicht in HTML-

Formatanweisungen �ubersetzt, daf�ur gibt es andere Werkzeuge wie latex2html.

Das Ursprungs�le wird �uberschrieben, daher sicherheitshalber mit einer Kopie

arbeiten. Nicht jede Umsetzung ist reversibel.

Man verwechsele nicht den Zeichensatz mit der Schriftart. Der Zeichensatz be-

sagt nur, welche Zeichen verf�ugbar sind, nicht wie sie aussehen. Unter einer Schrift

oder Schriftart (typeface) versteht man einen stilistisch einheitlichen Satz von

Zeichen wie Times, Century Schoolbook, Garamond, Boldoni, Baskerville, Hel-

vetica, Futura, Schwabacher, Courier, OCR (optical character recognition) und
Schreibschriften. Diese Schriften liegen in verschiedenen Schriftschnitten (treat-
ment) vor: mager, fett, kursiv, dazu in verschiedenen Gr�o�en oder Schriftgraden

(point size). Die Schriftweite, der Zeichenabstand (pitch), ist entweder fest wie
bei einfachen Schreibmaschinen, beispielsweise 10 oder 12 Zeichen pro Zoll, oder

von der Zeichenbreite abh�angig wie bei den Proportionalschriften. Diese sind
besser lesbar und sparen Platz, machen aber in Tabellen M�uhe. Ein vollst�andiger
Satz von Buchstaben, Zi�ern, Satz- und Sonderzeichen einer Schrift, eines Schnit-

tes, eines Grades und gegebenenfalls einer Schriftweite wird Font genannt. Die
in diesem Text verwendeten Fonts hei�en Roman (Times), Courier, Sans Serif,

Italic, Kapit�alchen, im Manuskript in 12 pt Gr�o�e.

Da die Papierformate l�anglich sind, spielt die Orientierung (orientation) eine

Rolle. Das Hochformat wird englisch mit portrait, das Querformat mit landscape
bezeichnet18. Ferner tr�agt der Zeilenabstand oder Vorschub (line spacing) we-
sentlich zur Lesbarkeit bei. Weitere Gesichtspunkte zur Schrift und zur Gestaltung

von Schriftst�ucken �ndet man in der im Anhang angegebenen Literatur.

2.7.2 Regul�are Ausdr�ucke

Regul�are Ausdr�ucke (regular expression, expression r�eguli�ere, RE) sind Zeichen-

muster, die nach bestimmten Regeln gebildet und ausgewertet werden. Eine Zei-

chenkette (String) kann darauf hin untersucht werden, ob sie mit einem gegebenen
regul�aren Ausdruck �ubereinstimmt oder nicht. Einige Textwerkzeuge wie die Edi-

toren, grep(1), lex(1) und awk(1) machen von regul�aren Ausdr�ucken Gebrauch,
leider in nicht v�ollig �ubereinstimmender Weise. Die Jokerzeichen in Filenamen und

die Metazeichen der Shells haben nichts mit regul�aren Ausdr�ucken zu tun. N�aher-

es �ndet man im Referenz-Handbuch beim Editor ed(1) und in dem Buch von
Alfred V. Aho und anderen �uber awk(1). Hier einige einfache Regeln und

Beispiele:

18Woraus man schlie�t, da� Engl�ander ein Flachland bewohnende Langsch�adler sind,

w�ahrend alpine Querk�opfe die Bezeichnungen vermutlich andersherum gew�ahlt h�atten.

102 2 UNIX

� Ein Zeichen mit Ausnahme der Sonderzeichen tri�t genau auf sich selbst zu

(klingt so selbstverst�andlich wie a = a, mu� aber gesagt sein),

� ein Backslash gefolgt von einem Sonderzeichen tri�t genau auf das Sonder-

zeichen zu (der Backslash quotet das Sonderzeichen),

� Punkt, Stern, linke eckige Klammer und Backslash sind Sonderzeichen, so-

fern sie nicht in einem Paar eckiger Klammern stehen,

� der Circum
ex ist ein Sonderzeichen am Beginn eines regul�aren Ausdrucks

oder unmittelbar nach der linken Klammer eines Paares eckiger Klammern,

� das Dollarzeichen ist ein Sonderzeichen am Ende eines regul�aren Ausdrucks,

� ein Punkt tri�t auf ein beliebiges Zeichen au�er dem Zeilenwechsel zu,

� eine Zeichenmenge innerhalb eines Paares eckiger Klammern tri�t auf ein

Zeichen aus dieser Menge zu,

� ist jedoch das erste Zeichen in dieser Menge der Circum
ex, so tri�t der
regul�are Ausdruck auf ein Zeichen zu, das weder der Zeilenwechsel noch ein

Zeichen aus dieser Menge ist,

� ein Bindestrich in dieser Menge kennzeichnet einen Zeichenbereich, [0-9]

bedeutet dasselbe wie [0123456789],

� ein regul�arer Ausdruck aus einem Zeichen gefolgt von einem Stern bedeutet

ein beliebig h�au�ges Vorkommen dieses Zeichens, nullmaliges Vorkommen
eingschlossen (erinnert an Jokerzeichen in Filenamen, aber dort kann der

Stern auch ohne ein anderes Zeichen davor auftreten),

� eine Verkettung regul�arer Ausdr�ucke tri�t zu auf eine Verkettung von

Strings, auf die die einzelnen regul�aren Ausdr�ucke zutre�en.

Die Regeln gehen noch weiter. Am besten �ubt man erst einmal mit einfachen
regul�aren Ausdr�ucken. Nehmen Sie irgendeinen Text und lassen Sie grep(1) mit
verschiedenen regul�aren Ausdr�ucken darauf los:

grep 'aber' textfile

grep 'ab.a' textfile

grep 'bb.[aeiou]' textfile

grep '\\[a-z][a-z]*{..*}' textfile

Die Single Quotes um die Ausdr�ucke sind eine Vorsichtsma�nahme, die verhin-

dern soll, da� sich die Shell die Ausdr�ucke zu Gem�ute f�uhrt. grep(1) gibt die

Zeilen aus, in denen sich wenigstens ein String be�ndet, auf den der regul�are

Ausdruck pa�t. Im ersten Beispiel sind das alle Zeilen, die den String aber ent-
halten wie aber, labern, Schabernack, aberkennen, im zweiten tri�t unter

anderem abwarten zu, im dritten Abbruch, und das vierte Beispiel liefert die Zei-

len mit LaTeX-Kommandos wie \index{}, \begin{}, \end{} zur�uck. Der vierte
Ausdruck ist folgenderma�en zu verstehen:

� ein Backslash,

� genau ein Kleinbuchstabe,

2.7 Writer's Workbench 103

� eine beliebige Anzahl von Kleinbuchstaben,

� eine linke geschweifte Klammer,

� genau ein beliebiges Zeichen,

� eine beliebige Anzahl beliebiger Zeichen,

� eine rechte geschweifte Klammer.

Wir wollen nun einen regul�aren Ausdruck zusammenstellen, der auf alle g�ultigen

Internet-Email-Anschriften zutri�t. Dazu schauen wir uns einige Anschriften an:

wualex1@mvmhp64.ciw.uni-karlsruhe.de

wulf.alex@ciw.uni-karlsruhe.de

ig03@rz.uni-karlsruhe.de

012345678-0001@t-online.de

Dr_Rolf.Muus@DEGUSSA.de

Links steht immer ein Benutzername, dessen Form vom jeweiligen Betriebssystem

bestimmt wird, dann folgen das @-Zeichen (Klammera�e) und ein Maschinen-
oder Dom�anenname, dessen Teile durch Punkte voneinander getrennt sind. Im
einzelnen:

� Anfangs ein Zeichen aus der Menge der Zi�ern oder kleinen oder gro�en
Buchstaben,

� dann eine beliebige Anzahl einschlie�lich null von Zeichen aus der Menge

der Zi�ern, der kleinen oder gro�en Buchstaben und der Zeichen _-.,

� genau ein Klammera�e als Trennzeichen,

� im Maschinen- oder Dom�anennamen mindestens eine Zi�er oder ein Buch-
stabe,

� dann eine beliebige Anzahl von Zi�ern, Buchstaben oder Strichen,

� mindestens ein Punkt zur Trennung von Dom�ane und Top-Level-Dom�ane,

� nochmals mindestens ein Buchstabe zur Kennzeichnung der Top-Level-

Dom�ane.

Daraus ergibt sich folgender regul�arer Ausdruck:

^[0-9a-zA-Z][0-9a-zA-Z_-.]*@[0-9a-zA-Z][0-9a-zA-Z_-.]*\.[a-zA-Z][a-zA-Z]*

Das sieht kompliziert aus, ist aber trotzdem der einfachste Weg zur Beschreibung

solcher Gebilde. Man denke daran, da� die UNIX-Kommandos leicht unterschied-

liche Vorstellungen von regul�aren Ausdr�ucken haben. Au�erdem ist obige Form

einer Email-Anschrift nicht gegen die RFCs abgepr�uft und daher vermutlich zu

eng. Eine Anwendung f�ur den regul�aren Ausdruck k�onnte ein Programm sein, das
Email-Anschriften verarbeitet und sicherstellen will, da� die ihm �ubergebenen

Strings wenigstens ihrer Form nach g�ultig sind. Robuste Programme �uberpr�ufen

Eingaben oder Argumente, ehe sie sich weiter damit besch�aftigen.

104 2 UNIX

2.7.3 Editoren (ed, ex, vi, elvis, vim)

Ein Editor ist ein Programm zum Eingeben und �Andern von Texten, nach dem

Kommando-Interpreter das am h�au�gsten benutzte Programm eines Systems. Alle

Editoren stehen vor der Aufgabe, da� mittels derselben und einzigen Tastatur,

gegebenenfalls noch mit Maus, sowohl der Text wie auch die Editierkommandos

eingegeben werden m�ussen. Auf den meisten Computer-Tastaturen �nden sich

zwar einige Editiertasten (insert character, delete character usw.), diese reichen

aber bei weitem nicht aus. Zudem sind sie von Tastatur zu Tastatur verschieden.

Die beiden wichtigsten Editoren unter UNIX { der vi(1) und der emacs(1) {

l�osen die Aufgabe in unterschiedlicher Weise.

In Editoren kommt man leicht hinein, aber nur schwer wieder hinaus, wenn

man nicht das Zauberwort kennt. Unz�ahlige Benutzer w�aren schon in den Laby-

rinthen der Editoren verschmachtet, wenn ihnen nicht eine kundige Seele geholfen

h�atte. Deshalb hier vorab die Zauberworte:

� Falls Ihr Terminal auf nichts mehr reagiert, ist entweder auf der R�uckseite ein
Stecker locker, oder Sie haben es unwissentlich umkon�guriert. Dann m�ussen

Sie eine Reset-Taste dr�ucken, bei unseren HP-Terminals die Kombination
control-shift-reset.

� Aus dem vi(1)-Editor kommen Sie immer hinaus, indem Sie nacheinander
die f�unf Tasten escape : q ! return dr�ucken.

� Den emacs(1)-Editor verl�a�t man mittels Dr�ucken der beiden Tastenkom-
binationen control-x control-c nacheinander.

� Den joe(1)-Editor beendet man mit der Tastenkombination control-k und
dann x.

Falls das alles nicht wirkt, ist es Zeit, um Hilfe zu rufen.
Das einfachste Kommando zur Eingabe von Text ist cat(1). Mittels

cat > textfile

schreibt man von der Tastatur in das File textfile. Die Eingabe wird mit dem

EOF-Zeichen control-d abgeschlossen. Die F�ahigkeiten von cat(1) sind aller-
dings so bescheiden, da� es nicht die Bezeichnung Editor verdient.

Einfache Editoren bearbeiten nur eine Zeile eines Textes und werden zeilenwei-

se weitergeschaltet. Auf dem Bildschirm sehen Sie zwar dank des Bildschirmspei-

chers mehrere Zeilen, aber nur in einer { der jeweils aktuellen { k�onnen Sie editie-

ren. Diese Editoren stammen aus der Zeit, als man noch Fernschreibmaschinen als

Terminals verwendete. Daher beschr�anken sie den Dialog auf das Allern�otigste.

Zeilen-Editoren wie MS-DOS edlin oder UNIX ed(1) werden heute nur noch

f�ur kurze Texte benutzt. Der ed(1) ist robust und arbeitet auch unter ung�unstigen

Verh�altnissen (w�ahrend des Bootvorgangs, langsame Telefonleitungen, unbekann-

te Terminals) einwandfrei. Systemmanager brauchen ihn gelegentlich bei Kon�-

gurationsproblemen, wenn keine Terminalbeschreibung zur Verf�ugung steht. Im

Handbuch �ndet man bei ed(1) die Syntax regul�arer Ausdr�ucke.

Das Kommando ex(1) ruft einen erweiterten Zeileneditor auf und dient nicht

etwa zum Abmelden. Wird praktisch nicht benutzt. Der nachfolgend beschriebene

2.7 Writer's Workbench 105

Editor vi(1) greift zwar oft auf ex(1)-Kommandos zur�uck, aber das braucht man

nicht zu wissen. Da ex auf einigen anderen Systemen das Kommando zum Beenden

der Sitzung ist und es immer wieder vorkommt, da� Benutzer unserer UNIX-

Anlage dieses Kommando mit der letztgenannten Absicht eintippen, haben wir

den Editor in exed umbenannt und unter ex ein hilfreiches Shellscript eingerichtet.

Auf dem ex(1) baut der verbreitete UNIX-Bildschirm-Editor vi(1) auf. Ein

Bildschirm-Editor stellt einen ganzen Bildschirm oder mehr des Textes gleich-

zeitig zur Verf�ugung, so da� man mit dem Cursor im Text herumfahren kann. Da-

zu mu� der vi(1) den Terminaltyp kennen, den er in der Umgebungs-Variablen

TERM �ndet. Die zugeh�orige Terminal-Beschreibung sucht er im Verzeichnis

/usr/lib/terminfo19 . Falls diese fehlt oder { was noch unangenehmer ist { Feh-

ler enth�alt, benimmt sich der vi(1) eigenartig. N�aheres zur Terminalbeschreibung

unter terminfo(4) sowie im Abschnitt 2.12.4.1 Terminals.

Da der vi(1) mit den unterschiedlichsten Tastaturen klar kommen mu�, setzt

er nur eine minimale Anzahl von Tasten voraus, im wesentlichen die Schreib-

maschinentasten und Escape. Was sich sonst noch an Tasten oben und rechts
be�ndet, ist nicht notwendig. Dies f�uhrt zu einer Doppelbelegung jeder Taste. Im

Schreibmodus des vi(1) veranla�t ein Tastendruck das Schreiben des jewei-
ligen Zeichens auf den Bildschirm und in den Speicher. Im Kommandomodus

bedeutet ein Tastendruck ein bestimmtes Kommando an den Editor. Beispiels-

weise l�oscht das kleine x das Zeichen, auf dem sich gerade der Cursor be�ndet.
Beim Start ist der vi im Kommandomodus, au�erdem schaltet die Escape-

Taste immer in diesen Modus, auch bei mehrmaligem Dr�ucken. In den Schreib-
modus gelangt man mit verschiedenen Kommandos:

� a (append) schreibt anschlie�end an den Cursor,

� i (insert) schreibt vor den Cursor,

� o (open) �o�net eine neue Zeile unterhalb der aktuellen,

� R (replace) ersetzt den Text ab Cursorposition.

Die Kommandos werden auf dem Bildschirm nicht wiederholt, sondern machen

sich nur durch ihre Wirkung bemerkbar. Die mit einem Doppelpunkt beginnenden

Kommandos sind eigentlich ex(1)-Kommandos und werden in der untersten Bild-
schirmzeile angezeigt. Weitere vi(1)-Kommandos im Anhang.

Wie bekommt man mit dem vi(1) das Escape-Zeichen und gegebenenfalls
andere Sonderzeichen in Text? Man stellt control-v voran. Mit dem Komman-

do u f�ur undo macht man das j�ungste Kommando, das den Text ver�andert hat,

r�uckg�angig.

Der vi(1) kann Zeichenfolgen in einem Text suchen und automatisch ersetzen.

Die Zeichenfolgen sind regul�are Ausdr�ucke. Um im Text vorw�arts zu suchen,
gibt man das Kommando /ausdruck ein, um r�uckw�arts zu suchen, ?ausdruck. Der

Cursor springt auf das n�achste Vorkommen von ausdruck. Mittels n wiederholt

man die Suche. Wollen wir das Wort kompilieren durch compilieren ersetzen, rufen

wir den vi mit dem Namen unseres Text�les auf und geben folgendes Kommando

ein:

19ehemals /etc/termcap

106 2 UNIX

:1,$ s/kompil/compil/g

Im einzelnen hei�t das: von Zeile 1 bis Textende ($) substituiere die Zeichenfolge

kompil durch compil , und zwar nicht nur beim ersten Auftreten in der Zeile,

sondern global in der gesamten Zeile, das hei�t hier also im gesamten Text. Die

Zeichenfolgen brauchen nicht gleich lang zu sein. Gro�- und Kleinbuchstaben sind

wie immer verschiedene Zeichen, deshalb wird man die Ersetzung auch noch f�ur

gro�e Anfangsbuchstaben durchf�uhren. Der vorliegende Text ist auf mehrere Files

verteilt. Soll eine Ersetzung in allen Files vorgenommen werden, schreibt man ein

Shellscript korr und ruft es auf:

korr 's/kompil/compil/g' *.tex

Die korrigierten Texte �ndet man in den Files *.tex.k wieder, die urspr�unglichen

Texte bleiben vorsichtshalber erhalten.

Shellscript fuer fileuebergreifende Text-Ersetzungen
print Start /usr/local/bin/korr

sedcom="$1"
shift
files="$*"

for file in $files
do
sed -e "$sedcom" $file > "$file".k
done

print Ende korr

Programm 2.19 : Shellscript zur Textersetzung in mehreren Files

Beim Aufruf des vi(1) zusammen mit dem Namen eines existierenden Text-
�les:

vi textfile

legt er eine Kopie des Files an und arbeitet nur mit der Kopie. Erst das ab-

schlie�ende write-Kommando { meist in der Form :wq f�ur write und quit {
schreibt die Kopie zur�uck auf den Massenspeicher. Hat man Unsinn gemacht, so
quittiert man den Editor ohne zur�uckzuschreiben, und das Original ist nicht ver-

dorben. Will man den vi(1) verlassen ohne zur�uckzuschreiben, warnt er. Greifen

zwei Benutzer gleichzeitig schreibend auf dasselbe Text�le zu, so kann zun�achst
jeder seine Kopie editieren. Wer als letzter zur�uckschreibt, gewinnt.

In dem File $HOME/.exrc legt man individuelle Tastatur-Anpassungen nie-

der. Auch in einem Unterverzeichnis darf man noch einmal ein File .exrc unter-
bringen, dies gilt dann f�ur vi(1)-Aufrufe aus dem Unterverzeichnis. Beispielsweise

setzen wir f�ur die Unterverzeichnisse, die unsere C-Quellen enthalten, die Tabu-

latorweite auf 4 statt 8 Stellen, um die Einr�uckungen nicht zu weit nach rechts
wandern zu lassen. Das .exrc-File f�ur diesen Zweck enth�alt folgende Zeilen:

2.7 Writer's Workbench 107

:set tabstop=4

:map Q :wq

Die zweite Zeile bildet das Kommando Q (ein Makro) auf das vi(1)-Kommando

:wq ab. Dabei sollte der Macroname kein bereits bestehendes vi(1)-Kommando

sein. Die Ersetzung darf 100 Zeichen lang sein. Auch Funktionstasten lassen sich

abbilden. Auf diese Weise kann man sich Umlaute oder h�au�g gebrauchte Kom-

mandos auf einzelne Tasten legen.

Vom vi(1) gibt es zwei Sonderausf�uhrungen. Der Aufruf view(1) startet den

vi(1) im Lesemodus; man kann alles machen wie gewohnt, nur nicht zur�uck-

schreiben. Das ist ganz n�utzlich zum Lesen und Suchen in Texten. Die Fassung

vedit(1) ist f�ur Anf�anger gedacht und �uber
�ussig, da man dieselbe Wirkung

durch das Setzen einiger Parameter erreicht und die anf�anglichen Gew�ohnungs-

probleme bleiben.

Aus dem GNU-Projekt stammt der vi(1)-�ahnliche Editor elvis(1). Er liegt

wie alle GNU-Software im Quellcode vor und kann daher auf verschiedene UNIXe

und auch MS-DOS �ubertragen werden. Bei MINIX und LINUX geh�ort er zum
Lieferumfang. Im Netz �ndet sich die vi(1)-Erweiterung vim(1), auch f�ur vi(1)-
Liebhaber, die unter MS-DOS arbeiten.

Das soll gen�ugen. Den vi(1) lernt man nicht an einem Tag. Die Arbeitsweise
des vi(1) ist im Vergleich zu manchen Textsystemen unbequem, aber man mu�

die Umst�ande ber�ucksichtigen, unter denen er arbeitet. Von seinen Leistungen her
erf�ullt er mehr W�unsche, als der Normalbenutzer hat. Man gew�ohnt sich an jeden
Editor, nur nicht jede Woche an einen anderen.

2.7.4 Universalgenie (emacs)

Neben dem vi(1) �ndet man auf UNIX-Systemen oft den Editor emacs(1), der

aus dem GNU-Projekt stammt und daher im Quellcode verf�ugbar ist. Es gibt auch
Portierungen auf andere Systeme einschlie�lich IBM-PC unter MS-DOS sowie die
Variante microemacs. Der grunds�atzliche Unterschied zum vi(1) ist, da� der

emacs(1) nur einen Modus kennt und die Editorkommandos durch besondere
Tastenkombinationen mit den control- und alt-Tasten vom Text unterscheidet.

Im �ubrigen ist er mindestens so m�achtig (= gew�ohnungsbed�urftig) wie der vi(1).

Chacun �a son goût.

2.7.4.1 Einrichtung

Falls der Emacs nicht { wie bei den LINUX-Distributionen { fertig eingerichtet
vorliegt, mu� man sich selbst darum bem�uhen. Man holt ihn sich per Anonymous

FTP oder mittels eines WWW-Browsers von:

� ftp.informatik.rwth-aachen.de/pub/gnu/

� ftp.informatik.tu-muenchen.de/pub/comp/os/unix/gnu/

oder anderen Servern. Das File hei�t beisspielsweise emacs-20.2.tar.gz, ist also

ein mit gzip gepacktes tar-Archiv. Man legt es in ein tempor�ares Verzeichnis,

entpackt es und dr�oselt es in seine Teile auf:

108 2 UNIX

gunzip emacs-20.2.tar.gz

tar -xf emacs-20.2.tar

Danach hat man neben dem Archiv ein Verzeichnis emacs-20.2. Man wech-

selt hinein und liest die Files README und INSTALL, das File PROBLEMS heben

wir uns f�ur sp�ater auf. Im File INSTALL wird angeraten, sich aus dem File

./etc/MACHINES die zutre�ende Systembezeichnung herauszusuchen, in unserem

Fall hppa1.1-hp-hpux10. Ferner soll man sich noch das File leim-20.2.tar.gz

zur Verwendung internationaler Zeichens�atze (Latin-1 usw.) besorgen und ne-

ben dem Emacs-File entpacken und aufdr�oseln; seine Files gehen in das Emacs-

Verzeichnis. Dann ruft man ein Shellscript auf, das ein Make�le erzeugt:

./configure hppa1.1-hp-hpux10

Es folgen make(1), das ho�entlich ohne Fehlermeldung durchl�auft, und

make install (als Benutzer root wegen der Schreibrechte in /usr/local/). Als

Fehler kommen in erster Linie fehlende Bibliotheken in Betracht, deren Beschaf-
fung in Arbeit ausarten kann. Mittels make clean und make distclean lassen

sich die nicht mehr ben�otigten Files l�oschen. Sobald alles funktioniert, sollte man
auch das Verzeichnis emacs-20.2 l�oschen, man hat ja noch das Archiv. Der fertige
Editor { das File /usr/local/bin/emacs { sollte die Zugri�srechte 755 haben.

Mittels man emacs sollte die Referenz auf den Schirm kommen.

2.7.4.2 Benutzung

Der Aufruf emacs mytext startet den Editor zur Erzeugung oder Bearbeitung des
Text�les mytext. Mittels control-h und t bekommt man ein Tutorial auf den

Schirm, das vierzehn Seiten DIN A4 umfa�t. Zum Einarbeiten ist das Tutorial
besser als die man-Seiten. Eine GNU Emacs Reference Card { sechs Seiten DIN
A4 { liegt dem Editor-Archiv bei. Mit control-h und i gibt es eine Information

von elf Seiten Umfang, von der University of Texas zieht man sich eineGNU Emacs

Pocket Reference List von vierzehn Seiten. Als ultimative Bettlekt�ure erh�alt man

im guten Buchhandel schlie�lich ein Buch von 560 Seiten.
Eine Reihe von Programmen wie Compiler, Mailer, Informationsdienste arbei-

tet mit dem emacs(1) zusammen, so da� man diesen nicht zu verlassen braucht,

wenn man etwas anderes als Textverarbeitung machen m�ochte. Unter dem Na-

men emacspeak gibt es eine Sprachausgabe f�ur sehgesch�adigte Benutzer. Das geht

in Richtung integrierte Umgebungen. Eigentlich ist der emacs(1) gar kein Edi-

tor, sondern ein LISP-Interpreter mit einer Sammlung von Macros. Es spricht

nichts dagegen, diese Sammlung zu erweitern, so da� man schlie�lich alles mit

dem emacs(1) macht. Den vi(1) emuliert er nat�urlich auch.

Zu MINIX geh�ort der emacs(1)-�ahnliche Editor elle(1), neben dem vi(1)-
Clone elvis(1). Zu LINUX gibt es den originalen emacs(1) neben dem vi(1).

2.7.5 Joe's Own Editor (joe)

Der joe(1) von Joseph. H. Allen soll als Beispiel f�ur eine Vielzahl von Editoren

stehen, die im Netz herumschwimmen und entweder mehr k�onnen oder einfacher

2.7 Writer's Workbench 109

zu benutzen sind als die Standard-Editoren. Er bringt eine eigene Verhaltensweise

in normaler und beschr�ankter Fassung mit, kann aber auch WordStar, pico(1)

oder emacs(1) emulieren (nachahmen), je nach Aufruf und Kon�guration. Diese

l�a�t sich in einem File $HOME/.joerc den eigenen W�unschen anpassen. Seine

Verwendung unterliegt der GNU General Public License, das hei�t sie ist praktisch

kostenfrei.

Der joe(1) kennt keine Modi. Nach dem Aufruf legt man gleich mit der Text-

eingabe los. Editorkommandos werden durch control-Sequenzen gekennzeichnet.

Beispielsweise erzeugt die Folge control-k und h ein Hilfefenster am oberen Bild-

schirmrand. Nochmalige Eingabe der Sequenz l�oscht das Fenster. Am Ende verl�a�t

man den Editor mittels control-c ohne Zur�uckschreiben oder mit der Sequenz

control-k und x unter Speichern des Textes. Weitere Kommandos im Hilfefenster

oder mit man joe. In LINUX-Distributionen ist joe(1) meist enthalten, wie so

manches andere.

2.7.6 Stream-Editor (sed)

Der Stream-Editor sed(1) bearbeitet ein Text�le nach Regeln, die man ihm als

Option oder in einem getrennten File (sed-Script) mitgibt. Er ist im Gegensatz
zu den bisher genannten Editoren nicht interaktiv, er f�uhrt keinen Dialog.

Die einfachste Aufgabe f�ur den sed(1) w�are der Ersatz eines bestimmten Zei-
chens im Text durch ein anderes (daf�ur gibt es allerdings ein besseres, weil ein-
facheres Werkzeug tr(1)). Der sed(1) bew�altigt ziemlich komplexe Aufgaben,

daher ist seine Syntax etwas umfangreich. Sie baut auf der Syntax des Zeilenedi-
tors ed(1) auf. Der Aufruf

sed 'Kommandos' filename

veranla�t den sed(1), das File filename einzulesen und gem�a� den Kommandos
bearbeitet nach stdout auszugeben. Der Aufruf

sed '1d' filename

l�oscht die erste Zeile im File filename und schreibt das Ergebnis nach stdout.
Die Quotes um das sed(1)-Kommando verhindern, da� die Shell sich das f�ur den

sed(1) bestimmte Kommando ansieht und m�oglicherweise Metazeichen interpre-
tiert. Hier w�aren sie nicht n�otig und stehen einfach aus Gewohnheit. Jokerzeichen

in filename dagegen werden von der Shell zu Recht interpretiert, so da� der
sed(1) von der Shell eine Liste g�ultiger Namen erh�alt.

Folgender Aufruf ersetzt alle Gro�buchstaben durch die entsprechenden Klein-

buchstaben:

sed 's/[A-Z]/[a-z]/g' filename

Im Kommando steht s f�ur substitute. Dann folgt ein regul�arer Ausdruck zur Kenn-

zeichnung dessen, was ersetzt werden soll. An dritter Stelle ist der Ersatz (repla-
cement) aufgef�uhrt und schlie�lich ein Flag, das hier besagt, den Ersatz global

(�uberall, nicht nur beim ersten Auftreten des regul�aren Ausdrucks in der Zeile)
auszuf�uhren.

110 2 UNIX

Merke: Der vi(1) ist ein interaktiver Editor, der Tastatureingaben erfordert

und nicht Bestandteil einer Pipe sein oder im Hintergrund laufen kann. Der sed(1)

ist ein Filter, das keine Tastatureingaben verlangt, Glied einer Pipe oder eines

Shellscripts sein und unbeaufsichtigt laufen kann.

2.7.7 Listenbearbeitung (awk)

Das Werkzeug awk(1) ist nach seinen Urhebern Alfred V. Aho, Peter J.

Weinberger und Brian W. Kernighan benannt und �rmiert als program-

mierbares Filter oder Listengenerator. Er l�a�t sich auch als eine Programmier-

sprache f�ur einen bestimmten, engen Zweck auffassen. Der awk(1) bearbeitet ein

Text�le zeilenweise, wobei er jede Zeile { auch Satz genannt { in Felder zerlegt.

Eine typische Aufgabe ist die Bearbeitung von Listen. Hier ist er angenehmer als

der sed(1), allerdings auch langsamer. F�ur die Verwaltung eines kleinen Vereins

ist er recht, f�ur das Telefonbuch von Berlin nicht.

In einfachen F�allen werden dem awk(1) beim Aufruf die Befehle zusammen mit

den Namen der zu bearbeitenden Files mitgegeben, die Befehle in Hochkommas,
um sie vor der Shell zu sch�utzen:

awk 'befehle' files

Ein awk(1)-Befehl besteht aus den Teilen Muster und Aktion. Jede Eingabe-

zeile, auf die das Muster zutri�t, wird entsprechend der Aktion behandelt. Die
Ausgabe geht auf stdout. Ein Beispiel:

awk '{if (NR < 8) print $0}' myfile

Das File myfile wird Zeile f�ur Zeile gelesen. Die vorgegebene awk(1)-Variable NR

ist die Zeilennummer, beginnend mit 1. $0 ist die ganze jeweilige Zeile. Falls die
Zeilennummer kleiner als 8 ist, wird die Zeile nach stdout geschrieben. Es werden
also die ersten 7 Zeilen des Files ausgegeben. Nun wollen wir das letzte Feld der

letzten Zeile ausgeben:

awk 'END {print $NF}' myfile

Das Muster END tri�t zu, wenn die letzte Zeile verarbeitet ist. �Ublicherweise betri�t
die zugeh�orige Aktion irgendwelche Abschlu�arbeiten. Die Variable NF enth�alt die

Anzahl der Felder der Zeile, die Variable $NF ist also das letzte Feld. Nun wird es

etwas anspruchsvoller:

awk '$1 != prev { print; prev = $1 }' wortliste

Das File wortliste enthalte in alphabetischer Folge W�orter und gegebenenfalls

weitere Bemerkungen zu den W�ortern, pro Wort eine Zeile. Der awk(1) liest das
File zeilenweise und spaltet jede Zeile in durch Spaces oder Tabs getrennte Felder

auf. Die Variable $1 enth�alt das erste Feld, also hier das Wort zu Zeilenbeginn.

Falls dieses Wort von demWort der vorangegangen Zeile abweicht (Variable prev),
wird die ganze Zeile ausgegeben und das augenblickliche Wort in die Variable prev

gestellt. Zeilen, die im ersten Feld �ubereinstimmen, werden nur einmal ausgege-

ben. Dieser awk(1)-Aufruf hat eine �ahnliche Funktion wie das UNIX-Kommando

2.7 Writer's Workbench 111

uniq(1). Da Variable mit dem Nullstring initialisiert werden, wird auch die erste

Zeile richtig bearbeitet.

Wenn die Anweisungen an den awk(1) umfangreicher werden, schreibt man

sie in ein eigenes File (awk-Script). Der Aufruf sieht dann so aus:

awk -f awkscript textfiles

awk-Scripts werden in einer Sprache geschrieben, die teils an Shellscripts, teils

an C-Programme erinnert. Sie bestehen { wie ein deutscher Schulaufsatz { aus

Einleitung, Hauptteil und Schlu�. Sehen wir uns ein Beispiel an, das mehrfache

Eintragungen von Stichw�ortern in einem Sachregister aussortiert und die zugeh�ori-

gen Seitenzahlen der ersten Eintragung zuordnet:

awk-Script fuer Sachregister

BEGIN { ORS = ""
print "Sachregister"

}
{

if ($1 == altwort)
print ", " $NF

else
{
print "\n" $0
altwort = $1
nor++
}

}
END { print "\n\n"

print "gelesen: " NR " geschrieben: " nor "\n"
}

Programm 2.20 : awk-Script f�ur Sachregister

Das Doppelkreuz markiert einen Kommentar. Der Einleitungsblock wird mit
BEGIN gekennzeichnet, der Hauptteil steht nur in geschweiften Klammern und der

Schlu� beginnt mit END. Die vorbestimmte, awk(1)-eigene Variable ORS (Output
Record Separator, d. h. Trennzeichen zwischen S�atzen in der Ausgabe), stan-
dardm�a�ig das Newline-Zeichen, wird mit dem Nullstring initialisiert. Dann wird

die �Uberschrift Sachregister ausgegeben.

Im Hauptteil wird das aktuelle erste Feld gegen die Variable altwort gepr�uft.

Bei �Ubereinstimmung werden ein Komma, ein Space und das letzte Feld der ak-
tuellen Zeile ausgegeben, n�amlich die Seitenzahl. Die awk(1)-eigene Variable NF

enth�alt die Anzahl der Felder des aktuellen Satzes, die Variable $NF mithin das

letzte Feld.

Bei Nicht�ubereinstimmung (einem neuen Stichwort also) werden ein Newline-

Zeichen und dann die ganze Zeile ($0) ausgegeben. Anschlie�end werden das erste
Feld in die Variable altwort gestellt und die vom Programmierer de�nierte Va-

riable nor inkrementiert. So wird mit dem ganzen Text�le verfahren.

Am Ende des Text�les angelangt, werden noch zwei Newline-Zeichen, die

awk(1)-eigene Variable NR (Number of Records) und die Variable nor ausgegeben.

112 2 UNIX

Die Aufgabe w�are auch mit dem sed(1) oder einem C-Programm zu l�osen, aber

ein awk-Script ist der einfachste Weg. Der awk(1) vermag noch viel mehr.

Eine Besonderheit des awk(1) sind Vektoren mit Inhaltindizierung (associative

array). In Programmiersprachen wie C oder FORTRAN werden die Elemente eines

Arrays oder Vektors mit fortlaufenden ganzen Zahlen (Indizes) bezeichnet. Auf

ein bestimmtes Element wird mittels des Arraynamens und des Index zugegri�en:

arrayname[13]

In einem awk-Array d�urfen die Indizes nicht nur ganze Zahlen, sondern auch be-

liebige Strings sein:

telefon[''Meyer'']

ist eine g�ultige Bezeichnung eines Elementes. Es k�onnte die Anzahl der Telefon-
anschl�usse namens Meyer in einem Telefonbuch enthalten.

Neuere Alternativen zu awk(1) sind GNU gawk und perl. Letzteres ist eine
interpretierte Programmiersprache zur Verarbeitung von Text�les, die Elemente

aus C, sed(1), awk(1) und der Shell sh(1) enth�alt. Ihre M�oglichkeiten gehen

�uber das Verarbeiten von Texten hinaus in Richtung Shellscripts, siehe Abschnitt

2.5.3 Noch eine Scriptsprache: Perl .

2.7.8 Verschl�usseln (crypt)

2.7.8.1 Aufgaben der Verschl�usselung

Auf einem UNIX-System kann der Superuser (System-Manager) auf jedes File
zugreifen, auf MS Windows NT mit gewissen Einschr�ankungen auch. Das Netz
ist mit einfachen Mitteln unauff�allig abzuh�oren. Will man seine Daten vor Un-

befugten sch�utzen, hilft nur Verschl�usseln. Man darf aber nicht vergessen, da�
bereits die Analyse des Datenverkehrs einer Quelle oder eines Ziels Informationen

liefert. Wer ganz unbemerkt bleiben will, mu� sich mehr einfallen lassen als nur
eine Verschl�usselung.

Eng verwandt mit der Verschl�usselung (encryption, cryptage, chi�rement)
ist die Authenti�zierung oder Authentisierung (authentication, authenti�cati-

on). Diese Aufgabe behandeln wir im Abschnitt 3.11 Electonic Mail, weil sie dort
eine Rolle spielt. Hier geht es nur darum, einen Text oder auch andere Daten

f�ur Unbefugte unbrauchbar zu machen; f�ur Befugte sollen sie nat�urlich weiterhin

brauchbar bleiben.

Das Ganze ist heute eine Wissenschaft und hei�t Kryptologie. In den letzten

Jahrzehnten hat sie einen stark mathematischen Einschlag bekommen. Trotzdem
bietet sie einen gewissen Unterhaltungswert, insbesondere dieKryptanalyse, der

Versuch, Verschl�usselungen zu knacken.

Die zu verschl�usselnden Daten nennen wir Klartext (plain text), die ver-

schl�usselten Daten Geheimtext (cipher text).

2.7 Writer's Workbench 113

2.7.8.2 Symmetrische Verfahren

Im einfachsten Fall wird jedes Zeichen des Klartextes nach einer Regel durch

ein anderes Zeichen desselben Alphabetes ersetzt. Die einfachste Regel ist die

Verschiebung um eine feste Anzahl von Stellen im Alphabet, beispielsweise um

+3 Stellen. Aus A (Zeichen Nr. 1) wird D (Zeichen Nr. 1 + 3). Dieses Verfah-

ren soll Caius Julius Caesar benutzt haben. Er hatte viel Vertrauen in die

Dummheit seiner Gegner. Zum Entschl�usseln des Geheimtextes nimmt man das-

selbe Verfahren mit �3 Stellen. W�ahlt man eine Verschiebung um 13 Stellen, so

f�uhrt bei einem Alphabet mit 26 Zeichen eine Wiederholung der Verschl�usselung

zum Klartext zur�uck. Dieses Verfahren ist unter dem Namen ROT13 bekannt

und wird im Netz verwendet, um einen Text { beispielsweise die Aufl�osung ei-

nes R�atsels { zu verfremden. Man kann die Verfahren ra�nierter gestalten, indem

man Zeichengruppen verschl�usselt, Blindzeichen unter den Geheimtext mischt, die

Algorithmen wechselt usw.

Seit zwei Jahrzehnten unterscheidet man zwei Gruppen von Verfahren:

� Symmetrische Verfahren (Private-Key-V.),

� Unsymmetrische Verfahren (Public-Key-V.).

Dazu kommen f�ur bestimmte Aufgaben noch die Einweg-Hash-Verfahren. Bei den
symmetrischen Verfahren kennen Sender und Empf�anger neben dem Algo-

rithmus sowohl den Chi�rier- wie den Dechi�rierschl�ussel. Beide Schl�ussel sind
identisch oder voneinander ableitbar. Da der Algorithmus kaum geheim zu hal-
ten ist, beruht die Sicherheit auf dem Schl�ussel, der nicht zu einfach sein darf

und geheim bleiben mu�. Das Problem liegt darin, den Schl�ussel zum Empf�anger
zu scha�en. Das geht nur �uber einen vertrauensw�urdigen Kanal, also nicht �uber

Email. Tre�en Sie Ihren Brieffreund gelegentlich bei Ka�ee und Kuchen, k�onnen
Sie ihm einen Zettel mit dem Schl�ussel zustecken. Wohnen Sie in Karlsruhe, Ih-
re Brieffreundin in Fatmomakke, wird der Schl�usselaustausch aufwendiger. Ein

weiteres Problem liegt in der Anzahl der ben�otigten Schl�ussel beim Datenverkehr
unter mehreren Beteiligten. Geht es nur darum, Daten vor dem Superuser zu ver-
stecken, ist kein Schl�usselaustausch n�otig und daher ein symmetrisches Verfahren

angebracht.

Die Verschl�usselung nach dem weit verbreiteten Data Encryption Stan-

dard (DES) geh�ort in diese Gruppe, zur Ver- und Entschl�usselung wird derselbe

Schl�ussel benutzt. DES wurde von IBM entwickelt und 1977 von der US-Regierung

als Standard angenommen. Es gilt heute schon nicht mehr als sicher, Triple-DES
ist besser. Ein weiteres Mitglied dieser Gruppe ist IDEA. Symmetrische Verfahren

arbeiten im allgemeinen schneller als unsymmetrische.

Unter UNIX stehen ein Kommando crypt(1) sowie eine C-Standardfunktion

crypt(3) zur Verf�ugung, die ein nicht sehr ausgefeiltes symmetrisches Verfahren

verwenden. Man ver- und entschl�usselt mittels des Kommandos:

crypt < eingabe > ausgabe

Das Kommando fragt nach einem Schl�ussel. Dieser wird f�ur beide Richtungen
eingesetzt. Der Klartext ist erforderlichenfalls gesondert zu l�oschen (physikalisch,

114 2 UNIX

nicht nur logisch). Die Crypt Breaker's Workbench enth�alt alles N�otige, um diese

Verschl�usselung zu knacken (http://axion.physics.ubc.ca/cbw.html).

2.7.8.3 Unsymmetrische Verfahren

Die asymmetrischen Verfahren verwenden zum Verschl�usseln und Entschl�usseln

zwei v�ollig verschiedene, nicht voneinander ableitbare Schl�ussel. Benutzer A

hat sich ein Paar zusammengeh�origer Schl�ussel gebastelt, den ersten zum Ver-

schl�usseln, den zweiten zum Entschl�usseln, wie, werden wir noch sehen. Den ersten

Schl�ussel gibt er �o�entlich bekannt, daher Public Key. Jeder kann ihn benutzen,

zum Beispiel Benutzer B, der A eine vertrauliche Email schicken m�ochte. Was

einmal damit verschl�usselt ist, l�a�t sich nur noch mit dem zweiten Schl�ussel ent-

schl�usseln, und den h�alt Benutzer A geheim. Er teilt ihn niemandem mit, daher

Private Key. Jetzt kann es nur noch passieren, da� ein Benutzer C unter Mi�-

brauch des Namens von B an A eine beleidigende Mail schickt und B darauf hin

mit A Krach bekommt. Das ist das Authenti�zierungs-Problem, auf das wir bei

der Email eingehen.

Wie kommt man nun zu einem derartigen Schl�usselpaar? Ein Weg beruht
auf der Tatsache, da� man leicht zwei ganze Zahlen gro�er L�ange miteinander

multiplizieren kann, sogar ohne Computer, w�ahrend die Zerlegung einer gro�en
Zahl (um die zweihundert dezimale Stellen entsprechend etwa 500 Bits) in ihre
Primfaktoren mit den heute bekannten Algorithmen und Computern aufwendig

ist, jedenfalls wenn gewisse Voraussetzungen eingehalten werden. Ron Rivest,
Adi Shamir und Leonard Adleman haben auf diesem Gedanken aufbauend
das verbreitete RSA-Verfahren entwickelt.

Man w�ahle zuf�allig zwei gro�e Primzahlen p und q, zweckm�a�ig von ann�ahernd
gleicher L�ange. Ihr Produkt sei n = pq. Weiter w�ahle man eine Zahl e so, da� e

und (p� 1)(q � 1) teilerfremd (relativ prim) zueinander sind. Eine vierte Zahl d
berechne man aus:

d = e�1 mod ((p� 1)(q � 1)) (2.1)

Die Zahlen e und n bilden den �o�entlichen Schl�ussel, die Zahl d ist der private,

geheime Schl�ussel. Die beiden Primzahlen p und q werden nicht weiter ben�otigt,
m�ussen aber geheim bleiben (l�oschen).

Wir sehen den Klartext K als eine Folge von Zi�ern an. Er wird in Bl�ocke Ki

kleiner n aufgeteilt. Die Geheimnachricht G besteht aus Bl�ocken Gi, die sich nach

Gi = Ke
i mod n (2.2)

berechnen. Zur Entschl�usselung berechnet man

Ki = Gd
i mod n (2.3)

Einzelheiten und Begr�undung hierzu siehe die B�ucher von Friedrich L. Bauer
oder Bruce Schneier. Nun ein Beispiel aus dem Buch von F. L. Bauer. Wir

w�ahlen einen Text aus lateinischen Buchstaben samt Zwischenraum und ersetzen

die Zeichen durch die Nummern von 00 bis 26. Er bekommt folgendes Aussehen:

K = 051818011805000821 : : : (2.4)

2.7 Writer's Workbench 115

und w�ahlen:

p = 47 q = 59 n = p � q = 2773 (2.5)

Wir teilen den Klartext in vierzi�rige Bl�ocke kleiner n auf:

K1 = 0518 K2 = 1801 K3 = 1805 : : : (2.6)

Zur Bestimmung von e berechnen wir:

(p� 1)(q � 1) = 46 � 58 = 2668 (2.7)

Die Zahl 2668 hat die Teiler 2, 4, 23, 29, 46, 58, 92, 116, 667 und 1334. F�ur e

w�ahlen wir 17, teilerfremd zu 2668. Dann ergibt sich d zu:

d = 17�1 mod 2668 (2.8)

Diese vielleicht unbekannte Schreibweise ist gleichbedeutend damit, ein Paar gan-

zer Zahlen d; x so zu bestimmen, da� die Gleichung:

d � 17 = 2668 � x + 1 (2.9)

erf�ullt ist. Die Zahl d = 157 ist eine L�osung mit x = 1. Gezielt ermittelt man
L�osungen mittels des Erweiterten Euklidischen Algorithmus. Nun haben wir mit

n, e und d alles, was wir brauchen und gehen ans Verschl�usseln:

G1 = Ke
1 mod n = 051817 mod 2773 = 1787 (2.10)

und entsprechend f�ur die weiteren Bl�ocke. Gleiche Klartextbl�ocke ergeben gleiche

Geheimtextbl�ocke, was bereits ein Risiko ist. Zum Entschl�usseln berechnet man:

K1 = Gd
1 mod n = 1787157 mod 2773 = 518 (2.11)

und so weiter. Die Arithmetik gro�er Ganzzahlen ist f�ur Computer kein Problem,

f�ur Taschenrechner schon eher. Man kann sie sogar in Silizium gie�en und erh�alt
schnelle Chips zum Ver- und Entschl�usseln, ohne Software bem�uhen zu m�ussen.

Da n und e �o�entlich sind, k�onnte man durch Zerlegen von n in seine Primfaktoren

leicht den privaten Schl�ussel d ermitteln, aber das Zerlegen gro�er Zahlen ist nach
heutigem Wissensstand sehr aufwendig.

Es gibt weitere unsymmetrische Verfahren wie das von Taher Elgamal.
Auf http://www.rsa.com/ �ndet sich Material zur Vertiefung des Themas. Eine

zehnteilige FAQ-Sammlung zur Kryptogra�e liegt im Netz.

2.7.8.4 Angri�e

Angri�e auf verschl�usselte Daten { wissenschaftlich als Kryptanalyse, sonst

als Cracking bezeichnet { gehen m�oglichst von irgendwelchen bekannten oder

vermuteten Zusammenh�angen aus. Das kleinste Zipfelchen an Vorkenntnissen
kann entscheidend sein. Die Wahrscheinlichkeit, da� ein Benutzer seinen nur ge-

ring modi�zierten Benutzernamen als Passwort verwendet, ist leider hoch. Da-

mit f�angt man an. Das Ausprobieren aller nur m�oglichen Schl�ussel wird Brute

116 2 UNIX

Force Attack genannt und ist bei kurzen Schl�usseln dank Computerhilfe auch

schnell von Erfolg gekr�ont. Das Faktorisieren kleiner Zahlen ist ebenfalls kein

Problem. Aber selbst bei gro�en Zahlen, die f�ur einen einzelnen Computer { auch

wenn er zu den schnellsten geh�ort { eine praktisch unl�osbare Aufgabe darstel-

len, kommt man in kurzer Zeit zum Ziel, wenn man die Leerlaufzeiten von ei-

nigen Hundert durchschnittlichen Computern f�ur seinen Zweck einsetzen kann.

Das ist ein organisatorisches Problem, kein mathematisches, und bereits gel�ost,

siehe http://www.distributed.net/rc5/. Das ganze Nachdenken �uber sichere

Verschl�usselung er�ubrigt sich im �ubrigen bei schlampigem Umgang mit Daten und

Schl�usseln. Der Benutzer ist erfahrungsgem�a� immer das gr�o�te Risiko.

2.7.9 Formatierer (nro�, LaTeX)

2.7.9.1 Inhalt, Struktur und Aufmachung

Ein Schriftst�uck - sei es Brief oder Buch - hat einen Inhalt, n�amlich Text, ge-

gebenenfalls auch Abbildungen, der in einer bestimmten Form dargestellt ist. Bei

der Form unterscheiden wir zwischen der logischen Struktur und ihrer Darstel-
lung auf Papier oder Bildschirm, auch Aufmachung oder Layout genannt. Beim
Schreiben des Manuskriptes macht sich der Autor Gedanken �uber Struktur und

Inhalt, aber kaum �uber Schrifttypen und Schriftgr�o�en, den Seitenumbruch, die
Numerierung der Abbildungen. Das ist Aufgabe des Metteurs oder Layouters im
Verlag, der seinerseits nur wenig am Text �andert. Schreiben und Setzen sind

unterschiedliche Aufgaben, die unterschiedliche Kenntnisse erfordern.
Der Computer wird als Werkzeug f�ur alle drei Aufgaben (Inhalt, Struktur,

Layout) eingesetzt. Mit einem Editor schreibt man einen strukturierten Text,
weitergehende Programme pr�ufen die Rechtschreibung, helfen beim Erstellen eines
Sachregisters, analysieren den Stil. Ein Satz- oder Formatierprogramm erledigt

den Zeilen- und Seitenumbruch, sorgt f�ur die Numerierung der Abschnitte, Seiten,
Abbildungen, Tabellen, Fu�noten und Formeln, legt die Schriftgr�o�en fest, stellt

das Inhaltsverzeichnis zusammen usw.
Formatierer sind Werkzeuge, die strukturierten Text in bestimmter Weise,

in einer bestimmten Form zu Papier oder auf den Bildschirm bringen. Eine typi-

sche Aufgabe ist der Zeilen- und Seitenumbruch. Man kann zwar diese Aufgabe
auch von Hand im Editor erledigen, �ublicherweise �uberl�a�t man sie aber dem

Formatierer.
Der UNIX-Formatierer nroff(1) und LaTeX halten Struktur und Layout aus-

einander. Man schreibt mit einem beliebigen Editor den Text und formatiert an-

schlie�end. LaTeX verfolgt dar�uberhinaus den Gedanken, da� der Autor seine
Objekte logisch beschreiben und von der typogra�schen Gestaltung, dem Layout,

die Finger lassen soll. Der Autor soll sagen: Jetzt kommt eine Kapitel�uberschrift

oder Jetzt folgt eine Fu�note. LaTeX legt dann nach typogra�schen Regeln die

Gestaltung fest. Man kann dar�uber streiten, ob diese Regeln das Nonplusultra

der Schwarzen Kunst sind, ihr Ergebnis ist jedenfalls besser als vieles, was Laien

erzeugen.

Sowohl nroff(1) wie LaTeX zielen auf die Wiedergabe der Dokumente mit-
tels Drucker auf Papier ab. Die Hypertext Markup Language HTML, der wir im

2.7 Writer's Workbench 117

Abschnitt �uber das World Wide Web begegnen, hat viel mit LaTeX gemeinsam,

eignet sich jedoch in erster Linie f�ur Dokumente, die auf dem Bildschirm darge-

stellt werden sollen.

Textverarbeitungsprogramme wie Word, Wordperfect oder Wordstar haben

Formatierungsaufgaben integriert, so da� man sich am Bildschirm nicht nur den

rohen Text, sondern w�ahrend des Schreibens auch den formatierten ansehen kann.

Diese M�oglichkeit wird als WYSIWYG bezeichnet: What you see is what you

get . Das erleichtert in vielen F�allen die Arbeit, birgt aber eine Versuchung in

sich. Die reichen Mittel aus dem typogra�schen Kosmetikko�er namens Desktop

Publishing sind sparsam einzusetzen, unser Ziel hei�t Lesbarkeit, nicht Kunst.

2.7.9.2 Ein einfacher Formatierer (adjust)

Ein einfacher Formatierer ist adjust(1). Der Aufruf

adjust -j -m60 textfile

versucht, den Text in textfile beidseits b�undig (Blocksatz) mit 60 Zeichen pro
Zeile zu formatieren. Die Ausgabe geht nach stdout. adjust(1) trennt keine
Silben, sondern f�ullt nur mit Spaces auf. F�ur bescheidene Anforderungen geeignet.

2.7.9.3 UNIX-Formatierer (nro�, tro�)

Die Standard-Formatierer in UNIX sind nroff(1) f�ur Druckerausgabe und
sein Verwandter troff(1) f�ur Fotosatzbelichter. Da wir letztere nicht ha-
ben, ist bei uns troff(1) nicht installiert. Das n steht f�ur new, da der

Vorg�anger von nroff(1) ein roff war, und dieser hie� so, weil man damit
run off to the printer verband.

Ein File f�ur nroff(1) enth�alt den unformatierten Text und nroff-
Kommandos. Diese stehen stets in eigenen Zeilen mit einem Punkt am Anfang.
Ein nroff-Text k�onnte so beginnen:

.po 1c

.ll 60

.fi

.ad c

.cu 1

Ein Textbeispiel

von W. Alex

.ad b

.ti 1c

Dies ist ein Beispiel fuer einen Text, der mit nroff

formatiert werden soll. Er wurde mit dem Editor vi

geschrieben.

118 2 UNIX

.ti 1c

Hier beginnt der zweite Absatz.

Die Zeilenlaenge im Textfile ist unerheblich.

Man soll die Zeilen kurz halten.

Fuer die Ausgabe formatiert nroff die Zeilen.

Die nroff-Kommandos bedeuten folgendes:

� po 1c page o�set 1 cm (zus�atzlicher linker Seitenrand)

� ll 60 line length 60 characters

� fi �ll output lines (f�ur Blocksatz)

� ad c adjust center

� cu 1 continuous underline 1 line (auch Spaces unterstreichen)

� ad b adjust both margins

� ti 1c temporary indent 1 cm

Die Kommandos k�onnen wesentlich komplexer sein als im obigen Beispiel, es sind
auch Makros, Tests und Rechnungen m�oglich. S. R. Bourne f�uhrt in seinem im

Anhang O Literatur genannten Buch die Makros auf, mit denen die amerikanische
Ausgabe seines Buches formatiert wurde. Es gibt ganze Makrobibliotheken.

Da sich Formeln und Tabellen nur schlecht mit den Textbefehlen beschreiben
lassen, gibt es f�ur diese beiden F�alle eigene Befehle samt Pr�aprozessoren, die die
Spezialbefehle in nroff(1)-Befehle umwandeln. F�ur Tabellen nimmt man tbl(1),

f�ur Formeln neqn(1), meist in Form einer Pipe:

tbl textfile | neqn | nroff | col | lp

wobei col(1) ein Filter zur Behandlung von Backspaces und dergleichen ist.

2.7.9.4 LaTeX

TeX ist ein Formatierungsprogramm, das von Donald E. Knuth entwickelt

wurde { dem Mann, der seit Jahrzehnten an dem siebenb�andigen Werk The Art

of Computer Programming schreibt und ho�entlich noch lange lebt { und wird
von der American Mathematical Society herausgegeben. Seine St�arke sind

umfangreiche mathematische Texte, seine Schw�ache ist die Gra�k. Inzwischen
gibt es aber Zusatzprogramme (TeXCAD) zu LaTeX, die es erleichtern, den Text

durch Zeichnungen zu erg�anzen. Au�erdem kann man Gra�ken bestimmter For-

mate (Encapsulated Postscript) in den Text einbinden.
TeX ist sehr leistungsf�ahig, verlangt aber von seinem Benutzer die Kenntnis

vieler Einzelheiten, �ahnlich wie das Programmieren in Assembler. LaTeX ist eine
Makrosammlung, die auf TeX aufbaut. Die LaTeX-Makros von Leslie Lam-

port erleichtern bei Standardaufgaben und -formaten die Arbeit betr�achtlich,

indem viele TeX-Befehle zu einfach anzuwendenden LaTeX-Befehlen zusammen-
gefa�t werden. Kleinere Modi�kationen der Standardeinstellungen sind vorgese-

hen, weitergehende Sonderw�unsche erfordern das Hinabsteigen auf TeX-Ebene,
was l�angeres Lernen voraussetzt.

2.7 Writer's Workbench 119

Arbeitsweise Man schreibt seinen Text mit einem beliebigen Editor. Dabei

wird nur von den druckbaren Zeichen des US-ASCII-Zeichensatzes zuz�uglich Line-

feed Gebrauch gemacht. In den Text eingestreut sind die LaTeX-Anweisungen.

Der Name des Text�les mu� die Kennung .tex haben. Dann schickt man das

Text�le durch den LaTeX-Compiler. Dieser erzeugt ein Bin�ar�le, dessen Na-

men die Kennung .dvi tr�agt. Das bedeutet device independent, das Bin�ar�le

ist also noch nicht auf ein bestimmtes Ausgabeger�at hin ausgerichtet. Mittels eines

ger�ateabh�angigen Treiberprogrammes wird aus dem dvi-File das bit-File erzeugt

{ Kennung .bit { das mit einem UNIX-Kommando wie cat durch eine hundert-

prozentig transparente Schnittstelle zum Ausgabeger�at geschickt wird. Es gibt

auch ein Programm dvips(1), das ein Postscript-File erzeugt, welches auf einem

beliebigen Postscript-Drucker ausgegeben werden kann.

Format dieses Textes Der vorliegende Text wurde mit LaTeX2e auf einem

LINUX-PC formatiert, mittels dvips(1) von Radical Eye auf Postscript umge-

setzt und auf einem Laserdrucker von Hewlett-Packard ausgegeben.

Im wesentlichen verwenden wir die Standardvorgaben. Die Zeichnungen wur-
den mit TeXCAD entworfen. TeXCAD erzeugt LaTeX-Files, die man editieren
kann, so man das f�ur n�otig be�ndet.

In dem Text kommen viele Quelltexte von Programmen vor, die wir �ahnlich
wie Abbildungen oder Tabellen in einer eigenen Umgebung formatieren wollten.

Eine solche Umgebung war seinerzeit nicht fertig zu haben. Man mu�te selbst zur
Feder greifen, m�oglichst unter Verwendung vorhandenen Codes. Die Schwierigkeit
lag darin herauszu�nden, wo was de�niert wird, da viele Makros wieder von an-

deren Makros abh�angen. Die source-Umgebung wird zusammen mit einigen wei-
teren Kleinigkeiten in einem File alex.sty de�niert, das dem LaTeX-Kommando
usepackage als Argument mitgegeben wird:

% alex.sty mit Erweiterungen fuer UNIX-Skriptum, 15. Mai 1994
% als Option in \documentstyle angeben:
% \documentstyle[12pt,twoside ... alex]{report}
%
% Aenderungen von Zeilen aus latex.tex, report.sty, rep12.sty
%
% Meldung fuer Bildschirm und main.log:
\typeout{Formatoption alex.sty fuer report.sty, 15. Mai 1994 W. Alex}
%
% Stichwoerter hervorheben und in Index aufnehmen:
% (hat sich als unzweckmaessig erwiesen)
\newcommand{\stw}[1]{{\em#1}\index{#1}}
%
% Hervorhebungen mittels \em:
\renewcommand{\em}{\bf}
%
% Fussnoten-Schriftgroesse vergroessern:
\renewcommand{\footnotesize}{\small}
%
% in Tabellen:
\newcommand{\h}{\hspace*{25mm}}

120 2 UNIX

\newcommand{\hh}{\hspace*{30mm}}
\newcommand{\hhh}{\hspace*{40mm}}
%
% falls \heute nicht bekannt:
\newcommand{\heute}{\today}
%
% Abkuerzung:
\newcommand{\lra}{\longrightarrow}
%
% Plazierung von Gleitobjekten (Bilder usw.):
\setcounter{totalnumber}{8}
\renewcommand{\textfraction}{0.1}
%
% Numerierung der Untergliederungen:
\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{3}
%
% Satzspiegel vergroessern:
% Standardwerte 10, 138 und 187 mm; Springer 146, 236 mm
\topmargin-5mm
\textwidth146mm
\textheight236mm
%
% zusaetzlicher Seitenrand fuer beidseitigen Druck:
\oddsidemargin14mm
\evensidemargin0mm
%
% eigene Bezeichnungen, lassen sich beliebig aendern:
\def\contentsname{Inhaltsverzeichnis}
\def\chaptername{Kapitel}
\def\listfigurename{Abbildungen}
\def\listtablename{Tabellen}
\def\listsourcename{Programme}
\def\indexname{Sach- und Namensverzeichnis}
\def\figurename{Abb.}
\def\tablename{Tabelle}
\def\sourcename{Programm}
%
% wegen Quotes (Gaensefuesschen) in source-Umgebung,
% darf auch sonst verwendet werden:
\def\qunormal{\catcode`\"=12}
\def\quactive{\catcode`\"=\active}
%
% in Unterschriften Umlaute ("a, "o, "u) ermoeglichen
% (der Programmtext wird mit qunormal geschrieben):
\def\caption{\quactive \refstepcounter\@captype \@dblarg{\@caption\@captype}}
%
% neue Umgebung source fuer Programmtexte
% aehnlich figure, aber nicht floatend, Seitenumbruch erlaubt
% abgestimmt auf \verbinput{file} aus verbtext.sty
% qunormal + quactive sind enthalten
%
% neuer Zaehler, kapitelweise:
\newcounter{source}[chapter]

2.7 Writer's Workbench 121

\def\thesource{\thechapter.\arabic{source}\ }
\def\fnum@source{{\sl\sourcename\ \thesource}}
%
% Filekennung fuer List of Sources (main.los):
\def\ext@source{los}
%
% neue Umgebung, Aufruf: \begin{source} \end{source},
% vor end{source} kommt caption:
\newenvironment{source}{\vskip 12pt \qunormal \def\@captype{source}}{\quactive \vs
%
% neuer Befehl \listofsources analog \listoffigures
% zur Erzeugung eines Programmverzeichnisses:
\def\listofsources{\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
\fi\chapter*{\listsourcename\@mkboth
{{\listsourcename}}{{\listsourcename}}}\@starttoc{los}
\if@restonecol\twocolumn\fi}

\let\l@source\l@figure
%
% Kapitelkopf, aus rep12.sty. Siehe Kopka 2, S. 187 + 289:
% ohne Kapitel + Nummer:
\def\@makechapterhead#1{ \vspace*{36pt} { \parindent 0pt \raggedright
\LARGE \bf \thechapter \hspace{6mm} #1 \par
\nobreak \vskip 10pt } }

\def\@makeschapterhead#1{ \vspace*{36pt} { \parindent 0pt \raggedright
\LARGE \bf #1 \par
\nobreak \vskip 10pt } }
%
% aus rep12.sty; ergaenzt wegen source
% (sonst fehlt der vspace im Programmverzeichnis):
\def\@chapter[#1]#2{\ifnum \c@secnumdepth >\m@ne
\refstepcounter{chapter}
\typeout{\@chapapp\space\thechapter.}
\addcontentsline{toc}{chapter}{\protect
\numberline{\thechapter}#1}\else
\addcontentsline{toc}{chapter}{#1}\fi
\chaptermark{#1}
\addtocontents{lof}{\protect\addvspace{10pt}}
\addtocontents{los}{\protect\addvspace{10pt}}
\addtocontents{lot}{\protect\addvspace{10pt}}
\if@twocolumn \@topnewpage[\@makechapterhead{#2}]
\else \@makechapterhead{#2}
\@afterheading \fi}

%
% Inhaltsverzeichnis modifiziert:
\def\tableofcontents{\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
\fi\chapter*{\contentsname
\@mkboth{{\contentsname}}{\contentsname}}
\@starttoc{toc}\if@restonecol\twocolumn\fi}

%
% weniger Luft in itemize (listI), aus rep12.sty:
\def\@listI{\leftmargin\leftmargini
\parsep 4pt plus 2pt minus 1pt
\topsep 6pt plus 4pt minus 4pt

122 2 UNIX

\itemsep 2pt plus 1pt minus 1pt}
%
% Seitennumerierung, aus report.sty uebernommen
% in main.tex erforderlich \pagestyle{uxheadings}
% nur fuer Option twoside passend:
\def\ps@uxheadings{\let\@mkboth\markboth
\def\@oddfoot{} \def\@evenfoot{}
\def\@evenhead{\small{{\rm \thepage} \hfil {\rm \leftmark}}}
\def\@oddhead{\small{{\rm \rightmark} \hfil {\rm \thepage}}}
\def\chaptermark##1{\markboth {\ifnum \c@secnumdepth
>\m@ne \thechapter \ \ \fi ##1}{}}
\def\sectionmark##1{\markright
{\ifnum \c@secnumdepth >\z@
\thesection \ \ \fi ##1}}}
%
% Abb., Tabelle slanted, wie Programm:
\def\fnum@figure{{\sl\figurename\ \thefigure}}
\def\fnum@table{{\sl\tablename\ \thetable}}
%
% ersetze im Index see durch \it s.:
\def\see#1#2{{\it s.\/} #1}
%
% Indexvorspann, siehe Kopka 2, Seite 66:
\def\theindex#1{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
\columnseprule \z@
\columnsep 35pt\twocolumn[\@makeschapterhead{\indexname}#1]
\@mkboth{\indexname}{\indexname}\thispagestyle
{plain}\parindent\z@
\parskip\z@ plus .3pt\relax\let\item\@idxitem}

%
% Man koennte noch ein Namensverzeichnis (name index) erfinden
%

Programm 2.21 : LaTeX-File alex.sty mit eigenen Makros, insbesondere der
source-Umgebung

Das Prozentzeichen leitet Kommentar ein und wirkt bis zum Zeilenende. Der
Text wurde auf mehrere Files aufgeteilt, die mittels \include in das Haupt�le

main.tex eingebunden werden. Das Haupt�le sieht so aus:

% Hauptfile main.tex fuer das UNIX-Skriptum
% File alex.sty erforderlich, 15. Mai 1994, fuer source usw.
% Files bigtabular.sty und verbtext.sty erforderlich
% Umgestellt auf LaTeX2e 16.01.98 W. Alex
%
\NeedsTeXFormat{LaTeX2e}
\documentclass[12pt,twoside,a4paper]{report}
\usepackage{german,makeidx,bigtabular,verbatim,verbtext,alex}
\pagestyle{uxheadings}
\sloppy
%
% Universitaetslogo einziehen
\input{unilogo}

2.7 Writer's Workbench 123

%
% Trennhilfe
\input{hyphen}
%
% Indexfile main.idx erzeugen
\makeindex
%
% nach Bedarf:
% \includeonly{copyright,vorwort,anhang}
%
\begin{document}
\unitlength1.0mm
\include{verweis}
\begin{titlepage}
\begin{center}
\vspace*{20mm}
\hspace*{13mm} \unilogo{32}\\
\vspace*{26mm}
\hspace*{14mm} {\Huge Einf"uhrung in UNIX\\}
\vspace*{11mm}
\hspace*{13mm} {\Large W. Alex, G. Bern"or und B. Alex\\}
\vspace*{11mm}
\hspace*{13mm} {\Large 1998\\}
\vspace*{80mm}
\hspace*{13mm} {\Large Universit"at Karlsruhe\\}
\end{center}
\end{titlepage}
\include{einleit/copyright}
\pagenumbering{roman}
\setcounter{page}{5}
\include{einleit/vorwort}
\overview
\tableofcontents
\listoffigures
%\listoftables
\listofsources
\include{einleit/gebrauch}
\cleardoublepage
\pagenumbering{arabic}
\include{einleit/umgang}
\include{unix/unix}
\include{internet/internet}
\begin{appendix}
\include{anhang/anhangU}
\end{appendix}
\cleardoublepage
\addcontentsline{toc}{chapter}{\indexname}
\printindex
\end{document}

Programm 2.22 : LaTeX-Haupt�le main.tex f�ur Manuskript

LaTeX kennt mehrere Dokumentklassen, die sich unter anderem auf die Tiefe

124 2 UNIX

der Strukturierung auswirken:

� book kennt B�ande (volumes), Kapitel (chapters) usw.,

� report beginnt mit Kapiteln (chapters), Abschnitten (sections),

� article hat den Abschnitt (section) als oberste Einheit.

Im Gegensatz zum Inhaltsverzeichnis wird das Sachverzeichnis nicht automa-

tisch erzeugt. LaTeX stellt nur Hilfen zur Verf�ugung. Der Befehl makeindex im

Vorspann von main.tex f�uhrt zur Eintragung der im Text mit \index markier-

ten W�orter samt ihren Seitenzahlen in ein File main.idx. In der Markierung

der W�orter steckt viel Arbeit. Das idx-File �ubergibt man einem zu den LaTeX-

Erweiterungen geh�orenden Programm makeindex von Pehong Chen (nicht zu

verwechseln mit dem zuvor genannten LaTeX-Kommando \makeindex). Das Pro-

gramm erzeugt ein File namens main.ind, das ein bi�chen editiert und durch den

\printindex-Befehl am Ende des Manuskripts zum Dokument gebunden und

ausgegeben wird.

2.7.9.5 Computer Aided Writing

Die Verwendung von Computern und Programmen wirkt sich auf die Technik
und das Ergebnis des Schreibens aus, insgesamt ho�entlich positiv. LaTeX f�uhrt
typischerweise zu Erzeugnissen, die stark gegliedert sind und ein entsprechend

umfangreiches Inhaltsverzeichnis aufweisen, aber wenig Abbildungen und nicht
immer ein Sachregister haben. Von der Aufgabe her ist das selten gerechtfertigt,
aber das Programm erleichtert nun einmal das eine und erschwert das andere.

Manuskripte, die auf einem WYSIWYG-System hergestellt worden sind, zeichnen
sich h�au�g durch eine Vielfalt von gra�schen Spielereien aus.

Neben diesen �Au�erlichkeiten weisen Computertexte eine tiefer gehende Eigen-

art auf. In einem guten Text beziehen sich S�atze und Abs�atze auf vorangegangene
Teile, sie bilden eine Kette, die nicht ohne weiteres unterbrochen werden darf. Ein
roter Faden zieht sich durch das Ganze. Der Computer erleichtert das Verschie-

ben von Textteilen und das voneinander unabh�angige Arbeiten an verschiedenen
Stellen des Textes. Man beginnt mit dem Schreiben nicht immer am Anfang des
Manuskriptes, sondern dort, wo man den meisten Sto� bereit hat oder wo das

Bed�urfnis am dringendsten scheint. Von einer Kette, in der jedes Glied mit dem
vorangehenden verbunden ist, bleibt nicht viel �ubrig, die Abs�atze oder S�atze ste-

hen beziehungslos nebeneinander, oder es entstehen falsche Bez�uge, manchmal
auch ungewollte Wiederholungen. Der rote Faden kommt unklar.

Bei Hypertext-Dokumenten, wie sie imWorldWideWeb stehen, ist der Aufbau

aus einer Vielzahl voneinander unabh�angiger Bausteine, die in beliebiger Reihen-

folge betrachtet werden k�onnen, noch ausgepr�agter. Das f�uhrt zu anderen Arten
des Schreibens und Lesens, die nicht schlechter zu sein brauchen als die traditio-

nellen. Hypertext erm�oglicht eine Strukturierung eines Textes, die Papier nicht
bieten kann und die der Struktur unseres Wissens vielleicht besser entspricht.

Hypertexte gleichen eher einem Gewebe als einer Kette oder einem roten Faden.

Wie ein Roman oder ein Gedicht in Hypertext aussehen k�onnten, ist noch nicht
erprobt. Auf jeden Fall l�a�t sich Hypertext nicht vorlesen.

2.7 Writer's Workbench 125

Heute kann ein Autor am Schreibtisch buch�ahnliche oder auch eigenst�andige

Erzeugnisse scha�en, an deren Zustandekommen fr�uher mehrere Berufe beteiligt

waren und entsprechend Zeit ben�otigt haben. B�ucher werden heute nach repro-

duktionsreifen (camera-ready) Vorlagen gedruckt, die aus dem Computer und dem

Laser-Drucker stammen. Auch die Verteilung �uber elektronische Medien geht ein-

facher und schneller als auf dem hergebrachten Weg. Sogar die R�uckkopplung vom

Leser zum Autor ist im Netz eine Kleinigkeit.

2.7.10 Weitere Werkzeuge (grep, di�, sort usw.)

F�ur einzelne Aufgaben der Textverarbeitung gibt es Spezialwerkzeuge in UNIX.

H�au�g gebraucht werden grep(1) (= global regular expression print), egrep(1)

und fgrep(1). Sie durchsuchen Text�les nach Zeichenmustern. Ein einfacher Fall:

suche im File telefon nach einer Zeile, die das Zeichenmuster alex enth�alt. Das

Kommando lautet

grep -i alex telefon

Die Option -i weist grep(1) an, keinen Unterschied zwischen Gro�- und Klein-

buchstaben zu machen. Die gleiche Suche leistet auch ein Editor wie der vi(1),
nur ist der ein zu umfangreiches Werkzeug f�ur diesen Zweck. Unter MS-DOS hei�t
das entsprechende Werkzeug find, das nicht mit UNIX-find(1) verwechselt wer-

den darf.

F�ur unsere Anlage haben wir mit dem grep(1) ein etwas leistungsf�ahigeres

Shellscript namens it (= info Telefon) geschrieben, das erst in einem privaten,
dann in einem �o�entlichen Telefonverzeichnis sucht:

grep -s $* $HOME/inform/telefon /mnt/inform/telefon |
sed -e "s/^\/[^:]*://g"

Programm 2.23 : Shellscript zum Suchen in einem Telefonverzeichnis

grep(1) ist nicht rekursiv, das hei�t es geht nicht in Unterverzeichnisse hinein.

Nimmt man find(1) zur Hilfe, das rekursiv arbeitet, so l�a�t sich auch rekursiv

greppen:

find . -print | xargs grep suchstring

Das Kommando xargs(1) h�angt die Ausgabe von find(1) an die Argumentliste

von grep(1) an und f�uhrt es aus.

Mittels diff(1) werden die alte und die neue Version eines Files miteinander
verglichen. Bei entsprechendem Aufruf wird ein drittes File erzeugt, das dem Edi-

tor ed(1) als Kommandoscript (ed-Script) �ubergeben werden kann, so da� dieser
aus der alten Version die neue erzeugt. Gebr�auchlich zum Aktualisieren von Pro-

grammquellen. Schreiben Sie sich ein kleines Text�le alt, stellen Sie eine Kopie

namens neu davon her, ver�andern Sie diese und rufen Sie dann diff(1) auf:

diff -e alt neu > edscript

126 2 UNIX

F�ugen Sie mit einem beliebigen Editor am Ende des edscript zwei Zeilen mit den

ed(1)-Kommandos w und q (write und quit) hinzu. Dann rufen Sie den Editor

ed(1) mit dem Kommandoscript auf:

ed - alt < edscript

Anschlie�end vergleichen Sie mit dem simplen Kommando cmp(1) die beiden Ver-

sionen alt und neu auf Unterschiede:

cmp alt neu

Durch den ed(1)-Aufruf sollte die alte Version genau in die neue Version �uberf�uhrt

worden sein, cmp(1) meldet nichts.

Weitere Werkzeuge, deren Syntax man im Handbuch, Sektion 1 nachlesen mu�,

sollen hier nur tabellarisch aufgef�uhrt werden:

� bfs big �le scanner, untersucht gro�e Text�les auf Muster

� col �ltert Backspaces und Reverse Line Feeds heraus

� comm common, vergleicht zwei sortierte Files auf gemeinsame Zeilen

� cut schneidet Spalten aus Tabellen heraus

� diff3 vergleicht drei Files

� expand/unexpand wandelt Tabs in Spaces um und umgekehrt

� fold faltet lange Zeilen (bricht Zeilen um)

� hyphen �ndet Zeilen, die mit einem Trennstrich enden

� nl number lines, numeriert Zeilen

� paste mischt Files zeilenweise

� ptx permuted index, erzeugt ein Sachregister

� rev reverse, mu nelieZ trhek

� rmnl remove newlines, entfernt leere Zeilen

� rmtb remove trailing blanks (lokale Er�ndung)

� sort sortiert zeilenweise, n�utzlich

� spell pr�uft amerikanische Rechtschreibung20

� split spaltet ein File in gleich gro�e Teile

� ssp entfernt mehrfache leere Zeilen

� tr translate, ersetzt Zeichen

� uniq �ndet wiederholte Zeilen in einem sortierten File

� vis zeigt ein File an, das unsichtbare Zeichen enth�alt

� wc word counter, z�ahlt Zeichen, W�orter, Zeilen

20Es gibt eine internationale Fassung ispell im GNU-Projekt.

2.7 Writer's Workbench 127

Die Liste l�a�t sich durch eigene Werkzeuge beliebig erweitern. Das k�onnen Pro-

gramme oder Shellscripts sein. Hier ein Beispiel zur Beantwortung einer zun�achst

anspruchsvoll erscheinenden Fragestellung mit einfachen Mitteln. Ein Sachtext

soll nicht unn�otig schwierig zu lesen sein, die Sachzusammenh�ange sind schwierig

genug. Ein grobes Ma� f�ur die Lesbarkeit eines Textes ist die mittlere Satzl�ange.

Erfahrungsgem�a� sind Werte von zehn bis zw�olf W�ortern pro Satz f�ur deutsche

Texte zu empfehlen. Wie kann eine Pipe aus UNIX-Werkzeugen diesen Wert ermit-

teln? Schauen wir uns das Vorwort an. Als erstes m�ussen die LaTeX-Konstrukte

herausgeworfen werden. Hierf�ur gibt es ein Programm delatex, allerdings nicht

standardm�a�ig unter UNIX. Dann sollten Leerzeilen entfernt werden { Werkzeug

rmnl(1) { sowie einige Satzzeichen { Werkzeug tr -d. Schlie�lich mu� jeder Satz

in einer eigenen Zeile stehen. Wir ersetzen also alle Linefeed-Zeichen (ASCII-Nr.

10, oktal 12) durch Leerzeichen und danach alle Punkte durch Linefeeds. Ein klei-

ner Fehler entsteht dadurch, da� Punkte nicht nur ein Satzende markieren, aber

bei einem durchschnittlichen Text ist dieser Fehler gering. Schicken wir den so auf-

bereiteten Text durch das Werkzeug wc(1), so erhalten wir die Anzahl der Zeilen
gleich Anzahl der S�atze, die Anzahl der W�orter (wobei ein Wort ein maximaler
String begrenzt durch Leerzeichen, Tabs oder Linefeeds ist) und die Anzahl der

Zeichen im Text. Die Pipe sieht so aus:

cat textfile | rmnl | tr -d '[0-9],;"()' |
tr '\012' '\040' | tr '.' '\012' | wc

Programm 2.24 : Shellscript zur Stilanalyse

Die Anzahl der W�orter geteilt durch die Anzahl der S�atze liefert die mittlere
Satzl�ange. Die Anzahl der Zeichen durch die Anzahl der W�orter ergibt die mittlere

Wortl�ange, infolge der Leerzeichen am Wortende erh�oht um 1. Auch das ist ein
Stilmerkmal. Die Ergebnisse f�ur das Vorwort (�altere Fassung) sind 29 S�atze, 417
W�orter und 3004 Zeichen, also eine mittlere Satzl�ange von 14,4 W�ortern pro Satz

und eine mittlere Wortl�ange (ohne Leerzeichen) von 6,2 Zeichen pro Wort. Z�ahlt
man von Hand nach, kommt man auf 24 S�atze. Die Punkte bei den Zahlenangaben

verursachen den Fehler. Man m�u�te das Satzende genauer de�nieren. Die erste
Verbesserung des Verfahrens w�are, nicht nur die Mittelwerte, sondern auch die

Streuungen zu bestimmen. Hierzu w�are der awk(1) zu bem�uhen oder gleich ein

C-Programm zu schreiben. Das Programm liefert nur Zahlen; ihre Bedeutung
erhalten sie, indem man sie zu Erfahrungswerten in Beziehung setzt. Soweit sich

Stil durch Zahlen kennzeichnen l�a�t, hilft der Computer; wenn das Verst�andnis von
W�ortern, S�atzen oder noch h�oheren Einheiten verlangt wird, ist er �uberfordert.

Es soll ein UNIX-Kommando style(1) geben, das den Stil eines englischen

Textes untersucht und Verbesserungen vorschl�agt. Dagegen ist das Kommando

diplom(1), das nach Eingabe eines Themas und einer Seitenanzahl eine Diplom-

arbeit schreibt { mit spell(1) und style(1) gepr�uft { noch nicht ausgereift.

128 2 UNIX

2.7.11 Text�les aus anderen Welten (DOS, Mac)

In UNIX-Text�les wird der Zeilenwechsel durch ein newline-Zeichen \n markiert,

hinter dem das ASCII-Zeichen Nr. 10 (LF, Line feed) steckt, das auch durch

die Tastenkombination control-j dargestellt wird. In MS-DOS-Text�les wird

ein Zeilenwechsel durch das Zeichenpaar Carriage return { Line feed (CR LF,

ASCII Nr. 13 und 10, verb|control-m| und control-j) markiert, das Fileende

durch das ASCII-Zeichen Nr. 26, control-z. Auf Macs ist die dritte M�oglichkeit

verwirklicht, das Zeichen Carriage return (CR, ASCII Nr. 13) allein veranla�t den

Sprung an den Anfang der n�achsten Zeile.

Auf einer UNIX-Maschine lassen sich die st�orenden Carriage returns (oktal 15)

der DOS-Texte leicht durch folgenden Aufruf entfernen:

tr -d "\015" < file1 > file2

Der vi(1) oder sed(1) k�onnen das nat�urlich auch, ebenso ein einfaches C-

Programm.

Wenn Ihr Text auf einem Bildschirm oder Drucker treppenf�ormig dargestellt
wird { nach rechts fallend { erwartet das Ger�at einen Text nach Art von MS-
DOS mit CR und LF, der Text enth�alt jedoch nach Art von UNIX nur LF als

Zeilenende. In einigen F�allen l�a�t sich das Ger�at entsprechend kon�gurieren, auf
jeden Fall kann man den Text entsprechend erg�anzen. Wenn umgekehrt auf dem

Bildschirm kein Text zu sehen ist, erwartet das Ausgabeprogramm einen UNIX-
Text ohne CR, das Text�le stammt jedoch aus der MS-DOS-Welt mit CR und
LF. Jede Zeile wird geschrieben und gleich wieder durch den R�ucksprung an den

Zeilenanfang gel�oscht. Viele UNIX-Pager ber�ucksichtigen das und geben das CR
nicht weiter. Auf Druckern kann sich dieses Mi�verst�andnis durch Verdoppelung
des Zeilenabstandes �au�ern. Kein Problem, nur l�astig.

2.7.12 Druckerausgabe (lp, lpr)

Auf einer UNIX-Anlage arbeiten in der Regel mehrere Benutzer gleichzeitig, aber

auch ein einzelner Benutzer kann gleichzeitig mehrere Text�les zum Drucker
schicken. Damit es nicht zu einem Durcheinander kommt, sorgt ein D�amon, der
Line Printer Spooler, daf�ur, da� sich die Druckauftr�age (requests) in eine

Warteschlange einreihen und der Reihe nach zu dem jeweils verlangten Drucker
geschickt werden. Die Schreibberechtigung auf /dev/printer hat nur der D�amon,

nicht der Benutzer.

Der D�amon sorgt auch daf�ur, da� die Drucker richtig eingestellt werden, bei-
spielsweise auf Querformat oder deutschen Zeichensatz. Auf manchen Systemen

�ndet sich ein File /etc/printcap mit einer Beschreibung der Drucker, �ahnlich
wie in /usr/lib/terminfo oder /etc/termcap die Terminals beschrieben werden.

Das Kommando zum Drucken lautet:

lp -dlp1 textfile

lpr -Plp1 textfile

Die erste Form stammt aus der System-V-Welt, die zweite aus der BSD-Welt.

Die Option w�ahlt in beiden F�allen einen bestimmten Drucker aus, fehlt sie,

2.7 Writer's Workbench 129

wird der Default-Drucker genommen. Die Kommandos kennen weitere Optio-

nen, die mittels man nachzulesen sind. Mit dem Kommando lpstat(1) oder

lpq(1) schaut man sich den Spoolerstatus an, Optionen per man(1) ermitteln.

Mit cancel request-id oder lprm(1) l�oscht man einen Druckauftrag (nicht mit

kill(1)), auch fremde. Der Auftraggeber erh�alt eine Nachricht, wer seinen Auf-

trag gel�oscht hat.

Bei der Einrichtung des Spoolers sind einige Punkte zu beachten. Wir wollen

sie anhand eines Shellscripts /etc/lpfix erl�autern, das den laufenden Spooler

beendet und neu einrichtet. Dieses Shellscript wird auf unserer Anlage jede Nacht

vom cron aufgerufen und sorgt daf�ur, da� morgens die Druckerwelt in Ordnung

ist. Papier oder Toner f�ullt es nicht nach.

echo "Start /etc/lpfix"

Skript zum Flottmachen des lp-Schedulers, 30.09.93
Auftraege nicht retten, Warteschlangen putzen.

usl=/usr/spool/lp # lp-Directory

plist="lpjet lpplus plot" # Liste der Drucker/Plotter

for p in $plist
do
/usr/lib/reject -rUnterbrechung $p # Auftragsannahme schliessen
done

/usr/lib/lpshut # Jetzt herrscht Ruhe

rm -f $usl/pstatus $usl/qstatus # Statusfiles putzen
touch $usl/pstatus $usl/qstatus
chown lp $usl/pstatus $usl/qstatus
chgrp bin $usl/pstatus $usl/qstatus

rm -f $usl/SCHEDLOCK # Lockfile loeschen

interface-Files loeschen

rm -fr $usl/interface/* $usl/member/* $usl/request/*

Konfigurieren der Schnittstellen

stty 9600 opost onlcr ixon ixoff < /dev/lpplus &
stty 19200 -opost ixon ixoff < /dev/lpjet &
stty 9600 ixon ignbrk icanon isig clocal < /dev/plot mux &
stty erase "^-" kill "^-" < /dev/plot mux &

sleep 4 # Konfiguration dauert etwas

Neuinstallation /dev/lpjet

/usr/lib/lpadmin -plpjet -v/dev/lpjet -mlpjet -h
/usr/lib/accept lpjet

130 2 UNIX

/usr/bin/enable lpjet

Neuinstallation /dev/lpplus

/usr/lib/lpadmin -plpplus -v/dev/lpplus -mlpplus -h
/usr/lib/accept lpplus
/usr/bin/enable lpplus

Neuinstallation /dev/plot

/usr/lib/lpadmin -pplot -v/dev/plot -mhp7550a -h
/usr/lib/accept plot
/usr/bin/enable plot

/usr/lib/lpadmin -dlpjet # default printer

/usr/lib/lpsched # Start lp-Scheduler

echo "Ende lpfix"

Programm 2.25 : Shellscript zum Flottmachen des Druckerspoolers

Das erste Spoolerkommando /usr/lib/reject(1M) { zu �nden unter dem
Kommando accept(1M) { sorgt daf�ur, da� der Spooler keine Auftr�age mehr ent-

gegennimmt. Ein Auftraggeber wird entsprechend unterrichtet. Das folgende Kom-
mando /usr/lib/lpshut(1M) { unter lpsched(1M) beschrieben { beendet den

Spoolproze�.

Dann werden einige Files des Spoolsystems gel�oscht und neu erzeugt, um
zu verhindern, da� M�ull herumliegt und beim Start �Arger macht. Das File

/usr/spool/lp/SCHEDLOCK ist ein sogenanntes Lock�le, das beim Starten des
Spoolers erzeugt wird, nichts enth�alt und allein durch sein Vorhandensein darauf
hinweist, da� in dem System bereits ein Spooler l�auft. Es d�urfen nicht mehrere

Spooler gleichzeitig arbeiten. Als n�achstes werden etwaige Auftr�age in den War-
teschlangen f�ur die jeweiligen Drucker gel�oscht.

Mittels des Kommandos stty(1) werden die seriellen Drucker-Schnittstellen

(Multiplexer-Ports) kon�guriert. Diese Zeilen sind eine Wiederholung von Zeilen
aus dem Shellscript /etc/rc, das beim Systemstart (Booten) ausgef�uhrt wird. Die

Bedeutung der Argumente �ndet sich au�er bei stty(1) auch unter termio(7).

Schlie�lich werden die Drucker mit dem Kommando /usr/lib/lpadmin(1M)

wieder installiert. Dieses Kommando erwartet hinter der Option -p den Namen

des Druckers, unter dem er von den Benutzern angesprochen wird. Auf die Op-

tion -v folgt der Name des zugeordneten Druckers, wie er im Verzeichnis /dev

eingetragen ist. Dieser braucht nicht mit dem erstgenannten �ubereinzustimmen.

Es k�onnen einem physikalischen Drucker (Hardware) mehrere logische Drucker

(Namen) zugeordnet werden. Der Spooler legt f�ur jeden logischen Drucker eine

eigene Warteschlange an. Falls mehrere Warteschlangen �uber ein physikalisches

Ger�at gleichzeitig herfallen, gibt es ein Durcheinander. Unter LINUX dient das
Kommando lpc(8) der Verwaltung der Drucker.

Hinter der Option -m wird das Modell-File angegeben, ein Shellscript oder

2.7 Writer's Workbench 131

kompiliertes Programm, das den zu druckenden Text bearbeitet, Druckersteuerse-

quenzen erg�anzt und das Ganze zum Drucker schickt. Hier bringt der System-

Manager �ortliche Besonderheiten unter. Die Modell-Files �nden sich im Ver-

zeichnis /usr/spool/lp/model. Sie sind zun�achst nur eine unverbindliche Samm-

lung von Shellscripts oder Programmen; erst das lpadmin(1M)-Kommando ord-

net einem logischen Drucker ein Modell-File zu, das dazu in das Verzeichnis

/usr/spool/lp/interface kopiert und dann Interface-File genannt wird.

Mit /usr/lib/accept(1M) wird die Auftragsannahme wieder ge�o�net (Ge-

genst�uck zu reject(1M)). Das Kommando /usr/bin/enable(1) aktiviert die

Drucker. Mit disable(1) k�onnte man einen Drucker vor�ubergehend unterbrechen

ohne die Auftragsannahme zu schlie�en, um beispielsweise Papier nachzulegen.

Zu guter Letzt startet /usr/lib/lpsched(1M) den Spooler wieder, und er be-

ginnt mit der Abarbeitung der Warteschlangen. lpstat(1) mit der Option -t

zeigt zur Kontrolle den Status des gesamten Spoolsystems an. Mit dem Komman-

do lp(1) �ubergeben nun die Benutzer ihre Auftr�age an den Spooler.

Auf unserer Maschine haben wir ein lokales Druckmen�u p geschrieben, das
das Drucken von Text�les f�ur die Benutzer weiter vereinfacht. Es baut aus den
Antworten des Benutzers das UNIX-Kommando lp(1) mit den entsprechenden

Optionen und Argumenten auf. Die Optionen werden von dem angesprochenen
Modell-File in Steuersequenzen f�ur den Drucker umgesetzt. Das Men�u und das

Modell-File arbeiten Hand in Hand. Da die Druckausgabe unterschiedlich gestaltet
werden kann, m�ussen Sie Ihren System-Manager fragen.

Laserdrucker gehobener Preisklassen bieten heute meist eine M�oglichkeit zum

unmittelbaren Anschlu� an ein Netz (Ethernet). Sie erhalten dann eine eigene
IP-Adresse im Internet und einen Namen wie ein Computer. Der Vorteil ist die
h�ohere Geschwindigkeit bei der �Ubertragung der Daten, der Nachteil liegt darin,

da� man die Daten nicht unmittelbar vor dem Drucken durch ein Skript �ltern
kann, das beispielweise die Ausgabe von kompilierten Programmen oder unsin-

nigen Steuerzeichen abf�angt. Aus mancherlei Gr�unden geh�oren Druckerst�orungen
in einem heterogenen Netz leider zum t�aglichen Brot der System-Manager.

2.7.13 Memo Writer's Workbench

� Zeichen werden im Computer durch Nummern dargestellt. Die Zuordnung
Zeichen-Nummer �ndet sich in Zeichensatz-Tabellen wie US-ASCII. Die Ta-
belle legt damit auch fest, welche Zeichen �uberhaupt verf�ugbar sind, nicht

jedoch wie sie aussehen. Werden bei Ein- und Ausgabe unterschiedliche Ta-

bellen verwendet, gibt es Zeichensalat.

� Ein Editor ist ein Werkzeug zum Schreiben von Text. Auf irgendeine Weise

m�ussen die Editorkommandos vom Text unterschieden werden (Vergleiche

vi(1) und emacs(1)).

� Soll der Text in einer bestimmten Form ausgegeben werden, mu� er Forma-

tierkommandos enthalten, die sich von dem eigentlichen Text unterscheiden.
Die Formatierung vor der Ausgabe auf Drucker oder Bildschirm nehmen For-

matierprogramme vor. Verbreitete Formatiersprachen sind nroff(1), La-
TeX und HTML.

132 2 UNIX

� Im Gegensatz zu Editoren stehen Wortprozessoren (What You See Is What

You Get), bei denen man sofort beim Eingeben die Formatierung sieht. Hier

gibt es jedoch unterschiedliche, nicht miteinander vertr�agliche Welten. Au-

�erdem kann man mit den vorgenannten Formatierprogrammen noch mehr

machen als mit Wortprozessoren, bei entprechendem Lernaufwand.

� Neben Editoren und Formatierern enth�alt UNIX eine Vielzahl kleine-

rer Werkzeuge zur Textbearbeitung (grep(1), sort(1), diff(1), awk(1)

usw.).

� Die Zeilenstruktur eines Textes wird in UNIX, in MS-DOS und auf Macs

durch unterschiedliche Zeichen dargestellt, so da� gelegentlich Umformungen

n�otig werden.

� Die Verschl�usselung ist beim Arbeiten in Netzen der einzige Schutz vor un-

befugten Zugri�en auf Daten w�ahrend einer �Ubertragung.

� Ein symmetrischer Schl�ussel dient sowohl zum Ver- wie zum Entschl�usseln
und mu� daher auf einem sicheren Weg dem Empf�anger der verschl�usselten

Nachrichten �uberbracht werden.

� Bei einer unsymmetrischen Verschl�usselung besitzt man ein Paar von

Schl�usseln, einer davon darf ver�o�entlicht werden. Entweder verschl�usselt
man mit dem geheimen, privaten Schl�ussel und entschl�usselt mit dem �o�ent-
lichen oder umgekehrt.

2.7.14 �Ubung Writer's Workbench

Anmelden wie gewohnt. Schreiben Sie mit dem Editor vi(1) einen knapp zwei-
seitigen Text mit einer �Uberschrift und einigen Abs�atzen. Das Text�le hei�e

beispiel. Spielen Sie mit folgenden und weiteren Werkzeugen:

tr "[A-Z]" "[a-z]" < beispiel > beispiel.k

cmp beispiel beispiel.k

sed 's/[A-Z]/[a-z]/g' beispiel

grep -i unix beispiel

spell beispiel

fold -50 beispiel

adjust -j -m60 beispiel

wc beispiel

Verzieren Sie das Beipiel mit nroff(1)-Kommandos, lassen Sie es durch nroff(1)

laufen und sehen Sie sich die Ausgabe auf dem Bildschirm und auf Papier an. Zum

Drucken nroff(1) und Druckkommando durch Pipe verbinden.

Bearbeiten Sie Ihren Text mit dem Shellscript frequenz. Welche W�orter kom-

men h�au�g vor, welche selten? Wo tauchen Tippfehler wahrscheinlich auf? Suchen

Sie die Tippfehler in Ihrem Text mit dem vi(1) (Schr�agstrich).

2.8 Programmer's Workbench 133

Schreiben Sie eine unsortierte zweispaltige Liste mit Familiennamen und Te-

lefonnummern. Das File namens liste soll auch einige mehrfache Eintragungen

enthalten. Bearbeiten Sie es wie folgt:

sort liste

sort -u liste

sort -d liste

sort +1 -2 liste

sort liste | uniq

sort liste | cut -f1

sort liste | awk '$1 != prev {print; prev = $1 }'

Untersuchen Sie mit dem Shellscript zur Textanalyse einen leichten Text - aus

einer Tageszeitung etwa - und einen schwierigen. Wir empfehlen Immanuel Kant

Der Streit der Fakult�aten, immer aktuell. Wo sind Ihre eigenen Texte einzuordnen?

Beenden der Sitzung mit exit.

2.8 Programmer's Workbench

Unter derWerkbank des Programmierers werden Werkzeuge zusammengefa�t, die

beim Programmieren ben�otigt werden. Auf UNIX-Anlagen, die nicht zur Pro-
grammentwicklung eingesetzt werden, k�onnen sie fehlen.

2.8.1 Nochmals die Editoren

Editoren wurden bereits im Abschnitt 2.7Writer's Workbench erl�autert. Hier geht
es nur um einige weitere Eigenschaften des Editors vi(1), die beim Schreiben von

Programmquellen von Belang sind.
Im Quellcode werden �ublicherweise Schleifenr�umpfe und dergleichen um eine

Tabulatorbreite einger�uckt, die als Default 8 Leerzeichen entspricht. Bei geschach-

telten Schleifen ger�at der Text schnell an den rechten Seitenrand. Es emp�ehlt sich,

in dem entsprechenden Verzeichnis ein File .exrc mit den Zeilen:

set tabstop=4

set showmatch

set number

anzulegen. Die Option showmatch veranla�t den vi(1), bei jeder Eingabe einer

rechten Klammer kurz zur zugeh�origen linken Klammer zu springen. Die Opti-

on number f�uhrt zur Anzeige der Zeilennummern, die jedoch nicht Bestandteil
des Textes werden. Eine Zeile set lisp ist eine Hilfe beim Eingeben von LISP-

Quellen.
Steht der Cursor auf einer Klammer, so l�a�t das Kommando % den Cursor zur

Gegenklammer springen und dort verbleiben.

Auch beim emacs(1) gibt es einige Wege, das Schreiben von Quellen zu er-
leichtern, insbesondere nat�urlich, falls es um LISP geht.

134 2 UNIX

2.8.2 Compiler und Linker (cc, ccom, ld)

Auf das Schreiben der Quelltexte mit einem Editor folgt ihre �Ubersetzung in die

Sprache der jeweiligen Maschine mittels eines �Ubersetzungsprogrammes, meist

eines Compilers. Jedes vollst�andige UNIX-System enth�alt einen C-Compiler;

Compiler f�ur weitere Programmiersprachen sind optional. Auf unserer Anlage

sind zus�atzlich ein FORTRAN- und ein PASCAL-Compiler vorhanden, wobei von

FORTRAN gegenw�artig die Versionen 77 und 90 nebeneinander laufen.

Kompilieren bedeutete vor der EDV-Zeit zusammentragen. Im alten Rom hat-

te es auch noch die Bedeutung von pl�undern. In unseren Herzensergie�ungen ha-

ben wir viel aus B�uchern, Zeitschriften, WWW-Seiten und Netnews kompiliert.

Ein Compiler �ubersetzt den Quellcode eines Programmes in Maschinenspra-

che. Die meisten Programme enthalten Aufrufe von externen Programmodulen,

die bereits vor�ubersetzt und in Bibliotheken zusammengefa�t sind. Beispiele sind

Ausgaberoutinen oder mathematische Funktionen. Der ausf�uhrbare Code dieser

externen Module wird erst vom Linker21 mit dem Programmcode vereinigt, so da�

ein vollst�andiges ausf�uhrbares Programm entsteht. Es gibt die M�oglichkeit, die ex-
ternen Module erst zur Laufzeit hinzuzunehmen; das hei�t dynamisches Linken

und spart Speicherplatz. Benutzen mehrere Programme ein in den Arbeitsspeicher
kopiertes Modul gemeinsam anstatt jeweils eine eigene Kopie anzulegen, so kommt
man zu den Shared Libraries und spart nochmals Speicherplatz.

Die Aufrufe lauten cc(1), f77(1), f90(1) und pc(1). Diese Kommandos
rufen Compilertreiber auf, die ihrerseits die eigentlichen Compiler /lib/ccom,

f77comp, f90comp und pascomp starten und noch weitere Dinge erledigen. Ohne
Optionen rufen die Compilertreiber auch noch den Linker /bin/ld(1) auf, so da�
das Ergebnis ein lauff�ahiges Programm ist, das als Default den Namen a.out(4)

tr�agt. Mit dem Namen a.out(4) sollte man nur vor�ubergehend arbeiten (mit
mv(1) �andern). Der Aufruf des C-Compilers sieht beispielsweise so aus:

cc -g source.c -lm

Die Option -g veranla�t den Compiler, zus�atzliche Informationen f�ur den sym-

bolischen Debugger zu erzeugen. Der Quelltext des C-Programmes steht im File
source.c, das einen beliebigen Namen tragen kann, nur sollte der Name mit der
Kennung .c enden. Die abschlie�ende Option -lm fordert den Linker auf, die

mathematische Bibliothek einzubinden. Weitere Optionen sind:

� -v (verbose) f�uhrt zu etwas mehr Bemerkungen beim �Ubersetzen,

� -o (output) benennt das ausf�uhrbare File mit dem auf die Option

folgenden Namen, meist derselbe wie die Quelle, nur ohne Kennung:

cc -o myprogram myprogram.c,

� -c h�ort vor dem Linken auf, erzeugt Objekt�le mit der Kennung .o,

� -p (pro�le) erzeugt beim Ablauf des Programmes ein File mon.out, das mit

dem Pro�ler prof(1) ausgewertet werden kann, um Zeitinformationen zum
Programm zu erhalten,

21Linker werden auch Binder, Mapper oder Loader genannt. Manchmal wird auch

zwischen Binder und Loader unterschieden, soll uns hier nicht besch�aftigen.

2.8 Programmer's Workbench 135

� -O optimiert das ausf�uhrbare Programm oder auch nicht.

Speichermodelle wie unter MS-DOS gibt es in UNIX nicht. Hat man Speicher,

kann man ihn uneingeschr�ankt nutzen.

F�ur C-Programme gibt es einen Syntax-Pr�ufer namens lint(1), den

man unbedingt verwenden sollte. Er reklamiert nicht nur Fehler, sondern auch

Stilm�angel. Manchmal beanstandet er auch Dinge, die man bewu�t gegen die Re-

geln geschrieben hat. Man mu� seinen Kommentar sinnvoll interpretieren. Aufruf:

lint source.c

Ferner gibt es f�ur C-Quelltexte einen Beauti�er namens cb(1), der den Text

in eine standardisierte Form mit Einr�uckungen usw. bringt und die Lesbarkeit

erleichtert:

cb source.c > source.b

Wenn man mit dem Ergebnis source.b zufrieden ist, l�oscht man das urspr�ungliche
File source.c und benennt source.b in source.c um.

2.8.3 Unentbehrlich (make)

Gr�o�ere Programme sind stark gegliedert und auf mehrere bis viele Files und
Verzeichnisse verteilt. Der Compileraufruf wird dadurch l�anglich, und die Wahr-

scheinlichkeit, etwas zu vergessen, steigt. Hier hilft make(1). Man schreibt einmal
alle Angaben f�ur den Compiler in ein makefile (auch Makefile) und ruft dann
zum Kompilieren nur noch make(1) auf. Auch f�ur Manuskripte ist make(1) zu

gebrauchen. Eigentlich l�a�t sich mit Make�les fast alles erledigen, was man auch
mit Shellscripts macht, die St�arke von make(1) liegt jedoch im Umgang mit Files

unter Beachtung der Zeitstempel. Umgekehrt kann man auch mit Shellscripts fast
alles bew�altigen, was make(1) leistet, nur umst�andlicher.

Man lege f�ur das Projekt ein eigenes Unterverzeichnis an, denn make(1) sucht

zun�achst im Arbeits-Verzeichnis. Das makefile beschreibt die Abh�angigkeiten der
Programmteile voneinander und enth�alt die Kommandozeilen zu ihrer Erzeugung.
Ein einfaches makefile sieht so aus (Zeilen mit Kommandos m�ussen durch einen

Tabulatorstop { nicht durch Spaces { einger�uckt sein):

pgm: a.o b.o
cc a.o b.o -o pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Programm 2.26 : Einfaches make-File

und ist folgenderma�en zu verstehen:

� Das ausf�uhrbare Programm (Ziel, Target) namens pgm h�angt ab von den

Modulen im Objektcode a.o und b.o. Es entsteht durch den Compileraufruf
cc a.o b.o -o pgm.

136 2 UNIX

� Das Programmodul a.o h�angt ab von dem include-File incl.h und dem

Modul im Quellcode a.c. Es entsteht durch den Aufruf des Compilers mit

cc -c a.c. Die Option - c unterbindet das Linken.

� Das Programmodul b.o h�angt ab von demselben include-File und dem Mo-

dul im Quellcode b.c. Es entsteht durch den Compileraufruf cc -c b.c.

Ein makefile ist �ahnlich aufgebaut wie ein Backrezept: erst werden die Zutaten

aufgelistet, dann folgen die Anweisungen. Zu beachten ist, da� man mit dem Ziel

beginnt und r�uckw�arts bis zu den Quellen geht.

make(1) verwaltet auch verschiedene Versionen der Programmodule und pa�t

auf, da� eine neue Version in alle betro�enen Programmteile eingebunden wird.

Umgekehrt wird eine aktuelle Version eines Moduls nicht unn�otigerweise kompi-

liert. Warum wird im obigen Beispiel das include-File incl.h ausdr�ucklich ge-

nannt? Der Compiler wei� doch auf Grund einer entsprechenden Zeile im Quell-

text, da� dieses File einzubinden ist? Richtig, aber make(1) mu� das auch wissen,

denn das include-File k�onnte sich �andern, und dann m�ussen alle von ihm abh�angi-
gen Programmteile neu �ubersetzt werden. make(1) schaut nicht in die Quellen hin-

ein, sondern nur auf die Zeitstempel der j�ungsten �Anderungen. Unver�anderliche
include-Files wie stdio.h brauchen nicht im makefile aufgef�uhrt zu werden.

Nun ein etwas umfangreicheres Beispiel, das aber l�angst noch nicht alle F�ahig-

keiten von make(1) ausreizt:

Kommentar, wie ueblich

CC = /bin/cc
CFLAGS =
FC = /usr/bin/f77
LDFLAGS = -lcl

all: csumme fsumme clean

csumme: csumme.c csv.o csr.o
$(CC) -o csumme csumme.c csv.o csr.o

csv.o: csv.c
$(CC) -c csv.c

csr.o: csr.c
$(CC) -c csr.c

fsumme: fsumme.c fsr.o
$(CC) -o fsumme fsumme.c fsr.o $(LDFLAGS)

fsr.o: fsr.f
$(FC) -c fsr.f

clean:
rm *.o

Programm 2.27 : Make�le mit Makros und Dummy-Zielen

2.8 Programmer's Workbench 137

Zun�achst werden einige Makros de�niert, z. B. der Compileraufruf CC. �Uber-

all, wo im Make�le das Makro mittels $(CC) aufgerufen wird, wird es vor der

Ausf�uhrung w�ortlich ersetzt. Auf diese Weise kann man einfach einen anderen

Compiler w�ahlen, ohne im ganzen Make�le per Editor ersetzen zu m�ussen. Dann

haben wir ein Dummy-Ziel all, das aus einer Aufz�ahlung weiterer Ziele besteht.

Mittels make all wird dieses Dummy-Ziel erzeugt, d. h. die aufgez�ahlten Ziele.

Unter diesen be�ndet sich auch eines namens clean, das ohne Zutaten daher-

kommt und o�enbar nur bestimmte T�atigkeiten wie das L�oschen tempor�arer File

bezweckt. Ein Dummy-Ziel ist immer out-of-date, die zugeh�origen Kommandos

werden immer ausgef�uhrt. Ein weiteres Beispiel f�ur make(1) �ndet sich in Ab-

schnitt ?? Arrays von Funktionen.

Im GNU-Projekt wird Software im Quellcode f�ur verschiedene Systeme

ver�o�entlicht. In der Regel mu� man die Quellen auf der eigenen Anlage kom-

pilieren. Infolgedessen geh�oren zu den GNU-Programmen fast immer umfangrei-

che Make�les oder sogar Hierarchien davon. �Ubung im Gebrauch von make(1)

erleichtert die Einrichtung von GNU-Software daher erheblich. Oft wird ein an
das eigene System angepa�tes Make�le erst durch ein Kommando ./configure

erzeugt. Die Reihenfolge bei solchen Programmeinrichtungen lautet dann:

./configure

make

make install

make clean

wobei make install Schreibrechte in den betro�enen Verzeichnissen erfordert,
also meist Superuserrechte. Die h�au�gsten �Uberraschungen beim Einrichten von

GNU-Software sind:

� Fehlende include-Files oder Funktionsbibliotheken, irgendwoher bescha�en,

� die Files sind zwar vorhanden, liegen aber im falschen Verzeichnis (in diesem
Fall Links anlegen),

� es ist zwar alles an Ort und Stelle, aber die Typen der Argumente und
R�uckgabewerte sind anders, als sie die GNU-Software erwartet. Dann passen

irgendwelche Versionen nicht zueinander, und es ist Hand- und Hirnarbeit

angesagt.

Ein allgemeines Rezept l�a�t sich nicht angeben. Gelegentlich hatten wir mit dem
Editieren der Make�les Erfolg, manchmal auch nicht. Dann kann man sich noch

nach der neuesten Version der GNU-Software umschauen oder eine Email an den

Autor schreiben. Es kommen aber auch angenehme �Uberraschungen vor, und die
GNU-Software ist den Versuch der Einrichtung allemal wert. Zudem kann man

einiges �uber das Programmieren portabler Software und die Struktur von Pro-
grammen lernen.

138 2 UNIX

2.8.4 Debugger (xdb)

Programme sind Menschenwerk und daher fehlerhaft22. Es gibt keine M�oglich-

keit, die Fehlerfreiheit eines Programmes festzustellen oder zu beweisen au�er in

trivialen oder idealen F�allen.

Die Fehler lassen sich in drei Klassen einteilen. Verst�o�e gegen die Regeln

der jeweiligen Programmiersprache hei�en Grammatikfehler oder Syntaxfeh-

ler. Sie f�uhren bereits zu einem Abbruch des Kompiliervorgangs und lassen sich

schnell lokalisieren und beheben. Der C-Syntax-Pr�ufer lint ist das beste Werk-

zeug zu ihrer Entdeckung. wihle statt while w�are ein einfacher Syntaxfehler.

Fehlende oder unpaarige Klammern sind auch beliebt, deshalb enth�alt der vi(1)

eine Funktion zur Klammerpr�ufung. Unzul�assige Operationen mit Pointern sind

ebenfalls an der Tagesordnung.

Falls das Programm die Kompilation ohne Fehlermeldung hinter sich gebracht

hat, startet man es. Dann melden sich die Laufzeitfehler, die unter Umst�anden

nur bei bestimmten und wom�oglich seltenen Parameterkonstellationen auftreten.

Ein typischer Laufzeitfehler ist die Division durch eine Variable, die manchmal den
Wert Null annimmt. Die Fehlermeldung lautet Floating point exception. Ein ande-
rer h�au�g vorkommender Laufzeitfehler ist die �Uberschreitung von Arraygrenzen

oder die Verwechslung von Variablen und Pointern, was zu einem Memory fault ,
einem Speicherfehler f�uhrt.

Die dritte Klasse bilden die logischen Fehler oder Denkfehler. Sie werden
auch semantische Fehler genannt. Das Programm arbeitet einwandfrei, nur tut
es nicht das, was sich der Programmierer vorgestellt hat. Ein typischer Denkfehler

ist das Verz�ahlen bei den Elementen eines Arrays oder bei Schleifendurchg�angen
um genau eins. Hier hilft der Computer nur wenig, da der �Armste ja gar nicht wei�,
was sich der Programmierer vorstellt. Diese Fehler kosten viel M�uhe, doch solcher-

lei Verdr�usse p
egen die Denkungskr�afte anzuregen, meintWilhelm Busch und
hat recht.

Eine vierte Fehlerklasse liegt fast schon au�erhalb der Verantwortung des Pro-

grammierers. Wenn das mathematische Modell zur Beschreibung eines realen
Problems ungeeignet ist, mag das Programm so fehlerarm sein wie es will, sei-

ne Ergebnisse gehen an der Wirklichkeit vorbei. F�ur bestimmte Zwecke ist eine

Speisekarte ein brauchbares Modell einer Mahlzeit, f�ur andere ein unbrauchbares.

Ein Fehler wird im Englischen auch als bug bezeichnet, was soviel wie Wanze

oder Laus bedeutet. Ein Programm zu entlausen hei�t Debugging. Dazu braucht
man einen Debugger (d�everminateur, d�eboguer). Das sind Programme, unter de-
ren Kontrolle das verlauste Programm abl�auft. Man hat dabei vielf�altige M�oglich-

keiten, in den Ablauf einzugreifen. Ein absoluter Debugger wie der adb(1) be-

zieht sich dabei auf das lauff�ahige Programm im Arbeitsspeicher { nicht auf den

22Es irrt der Mensch, so lang er strebt. Goethe, Faust. Oder errare humanum

est , wie wir Lateiner sagen. Noch etwas �alter: �����!��� "� ��#�!�o���� "�o����

#���o�&. Die entsprechende Aussage in babylonischer Keilschrift aus dem Codex Kom-

bysis k�onnen wir leider aus Mangel an einem TeX-Font vorl�au�g nicht wiedergeben. In

der n�achsten Au
age werden wir jedoch eine eingescannte Zeichnung aus der H�ohle von

Rienne-Vaplus zeigen, die als die �alteste Dokumentation obiger Weisheit gilt.

2.8 Programmer's Workbench 139

Quellcode { und ist somit f�ur die meisten Aufgaben wenig geeignet. Ein symbo-

lischer Debugger wie der sdb(1) oder der xdb(1) bezieht sich auf die jeweilige

Stelle im Quelltext23. Debugger sind m�achtige und hilfreiche Werkzeuge. Manche

Programmierer gehen so weit, da� sie das Schreiben eines Programms als Debug-

gen eines leeren Files bzw. eines wei�en Blattes Papier ansehen. In der �Ubung

wird eine einfache Anwendung des Debuggers vorgef�uhrt.

Falls Sie auch mit dem UNIX-Debugger nicht alle W�urmer in Ihrem Programm

�nden und vertreiben k�onnen, m�ochten wir Ihnen noch ein altes Hausrezept ver-

raten, das aus einer Handschrift des 9. Jahrhunderts stammt. Das Rezept ist im

Raum Wien { M�unchen entstanden und unter den Namen Contra vermes oder

Pro nescia bekannt. Leider ist das README-File, das die Handhabung erkl�art, ver-

lorengegangen. Wir schlagen vor, die Zeilen als Kommentar in das Programm

einzuf�ugen. Hier der Text:

Gang �ut, nesso, mid nigun nessiklinon,

ût fana themo marge an that bên,

fan thêmo bêne an that
êsg,

ût fan themo
êsgke an thia hûd,
ût fan thera hûd an thesa strâla.

Drohtin. Uuerthe sô!

2.8.5 Pro�ler (time, gprof)

Pro�ler sind ebenfalls Programme, unter deren Kontrolle ein zu untersuchendes

Programm abl�auft. Ziel ist die Ermittlung des Zeitverhaltens in der Absicht, das
Programm schneller zu machen. Ein einfaches UNIX-Werkzeug ist time(1):

time prim 1000000

Die Ausgabe sieht so aus:

real 0m 30.65s

user 0m 22.53s

sys 0m 1.07s

und bedeutet, da� die gesamte Laufzeit des Programms prim 30.65 s betrug, da-

von ent�elen 22.53 s auf die Ausf�uhrung von Benutzeranweisungen und 1.07 s auf
Systemt�atigkeiten. Die Ausgabe wurde durch einen Aufruf des Primzahlenpro-

gramms aus Abschnitt ?? Ein Herz f�ur Pointer erzeugt, das selbst Zeiten mittels
des Systemaufrufs time(2) mi�t und rund 22 s f�ur die Rechnung und 4 s f�ur die

Bildschirmausgabe meldet.

Ein weiterer Pro�ler ist gprof(1). Seine Verwendung setzt voraus, da� das
Programmmit der Option -G kompiliert worden ist. Es wird gestartet und erzeugt

neben seiner normalen Ausgabe ein File gmon.out, das mit gprof(1) betrachtet

wird. Besser noch lenkt man die Ausgabe von gprof(1) in ein File um, das sich
lesen und editieren l�a�t:

23Real programmers don't use source language debuggers.

140 2 UNIX

gprof prim > prim.gprofile

Eine stark gek�urzte Analyse mittels gprof(1) sieht so aus:

%time the percentage of the total running time of the

program used by this function.

cumsecs a running sum of the number of seconds accounted

for by this function and those listed above it.

seconds the number of seconds accounted for by this

function alone. This is the major sort for this

listing.

calls the number of times this function was invoked, if

this function is profiled, else blank.

name the name of the function. This is the minor sort

for this listing.

%time cumsecs seconds calls msec/call name

52.1 12.18 12.18 $$remU

22.2 17.38 5.20 $$mulU

20.8 22.25 4.87 333332 0.01 ttest

2.1 22.74 0.49 9890 0.05 _doprnt

0.8 22.93 0.19 _mcount

0.6 23.08 0.15 $$divide_by_constant

0.6 23.22 0.14 1 140.00 main

0.3 23.29 0.07 9890 0.01 _memchr

0.2 23.34 0.05 _write_sys

0.1 23.36 0.02 9890 0.00 _printf

0.0 23.37 0.01 9887 0.00 _write

0.0 23.38 0.01 9887 0.00 _xflsbuf

0.0 23.39 0.00 9890 0.00 _wrtchk

0.0 23.39 0.00 1 0.00 _sscanf

0.0 23.39 0.00 1 0.00 _start

0.0 23.39 0.00 1 0.00 _strlen

0.0 23.39 0.00 1 0.00 atexit

0.0 23.39 0.00 1 0.00 exit

0.0 23.39 0.00 1 0.00 ioctl

Wir sehen, da� die Funktion ttest() sehr oft aufgerufen wird und 4,87 s ver-

br�at. Die beiden ersten Funktionen werden vom Compiler zur Verf�ugung gestellt
(Millicode aus /usr/lib/milli.a) und liegen au�erhalb unserer Reichweite.

F�ur genauere Ausk�unfte zieht man den Systemaufruf times(2), den De-

bugger oder das UNIX-Kommando prof(1) in Verbindung mit der Subroutine
monitor(3) heran.

2.8 Programmer's Workbench 141

2.8.6 Archive, Bibliotheken (ar)

Viele Teilaufgaben in den Programmen wiederholen sich immer wieder. Das sind

Aufgaben, die mit dem System zu tun haben, Befehle zur Bildschirmsteuerung,

mathematische Berechnungen wie Logarithmus oder trigonometrische Funktionen,

Datenbankfunktionen oder Funktionen zur Abfrage von Me�ger�aten am Bus.

Damit man diese Funktionen nicht jedesmal neu zu er�nden braucht, wer-

den sie in Bibliotheken gepackt, die dem Programmierer zur Verf�ugung stehen.

Teils stammen sie vom Hersteller des Betriebssystems (also urspr�unglich AT&T),

teils vom Hersteller der Compiler (bei uns Hewlett-Packard und GNU) oder der

Anwendungssoftware, teils von Benutzern. Bibliotheken enthalten Programmbau-

steine, es lassen sich aber auch andere Files (Texte, Gra�ken) in gleicher Weise

zusammenfassen. Dann spricht man allgemeiner von Archiven. Au�er den Files

enthalten Archive Verwaltungsinformationen (Index) zum schnellen Finden der

Inhalte. Diese Informationen wurden fr�uher mit dem Kommando ranlib(1) ei-

gens erzeugt, heute erledigt ar(1) das mit. Die Verwendung von Bibliotheken

beim Programmieren wird in Abschnitt ?? Funktions-Bibliotheken erl�autert.

Au�er den mit dem Compiler gelieferten Bibliotheken kann man zus�atzlich
erworbene oder selbst erstellte Bibliotheken verwenden. Im Handel sind beispiels-

weise Bibliotheken mit Funktionen f�ur Bildschirmmasken, zur Verwaltung index-
sequentieller Files, f�ur Gra�k, zur Me�werterfassung und -aufbereitung und f�ur
besondere mathematische Aufgaben. Auch aus dem Netz laufen Bibliotheken zu.

Eigene Bibliotheken erzeugt man mit dem UNIX-Kommando ar(1); das Filefor-
mat ist unter ar(4) beschrieben. Ein Beispiel zeige den Gebrauch. Wir haben ein
Programm statistik.c zur Berechnung von Mittelwert und Varianz der in der

Kommandozeile mitgegebenen ganzen Zahlen geschrieben:

/* Statistische Auswertung von eingegebenen Werten
Privat-Bibliothek ./libstat.a erforderlich
Compileraufruf cc statistik.c -L . -lstat

*/

#define MAX 100 /* max. Anzahl der Werte */
#include <stdio.h>

void exit(); double mwert(), varianz();

main(int argc, char *argv[])

{
int i, a[MAX];

if (argc < 3) {
puts("Zuwenig Werte"); exit(-1);

}

if (argc > MAX + 1) {
puts("Zuviel Werte"); exit(-1);

}

142 2 UNIX

/* Uebernahme der Werte in ein Array */

a[0] = argc - 1;

for (i = 1; i < argc; i++) {
sscanf(argv[i], "%d", a + i);

}

/* Ausgabe des Arrays */

for (i = 1; i < argc; i++) {
printf("%d\n", a[i]);

}

/* Rechnungen */

printf("Mittelwert: %f\n", mwert(a));
printf("Varianz: %f\n", varianz(a));

return 0;
}

Programm 2.28 : C-Programm Statistik mit Benutzung einer eigenen Funktions-

bibliothek

Das Programm verwendet die Funktionen mwert() und varianz(), die wir aus
einer hausgemachten Funktionsbibliothek namens libstat.a entnehmen. Der im

Kommentar genannte Compileraufruf mit der Option -L . veranla�t den Linker,
diese Bibliothek im Arbeits-Verzeichnis zu suchen. Die Funktionen sehen so aus:

double mwert(x)
int *x;
{
int j, k;
double m;

for (j = 1, k = 0; j <= *x; j++) {
k = k + x[j];

}
m = (double)k / (double)*x;
return m;
}

Programm 2.29 : C-Funktion Mittelwert ganzer Zahlen

extern double mwert();

double varianz(x)
int *x;
{
int j;
double m, s, v;

2.8 Programmer's Workbench 143

m = mwert(x);

for (j = 1, s = 0; j <= *x; j++) {
s = s + (x[j] - m) * (x[j] - m);
}
v = s / (*x - 1);
return v;
}

Programm 2.30 : C-Funktion Varianz ganzer Zahlen

Diese Funktionen werden mit der Option -c kompiliert, so da� wir zwei Ob-

jekt�les mwert.o und varianz.o erhalten. Mittels des Aufrufes

ar -r libstat.a mwert.o varianz.o

erzeugen wir die Funktionsbibliothek libstat.a, auf die mit der Compileroption

-lstat zugegri�en wird. Der Vorteil der Bibliothek liegt darin, da� man sich

nicht mit vielen einzelnen Funktions�les herumzuschlagen braucht, sondern mit
der Compileroption gleich ein ganzes B�undel verwandter Funktionen erwischt.

In das Programm eingebunden werden nur die Funktionen, die wirklich ben�otigt
werden.

Merke: Ein Archiv ist weder verdichtet noch verschl�usselt. Daf�ur sind andere

Werkzeuge (gzip(1), crypt(1)) zust�andig.

2.8.7 Weitere Werkzeuge

Das Werkzeug cflow(1) ermittelt die Funktionsstruktur zu einer Gruppe von
C-Quell- und Objekt�les. Der Aufruf:

cflow statistik.c

liefert auf stdout

1 main: int(), <statistik.c 15>

2 puts: <>

3 exit: <>

4 sscanf: <>

5 printf: <>

6 mwert: <>

7 varianz: <>

was besagt, da� die Funktion main() vom Typ int ist und in Zeile 15 des Quell-

textes statistik.c de�niert wird. main() ruft seinerseits die Funktionen puts,

exit, sscanf und printf auf, die in statistik.c nicht de�niert werden, da

sie Teil der Standardbibliothek sind. Die Funktionen mwert und varianz werden
ebenfalls aufgerufen und nicht de�niert, da sie aus einer Privatbibliothek stam-

men.

Das Werkzeug cxref(1) erzeugt zu einer Gruppe von C-Quell�les eine Kreuz-

referenzliste aller Symbole, die nicht rein lokal sind. Der Aufruf

144 2 UNIX

cxref fehler.c

gibt nach stdout eine Liste aus, deren erste Zeilen so aussehen:

fehler.c:

SYMBOL FILE FUNCTION LINE

BUFSIZ /usr/include/stdio.h -- *10

EOF /usr/include/stdio.h -- 70 *71

FILE /usr/include/stdio.h -- *18 78 123

127 128 201

223

FILENAME_MAX /usr/include/stdio.h -- *67

FOPEN_MAX /usr/include/stdio.h -- *68

L_ctermid /usr/include/stdio.h -- *193

L_cuserid /usr/include/stdio.h -- *194

L_tmpnam /usr/include/stdio.h -- *61

NULL /usr/include/stdio.h -- 35 *36

PI fehler.c -- *27

P_tmpdir /usr/include/stdio.h -- *209

SEEK_CUR /usr/include/stdio.h -- *55

SEEK_END /usr/include/stdio.h -- *56

SEEK_SET /usr/include/stdio.h -- 53 *54

TMP_MAX /usr/include/stdio.h -- 63 *64

_CLASSIC_ANSI_TYPES /usr/include/stdio.h -- 162

Durch das include-File stdio.h und gegebenenfalls durch Bibliotheksfunktionen
kommen viele Namen in das Programm, von denen man nichts ahnt. Ferner gibt

es einige Werkzeuge zur Ermittlung und Bearbeitung von Strings in Quell�les und
ausf�uhrbaren Programmen, teilweise beschr�ankt auf C-Programme.

2.8.8 Programmverwaltung mit RCS und SCCS

Gr�o�ere Projekte werden von zahlreichen, unter Umst�anden wechselnden Pro-

grammierern gemeinsam bearbeitet. Es hat auch schon Projekte gegeben, deren

Programmierer �uber alle Kontinente und verschiedene Firmen verstreut waren. In
der Regel werden die so entstandenen Programmpakete �uber Jahre hinweg wei-

terentwickelt und vielleicht auf mehrere Systeme portiert. Das von Walter F.

Tichy entwickelte Revision Control System RCS ist ein Werkzeug, um bei
der Entwicklung von Programmen Ordnung zu halten. Es ist einfach handzuhaben

und vertr�agt sich gut mit make(1). Das RCS erledigt drei Aufgaben:

� Es f�uhrt Buch �uber die �Anderungen an den Quelltexten.

� Es erm�oglicht, �altere Versionen wiederherzustellen, ohne da� diese

vollst�andig gespeichert zu werden brauchen (Di�erenzen).

� Es verhindert gleichzeitige schreibende Zugri�e mehrerer Benutzer auf einen

Quelltext.

2.8 Programmer's Workbench 145

Sowie es um mehr als Wegwerfprogramme geht, sollte man make(1) und RCS

einsetzen. Arbeiten mehrere Programmierer an einem Projekt, kommt man um

RCS oder �Ahnliches nicht herum. Beide Werkzeuge sind auch f�ur Manuskripte

oder WWW-Files zu verwenden. RCS ist in den meisten LINUX-Distributionen

enthalten. Man beginnt folgenderma�en:

� Unterverzeichnis anlegen, hineingehen.

� Mit einem Editor die erste Fassung des Quelltextes schreiben. Irgendwo

im Quelltext - z. B. im Kommentar - sollte $Header$ vorkommen, siehe

unten. Dann �ubergibt man mit dem Kommando ci filename (check in)

das File dem RCS. Dieses erg�anzt das File durch Versionsinformationen

und macht ein nur lesbares RCS-File (444) mit der Kennung ,v daraus. Das

urspr�ungliche File l�oschen.

� Mit dem Kommando co filename (ohne ,v) (check out) bekommt man

eine Kopie seines Files zur�uck, und zwar nur lesbar. Diese Kopie kann man

mit allen UNIX-Werkzeugen bearbeiten, nur das Zur�uckschreiben mittels ci

verweigert das RCS.

� Mit dem Kommando co -l filename wird eine les- und schreibbare Kopie
erzeugt. Dabei wird das RCS-File f�ur weitere, gleichzeitige Schreibzugrif-
fe gesperrt (l = lock). Die Kopie kann man mit allen UNIX-Werkzeugen

bearbeiten, Umbenennen w�are jedoch ein schlechter Einfall.

� Beim Zur�uckstellen mittels ci filename hat man Gelegenheit, einen kurzen
Kommentar in die Versionsinformationen zu schreiben, z. B. Grund und
Umfang der �Anderung.

Das ist f�ur den Anfang alles. Die RCS-Kommandos lassen sich in Make�les ver-
wenden. Die vom RCS vergebenen Zugri�srechte k�onnen von UNIX-Kommandos

�uberrannt werden, aber das ist nicht Sinn der Sache. Der Einsatz von RCS setzt
voraus, da� sich die Beteiligten an die Disziplin halten. Hier ein Make�le mit
RCS-Kommandos f�ur das nachstehende Sortierprogramm:

makefile zu mysort.c, im RCS-System
$Header: makefile,v 1.5 95/07/04 14:56:09 wualex1 Exp $

CC = /bin/cc
CFLAGS = -Aa -DDEBUG

all: mysort clean

mysort: mysort.o bubble.o
$(CC) $(CFLAGS) -o mysort mysort.o bubble.o

mysort.o: mysort.c myheader.h
$(CC) $(CFLAGS) -c mysort.c

bubble.o: bubble.c myheader.h
$(CC) $(CFLAGS) -c bubble.c

mysort.c: mysort.c,v

146 2 UNIX

co mysort.c

bubble.c: bubble.c,v
co bubble.c

myheader.h: myheader.h,v
co myheader.h

clean:
/bin/rm -f *.c *.o *.h makefile

Programm 2.31 : Make�le zum Sortierprogramm mysort.c

Da dieses Beispiel sich voraussichtlich zu einer kleinen Familie von Quelltexten

ausweiten wird, legen wir ein privates include-File mit unseren eigenen, f�ur alle

Teile g�ultigen Werten an:

/* myheader.h zum Sortierprogramm, RCS-Beispiel
W. Alex, Universitaet Karlsruhe, 04. Juli 1995

*/

/* $Header: myheader.h,v 1.5 95/07/04 14:58:41 wualex1 Exp $ */

int bubble(char *text);
int insert(char *text);

#define USAGE "Aufruf: mysort filename"
#define NOTEXIST "File existiert nicht"
#define NOTREAD "File ist nicht lesbar"
#define NOTSORT "Problem beim Sortieren"

#define LINSIZ 64 /* Zeilenlaenge */
#define MAXLIN 256 /* Anzahl Zeilen */

Programm 2.32 : Include-File zum Sortierprogramm mysort.c

Nun das Hauptprogramm, das die Verantwortung tr�agt, aber sonst nicht viel tut.

Hier ist der Platzhalter $Header$ Bestandteil des Codes, die Versionsinformatio-

nen stehen also auch im ausf�uhrbaren Programm. Man k�onnte sogar mit ihnen

etwas machen, ausgeben beispielsweise:

/* Sortierprogramm mysort, als Beispiel fuer RCS
W. Alex, Universitaet Karlsruhe, 04. Juli 1995

*/

static char rcsid[] =
"$Header: mysort.c,v 1.9 95/07/04 14:18:37 wualex1 Exp $";

#include <stdio.h>
#include "myheader.h"

int main(int argc, char *argv[])
{

2.8 Programmer's Workbench 147

long time1, time2;

/* Pruefung der Kommandozeile */

if (argc != 2) {
puts(USAGE); return(-1);

}

/* Pruefung des Textfiles */

if (access(argv[1], 0)) {
puts(NOTEXIST); return(-2);

}

if (access(argv[1], 4)) {
puts(NOTREAD); return(-3);

}

/* Sortierfunktion und Zeitmessung */

time1 = time((long *)0);

if (bubble(argv[1])) {
puts(NOTSORT); return(-4);

}

time2 = time((long *)0);

/* Ende */

printf("Das Sortieren dauerte %ld sec.\n", time2 - time1);
return 0;
}

Programm 2.33 : C-Programm Sortieren, f�ur RCS

Hier die Funktion zum Sortieren (Bubblesort, nicht optimiert). Der einzige Witz in
dieser Funktion ist, da� wir nicht die Strings durch Umkopieren sortieren, sondern
nur die Indizes der Strings. Ansonsten kann man hier noch einiges verbessern und

vor allem auch andere Sortieralgorithmen nehmen. Man sollte auch das Einlesen

und die Ausgabe vom Sortieren trennen:

/* Funktion bubble() (Bubblesort), als Beispiel fuer RCS
W. Alex, Universitaet Karlsruhe, 04. Juli 1995

*/

/* $Header: bubble.c,v 1.23 95/07/04 18:11:04 wualex1 Exp $ */

#include <stdio.h>
#include <string.h>
#include "myheader.h"

int bubble(char *text)

148 2 UNIX

{
int i = 0, j = 0, flag = 0, z, line[MAXLIN];
char array[MAXLIN][LINSIZ];
FILE *fp;

#if DEBUG
printf("Bubblesort %s\n", text);
#endif

/* Einlesen */

if ((fp = fopen(text, "r")) == NULL) return(-1);

while ((!feof(fp)) && (i < MAXLIN)) {
fgets(array[i++], LINSIZ, fp);

}

fclose(fp);

#if DEBUG
puts("Array:");
j = 0;
while (j < i) {

printf("%s", array[j++]);
}
puts("Ende Array");
#endif

/* Sortieren (Bubblesort) */

for (j = 0; j < MAXLIN; j++)
line[j] = j;

while (flag == 0) {
flag = 1;
for (j = 0; j < i; j++) {

if (strcmp(array[line[j]], array[line[j + 1]]) > 0) {
z = line[j + 1];
line[j + 1] = line[j];
line[j] = z;
flag = 0;

}
}

}

/* Ausgeben nach stdout */

#if DEBUG
puts("Array:");
j = 0;
while (j < i) {

printf("%d\n", line[j++]);
}
puts("Ende Array");

2.8 Programmer's Workbench 149

#endif

j = 0;
while (j < i) {

printf("%s", array[line[j++]]);
}

/* Ende */

return 0;
}

Programm 2.34 : C-Funktion Bubblesort

Bubblesort eignet sich f�ur kleine Sortieraufgaben bis zu etwa hundert Elementen.

Kopieren Sie sich die Bausteine in ein eigenes Verzeichnis und entwickeln Sie das

Programm unter Verwendung des RCS weiter. Weiteres siehe rcsintro(5).

Das Source Code Control System SCCS verwaltet die Versionen der Mo-
dule, indem es die erste Fassung vollst�andig speichert und dann jeweils die Di�e-

renzen zur n�achsten Version, w�ahrend RCS die j�ungste Version speichert und die

�alteren aus den Di�erenzen rekonstruiert.
Alle Versionen eines Programmes samt den Verwaltungsdaten werden in einem

einzigen SCCS-File namens s.filename abgelegt, auf das schreibend nur �uber be-
sondere SCCS-Kommandos zugegri�en werden kann. Das erste dieser Kommandos

ist admin(1) und erzeugt aus einem C-Quell�le program.c das zugeh�orige SCCS-
Dokument:

admin -iprogram.c s.program.c

Mit admin(1) lassen sich noch weitere Aufgaben erledigen, siehe Referenz-
Handbuch. Mittels get(1) holt man das Quell�le wieder aus dem SCCS-

Dokument heraus, mitttels delta(1) gibt man eine ge�anderte Fassung des Quell-
�les an das SCCS-Dokument zur�uck.

CASE bedeutet Computer Aided Software Engineering . An sich ist das nichts
Neues, beim Programmieren hat man schon immer Computer eingesetzt. Das
Neue bei CASE Tools wie SoftBench von Hewlett-Packard besteht darin, da�

die einzelnen Programmierwerkzeuge wie syntaxgesteuerte Editoren, Compiler,
make(1), Analysewerkzeuge, Debugger und Versionskontrollsysteme unter einer
einheitlichen Ober
�ache { hier X Window System und Motif - zusammengefa�t

werden. Damit zu arbeiten ist die moderne Form des Programmierens und kann

e�ektiv sein.

2.8.9 Memo Programmer's Workbench

� Die Programmquellen werden mit einem Editor geschrieben.

� Mit dem Syntaxpr�ufer lint(1) l�a�t sich die syntaktische Richtigkeit von

C-Programmen pr�ufen, leider nicht die von C++-Programmen.

� Schon bei kleinen Programmierprojekten ist das Werkzeug make(1) drin-

gend zu empfehlen.

150 2 UNIX

� Mit einem Compiler wird der Quellcode in den Maschinencode des jeweiligen

Prozessors �ubersetzt.

� Der schwerste Hammer bei der Fehlersuche ist ein Debugger, lernbed�urftig,

aber nicht immer vermeidbar.

� Programmfunktionen (aber auch andere Files) lassen sich in Bibliotheken

archivieren, die bequemer zu handhaben sind als eine Menge von einzelnen

Funktionen.

� Bei gr�o�eren Projekten kommt man nicht um ein Kontrollsystem wie RCS

herum, vor allem dann, wenn mehrere Personen beteiligt sind. Das Lernen

kostet Zeit, die aber beim Ringen mit dem Chaos mehr als gutgemacht wird.

� CASE-Tools vereinigen die einzelnen Werkzeuge unter einer gemeinsamen

Benutzerober
�ache. Der Programmierer braucht gar nicht mehr zu wissen,

was ein Compiler ist.

2.8.10 �Ubung Programmer's Workbench

Anmelden wie gewohnt. Zum �Uben brauchen wir ein kleines Programm mit
bestimmten Fehlern. Legen Sie mit mkdir prog ein Unterverzeichnis prog an,

wechseln Sie mit cd prog dorthin und geben Sie mit vi fehler.c folgendes C-
Programm (ohne den Kommentar) unter dem Namen fehler.c ein:

/* Uebungsprogramm mit mehreren Fehlern */

/* 1. Fehler: Es wird eine symbolische Konstante PI
definiert, die nicht gebraucht wird. Dieser Fehler
hat keine Auswirkungen und wird von keinem
Programm bemerkt.
2. Fehler: Es wird eine Ganzzahl-Variable d deklariert,
die nicht gebraucht wird. Dieser Fehler hat keine
Auswirkungen, wird aber von lint beanstandet.
3. Fehler: Die Funktion scanf verlangt Pointer als
Argument, es muss &a heissen. Heimtueckischer
Syntaxfehler. lint gibt eine irrefuehrende Warnung
aus, der Compiler merkt nichts. Zur Laufzeit ein
memory fault.
4. Fehler: Es wird durch nichts verhindert, dass fuer
b eine Null eingegeben wird. Das kann zu einem
Laufzeitfehler fuehren, wird weder von lint noch
vom Compiler bemerkt.
5. Fehler: Es sollte die Summe ausgerechnet werden,
nicht der Quotient. Logischer Fehler, wird weder
von lint noch vom Compiler bemerkt.
6. Fehler: Abschliessende Klammer fehlt. Syntaxfehler,
wird von lint und Compiler beanstandet.

Darueberhinaus spricht lint noch Hinweise bezueglich
main, printf und scanf aus. Diese Funktionen sind
aber in Ordnung, Warnungen ueberhoeren. */

2.8 Programmer's Workbench 151

#define PI 3.14159
#include <stdio.h>

int main()
{

int a, b, c, d;

puts("Bitte 1. Summanden eingeben: ");
scanf("%d", a);
puts("Bitte 2. Summanden eingeben: ");
scanf("%d", &b);
c = a / b;
printf("Die Summe ist: %d\n", c);

Programm 2.35 : C-Programm mit Fehlern

Als erstes lassen wir den Syntaxpr�ufer lint(1) auf das Programm los:

lint fehler.c

und erhalten das Ergebnis:

fehler.c

==============

(36) warning: a may be used before set

(41) syntax error

(41) warning: main() returns random value to environment

==============

function returns value which is always ignored

printf scanf

Zeile 41 ist das Programmende, dort steckt ein Fehler. Die Warnungen sind nicht
so dringend. Mit dem vi(1) erg�anzen wir die fehlende geschweifte Klammer am
Schlu�. Der Fehler h�atte uns eigentlich nicht unterlaufen d�urfen, da der vi(1)

eine Hilfe zur Klammerpr�ufung bietet (Prozentzeichen). Neuer Lauf von lint(1):

fehler.c

==============

(36) warning: a may be used before set

(33) warning: d unused in function main

(41) warning: main() returns random value to environment

==============

function returns value which is always ignored

printf scanf

Wir werfen die �uber
�ussige Variable d in der Deklaration heraus. Nochmals
lint(1).

152 2 UNIX

fehler.c

==============

(36) warning: a may be used before set

(41) warning: main() returns random value to environment

==============

function returns value which is always ignored

printf scanf

Jetzt ignorieren wir die Warnung von lint(1) bez�uglich der Variablen a (obwohl

heimt�uckischer Fehler, aber das ahnen wir noch nicht). Wir lassen kompilieren

und rufen das kompilierte Programm a.out(4) auf:

cc fehler.c

a.out

Der Compiler hat nichts zu beanstanden. Ersten Summanden eingeben, Ant-
wort: memory fault oder Bus error - core dumped. Debugger24 einsetzen, da-
zu nochmals mit der Option -g und dem vom Debugger verwendeten Objekt�le

/usr/lib/xdbend.o kompilieren und anschlie�end laufen lassen, um einen aktu-
ellen Speicherauszug (Coredump) zu erzeugen:

cc -g fehler.c /usr/lib/xdbend.o

chmod 700 a.out

a.out

xdb

Standardm�a�ig greift der Debugger auf das ausf�uhrbare File a.out(4) und das

beim Zusammenbruch erzeugte Core�le core(4) zur�uck. Er promptet mit >. Wir
w�ahlen mit der Eingabe s Einzelschritt-Ausf�uhrung. Mehrmals mit RETURN wei-
tergehen, bis Au�orderung zur Eingabe von a kommt (kein Prompt). Irgendeinen

Wert f�ur a eingeben. Fehlermeldung des Debuggers Bus error. Wir holen uns
weitere Informationen vom Debugger:

T (stack viewing)

s (Einzelschritt)

q (quit)

Nachdem wir wissen, da� der Fehler nach der Eingabe von a auftritt, schauen

wir uns die Zeile mit scanf(..., a) an und bemerken, da� wir der Funktion

scanf(3) eine Variable statt eines Pointers �ubergeben haben (man scanf oder

im Anhang nachlesen). Wir ersetzen also a durch &a. Das Compilieren erleichtern

wir uns durch make(1). Wir schreiben ein File namens makefile mit folgenden

Zeilen:

fehler: fehler.c

cc fehler.c -o fehler

24Real programmers can read core dumps.

2.8 Programmer's Workbench 153

und rufen anschlie�end nur noch das Kommando make(1) ohne Argumente auf.

Das Ergebnis ist ein lauff�ahiges Programm mit Namen fehler. Der Aufruf von

fehler f�uhrt bei sinnvollen Eingabe zu einer Ausgabe, die richtig sein k�onnte.

Wir haben aber noch einen Denkfehler darin. Statt der Summe wird der Integer-

Quotient berechnet. Wir berichtigen auch das und testen das Programm mit ei-

nigen Eingaben. Da unser Quelltext richtig zu sein scheint, versch�onern wir seine

vorl�au�g endg�ultige Fassung mit dem Beauti�er cb(1):

cb fehler.c > fehler.b

rm fehler.c

mv fehler.b fehler.c

Schlie�lich l�oschen wir das nicht mehr ben�otigte Core�le und untersuchen das

Programm noch mit einigen Werkzeugen:

time fehler

cflow fehler.c

cxref fehler.c

strings fehler

nm fehler

size fehler

ls -l fehler

strip fehler

ls -l fehler

strings(1) ist ein ziemlich dummes Werkzeug, das aus einem ausf�uhrbaren File

alles heraussucht, was nach String aussieht. Das Werkzeug nm(1) gibt eine Liste
aller Symbole aus, die lang werden kann. strip(1) wirft aus einem ausf�uhrbaren
File die nur f�ur den Debugger, nicht aber f�ur die Ausf�uhrung wichtigen Informa-

tionen heraus und verk�urzt dadurch das File. Abmelden mit exit.

Das Programmieren vollzieht sich in mehreren Stufen parallel zur Zeitachse:

� Aufgabenstellung

� Aufgabenanalyse

� Umsetzung in eine Programmiersprache

� Testen

� Dokumentieren

� vorl�au�ge Freigabe

� endg�ultige Freigabe

Des weiteren wird ein Programm in viele �uberschaubare Module aufgeteilt. Von

jedem Modul entstehen im Verlauf der Arbeit mehrere Fassungen oder Versionen.

Der Zustand des ganzen Projektes l�a�t sich in einem dreidimensionalen Koordi-
natensystem mit den Achsen Modul, Stufe und Version darstellen.

154 2 UNIX

2.9 Gra�kers Atelier

2.9.1 Grundbegri�e

Es gibt keine UNIX-Gra�k. Das hei�t, es gibt in UNIX keine Standardpro-

gramme f�ur die Bearbeitung gra�scher Daten analog etwa zu den Werkzeugen

f�ur die Bearbeitung alphanumerischer Daten und keine Standard-Bibliotheken

mit Gra�k-Funktionen. Selbstverst�andlich kann man unter UNIX Gra�k machen,

aber man braucht dazu zus�atzliche Programme, die nicht standardisiert sind und

gelegentlich Geld kosten. Das Gleiche gilt auch f�ur die Bearbeitung akustischer

Daten, was technisch m�oglich, bisweilen w�unschenswert, aber weit entfernt von

jeder Standardisierung ist. Die Ursachen hierf�ur sind:

� Als UNIX begann, war die Hardware noch zu leistungsschwach f�ur die Bear-

beitung gra�scher Daten (z. B. serielle Terminals). Deshalb waren gra�sche

Werkzeuge { im Gegensatz zu Textwerkzeugen { nicht von Anfang an dabei.

� Die Gra�k ist enger an die Hardware gebunden als die Ein- und Ausgabe
von Zeichen.

� Die Vielfalt gra�scher Objekte (Form, Farbe, Beleuchtung, Perspektive) ist
weit gr�o�er als die von Zeichen, von denen es in Europa nur wenige hundert
und selbst in Fernost nur etwa zehntausend gibt.

� Die Vielfalt gra�scher Operationen ist ebenfalls gr�o�er als die der Zeichen-
operationen.

Heute ist die Bearbeitung gra�scher und akustischer Daten mit durchschnittlicher
Hardware m�oglich, aber �uber das Wie und Womit besteht noch keine Einigkeit.
Auch �uber die Schnittstelle der Werkzeuge zum Menschen ist noch nicht alles

gesagt, w�ahrend bei den Zeichen die Schreibmaschine Vorarbeit geleistet hat. Die
Lage ist nicht ganz so schlimm. Insbesondere in LINUX-Distributionen sind viele

Gra�kwerkzeuge enthalten, und es werden laufend mehr. Aber { wie gesagt {
Einigkeit darf man nicht erwarten.

Hier sollen zun�achst die Grundbegri�e der Verarbeitung von Gra�ken erl�autert

werden. Die Aufgaben lassen sich in zwei Gruppen einteilen:

� die Erzeugung (Synthese) und anschlie�ende Weiterverarbeitung von gra-
�schen Objekten (CAD, Finite Elemente, Simulationen),

� die Verarbeitung (Analyse) von gra�schen Objekten, die au�erhalb des

Computers entstanden sind (Schrifterkennung, Mustererkennung, Bildana-

lyse).

Wir befassen uns nur mit dem ersten Punkt.

Alle Gra�kger�ate arbeiten entweder nach dem Raster- oder dem Vektorverfah-

ren. BeimVektorverfahren bestehen die Gra�ken aus ununterbrochenen Linien,

die jeweils zwei Punkte verbinden. Diese Linien werden im Computer durch Glei-
chungen dargestellt. Beim Rasterverfahren besteht die Gra�k aus einer gro�en

Anzahl von Punkten unterschiedlicher Helligkeit und gegebenenfalls Farbe (Bit-

map). Beide Verfahren haben ihre Vor- und Nachteile.

2.9 Gra�kers Atelier 155

Anwender-Programm

Funktions-Bibliothek

Zwischenspeicherung

Ger�ateabh�angiges Programm

Ger�ateabh�angige Ausgabe

Ausgabeger�at

plotd, digit, gnuplot

PHIGS, GKS, Starbase

(Ger�ateunabh�angiges Meta�le)

Treiber

HPGL, PCL, Postscript

ESC-Sequenzen

Plotter, Drucker, Bildschirm

?

?

?

?

?

Abb. 2.9: Gra�k von der Anwendung zur Ausgabe

Ausgabeger�ate sind gra�sche Bildschirme, Plotter und gra�kf�ahige Drucker.
Die Eingabe ist das Ergebnis eines Programmes oder stammt von einem Scanner
oder Digitalisiertablett. Die Ausgabeger�ate werden in einer bestimmten Steuer-

sprache angesprochen. Viele Plotter und manche Drucker verstehen die Hewlett-
Packard Graphics Language (HPGL). Diese Sprachen enthalten elementare Be-

fehle wie select pen, pen up, pen down, ziehe Linie von A nach B, page feed.
Gra�sche Bildschirme und manche Drucker verlangen Escape-Sequenzen. Der Be-
nutzer k�onnte ein File in dieser Sprache schreiben und zum Ausgabeger�at schicken.

Dieser Weg ist m�uhsam und dem Programmieren in Assembler vergleichbar. Des-
halb geh�oren zu einer Gra�kbibliothek auch Unterprogramme und Treiber, die
dem Benutzer die Verwendung h�oherer Befehle �ahnlich wie in FORTRAN oder C

erm�oglichen.

Farbe, Gra�k-File-Formate

2.9.2 Diagramme (gnuplot)

gnuplot(1) ist ein Programm zum Zeichnen von Diagrammen, das GNU-�ublich

als Quellcode vorliegt, aber nicht aus dem GNU-Projekt stammt. Ausgangspunkt
ist entweder eine Funktionsgleichung oder eine Wertetabelle. Sowohl cartesische

wie Polarkoordinaten k�onnen verwendet werden. Dreidimensionale Darstellungen

in cartesischen, Kugel- oder Zylinderkoordinaten sind ebenfalls m�oglich. Die Ach-
sen k�onnen linear oder logarithmisch geteilt sein. Andere Teilungen mu� man

selbst programmieren. Soweit sinnvoll, werden reelle und komplexe Argumen-
te verarbeitet. Das Programm wird entweder interaktiv (Terminal-Dialog) oder

durch ein Script gesteuert.

Die Ausgabe geht in ein File oder auf ein Ger�at. Treiber f�ur einige Terminals

156 2 UNIX

und den HP Laserjet geh�oren dazu, ebenso die M�oglichkeit, Postscript-, LaTeX-

oder HPGL-Files zu erzeugen. Hier ein einfaches Beispiel. Wir schreiben ein Script

plotscript:

set term latex # Ausgabe im LaTeX-Format
set output "plot.tex" # Ausgabe nach File plot.tex
plot sin(x)/x # zu zeichnende Funktion

Programm 2.36 : gnuplot-Script zum Zeichnen der Funktion y = (sin x)/x, Aus-

gabe im LaTeX-Format auf File plot.tex

und rufen gnuplot(1) mit dem Script als Argument auf:

gnuplot plotscript

Interaktiv w�aren die Kommandos:

gnuplot

set term latex

set output "plot.tex"

plot sin(x)/x

quit

einzugeben. F�ur alle nicht genannten Parameter werden Default-Werte genommen.

Als Ausgabe erhalten wir eine LaTeX-Picture-Umgebung, die sich in ein LaTeX-
Dokument einbinden l�a�t, siehe Abb. 2.10.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

sin(x)/x

Abb. 2.10: Diagramm von (sin x)/x, erzeugt mit gnuplot

Nun wollen wir zu einer Menge von Wertepaaren eine Regressionsgerade be-

rechnen, mittels gnuplot(1) in einem Diagramm darstellen und dieses in eine
WWW-Seite einbinden.

F�ur Konstruktions-Zeichnungen oder Illustrationen ist gnuplot(1) nicht ge-

dacht. Unter http://www.uni-karlsruhe.de/~ig25/gnuplot-faq/. �ndet sich
ein FAQ-Text zu gnuplot(1).

2.9 Gra�kers Atelier 157

2.9.3 Zeichnungen (x�g, xpaint)

xfig(1) und xpaint(1) sind Werkzeuge, die unter dem XWindow System laufen.

Sie machen von dessen Funktionen Gebrauch und sind infogedessen netzf�ahig.

2.9.4 Funktions-Bibliotheken

2.9.4.1 GNU Graphics Library ()

Zur Verarbeitung von Zahlen braucht man Zahlenfunktionen wie Addition, Lo-

garithmus, Regula falsi. Gra�kfunktionen sind Verschieben (Translation), Drehen

(Rotation), Spiegeln, Verzerren.

2.9.4.2 Starbase

Starbase ist eine Gra�k-Bibliothek von Hewlett-Packard und nicht auf anderen

Fabrikaten zu �nden. Die Grundz�uge sind jedoch �ahnlich wie den �ubrigen Biblio-
theken, so da� wir hier an einem Beispiel den Gebrauch von Gra�k-Funktionen
lernen k�onnen.

2.9.4.3 Graphical Kernel System (GKS)

Ein weit verbreitetes und vom American National Standards Institute (ANSI) ge-

normtes Gra�kpaket ist dasGraphical Kernel System (GKS). Das unter ANSI
X3.124-1985, DIN 66 292 und ISO 7942 beschriebene System enth�alt Grundfunk-

tionen zur Bew�altigung gra�scher Aufgaben auf dem Computer. Die Norm legt
die Funktionalit�at und die Syntax fest, Softwarehersteller bieten GKS-Pakete als
compilierte C- oder FORTRAN-Funktionen f�ur eine Reihe von Prozessoren an.

Die Sammlung enth�alt Funktionen:

� zur Ausgabe gra�scher Grundelemente,

� f�ur die Attribute der Grundelemente,

� zur Steuerung der Workstation,

� f�ur Transformationen und Koordinatensysteme,

� zur Bearbeitung von Elementgruppen (Segmenten),

� zur Eingabe,

� zur Bearbeitung von Meta�les,

� f�ur Statusabfragen,

� zur Fehlerbehandlung.

2.9.5 Memo Gra�k

� F�ur die Verarbeitung gra�scher Daten gibt es keinen Standard (oder zuviele,

was auf dasselbe hinausl�auft).

158 2 UNIX

� Unter UNIX gibt es keine Standard-Werkzeuge oder -Funktionen, wohl aber

mehrere, teils freie Gra�k-Pakete.

� gnuplot(1) ist ein interaktives Werkzeug zur Erzeugung von Diagrammen,

ausgehend von Wertetabellen oder Funktionsgleichungen.

� xfig(1) und xpaint(1) sind Werkzeuge zum Herstellen und Bearbeiten

von Zeichnungen, die auf dem X Window System aufbauen und in LINUX-

Distributionen enthalten sind.

� Das Graphical Kernel System (GKS) ist eine von mehreren Bibliotheken mit

Gra�kfunktionen. Eine Alternative ist Starbase von Hewlett-Packard.

� Auch das X Window System (X11) enth�alt Gra�kfunktionen, der Schwer-

punkt liegt jedoch in der Gestaltung von Fenstern, die �uber das Netz gehen.

2.9.6 �Ubung Gra�k

� Noch nichts.

2.10 Kommunikation

2.10.1 Message (write, talk)

Unter Kommunikation verstehen wir den Nachrichtenaustausch unter Benut-
zern, zun�achst beschr�ankt auf die Benutzer einer Anlage. Zur Kommunikation im

Netz kommen wir im Kapitel 3 Internet . Zwei gleichzeitig angemeldete Benut-
zer (mit who(1) abfragen) k�onnen �uber ihre Terminals einen Dialog miteinander

f�uhren. Das Kommando lautet write(1):

write username ttynumber

also beispielsweise

write gebern1 tty1p1

Die Angabe des Terminals darf entfallen, wenn der Benutzer nur auf einem Ter-
minal angemeldet ist. Der eingegebene Text wird mit der RETURN-Taste abge-

schickt, der Dialog wie �ublich mit control-d beendet. Da der Bildschirm eigene

und fremde Zeichen wiedergibt, wie sie kommen, ist Disziplin angebracht, genau

wie beim Wechselsprechen �uber Funk. Eine Konferenz mit mehreren Teilnehmern
ist technisch m�oglich, praktisch aber kaum durchzuf�uhren.

Das nicht �uberall vorhandene Kommando talk(1) teilt den Bildschirm unter

den beiden Gespr�achspartnern auf, so da� auch bei gleichzeitigem Senden die
�Ubersicht gewahrt bleibt. Jeder Buchstabe wird sofort gesendet.

Ein Benutzer verhindert mit dem Kommando mesg(1) mit dem Argument
n, da� er w�ahrend seiner Sitzung durch Messages gest�ort wird. Er entzieht der

Allgemeinheit die Schreiberlaubnis f�ur sein Terminal /dev/tty.... Das entspricht

allerdings nicht dem Geist von UNIX. Die Standardeinstellung unserer Anlage ist
mesg y (in /etc/profile gesetzt).

2.10 Kommunikation 159

2.10.2 Mail (mail, mailx, elm)

Ein elektronisches Mailsystem erm�oglicht, einem Benutzer, der momentan nicht

angemeldet zu sein braucht, eine Nachricht zu schreiben. Bei n�achster Gelegenheit

�ndet er den elektronischen Brief; ob er ihn liest, ist seine Sache. Eine R�uckmel-

dung kommt nicht zum Absender. Man kann auch Rundschreiben an Benutzer-

gruppen oder an alle versenden. Das System selbst macht ebenfalls von dieser

M�oglichkeit Gebrauch, wenn es einen Benutzer nicht im Dialog erreichen kann.

Eine n�utzliche Sache, sowohl als Hauspost wie als weltweite Electronic Mail,

nur die Briefmarkensammler trauern. Die herk�ommliche, auf dem Transport von

Papier beruhende Post wird demgegen�uber als Snail-Mail oder kurz Snail bezeich-

net, was im Englischen Schnecke hei�t. Mailsysteme bef�ordern grunds�atzlich nur

Texte, oft in 7-bit-ASCII, keine Gra�ken oder andere bin�are Files (komprimierte

Files, kompilierte Programme). Hat man bin�are Files per Mail zu �ubertragen, mu�

man sie erst in Text�les umwandeln (siehe uuencode(1) oder Metamail). Andere

Wege wie ftp(1) sind f�ur bin�are Daten geeigneter.

Mit dem Kommando mail(1) wird der Inhalt der eigenen Mailbox (das Fi-
le /var/mail/username oder /var/spool/mail/username) angezeigt, Brief f�ur

Brief, der j�ungste zuerst. mail(1) fragt bei jedem Brief mit dem Prompt ?, was
es damit machen soll: im Briefkasten lassen, in einem File mbox ablegen oder
l�oschen. Mit der Antwort * auf den Mail-Prompt erhalten Sie eine Auskunft �uber

die Kommandos von mail(1).
mail(1) mit einem Benutzernamen als Argument aufgerufen �o�net einen

einfachen Editor zum Schreiben eines Briefes. Mit return control-d wird der
Brief beendet und abgeschickt. Man kann auch ein Text�le per Redirektion als
Briefinhalt einlesen:

mail wualex1 < textfile

oder mail(1) in einer Pipe verwenden:

who | mail wualex1

mail(1) kommt mit den einfachsten Terminals zurecht und ist daher die Rettung,

wenn bessere Mail-Programme wegen fehlender oder falscher Terminalbeschrei-
bung versagen.

Die Umgebungsvariable MAILCHECK bestimmt, in welchen Zeitabst�anden

w�ahrend einer Sitzung die Mailbox auf neue Mail �uberpr�uft werden soll. �Ublich
sind 600 s. Durch das Kommando mail(1) in /etc/profile wird automatisch

beim Anmelden die Mailbox angezeigt. Ein dead.letter ist ein unzustellbarer
Brief, aus welchen Gr�unden auch immer. Enth�alt eine Mailbox als erste Zeile:

Forward to person

(mit gro�em F) so wird alle Mail f�ur den Inhaber der Mailbox an den Benutzer

person auf dieser Maschine weitergeleitet. Damit kann man Mail an logische Be-

nutzer wie root bestimmten nat�urlichen Benutzern zuweisen, je nach Abwesenheit

(Urlaub, Krankheit) an verschiedene. Lautet die Zeile:

Forward to person@abc.xyz.de

160 2 UNIX

geht die Mail an einen Benutzer auf der Maschine abc.xyz.de. Das ist praktisch,

falls ein Benutzer Mailboxen auf mehreren Systemen hat, die Mail aber nur auf

seinem wichtigsten System liest. Die Mailboxen m�ussen als Gruppe mail sowie

Lese- und Schreiberlaubnis f�ur die Gruppe (660) haben.

Das UNIX-Kommando mailx(1) bietet erweiterte M�oglichkeiten, insbesonde-

re die Kon�guration mittels eines Files $HOME/.mailrc. Auf vielen Systemen ist

auch das bildschirmorientierte und benutzerfreundlichere Mailkommando elm(1)

vorhanden. Es setzt die richtige Terminalbeschreibung (TERM, terminfo oder

termcap) voraus, fragt nach den notwendigen Informationen, ruft zum Schrei-

ben den gewohnten Editor auf und l�a�t sich durch ein File $HOME/.elm/elmrc

an pers�onliche W�unsche anpassen. In $HOME/.elm/elmheaders werden zus�atzli-

che Kopfzeilen { z. B. die Organisation { festgelegt, in $HOME/.signature eine

Signatur am Ende der Mail. Die Signatur sollte nicht l�anger sein als vier Zeilen,

sonst macht man sich unbeliebt. elm(1) ist mit mail(1) vertr�aglich, man kann sie

durcheinander benutzen. Zu einem Zeitpunkt darf immer nur ein Mailprogramm

aktiv sein, sonst ger�at die Mailverwaltung durcheinander. Wird durch Lock�les

geregelt.

Es emp�ehlt sich, einen logischen Benutzer namens postmaster mit einem
Sternchen als Passwort in /etc/passwd(4) einzurichten und seine Mail an den

System-Manager oder eine andere vertrauensw�urdige Person weiterzuleiten, die
t�aglich ihren Briefkasten leert. Der Postmaster erh�alt als Default die Pro-

blemf�alle des Mail-Systems zugeschickt; au�erdem kann man ihn als Anschrift
f�ur alle Benutzer gebrauchen, die nicht wissen, was eine Mailbox ist.

W�ahrend die Mail innerhalb einer Anlage einfach ist, erfordert eine weltweite

Mail einen gr�o�eren Aufwand, ist aber auch viel spannender, siehe Abschnitt 3.11
Electronic Mail .

Merke:Mail kann man nur an einen Benutzer schicken, nicht an eine Maschine.

2.10.3 Neuigkeiten (news)

Neuigkeiten oder News sind Mitteilungen, die jedermann schreiben und lesen
darf. Die Files sind in /var/spool/news zu �nden. Falls Sie eine Runde locker
machen wollen, tippen Sie

vi /var/spool/news/freibier

a

Heute gibt es Freibier.

escape

:wq

chmod 644 /var/spool/news/freibier

Vergessen Sie nicht, Ihren News die Leseerlaubnis f�ur alle (644) mitzugeben und

das Bier bereitzustellen. News innerhalb einer Maschine sind wie die Mail eine

harmlose Angelegenheit, im Netz wird es aufwendiger, siehe Abschnitt 3.12 Neu-
igkeiten.

Das File .news_time im Home-Verzeichnis h�alt die Zeit der letzten News-

Anzeige fest, so da� man im Regelfall nur neue Mitteilungen zu lesen bekommt.

2.10 Kommunikation 161

Das Kommando news(1) im File /etc/profile sorgt daf�ur, da� bei jeder An-

meldung die Neuigkeiten angezeigt werden. Sie k�onnen es aber auch gesondert

eingeben. Mittels news -a werden alle, auch alte Nachrichten angezeigt.

2.10.4 Message of the Day

Mittels der Message of the Day { das Wort zum Alltag { schickt der System-

Manager eine Mitteilung an alle Benutzer, die sie jedesmal beim Einloggen zu

lesen bekommen. Der Text steht in /etc/motd, Anzeige mittels cat /etc/motd

in /etc/profile. Hinweise auf neue Programmversionen, drohende Reparaturen

oder ein neues, fabelhaftes Buch �uber UNIX, C und das Internet geh�oren hierhin.

2.10.5 Ehrw�urdig: UUCP

UUCP hei�t unix-to-unix-copy und ist ein Programmpaket zur �Ubertragung von

Files zwischen UNIX-Anlagen �uber serielle Kabel oder Modemstrecken, eine Al-

ternative aus der Fr�uhzeit der Netze zu den Internet-Diensten nach TCP/IP-
Protokollen. Mail und Netnews werden au�erhalb des Internets noch viel �uber

UUCP ausgetauscht. Im Gegensatz zu den Auftr�agen an Internet-Dienste werden
UUCP-Auftr�age zwischengespeichert (gespoolt), erkl�arlich aus der Verwendung
von Modemstrecken �uber W�ahlleitungen.

Zu dem Paket geh�ort ein Terminal-Emulator cu(1) (= call UNIX), der ein

einfaches serielles Terminal emuliert (aus einem Computer ein Terminal macht).
Das Programm kann benutzt werden, um einen Computer �uber ein serielles Kabel
{ gegebenenfalls verl�angert durch Modem und Telefonleitung { an einen anderen

Computer anzuschlie�en, falls man keine Netzverbindung mittels rlogin(1) oder
telnet(1) hat.

Die UUCP-Programme bilden eine Hierarchie, auf deren unterster Ebene die
Programme uucico(1) und uuxqt(1) die Verbindung zwischen zwei Maschinen

herstellen. In der Mitte �nden sich Programme wie uucp(1), uux(1) und uuto(1),
die zwar Aufgaben im Auftrag eines Benutzers erledigen, normalerweise aber nicht

unmittelbar von diesem aufgerufen werden, sondern in periodischen Abst�anden

durch einen D�amon. Zuoberst liegen die vom Benutzer aufgerufenen Program-
me wie mail(1) und news(1). Dazu kommen Hilfsprogramme wie uuencode(1)

oder uustat(1). uuencode(1) wird gelegentlich auch au�erhalb der UUCP-Welt
benutzt, um bin�are Files in Text�les zum Versand per Email umzucodieren:

uuencode myfile | mailx -s 'Subject' wualex1@mvmhp64

und zur�uck:

uudecode < mymail

wobei die Mail-Header-Zeilen nicht st�oren. Da die UUCP-Programme innerhalb

des Internets keine Rolle spielen, verweisen wir f�ur Einzelheiten auf das Buch von
B. Anderson und den Text von I. L. Taylor.

162 2 UNIX

2.10.6 Memo Kommunikation

� Zwischen den Benutzern derselben UNIX-Maschine bestehen seit altersher

M�oglichkeiten der Kommunikation. Die Kommunikation im Netz (auf ver-

schiedenen Maschinen) erfordert zus�atzliche Protokolle und Programme.

� Zwei gleichzeitig angemeldete Benutzern k�onnen mittels write(1) oder

talk(1) einen Dialog per Tastatur und Bildschirm f�uhren.

� Email ist ein zeitversetzter Nachrichtenaustausch zwischen zwei Benutzern

(oder D�amonen), wie eine Postkarte.

� News sind Aush�ange am Schwarzen Brett, die alle lesen k�onnen.

� Die Message of the Day ist eine Mitteilung des System-Managers, die alle

lesen m�ussen.

� UUCP ist ein B�undel mehrerer Programme, das dem Datenaustausch zwi-

schen UNIX-Maschinen �uber W�ahlleitungen (Modemstrecken) dient und im

wesentlichen durch das Internet abgel�ost worden ist.

2.10.7 �Ubung Kommunikation

Zur Kommunikation brauchen Sie einen Gespr�achspartner, nur Mail k�onnen Sie
auch an sich selbst schicken. Im Notfall steht Ihr Freund, der System-Manager

(root), oder der Postmaster zur Verf�ugung.

set (Umgebung ansehen)

who (Partner bereit?)

write partner (Bell abwarten)

Dialog f�uhren (nur mit RETURN, kein control-d)

oo (over and out, als letze Zeichen des Gespr�achs)

control-d (Ende des Gespr�achs)

mail (Ihr Briefkasten)

* (mail-Kommandos ansehen)

mail username (Brief an username)

Brief schreiben, RETURN

control-d (Ende des Briefes)

elm (elm gibt Hinweise)

cat > /usr/news/heute (News schreiben)

Heute gibts Freibier.

control-d (Ende News)

chmod 644 /usr/news/heute

abmelden, wieder anmelden

news -a (alle News anzeigen)

rm /usr/news/heute

2.11 Systemaufrufe 163

cat /etc/motd (MOTD anzeigen)

Falls es keine Message of the Day gibt, Mail an root schicken.

Abmelden mit exit.

2.11 Systemaufrufe

2.11.1 Was sind Systemaufrufe?

Dem Programmierer stehen zwei Hilfsmittel zur Verf�ugung, um seine W�unsche

auszudr�ucken:

� die Schl�usselw�orter (Wortsymbole) der Programmiersprache,

� die Systemaufrufe des Betriebssystems.

Die Schl�usselw�orter (keyword, mot-cl�e) der Programmiersprache (zum Beispiel

C) sind auch unter verschiedenen Betriebssystemen (MS-DOS, OS/2 oder UNIX)

dieselben. Sie geh�oren zur Programmiersprache bzw. zum Compiler. Die System-
aufrufe (system call, system primitive, fonction syst�eme) eines Betriebssystems
(UNIX) sind f�ur alle Programmiersprachen (C, FORTRAN, PASCAL, COBOL)

dieselben. Sie geh�oren zum Betriebssystem. Man �ndet auch die Bezeichnung
Kernschnittstellenfunktion, die besagt, da� ein solcher Aufruf sich unmittelbar

an den Kern des Betriebssystems richtet. Der Kreis der Systemaufrufe liegt fest
und kann nicht ohne Eingri�e in den Kern des Betriebssystems ver�andert wer-
den. Da UNIX zum gro�en Teil in C geschrieben ist, sind die Systemaufrufe von

UNIX C-Funktionen, die sich in ihrer Syntax nicht von eigenen oder fremden
C-Funktionen unterscheiden. Deshalb m�ussen auch FORTRAN- oder PASCAL-

Programmierer etwas von der Programmiersprache C verstehen. Im Handbuch
werden die Systemaufrufe in Sektion (2) beschrieben.

In Sektion (3) �nden sich vorgefertigte Unterprogramme, Subroutinen

oder Standardfunktionen (standard function, fonction �el�ementaire) f�ur h�au�g
vorkommende Aufgaben. F�ur den Anwender besteht kein Unterschied zu den Sy-
stemaufrufen. Streng genommen geh�oren diese Standardfunktionen jedoch zu den

jeweiligen Programmiersprachen (zum Compiler) und nicht zum Betriebssystem.

Der Kreis der Standardfunktionen ist beliebig erg�anzbar. Um den Benutzer zu

verwirren, sind die Systemaufrufe und die Standardfunktionen in einer Funkti-
onsbibliothek (/lib/libc.a und andere) vereinigt.

Die Aufgabenverteilung zwischen Schl�usselw�ortern, Systemaufrufen und Stan-

dardfunktionen ist in gewissem Umfang willk�urlich. Systemaufrufe erledigen Auf-
gaben, die aus dem Aufbau und den kennzeichnenden Eigenschaften des Betriebs-

systems herr�uhren, bei UNIX also in erster Linie

� Ein- und Ausgabe auf unterster Stufe,

� Umgang mit Prozessen,

� Umgang mit dem File-System,

� Sicherheitsvorkehrungen.

164 2 UNIX

Nach au�en { Sie erinnern sich an das Bild mit dem H�auschen { de�niert die

Menge der Systemaufrufe das Betriebssystem. Zwei Systeme, die in ihren Aufru-

fen �ubereinstimmen, sind f�ur den Benutzer identisch. Neue Funktionalit�aten des

Betriebssystems stellen sich dem Programmierer als neue Systemaufrufe dar, siehe

zum Beispiel unter stream(2).

Einige UNIX-Systemaufrufe haben gleiche oder �ahnliche Aufgaben wie Shell-

Kommandos. Wenn man die Zeit wissen m�ochte, verwendet man im Dialog das

Shell-Kommando date(1). Will man diese Information aus einem eigenen Pro-

gramm heraus abfragen, kann man das UNIX-Shell-Kommando nicht verwenden,

sondern mu� auf den Systemaufruf time(2) zur�uckgreifen. Es ist aber nicht so,

da� sich grunds�atzlich Shell-Kommandos und Systemaufrufe entsprechen, es sind

nur einige Shell-Kommandos in C-Programme verpackte Systemaufrufe.

In UNIX sind Systemaufrufe Funktionen der Programmiersprache C. Eine

Funktion �ubernimmt beim Aufruf Argumente oder Parameter und gibt ein Er-

gebnis zur�uck. Dieser Mechanismus wird Parameter�ubergabe genannt. Man

mu� ihn verstanden haben, um Funktionen in eigenen Programmen verwenden zu
k�onnen. Eine Erkl�arung �ndet sich in Abschnitt ?? Parameter�ubergabe.

Falls Sie mit der Programmiersprache C nicht vertraut sind, sollten Sie jetzt

zuerst das Kap. ?? Programmieren in C/C++ �uber
iegen.

2.11.2 Beispiel Systemzeit (time)

Im folgenden Beispiel wird der Systemaufruf time(2) verwendet. time(2) liefert

die Zeit in Sekunden seit 00:00:00 Greenwich Mean Time, 1. Januar 1970. Com-
puteruhren laufen �ubrigens erstaunlich ungenau, falls sie nicht durch eine Quarz-
oder Funkuhr oder �uber das Netz synchronisiert werden. Ferner brauchen wir die

Standardfunktion gmtime(3), Beschreibung unter ctime(3), die aus den obigen
Sekunden eine Struktur erzeugt, die Datum und Uhrzeit enth�alt. Die Umrechnung

von Greenwich auf Karlsruhe nehmen wir selbst vor. Eleganter w�are ein R�uckgri�
auf die Zeitzonen-Variable der Umgebung. Laut Referenz-Handbuch hat time(2)
die Syntax

long time ((long *) 0)

Die Funktion verlangt ein Argument vom Typ Pointer auf long integer, und zwar

im einfachsten Fall den Nullpointer. Der Returnwert ist vom Typ long integer.

Der gr�o�te Wert dieses Typs liegt etwas �uber 2 Milliarden. Damit l�auft diese Uhr
etwa 70 Jahre. Die Subroutine gmtime(3) hat die Syntax

#include <time.h>

struct tm *gmtime(clock)

long *clock

Die Funktion verlangt ein Argument vom Typ Pointer auf long integer. Wir

m�ussen also den Returnwert von time(2) in einen Pointer umwandeln (re-

ferenzieren). Der Returnwert ist vom Typ Pointer auf eine Struktur namens tm.

Diese Struktur ist im include-File time.h de�niert. Die include-Files sind lesbarer

Text; es ist ratsam hineinzuschauen. In der weiteren Beschreibung zu ctime(3)

wird die Struktur tm erl�autert:

2.11 Systemaufrufe 165

struct tm {

int tm_sec; /* seconds (0 - 59) */

int tm_min; /* minutes (0 - 59) */

int tm_hour; /* hours (0 - 23) */

int tm_mday; /* day of month (1 - 31) */

int tm_mon; /* month of year (0 - 11) */

int tm_year; /* year - 1900 */

int tm_wday; /* day of week (sunday = 0) */

int tm_yday; /* day of year (0 - 365) */

int tm_isdst; /* nonzero if daylight saving t. */

}

Von den beiden letzten Komponenten der Struktur machen wir keinen Gebrauch.

Da die Komponenten alle vom selben Typ sind, ist statt der Struktur auch ein

Array denkbar. Vermutlich wollte sich der Programmierer den Weg o�enhalten,

k�unftig auch andere Typen aufzunehmen (Zeitzone). Das Programm, das die Quel-

le zu dem Kommando zeit aus der ersten �Ubung ist, sieht folgenderma�en aus:

/* Ausgabe der Zeit auf Bildschirm */
/* Filename zeit.c, Compileraufruf cc -o zeit zeit.c */

#include <stdio.h>
#include <time.h>

char *ptag[] = {"Sonntag, ", "Montag, ", "Dienstag, ",
"Mittwoch, ", "Donnerstag,", "Freitag, ",
"Samstag, "};

char *pmon[] = {"Januar", "Februar", "Maerz", "April", "Mai",
"Juni", "Juli", "August", "September",
"Oktober", "November", "Dezember"};

main()
{
long sec, time();
struct tm *gmtime(), *p;

sec = time((long *) 0) + 3600; /* MEZ = GMT + 3600 */
p = gmtime(&sec);
printf("%s %d. ", ptag[p->tm wday], p->tm mday);
printf("%s %d ", pmon[p->tm mon], p->tm year +1900);
printf("%d:%02d MEZ\n", p->tm hour, p->tm min);
}

Programm 2.37 : C-Programm zur Anzeige der Systemzeit

Nun wollen wir dieselbe Aufgabe mit einem FORTRAN-Programmbew�altigen.

Der UNIX-Systemaufruf time(2) bleibt, f�ur die C-Standardfunktion gmtime(3)

suchen wir die entsprechende FORTRAN-Routine. Da wir keine �nden, m�ussen

wir sie entweder selbst schreiben (was der erfahrene Programmierer scheut) oder

nach einem Weg suchen, eine beliebige C-Standardfunktion in ein FORTRAN-
Programm hineinzuquetschen.

166 2 UNIX

Der Systemaufruf time(2) macht keinen Kummer. Er ben�otigt ein Argument

vom Typ Pointer auf long integer, was es in FORTRAN gibt. Der R�uckgabewert

ist vom Typ long integer, auch kein Problem. Die C-Standardfunktion gmtime(3)

erwartet ein Argument vom Typ Pointer auf long integer, was machbar w�are,

aber ihr Ergebnis ist ein Pointer auf eine Struktur. Das hat FORTRAN noch

nie gesehen25. Deshalb weichen wir auf die C-Standardfunktion ctime(3) aus,

deren R�uckgabewert vom Typ Pointer auf character ist, was es in FORTRAN

n�aherungsweise gibt. In FORTRAN ist ein Zeichen ein String der L�ange eins.

Strings werden per Deskriptor �ubergeben. Ein String-Deskriptor ist der Pointer

auf das erste Zeichen und die Anzahl der Zeichen im String als Integerwert. Das

Programm sieht dann so aus:

program zeit

$ALIAS foratime = 'sprintf' c

integer*4 time, tloc, sec, ctime
character atime*26

sec = time(tloc)

call foratime(atime, '%s'//char(0), ctime(sec))
write(6, '(a)') atime

end

Programm 2.38 : FORTRAN-Programm zur Anzeige der Systemzeit

Die ALIAS-Anweisung ist als Erweiterung zu FORTRAN 77 in vielen Com-
pilern enthalten und dient dazu, den Aufruf von Unterprogrammen anderer Spra-

chen zu erm�oglichen. Der Compiler wei� damit, da� das Unterprogramm au�erhalb
des Programms { zum Beispiel in einer Bibliothek { einen anderen Namen hat als
innerhalb des Programms. Wird eine Sprache angegeben (hier C), so erfolgt die

Parameter�ubergabe gem�a� der Syntax dieser Sprache. Einzelheiten siehe im Falle
unserer Anlage im HP FORTRAN 77/HP-UX Reference Manual im Abschnitt

Compiler Directives.

Die Anweisung teilt dem Compiler mit, da� hinter der FORTRAN-Subroutine

foratime die C-Standard-Funktion sprintf(3) steckt und da� diese nach den

Regeln von C behandelt werden soll. Der R�uckgabewert von sprintf(3) (die
Anzahl der ausgegebenen Zeichen) wird nicht verwertet, deshalb ist foratime eine
FORTRAN-Subroutine (keine Funktion), die im Programm mit call aufgerufen

werden mu�.

Der Systemaufruf time(2) verlangt als Argument einen Pointer auf

long integer, daher ist tloc als vier Bytes lange Integerzahl deklariert. tloc

spielt weiter keine Rolle. Die �Ubergabe als Pointer (by reference) ist in FORT-
RAN Standard f�ur Zahlenvariable und braucht nicht eigens vereinbart zu werden.

Der R�uckgabewert von time geht in die Variable sec vom Typ long integer =

25FORTRAN 90 kennt Strukturen.

2.11 Systemaufrufe 167

integer*4.

Die call-Zeile ruft die Subroutine foratime alias C-Funktion sprintf(3)

auf. Diese C-Funktion erwartet drei Argumente: den Ausgabestring als Pointer auf

char, einen Formatstring als Pointer auf char und die auszugebende Variable von

einem Typ, wie er durch den Formatstring bezeichnet wird. Der R�uckgabewert der

Funktion ctime(3) ist ein Pointer auf char. Da dies kein in FORTRAN zul�assiger

Typ ist, deklarieren wir die Funktion ersatzweise als vom Typ 4-Byte-integer. Der

Pointer l�a�t sich auf jeden Fall in den vier Bytes unterbringen. Nach unserer

Erfahrung reichen auch zwei Bytes, ebenso funktioniert der Typ logical, nicht

jedoch real.

Der Formatstring besteht aus der Stringkonstanten %s, gefolgt von dem ASCII-

Zeichen Nr. 0, wie es bei Strings in C Brauch ist. F�ur sprintf(3) besagt dieser

Formatstring, das dritte Argument { den R�uckgabewert von ctime(3) { als einen

String aufzufassen, das hei�t als Pointer auf das erste Element eines Arrays of

characters.

atime ist ein FORTRAN-String-Deskriptor, dessen erste Komponente ein
Pointer auf character ist. Damit wei� sprintf(3), wohin mit der Ausgabe. Die

write-Zeile ist wieder pures FORTRAN.

An diesem Beispiel erkennen Sie, da� Sie auch als FORTRAN- oder PASCAL-
Programmierer etwas von C verstehen m�ussen, um die Systemaufrufe und C-

Standardfunktionen syntaktisch richtig zu gebrauchen.

Bei manchen FORTRAN-Compilern (Hewlett-Packard, Microsoft) lassen sich
durch einen einfachen Interface-Aufruf Routinen fremder Sprachen so ver-

packen, da� man sie �ubernehmen kann, ohne sich um Einzelheiten k�ummern zu
m�ussen.

2.11.3 Beispiel File-Informationen (access, stat, open)

In einem weiteren Beispiel wollen wir mithilfe von Systemaufrufen Informationen

�uber ein File gewinnen, dazu noch eine Angabe aus der Sitzungsumgebung. Die
Teile des Programms lassen sich einfach in andere C-Programme �ubernehmen.

Dieses Programm soll beim Aufruf (zur Laufzeit, in der Kommandozeile) den

Namen des Files als Argument �ubernehmen, wie wir es von UNIX-Kommandos
her kennen. Dazu ist ein bestimmter Formalismus vorgesehen:

int main(argc, argv, envp)

int argc;

char *argv[], *envp[];

Die Funktion main() �ubernimmt die Argumente argc, argv und gegebenenfalls

envp. Das Argument argc ist der Argument Counter, eine Ganzzahl. Sie ist

gleich der Anzahl der Argumente in der Kommandozeile beim Aufruf des Pro-

gramms. Das Kommando selbst ist das erste Argument. Das Argument argv ist
der Argument Vector, ein Array of Strings, also ein Array of Arrays of Charac-

ters. Der erste String, Index 0, ist das Kommando; die weiteren Strings sind die

mit dem Kommando �ubergebenen Argumente, hier der Name des gefragten Files.
Der Environment Pointer envp wird nur ben�otigt, falls man Werte aus der

168 2 UNIX

Umgebung abfragt. Es ist wie argv ein Array of Strings. Die Namen argc, argv

und envp sind willk�urlich, aber �ublich. Typ und Reihenfolge sind vorgegeben.

Die Umgebung besteht aus Strings (mit Kommando set (Shell) anschau-

en). In der for-Schleife werden die Strings nacheinander mittels der Funktion

strncmp(3) (siehe string(3)) mit dem String LOGNAME verglichen. Das Er-

gebnis ist der Index i des gesuchten Strings im Array envp[].

Den Systemaufruf access(2) �nden wir in der Sektion (2) des Referenz-

Handbuches. Er untersucht die Zugri�sm�oglichkeiten auf ein File und hat die

Syntax

int access(path, mode)

char *path;

int mode;

Der Systemaufruf erwartet als erstes Argument einen String, n�amlich den Namen

des Files. Wir werden hierf�ur argv[1] einsetzen. Als zweites steht eine Ganzzahl,

die die Art des gefragten Zugri�s kennzeichnet. Falls der gefragte Zugri� m�oglich

ist, liefert access(2) den Wert null zur�uck, der in einem C-Programm zugleich die
Bedeutung von logisch falsch (FALSE) hat und deshalb in den if-Zeilen negiert

wird.
Den Systemaufruf stat(2) �nden wir ebenfalls in Sektion 2. Er ermittelt

Fileinformationen aus der Inode und hat die Syntax

#include <sys/types.h>

#include <sys/stat.h>

int stat(path, buf)

char *path;

struct stat *buf;

Sein erstes Argument ist wieder der Filename, das zweite der Name eines Pu�ers
zur Aufnahme einer Struktur, die die Informationen enth�alt. Diese Struktur vom

Typ stat ist in dem include-File /usr/include/sys/stat.h deklariert, das sei-
nerseits Bezug nimmt auf Deklarationen in /usr/include/types.h. Auch einige

Informationen wie S_IFREG sind in sys/stat.h de�niert. Die Zeitangaben werden
wie im vorigen Abschnitt umgerechnet.

In UNIX-Filesystemen enth�alt jedes File am Anfang eine Magic Number,

die �uber die Art des Files Auskunft gibt (man magic). Mittels des Systemaufrufs
open(2) wird das fragliche File zum Lesen ge�o�net, mittels lseek(2) der Lese-

zeiger auf die Magic Number gesetzt und mittels read(2) die Zahl gelesen. Der
Systemaufruf close(2) schlie�t das File wieder. Die Systemaufrufe �ndet man

unter ihren Namen in Sektion (2), eine Erl�auterung der Magic Numbers unter

magic(4). Nun das Programm:

/* Informationen ueber eine Datei */

#define MEZ 3600

#include <stdio.h>

2.11 Systemaufrufe 169

#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include <fcntl.h>
#include <magic.h>

void exit(); long lseek();

int main(argc, argv, envp)

int argc; char *argv[], *envp[];

{

int i, fildes;
struct stat buffer;
long asec, msec, csec;
struct tm *pa, *pm, *pc;

if (argc < 2) {
puts("Dateiname fehlt"); return (-1);

}

/* Informationen aus dem Environment */

for (i = 0; envp[i] != NULL; i++)
if (!(strncmp(envp[i], "LOGNAME", 4)))

printf("\n%s\n", envp[i]);

/* Informationen mittels Systemaufruf access(2) */

printf("\nFile heisst: %8s\n", argv[1]);

if (!access(argv[1], 0))
puts("File existiert");

else
puts("File existiert nicht");

if (!access(argv[1], 1))
puts("File darf ausgefuehrt werden");

else
puts("File darf nicht ausgefuehrt werden");

if (!access(argv[1], 2))
puts("File darf beschrieben werden");

else
puts("File darf nicht beschrieben werden");

if (!access(argv[1], 4))
puts("File darf gelesen werden");

else
puts("File darf nicht gelesen werden");

/* Informationen aus der Inode, Systemaufruf stat(2) */

170 2 UNIX

if (!(stat(argv[1], &buffer))) {
printf("\nDevice: %ld\n", buffer.st dev);
printf("Inode-Nr.: %lu\n", buffer.st ino);
printf("File Mode: %hu\n\n", buffer.st mode);

switch(buffer.st mode & S IFMT) {
case S IFREG:

{
puts("File ist regulaer");
break;
}

case S IFDIR:
{
puts("File ist ein Verzeichnis");
break;
}

case S IFCHR:
case S IFBLK:
case S IFNWK:

{
puts("File ist ein Special File");
break;
}

case S IFIFO:
{
puts("File ist eine Pipe");
break;
}

default:
{
puts("Filetyp unbekannt (Inode)");
}

}
printf("\nLinks: %hd\n", buffer.st nlink);
printf("Owner-ID: %hu\n", buffer.st uid);
printf("Group-Id: %hu\n", buffer.st gid);
printf("Device-ID: %ld\n", buffer.st rdev);
printf("Filegroesse: %ld\n", buffer.st size);

asec = buffer.st atime + MEZ; pa = gmtime(&asec);
msec = buffer.st mtime + MEZ; pm = gmtime(&msec);
csec = buffer.st ctime + MEZ; pc = gmtime(&csec);

printf("Letzter Zugriff: %d. %d. %d\n",
pa->tm mday, pa->tm mon + 1, pa->tm year);

printf("Letzte Modifik.: %d. %d. %d\n",
pm->tm mday, pm->tm mon + 1, pm->tm year);

printf("Letzte Stat.Ae.: %d. %d. %d\n",
pc->tm mday, pc->tm mon + 1, pc->tm year);

}
else

puts("Kein Zugriff auf Inode");

2.11 Systemaufrufe 171

/* Pruefung auf Text oder Code (magic number) */
/* Systemaufrufe open(2), lseek(2), read(2), close(2) */
/* Magic Numbers siehe magic(4) */

{
MAGIC magbuf;

fildes = open(argv[1], O RDONLY);
if (lseek(fildes, MAGIC OFFSET, 0) >= (long)0) {

read(fildes, &magbuf, sizeof magbuf);
switch(magbuf.file type) {

case RELOC MAGIC:
{
puts("File ist relocatable");
break;
}
case EXEC MAGIC:
case SHARE MAGIC:
case DEMAND MAGIC:
{
puts("File ist executable");
break;
}
case DL MAGIC:
case SHL MAGIC:
{
puts("File ist Library");
break;
}

default:
puts("Filetyp ist unbekannt (Magic Number)");
lseek(fildes, 0L, 0);

}
}
else {

puts("Probleme mit dem Filepointer");
}

}
close(fildes);
}

Programm 2.39 : C-Programm zum Abfragen von Informationen �uber ein File

Die Verwendung von Systemaufrufen oder Standardfunktionen in C-

Programmen ist nicht schwieriger als der Gebrauch anderer Funktionen. Man mu�

sich nur an die im Referenz-Handbuch Sektionen (2) und (3) nachzulesende Syn-

tax halten. Es emp�ehlt sich, die genannten Sektionen einmal durchzubl�attern,

um eine Vorstellung davon zu gewinnen, wof�ur es Systemaufrufe und Standard-

funktionen gibt. Die Ausgabe des Programms sieht folgenderma�en aus:

LOGNAME=wualex1

172 2 UNIX

File heisst: a.out

File existiert

File darf ausgefuehrt werden.

File darf nicht beschrieben werden.

File darf gelesen werden.

Device: 13

Inode-Nr.: 43787

File Mode: 33216

File ist regulaer

Links: 1

Owner-ID: 101

Group-ID: 20

Device-ID: 102536

Filegroesse: 53248

Letzter Zugriff: 24. 1. 91

Letzte Modifik.: 24. 1. 91

Letzte Stat.Ae.: 24. 1. 91

File ist executable

Die Bedeutung von File Mode �nden Sie bei mknod(2). Es handelt sich um
ausf�uhrliche Informationen �uber die Zugri�srechte usw.

2.11.4 Memo Systemaufrufe

� Systemaufrufe sind die Verbindungen des Betriebssystems nach oben, zu den
Anwendungsprogrammen.

� Systemaufrufe haben vorwiegend mit Prozessen, den Filesystemen und der

Ein- und Ausgabe zu tun.

� UNIX-Systemaufrufe sind C-Funktionen, die sich in keiner Weise von ande-
ren C-Funktionen unterscheiden.

� C-Standardfunktionen geh�oren zum C-Compiler.

� Ein FORTRAN-Programmierer auf einem UNIX-System ist auf die UNIX-

Systemaufrufe angewiesen, nicht aber auf die C-Standardfunktionen.

2.11.5 �Ubung Systemaufrufe

Schreiben Sie in einer Programmiersprache Ihrer Wahl (wir empfehlen C) ein

Programm, da�

� ein File mittels creat(2) erzeugt,

� dessen Zugri�srechte mittels chmod(2) und seine Zeitstempel mittels
utime(2) setzt,

2.12 Systemverwaltung 173

� die verwendeten Werte mittels fprintf(3) als Text in das File schreibt.

fprintf(3) �nden Sie unter printf(3).

Schreiben Sie ein Programm �ahnlich who(1). Sie brauchen dazu getut(3) und

utmp(4).

2.12 Systemverwaltung

Ein Betriebssystem wie UNIX l�a�t sich von drei Standpunkten aus betrachten,

von dem

� des Benutzers,

� des System-Managers,

� des System-Entwicklers.

Der Benutzer m�ochte eine m�oglichst komfortable und robuste Ober
�ache f�ur die

Erledigung seiner eigenen Aufgaben (Anwenderprogramme, Textverarbeitung, In-

formation Retrieval, Programmentwicklung) vor�nden. Der System-Manager

will sein System optimal an die vorliegenden Aufgaben anpassen und einen siche-
ren Betrieb erreichen. Der System-Entwickler mu� sich mit Anpassungen an

neue Bed�urfnisse (Netze, Parallelrechner, Echtzeitbetrieb), mit Fragen der Porta-
bilit�at und der Standardisierung befassen. W�ahrend sich die bisherigen Abschnitte

mit UNIX vom Standpunkt des Benutzers aus besch�aftigt haben, gehen wir nun
zum Standpunkt des System-Managers �uber. Dank LINUX, FreeBSD und Kom-
panie hat jeder PC-Besitzer die M�oglichkeit, diesen Standpunkt auch praktisch

einzunehmen.
Zum Teil braucht auch der gew�ohnliche Benutzer eine ungef�ahre Vorstellung

von den Aufgaben des System-Managers, zum Teil mu� er { vor allem auf kleineren

Anlagen { diese T�atigkeiten selbst durchf�uhren. Ein System-Manager kommt um
das gr�undliche Studium der Handb�ucher nicht herum.

Die Systemp
ege ist die Aufgabe des System-Managers. Er braucht dazu
die Vorrechte des Superusers. Beide Begri�e werden oft synonym gebraucht. Der
Begri� System-Manager ist jedoch von der Aufgabe her de�niert und daher tref-

fender. Bei gro�en Anlagen �ndet man noch den Operator. Er ist unmittelbar

f�ur den Betrieb zust�andig, �uberwacht die Anlage, beseitigt St�orungen, wechselt

Datentr�ager, hat aber weniger Aufgaben in Planung, Kon�guration oder Pro-
grammierung.

2.12.1 Systemgenerierung und -update

Unter einer Systemgenerierung versteht man die Erstinstallation des Betriebs-
systems auf einer neuen Anlage oder die erneute Installation des Betriebssystems

auf einer Anlage, die v�ollig zusammengebrochen und zu keiner brauchbaren Re-

aktion mehr f�ahig ist. Auch die Umpartitionierung der root-Platte erfordert eine

Generierung.

Ein System-Update ist die Nachf�uhrung eines laufenden Systems auf eine

neuere Version des Betriebssystems oder eine Erweiterung { unter Umst�anden

174 2 UNIX

auch Verkleinerung { des Betriebssystems. Die Hinzunahme weiterer Hardware

oder eines Protokolles erfordert eine solche Erweiterung. Eine Erweiterung ohne
�Anderung der Version wird auch System-Upgrade genannt.

Alle drei Aufgaben sind �ahnlich und im Grunde nicht schwierig. Da man aber

derartige Aufgaben nicht jede Woche erledigt und sich das System zeitweilig in

einem etwas emp�ndlichen Zustand be�ndet, ist die Wahrscheinlichkeit sehr hoch,

da� etwas schiefgeht und man erst nach mehreren Versuchen Erfolg hat. Deshalb

soll man den Zeitpunkt f�ur diese Arbeit so w�ahlen, da� eine l�angere Sperre des

Systems von den Benutzern hingenommen werden kann. Der System-Manager

sollte sich vorher noch einmal gut ausschlafen und seinen Vorrat an Ka�ee und

Schokolade auff�ullen.

Hat man ein laufendes System mit wertvollen Daten, ist der erste Schritt ein

vollst�andiges Backup. Dabei ist es zweckm�a�ig, nicht das gesamte File-System

auf einen oder eine Folge von Datentr�agern zu sichern, sondern die obersten Ver-

zeichnisse (unter root) jeweils f�ur sich. Das erleichtert das gezielte Wiederherstel-

len. /tmp beispielsweise braucht �uberhaupt nicht gesichert zu werden, /dev sollte
man zwar sichern, spielt es aber in der Regel nach einer System�anderung nicht
zur�uck, weil es entsprechend den �Anderungen neu erzeugt wird. Weiterhin sollte

man schon im t�aglichen Betrieb darauf achten, da� alle f�ur die jeweilige Anlage
spezi�schen Files in wenigen Verzeichnissen (/usr/local/bin, /usr/local/etc,

/usr/local/config usw.) versammelt und erforderlichenfalls nach /bin oder
/etc gelinkt sind. Nur so l�a�t sich nach einer System�anderung ohne viel Auf-
wand entscheiden, was aus den alten und was aus den neuen Files �ubernommen

wird. Gerade im /etc-Verzeichnis sind viele Kon�gurations-Files zu Hause, die
nach einer System�anderung editiert werden m�ussen, und da ist es gut, sowohl
die alte wie die neue Fassung zu haben. Es ist auch beruhigend, die obersten

Verzeichnisse und die systemspezi�schen Text�les auf Papier zu besitzen.

Der n�achste Schritt ist das Zurechtlegen der Handb�ucher und das Erkunden
der Hardware, insbesondere des I/O-Subsystems. Falls man keine Handb�ucher
hat, sondern nur mit dem man(1)-Kommando arbeitet, drucke man sich die Be-

schreibung der einschl�agigen Kommandos auf Papier aus, es sei denn, man habe
ein zweites System derselben Art. Wichtig sind auch die beim Booten angezeig-

ten Hardware-Adressen f�ur den Primary Boot Path und den Alternate Boot

Path, bei uns 4.0.0.0.0.0 und 4.0.2.1.0.0. Ferner sollte die Konsole von dem Typ
sein, mit dem die Anlage am liebsten zusammenarbeitet (bei uns also Hewlett-

Packard). Dann wirft man alle Benutzer und D�amonen hinaus und wechselt in
den Single-User-Modus. Von jetzt ab wird die Installation hardwareabh�angig und

herstellerspezi�sch.

Falls man die neuen Files nicht �uber das Netz holt, kommen sie von einem

entfernbaren Datentr�ager (removable medium) wie Band (Spule oder Kassette)

oder CD-ROM �uber den Alternate Boot Path. Man legt also den Datentr�ager ein

und bootet. Die Boot-Firmware fragt zu Beginn nach dem Boot Path, worauf man
mit der Adresse des Alternate Boot Path antwortet. Dann wird noch gefragt, ob

interaktiv gebootet werden soll, was zu bejahen ist. Schlie�lich meldet sich ein

Programm { der Initial System Loader ISL { das einige wenige Kommandos
versteht, darunter das Kommando zum Booten:

2.12 Systemverwaltung 175

hpux -a disc0(4.0.0) disc0(4.0.2.1;0x400020)

Eine Beschreibung des Kommandos (Secondary System Loader) �ndet sich un-

ter hpux(1M). Die Option -a bewirkt, da� die I/O-Kon�guration entsprechend

der nachfolgenden Angabe ge�andert wird. disc0 ist der Treiber f�ur die Platte,

4.0.0 die Hardware-Adresse der Platte, auf der k�unftig der Boot-Sektor und das

root-Verzeichnis liegen sollen. disc0 ist ebenfalls der Treiber f�ur das Kassetten-

Bandlaufwerk, von dem das neue System installiert werden soll, 4.0.2.1 seine

Hardware-Adresse. 0x400020 ist die Minor Number des Kassetten-Bandlaufwerks

und sorgt f�ur eine bestimmte Kon�guration, hat also in diesem Zusammenhang

nichts mit einer Adresse zu tun. Das Kommando l�adt von dem Installations-

Datentr�ager (Kassette) ein einfaches lauff�ahiges System in den Arbeitsspeicher.

Dann erscheint { wenn alles gut geht { eine Halbgra�k zur Partitionierung

der root-Platte. Bootsektor, Swap Area und root m�ussen auf derselben Platte

liegen, da man zu Beginn des Bootens noch keine weiteren File-Systeme gemountet

hat. Falls man nach der L�ange der Filenamen gefragt wird, sollte man sich f�ur lange

Namen (maximal 255 Zeichen) entscheiden.
Im weiteren Verlauf werden viele Files auf die Platte kopiert, zwischendurch

auch einmal gebootet und erforderlichenfalls der Datentr�ager gewechselt. Die Files
werden zu Filesets geb�undelt her�ubergezogen, wobei ein Fileset immer zu einer

bestimmten Aufgabe wie Kernel, UNIX-Tools, Gra�k, Netz, C, FORTRAN, PAS-
CAL, COBOL, Native Language Support geh�ort. Teilweise bestehen gegenseitige
Abh�angigkeiten, die das Installationsprogramm von sich aus ber�ucksichtigt. Man

kann sich die Filesets anzeigen lassen und entscheiden, ob sie geladen werden sol-
len oder nicht. Dinge, die man nicht braucht (Gra�k, COBOL, NLS), kann man

getrost weglassen, Dinge, f�ur die keine Hardware im Kasten steckt (Netzadapter,
bit-mapped Terminals), sind �uber
�ussig. Nur auf den Kernel und die UNIX-Tools
sollte man nicht verzichten, auch wenn der Speicherplatz noch so knapp ist.

Schlie�lich ist die �Ubertragung beendet, und man bootet vom Primary Boot
Path. Das System l�auft und kennt zumindest den Benutzer root, dem man sofort
ein Passwort zuordnet. Nun beginnt die Feinarbeit mit dem Wiederherstellen der

Kon�guration.

2.12.2 Systemstart und -stop

Wenn das System eingeschaltet wird, steht als einziges Programm ein spezielles

Test- und Leseprogramm in einem Boot-ROM zur Verf�ugung. Der Computer ist

einem Neugeborenen vergleichbar, der noch nicht sprechen, schreiben, lesen und
rechnen kann, aber ungeheuer lernf�ahig ist. Das Programm l�adt den Swapper

(Prozess Nr. 0) von der Platte in den Arbeitsspeicher. Der Swapper l�adt das

/etc/init(1M)-Programm, das die Prozess-ID 1 bekommt und der Urahne aller

weiteren Prozesse ist.

Der init-Prozess liest das File /etc/inittab(4) und f�uhrt die dort auf-
gelisteten T�atigkeiten aus. Dazu geh�oren die im File /etc/rc genannten Shell-

Kommandos und die Initialisierung der Terminals. Im File (Shellscript) /etc/rc

werden der D�amon cron(1M), einige Netzd�amonen, das Accounting System

und der Line Printer Scheduler gestartet und die Ger�ate�les f�ur Drucker und

176 2 UNIX

Plotter ge�o�net. In den letzten Jahren ist { vor allem infolge der Vernetzung {

aus dem File /etc/rc eine ganze Verzeichnisstruktur geworden, die bei Start und

Stop durchlaufen wird.

Die Terminals werden initialisiert, indem ein Prozess /etc/getty(1M)

f�ur jedes Terminal erzeugt wird. Jeder getty-Prozess schaut in dem File

/etc/gettydefs(4) nach den Parametern seines Terminals, stellt die Schnitt-

stelle ein und schreibt den login-Prompt auf den Bildschirm.

Nach Eingabe eines Benutzernamens ersetzt sich getty durch /bin/login(1),

der den Namen gegen das File /etc/passwd(4) pr�uft. Dann wird das Passwort

gepr�uft. Sind Name und Passwort g�ultig, ersetzt sich der login-Prozess durch das

in /etc/passwd angegebene Programm, �ublicherweise eine Shell. Das ebenfalls in

/etc/passwd angegebene Home-Verzeichnis wird zum anf�anglichen Arbeits-

Verzeichnis.

Die Shell f�uhrt als erstes das Skript /etc/profile(4) aus, das dieUmgebung

bereitstellt und einige Mitteilungen auf den Bildschirm schreibt, News zum Bei-

spiel. Anschlie�end sucht die Shell im Home-Verzeichnis nach einem File .profile

(der Punkt kennzeichnet das File als verborgen). Dieses Skript k�onnte f�ur jeden
Benutzer individuell gestaltet sein. Bei uns ist es jedoch zumindest gruppenweise
gleich. Wir haben in dieses Skript eine Abfrage nach einem weiteren Skript namens

.autox eingebaut, das sich jeder Benutzer selbst schreiben kann. Wir haben also
eine dreifache Stufung: /etc/profile f�ur alle, auch gast, $HOME/.profile f�ur
die Gruppe und $HOME/.autox f�ur das Individuum. Gra�sche Ober
�achen brin-

gen zum Teil weitere .profile-Files mit, die zu Beginn einer Sitzung abgearbeitet
werden.

Ist dies alles erledigt, wartet die Shell auf Eingaben. Wenn sie mit exit beendet

wird, erf�ahrt /etc/init davon und erzeugt einen neuen getty-Prozess f�ur das
Terminal. Der getty-Prozess wird "respawned\.

In dem File /etc/inittab(4) werden Run Levels de�niert. Das sind Sy-

stemzust�ande, die festlegen, welche Terminals ansprechbar sind, d. h. einen getty-
Prozess bekommen, und welche D�amonen laufen. Der Run Level S ist der Single-

User-Modus, in dem nur die Konsole aktiv ist. Run Level 3 ist der �ubliche
Multi-User-Modus, in dem auf unserer Anlage alle D�amonen aktiv sind. Die

�ubrigen Run Levels legt der System-Manager fest. Die Einzelheiten sind wieder

von System zu System verschieden.

Beim System-Stop sollen zun�achst alle laufenden Prozesse ordnungsgem�a�
beendet und alle Pu�er geleert werden. Dann soll das System in den Single-User-

Modus �uberf�uhrt werden. Das Skript /sbin/shutdown(1M) erledigt diese Arbei-
ten automatisch. Mit der Option - r bootet shutdown(1M) sofort wieder, anson-

sten dreht man anschlie�end den Strom ab. Dabei gilt die Regel, da� zuerst die

Zentraleinheit und dann die Peripherie ausgeschaltet werden sollen. Einschalten
umgekehrt.

2.12.3 Benutzerverwaltung

Die Benutzer eines UNIX-Systems lassen sich in vier Klassen einteilen:

� Programme wie who(1), die als Benutzer in /etc/passwd(4) eingetragen

2.12 Systemverwaltung 177

sind. Auch D�amonen verhalten sich teilweise wie Benutzer, beispielsweise

der Line Printer Spooler lp, der Files besitzt,

� Benutzer mit begrenzten Rechten wie gast, ftp oder Benutzer, die statt der

Shell gleich ein bestimmtes Anwendungsprogramm bekommen, das sie nicht

verlassen k�onnen,

� Normale Benutzer,

� Benutzer mit Superuser-Rechten wie root.

Formal ist der Eintrag in /etc/passwd(4) entscheidend. Deshalb ist dieses File

so wichtig und eine Schwachstelle der System-Sicherheit.

Zur Einrichtung eines neuen Benutzers tr�agt der System-Manager den Benut-

zernamen in die Files /etc/passwd(4):

wualex1:*:101:20:W. Alex:/mnt1/homes/wualex:/usr/bin/ksh

und /etc/group(4) ein:

users::20:root,wualex1,ig03,gebern1,ig05

Dann richtet er ein Home-Verzeichnis ein, �ubereignet es dem Benutzer und linkt
schlie�lich ein .profile in das Home-Verzeichnis, ohne das der Benutzer nicht

viel machen darf. Der Benutzer hat nun ein Konto oder einen Account auf dem
System. Das erste Feld in der /etc/passwd(4)-Zeile enth�alt den Benutzerna-

men. Als Passwort wird zun�achst die Kombination Komma-Punkt-Punkt ein-
getragen, die den Neuen beim ersten Einloggen dazu veranla�t, sich ein Passwort
zu geben. Das sollte unverz�uglich erfolgen, da dieser Account vor�ubergehend je-

dermann o�en steht. Ein Stern im Passwortfeld f�uhrt dazu, da� man sich unter
dem zugeh�origen Namen nicht anmelden kann. Nur root kann dann das Passwort

�andern. Das braucht man f�ur D�amonen wie lp, die als Filebesitzer auftreten, so-
wie bei Ma�nahmen gegen unbotm�a�ige oder verschollene Benutzer. Das dritte
und vierte Feld speichern die Benutzer- und Gruppennummer. F�unftens folgt das

Kommentar- oder GECOS-Feld (GECOS = General Electric Comprehensive Ope-

rating System, ein historisches Relikt) mit Kommentar, der von Kommandos wie
finger(1) ausgewertet wird. Schlie�lich das Home-Verzeichnis und die Sitzungs-

shell. Letztere darf kein weicher Link sein, sonst gibts Probleme. Der Eintrag in
/etc/group(4) listet nach Gruppennamen und -nummer die zugeh�origen Benut-

zer auf, durch Komma ohne Leerzeichen getrennt. Ein Benutzer kann mehreren

Gruppen angeh�oren. Die Anzahl der Benutzer pro Gruppe ist begrenzt. Die Gren-
ze ist systemabh�angig und liegt bei unseren Maschinen teilweise schon bei etwas

�uber 80 Benutzern, daher keine Riesengruppen planen. Eine zu gro�e Gruppe in
/etc/group(4) f�uhrt dazu, da� das File von dieser Gruppe an nicht mehr gelesen

wird.

Auch UNIX-Kommandos wie who(1) oder date(1) lassen sich als Benutzer
eintragen. Der folgende Eintrag in /etc/passwd(4):

who::90:1:Kommando who:/:/usr/local/bin/who

178 2 UNIX

samt dem zugeh�origen Eintrag in /etc/group(4) erm�oglicht es, sich durch Einga-

be von who als login-Name ohne Passwort eine �Ubersicht �uber die augenblicklich

angemeldeten Benutzer zu verscha�en. Das who aus /usr/local/bin ist eine Va-

riante des urspr�unglichen /bin/who(1) mit einer verl�angerten Dauer der Anzeige:

/bin/who; sleep 8

Solche Kommandos als Benutzer haben keine Sitzungsumgebung, k�onnen also

nicht auf Umgebungsvariable zugreifen. Sie gelten als Sicherheitsl�ucke, wegen des

fehlenden Passwortes. Falls man sie dennoch einrichtet, soll man darauf achten,

da� der aufrufende Benutzer keine M�oglichkeit hat, das Kommando zu verlassen

oder abzubrechen.

Der Benutzer mit Superuser-Rechten, �ublicherweise der System-Manager unter

dem Namen root mit der User-ID 0 (null), ist auf gro�en oder besonders gef�ahr-

deten Anlagen eine Schwachstelle. Ist er ein Schurke, so kann er infolge seiner

Allmacht im System viel anrichten. Es gibt daher Ans�atze, seine Allmacht etwas

aufzuteilen, indem f�ur bestimmte Aufgaben wie das Accounting ein eigener Benut-
zer namens adm eingerichtet wird. Das File /etc/passwd(4) sollte man von Zeit

zu Zeit darauf ansehen, welche Benutzer die User-ID oder Gruppen-ID 0 haben.
Dieser Kreis sollte klein sein und unbedingt ein Passwort haben. Der Eintrag f�ur

den Benutzer root steht meist an erster Stelle. Besch�adigt man ihn durch unvor-
sichtigen Umgang mit dem Editor, kann guter Rat teuer werden. Deshalb haben
wir einen weiteren Benutzer mit der ID 0 unter einem passenden Namen mitten in

dem File angelegt, auf den man ausweichen kann, wenn der root-Eintrag hin�uber
ist. Durch Schaden wird man klug.

Auch w�are es manchmal zweckm�a�ig, einzelne Aufgaben wie das Einrichten
von Benutzern oder das Beenden von Prozessen an Unter-Manager delegieren zu
k�onnen. Man denke an Netze, in denen solche Aufgaben besser vor Ort erledigt

werden. Das herk�ommliche UNIX kennt jedoch nur den einzigen und allm�achtigen
Superuser. Windows NT dagegen besch�aftigt eine Schar von subalternen Mana-

gern unter dem Administrator.

2.12.4 Ger�ateverwaltung

2.12.4.1 Terminals

Alle Peripherieger�ate (Platten, Terminals, Drucker) werden von UNIX als Files

behandelt und erscheinen im Verzeichnis /dev. Dieses Verzeichnis hat einen be-

sonderen Aufbau. Schauen Sie sich es einmal mit ls -l /dev | more an. Das
Kommando zum Eintragen neuer Ger�ate lautet /etc/mknod(1M) oder mksf(1M)

und erwartet als Argument Informationen �uber den Treiber und den Port (Steck-
dose) des Ger�ates. Die Namen der Ger�ate sind der besseren �Ubersicht wegen stan-

dardisiert. /dev/tty ist beispielsweise das Kontroll-Terminal, /dev/null der Bit

Bucket oder Papierkorb. Die ganze Sektion 7 des Referenz-Handbuches ist den
Ger�ate�les gewidmet.

Bei der Einrichtung eines Terminals ist darauf zu achten, da� eine zutref-

fende terminfo(4)-Eintragung verf�ugbar ist. Bei neueren Terminals ist das leider

2.12 Systemverwaltung 179

eine Ausnahme, so da� der System-Manager die Terminalbeschreibung f�ur das

terminfo-Verzeichnis selbst in die H�ande nehmen mu�, zumindest beim ersten

Mal mit Nachdenken verbunden.

Ein UNIX-System arbeitet mit den unterschiedlichsten Terminals zusammen.

Zu diesem Zweck ist eine Beschreibung einer Vielzahl von Terminaltypen in dem

Verzeichnis /usr/lib/terminfo(4) gespeichert (fr�uher in /etc/termcap), und

zwar in einer compilierten Form. Die curses(3)-Funktionen zur Bildschirmsteu-

erung greifen darauf zur�uck und damit auch alle Programme, die von diesen Funk-

tionen Gebrauch machen wie der Editor vi(1).

Der Compiler hei�t tic(1M), der Decompiler untic(1M). Um sich die Be-

schreibung eines Terminals auf den Bildschirm zu holen, gibt man untic(1M) mit

dem Namen des Terminals ein, so wie er in der terminfo steht:

untic vt100

Die Ausgabe sieht so aus:

vt100|vt100-am|dec vt100,

am, xenl,

cols#80, it#8, lines#24, vt#3,

bel=^G, cr=\r, csr=\E[%i%p1%d;%p2%dr, tbc=\E[3g,

clear=\E[H\E[2J, el=\E[K, ed=\E[J, cup=\E[%i%p1%d;%p2%dH,

cud1=\n, home=\E[H, cub1=\b, cuf1=\E[C,

cuu1=\E[A, blink=\E[5m, bold=\E[1m, rev=\E[7m,

smso=\E[7m, smul=\E[4m, sgr0=\E[m, rmso=\E[m,

rmul=\E[m, kbs=\b, kcud1=\EOB, kcub1=\EOD,

kcuf1=\EOC, kcuu1=\EOA, rmkx=\E[?1l\E>, smkx=\E[?1h\E=,

cud=\E[%p1%dB, cub=\E[%p1%dD, cuf=\E[%p1%dC, cuu=\E[%p1%dA,

rs2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h,

rc=\E8, sc=\E7, ind=\n, ri=\EM,

sgr=\E[%?%p1%t;7%;%?%p2%t;4%;%?%p3%t;7%;%?%p4%t;

5%;%?%p6%t;1%;m,

hts=\EH, ht=\t,

Die erste Zeile enth�alt den g�angigen Namen des Terminaltyps, dahinter durch den

senkrechten Strich abgetrennt weitere Namen (Aliases), als letzten die vollst�andige
Typbezeichnung. Die weiteren Zeilen geben die Eigenschaften (capabilities) des

Typs an, eingeteilt in drei Klassen

� Boolesche Variable, das sind Eigenschaften, die entweder vorhanden sind

oder nicht,

� Zahlenwerte wie die Anzahl der Zeilen und Spalten,

� Strings, das sind vielfach Steuersequenzen (Escapes).

Die Bedeutung der einzelnen Abk�urzungen entnimmt man terminfo(4), hier nur

einige Beispiele:

� am Terminal has automatic margins (soll hei�en: wenn man �uber den rechten

Rand hinaus schreibt, wechselt es automatisch in die n�achste Zeile),

180 2 UNIX

� xenl Newline ignored after 80 columns (wenn man nach 80 Zeichen ein

newline eintippt, wird es ignoriert, weil automatisch eines eingef�ugt wird,

siehe oben),

� cols#80 Number of columns in a line (80 Spalten),

� it#8 Tabs initially every 8 spaces (Tabulatoren),

� lines#24 Number of lines on screen or page (24 Zeilen),

� vt#3 Virtual terminal number,

� bel=^G Audible signal (die Zeichenfolge, welche die Glocke erschallen l�a�t,

control-g, ASCII-Zeichen Nr. 7),

� tbc=\E[3g Clear all tab stops (die Zeichenfolge, die alle Tabulatoren l�oscht,

ESCAPE, linke eckige Klammer, 3, g),

� clear=\E[H\E[2J Clear screen and home cursor (die Zeichenfolge, die den

Bildschirm putzt und den Cursor in die linke obere Ecke bringt, ESCAPE,

linke eckige Klammer, H, nochmal ESCAPE, linke eckige Klammer, 2, J),

� kcud1=\E0B Sent by terminal down arrow key (die Zeichenfolge, die die
Cursortaste Pfeil nach unten abschickt, mu� nicht notwendig mit der Zei-

chenfolge �ubereinstimmen, die den Cursor zu der entsprechenden Bewegung
veranla�t),

� sgr=\E[%?.... De�ne the video attributes,

� cup=\E[%i%p1%d;%p2%dH Screen relative cursor motion row #1 column #2
(Cursorpositionierung nach Bildschirmkoordinaten)

In termio(4) �ndet man rund 200 solcher Eigenschaften erl�autert; Farbe, Gra-
�k und Maus fehlen. Der Zusammenhang zwischen den knappen Erkl�arungen im

Referenz-Handbuch und der Beschreibung im Terminal-Handbuch ist manchmal
dunkel und bedarf der Kl�arung durch das Experiment. Man geht am besten von
der Beschreibung eines �ahnlichen Terminals aus, streicht alles, was man nicht ver-

steht und nimmt Schritt um Schritt eine Eigenschaft hinzu. Eine falsche Beschrei-
bung macht mehr �Arger als eine unvollst�andige. Wenn die Kommandos vi(1) und

more(1) oder pg(1) richtig arbeiten, stimmt wahrscheinlich auch die Terminal-

beschreibung.

Die mit einem Editor verfa�te Beschreibung wird mit tic(1M) compiliert,
anschlie�end werden die Zugri�srechte in der terminfo auf 644 gesetzt, damit die

Menschheit auch etwas davon hat.

2.12.5 Einrichten von D�amonen

D�amonen sind Prozesse, die im System st�andig laufen oder periodisch aufge-

rufen werden und nicht an ein Kontrollterminal gebunden sind. In der Liste der

Prozesse erscheint daher bei der Angabe des Terminals ein Fragezeichen. Die mei-

sten werden beim Systemstart ins Leben gerufen und haben infolgedessen niedrige

Prozess-IDs.

2.12 Systemverwaltung 181

Einige D�amonen werden von der Bootprozedur gestartet, einige von init(1M)

aufgrund von Eintragungen in der inittab(4) und einige durch einen Aufruf im

Shellscript /etc/rc samt Unterscripts oder in .profile. Die Shellscripts kann

der System-Manager editieren und so �uber die Bev�olkerung seines Systems mit

D�amonen entscheiden. Der Anschlu� ans Netz bringt eine gr�o�ere Anzahl von

D�amonen mit sich.

In unserem System walten nach der Auskunft von ps -e folgende D�amonen,

geordnet nach ihrer PID:

� swappermit der PID 0 (keine Vorfahren) besorgt den Datenverkehr zwischen

Arbeitsspeicher und Platte.

� init(1M) mit der PID 1 ist der Urahne fast aller �ubrigen Prozesse und

arbeitet die inittab(4) ab.

� pagedaemon beobachtet den Pegel im Arbeitsspeicher und lagert bei �Uber-

schwemmungsgefahr Prozesse auf die Platte aus.

� statdaemon geh�ort zu den ersten D�amonen auf dem System, weshalb wir
vermuten, da� er etwas mit dem Filesystem zu tun hat.

� syncer(1M) ruft periodisch { in der Regel alle 30 Sekunden { den System-
aufruf sync(2) auf und bringt das File-System auf den neuesten Stand.

� lpsched(1M) ist der Line Printer Spooler und verwaltet die Drucker- und

Plotter-Warteschlangen.

� rlbdaemon(1M) geh�ort in die LAN/9000-Familie und wird f�ur Remote Loop-
back Diagnostics mittels rlb(1M) ben�otigt.

� sockregd dient der Network Interprocess Communication.

� syslogd(1M) schreibt Mitteilungen des Systemkerns auf die Konsole, in be-
stimmte Files oder zu einer anderen Maschine.

� rwhod(1M) beantwortet Anfragen der Kommandos rwho(1) und
ruptime(1).

� inetd(1M) ist der ARPA-Oberd�amon, der an dem Tor zum Netz

wacht und eine Schar von Unterd�amonen wie ftpd(1M) befehligt, siehe
/etc/inetd.conf und /etc/services(4).

� sendmail(1M) ist der Simple Mail Transfer Protocol D�amon { auch aus der

ARPA-Familie { und Voraussetzung f�ur Email im Netz.

� portmap(1M), nfsd(1M), biod(1M) usw. sind die D�amonen, die das Network
File System betreiben, so da� Filesysteme �uber das Netz gemountet werden

k�onnen (in beiden Richtungen).

� cron(1M) ist der D�amon mit der Armbanduhr, der p�unktlich die Auftr�age

aus der crontab und die mit at(1) versehenen Programmaufrufe erledigt.

� ptydaemon stellt Pseudo-Terminals f�ur Prozesse bereit.

� delog(1M) ist der Diagnostic Event Logger f�ur das I/O-Subsystem.

182 2 UNIX

Wenn Sie dies lesen, sind es vermutlich schon wieder ein paar mehr geworden. Die

Netzdienste und das X Window System bringen ganze Scharen von D�amonen mit.

Unser j�ungster Zugang ist der Festplatten-Bestell-D�amon fbd(1M), der automa-

tisch bei unserem Lieferanten eine weitere Festplatte per Email bestellt, wenn das

Kommando df(1) anzeigt, da� eine Platte �uberzulaufen droht.

2.12.6 St�orungen und Fehler

Das Beheben von St�orungen und Beseitigen von Fehlern ist das t�agliche Brot ei-

nes System-Managers. Ein so komplexes Gebilde wie ein heterogenes Netz, das

st�andig im Wandel begri�en ist, erfordert (noch) die dauernde Betreuung durch

hochintelligente Lebensformen, die mit unvorhergesehenen Situationen fertig wer-

den. Wir k�onnen nur einige allgemeine Hinweise geben, die f�ur Hard- und Software

gleicherma�en gelten:

� Ursache und Auswirkung eines Fehlers k�onnen meilenweit auseinander lie-

gen, bildlich gesprochen.

� Die meisten Fehlermeldungen sagen nichts oder f�uhren in die Irre. Nur da�

etwas faul ist, darf man glauben.

� Viel lesen. Manchmal �ndet sich ein Hinweis unter einer �Uberschrift, die
dem Anschein nach nichts mit dem Fehler zu tun hat.

� Nachdem man gelesen hat, darf man auch fragen. Vielleicht hat ein Leidens-
genosse schon mit dem gleichen Fehler gerungen.

� Sich niemals auf eine einzige Fehlerursache versteifen.

2.12.7 P
ege des File-Systems

Das File-System kann durch Stromausf�alle und �ahnliche Unregelm�a�igkeiten

fehlerhaft (korrupt) werden und wird mit Sicherheit nach einiger Zeit �uber
�ussige
Daten enthalten. Nahezu volle File-Systeme geben leicht Anla� zu St�orungen.
Deshalb ist eine P
ege notwendig.

Den F�ullstand der File-Systeme ermittelt man mit dem Kommando df(1M)

oder bdf(1M). Zum Erkennen und Beseitigen von Fehlern dient das Kommando

/etc/fsck(1M). Ohne Optionen oder Argumente aufgerufen �uberpr�uft es die im

File /etc/checklist(4) aufgelisteten File-Systeme und erfragt bei Fehlern die
Rettungsma�nahmen. Da dem durchschnittlichen System-Manager kaum etwas

anderes �ubrig bleibt als die Vorschl�age von fsck(1M) anzunehmen, kann man die
zustimmende Antwort auch gleich als Option mitgeben und fsck -y eintippen.

Eine Reparatur von Hand kann zwar im Prinzip mehr Daten retten als die Repa-

ratur durch fsck(1M), setzt aber eine gr�undliche Kenntnis des File-Systems und
der Plattenorganisation voraus. Meistens vergr�o�ert man den Schaden noch. Bei

der Anwendung von fsck(1M) soll das System in Ruhe, das hei�t im Single User

Modus sein. In der Regel f�uhrt man die Pr�ufung vor einem gr�o�eren Backup und
beim Booten durch.

Das Aufsp�uren �uber
�ussiger Files erfordert eine regelm�a�ige, wenigstens

w�ochentliche Beobachtung, wobei der cron(1M) hilft. Files mit Namen wie

2.12 Systemverwaltung 183

core(4), a.out(4) oder *.bit werden �ublicherweise nicht f�ur eine l�angere Zeit

ben�otigt und sollten automatisch gel�oscht werden. Files, auf die seit einem Monat

nicht zugegri�en wurde, geh�oren nicht auf die kostbare Platte; mit

find -atime +32 -print

aufsp�uren und die Benutzer bitten, sich ein anderes Medium zu suchen. Es kommt

auch vor, da� Benutzer verschwinden, ohne sich beim System-Manager abzumel-

den. Dies l�a�t sich mittels last(1) oder des Accounting Systems feststellen.

Schlie�lich sollte man die Gr�o�e aller Files und Verzeichnisse �uberwachen. Ei-

nige Protokoll�les des Systems wachsen unbegrenzt und m�ussen von Zeit zu Zeit

von Hand bereinigt werden. Auch sind sich manche Benutzer der Knappheit des

Massenspeichers nicht bewu�t. Mit

find -size +n -print

lassen sich alle Files ermitteln, deren Gr�o�e �uber n Bl�ocken liegt, mit folgendem
Script die Gr�o�e aller Home-Verzeichnisse, sortiert nach der Anzahl der Bl�ocke:

Script Uebersicht Home-Directories

print 'Home-Directories, Groesse in Bloecken\n'

{
cd /mnt
for dir in `ls .`
do
du -s $dir
done
} | sort -nr

print '\nEnde, ' `date`

Programm 2.40 : Shellscript zur Ermittlung der Gr�o�e aller Home-Verzeichnisse

Mittels du(1) kann man auch in dem Script /etc/profile, das f�ur jeden
Benutzer beim Anmelden aufgerufen wird, eine Ermittlung und Begrenzung der

Gr�o�e des Home-Verzeichnisses erzielen. Auf neueren Systemen �ndet man auch
einen fertigen Quoten-Mechanismus, siehe quota(1) und quota(5).

2.12.8 Weitere Dienstleistungen

Zu den P
ichten der System-Manager geh�oren weiterhin die Bescha�ung und P
e-

ge der Handb�ucher auf Papier oder als CD-ROM, das Herausdestillieren von
benutzerfreundlichen Kurzfassungen (Quick Guides), das Schreiben oder Her-

beischa�en (GNU!) von Werkzeugen in /usr/local/bin, Konvertierungen aller

denkbaren Datenformate ineinander, das Beobachten der technischen Entwick-
lung und des Marktes, der Kontakt zum Hersteller der Anlage, das Einrichten

von Software wie Webservern, Datenbanken oder LaTeX usw. sowie das Beraten

und Tr�osten der Benutzer.

184 2 UNIX

Eine Anlage wird mit einer durchschnittlichen Kon�guration in Betrieb genom-

men. Es kann sich im Lauf der Zeit herausstellen, da� die Aufgaben grunds�atzlich

oder zu gewissen Zeiten mit einer angepa�ten Kon�guration { unter Umst�anden

nach einer Erg�anzung der Hard- oder Software { schneller zu bew�altigen sind. Bei-

spielsweise �uberwiegt tags der Dialog mit vielen kurzen Prozessoranforderungen,

nachts der Batch-Betrieb mit rechenintensiven Prozessen. Die Auslastung der Ma-

schine zeigt das Werkzeug top(1) oder ein eigenes Programm unter Verwendung

des Systemaufrufs pstat(2) an.

2.12.9 Accounting System

Das Accounting System ist die Buchhaltung des Systems, der Buchhalter ist

der Benutzer adm, oft aber nicht notwendig derselbe Mensch wie root. Die zu-

geh�origen Prozesse werden durch das Kommando /usr/lib/acct/startup(1M),

zu �nden unter acctsh(1M), im File /etc/rc in Gang gesetzt. Das Gegenst�uck

/usr/lib/acct/shutacct(1M) ist Teil des Shellscripts shutdown(1M). Das Ac-

counting System erf�ullt drei Aufgaben:

� Es liefert eine Statistik, deren Auswertung die Leistung des Systems verbes-

sert.

� Es erm�oglicht das Aufsp�uren von B�osewichtern, die die Anlage mi�brauchen.

� Es erstellt die Abrechnung bei Anlagen, die gegen Entgelt rechnen.

Zu diesem Zweck werden bei der Beendigung eines jeden Prozesses die zugeh�ori-
gen statistischen Daten wie Zeitpunkt von Start und Ende, Besitzer, CPU- und

Plattennutzung usw. in ein File geschrieben, siehe acct(4). Das ist eine Unmenge
von Daten, die man sich selten unmittelbar ansieht. Zu dem Accounting System
geh�oren daher Werkzeuge, die diese Daten auswerten und komprimieren, siehe

acct(1M). Man kann sich dann eine t�agliche, w�ochentliche oder monatliche �Uber-
sicht, geordnet nach verschiedenen Kriterien, ausgeben lassen. F�ur das Gr�obste

nehmen wir den cron(1M); das crontab-File des Benutzers adm sieht so aus:

30 23 * * 0-6 /usr/lib/acct/runacct 2> /usr/adm/acct/nite/fd2log &

10 01 * * 0,3 /usr/lib/acct/dodisk

20 * * * * /usr/lib/ckpacct

30 01 1 * * /usr/lib/acct/monacct

45 23 * * * /usr/lib/acct/acctcom -l tty2p4 | mail root

Das File wird mit dem Kommando crontab(1) compiliert. Im einzelnen bewirken
die Zeilen

� runacct(1M) ist ein Shellscript, das t�aglich ausgef�uhrt wird und den Tages-
verlauf in verschiedenen Files zusammenfa�t.

� dodisk(1M), beschrieben unter acctsh(1M), ermittelt die Plattenbelegung

zu den angegebenen Zeitpunkten (sonntags, mittwochs), um Ausgangsdaten
f�ur die mittlere Belegung bei der Monatsabrechnung zu haben.

2.12 Systemverwaltung 185

� ckpacct(1M), beschrieben unter acctsh(1M), �uberpr�uft st�undlich die Gr�o�e

des Protokoll�les /usr/adm/pacct, in das jeder Prozess eingetragen wird,

und ergreift bei �Uberschreiten einer Grenze geeignete Vorkehrungen.

� monacct(1M), beschrieben unter acctsh(1M), stellt die Monatsabrechnung

in einem File /usr/adm/acct/fiscal/fiscrpt zusammen, das gelesen oder

gedruckt werden kann.

� acctcom(1M) protokolliert die Prozesse des Terminals /dev/tty2p4, wohin-

ter sich unser Modem verbirgt. Eine Sicherheitsma�nahme.

Weiteres kann man im Referenz-Handbuch und vor allem im System Administra-

tor's Manual nachlesen. Nicht mehr aufzeichnen, als man auch auswertet, Altpa-

pier gibt es schon genug.

2.12.10 Sicherheit

Zur Sicherheit geh�oren drei Bereiche:

� die Betriebssicherheit oder Verf�ugbarkeit des Systems,

� der Schutz der Daten vor Verlust oder Besch�adigung (Datensicherheit
oder Datenintegrit�at),

� der Schutz personenbezogener oder sonstwie vertraulicher Daten vor Mi�-

brauch (Datenschutz oder Datenvertraulichkeit).

In allen drei Bereichen sind Ma�nahmen auf der Hard- und der Softwareseite
erforderlich. Bei hohen Anforderungen erstrecken sich die Ma�nahmen auch auf

Geb�aude, Personen und Organisationsstrukturen. Besonderen Wert lege man auf
die Auswahl und P
ege der System-Manager.

2.12.10.1 Betriebssicherheit

Ma�nahmen zur Betriebssicherheit stellen das ordnungsgem�a�e Funktionieren des
Systems sicher. Dazu geh�oren:

� Scha�ung von Ausweichm�oglichkeiten bei Hardwarest�orungen

� Sicherung der Stromversorgung

� Vermeidung von Staub in den EDV-R�aumen, Rauchverbot

� Vermeidung von elektrostatischen Au
adungen

� Klimatisierung der EDV-R�aume, zumindest Temperierung

� vorbeugende Wartung der Hardware (Filter!) und der Klimaanlage

� vorbeugendes Auswechseln hochbeanspruchter Teile (Festplatten)

� Vorbereitung von Programmen oder Skripts zur Beseitigung von Softwa-

rest�orungen

� regelm�a�iges (z. B. w�ochentliches) Rebooten der Anlage

� Protokollieren und Analysieren von St�orungen

186 2 UNIX

� �Uberwachung des Zugangs zu kritischen Systemteilen

� �Uberwachung des Netzverkehrs, Beseitigung von Engp�assen

� Kenntnisse der Systemverwaltung bei mehreren, aber nicht zu vielen Mitar-

beitern

Wir setzen teilweise PC-Hardware f�ur zentrale Aufgaben ein und achten darauf,

da� die Geh�ause ger�aumig sind und mehrere L�ufter haben. Einfache L�ufter tau-

schen wir gegen kugelgelagerte L�ufter aus dem Schwarzwald. Ferner entstauben

wir Computer und Drucker mindestens einmal im Jahr (Osterputz). Festplatten,

die im Dauerbetrieb laufen, wechseln wir nach drei Jahren aus. Dann sind sie

auch technisch �uberholt; in weniger beanspruchten Computern tun sie noch einige

Zeit Dienst. Ein Sorgenkind sind die winzigen L�ufter auf den Prozessoren. Eine

Zeitlang haben wir sie gegen gro�e statische K�uhlk�orper getauscht. Das setzt vor-

aus, da� man sich mittels Temperaturmessungen �uber die Erw�armung Klarheit

verscha�t. Hohe Temperaturen f�uhren sowohl bei mechanischen wie bei elektro-

nischen Bauteilen zun�achst nicht zum Ausfall, sondern setzen die Lebensdauer
herab und verursachen gelegentliche St�orungen, die unangenehmer sind als ein

klarer Defekt.

Bei ausgereiften Einzelsystemen erreicht man heute eine Verf�ugbarkeit von

etwa 99 %. Das sind immer noch drei bis vier Fehltage im Jahr. Nach Murphy's
Law sind das die Tage, an denen man den Computer am dringendsten braucht.
H�ohere Verf�ugbarkeit erfordern besondere Ma�nahmen wie mehrfach vorhandene,

parallel arbeitende Hard- und Software. Damit erreicht man zu entsprechenden
Kosten Verf�ugbarkeiten bis zu etwa 99,999 % gleich f�unf Fehlminuten pro Jahr26.

2.12.10.2 Datensicherheit

Auch bei einer gut funktionierenden Anlage gehen Daten verloren. H�au�gste Ur-
sache sind Fehler der Benutzer wie versehentliches L�oschen von Files.

Versehentliches L�oschen Das L�oschkommando rm(1) fragt nicht, sondern
handelt. Kopierkommandos wie cp(1) l�oschen oder �uberschreiben stillschweigend

das Ziel�le. Eine R�ucknahme des Kommandos mit undelete oder �ahnlichen Werk-

zeugen wie vom PC bekannt gibt es nicht. Will man vorsichtig sein, ruft man es
grunds�atzlich interaktiv auf, Option - i. Traut der System-Manager seinen Be-

nutzern nicht, benennt er das Original um und verpackt es mit besagter Option
in ein Shellscript oder Alias namens rm. Man kann auch aus dem L�oschen ein

Verschieben in ein besonderes Verzeichnis machen, dessen Files nach einer be-

stimmten Frist vom cron endg�ultig gel�oscht werden, aber das kostet Platz auf der
Platte. Gehen dennoch Daten verloren, bleibt die Ho�nung aufs Backup.

Passw�orter Die Passw�orter sind der Schl�ussel zum System. Da die Benutzer-

namen �o�entlich zug�anglich sind, sind jene der einzige Schutz vor Mi�brauch.
Besonders reizvoll ist das Passwort des System-Managers, der bekanntlich den

26Welche Verf�ugbarkeit haben Organe wie Herz oder Hirn?

2.12 Systemverwaltung 187

Namen root f�uhrt. Das root-Passwort sollte nie unverschl�usselt �uber ein Netz

laufen, sondern nur auf der Konsole eingegeben werden. Die einfachsten und daher

h�au�gsten Angri�e zielen auf Passw�orter ab, und oft haben sie wegen Schlampe-

rei im Umgang mit den Passw�ortern Erfolg. Eine internationale Gruselgeschichte

baut darauf auf, da� ein Hacker das Passwort der root erraten hat.

Ein Passwort darf nicht zu einfach aufgebaut und leicht zu erraten sein. UNIX

verlangt sechs bis acht Zeichen, davon mindestens zwei Buchstaben und eine Zif-

fer oder ein Satzzeichen. Ferner kann der System-Manager einen Automatismus

einrichten, der die Benutzer zwingt, sich in regelm�a�igen Zeitabst�anden ein neues

Passwort zu geben (password aging). Das hat aber auch Nachteile. So habe ich

noch meine vor Jahren g�ultigen Passw�orter im Kopf, selten jedoch meine neuesten.

Ein Passwort soll nicht aus allgemein bekannten Eigenschaften des Benutzers

oder des Systems erraten werden k�onnen oder ein Wort aus einem W�orterbuch

oder der bekannteren Literatur sein. Folgende Passw�orter sind leicht zu erraten,

inzwischen ohne M�uhe per Programm, und daher verp�ont:

� b�urgerlicher Vor- oder Nachname (w alex), �Ubernamen (oldstormy),

� Namen von nahen Verwandten (rainer),

� Namen von Haustieren (hansi),

� Namen von Freunden, Freundinnen, Kollegen, Sportkameraden (ste�g),

� Namen bekannter Pers�onlichkeiten (thmann),

� Namen von bekannten Roman�guren (hamlet, winnetou, slartibartfast),

� Namen von Betriebssystemen oder Computern (Unix, pclinux),

� Telefonnummern, Autokennzeichen, Postleitzahlen, Jahreszahlen (1972),

� Geburtstage, historische Daten (issos333),

� W�orter aus W�orterb�uchern, insbesondere englischen oder deutschen,

� Benutzernamen oder Gruppennamen auf Computern (owner, student),

� Orts-, P
anzen- oder Tierbezeichnungen (karlsruhe, drosophila),

� Substantive jeder Sprache,

� nebeneinanderliegende Zeichenfolgen der Tastatur (qwertyu),

� einfache, wenn auch sinnlose, Kombinationen aus Buchstaben, Zi�ern oder

Satzzeichen (aaAAbbBB),

� etwas aus obiger Aufz�ahlung mit vorangestellter oder angeh�angter Zi�er

(3anita),

� etwas aus obiger Aufz�ahlung r�uckw�arts oder abwechselnd gro� und klein

geschrieben.

Ein zuf�allig zusammengew�urfeltes Passwort l�a�t sich nicht merken und f�uhrt da-
zu, da� man einen Zettel ans Terminal klebt oder unter die Schreibunterlage legt.

Eine brauchbare Methode ist, einen Satz (eine Gedichtzeile oder einen Bibelvers)

auswendig zu lernen und das Passwort aus den Anfangsbuchstaben der W�orter zu

188 2 UNIX

bilden oder zwei W�orter mit einer Primzahl zu mischen. Auch der Roman Finne-

gans Wake von James Joyce gibt gute Passw�orter her, weil ihn kaum jemand

liest. Ein Passwort wie gno596meosulphidosalamermauderman { die Zi�ern sind

die Seitenzahl { treibt jeden Cracker in den Wahnsinn. Und schlie�lich beherzige

man den Rat unserer Altvordern27

Selber wisse mans,

nicht sonst noch jemand,

das Dorf wei�, was drei wissen.

Bedenken Sie, es sind nicht nur Ihre Daten, die gef�ahrdet sind, sondern die ganze

Maschine ist kompromittiert und m�oglicherweise die Bresche f�ur weitere Angri�e,

falls Sie ein zu einfaches Passwort verwenden. Es gibt Programme wie crack oder

satan, die einfache Passw�orter heraus�nden und so dem System-Manager helfen,

leichtsinnige Benutzer zu ermitteln.

Einige Versuche, an Passw�orter zu gelangen, sind in die Literatur eingegan-

gen. Der simpelste Trick ist, einem Benutzer beim Einloggen zuzuschauen. Auch

in Papierk�orben �ndet man Zettel mit Passw�ortern. Einem intelligenten UNIX-
Liebhaber angemessener sind Programme, die als Trojanische Pferde28 bekannt
sind. Vom Chaos Computer Club, Hamburg soll folgende De�nition stammen: Ein

Trojanisches Pferd ist ein Computerprogramm, welches in einen fremden Stall
(Computer) gestellt wird und bei F�utterung mit dem richtigen Kennwort alle

Tore �o�net.
Ein solches Programm startet man aus seiner Sitzung. Es schreibt die �ubliche

Au�orderung zum Einloggen auf den Bildschirm und wartet auf ein Opfer. Dieses

tippt nichtsahnend seinen Namen und sein Passwort ein, das Pferd schreibt beides
in ein File und verabschiedet sich mit der Meldung login incorrect. Daraufhin

meldet sich der ordnungsgem�a�e getty-Prozess, und das Opfer { in dem Glauben,
sich beim erstenmal vertippt zu haben { wiederholt seine Anmeldung, diesmal mit
Erfolg. Ein Trojanisches Pferd ist einfach zu schreiben:

27Leider k�onnen wir Ihnen hier nur die �Ubersetzung von Felix Genzmer bieten, der

Suche nach der originalen Fassung war noch kein Erfolg verg�onnt, aber wir sind dank

http:

www.lysator.liu.se/runeberg/eddais/on-02.html nahe dran. Vermutlich liegen

dem Ratschlag folgende Zeilen zu Grunde:

Einn vita

n�e annar skal,

thj�oth veit ef thr�ir eru.

28Die De�nition des urspr�unglichen Trojanischen Pferdes ist nachzulesen in Homers

Odyssee im 8. Gesang (hier in der �Ubertragung von Johann Heinrich Voss):

Fahre nun fort und singe des h�olzernen Rosses Er�ndung,

Welches Epeios baute mit Hilfe der Pallas Athene

Und zum Betrug in die Burg einf�uhrte der edle Odysseus,

Mit bewa�neten M�annern gef�ullt, die Troja bezwangen.

...

2.12 Systemverwaltung 189

/* Trojanisches Pferd */
/* Filename horse.c, Compileraufruf cc -o horse horse.c */

#define PROMPT0 "UNIX\n"
#define PROMPT1 "HP-login: "
#define PROMPT2 "Passwort: "

#define CLEAR "\033H\033J" /* Escapes fuer HP */
#define INVIS "\033&dS\033*dR"
#define VISIB "\033&d@\033*dQ"

#include <stdio.h>
#include <sys/ioctl.h>
#include <signal.h>

main()
{
char name[32], pwort[32], zucker[8];
unsigned long sleep();

signal(SIGINT, SIG IGN);
signal(SIGQUIT, SIG IGN);

printf(CLEAR);
printf(PROMPT0);

while (strlen(name) == 0) {
printf(PROMPT1);
gets(name);

}

printf(PROMPT2);
printf(INVIS);
gets(pwort);
printf(VISIB);

sleep((unsigned long) 2);

printf("\nIhr Name ist %s.\n", name);
printf("Ihr Passwort lautet %s.\n", pwort);
printf("\nIch werde gleich Ihre Daten fressen,\n");
printf("falls Sie mir keinen Zucker geben!\n\n");
scanf("%s", zucker);
if (strcmp("Zucker", zucker) == 0)

kill(0, 9);
else {

printf("\nDas war kein Zucker!\n");
kill(0, 9);

}
}

Programm 2.41 : C-Programm Trojanisches Pferd

Denken Sie einmal dar�uber nach, wie Sie sich als Benutzer verhalten k�onnen,

190 2 UNIX

um aus diesem Gaul ein Cheval �evanoui zu machen.

Was tut der System-Manager, wenn er sein wertvolles Passwort vergessen hat?

Er bewahrt die Ruhe und veranla�t das System durch vor�ubergehenden Entzug

des Starkstroms zum Booten. W�ahrend des Bootvorgangs kann man vom �ublichen

automatischen Modus in den interaktiven Modus wechseln. In diesem be�ehlt er

dem System, unabh�angig von dem Eintrag in /etc/inittab(4) im Single-User-

Modus zu starten. Nach Vollendung des Bootens l�auft auf der Konsole eine Sit-

zung des Superusers, ohne Passwort. Einzige Voraussetzung f�ur diesen Trick ist

der Zugang zur Konsole. Man sollte daher die Konsole und s�amtliche Verbindun-

gen zu ihr sorgf�altig vor unbefugten Zugri�en sch�utzen. Auch diesen Trick kann

man abstellen, dann bedeutet aber der Passwortverlust eine Neueinrichtung des

Systems.

Viren Unter dem Schlagwort Viren werden mehrere Arten von Programmen

zusammengefa�t, die die Arbeit der Anlage st�oren (malicious software). Die PC-

Welt wimmelt von Viren, entsprechend der Verbreitung dieses Computertyps. Eine
bekannte Virenliste (MacAfee) z�ahlte Anfang 1994 �uber 2700 Viren f�ur PCs unter
MS-DOS auf, darunter so poetische Namen wie Abraxas, Black Monday, Cinde-

rella, Einstein, Halloechen, Mexican Mud, Particle Man, Silly Willy, Tequila und
Vienna. Die Betro�enen haben vor�ubergehend weniger Sinn f�ur Poesie.

UNIX-Systeme sind zum Gl�uck nicht so bedroht wie PCs. Das h�angt unter
anderem mit ihrer Komplexit�at zusammen. Daf�ur ist der Schaden meist betr�acht-
licher. Die System-Manager stecken in dem Zwiespalt zwischen dem v�olligen Dicht-

machen des Systems und der UNIX-�ublichen und pers�onlichen Veranlagung ent-
sprechenden Welto�enheit. Aufpassen mu� man bei UNIX-PCs mit Diskettenlauf-

werk, die beim Booten zuerst nach einer bootf�ahigen Diskette suchen. Finden sie
eine solche, und die ist verseucht, dann kann trotz UNIX allerhand passieren.

Au�er den bereits erw�ahnten Trojanischen Pferden geh�oren Logische

Bomben dazu. Das sind Programme, die auf ein bestimmtes Ereignis hin den
Betrieb st�oren. Das Ereignis ist ein Zeitpunkt oder der Aufruf eines legalen Pro-

grammes.

Fallt�uren oder Trap Doors sind Nebenzug�ange zu Daten oder Programmen

unter Umgehung der ordnungsgem�a�en Sicherheitsvorkehrungen. Diese Fallt�uren

k�onnen von b�oswilligen Programmierern eingerichtet worden sein, gelegentlich
aber auch zur Erleichterung der Arbeit des Systempersonals. Nat�urlich sollten

in diesem Fall die Nebenzug�ange nicht allgemein bekannt sein, aber l�a�t sich das
mit Sicherheit verhindern?

W�urmer sind Programme, die sich selbst vermehren und insbesondere �uber

Datennetze ausbreiten. Ihr Schaden liegt im wesentlichen in der Belegung der

Ressourcen. Im Internet ist vor einigen Jahren ein Wurm namens Morris (nach
seinem Sch�opfer) ber�uhmt geworden.

Echte Viren sind Befehlsfolgen innerhalb eines ansonsten legalen Program-

mes (Wirtprogramm), die in der Lage sind, sich selbst in andere Programme zu
kopieren, sobald das Wirtprogramm ausgef�uhrt wird. Sofort oder beim Eintre-

ten bestimmter Ereignisse (zum Beispiel freitags) o�enbaren sie sich durch eine

St�orung des Betriebes. Die besondere Heimt�ucke der Viren liegt in ihrer zun�achst

2.12 Systemverwaltung 191

unbemerkten Verbreitung.

Viren kommen von au�en mit befallenen Programmen, die �uber Disketten,

B�ander oder Netze ins System kopiert werden. Die erste Gegenma�nahme ist also

Vorsicht bei allen Programmen, die eingespielt werden sollen. Niemals auf wichti-

gen Computern Programme zweifelhafter Herkunft ausf�uhren, am besten gar nicht

erst dorthin kopieren. Texte, Programme im Quellcode, Me�daten und dergleichen

sind passive Daten, k�onnen nicht wie ein Programm ausgef�uhrt werden und daher

auch keinen Virus verbreiten. Das Lesen einer Email oder eines sonstigen Tex-

tes kann niemals einen Virus verbreiten oder aktivieren. Es gibt aber au�erhalb

der UNIX-Welt Textsysteme, die in Text ausf�uhrbare Programmteile (Makros)

einbinden und so mit einem scheinbar harmlosen Text Viren verbreiten k�onnen.

Leseprogramme, die ohne vorherige R�uckfrage solche Makros ausf�uhren, geh�oren

abgeschossen. Anh�ange (attachments) an Email enthalten beliebige bin�are Daten,

deren Ausf�uhrung { nicht Lesen { wie die Ausf�uhrung jedes anderen Programmes

Viren verbreiten kann.

Die zweite Ma�nahme ist der Einsatz von Viren-Scannern, die die bekann-
testen Viren erkennen und Alarm schlagen. Da sie ausf�uhrbare Programme auf

bestimmte Zeichenfolgen untersuchen, die typisch f�ur die bisher bekannten Viren
sind, sind sie gegen�uber neuen Viren oft blind.

Drittens kann man alle ausf�uhrbaren Files mit Pr�ufsummen oder �ahnlichen
Schutzmechanismen versehen. Stimmt eine Pr�ufsumme �uberraschenderweise nicht

mehr, ist das File manipuliert worden.

Viertens kann man alle ausf�uhrbaren Files verschl�usseln oder komprimieren.

Der Virus, der das verschl�usselte File bef�allt, wird beim Entschl�usseln ver�andert.
Damit ist das Programm nicht mehr ablauff�ahig, der Virus ist lahmgelegt.

F�unftens sollten die Benutzer in den Verzeichnissen, in denen ausf�uhrbare
Programme gehalten werden (/bin, /usr/bin, /usr/local/bin, /etc), keine
Schreibberechtigung haben. Nur der System-Manager darf dort nach gr�undlicher

Untersuchung in einer Quarant�anestation neue Programme einf�ugen. Bewahren
Sie au�erdem die Originale aller Programme sorgf�altig auf und lesen sie die Da-

tentr�ager nur schreibgesch�utzt ein. Viren auf Originalen sind auch schon vorge-
kommen. Das gleiche gilt f�ur Backups. Alle Zugri�srechte sollten nicht gro�z�ugiger
vergeben werden als die Arbeit erfordert.

Pseudo-Viren sind Programme, die einem Viren-Suchprogramm einen echten

Virus vorgaukeln, ansonsten aber harmlos sind. Sie enthalten f�ur Viren typische

Bitfolgen. Im Unterschied zu einem Virus, der immer Teil des verseuchten Wirt-

programmes ist, ist ein Pseudo-Virus ein eigenst�andiges Programm.

Und dann gibt es noch Viren, die es gar nicht gibt. Im Netz vagabundieren
{ zum Teil seit Jahren { nur Warnungen davor, die jeder Grundlage entbehren.

Diese Warnungen werden alsHoax bezeichnet, was Schwindel oder blinder Alarm

bedeutet. Beispielweise soll eine Email mit dem Subject Good Times beim Gele-
senwerden die Platte ruinieren. Man m�oge sie ungelesen l�oschen und die Warnung

an alle Bekannten weitergeben. Dieser Hoax ist so bekannt, da� sogar eine FAQ
dazu im Netz steht. Der Schaden eines Hoax liegt in der Bel�astigung der Netzteil-

nehmer. In diesem Sinne ist ein Hoax selbst ein Virus, aber kein Computervirus.

Woran erkennt man eine Virenwarnung als Hoax? In obigem Fall daran, da�

192 2 UNIX

technischer Unsinn verzapft wird. Zweitens gibt es im Netz Stellen, die sich in-

tensiv mit Viren befassen und meist fr�uher informiert sind als die Mehrheit der

Benutzer. Warnungen solcher Stellen { aus erster Hand und nicht �uber zweifelhaf-

te Umwege { sind ernst zu nehmen, alles andere sollte einen Benutzer nur dazu

bringen, seine Sicherheitsma�nahmen zu �uberdenken, mehr nicht. Solche Stellen

sind:

� die Computer Incident Advisory Capability (CIAC) des US Department of

Energy (http://ciac.llnl.gov/),

� das Computer Emergency Response Team (CERT) Coordination Center an

der Carnegie-Mellon-Universit�at (http://www.cert.org/),

� das DFN-CERT (http://www.cert.dfn.de/).

Auch Virenscanner-Hersteller wie:

� McAfee (http://www.mcafee.com/),

� Datafellows (http://www.datafellows.fi/)

sind zuverl�assige Informationsqellen und immer einen Besuch wert.

Backup Daten sind verg�anglich. Es kommt nicht selten vor, da� sich Benutzer

ungewollt die eigenen Files l�oschen. Sie erinnern sich, UNIX gehorcht aufs Wort,
ohne R�uckfragen. F�ur solche und �ahnliche F�alle zieht der System-Manager re-

gelm�a�ig ein Backup. Das ist eine Bandkopie des gesamten File-Systems oder
wenigstens der Zweige, die sich �andern.

Der Zeitraum zwischen den Backups h�angt ab von der Geschwindigkeit, mit

der sich die Daten �andern, und von dem Wert der Daten. Wir ziehen w�ochentlich
ein Backup. Es gibt Betriebe, in denen t�aglich mehrmals ein Backup durchgef�uhrt

wird, denken Sie an eine Bank oder Versicherung. Eine Art von st�andigem Backup
ist das Doppeln (Spiegeln) einer Platte.

Ferner gibt es zwei Strategien f�ur das Backup. Man kopiert entweder jedesmal

das gesamte File-System oder nur die �Anderungen gegen�uber dem vorhergehen-
den Backup. Dieses inkrementelle Backup geht schneller, verlangt aber bei

der Wiederherstellung eines Files unter Umst�anden das Einspielen mehrerer Ko-
pien bis zum letzten vollst�andigen Backup zur�uck. Wir ziehen w�ochentlich ein

vollst�andiges Backup des Zweiges mit den Home-Verzeichnissen und einmal im

Quartal ein vollst�andiges Backup des ganzen File-Systems. In gro�en Anlagen
werden gemischte Strategien verfolgt. Zus�atzlich kopieren wir per cron(1) t�aglich

wichtige Files auf andere Platten oder Computer.

F�ur das Backup verwendet man zweckm�a�ig ein zugeschnittenes Shellscript

backup. Das folgende Beispiel zieht ein Backup eines Verzeichnisses (Default: HO-

ME) samt Unterverzeichnissen auf Bandkassette. Es ist f�ur den Gebrauch durch
die Benutzer gedacht, f�ur ein Gesamtbackup mu� man einige Dinge mehr tun (Sin-

gle User Modus, File System Check). Das Bandger�at ist hier /dev/rct/c2d1s2.

Skript zum Kopieren auf Bandkassette

BDIR=${1:-$HOME}

2.12 Systemverwaltung 193

cd $BDIR
echo Backup von `pwd` beginnt.
/bin/find . -print |
/bin/cpio -ocx |
/bin/tcio -oS 256 /dev/rct/c2d1s2
/bin/tcio -urV /dev/rct/c2d1s2
echo Backup fertig.

Programm 2.42 : Shellscript f�ur Backup auf Bandkassette

Zum Zur�uckspielen des Backups verwendet man ein �ahnliches Shellscript

restore. Das Verzeichnis kann angegeben werden, Default ist wieder HOME.

Script zum Rueckspielen eines Backups von Kassette

RDIR=${1:-$HOME}
cd $RDIR
print Restore nach `pwd` beginnt.
/bin/tcio -ivS 256 /dev/rct/c2d1s2 |
/bin/cpio -icdvm '*'
/bin/tcio -urV /dev/rct/c2d1s2
print Restore fertig.

Programm 2.43 : Shellscript f�ur Restore von Bandkassette

Das Werkzeug tcio(1) wird nur in Verbindung mit Kassettenger�aten ben�otigt
und optimiert die Daten�ubertragung unter anderem durch eine zweckm�a�ige Puf-

ferung. F�ur ein Backup auf ein Spulenbandger�at /dev/rmt/0m lauten die beiden
Shellscripts:

Skript zum Kopieren auf Bandspule

BDIR=${1:-$HOME}
cd $BDIR
echo "Backup auf /dev/rmt/0m (Spule) beginnt."
echo Zweig `pwd`
find . -print | cpio -ocBu > /dev/rmt/0m
/bin/date >> lastbackup

Programm 2.44 : Shellscript f�ur Backup auf Bandspule

Script zum Rueckspielen eines Backups

RDIR=${1:-$HOME}
cd $RDIR
print Restore von Band (Spule) /dev/rmt/0m nach `pwd` beginnt.
cpio -icdvBR < /dev/rmt/0m

Programm 2.45 : Shellscript f�ur Restore von Bandspule

Die letzte Zeile des Backup-Scripts schreibt noch das Datum in ein File

./lastbackup. Im Verzeichnis /etc �nden sich zwei Shellscripts backup(1M) und

194 2 UNIX

restore(1M), die man auch verwenden oder als Vorlage f�ur eigene Anpassungen

nehmen kann. Oft wird f�ur das Backup auch das Kommando tar(1) verwendet,

bei dem man aufpassen mu�, in welcher Form man den Pfad der zu sichernden

Files angibt. F�ur das Zur�uckspielen hat der Pfad eine gewisse Bedeutung, am

besten mal testen.

2.12.11 Memo Systemverwaltung

� Ein UNIX-System darf nicht einfach ausgeschaltet werden, sondern mu�

vorher mittels shutdown(1M) heruntergefahren werden.

� Ein Benutzer mu� in /etc/passwd(4) und /etc/group(4) eingetragen wer-

den und sich ein nicht zu einfaches Passwort w�ahlen.

� Man unterscheidet Betriebssicherheit (Verf�ugbarkeit) und Datensicherheit

(Datenintegrit�at).

� Datenschutz ist der Schutz auf individuelle Personen bezogener Daten vor

Mi�brauch, per Gesetz geregelt.

� Viren im weiteren Sinne (malicious software) sind unerw�unschte Programme
oder Programmteile, die absichtlich Schaden anrichten. Auf UNIX selten,

aber nicht unm�oglich.

� Das Ziehen von Backup-Kopien ist l�astig, aber ungemein beruhigend.

2.12.12 �Ubung Systemverwaltung

Viele T�atigkeiten in der Systemverwaltung setzen aus gutem Grund die Rech-
te eines Superusers voraus. Auf diese verzichten wir hier. Vielleicht d�urfen Sie
Ihrem System-Manager einmal bei seiner verantwortungsvollen T�atigkeit helfen.

Wir schauen uns ein bi�chen im File-System um:

cd (ins Home-Verzeichnis wechseln)

du (Plattenbelegung)

df (dito, nur anders)

bdf (dito, noch anders)

find . -atime +30 -print

(suche Ladenh�uter)

find . -size +100 -print

(suche Speicherfresser)

Dann sehen wir uns das File /etc/passwd(4) an:

pwget (Benutzereintr�age)

grget (Gruppeneintr�age)

2.13 Echtzeit-Erweiterungen 195

und schlie�lich versuchen wir, die Kon�guration unserer Terminalschnittstelle zu

verstehen:

stty -a (in Sektion 1 nachlesen)

Mit diesem Kommando lassen sich die Einstellungen auch �andern, aber Vorsicht,

das hat mit dem Roulettespiel einiges gemeinsam. Die Kommandos tset(1) oder

reset(1) { sofern sie noch eingegeben werden k�onnen { setzen die Schnittstelle

auf vern�unftige Werte zur�uck.

Es w�are auch kein Fehler, wenn Sie mit Unterst�utzung durch Ihren System-

Manager ein Backup Ihres Home-Verzeichnisses ziehen und wieder einspielen

w�urden. Mit einem ausgetesteten Backup schl�aft sich's ruhiger.

2.13 Echtzeit-Erweiterungen

Unter UNIX wird die Reihenfolge, in der Prozesse abgearbeitet werden, vom Sys-
tem selbst beein
u�t, ebenso der Verkehr mit dem Massenspeichers (Pu�erung).

F�ur einen Computer, auf dem nur gerechnet, geschrieben und gezeichnet wird, ist
das eine vern�unftige L�osung. Bei einem Prozessrechner hingegen, der Me�werte
erfa�t und eine Produktionsanlage, eine Telefonvermittlung oder ein Verkehrsleit-

system steuert, m�ussen bestimmte Funktionen in garantierten, kurzen Zeitspannen
erledigt werden, hier darf das System keine Freiheiten haben. Ein solches System

mit einem genau bestimmten Zeitverhalten nennt man Echtzeit-System (real
time system). Um mit einem UNIX-System Echtzeit-Aufgaben zu bew�altigen, hat
die Firma Hewlett-Packard ihr HP-UX um folgende F�ahigkeiten erweitert:

� Echtzeit-Vorrechte f�ur bestimmte Benutzergruppen,

� Verfeinerung der Priorit�aten von Prozessen,

� Blockieren des Arbeitsspeichers durch einen Prozess,

� h�ohere Zeitau
�osung der System-Uhr,

� verbesserte Interprozess-Kommunikation,

� schnelleres und zuverl�assigeres Filesystem,

� schnellere Ein- und Ausgabe,

� Vorbelegung von Platz auf dem Massenspeicher,

� Unterbrechung von Kernprozessen.

Der Preis f�ur diese Erweiterungen ist ein erh�ohter Aufwand beim Programmieren

und die gelegentlich nicht so e�ektive Ausnutzung der Betriebsmittel. Wenn Mil-
lisekunden eine Rolle spielen, kommt es auf einige Kilobyte nicht an. Die nicht

privilegierten Benutzer m�ussen auch schon einmal ein bi�chen warten, wenn eine

brandeilige Meldung bearbeitet wird.

Bestimmte Benutzergruppen erhalten das Vorrecht, ihre Programme oder Pro-

zesse mit Echtzeitrechten laufen zu lassen. Sie d�urfen wie der Super-User h�ohere

Priorit�aten ausnutzen, bleiben aber wie andere Benutzer an die Zugri�srechte der

196 2 UNIX

Files gebunden. W�urde dieses Vorrecht allen gew�ahrt, w�are nichts gewonnen. Der

System-Manager vergibt mit setprivgrp(1M) die Vorrechte, mit getprivgrp(1)

kann jeder die seinigen abfragen.

Ein Benutzer-Prozess hoher Priorit�at braucht nicht nur weniger lange zu

warten, bis er an die Reihe kommt, er kann sogar einen in Arbeit be�nd-

lichen Benutzer-Prozess niedriger Priorit�at unterbrechen (priority-based pre-

emptive scheduling), was normalerweise nicht m�oglich ist. Das Vorkommando

rtprio(1) gibt �ahnlich wie nice(1) einem Programm eine Echtzeit-Priorit�at mit,

die w�ahrend des Laufes vom System nicht ver�andert wird, aber vom Benutzer

ge�andert werden kann.

Ein Prozess kann mittels des Systemaufrufs plock(2) seinen Platz im Arbeits-

speicher blockieren (memory locking), so da� er nicht durch Swapping oder Pa-

ging ausgelagert wird. Das tr�agt zu kurzen, vorhersagbaren Antwortzeiten bei und

geht zu Lasten der nicht privilegierten Prozesse, falls der Arbeitsspeicher knapp

ist.

Die Standard-UNIX-Uhr, die vom cron-D�amon benutzt wird, hat eine
Au
�osung von einer Sekunde. Zu den Echtzeit-Erweiterungen geh�oren prozess-
eigene Uhren (interval timer) mit im Rahmen der M�oglichkeiten der Hardware

de�nierbarer Au
�osung bis in den Mikrosekundenbereich hinunter. Bei unserer
Anlage betr�agt die feinste Zeitau
�osung 10 ms.

Die Verbesserungen am Filesystem und an der Ein- und Ausgabe sind Einzel-

heiten, die wir �ubergehen. Die Unterbrechung von Kernprozessen durch Benutzer-
prozesse, die normalerweise nicht erlaubt ist, wird durch entsprechende Priorit�aten

der Benutzerprozesse und Soll-Bruchstellen der Kernprozesse erm�oglicht (preemp-
table kernel). Diese weitgehenden Eingri�e in den Prozessablauf setzen strikte Re-
gelungen f�ur die Programme voraus, die auf einer allgemeinen UNIX-Anlage nicht

durchzusetzen sind. Deshalb bemerkt und braucht der normale Benutzer, der Tex-
te bearbeitet, Aufgaben rechnet und die Netnews liest, die Echtzeit-Erweiterungen
nicht. Auf einem Prozessrechner haben sie den Vorteil, da� man in der gewohn-

ten UNIX-Welt bleiben kann und nicht ein besonderes Echtzeit-Betriebssystem
ben�otigt.

2.14 GNU is not UNIX

Die Gnus (Connochaetes) sind eine Antilopenart in S�ud- und Ostafrika, von den

Buren Wildebeest genannt. Nach Alfred Brehm sind es h�ochst absonderliche,
gesellig lebende Tiere, in deren Wesen etwas Komisches, Feuriges, �Uberspanntes

steckt.

DasGNU-Projekt der Free Software Foundation bezweckt, Programmie-
rern { haupts�achlich aus dem UNIX-Bereich { Software ohne Einschr�ankungen ju-

ristischer oder �nanzieller Art zur Verf�ugung zu stellen. Die Software ist durch Co-

pyright29 gesch�utzt, darf aber unentgeltlich benutzt, ver�andert und weitergegeben
werden, jedoch immer nur zusammen mit dem Quellcode, so da� andere Benut-

29Die GNU-Leute bezeichnen ihre besondere Art des Copyrights als Copyleft, siehe

http://www.gnu.org/copyleft/copyleft.html.

2.14 GNU is not UNIX 197

zer die Programme ebenfalls anpassen und weiterentwickeln k�onnen. Einzelheiten

siehe die GNU General Public License (GPL). Strenggenommen ist zwischen

Software aus dem GNU-Projekt und Software beliebiger Herkunft, die unter GNU-

Regeln zur Verf�ugung gestellt wird, zu unterscheiden. F�ur den Verbraucher ist das

nebens�achlich. Der Original Point of Distribution ist prep.ai.mit.edu, aber die

GNU-Programme werden auch auf vielen anderen FTP-Servern gehalten. Eine

kleine Auswahl aus dem Projekt:

� emacs { ein m�achtiger Editor,

� gnuchess { ein Schachspiel,

� gcc { ein ANSI-C-Compiler (auch f�ur MS-DOS, siehe djgpp),

� g++ { ein C++-Compiler,

� gawk { eine Alternative zu awk(1),

� flex { eine Alternative zu lex(1),

� bison { eine Alternative zu yacc(1),

� ghostscript { ein Postscript-Interpreter,

� ghostview { ein Postscript-Pager,

� ispell { ein Rechtschreibungspr�ufer,

� gzip { ein wirkungsvoller File-Kompressor,

� f2c { ein FORTRAN-zu-C-Konverter,

� gtar { ein Archivierer wie tar(1),

� bash { die Bourne-again-Shell,

� gimp { das GNU Image Manipulation Program,

� recode { ein Filter zur Umwandlung von Zeichens�atzen

Besonders wertvoll ist der Zugang zum Quellcode, so da� man die Pro-
gramme erg�anzen und portieren kann. Die Werkzeuge sind nicht nur ko-
stenfrei, sondern zum Teil auch besser als die entsprechenden originalen

UNIX-Werkzeuge. Die Gedanken hinter dem Projekt, das 1984 von Richard

Matthew Stallman begr�undet wurde, sind im GNU Manifesto nachzulesen

(http://www.gnu.org/gnu/manifesto.html).

Die GNU-Programme sind immer als Quellen verf�ugbar, oft zusammen mit

Make�les f�ur verschiedene Systeme, selten als unmittelbar ausf�uhrbare Program-

me. Man mu� also noch etwas Arbeit hineinstecken, bis man sie nutzen kann. Gute

Kenntnisse von make(1) sind hilfreich. Vereinzelt nehmen auch Firmen die Kom-

pilierung vor und verkaufen die ausf�uhrbaren Programme zu einem gem�a�igten
Preis. Am Beispiel des oft verwendeten Packers gzip(1) wollen wir uns ansehen,

wie eine Installation auf einer UNIX-Maschine vor sich geht:

� Wir legen ein Unterverzeichnis gzip an, gehen hinein und bauen eine

Anonymous-FTP-Verbindung mit ftp.rus.uni-stuttgart.de auf.

198 2 UNIX

� Dann wechseln wir dort in das Verzeichnis pub/unix/gnu, das ziemlich viele

Eintr�age enth�alt.

� Wir stellen den bin�aren �Ubertragungsmodus (binary oder image) ein und

holen uns mittels mget gzip* die gew�unschten Dateien. Angeboten werden

gzip...msdos.exe, gzip...shar, gzip...tar und gzip...tar.gz. Letz-

teres ist zwar in der Regel das beste Format, setzt jedoch voraus, da� man

gzip(1) bereits hat. Wir w�ahlen also das tar-Archiv, rund 200 Kbyte.

� Mittels tar -xf gzip-1.2.4.tar entpacken wir das Archiv. Anschlie�end

�nden wir ein Unterverzeichnis gzip-1.2.4 und wechseln hinein.

� Mindestens die Text�les README und INSTALL sollte man lesen, bevor es

weitergeht.

� Mittels ./configure wird ein angepa�tes Makefile erzeugt. Man sollte es

sich ansehen, allerdings nur �au�erst vorsichtig editieren, falls unvermeidbar.

� Dann folgt ein schlichtes make. L�auft es ohne Fehlermeldungen durch, geh�ort

man zu den Gl�ucklichen dieser Erde.

� Hier kann man noch make check aufrufen, gibt es nicht immer.

� Zum Kopieren in die �ublichen Verzeichnisse (/usr/local/bin usw.) gibt

man als Superuser make install ein.

� Zu guter Letzt r�aumt man mittels make clean auf. Nun haben wir gzip(1)
sowie gunzip(1) und k�onnen weitere GNU-Werkzeuge in gzippter Form

holen.

Die Installation geht nicht immer so glatt �uber die B�uhne.

2.15 UNIX auf PCs

2.15.1 AT&T UNIX

Auf Workstations ist UNIX die Regel, auf Mainframes kommt es vor, macht es auf

einem PC Sinn? Das am weitesten verbreitete Betriebssystem f�ur PCs ist MS-

DOSmit dem ZusatzWindows. Es wurde Ende der siebziger Jahre entwickelt f�ur
den Prozessor Intel 8086 unter R�ucksichtnahme auf das noch �altere Betriebssystem

CP/M. MS-DOS ist ein Single-Tasking-Single-User-System, d. h. es kennt nur
einen Benutzer und kann immer nur eine Aufgabe bearbeiten. Wenn diese erledigt

ist, kommt die n�achste dran. Mehr war dem damaligen Prozessor auch kaum

zuzumuten.
Die Prozessoren haben sich weiterentwickelt, heute steht der Intel Pentium II

in den Schaufenstern. Auch MS-DOS und Windows haben sich verbessert. Bei der
Fortschreibung der Software wurde immer darauf geachtet, da� �altere Programme

auch auf neuen Versionen ablaufen konnten, es gab nie einen Bruch. Das ist eine

St�arke und eine Schw�ache zugleich. Die Weiterverwendbarkeit der Anwendungs-
programme ist ein wesentliches Argument f�ur MS-DOS auf PCs. Auf der anderen

Seite krankt MS-DOS samt Windows an vielen Beschr�ankungen, die vor f�unfzehn
Jahren keine Rolle spielten, weil die Hardware der Flaschenhals war.

2.15 UNIX auf PCs 199

AT&T hat mehrere UNIX-Systeme f�ur PCs lizensiert. Am weitesten verbreitet

war MS-Xenix, ein UNIX f�ur den Prozessor Intel 80286, das heute keine Rol-

le mehr spielt. Bei den neueren UNIXen ist/war der Marktf�uhrer SCO UNIX,

daneben gibt/gab es Interactive UNIX, EURIX und andere. Die Systeme kosten

zwischen 1000 und 3000 DM. F�ur den beru
ichen Einsatz ist dieser Preis kein

Hindernis, wohl aber die vorl�au�g noch beschr�ankte Verf�ugbarkeit von Portie-

rungen der zahllosen Anwendungsprogramme aus der MS-DOS-Welt. Nat�urlich

gibt es Textprogramme, Datenbanken und Tabellenkalkulationen f�ur UNIX-PCs,

aber nicht immer die von MS-DOS und Windows her gewohnten. Aufgrund der

geringeren St�uckzahlen bei den UNIX-Anwendungen liegt ihr Preis auch etwa um

den Faktor zehn h�oher als in der MS-DOS-Welt und ist damit f�ur Studenten und
�O�entliche Bedienstete unerschwinglich. Zum Gl�uck stehen Auswege o�en.

Die PC-UNIXe enthalten oft sogenannte DOS-Boxen. Das sind Anwendungs-

programme, unter deren Kontrolle wiederum MS-DOS-Anwendungsprogramme

ablaufen. Als �Ubergangsl�osung brauchbar, aber nicht die sinnvollste Nutzung des

Prozessors.

2.15.2 MINIX

Das Betriebssystem UNIX war in seinen ersten Jahren kein kommerzielles Pro-

dukt, sondern wurde gegen eine Schutzgeb�uhr an Universit�aten und andere In-
teressenten im Quellcode weitergegeben, die ihrerseits viel zur Weiterentwicklung

beitrugen, insbesondere die University of California at Berkeley (UCB).

Also verwandte Professor Andrew S. Tanenbaum von der Freien Univer-

sit�at Amsterdam UNIX zur Untermalung seiner Vorlesung �uber Betriebssysteme.
Als AT&T mit UNIX Geld verdienen wollte und die Weitergabe des Codes ein-
schr�ankte, stand er pl�otzlich ohne ein Beispiel f�ur seine Vorlesung da, und nur

Theorie wollte er nicht predigen.

In seinem Zorn setzte er sich hin und schrieb ein neues Betriebssystem f�ur

den IBM PC, das sich zum Benutzer wie UNIX verhielt, sch�on p�adagogisch und

�ubersichtlich aufgebaut und unabh�angig von den Rechtsanspr�uchen irgendwelcher

Pfe�ers�acke war. Dieses Betriebssystem hei�t MINIX und war von jedermann

f�ur 300 DM k�au
ich. Eine Installation auf einem PC mit 80386SX und IDE-

Platte verlief reibungslos. Die zugeh�orige Beschreibung steht in Tanenbaums

Buch Operating Systems.

MINIX ist durch Urheberrecht (Copyright) gesch�utzt; es ist nicht Public Do-

main und auch nicht Teil des GNU-Projektes. Der Inhaber der Rechte { der Ver-

lag Prentice Hall { gestattet jedoch Universit�aten, die Software f�ur Zwecke des

Unterrichts und der Forschung zu kopieren. Er gestattet weiter Besitzern von MI-

NIX, die Software zu ver�andern und die �Anderungen frei zu verbreiten, was auch

in gro�em Umfang geschah. Die MINIX-Usenet-Gruppe (comp.os.minix) z�ahlte

etwa 25000 Mitglieder. In den letzten Jahren ist MINIX als das UNIX des Bettel-

studenten von LINUX und weiteren freien UNIXen �uberholt worden. Ehre seinem

Andenken.

200 2 UNIX

2.15.3 LINUX

2.15.3.1 Entstehung

Um die erweiterten F�ahigkeiten des Intel-80386-Prozessors zu erkunden, begann

im April 1991 der �nnische Student Linus Benedict Torvalds, unter MINIX

kleine Assembler-Programme zu schreiben. Eines seiner ersten Programme lie�

zwei Prozesse die Buchstabenfolgen AAAA... und BBBB... auf dem Bildschirm

ausgeben. Bald f�ugte er einen Treiber f�ur die serielle Schnittstelle hinzu und er-

hielt so einen einfachen Terminalemulator. Zu diesem Zeitpunkt entschlo� er sich,

mit der Entwicklung eines neuen, freien UNIX-Betriebssystemes zu beginnen. In

der Newsgruppe comp.os.minix ver�o�entlichte er seinen Plan und fand bald in-

teressierte Mitstreiter auf der ganzen Welt, die �uber das Internet in Verbindung

standen. Von ftp.funet.fi konnten sie sich die erste Kernel-Version 0.01 herun-

terladen.

Am 5. Oktober 1991 gab Linus die Fertigstellung des ersten o�ziellen Kernels

0.02 bekannt. Er ben�otigte immer noch MINIX als Basissystem. Nur drei Monate
vergingen, bis mit der LINUX-Version 0.12 ein brauchbarer Kernel verf�ugbar war,

der stabil lief. Mit dieser Version setzte eine schnelle Verbreitung von LINUX ein.
Die Entwicklung ging weiter z�ugig voran. Es folgte ein Versionssprung von 0.12

nach 0.95; im April 1992 konnte erstmals das X Window System benutzt werden.

Im Verlauf der n�achsten zwei Jahre wurde der Kernel um immer mehr Features
erg�anzt, soda� Linus am 16. April 1994 die Version 1.0 herausgeben konnte. Die

neue Versionsnummer sollte widerspiegeln, da� aus dem einstigen Hacker-UNIX
ein f�ur den Endanwender geeignetes System entstanden war.

Seitdem hat LINUX weiter an Popularit�at gewonnen und dabei auch seinen

Ziehvater MINIX (von dem jedoch keine einzige Zeile Code �ubernommen wurde)
weit hinter sich gelassen. Im Jahr 1996 begann mit der Versionsnummer 2.0.0 eine
neue Kernel-Generation, die mit ihren F�ahigkeiten selbst kommerziellen Betriebs-

systemen Konkurrenz macht. Die Stabilit�at und Leistungsf�ahigkeit von LINUX
kann man daran erkennen, da� LINUX heute auch auf zentralen Servern einge-

setzt wird, von deren Funktionieren ein ganzes LAN abh�angt.
An dieser Stelle eine Anmerkung zu den Versionsnummern der LINUX-Kernel.

Sie bestehen heutzutage aus drei Zahlen. Ist die mittlere Zahl ungerade, so handelt

es sich um einen Entwickler-Kernel mit einigen m�oglicherweise instabilen Features.

Andernfalls liegt ein Benutzerkernel vor, dessen Codebasis weitgehend stabil ist.

2.15.3.2 Distributionen

Da es sehr umst�andlich und oft auch schwierig ist, alle f�ur ein vollst�andiges UNIX-
System erforderlichen Komponenten selbst zusammenzusuchen und zu kompilie-

ren, entstanden schon fr�uh sogenannte Distributionen, die den LINUX-Kernel

mitsamt vieler n�utzlicher Anwendungen vorkompiliert und mit einem einfach zu
bedienenden Installations-Programm bieten. Zu den bekannteren Distributionen

z�ahlen:

� Caldera (http://www.caldera.com/), kommerziell,

� Debian (http://www.debian.org/),

2.15 UNIX auf PCs 201

� Red Hat LINUX (http://www.redhat.com/),

� Slackware (http://www.slackware.org/),

� SuSE (http://www.suse.de/).

Wir haben gute Erfahrungen mit Red Hat LINUX gemacht. Neben einem

ausgereiften Installations-Programm und einer durchdachten Kon�guration hat

es den Vorteil, das von Red Hat entwickelte RPM-System zu verwenden, wel-

ches ein einfaches Installieren, Updaten und weitgehend r�uckstandsfreies Entfer-

nen von Software-Paketen erm�oglicht. Dies erleichtert dem Systemverwalter das

Leben ungemein. Allerdings gibt es nicht f�ur alle Anwendungsprogramme ein fer-

tiges RPM-Paket. Solche Programme m�ussen nach wie vor von Hand installiert

werden, was Kenntnisse voraussetzt, zumindest aber das gr�undliche Lesen der

beigef�ugten Dokumentation (README-Files usw.).

Die meisten Distributionen sind auch kostenlos �uber das Internet zu bezie-

hen. Viele lassen sich sogar direkt aus dem Netz installieren. Dennoch hat der

Erwerb einer CD-ROM Vorteile: Man ben�otigt keine Internet-Verbindung (die im

Normalfall bei Privatleuten ohnehin zu langsam f�ur die Installation ist) und kann
jederzeit Software-Pakete nachinstallieren. Der Preis, den man f�ur eine Distribu-
tion entrichtet, deckt einerseits die Kosten f�ur die Herstellung der CD und des

Begleitmaterials, andererseits unterst�utzt er die Hersteller der Distribution, die
bei ihrer Arbeit auf das Geld aus dem CD-Verkauf angewiesen sind. Die Softwa-

re selbst ist frei. F�ur kommerzielle Erweiterungen wie Motif und CDE gilt das
nat�urlich nicht.

2.15.3.3 Eigenschaften

Kein anderes Betriebssystem unterst�utzt so viele Dateisysteme und Netzwerkpro-
tokolle wie LINUX. Mittlerweile gibt es Unterst�utzung f�ur das MS-DOS Datei-

system (mit langen Dateinamen von Windows 95), OS/2 HPFS, diverse UNIX-
Dateisysteme sowie das CD-ROM Dateisystem nach ISO 9660 mit den Rockridge-
Erg�anzungen f�ur lange Dateinamen und nat�urlich das unter UNIX gebr�auchliche

Network File System (NFS). Es gibt sogar einen Kernel-Patch, der es erlaubt,

auf mit dem Mac-Filesystem HFS formatierte Datentr�ager zuzugreifen. Das sehr

leistungsf�ahige LINUX-eigene Dateisystem hei�t Extended 2 Filesystem (ext2).

LINUX beherrscht die Internet-Protokolle TCP/IP, Novells IPX und das in
der Mac-Welt �ubliche AppleTalk. Dar�uberhinaus ist ein Treiber f�ur das im Packet

Radio Netz der Funkamateure eingesetzte Protokoll AX.25 enthalten. Neben Dae-

monen fuer die UNIX-�ublichen Protokolle ist ein Server f�ur das von Microsoft
Windows verwendete Protokoll SMB erh�altlich (Samba) und ein mit Novell Net-

ware kompatibler Datei- und Druckerserver (Mars); sogar f�ur die Mac-Welt gibt
es ein Serverpaket.

Und wie sieht es mit der Hardware-Unterst�utzung aus? LINUX arbeitet heu-

te mit einer breiten Palette zusammen. Die meisten g�angigen SCSI-Controller

und Netzwerkkarten werden unterst�utzt, dazu einige ISDN- und Soundkarten.

Will man X11 verwenden (und wer will das nicht), sollte man darauf achten, da�

man eine von XFree durch einen besonderen, beschleunigten Server unterst�utzte

202 2 UNIX

Graphik-Karte erwirbt. Es dauert im allgemeinen jedoch einige Zeit, bis Trei-

ber f�ur neue Hardware entwickelt sind, und nicht alle Hardware kann unterst�utzt

werden, weil einige Hersteller die technischen Daten nur zu nicht annehmbaren

Konditionen (Non Disclosure Agreements) bekanntgeben. Fa�t man die Installa-

tion von LINUX ins Auge, sollte man daher unbedingt schon vor dem Kauf der

Hardware auf Unterst�utzung achten. Das Hardware-HOWTO stellt hierbei eine

n�utzliche Hilfe dar.

2.15.3.4 Installation

Die Einrichtung verl�auft bei den meisten Distributionen dank ausgereifter In-

stallationsscripts weitgehend einfach. Im allgemeinen m�ussen zun�achst ein oder

zwei Installations-Disketten erstellt werden, wobei darauf zu achten ist, da� nur

fehlerfreie, DOS-formatierte Disketten verwendet werden k�onnen. Anschlie�end

wird von der Boot-Diskette ein einfaches LINUX-System gestartet. Nun erfolgt

die Auswahl des Installationsmediums. Disketten sind beim Umfang der heutigen

Distributionen selten, meist erfolgt die Installation von CD-ROM oder von einem
Verzeichnis auf einer DOS-Partition. Viele Distributionen erlauben aber auch die

Installation von einem NFS-Volume oder einem Anonymous-FTP-Server �uber das
Netz.

Der n�achste Schritt besteht im Anlegen von Partitionen f�ur LINUX. Viele In-

stallationsscripts greifen hierzu auf das spartanische fdisk-Programm von LINUX
(nicht zu verwechseln mit dem von DOS) zur�uck, zum Teil �nden aber auch einfach
zu bedienende Partitionierungstools (z. B. Disk Druid) Verwendung. Normaler-

weise legt man eine Partition f�ur das Root-Filesystem und eine Swap-Partition an.
Diese stellt zus�atzlichen virtuellen Arbeitsspeicher zur Verf�ugung, falls der echte
Hauptspeicher einmal nicht ausreichen sollte, ist aber nur eine Notl�osung. Wie

gro� sie sein sollte, h�angt vom beabsichtigten Einsatz des Systems ab, bei norma-
len LINUX-Workstations sind 16-32 MB vollkommen ausreichend. Eventuell will

man neben dem Root-Filesystem weitere Partitionen anlegen, zum Beispiel f�ur
die Home-Verzeichnisse der Benutzer. Die meisten Installationsscripts fragen nun,
welche Partitionen wohin gemountet werden sollen; dabei k�onnen auch DOS- und

HPFS-Partitionen angegeben werden.

Der Hauptteil der Installation besteht im Ausw�ahlen der zu installieren-

den Programm-Pakete. Intelligente Scripts fragen zuerst, was installiert werden

soll, und installieren dann die ausgew�ahlten Pakete, w�ahrend weniger ausgereif-

te Scripts vor der Installation jedes Pakets einzeln nachfragen, was w�ahrend der
gesamten Installationsphase Mitarbeit erfordert. F�ur LINUX-Anf�anger ist es zu-

meist schwierig zu entscheiden, was ben�otigt wird und was nicht. Dabei sind die

Kurzbeschreibungen der Pakete eine gewisse Hilfestellung. Man kann aber pro-

blemlos nachinstallieren.

Schlie�lich fragen die meisten Installationsscripts noch einige Systemeinstellun-
gen ab. Dazu z�ahlen die Zeitzone, das Tastaturlayout, der Maustyp sowie die n�oti-

gen Angaben f�ur die TCP/IP-Vernetzung. Diese lassen sich jederzeit nachtr�aglich

�andern.

Au�erdem bieten die meisten Distributionen an dieser Stelle die Gelegenheit,

2.15 UNIX auf PCs 203

den LINUX-Loader LILO als Boot-Manager einzurichten, soda� man beim Boo-

ten zwischen LINUX und anderen Betriebssystemen ausw�ahlen kann. Mit einigen

Tricks lassen sich aber auch die Boot-Manager von IBM OS/2 und Microsoft

Windows NT dazu �uberreden, LINUX zu booten.

Mit etwas Gl�uck kann man dann sein frischerstelltes LINUX-System starten.

Zu den ersten Schritten sollte das Setzen eines root-Passworts, das Einrichten

von Benutzern und das Kompilieren eines auf die eigenen Bed�urfnisse zurechtge-

schnittenen Kernels sein. Der von der Distribution angebotene, universelle Kernel

enth�alt meist mehr Funktionen, als man braucht. Das kostet unn�otig Arbeitsspei-

cher und kann auch Instabilit�aten verursachen.

Um den Kernel neu zu kompilieren, wechselt man zun�achst in das Verzeich-

nis /usr/src/linux, in dem man mit make mrproper erst einmal f�ur Ordnung

sorgt. Anschlie�end m�ussen die ben�otigten Treiber ausgew�ahlt werden. Seit einiger

Zeit lassen sich viele Treiber auch als Kernelmodule kompilieren; sie sind dann

nicht fester Bestandteil des Kernels, sondern liegen in einer eigenen Datei vor und

k�onnen je nach Bedarf mit insmod(1) geladen und rmmod(1) wieder entladen wer-
den. Bei entsprechender Kon�guration kann LINUX dies sogar automatisch tun.

Durch die Modularisierung weniger h�au�g ben�otigter Treiber (z. B. f�ur SCSI-
Tapes) spart man w�ahrend der meisten Zeit Arbeitsspeicher ein. Zur Treiberaus-

wahl gibt es drei Alternativen: Die schlichte Abfrage aller m�oglichen Komponenten
mit make config, die men�ugest�utzte Abfrage mit make menuconfig und (soweit
man das X Window System und TCL/TK installiert hat) ein komfortables Kon-

�gurationsprogramm mit make xconfig. Im n�achsten Schritt werden die Kernel-
Sources auf das Kompilieren vorbereitet: make dep und make clean. Jetzt kann
der Kompilationsvorgang mit make zImage gestartet werden. Er dauert, je nach

Systemleistung und ausgew�ahlten Komponenten, zwischen f�unf Minuten und �uber
einer Stunde. Hat man bei der Kernel-Kon�guration angegeben, einige Kompo-

nenten als Module zu kompilieren, m�ussen diese noch mit make modules erzeugt
werden. Der fertige Kernel �ndet sich im Unterverzeichnis arch/i386/boot als
Datei zimage, die Module werden mit make modules_install in /lib/modules

installiert. Eventuell bereits vorhandene Module sollte man vorher in ein anderes
Verzeichnis verschieben.

Zur Installation des Kernels ist die Datei /etc/lilo.conf zu editieren und

anschlie�end durch Aufruf des Programms lilo(8) der LINUX-Loader neu zu

installieren.

2.15.3.5 GNU und LINUX

Viele der Programme, ohne die LINUX kein vollst�andiges UNIX-System w�are,

entstanden im Rahmen des GNU-Projekts der Free Software Foundation. Neben

zahllosen kleinen, aber n�utzlichen oder sogar systemwichtigen Utilities wie GNU

tar, GNU awk usw. z�ahlen hierzu:

� gzip, das GNU Kompressions-Utility,

� bash, die Bourne-Again Shell,

� emacs, der gro�e Editor,

204 2 UNIX

� gcc, der GNU-C/C++-Compiler, ohne den LINUX nie entstanden w�are,

� glibc, die GNU-C-Funktionsbibliothek.

Dar�uber hinaus unterliegen viele Programme, die unter LINUX benutzt wer-

den, der GNU Public License (GPL). Hierzu z�ahlt auch der LINUX-Kernel selbst.

2.15.3.6 XFree - X11 f�ur LINUX

LINUX w�are keine Alternative zu anderen modernen Betriebssystemen ohne ei-

ne gra�sche Benutzerober
�ache. Diese kommt in Gestalt des auf UNIX-Systemen

�ublichen X Window Systems (X11). Soweit man nicht einen kommerziellen X-

Server vorzieht, was in den meisten F�allen nicht lohnenswert ist und oft sogar

noch zus�atzlichen Aufwand bei der Systemverwaltung erfordert, wird man die Im-

plementation von XFree (http://www.xfree86.org/) verwenden. Diese besteht

einerseits aus X-Servern, darunter verschiedene beschleunigte f�ur bessere Gra�k-

Karten, andererseits aus einigen Utilities.

Produktiv einsetzbar wird X11 erst durch einen guten Window Manager.
Hier bietet LINUX eine Vielzahl von M�oglichkeiten. Zu den wichtigeren z�ahlen

FVWM (neuerdings im Windows 95-Look), LessTif (ein Motif-Clone, der neben
einem Window-Manager auch leider noch unvollst�andige Motif-kompatible Biblio-
theken zur Verf�ugung stellt) sowie neuerdings das sehr leistungsf�ahigeK Desktop

Environment (KDE).
Obwohl sich KDE zum Zeitpunkt, zu dem dies geschrieben wird, noch in der

Beta-Phase be�ndet, also noch einige Fehler und Unvollst�andigkeiten aufweist, ist
es bereits gut benutzbar und zeigt, da� UNIX nicht immer kryptische Kon�gu-

rationsdateien und f�ur Anf�anger schwierig zu benutzende Programme bedeuten
mu�. KDE ist auch f�ur Einsteiger einfach zu kon�gurieren und zu benutzen und
beseitigt damit ein De�zit, das bei nichtkommerziellen UNIX-Systemen ohne CDE

bisher viele Benutzer abschreckte.
Die einfache Bedienung erm�oglicht KDE durch bei anderen Window Managern

nicht immer anzutre�ende Eigenschaften wie Cut & Paste, Drag & Drop und
Kontext-Men�us, aber auch durch neue Utilities wie einem sehr leistungsf�ahigen
File-Manager, der den Dateizugri� auch �uber HTTP und FTP und innerhalb

von tar-Dateien erlaubt, sowie gra�schen Kon�gurationsprogrammen, die zum

Beispiel das Ver�andern des Bildschirmhintergrunds oder die Einstellung, wieviele

virtuelle Bildschirme man haben m�ochte, gestatten. Informationen zu KDE gibt

es auf dem WWW-Server des Projekts (http://www.kde.org/).

KDE setzt auf der von der norwegischen Firma Troll Tech entwickelten Qt-

Bibliothek auf. Diese ist f�ur freie UNIX-Anwendungen frei verf�ugbar und enth�alt

eine Sammlung von Widgets f�ur Entwickler von gra�schen Benutzer-Ober
�achen

unter X11 und Microsoft Windows NT/95 (http://www.troll.no/).

2.15.3.7 Dokumentation

Als freies Betriebssystem kommt LINUX in den meisten F�allen ohne gedruckte

Dokumentation daher. Viele Distributionen enthalten zwar ein einfaches Hand-

buch, das aber nur die Installation und die einfachsten Verwaltungsaufgaben er-

2.15 UNIX auf PCs 205

kl�art. Daf�ur ist die Online-Dokumentation erheblich besser als die der meisten

kommerziellen Betriebssysteme.

Neben den oft ben�otigten man-Pages, die man von einem UNIX-System er-

wartet, sind es vor allem die zu vielen verschiedenen Aspekten von LINUX

verf�ugbaren, sehr hilfreichen HOWTOs und Mini-HOWTOs, die f�ur den System-

Manager, aber auch den Endanwender interessant sind. Sie werden von soge-

nannten Maintainern gep
egt und weisen eine �ubersichtliche Gliederung auf.

Vom Umfang her noch geeignet, eine kurze Einf�uhrung in ein bestimmtes Ge-

biet zu geben, fassen sie alle wesentlichen Informationen zusammen. Sie sind von

ftp://sunsite.unc.edu/pub/Linux/docs/HOWTO/ zu bekommen, allerdings ist

dieser Host hoch belastet, so da� man sich einen Mirror in der N�ahe suchen soll-

te, siehe http://sunsite.unc.edu/pub/Linux/MIRRORS.html#Europe. Zu den

wichtigeren HOWTOs geh�oren:

� das DOS-to-LINUX-HOWTO mit Hinweisen, wie man von DOS zu LINUX

wechselt,

� das German-HOWTO, das Tips f�ur deutsche Benutzer gibt,

� das Hardware-HOWTO, das eine (nicht unbedingt aktuelle) Liste der von
LINUX unterst�utzten Hardware enth�alt,

� das Kernel-HOWTO bei Fragen zum Kernel, insbesondere zum Kompilieren
des Kernels,

� das NET-2-HOWTO mit Hilfen zur Netzwerkkon�guration,

� das Distribution-HOWTO mit einer �Ubersicht �uber die LINUX-
Distributionen,

insgesamt rund hundert HOWTOs und hundert Mini-HOWTOs. Bei Problemen
sollte man also zuerst einmal einen Blick in /usr/doc/HOWTO werfen. Die Chancen,

da� ein anderer das Problem schon gel�ost hat, stehen nicht schlecht.
Dar�uberhinaus entstehen im Rahmen des LINUX Documentation Projects

(LDP) verschiedene umfangreiche Dokumentationen, die einen gro�en Bereich
der Systemverwaltung wie die Einrichtung von Netzwerken, das Schreiben von
Kernel-Treibern usw. abdecken. Zu den Ver�o�entlichungen des LDP z�ahlen:

� der LINUX Programmer's Guide,

� der Network Administrator's Guide,

� der System Administrator's Guide.

Die meisten Dokumentations-Files sind im Verzeichnis /usr/doc abgelegt. Im
WWW �nden sie sich auf http://sunsite.unc.edu/mdw/linux.html. Von dort

gelangt man auch zu FAQs und weiteren Ver�o�entlichungen. Auf unserer WWW-

Seite http://www.ciw.uni-karlsruhe.de/technik.html ist LINUX nat�urlich

auch gut vertreten.

Aktive Unterst�utzung bei Problemen erh�alt man im Internet in den LINUX-
Newsgruppen (comp.os.linux.*, linux.*). Bei der Auswahl der richtigen News-

gruppe f�ur eine Frage sollte man darauf achten, da� solche Fragen, die nicht speziell

LINUX betre�en, sondern ein Programm, das auch auf anderen UNIX-Systemen
verf�ugbar ist, h�au�g nicht in die LINUX-Hierarchien geh�oren.

206 2 UNIX

2.15.3.8 Installations-Beispiel

Abschlie�end sei noch als Beispiel der Einsatz eines LINUX-Rechners genannt,

der unser Hausnetz (Domestic Area Network, DAN) mit dem Internet verbindet.

Diese Kon�guration d�urfte auf viele kleinere Netze zutre�en, beispielsweise in

Schulen. Der Rechner selbst ist ein PC 486-120 mit 32 MB RAM und 1 GB Fest-

platte, also ein recht gen�ugsames System. Er verf�ugt �uber eine Ethernet-Karte am

hauseigenen DAN und eine ISDN-Karte f�ur die Verbindung zum Rechenzentrum

einer Universit�at, das den Provider spielt.

Als besonders n�utzlich hat sich die F�ahigkeit des LINUX-Kernels erwiesen,

ein ganzes Subnetz hinter einer einzigen IP-Adresse zu verstecken (IP Masquer-

ading), was neben der Schonung des knapp werdenden Adressraums auch einen

Sicherheitsvorteil mit sich bringt. Die Masquerading-Funktion von LINUX bietet

mittlerweile sogar Unterst�utzung f�ur Protokolle wie FTP, IRC und Quake, die

eine besondere Umsetzung erforden.

Um den Internet-Zugang zu entlasten, laufen auf dem LINUX-Rechner ein

Proxy (squid), der WWW-Seiten zwischenspeichert f�ur den Fall, da� sie mehr-
mals angefordert werden sollten, sowie ein News- Server, der uns das Lesen einiger
ausgew�ahlter Newsgruppen ohne Internet-Verbindung (o�line) erm�oglicht. Jede

Nacht werden automatisch wartende Emails sowie neue News-Artikel abgeholt.
Dar�uberhinaus dient der LINUX-Rechner auch als Fax-Server, sowohl f�ur einge-
hende als auch ausgehende Fax-Nachrichten, und als File- Server, wobei sowohl

NFS als auch das Windows-Protokoll SMB unterst�utzt werden. Das System l�auft
bei uns seit Mitte 1997 und hat sich auch unter harten Bedingungen (was die

Internet-Nutzung angeht) bew�ahrt.

Als Clients greifen von den Arbeitspl�atzen aus Computer unter LINUX,
FreeBSD, Novell DOS und Microsoft Windows NT 4.0 auf den LINUX-Server
zu. Die beiden UNIX-Systeme verf�ugen selbstverst�andlich �uber alle UNIX-�ubli-

chen Internet-Programme, f�ur DOS gibt es ebenfalls Clients f�ur Telnet, FTP und
den Textmode-WWW-Browser Lynx, dar�uberhinaus sogar einen X-Server und
einen Telnet-Server. Unter MS Windows werden viele Internet-Programme wie

MS Explorer, Netscape Navigator, FTP-Clients und Real-Audio verwendet.

2.15.4 386BSD, NetBSD, FreeBSD ...

386BSD ist ein UNIX-System von William Frederick Jolitz und Lynne

Greer Jolitz f�ur Prozessoren ab 80386 aufw�arts, ebenfalls copyrighted, f�ur pri-

vate Zwecke frei nutzbar und darf nicht mit dem kommerziellen Produkt BSD/386

verwechselt werden. Der Original Point of Distribution ist agate.berkeley.edu,

gespiegelt von gatekeeper.dec.com und anderen. 386BSD entwickelt sich langsa-

mer als LINUX und unterst�utzt eine zum Teil andere Hardwareauswahl als dieses.
N�aheres in der Zeitschrift IX 1992, Nr. 5, S. 52 und Nr. 6, S. 30.

NetBSD, OpenBSD und FreeBSD sind ebenfalls UNIX-Systeme aus Ber-
keley, die verwandt mit 386BSD sind und darauf aufbauen; genauso f�ur nicht-

kommerzielle Zwecke kostenfrei nutzbar. NetBSD ist auf eine gro�e Anzahl von
Prozessortypen portiert worden. Worin die Unterschiede liegen, auch zu LINUX,

2.15 UNIX auf PCs 207

wie die Zukunft aussieht und wer wo mitarbeitet, ist schwierig zu ermitteln. Archie

oder das WWW fragen:

� http://www.freebsd.org,

� http://www.netbsd.org,

� http://www.openbsd.org.

The galaxy is a rapidly changing place, meint Douglas Adams.

2.15.5 MKS-Tools und andere

Die UNIX-Werkzeuge einschlie�lich der Shells oder Kommando-Interpreter sind

Programme. Sie lassen sich auf andere Computer und andere Betriebssysteme

umschreiben. Warum sollte es unter MS-DOS oder OS/2 keine Kornshell ksh(1)

und keinen Editor vi(1) geben?

Die MKS-Tools der Firma Mortice Kern Systems stellen auf PCs unter MS-

DOS rund zweihundert UNIX-Werkzeuge bereit. Sie sind kein Betriebssystem und
machen aus MS-DOS kein Mehrbenutzersystem, aber ein UNIX-Fan arbeitet da-

mit auf dem PC in gewohnter Weise, vor allem mit dem vi(1).

Im einfachsten Fall kopiert man die Werkzeuge in ein eigenes Unterverzeich-

nis und f�ugt dieses der Befehlspfadvariablen PATH zu, vor oder nach dem DOS-
Verzeichnis, ganz nach gusto.

Man kann es aber auch ra�nierter machen. Beim Start von MS-DOS wird im

File config.sys der Kommandointerpreter command.com geladen und gestartet.
Nimmt man stattdessen das MKS-Tool init.exe, so ist dies das erste laufende

Programm und tut das, was man unter UNIX von init(1M) erwartet. Es arbei-
tet die inittab(4) durch und startet einen getty(1M)-Prozess (unter MS-DOS
nat�urlich nur einen). Dieser fordert zum login auf, ganz wie auf einem UNIX-

System. Rest wie gewohnt. Die Zugri�srechte der Dateien sind eine Frage des
File-Systems, also eines Teils des Betriebssystems. Sie bleiben daher MS-DOS-

�ublich. Die Sitzung hingegen ist UNIX-haft, sogar der Schr�agstrich zur Trennung
der Dateinamen (der wesentlichste Unterschied zwischen UNIX und MS-DOS)
l�a�t sich umpolen. Der Spa� kostet rund 600 DM.

Falls man mit weniger Werkzeugen zufrieden ist, kann man die Kosten auf et-

was Suchen im Netz verringern. Von vielen h�au�g gebrauchten UNIX-Kommandos

gibt es Nachemp�ndungen f�ur MS-DOS auf Anonymous-FTP-Servern, von man-

chen sogar mehrere. Hier eine Auswahl einiger Pakete:

� b6pack: size, space, touch, wc, when, words

� danix: cat, chmod, cut, cwd, head, ls, man, paste, ptime, tail, touch, wc

� dantools: atob, btoa, cal, cat, chmod, compress, detab, dump, entab, head,
pr, swchar, tail, touch, udate, uudecode, uuencode

� dosix: df, du, head, rm, touch, wc

� dskutl: chmod, cp, du, �nd, ls, mv, page, rm samt zugeh�origen Handbuch-
seiten

208 2 UNIX

� rstlkit: aa, at, bcmp, chmod, df, di�, dr, du, head, lynx, mb, mv, pr, pwd,

rgrep, rm, swap, tee, timex, touch, trim, wc

� uxutl: basename, cat, cmp, cpio, date, df, du, fgrep, �nd, grep, ls, mkdir,

mv, od, rm, rmdir, sleep, sort, tee, touch, uniq, wc

� ztools: ascdump, cd, copy, del, dir, fa, �nd, grep, key, move, size, space,

touch

Dar�uber hinaus gibt es noch Nachemp�ndungen einzelner Kommandos wie

make(1), tar(1), awk(1) und more(1). Zum Teil ist der Quellcode verf�ugbar,

so da� einer Portierung oder Erg�anzung nichts im Wege steht.

2.16 Exkurs �uber Informationen

Die im Text verstreuten Exkurse { Abschweifungen vom Thema UNIX, C und

Internet { braucht man nicht sogleich zu lesen. Sie geh�oren zum Allgemeinwissen
in der Informatik und runden das Spezialwissen �uber UNIX und C/C++ ab.

Im Abschnitt 1.1 Was macht ein Computer? sprachen wir von Informationen,

Nachrichten oder Daten. Es gibt noch mehr Begri�e in diesem Wortfeld:

� Signal,

� Datum, Plural: Daten,

� Nachricht,

� Information,

� Wissen,

� Verstand, Vernunft, Intelligenz, Weisheit : : :

Zur Frage des Pilatus versteigt sich die Informatik nicht, obwohl sie viel von
true und false spricht. Wir lassen auch die Intelligenz nat�urlichen oder k�unstlichen
Ursprungs au�er Betracht { das hei�t wir empfehlen das Nachdenken dar�uber als
�Ubungsaufgabe { und beschr�anken uns auf die genauer, wenn auch nicht immer

einheitlich bestimmten Begri�e von Signal bis Wissen.

Ein Signal ist die zeitliche �Anderung einer physikalischen Gr�o�e, die von ei-

ner Signalquelle hervorgerufen wird mit dem Zweck, einem Signalempf�anger ei-
ne Nachricht zu �ubermitteln. Nicht jede zeitliche �Anderung einer physikalischen

Gr�o�e ist ein Signal, der Zweck fehlt: ein Steigen der Lufttemperatur infolge

Erw�armung durch die Sonne ist keines. Auch h�angt das Signal vom Empf�anger
ab, der Warnruf eines Eichelh�ahers ist kein Signal f�ur einen Menschen, wohl aber

f�ur seine Artgenossen. Die Zeit geh�ort mit zum Signal, sie ist manchmal wichtiger
(informationstr�achtiger) als die sich �andernde physikalische Gr�o�e, denken Sie an

die Haust�urklingel. In der UNIX-Welt hat der Begri� Signal dar�uber hinaus eine

besondere Bedeutung, siehe signal(2).

Nimmt die Signalgr�o�e nur Werte aus einem endlichen Vorrat deutlich vonein-

ander unterschiedener (diskreter) Werte an, so haben wir ein digitales Signal im

Gegensatz zu einem analogen. Die Signale der Verkehrsampeln sind digital, auch

2.16 Exkurs �uber Informationen 209

wenn sie nichts mit Zahlen zu tun haben. Die Zeigerstellung einer herk�ommlichen

Uhr hingegen ist ein analoges Signal.

Ein Element aus einer zur Darstellung von Informationen zwischen Quelle und

Empf�anger vereinbarten Menge digitaler Signale (Zeichenvorrat) ist ein Zeichen

(character). Signale, die aus Zeichen bestehen, werden Daten genannt. Daten ist

die Pluralform zu Datum = lat. das Gegebene. Einige Autoren verstehen unter

Daten anders als obige De�nition aus dem Informatik-Duden Nachrichten samt

den ihnen zugeordneten Informationen. So oder so f�ullen die Daten den Massen-

speicher immer schneller als erwartet.

Eine bestimmte (konkrete) Nachricht, getragen von einem Signal, �uberbringt

eine von der Nachricht l�osbare (abstrakte) Information. Ein Beispiel: die Infor-

mation vom Untergang eines F�ahrschi�es l�a�t sich durch eine Nachricht in deut-

scher, englischer, franz�osischer usw. Sprache �ubertragen. Die Information bleibt

dieselbe, die Nachricht lautet jedesmal anders. Dar�uber hinaus kann jede dieser

Nachrichten nochmals durch verschiedene Signale dargestellt werden. Der eine

erf�ahrt sie im Fernsehen, der andere im Radio, der dritte per Email. Inwieweit die
Nachricht die Information beein
u�t, also nicht von ihr zu l�osen ist, macht Elend

und Glanz der �Ubersetzung aus.

Eine Nachricht kann f�ur mich belanglos sein (keine Information enthalten),
falls ich sie entweder schon fr�uher einmal empfangen habe oder sie aus ande-

ren Gr�unden keinen Ein
u� auf mein Verhalten hat. Dieselbe Nachricht kann f�ur
einen anderen Empf�anger �au�erst wichtig sein (viel Information enthalten), wenn
beispielsweise auf der havarierten F�ahre Angeh�orige waren.

Verschl�usselte Nachrichten erm�oglichen nur dem Besitzer des Schl�ussels die

Entnahme der Information. Schlie�lich kommen auch gar nicht selten mehrdeuti-
ge Nachrichten vor. Ein Bauer versteht unter Sch�onem Wetter je nach demWetter
der vergangenen Wochen etwas anderes als ein Tourist. Selbst ein Bergsteiger zieht

auf gewissen H�uttenanstiegen einen leichten Nieselregen einer gnadenlos strahlen-
den Sonne vor. Die kaum zu vermeidende Mehrdeutigkeit von Klausuraufgaben

hat schon Gerichte besch�aftigt. In �ahnlicher Weise, wie hier zwischen Nachricht
und Information unterschieden wird, trennt die Semantik (Bedeutungslehre, ein
Zweig der Linguistik, die Lehre nicht von den Sprachen, sondern von der Sprache

schlechthin) die Bezeichnung von der Bedeutung.

In einem Handw�orterbuch von 1854 wird unter Nachricht die m�undliche oder
schriftliche Bekanntmachung einer in der Ferne geschehenen Sache verstanden, wo-

mit die Ortsabh�angigkeit des Informationsgehaltes einer Nachricht angesprochen

wird. Ein Blick in das Duden-Herkunftsw�orterbuch belehrt uns, da� eine Nach-
richt urspr�unglich etwas war, wonach man sich zu richten hatte, eine Anweisung.

Und ein gewisser General Carl von Clausewitz bezeichnet mit dem Worte
Nachrichten etwas einseitig die ganze Kenntnis, welche man von dem Feinde und

seinem Lande hat, also die Grundlage aller eigenen Ideen und Handlungen. Wir

stimmen jedoch vollinhaltlich seiner Meinung zu, da� ein gro�er Teil der Nach-
richten widersprechend, ein noch gr�o�erer falsch und bei weitem der gr�o�te einer

ziemlichen Ungewi�heit unterworfen sei. Deshalb hat der Mensch eine Fehlertole-

ranz entwickelt, um den ihn die Computer noch lange beneiden.

Im antiken Rom bedeutete informieren jemanden durch Unterweisung bilden

210 2 UNIX

Quelle - Kodierer - Kanal - Dekodierer - Senke

6
St�orungen

Abb. 2.11: �Ubertragung einer Information, Modell nach C. E. Shannon

oder formen, daher informatio = Begri�, Vorstellung, Darlegung, Unterweisung,

Belehrung. Einen genaueren und daher nur begrenzt verwendbaren Begri� der

Information gebraucht Claude Elwood Shannon in der von ihm begr�unde-

ten Informationstheorie. Wir betrachten den Weg einer Nachricht von einer

Nachrichtenquelle (source) durch einen Kodierer (coder), einen �Ubertragungska-

nal (channel) und einen Dekodierer (decoder) zum Empf�anger oder zur Nach-
richtensenke (sink), siehe Abb. 2.11. Die Quelle sind Menschen, Me�ger�ate oder
ihrerseits zusammengesetzte Systeme. Der Kodierer pa�t die Quelle an den Kanal

an, der Dekodierer den Kanal an die Senke. Stellen Sie sich als Quelle einen Nach-
richtensprecher vor, als Kodierer die Technik vom Mikrofon bis zur Sendeantenne,
als Kanal den Weg der elektromagnetischen Wellen, als Dekodierer Ihr Radio von

der Antenne bis zum Lautsprecher, und als Senke d�urfen Sie selbst auftreten.
Oder Sie sind die Quelle, Ihre Tastatur ist der Kodierer, der Speicher ist der Ka-

nal, die Hard- und Software f�ur die Ausgabe (Bildschirm) bilden den Dekodierer,
und schlie�lich sind Sie oder ein anderer Benutzer die Senke. Die Quelle macht
aus einer Information eine Nachricht und gibt formal betrachtet Zeichen mit einer

zugeh�origen Wahrscheinlichkeit von sich. Was die Zeichen bedeuten, interessiert
Shannon nicht, er kennt nur die trockene Statistik. Der Kodierer setzt mittels

einer Tabelle oder eines Regelwerks die Nachricht in eine f�ur den Kanal geeigne-
te Form um, beispielsweise Buchstaben in Folgen von 0 und 1. Der Dekodierer
macht das gleiche in umgekehrter Weise, wobei die Nachricht nicht notwendig die

urspr�ungliche Form annimmt: Die Ausgabe einer �uber die Tastatur eingegebenen
Nachricht geschieht praktisch nie durch Tastenbewegungen. Der Kanal ist dadurch

gekennzeichnet, da� er Signale verliert und auch hinzuf�ugt. Die Senke zieht aus

der Nachricht die Information heraus, m�oglichst die richtige. Das Ganze l�a�t sich
zu einer stark mathematisch ausgerichteten Wissenschaft vertiefen, der man die

Verbindung zum Computer nicht mehr ansieht.

Im Kodieren und Dekodieren steckt eine Menge Intelligenz. Eine Nachricht
kann n�amlich zweckm�a�ig kodiert werden, das hei�t so, da� sie wenig Anspr�uche

an den Kanal stellt. Anspr�uche sind Zeit bei der �Ubertragung und Platzbedarf

beim Speichern. Damit sind wir wieder bei UNIX: es gibt Programme wie gzip(1)

zum Umcodieren von Daten, die ohne Informationsverlust die Anzahl der Bytes

verringern, so da� weniger Speicher und bei der �Ubertragung weniger Zeit ben�otigt
werden. Umgekehrt l�a�t sich die Sicherheit der Aufbewahrung und �Ubertragung

durch eine Vermehrung der Bits oder Bytes verbessern. In vielen PCs wird daher

1 Byte in 9 Bits gespeichert. Bei der Bildverarbeitung wachsen die Datenmengen

2.16 Exkurs �uber Informationen 211

so gewaltig, da� man bei der Kodierung Verluste hinnimmt, die die Senke gerade

noch nicht bemerkt, genau so bei der Musik-CD.

Wissen auf Knopfdruck? Manches, was im Computer gespeichert ist, bezeich-

nen wir alsWissen, sobald es in unserem Kopf gelandet ist. Trotzdem z�ogern wir,

beim Computer von Wissen zu sprechen (und schon gar nicht von Bewu�tsein).

Fragen wir ein Lexikon der Informatik: Wissen (knowledge) ist eine geheimnisvol-

le Mischung aus Intuition, Erfahrung, Informiertheit, Bildung und Urteilskraft.
�Ahnlich dunkel sind auch unsere eigenen Vorstellungen; befragen wir ein anderes

Buch: Wissen ist Information, die aufgeteilt, geformt, interpretiert, ausgew�ahlt

und umgewandelt wurde. Tatsachen allein sind noch kein Wissen. Damit Infor-

mation zu Wissen wird, m�ussen auch die wechselseitigen ideellen Beziehungen klar

sein. Ende des Zitates, nichts ist klar.

Jemand, der alle Geschichtszahlen aus dem Gro�en Ploetz oder aus einer En-

zyklop�adie auswendig kann, wird zwar bestaunt, aber nicht als kenntnisreich oder

klug angesehen, eher im Gegenteil. Erst wenn er die Tatsachen zu verkn�upfen

und auf neue Situationen anzuwenden wei�, beginnen wir, ihm Wissen zuzubilli-
gen. Andererseits kommt das Denken nicht ohne Tatsachen aus, Geschichtswissen
ohne die Kenntnis einiger Jahreszahlen ist kaum vorstellbar. Die Strukturierung

der Tatsachen in Hierarchien (denken Sie an die Einordnung der Taschenratte
alias Gopher) oder verwickelteren Ordnungen (semantischen Netzen) mit Kreuz-

und-Quer-Beziehungen, das Verbinden von Tatsachen nach Regeln, die ihrerseits
wieder geordnet sind, und die Anwendung des Wissens auf noch nicht Gewu�tes
scheinen einen wesentlichen Teil des Wissens auszumachen. Das den Computern

beizubringen, ist ein Ziel der Bem�uhungen um die K�unstliche Intelligenz (KI,
englisch AI). Datenbanken, Expertensysteme und Hypermedia sind erste Schritte
auf einem vermutlich langen Weg. Ehe wir uns weiter auf dessen Glatteis begeben,

verweisen wir auf die Literatur.
Wenden wir uns zum Abschlu� wieder den bodenn�aheren Schichten der Infor-

mation zu. Viele Pannen im Berufs-, Vereins-, Partei- und Familienleben r�uhren
einfach daher, da� der Informations
u� nicht richtig lief. Dabei lassen sich solche
Pannen mit relativ wenig Aufwand vermeiden, indem man fr�uhzeitig dem Infor-

mationswesen etwas Aufmerksamkeit widmet. Einige Erfahrungen eines ergrauten
Post- und Webmasters:

� Falsche Informationen sind gef�ahrlicher als fehlende.

� Der Zeitpunkt der �Ubermittlung einer Information kann wichtiger sein als

der Inhalt.

� Viele Informationen haben au�er ihrem Sachinhalt auch eine emotionelle

Seite, der nicht mit Sachargumenten beizukommen ist. Beispielsweise spielt

oft die Reihenfolge, in der die Empf�anger benachrichtigt werden, eine Rolle.

� Guten Informationen mu� man hinterherlaufen, �uber
�ussige kommen von

allein.

� Eine Information zusammenstellen, ist eine Sache, sie auf dem laufenden

zu halten, eine andere. Die zweite Aufgabe ist m�uhsamer, da sie kein En-
de nimmt. Gilt insbesondere f�ur die Einrichtung von WWW-Servern und

-Seiten.

212 2 UNIX

3 Internet

Ans Internet, ans teure, schlie� dich an,

Das halte fest mit deinem ganzen Herzen,

Hier sind die starken Wurzeln deiner Kraft.

Schiller, Tell

3.1 Grundbegri�e

Netze sind ein komplexes Thema, das liegt in ihrer Natur. Deswegen werden sie

in Gra�ken als W�olkchen dargestellt. Wir versuchen, den Nebel zu durchdringen,

ohne uns in Einzelheiten zu verlieren.

Ehe wir uns der Praxis zuwenden, ein �Uberblick �uber die rasch verlaufende

Entwicklung. Ein Vorgri� auf einige sp�ater erkl�arte Begri�e ist dabei unvermeid-
lich. Wir erkennen vier Stufen in der Entwicklung der Computernetze:

� Am Anfang standen kleine Netze, die der gemeinsamen Nutzung von
Peripherie wie Massenspeicher und Drucker und von Datenbest�anden wie

Telefon- und Anschriftenlisten dienten. Netzdienste wie Email waren prak-
tisch nicht vorhanden, die Sicherheitsanforderungen bescheiden. Alle Benut-

zer kannten sich von Angesicht. Typische Vertreter: Novell Personal Netware,
Kirschbaum Link, Microsoft Windows for Workgroups und Windows 95.

� Die kleinen Netze wurden gr�o�er und untereinander verbunden. Pl�otzlich
hatte man das weltumspannende Internet. Damit wurden Routing-Fragen

wichtig: wie �ndet eine Email1 zum Empf�anger? Betriebs- und Datensicher-
heit r�uckten ins Bewu�tsein der Netzer�nder und -verwalter. Netzdienste
kamen auf: Kommunikation (Email, FTP, Netnews, IRC) und Auskunfts-

dienste (Archie, Gopher, WAIS, WWW). Das Netz wurde damit um we-
sentliche Funktionen bereichert. Das ist der heutige Zustand.

� Die verschiedenen Netzdienste werden unter einer gemeinsamen Ober-

�ache vereinigt. Der Benutzer w�ahlt nicht mehr FTP oder Gopher oder
WWW aus, sondern bleibt in einem einzigen Programm, das je nach den
W�unschen des Benutzers die verschiedenen Dienste anspricht. Die Dienste

werden multimediaf�ahig, man kann au�er Text auch gra�sche und akusti-

sche Daten austauschen. Ob auch Ger�uche dabei sein werden, ist zur Zeit
noch o�en. Dieses Ziel ist heute teilweise erreicht, die WWW-Browser wie

netscape verdecken die unterschiedlichen Protokolle, allerdings gelegentlich
unvollkommen.

� Die Computernetze und die anderen informations�ubertragenden Netze (Te-
lefon, Kabelfernsehen) werden vereinigt zu einem digitalen Datennetzmit

1Es hat einen Grund, weshalb wir Mail sagen und nicht Post: In den Netnews ist ein

Posting die Alternative zu einer Mail.

213

214 3 Internet

einheitlichen Daten-Steckdosen in den Geb�auden. Das digitale Telefonnetz

ISDN ist ein Schritt in diese Richtung, gebremst von politischen und wirt-

schaftlichen Ein
�ussen. Die Infobahn ist ein fernes Entwicklungsziel.

Prognosen sind gewagt2. Die genannten Entwicklungen sind jedoch im Gange, im

globalen Dorf sind schon einige Stra�en befestigt.

Wie wir bereits im Kap. ?? Hardware bemerkt haben, verstehen wir unter

einem Computernetz ein Netz aus selbst�andigen Computern und nicht ein Ter-

minalnetz oder verteilte Systeme, die sich dem Benutzer wie ein einziger Computer

darbieten. Um die Arbeitsweise eines Netzes besser zu verstehen, sollte man sich

zu Beginn der Arbeit drei Fragen stellen:

� Was will ich machen?

� Welche Hardware ist beteiligt?

� Welche Software ist beteiligt?

Auch wenn man die Fragen nicht in allen Punkten beantworten kann, helfen sie

doch, das Geschehen hinter dem Terminal zu durchschauen. Andernfalls kommt
man nicht �uber das Dr�ucken auswendig gelernter Tasten hinaus.

Der Computer, an dessen Terminal man arbeitet, wird als local bezeichnet,
der unter Umst�anden weit entfernte Computer, in dem man augenblicklich ar-

beitet (Prozesse startet), als remote. Ein entfernter Computer, der eine Reihe
von Diensten leistet, wird Host genannt, zu deutsch Gastgeber. Wenn von zwei

miteinander verbundenen Computern (genauer: Prozessen) einer Dienste anfor-
dert und der andere sie leistet, bezeichnet man den Fordernden als Client, den
Leistenden als Server. Es kommt vor, da� Client und Server gemeinsam in der-

selben Hardware stecken. Der Begri� Server wird auch allgemein f�ur Computer
gebraucht, die auf bestimmte Dienstleistungen spezialisiert sind: Fileserver, Mail-
server, Kommunikationsserver, Druckerserver usw.

Wenn zu Beginn der Verbindung eine durchgehende Leitung zwischen den Be-

teiligten aufgebaut und f�ur die Dauer der �Ubertragung beibehalten wird, spricht
man von einer leitungsvermittelten Verbindung. Das ist im analogen Telefon-
dienst die Regel. Da bei der �Ubertragung gro�e Pausen (Schweigen) vorkommen,

w�ahrend der eine teure Leitung nutzlos belegt ist, geht man mehr und mehr dazu

�uber, die zu �ubertragenden Daten in Pakete aufzuteilen, sie mit der Empf�anger-

adresse und weiteren Angaben zu beschriften und �uber irgendeine gerade freie
Leitung zu schicken, so wie bei der Briefpost. Dort wird ja auch nicht f�ur Ihr

Weihnachtsp�ackchen an Tante Clara ein Gleis bei der Bundesbahn reserviert. Bei

einer Internet-Verbindung besteht also keine dauernde Leitung zwischen den Part-

nern, es werden Datenpakete (Datagramme) ausgetauscht. Ist eine Leitung unter-

brochen, nehmen die Datagramme einen anderen Weg, eine Umleitung. Bei den

vielen Maschen im Internet ist das kein Problem, anders als in einem zentral

organisierten Netz. Es kommt vor, da� ein j�ungeres Datagramm vor einem �alte-

ren beim Empf�anger eintri�t. Der Empf�anger mu� daher die richtige Reihenfolge

wiederherstellen. Der Benutzer merkt von den Paketen nichts und braucht sich

2Um 1950 herum soll die IBM der Ansicht gewesen sein, da� achtzehn Computer den

gesamten Rechenbedarf der USA decken w�urden.

3.2 Schichtenmodell 215

nicht einmal um die Entsorgung der Verpackungen zu k�ummern. Diese Art der

Verbindung hei�t paketvermittelt.

Wenn Sie mit einem Computer in �Ubersee korrespondieren, kann es sein, da�

einige Ihrer Bytes �uber Satellit laufen, andere durch ein Seekabel, einige links um

den Globus herum, andere rechts.

3.2 Schichtenmodell

Gr�o�ere Netze sind umfangreiche Gebilde aus Hard- und Software. Um etwas Ord-

nung hineinzubringen, hat die ISO (International Organization for Standardizati-

on) ein Modell aus sieben Schichten entwickelt. Dieses Modell wird viel verwendet,

aber auch kritisiert. Ein Vorwurf richtet sich gegen seine starke Bindung an die

Telefontechnik. Telefone und Computer unterscheiden sich, obwohl sie manchmal

dieselben Leitungen verwenden. Die Zahl Sieben stammt aus der babylonischen

Mythologie, nicht aus technischer Notwendigkeit. Das SNA-Netz von IBM gliedert

sich auch in sieben Schichten, die Aufgaben sind jedoch anders verteilt. TCP/IP-
Netze gliedern sich in vier Schichten.

System 1 System 2

�

�

�

�

�

�

-

-

-

-

-

-

6

6

6

6

6

6

?

?

?

?

?

?

6

6

6

6

6

6

?

?

?

?

?

?

Application Application

Presentation Presentation

Session Session

Transport Transport

Network Network

Data Link Data Link

Physical Physical

Abb. 3.1: ISO-Schichtenmodell eines Netzes

Das ISO-Modell stellt zwei Computer dar, die miteinander verbunden sind.
Jede Schicht leistet eine bestimmte Art von Diensten an die Schicht dar�uber und

verlangt eine bestimmte Art von Diensten von der Schicht darunter. Oberhalb der

obersten Schicht kann man sich den Benutzer vorstellen. Jede Schicht kommuni-

ziert logisch { nicht physikalisch { mit ihrer Gegenschicht auf derselben Stufe.

216 3 Internet

Eine physikalische Verbindung (Draht, Lichtwellenleiter, Funk) besteht nur in der

untersten Schicht (Abb. 3.1).

In der obersten Schicht laufen dieAnwendungen (application), beispielsweise

ein Mailprogramm (elm(1)) oder ein Programm zur File�ubertragung (ftp(1)).

Die Programme dieser Schicht verkehren nach oben mit dem Benutzer oder An-

wender.

Die Darstellungsschicht (presentation) bringt die Daten auf eine einheitli-

che Form und komprimiert und verschl�usselt sie gegebenenfalls. Auch die Frage

EBCDIC- oder ASCII-Zeichensatz wird hier behandelt. Dienstprogramme und

Funktionen des Betriebssystems sind hier angesiedelt.

Die Programme der Sitzungsschicht (session) verwalten die Sitzung (login,

Passwort, Dialog) und synchronisieren die Daten�ubertragung, d. h. sie bauen nach

einer Unterbrechung der Verbindung die Sitzung wieder auf. Ein Beispiel sind die

NetBIOS-Funktionen.

In der Transportschicht (transport) werden die Daten ver- und entpackt

sowie die Verbindungswege aufgebaut, die w�ahrend einer Sitzung wechseln k�onnen,

ohne da� die dar�uberliegenden Schichten etwas davon merken. Protokolle wie TCP
oder UDP geh�oren zur Transportschicht.

Die Netzwerkschicht (network) betreibt das betro�ene Subnetz, sorgt f�ur

Protokoll�uberg�ange und f�uhrt Buch. Zugeh�orige Protokolle sind IP oder ICMP.

Die Data-Link-Schicht transportiert Bytes ohne Interesse f�ur ihre Bedeu-
tung und verlangt bei Fehlern eine Wiederholung der Sendung. Auch die An-

passung unterschiedlicher Geschwindigkeiten von Sender und Empf�anger ist ihre
Aufgabe. Ethernet oder X.25 sind hier zu Hause.

Die unterste, physikalische Schicht (physical) geh�ort den Elektrikern. Hier
geht es um Kabel und Lichtwellenleiter, um Spannungen, Str�ome, Widerst�ande

und Zeiten. Hier werden Pulse behandelt und Stecker genormt.

3.3 Entstehung

Die Legende berichtet, da� in den sechziger Jahren unseres Jahrhunderts die ame-
rikanische Firma RAND einen Vorschlag ausbr�uten sollte, wie in den USA nach

einem atomaren Schlag die Kommunikation insbesondere der Beh�orden aufrecht

erhalten werden k�onnte. Zwei Grunds�atze kamen dabei heraus:

� keine zentrale Steuerung,

� kein Verla� auf das Funktionieren bestimmter Verbindungen.

Verwirklicht wurde gegen Ende 1969 ein Netz aus vier Knoten in der Universit�at

von Kalifornien in Los Angeles (UCLA), das nach dem Geldgeber ARPANET
(Advanced Research Projects Agency) genannt wurde. Das Netz bew�ahrte sich

auch ohne atomaren Schlag.

Das Netz wuchs, die Protokolle wurden ausgearbeitet, andere Netze �ubernah-

men die Protokolle und verbanden sich mit dem ARPANET. Im Jahr 1984 (1000

Knoten) schlo� sich die National Science Foundation (NSF) an, die in den USA et-

wa die Rolle spielt wie hierzulande die Deutsche Forschungsgemeinschaft (DFG).

3.4 Protokolle (TCP/IP) 217

Das ARPANET starb 1989 (150 000 Knoten). Seine Aufgabe als Mutter des welt-

weiten Internet war erf�ullt.

Heute ist das Internet die Wunderwa�e gegen Dummheit, Armut, Pestilenz,

Erwerbslosigkeit, In
ation und die Sauregurkenzeit in den Medien. Der RFC (Re-

quest for comment) 1462 alias FYI (For your information) 20 sieht das n�uchterner.

Das Internet ist ein Zusammenschlu� vieler regionaler Netze, verbunden durch die

TCP/IP-Protokolle, mit �uber 20 Millionen Computern (Juli 98) und 60 Mil-

lionen Benutzern. N�achstes Jahr k�onnen sich die Zahlen schon verdoppelt haben.

Wenn das so weiter geht, hat das Netz im Jahr 2002 mehr Teilnehmer als es Men-

schen auf der Erde gibt, also sind vermutlich viele D�amonen und Au�erirdische

darunter. Das Internet, unendliche Weiten ...

3.4 Protokolle (TCP/IP)

Ein Netz-Protokoll ist eine Sammlung von Vorschriften und Regeln, die der

Verst�andigung zwischen den Netzteilnehmern dient, �ahnlich wie bestimmte Sitten
und Gebr�auche den Umgang unter den Menschen erleichtern. Auch in der h�oheren

Tierwelt sind instinktive Protokolle verbreitet. Bekannte Netz-Protokolle sind:

� TCP/IP

� ISO-OSI

� IBM-SNA

� Decnet LAT

� IPX-Novell (IEEE 802.3)

� Appletalk

� Banyan Vines

� IBM und Novell NetBIOS

Zwei Netzteilnehmer k�onnen nur miteinander reden, wenn sie dasselbe Protokoll

verwenden. Da das nicht immer gegeben ist, braucht man Protokoll-Umsetzer als

Dolmetscher.
TCP/IP hei�tTransmission Control Protocol/Internet Protocol und ist

eine Sammlung mehrerer, sich erg�anzender Protokolle aus der Internet Protocol
Suite. TCP und IP sind die bekanntesten, weshalb die ganze Sammlung nach

ihnen benannt wird. Die wichtigsten, in dieser Suite festgelegten Dienste sind:

� File Transfer, geregelt durch das File Transfer Protocol FTP (RFC 959),

� Remote Login, geregelt durch das Network Terminal Protocol TELNET
(RFC 854),

� Electronic Mail (Email), geregelt durch das Simple Mail Transfer Protocol
SMTP (RFC 821),

� Network File Systems,

� Remote Printing,

218 3 Internet

� Remote Execution,

� Name Server,

� Terminal Server.

Die einzelnen Protokolle werden in Requests For Comments (RFC) beschrie-

ben, die im Internet frei zug�anglich sind. Bisher sind rund 2500 Requests erschie-

nen. Der RFC 1463 beispielsweise ist For Your Information (FYI, also nicht

normativ) und enth�alt eine Bibliographie zum Internet, wohingegen der RFC 959

das File Transfer Protokoll beschreibt. Bisher sind rund 30 FYIs erschienen, die

au�er ihrer RFC-Nummer noch eine eigene FYI-Nummer tragen. Etwa 50 RFCs

haben den Status von Internet-Standards erhalten, sind also verbindlich. Die RFCs

werden nicht aktualisiert, sondern bei Bedarf durch neuere mit h�oheren Nummern

ersetzt (anders als DIN-Normen). Als Neuling (newbie) sollten Sie vor allem den

RFC 1462 = FYI 20 What is the Internet? lesen, rund zehn Seiten. Die aktuellen

RFCs samt �Ubersicht �nden Sie beispielsweise bei ftp://ftp.nic.de/pub/doc/rfc.

Die TCP/IP-Protokolle lassen sich in Schichten einordnen, allerdings nicht in

das j�ungere ISO-Schichten-Modell. Jede Schicht greift auf die Dienste der darunter
liegenden Schicht zur�uck, bis man bei der Hardware landet. TCP/IP kennt vier

Schichten:

� ein Anwendungsprotokoll wie Telnet oder FTP, in etwa den drei obersten
Schichten des ISO-Modells entsprechend (wobei hier die Programme, die das

Protokoll umsetzen, genauso hei�en),

� ein Protokoll wie TCP, das Dienste leistet, die von vielen Anwendungen
gleicherma�en ben�otigt werden,

� ein Protokoll wie IP, das Daten in Form von Datagrammen zum Ziel

bef�ordert, wobei TCP und IP zusammen ungef�ahr den ISO-Schichten Trans-
port und Network entsprechen,

� ein Protokoll, das den Gebrauch des physikalischen Mediums regelt (z. B.

Ethernet), im ISO-Modell die beiden untersten Schichten.

Ein Anwendungsprotokoll de�niert die Kommandos, die die Systeme beim
Austausch von Daten verwenden. �Uber den �Ubertragungsweg werden keine An-

nahmen getro�en. Ein drittes Beispiel nach Telnet und FTP ist das Simple Mail

Transfer Protocol SMTP gem�a� RFC 821 vom August 1982 mit zahlreichen

sp�ateren Erg�anzungen, verwirklicht zum Beispiel in dem Programm sendmail(1).

Das Protokoll beschreibt den Dialog zwischen Sender und Empf�anger mittels meh-
rerer Kommandos wie MAIL, RCPT (Recipient), DATA, OK und verschiedenen Feh-

lermeldungen. Der Benutzer sieht von diesen Kommandos nichts, sie werden von
den beiden miteinander kommunizierenden sendmail-Prozessen gebraucht.

Das TCP-Protokoll verpackt die Nachrichten in Datagramme, d. h. in

Briefumschl�age eines festgelegten Formats mit einer Zieladresse. Am Ziel �o�net
es die Umschl�age, setzt die Nachrichten wieder zusammen und �uberpr�uft sie auf

Transportsch�aden. Obwohl die RFCs bis auf das Jahr 1969 zur�uckreichen, sind

die Urspr�unge des TCP-Protokolls nicht in RFCs, sondern in Schriften des US-
amerikanischen Verteidigungsministeriums (DoD) zu �nden.

3.5 Adressen und Namen, Name-Server 219

In gro�en, weltweiten Netzen ist die Bef�orderung der Datagramme eine nicht

ganz einfache Aufgabe. Diese wird vom IP-Protokoll geregelt. Da Absender und

Empf�anger nur in seltenen F�allen direkt verbunden sind, gehen die Datagramme

�uber Zwischenstationen. Eine geeignete Route herauszu�nden und dabei Schleifen

zu vermeiden, ist Sache von IP, dessen Urspr�unge ebenfalls im DoD liegen.

Die unterste Schicht der Protokolle regelt den Verkehr auf dem physikalischen

Medium, beispielsweise einem Ethernet. Bei diesem h�oren alle beteiligten Com-

puter st�andig am Bus, der durch ein Koaxkabel verwirklicht ist. Wenn ein Com-

puter eine Nachricht senden will, schickt er sie los. Ist kein zweiter auf Senden,

geht die Sache gut, andernfalls kommt es zu einer Kollision. Diese wird von den

beteiligten Sendern bemerkt, worauf sie f�ur eine zuf�allig lange Zeit den Mund

halten. Dann beginnt das Spiel wieder von vorn. Es leuchtet ein, da� bei starkem

Betrieb viele Kollisionen vorkommen, die die Leistung des Netzes verschlechtern.

Der RFC 894 vom April 1984 beschreibt die �Ubertragung von IP-Datagrammen

�uber Ethernet. Die Ethernet-Technik selbst ist im IEEE-Standard 802.3 festgelegt

und unabh�angig vom Internet.

3.5 Adressen und Namen, Name-Server

Die Teilnetze des Internet sind �uber Gateways verkn�upft, das sind Computer,
die mit mindestens zwei regionalen Netzen verbunden sind. Die teilnehmenden

Computer sind durch eine eindeutige Internet-Adresse (IP-Adresse) gekenn-
zeichnet, eine 32-bit-Zahl. Unser System hat beispielsweise die Internet-Adresse

(IP-Adresse) 129.13.118.15. Diese Schreibweise wird auch als Dotted Quad (vier
durch Punkte getrennte Bytes) bezeichnet. Die erste Zahlengruppe entscheidet

�uber die Netzklasse:

� 0: reserviert f�ur ???

� 1 bis 126: Klasse-A-Netze mit je 2 hoch 24 gleich 16 777 216 Hosts,

� 127: reserviert f�ur ???,

� 128 bis 191: Klasse-B-Netze mit je 2 hoch 16 gleich 65 534 Hosts,

� 192 bis 222: Klasse-C-Netze mit je 2 hoch 8 gleich 254 Hosts,

� 255: reserviert f�ur ???.

An zweiter und dritter Stelle kann jeder Wert von 0 bis 255 auftauchen, an vierter

Stelle ist die Zahl 255 reserviert, N�aheres siehe ???. Da sich solche Zahlen schlecht
merken lassen und nicht viel aussagen, werden sie aufName-Servern in frei w�ahl-

bare Hostnamen umgesetzt, in unserem Fall in mvmhp.ciw.uni-karlsruhe.de.

Es spricht aber nichts dagegen, unserer Internet-Adresse auf einem Name-Server

zus�atzlich den Namen kruemel.de zuzuordnen. Name und Nummer m�ussen welt-

weit eindeutig3 sein, wor�uber ein Network Information Center (NIC) in Kalifor-

3Genaugenommen bezieht sich die Nummer auf die Netz-Interface-Karte des Com-

puters. Ein Computer kann mehrere Karten enthalten. Ethernet-Karten haben dar�uber

hinaus noch eine hexadezimale, unver�anderliche Hardware-Adresse, die auch weltweit

eindeutig ist.

220 3 Internet

nien und seine nationalen Untergliederungen wachen. Das US-NIC verwaltet die

Top-Level-Domains:

� gov (governmental) amerikanische Beh�orden,

� mil (military) amerikanisches Milit�ar,

� edu (education) amerikanische Universit�aten und Schulen,

� com (commercial) amerikanische Firmen,

� org (organisational) amerikanische Organisationen,

� net (network) amerikanische Gateways und andere Server,

� �rm (�rms) Firmen,

� store (stores) Handels�rmen,

� web (World Wide Web) WWW-Einrichtungen,

� arts (arts) kulturelle und unterhaltende Einrichtungen,

� rec (recreation) Einrichtungen der Freizeitgestaltung,

� info (information) Information Provider,

� nom (nomenclature) Einrichtungen mit besonderer Nomenklatur,

� de Deutschland,

� fr Frankreich,

� ch Schweiz (Confoederatio Helvetica),

� at �Osterreich (Austria),

� � Finnland,

� jp Japan usw.

Daneben �nden sich noch einige Exoten wie nato, uucp und bitnet.
Eine Domain ist ein Adressbereich4, der in einem Glied der Adresse �uberein-

stimmt. Alle Adressen der Top-Level-Domain de enden auf ebendiese Silbe und
bezeichnen Computer, die physikalisch oder logisch in Deutschland beheimatet
sind.

Die n�achste Domain ist Sache der nationalen Netzverwalter. Hierzulande sorgt

das Network Information Center f�ur Deutschland (DE-NIC) { das nationale Stan-

desamt { am Rechenzentrum der Universit�at Karlsruhe f�ur Ordnung und betreibt
den Primary Name Server (ns.nic.de, 193.196.32.1)5. Der Universit�at Karlsuhe
ist die Domain uni-karlsruhe.de zugewiesen. Sie wird vom Primary Name Ser-

ver der Universit�at netserv.rz.uni-karlsruhe.de (129.13.64.5) im Rechenzen-
trum verwaltet, bei dem jeder Computer auf dem Campus anzumelden ist, der

4Eine Windows-NT-Dom�ane ist etwas v�ollig anderes, n�amlich eine Menge von Com-

putern mit gemeinsamer Benutzerverwaltung, unter UNIX einer NIS-Domain entspre-

chend.
5Dieser kennt nicht etwa alle deutschen Knoten, sondern nur die ihm unmittelbar

unter- und �ubergeordneten Name-Server. Es hat also keinen Zweck, ihn als Default-

Name-Server auf dem eigenen Knoten einzutragen.

3.5 Adressen und Namen, Name-Server 221

am Netz teilnimmt. Innerhalb der Universit�at Karlsruhe vergibt das Rechenzen-

trum die Nummern und Namen, und zwar im wesentlichen die Namen fakult�ats-

weise (ciw = Chemieingenieurwesen) und die Nummern geb�audeweise (118 =

Geb�aude 30.70), was mit der Verkabelung zusammenh�angt. Innerhalb der Fa-

kult�aten oder Geb�aude geben dann subalterne Manager wie wir die Nummern

weiter und er�nden die Namen der einzelnen Computer. In der Regel ist die

numerische Adresse mit der Hardware (Netzkarte) verkn�upft, die alphanumeri-

sche Adresse (Name) mit der Funktion eines Netzcomputers. Unsere beiden Hosts

mvmpc2.ciw.uni-karlsruhe.de und ftp.ciw.uni-karlsruhe.de sind beispiels-

weise hardwarem�a�ig identisch, die Namen weisen auf zwei Aufgaben der Kiste

hin. Der Benutzer im Netz bemerkt davon kaum etwas; es ist gleich, ob er FTP

mit ftp oder mvmpc2 macht. Da die Name-Server f�ur das Funktionieren des Net-

zes unentbehrlich sind, gibt es au�er dem Primary Name Server immer mehrere

Secondary Name Server, die die Adresslisten spiegeln und notfalls einspringen.

ns.nic.de in Karlsruhe wird von Dresden und Stuttgart unterst�utzt.

Vergibt man Namen, ohne seinen Primary Name Server zu benachrichtigen,
so sind diese Namen im Netz unbekannt, die Hosts sind nur �uber ihre numerische
IP-Adresse erreichbar. Verwendet man IP-Adressen oder Namen innerhalb einer

Domain mehrfach { was m�oglich ist, der Name-Server aber nicht akzeptiert {
scha�t man �Arger.

Auf UNIX-Systemen tr�agt man in das File /etc/resolv.conf die IP-Adressen
(nicht die Namen) der Nameserver ein, die man zur Umsetzung von Namen in IP-
Adressen heranziehen m�ochte, zweckm�a�ig Server in der N�ahe. Bei uns steht an

erster Stelle ein institutseigener Secondary Name Server, dann der Primary Name
Server unserer Universit�at und an dritter Stelle ein Name Server der Universit�at
Heidelberg.

Welchen Weg die Nachrichten im Netz nehmen, bleibt dem Benutzer verbor-
gen, genau wie bei der Briefpost oder beim Telefonieren. Entscheidend ist, da�

vom Absender zum Empf�anger eine l�uckenlose Kette von Computern besteht, die
mit Hilfe der Name-Server die Empf�anger-Adresse so weit interpretieren k�onnen,
da� die Nachricht mit jedem Zwischenglied dem Ziel ein St�uck n�aher kommt. Es

braucht also nicht jeder Internet-Computer eine Liste aller Internet-Teilnehmer
zu halten. Das w�are gar nicht m�oglich, weil sich die Liste laufend �andert. Mit

dem Kommando traceroute(8) und einem Hostnamen oder einer IP-Adresse als

Argument ermittelt man den gegenw�artigen Weg zu einem Computer im Internet,
beispielsweise von meiner Linux-Workstation zu einem Host in Freiburg:

/usr/sbin/traceroute ilsebill.biologie.uni-freiburg.de

1 mv01-eth7.rz.uni-karlsruhe.de (129.13.118.254)

2 rz11-fddi3.rz.uni-karlsruhe.de (129.13.75.254)

3 belw-gw-fddi1.rz.uni-karlsruhe.de (129.13.99.254)

4 Karlsruhe1.BelWue.DE (129.143.59.1)

5 Freiburg1.BelWue.DE (129.143.1.241)

6 BelWue-GW.Uni-Freiburg.DE (129.143.56.2)

7 132.230.222.2 (132.230.222.2)

8 132.230.130.253 (132.230.130.253)

222 3 Internet

9 ilsebill.biologie.uni-freiburg.de (132.230.36.11)

Es geht zwar �uber erstaunlich viele Zwischenstationen, aber nicht �uber den Gro�en

Teich. Die Nummer 1 steht bei uns im Geb�aude, dann geht es auf den Karlsruher

Campus, ins BelWue-Netz und schlie�lich auf den Freiburger Campus.

3.6 BelWue

BelWue versteht sich als ein Zusammenschlu� der baden-w�urttembergischen

Hochschulen und Forschungseinrichtungen zur F�orderung der nationalen und in-

ternationalen Telekooperation und Nutzung entfernt stehender DV-Einrichtungen

unter Verwendung schneller Datenkommunikationseinrichtungen. BelWue ist ein

organisatorisches Teilnetz im Rahmen des Deutschen Forschungsnetzes. Unbescha-

det der innerorganisatorischen Eigenst�andigkeit der neun Universit�atsrechenzen-

tren ist das Kernziel die Darstellung dieser Rechenzentren als eine einheitliche DV-

Versorgungseinheit gegen�uber den wissenschaftlichen Nutzern und Einrichtungen.
Soweit der Minister f�ur Wissenschaft und Kunst von Baden-W�urttemberg.

Das Karlsruher Campusnetz KLICK, an das fast alle Einrichtungen der Uni-

versit�at Karlsruhe angeschlossen sind, ist ein BelWue-Subnetz. BelWue ist { wie
oben verk�undet { ein Subnetz des Deutschen Forschungsnetzes DFN. Das DFN

ist ein Subnetz des Internet. Durch das BelWue-Netz sind miteinander verbunden

� die Universit�aten Freiburg, Heidelberg, Hohenheim, Kaiserslautern, Karls-
ruhe, Konstanz, Mannheim, Stuttgart, T�ubingen und Ulm,

� die Fachhochschulen Aalen, Biberach, Esslingen, Furtwangen, Heilbronn,
Karlsruhe, Konstanz, Mannheim, O�enburg, Pforzheim, Reutlingen, Stutt-
gart (3), Ulm und Weingarten (W�urttemberg),

� die Berufsakademien Karlsruhe, Mannheim, Mosbach, Ravensburg und
Stuttgart,

� das Ministerium f�ur Wissenschaft und Forschung, Stuttgart.

Einige Netzadressen sind im Anhang ?? Netzadressen zu �nden. Weiteres in der

Zeitschrift IX Nr. 5/1993, S. 82 - 92.

3.7 Netzdienste im �Uberblick

Ein Netz stellt Dienstleistungen zur Verf�ugung. Einige nimmt der Benutzer aus-

dr�ucklich und unmittelbar in Anspruch, andere wirken als Heinzelm�annchen im
Hintergrund. Die wichtigsten sind:

� Terminal-Emulationen (das eigene System wird zum Terminal eines entfern-

ten Systems, man f�uhrt einen Dialog) bis hin zu netzorientierten Window-

Systemen (X Window System),

� Remote Execution (zum Ausf�uhren von Programmen auf einem entfernten

Host, ohne Dialog),

3.8 Terminal-Emulatoren (telnet, rlogin, ssh) 223

� File-Transfer (zum Kopieren von Files zwischen dem eigenen und einem

entfernten System, Dialog eingeschr�ankt auf die zum Transfer notwendigen

Kommandos),

� Electronic Mail (zum Senden und Empfangen von Mail zwischen Systemen),

� Netzgeschw�atz (Echtzeit-Dialog mehrerer Benutzer),

� Nachrichtendienste (Neuigkeiten f�ur alle),

� Informationshilfen (Wo �nde ich was?),

� Navigationshilfen (Wo �nde ich jemand?)

� Netzwerk-File-Systeme,

� Name-Server (�Ubersetzung von Netz-Adressen),

� Zeit-Server (einheitliche, genaue Zeit im Netz),

� Drucker-Server (Remote Printing, Drucken auf einem entfernten Host),

� Cookie-Server, Backgammon-Server usw. (weniger wichtig).

Das Faszinierende am Netz ist, da� Entfernungen fast keine Rolle spielen. Der

Kollege in Honolulu ist manchmal besser zu erreichen als der eigene Chef eine
Treppe h�oher. Die Kosten sind { verglichen mit denen der klassischen Kommu-
nikationsmittel { geringer, und einen Computer braucht man ohnehin. Eine allzu

eingehende Besch�aftigung mit dem Netz kann allerdings auch { wie �uberm�a�iger
Alkoholgenu� { die eigene Leistung gegen Null gehen lassen.

Im Netz hat sich so etwas wie eine eigene Subkultur entwickelt, siehe The

New Hacker's Dictionary oder das Jargon-File. Die Benutzer des Netzes sehen
sich nicht blo� als Teilnehmer an einer technischen Errungenschaft, sondern als

B�urger oder Bewohner des Netzes (netizen).

3.8 Terminal-Emulatoren (telnet, rlogin, ssh)

telnet(1) emuliert ein VT100-Terminal gem�a� dem telnet-Protokoll in TCP/IP-
Netzen (Internet). tn3270(1) bildet ein VT100-Terminal auf eine IBM-3270-

Emulation ab, so da� man mit einem echten oder emulierten VT 100 mit IBM-

Gro�rechnern wie der IBM 3090 einen Dialog f�uhren kann.

MittelsRemote Login, Kommando rlogin(1), meldet man sich als Benutzer

auf dem entfernten Computer (Host) an. Hat man dort keine Benutzerberechti-

gung, wird der Zugang verweigert. Darf man, wird eine Sitzung er�o�net, so als ob
man vor Ort s�a�e. Ist der lokale Computer ein PC, so mu� dieser ein Terminal

emulieren, das mit dem Host zusammenarbeitet (oft ein VT 100). Der Unterschied

zwischen telnet(1) und rlogin(1) besteht darin, da� das erstere Kommando ein

Internet-Protokoll realisiert und daher auf vielen Systemen verf�ugbar ist, w�ahrend

die r-Dienstprogramme von Berkeley nur auf UNIX-Systemen laufen.

Das Programmpaar ssh(1) (Secure Shell Client) und sshd(1) (Secure Shell

Daemon) erm�oglichen eine Terminalverbindung zu einem entfernten Computer

�ahnlich wie telnet(1) oder rlogin(1). Die Daten gehen jedoch verschl�usselt �uber

224 3 Internet

die Leitung und k�onnen zwar abgeh�ort, aber kaum von Unberechtigten verwendet

werden.

Netzwerkorientierte Window-Systeme erm�oglichen es, aufwendige gra�sche

Ein- und Ausgaben �uber das Netz laufen zu lassen. Ein Beispiel daf�ur ist das

X Window System. N�aheres siehe Abschnitt 2.6.2 X Window System. Inner-

halb des X Window Systems lassen sich dann wieder Terminal-Emulatoren star-

ten { auch mehrere gleichzeitig { so da� man auf einem Bildschirm verschiedene

Terminal-Sitzungen mit beliebigen X-Window-Clienten im Netz abhalten kann.

In gr�o�eren Anlagen sind die Terminals nicht mehr unmittelbar mit dem

Computer verbunden, weil auch vor�ubergehend nicht benutzte Terminals einen

wertvollen Port belegen w�urden. Sie sind vielmehr mit einem Terminal-Server

verbunden, der nur die aktiven Terminals zum Computer durchschaltet. Der

Terminal-Server ist ein kleiner Computer, der nur ein Protokoll wie Telnet f�ahrt.

Der Terminal-Server kann an mehrere Computer angeschlossen sein, so da� jedes

Terminal gleichzeitig mehrere Sitzungen auf verschiedenen Anlagen ge�o�net haben

kann. Wenn ein Benutzer dann einen Session Manager zur Verwaltung seiner

o�enen Sitzungen braucht, ist er auf der H�ohe der Zeit. Terminal in Karlsruhe,
Daten in Stuttgart, Prozesse in Bologna und Druckerausgabe in Fort Laramy, alles
m�oglich!

3.9 File-Transfer (kermit, ftp, fsp)

Um im vorigen Beispiel zu bleiben, nehmen wir an, da� unser PC ein Terminal
emuliert und wir eine Sitzung auf dem entfernten Computer (Host) er�o�net haben.

Jetzt m�ochten wir ein File von dem Host auf unseren PC �ubertragen, eine Aufga-
be, die zwischen einem echten Terminal und einem Computer keinen Sinn macht,
weil das echte Terminal keinen Speicher hat, in das ein File kopiert werden k�onn-

te. Dasselbe gilt auch f�ur die umgekehrte Richtung. Wir brauchen also neben der
Emulation ein Programm f�ur die File-�Ubertragung. Im einfachsten Fall sind das

Kopierprogramme �ahnlich cat(1) oder cp(1), die zum Computerausgang schrei-
ben bzw. vom Computereingang (serielle Schnittstellen) lesen, und zwar mu� auf
dem sendenden und auf dem empfangenden Computer je eines laufen.

Bei der �Ubertragung treten Fehler auf, die unangenehmer sind als ein falsches
Zeichen auf dem Bildschirm, au�erdem spielt die Geschwindigkeit eine Rolle. Man
bevorzugt daher gesicherte �Ubertragungsprotokolle, die die zu �ubertragenden

Daten in Pakete packen und jedes Paket mit einer Pr�ufsumme versehen, so da�

der Empf�anger einen �Ubertragungsfehler mit hoher Wahrscheinlichkeit bemerkt

und eine Wiederholung des Paketes verlangt. Beispiele gesicherter Protokolle sind
kermit, xmodem, und zmodem. Sie geh�oren nicht zu den Internet-Protokollen. Wir
verwenden oft kermit(1). Es ist zwar angejahrt, aber verbreitet, Original Point

of Distribution kermit.columbia.edu. Das f�ur viele Systeme verf�ugbare kermit-

Programm enth�alt auch eine Terminal-Emulation, erledigt also zwei Aufgaben.

Bei einem File Transfer mittels ftp(1) kopiert man ein File von einem Com-

puter zum anderen und arbeitet dann mit seiner lokalen Kopie weiter. FTP geht in

beide Richtungen, senden und empfangen. Es ist ein Internet-Protokoll und wird

3.10 Anonymous-FTP 225

im RFC 959 beschrieben. Unter FTP stehen mehrere Dutzend FTP-Kommandos

zur Verf�ugung, die beim File-Transfer gebraucht werden. Man kann also nicht

wie beim Remote Login auf der entfernten Maschine arbeiten, die Eingabe von

UNIX-Kommandos f�uhrt zu einem Fehler. Einige FTP-Kommandos haben diesel-

ben Namen wie DOS- oder UNIX-Kommandos, aber nicht alle. Ein Trick, um sich

kleine Text�les (readme) doch gleichsam on-line anzuschauen:

get readme |more

Das FTP-Kommando get erwartet als zweites Argument den lokalen Filenamen.

Beginnt dieser mit dem senkrechten Strich einer Pipe, unmittelbar gefolgt von

einem UNIX-Kommando, so wird das �ubertragene File an das UNIX-Kommando

weitergereicht. Eine andere M�oglichkeit ist, das File zu �ubertragen, FTP mittels

eines Ausrufezeichens vor�ubergehend zu verlassen, auf Shellebene mit dem File

zu arbeiten und nach Beenden der Shell FTP fortzusetzen. Beide Verfahren bele-

gen zwar keine �Ubertragungswege (da paketvermittelt), aber auf den beteiligten

Computern einen FTP-Port, und deren Anzahl ist begrenzt.

Bei der �Ubertragung zwischen ungleichen Systemen (UNIX { MS-DOS { Ma-

cintosh) ist zwischen Text�les und bin�aren Files zu unterscheiden. Text�les un-
terscheiden sich { wir sprachen in Abschnitt 2.7.11 Text�les aus anderen Wel-

ten dar�uber { in der Gestaltung des Zeilenwechsels. Die �Ubertragungsprogramme

�ubersetzen stillschweigend den Zeilenwechsel in die Zeichenkombination des jewei-
ligen Zielcomputers. Alle anderen Files gelten als bin�ar und sind zu �ubertragen,

ohne auch nur ein Bit zu �andern. Bei der �Ubertragung zwischen zwei UNIX-
Systemen braucht man den Unterschied nicht zu beachten. Auch Postscript-Files
und gepackte Text�les m�ussen bin�ar �ubertragen werden. �Ubertr�agt man ein Text�-

le bin�ar, kann man mit einem einfachen Filter den Zeilenwechsel wieder hinbiegen.
Ist ein Bin�ar�le im Textmodus von FTP �ubertragen worden, ist es Schrott.

Arbeitet man hinter einer Firewall-Maschine, so kann der FTP-Dialog zwi-

schen Client und Server mi�lingen. Normalerweise verlangt nach Beginn des Dia-
logs der Server vom Client die Er�o�nung eines Kanals zur Daten�ubertragung. Die

Firewall sieht in dem Verlangen einen hereinkommenden Aufruf an einen unbe-
kannten Port, eine verd�achtige und daher abzublockende Angelegenheit. Schickt
man nach Herstellung der Verbindung, jedoch vor der �Ubertragung von Daten das

FTP-Kommando pasv an den Server, so wird die Datenverbindung vom Client

aus aufgebaut, und die Firewall ist beruhigt. Nicht alle FTP-Server unterst�utzen
jedoch dieses Vorgehen.

Das File Service Protocol FSP dient dem gleichen Zweck wie FTP, ist

etwas langsamer, aber daf�ur unemp�ndlich gegen�uber Unterbrechungen. Manche
Server bieten sowohl FTP wie auch FSP an.

3.10 Anonymous-FTP

In Universit�aten ist es Brauch, den Netzteilnehmern Informationen und Softwa-

re unentgeltlich zur Verf�ugung zu stellen. Was mit �o�entlichen Mitteln �nanziert
worden ist, soll auch der �O�entlichkeit zugute kommen. Einige Organisationen

226 3 Internet

und Firmen haben sich ebenfalls dem Netzdienst angeschlossen. Zu diesem Zweck

wird auf den Anlagen ein Benutzer namens anonymous (unter vielen Systemen

auch ftp) eingerichtet, der wie gast kein Passwort ben�otigt. Es ist jedoch �ublich,

seine Email-Anschrift als Passwort mitzuteilen. Nach erfolgreicher Anmeldung auf

einer solchen Anlage kann man sich mit einigen FTP-Kommandos in den �o�entli-

chen Verzeichnissen (oft /pub) umsehen und Files auf die eigene Anlage kopieren

(download). Eine Anonymous-FTP-Verbindung mit der Universit�at Freiburg im

sch�onen Breisgau verl�auft beispielsweise so:

ftp ftp.uni-freiburg.de

anonymous (Login-Name)

ig03@mvmhp.ciw.uni-karlsruhe.de (eigener Name als Passwort)

dir (wie UNIX-ls)

ascii (Textmodus)

get README (File README holen)

cd misc

dir

quit

Anschlie�end �ndet man das Freiburger File README in seinem Arbeits-

Verzeichnis. Die Geschwindigkeit der Verbindung liegt bei 600 Bytes/s. Allerdings
ist diese Angabe infolge der geringen Filegr�o�e ungenau. Auf diese Weise haben
wir uns den Hitchhikers Guide to Internet besorgt.

Die Verbindung funktioniert nicht nur im L�andle6, sondern sogar bis zum an-
deren Ende der Welt. Mit

ftp ftp.cc.monash.edu.au

wulf.alex@ciw.uni-karlsruhe.de

dir

cd pub

dir

quit

schaut man sich im Computer Center der Monash University in Melbourne in

Australien um. Die Geschwindigkeit sinkt auf 40 Bytes/s. Man wird sich also

nicht megabytegro�e Dokumente von dort holen. Grunds�atzlich soll man immer
zuerst in der Nachbarschaft suchen. Viele Files werden n�amlich nicht nur auf ih-

rem Ursprungscomputer (original point of distribution, OPD) verf�ugbar gehalten,

sondern auch auf weiteren Hosts. Manche FTP-Server kopieren sogar ganze Ver-

zeichnisb�aume fremder Server. Eine solche Kopie wird Spiegel (mirror) genannt.

Ein Spiegel senkt die Kosten und erh�oht die Geschwindigkeit der �Ubertragung.

Weiterhin gebietet der Anstand, fremde Computer nicht zu den dortigen Haupt-

verkehrszeiten zu bel�astigen.

Da der Mensch seit altersher mit einem starken Sammeltrieb ausgestattet ist,

stellt Anonymous-FTP f�ur den Anf�anger eine Gefahr dar. Zwei Hinweise. Erstens:

6F�ur Nicht-Badener: Das L�andle ist Baden, seine Einwohner hei�en Badener und

nicht etwa Badenser. Die Frankfurter nennen sich ja auch nicht Frankfurtser.

3.10 Anonymous-FTP 227

Man lege ein Verzeichnis aftp an (der Name ftp wird meist f�ur die FTP-Software

ben�otigt). In diesem richte man f�ur jeden FTP-Server, den man anzapft, ein Un-

terverzeichnis an. In jedem Unterverzeichnis schreibe man ein Shellscript namens

aftp mit folgender Zeile:

ftp ftp-servername

ftp-servername ist der Name, notfalls die numerische Internet-Adresse des jewei-

ligen FTP-Servers. Das Shellscript mache man les- und ausf�uhrbar (750). Dann

erreicht man in dem augenblicklichen Verzeichnis mit dem Kommando aftp im-

mer den zugeh�origen Server und wei�, woher die Files stammen. Weiter lege man

f�ur wichtige Programme, deren Herkunft man bald vergessen hat, in dem Ver-

zeichnis aftp einen Link auf das zum FTP-Server geh�orige Unterverzeichnis an.

So hat man einen doppelten Zugangsweg: �uber die Herkunft und den Namen. Bei

uns schaut das dann so aus:

...

emacs -> unimainz

unimainz

aftp

...

emacs-20.2

emacs-20.2.tar.gz

...

Sie d�urfen sich gern ein anderes Ordnungsschema ausdenken, aber ohne Ordnung
stehen Sie nach vier Wochen Anonymous-FTP im Wald.

Zweitens: Man hole sich nicht mehr Files in seinen Massenspeicher, als man in

n�achster Zukunft verarbeiten kann, andernfalls legt man nur eine Datengruft zum
Wohle der Plattenindustrie an. F�ur alle weiteren Sch�atze reicht eine Notiz mit

Herkunft, Namen, Datum und Zweck. Files �andern sich schnell. Mit �uberlagerten
Daten zu arbeiten ist Zeitvergeudung.

Das Gutenberg-Projekt hat sich zur Aufgabe gesetzt, bis zum Jahr 2001

eine Vielzahl englischsprachiger Texte als ASCII-Files zur Verf�ugung zu stel-
len. Die Bibel, William Shakespeare's Gesammelte Werke und die Verfas-

sung der USA gibt es schon. Versuchen Sie FTP mit mrcnext.cso.uiuc.edu in

der University of Illinois. Unser Exemplar der Zahl � auf eine Million Stellen
(ftp.ciw: /pub/misc/pi/pimil10.txt) stammt von dort, beeindruckend.

Die kostenfreie GNU-Software kommt von prep.ai.mit.edu in den USA,
kann aber auch von mehreren Servern (mirrors) in Europa abgeholt werden. Inzwi-

schen gibt es auch eine Liste der deutschen Mirrors. Die SIMTEL-Archive werden

von ftp.uni-paderborn.de gespiegelt. Man mu� fragen und suchen, das Internet
kennt keine zentrale Verwaltung.

Die Einrichtung eines eigenen FTP-Servers unter UNIX ist nicht weiter

schwierig, siehe die man-Seite zu ftpd(1M). Man mu� achtgeben, da� anonyme
Benutzer nicht aus dem ihnen zugewiesenen Bereich im Filesystem herausk�onnen,

sofern man �uberhaupt Anonymous FTP zulassen will. Bei uns greifen FTP-Server

und WWW-Server auf denselben Datenbestand zu, das hat sich als zweckm�a�ig

228 3 Internet

erwiesen. Andersherum: unser FTP-Server kann inzwischen auch WWW, unser

WWW-Server kann FTP, und der Datenbestand des einen ist eine Kopie des an-

deren, ein Backup.

3.11 Electronic Mail (Email)

3.11.1 Grundbegri�e

Electronic Mail, Email oder Computer-Mail ist die M�oglichkeit, mit Benutzern

im Netz zeitversetzt Nachrichten auszutauschen, in erster Linie kurze Texte. Die

Nachrichten werden in der Mailbox7 des Empf�angers gespeichert, wo sie bei Bedarf

abgeholt werden. Die Mailbox ist ein File oder ein Unterverzeichnis auf dem

Computer des Empf�angers.

PCs unter MS-DOS und �ahnliche Rechner haben hier eine Schwierigkeit. Sie

sind oftmals ausgeschaltet oder mit anderen Arbeiten besch�aftigt, jedenfalls nicht

bereit, Mail entgegenzunehmen. Eine gr�o�ere UNIX-Anlage dagegen ist st�andig
in Betrieb und vermag als Multitasking-System Post zu empfangen, w�ahrend sie

andere Aufgaben bearbeitet. Die L�osung ist, die Nachrichten auf zentralen Mail-

servern zu speichern und von dort { m�oglichst automatisch { abzuholen, sobald

der eigene Computer bereit ist. Das Zwischenlager wird manchmal alsMaildrop

bezeichnet. Hierzu wird das Post O�ce Protocol (POP) nach RFC 1460 ver-
wendet; der POP-D�amon ist in /etc/services und in /etc/inetd.conf einzu-

tragen, ist also ein Knecht des inet-D�amons. Auf dem PC oder Mac l�auft ein
POP-f�ahiges Mailprogramm wie Eudora, das bei Aufruf Kontakt zum Mailserver

aufnimmt.

Im Internet wird der Mailverkehr durch das Simple Mail Transfer Pro-

tocol SMTP nach RFC 821 in Verbindung mit RFC 822 geregelt. Eine Alter-
native ist die CCITT-Empfehlung X.400, international genormt als ISO 10021.
Es gibt �Uberg�ange zwischen den beiden Protokollwelten, Einzelheiten siehe im

RFC 1327. Im Internet wird Mail sofort bef�ordert und nicht zwischengelagert wie
in einigen anderen Netzen (UUCP). Die Adresse des Empf�angers mu� hundert-
prozentig stimmen, sonst kommt die Mail als unzustellbar zur�uck. Eine g�ultige

Benutzeradresse ist:

wualex1@mvmhp64.ciw.uni-karlsruhe.de

wualex1 ist ein Benutzername, wie er im File /etc/passwd(4) steht. Der Kringel

{ das ASCII-Zeichen Nr. 64 { wird im Deutschen auch Klammera�e (commercial
at, arobace) genannt und trennt den Benutzernamen vom Computernamen. Falls

man Schwierigkeiten beim Eingeben dieses Zeichens hat, kann man es mit \@ oder
control-v @ versuchen. Der Klammera�e dient gelegentlich als Steuerzeichen und

l�oscht dann eine Zeile. mvmhp64 ist der Name des Computers, ciw die Subdomain

(Fakult�at f�ur Chemieingenieurwesen), uni-karlsruhe die Domain und de die

7Das Wort Mailbox wird in anderen Netzen auch als Oberbegri� f�ur ein System

aus Postf�achern und Anschlagtafeln gebraucht, siehe die Liste der Mailboxen in der

Zeitschrift c't oder in der Newsgruppe de.etc.lists.

3.11 Electronic Mail (Email) 229

Top-level-domain Deutschland. Andere Netze (Bitnet, UUCP) verwenden andere

Adressformate, was zur Komplexit�at von Mailprogrammen wie sendmail(1M) und

deren Kon�guration beitr�agt.

Besagter Benutzer tritt auch noch unter anderen Namen auf anderen Maschi-

nen auf. In den jeweiligen Mailboxen oder Home-Verzeichnissen steht ein forward-

Kommando, das etwaige Mail an obige Adresse weiterschickt. Keine Mailbox zu

haben, ist schlimm, viele zu haben, erleichtert das Leben auch nicht gerade. Da

man auf jedem Computer, der ans Netz angeschlossen ist, grunds�atzlich eine Mail-

box (das hei�t eine g�ultige Mailanschrift) besitzt, hat man selbst f�ur das richtige

Forwarding sorgen. Andernfalls kann man jeden Morgen die Menge seiner Mail-

boxen abklappern. Man mu� aber aufpassen, da� man keine geschlossenen Wege

erzeugt: Von Computer A nach Computer B, von diesem nach C und von C wie-

der nach A. Eine Mail gelangt zwar in diesen Ring hinein, kreist dann aber in der

Schleife, bis ein Postmaster eingreift.

Da Computer kommen und gehen und mit ihnen ihre Namen, ist es unprak-

tisch, bei jedem Umzug aller Welt die �Anderung der Mailanschrift mitteilen zu
m�ussen. Unser Rechenzentrum hat daher generische Anschriften gem�a� der
CCITT-Empfehlung X.500 eingef�uhrt, die keinen Maschinennamen mehr enthal-

ten:

wulf.alex@ciw.uni-karlsruhe.de

Ein Server im Rechenzentrum wei�, da� Mail an diese Anschrift zur Zeit an

wualex1@mvmhp64 weitergeleitet werden soll. Bei einem Umzug gen�ugt eine Mit-
teilung ans Rechenzentrum, f�ur die Au�enwelt �andert sich nichts. Die Anschriften
mit Maschinennamen bleiben weiterhin bestehen, sollten aber nicht ver�o�entlicht

werden. Im Prinzip k�onnte eine einmal angelegte X.500-Anschrift lebenslang g�ultig
bleiben, da sie die etwaigen �Anderungen der tats�achlichen Email-Anschrift ver-

birgt.
Die CCITT-Empfehlung X.500 hat zun�achst nichts mit Email zu tun, sondern

ist ein weltweites, verteiltes Informationssystem mit Informationen �uber L�ander,

Organisationen, Personen usw. Zu jedem Objekt geh�oren bestimmte Attribute,
zu einer Person unter anderem Name, Telefonnummer und Email-Anschriften.
Das sind personenbezogene Daten, die unter die Datenschutzgesetze fallen. Die

Eintragung der Daten bedarf daher der Zustimmung des Betro�enen. Wer sich
nicht eintragen lassen will, ist unter Umst�anden schwierig zu �nden.

Kennt man den Benutzernamen nicht, aber wenigstens den vollst�andi-
gen Computernnamen, kann man die Mail mit der Bitte um Weitergabe an

postmaster@computername schicken. Die Postmaster sind Kummer gew�ohnt. Je-

der Mailserver soll einen haben.
Die Mailprogramme f�ugen der Mail eine Anzahl von Kopfzeilen (Header)

hinzu, die folgendes bedeuten (RFC 822, RFC 2045):

� Message-ID: weltweit eindeutige, maschinenlesbare Bezeichnung der Mail

� Date: Zeitpunkt des Absendens

� From: logischer Absender

� Sender: tats�achlicher Absender

230 3 Internet

� Return-Path: R�uckweg zum Absender

� Reply-to: Anschrift f�ur Antworten

� Organization: Organisation des Absenders, z. B. Universit�at Karlsruhe

� To: Empf�anger

� Cc: Zweiter Empf�anger (Carbon copy)

� Received: Eintr�age der Hosts, �uber die Mail ging

� Subject: Thema der Mail

� Keywords: Schlagw�orter zum Inhalt der Mail

� Lines: Anzahl der Zeilen ohne Header

� Precedence: Dringlichkeit wie urgent, normal, bulk

� Priority: Dringlichkeit wie urgent, normal, bulk

� Status: z. B. bereits gelesen, wird vom MDA (elm(1)) eingesetzt

� In-Reply-To: Bezug auf eine Mail (Message-ID) des Empf�angers

� References: Bez�uge auf andere Mails (Message-IDs)

� Resent: weitergleitet

� Expires: Haltbarkeitsdatum der Mail (best before ...)

� Errors-To: Anschrift f�ur Probleme

� Comments: Kommentar

� MIME-Version: MIME-Version, nach der sich die Mail richtet

� Content-Transfer-Encoding: MIME-Codierungsverfahren, Default 7bit

� Content-ID: MIME ID der Mail, weltweit eindeutig

� Content-Description: MIME Beschreibung des Inhalts der Mail

� Content-Type: MIME text, image, audio, video, application usw. Default-

wert text/plain; charset=us-ascii

� Content-Length: MIME Anzahl der Zeichen, ohne Header

� X400-Originator u. a.: Felder nach CCITT-Empfehlung X.400/ISO 10021

� X-Sender: (user de�ned �eld)

� X-Mailer: (user de�ned �eld)

� X-Gateway: (user de�ned �eld)

� X-Priority: (user de�ned �eld)

� X-Envelope-To: (user de�ned �eld)

� X-UIDL: (user de�ned �eld)

3.11 Electronic Mail (Email) 231

Die meisten Mails weisen nur einen Teil dieser Header-Zeilen auf, abh�angig vom

jeweiligen Mailprogramm. Einige der Header-Zeilen wie Subject lassen sich editie-

ren.

Zum Feld Content-Transfer-Encoding nach RFC 2045 noch eine Erl�aute-

rung. Das Simple Mail Transfer Protocol l�a�t nur 7-bit-Zeichen und Zeilen mit

weniger als 1000 Zeichen zu. Texte mit Sonderzeichen oder bin�are Daten m�ussen

daher umcodiert werden, um diesen Forderungen zu gen�ugen. Das Feld weist das

die Mail an den Empf�anger ausliefernde Programm darauf hin, mit welchem Zei-

chensatz bzw. welcher Codierung (nicht: Verschl�usselung) die Daten wiederzuge-

ben sind. �Ubliche Eintragungen sind:

� 7bit (Default, 7-bit-Zeichensatz, keine Codierung),

� 8bit (8-bit-Zeichensatz, keine Codierung),

� binary (bin�are Daten, keine Codierung),

� quoted-printable (Oktetts werden in die Form =Hexp�archen codiert, druck-

bare 7-bit-US-ASCII-Zeichen d�urfen beibehalten werden),

� base64 (jeweils 3 Zeichen = 3 Bytes = 24 Bits werden codiert in 4 Zeichen

des 7-bit-US-ASCII-Zeichensatzes, dargestellt durch 4 Bytes mit h�ochstwer-
tigem Bit gleich null),

� ietf-token (Sonderzeichen der IETF/IANA),

� x-token (user de�ned).

Dieses Feld sagt nichts dar�uber aus, ob die Daten Text, Bilder, Audio oder Video

sind. Das geh�ort in das Feld Content-Type. Beispiel:

Content-Type: text/plain; charset=ISO-8859-1

Content-transfer-endocding: base64

kennzeichnet eine Mail als einen Text, urpsr�unglich geschrieben mit dem Zeichen-
satz ISO 8859-1 (Latin-1) und codiert gem�a� base64 in Daten, die nur Zeichen des
7-bit-US-ASCII-Zeichensatzes enthalten. Nach R�uckcodierung hat man den Text

und kann ihn mit einem Ausgabeger�at, das den Latin-1-Zeichensatz beherrscht,
in voller Pracht genie�en.

Nun die entscheidende Frage: Wie kommt eine Mail aus meinem Rechner an

einen Empf�anger irgendwo in den unendlichen Weiten? Im Grunde ist es �ahnlich

wie bei der Briefpost. Alle Post, die ich nicht in meinem Heimatdorf selbst austra-

ge, werfe ich in meinen Default-Briefkasten ein. Der Rest ist Sache der Deutschen
Post AG. Vermutlich landet mein Brief zuerst in Karlsruhe auf einem Postamt.
Da er nach Fatmomakke in Schweden adressiert ist, dieser Ort jedoch in Karlsruhe

ziemlich ausl�andisch klingt, gelangt der Brief zu einer f�ur das Ausland zust�andigen

zentralen Stelle in Frankfurt (Main) oder Hamburg. Dort ist zumindest Schweden

ein Begri�, der Brief
iegt weiter nach Stockholm. Die stockholmer Postbedien-
steten wollen mit Fatmomakke auch nichts zu tun haben und sagen blo� Ab damit

nach �Ostersund. Dort wei� ein Busfahrer, da� Fatmomakke �uber Vilhelmina zu

erreichen ist und nimmt den Brief mit. Schlie�lich f�uhlt sich der Landbrieftr�ager

in Vilhelmina zust�andig und h�andigt den Brief aus. Der Brief wandert also durch

232 3 Internet

eine Kette von Stationen, die jeweils nur ihre Nachbarn kennen, im wesentlichen

in die richtige Richtung.

Genau so l�auft die elektronische Post. Schauen wir uns ein Beispiel an. Die

�ktive Anschrift sei xy@access.owl.de, der Rechner ist echt, jedoch kein Kno-

ten (Host) im Internet. Das Kommando nslookup(1) sagt No Address. Mit

host -a access.owl.de (unter LINUX verf�ugbar) erfahren wir etwas mehr,

n�amlich (gek�urzt):

access.owl.de 86400 IN MX (pri=20) by pax.gt.owl.de

access.owl.de 86400 IN MX (pri=50) by jengate.thur.de

access.owl.de 86400 IN MX (pri=100) by ki1.chemie.fu-berlin.de

access.owl.de 86400 IN MX (pri=10) by golden-gate.owl.de

For authoritative answers, see:

owl.de 86400 IN NS golden-gate.owl.de

Additional information:

golden-gate.owl.de 86400 IN A 131.234.134.30

golden-gate.owl.de 86400 IN A 193.174.12.241

Der Rechner access.owl.de hat keine Internet-Adresse, es gibt aber vier

Internet-Rechner (MX = Mail Exchange), die Mail f�ur access.owl.de anneh-
men. Der beste (pri=10) ist golden-gate.owl.de. Dessen IP-Adresse erf�ahrt

man mit nslookup(1) oder host(1), sofern von Interesse. Wie die Mail
von Karlsruhe nach golden-gate.owl.de gelangt, ermittelt das Kommando
traceroute golden-gate.owl.de:

1 mv01-eth7.rz.uni-karlsruhe.de (129.13.118.254) 1.230 ms

2 rz11-fddi3.rz.uni-karlsruhe.de (129.13.75.254) 2.238 ms

3 belw-gw-fddi1.rz.uni-karlsruhe.de (129.13.99.254) 4.397 ms

4 Karlsruhe1.BelWue.DE (129.143.59.1) 2.821 ms

5 Uni-Karlsruhe1.WiN-IP.DFN.DE (188.1.5.29) 2.682 ms

6 ZR-Karlsruhe1.WiN-IP.DFN.DE (188.1.5.25) 3.967 ms

7 ZR-Frankfurt1.WiN-IP.DFN.DE (188.1.144.37) 14.330 ms

8 ZR-Koeln1.WiN-IP.DFN.DE (188.1.144.33) 19.910 ms

9 ZR-Hannover1.WiN-IP.DFN.DE (188.1.144.25) 24.667 ms

10 Uni-Paderborn1.WiN-IP.DFN.DE (188.1.4.18) 26.569 ms

11 cisco.Uni-Paderborn.DE (188.1.4.22) 25.23 ms 26.126 ms

12 fb10sj1-fb.uni-paderborn.de (131.234.250.37) 28.262 ms

13 golden-gate.uni-paderborn.de (131.234.134.30) 29.128 ms

Station 1 ist das Gateway, das unser Geb�audenetz mit dem Campusnetz verbin-

det. Mit der Station 5 erreichen wir das deutsche Wissenschaftsnetz, betrieben

vom Verein zur F�orderung eines Deutschen Forschungsnetzes (DFN-Verein). Die-

se noch zur Universit�at Karlsruhe geh�orende Station schickt alles, was sie nicht

selbst zustellen kann, an ein Default-Gateway in Karlsruhe (Nr. 6). Von dort geht
es �uber Frankfurt, K�oln und Hannover (wo der Router o�enbar einmal etwas von

Paderborn und owl.de geh�ort hat) in die Universit�at Paderborn, der Heimat des

Rechners golden-gate.owl.de. Dieser Weg braucht weder physikalisch noch lo-
gisch der schnellste zu sein, Hauptsache, er f�uhrt mit Sicherheit zum Ziel.

3.11 Electronic Mail (Email) 233

Die Software zum netzweiten Mailen auf einem UNIX-Rechner setzt sich aus

zwei Programmen zusammen: einem Internet-D�amon (Mail Transport Agent), oft

sendmail(1M), und einem benutzerseitigen Werkzeug (Mail Delivery Agent) wie

elm(1). Der Benutzer kann zwar auch mit sendmail(1M) unmittelbar verkehren,

aber das ist abschreckend und nur zur Analyse von St�orf�allen sinnvoll. Das Werk-

zeug elm(1) arbeitet mit einfachen Menus und l�a�t sich den Benutzerw�unschen

anpassen. Es ist komfortabler als mail(1) und textorientiert (ohne MUFF).

Will man zwecks St�orungssuche auf der eigenen Maschine unmittelbar mit

sendmail(1) eine Mail verschicken, geht man so vor:

sendmail -v empfaengeradressen

Dies ist eine Testmail.

Gruss vom Mostpaster.

.

Der einzelne Punkt beendet die Mail samt Kommando. Auf eine entfernte Ma-
schine greift man per telnet(1) zu. Auf Port 25 liegt der Maild�amon:

telnet entfernte_maschine 25

help

mail from: Mostpaster

rcpt to: empfaengeradresse1

rcpt to: empfaengeradresse2

data

Dies ist eine Testmail.

Gruss vom Mostpaster

.

quit

Im Log�le von sendmail(1M) erzeugt jedes from und jedes to eine Eintragung.
Zusammengeh�orige Ein- und Auslieferungen haben diesselbe Nummer. Mit den

�ublichen Werkzeugen zur Textverarbeitung l�a�t sich das Log�le auswerten. Diese

Wege sind { wie gesagt { nicht f�ur die Alltagspost gedacht.

Die Electronic Mail im Internet ist zum Versenden von Nachrichten gedacht,

nicht zum weltweiten Ausstreuen unerbetener Werbung. Diese wird als Spam
bezeichnet, was auf eine Geschichte zur�uckgeht, in der Spiced Ham eine Rolle

spielt. Die Spam-Flut ist momentan ein Problem, da Technik und Gesetzgeber
nicht auf diesen Mi�brauch des Netzes vorbereitet sind. Es tut sich aber schon

etwas.

Mail dient in erster Linie zum Verschicken von Texten, die { sofern man si-

cher gehen will { nur die Zeichen des 7-Bit-US-ASCII-Zeichensatzes enthalten
d�urfen. Will man beliebige bin�are Files per Mail verschicken (FTP w�are der bes-

sere Weg), mu� man die bin�aren Files umcodieren und beim Empf�anger wieder
decodieren. Damit lassen sich beliebige Sonderzeichen, Gra�ken oder ausf�uhrbare

Programme mailen. Ein altes Programmpaar f�ur diesen Zweck ist uuencode(1)

und uudecode(1). Neueren Datums sind mpack(1) und munpack(1), die von den
Multipurpose Internet Mail Extensions (MIME) Gebrauch machen.

234 3 Internet

Die Mailbenutzer haben einen eigenen Jargon entwickelt. Einige K�urzel �nden

Sie im Anhang H Slang im Netz und im Netz in Files namens jargon.* oder

�ahnlich. Daneben gibt es noch die Grinslinge oder Smileys, die aus ASCII-

Zeichen bestehen und das �uber das Netz nicht �ubertragbare Mienenspiel bei einem

Gespr�ach ersetzen sollen. Die meisten sind von der Seite her zu lesen:

� :-) Grinsen, Lachen, bitte nicht ernst nehmen

� :-(Ablehnung, Unlust, Trauer

� %*@:-(Kopfweh, Kater

� :-x Schweigen, Ku�

� :-o Erstaunen

� +|+-) schlafend, langweilig

� Q(8-f)## Mann mit Doktorhut, Glatze, Brille, Nase, Bart, Mund,

Fortsetzung des Bartes (die �Ahnlichkeit mit einem der

Verfasser ist verbl�u�end)

3.11.2 Mailing-Listen

Wozu lassen sich Mailing-Listen (Verteilerlisten) gebrauchen? Zwei Beispiele. In
der Humboldt-Universit�at zu Berlin wird eine Mailing-Liste www-schulen gef�uhrt.

Sch�uler P. hat diese Liste abonniert (subskribiert), weil er sich f�ur das Medium
WWW interessiert und wissen m�ochte, was sich auf diesem Gebiet in den Schulen

so tut. Er hat eine Frage zur Teilbarkeit von Zahlen und schickt sie per Email an
die Liste, das hei�t an die ihm weitgehend unbekannte Menge der Abonnenten.
Die Liste pa�t von ihrer Ausrichtung her zwar nicht optimal, ist aber auch nicht

g�anzlich verfehlt, immerhin haben Zahlen und Schule etwas gemeinsam. Seine Mail
wird an alle Mitglieder oder Abonnenten der Liste verteilt. Der ehemalige Sch�uler

T. hat aus beru
ichen Gr�unden die Liste ebenfalls abonniert und noch nicht alles
vergessen, was er einst gelernt. Er liest die Mail in der Liste und antwortet an
die Liste. Familienvater W. nimmt auch an der Liste teil, �ndet die Antwort gut,

druckt sie aus und legt sie daheim in ein Buch �uber Zahlentheorie. Sch�uler P. ist
geholfen, Familienvater W. hat etwas gelernt, und der Ehemalige T. freut sich,

ein gutes Werk getan zu haben. Aufwand vernachl�assigbar, auf herk�ommlichen

Wegen untunlich.

Zweites Beispiel. Wenn man fr�uher eine Frage zu einer Vorlesung hatte, konn-
te man den Dozenten gleich nach der Vorlesung oder in seiner Sprechstunde
l�ochern, sofern man Gl�uck hatte. Die Fragen tauchen jedoch meist nachts im

stillen K�ammerlein auf, au�erdem ist nicht immer der Dozent der geeignetste

Ansprechpartner. Heute richtet man zu einer Vorlesung eine lokale Mailing-Liste

ein, jeder kann jederzeit schreiben, und der Kreis der potentiellen Beantworter
ist weitaus gr�o�er. So gibt es zu den beiden Vorlesungen, aus denen dieses Buch

entstanden ist, die Liste wualex-l@rz.uni-karlsruhe.de, die einzige M�oglich-

keit, den aus mehreren Fakult�aten stammenden H�orerkreis schnell zu erreichen.

Umgekehrt erhalten auch die H�orer Antwort, sowie ihr Anliegen bearbeitet ist

3.11 Electronic Mail (Email) 235

und nicht erst in der n�achsten Vorlesung. Das Ganze funktioniert nat�urlich auch

in der vorlesungsfreien Zeit, den sogenannten Semesterferien.

Eine Mailing-Liste ist also ein Verteiler, der eine einkommende Mail an alle

Mitglieder verteilt, die wiederum die M�oglichkeit haben, an die Liste oder indivi-

duell zu antworten. Von der Aufgabe her besteht eine leichte �Uberschneidung mit

den Netnews, allerdings sind die Zielgruppen kleiner, und der ganze Verkehr ist

besser zu steuern. Beim Arbeiten mit Mailing-Listen sind das Listenverwaltungs-

programm und die Liste selbst zu unterscheiden. W�unsche betre�s Subskribieren,

K�undigen und Ausk�unften �uber die Liste gehen per Email an das Verwaltungs-

programm, Mitteilungen, Fragen und Antworten an die Liste. Wollen Sie unsere

Liste subskribieren, schicken Sie eine Email mit der Zeile:

subscribe wualex-l Otto Normaluser

und weiter nichts im Text (body) an listserv@rz.uni-karlsruhe.de und set-

zen anstelle von Otto Normaluser Ihren b�urgerlichen Namen ein. Der List-

server schickt Ihnen dann eine Best�atigung. Anschlie�end k�onnen Sie Ihre er-
ste Mail an die Liste schicken. Sie schreiben an die Liste, den virtuellen Be-

nutzer wualex-l@rz.uni-karlsruhe.de und fragen, ob UNIX oder Windows-
NT das bessere Betriebssystem sei. Bekannte Listenverwaltungsprogramme sind

listserv, listproc und f�ur kleinere Anlagen (lokale Listen) majordomo; sie un-
terscheiden sich f�ur den Benutzer geringf�ugig in ihrer Syntax.

Die Listenverwaltung majordomo stammt aus der UNIX-Welt und ist frei. Sie

besteht aus einer Reihe von perl-Skripts, einigen Alias-Zeilen f�ur den Mail-D�amon
sendmail und mehreren Files mit der Kon�guration und den Email-Anschriften

der Abonnenten. Das Einrichten von majordomo samt erster Liste hat uns etwa
einen Tag gekostet { die Beschreibung war �alter als das Programm { das Einrichten
weiterer Listen je eine knappe Stunde. In unserem Institut setzen wir die Listen

f�ur Rundschreiben ein.
Es gibt o�ene Listen, die jedermann subskribieren kann, und geschlossene,

deren Zugang �uber einen Listen-Manager (List-Owner) f�uhrt. Ferner k�onnen Li-

sten moderiert sein, so da� jede Einsendung vor ihrem Weiterversand �uber den
Bildschirm des Moderators geht. Im Netz �nden sich Verzeichnisse von Mailing-

Listen und Suchprogramme, siehe Anhang. Sie k�onnen es auch mit einer Mail

lists global (und weiter nichts) an listserv@rz.uni-karlsruhe.de versu-

chen. Oder erstmal mit folgenden Zeilen:

help

lists

end

an major@domo.rrz.uni-hamburg.de. Die Anzahl der Listen weltweit wird auf

einige Zehntausend gesch�atzt.

3.11.3 Privat und authentisch (PGP, PEM)

Warum sollte man das Programmpaket Pretty Good Privacy (PGP) oder das

Protokoll Privacy Enhanced Mail (PEM) verwenden? Zum einen besteht in

236 3 Internet

vielen F�allen die Notwendigkeit einer Authentisierung des Urhebers einer Nach-

richt, zum Beispiel bei Bestellungen. Zum anderen sollte man sich dar�uber im

klaren sein, da� eine unverschl�usselte E-Mail mit einer Postkarte vergleichbar ist:

Nicht nur die Postmaster der am Versand beteiligten Systeme k�onnen den Inhalt

der Nachricht einsehen, sondern auch B�osewichte, die die Nachricht auf ihrem

Weg durchs Netz kopieren. Auch Verf�alschungen sind machbar, und schlie�lich

k�onnte der Urheber einer Mail bei bestimmten Anl�assen seine Urheberschaft im

nachhinein verleugnen wollen. Es geht insgesamt um vier Punkte:

� Vertraulichkeit (disclosure protection, data con�dentiality),

� Authentisierung des Absenders (origin authentication),

� Datenintegrit�at (data integrity),

� Nicht-Verleugnung des Absenders (non-repudiation of origin).

Mit PGP oder PEM verschl�usselte E-Mails bieten sogar mehr Sicherheit als ein

eigenh�andig unterzeichneter Brief in einem Umschlag. Au�erdem w�are es ange-

bracht, wenn alle E-Mails im Internet standardm�a�ig verschl�usselt w�urden. So-
lange dies nur bei wenigen Nachrichten geschieht, fallen diese besonders auf und
erregen Mi�trauen. PGP und PEM sind Verfahren oder Protokolle, die in meh-

reren freien oder kommerziellen Programmpaketen realisiert werden. Der Mail-
versand erfolgt unver�andert mittels der gewohnten Programme wie elm(1) und

sendmail(1).
PGP verschl�usselt den Klartext zun�achst nach dem symmetrischen IDEA-

Verfahren mit einem jedesmal neu erzeugten, nur einmal verwendeten, zuf�alli-

gen Schl�ussel. Dieser IDEA-Schl�ussel wird anschlie�end nach einem Public-Key-
Verfahren (RSA bei der PGP-Version 2.6.3) mit dem �o�entlichen Schl�ussel des
Empf�angers chi�riert. Neben einem deutlichen Geschwindigkeitsvorteil erlaubt

diese Vorgehensweise auch, eine Nachricht relativ einfach an mehrere Empf�anger
zu verschicken. Hierzu braucht nur der IDEA-Schl�ussel, nicht die gesamte Nach-

richt, f�ur jeden Empf�anger einzeln chi�riert zu werden.
Um die Integrit�at einer Nachricht sicherzustellen und den Empf�anger zu

authentisieren, versieht PGP eine Nachricht mit einer nach der Einweg-Hash-

Funktion MD5 (Message Digest 5, RFC 1321) ermittelten Pr�ufzahl. Diese wird

mit dem privaten Schl�ussel des Absenders chi�riert. Der Empf�anger ermittelt
nach der gleichen Einweg-Hash-Funktion die Pr�ufzahl f�ur den empfangenen Text.

Anschlie�end decodiert er die mitgeschickte, chi�rierte Pr�ufzahl mit dem �o�ent-
lichen Schl�ussel des Absenders. Stimmen die beiden Pr�ufzahlen �uberein, ist die

Nachricht w�ahrend der �Ubertragung nicht ver�andert worden. Hierbei wird die

Tatsache ausgenutzt, da� es praktisch unm�oglich ist, eine andere Nachricht mit
gleicher Pr�ufzahl zu erzeugen.

Da die Pr�ufzahl nach der Decodierung mit dem �o�entlichen Schl�ussel des Ab-
senders nur dann mit der errechneten Pr�ufzahl �ubereinstimmt, wenn sie zuvor mit

dem dazugeh�origen privaten Schl�ussel chi�riert wurde, besteht auch Gewi�heit

�uber die Identit�at des Absenders. Somit kann eine digitale Unterschrift (Signatur)
erstellt werden.

Der Haken bei diesem Verfahren besteht darin, da� ein B�osewicht ein Schl�ussel-
paar erzeugen k�onnte, das behauptet, von jemand anderem zu stammen. Daher

3.12 Neuigkeiten (Usenet, Netnews) 237

mu� ein �o�entlicher Schl�ussel durch eine zentrale vertrauensw�urdige Instanz (Cer-

ti�cation Authority, CA) oder durch die digitalen Unterschriften von anderen, ver-

trauensw�urdigen Personen best�atigt werden, bevor er als echt angesehen werden

kann. Im Gegensatz zu PEM bietet PGP beide M�oglichkeiten.

Bevor eine Nachricht f�ur einen bestimmten Empf�anger verschl�usselt werden

kann, mu� dessen �o�entlicher Schl�ussel bekannt sein. Mit etwas Gl�uck kann dieser

von einem sogenannten Key Server im Internet bezogen werden. Dabei ist zu

beachten, da� die Aufgabe der Key Server nur in der Verbreitung, nicht in der

Beglaubigung von �o�entlichen Schl�usseln besteht.

Zur Beglaubigung von Schl�usseln entstehen in letzter Zeit immer mehr Cer-

ti�cation Authorities. Diese zerti�zieren einen Schl�ussel im allgemeinen nur bei

pers�onlichem Kontakt und nach Vorlage eines Identit�atsausweises. Derartige CAs

werden u. a. von der Computer-Zeitschrift c't, dem Individual Network und dem

Deutschen Forschungsnetz DFN betrieben.

Eine Behinderung bei der Vebreitung von PGP sind die strengen Export-

Gesetze der USA, die Verschl�usselungs-Software mit Kriegswa�en gleichsetzen

und den Export stark einschr�anken. Daher gibt es eine US- und eine interna-
tionale Version von PGP.

Seit einigen Monaten ist auch au�erhalb der Vereinigten Staaten die neue

PGP-Version 5.0 erh�altlich. Diese verwendet zum Teil andere, mindestens ebenso
sichere Algorithmen und kommt unter Microsoft Windows mit einer komfortablen
Ober
�ache daher, hat sich aber noch nicht �uberall durchgesetzt. Informationen zu

PGP, internationale Fassung, �ndet man auf http://www.pgpi.com/.

Alternativ zu PGP l�a�t sich PEM einsetzen, ein Internet-Protokoll, beschrie-
ben in den RFCs 1421 bis 1424. Eine Implementation ist Riordan's Internet
Privacy Enhanced Mail (RIPEM) von Mark Riordan. RIPEM verwen-

det zur symmetrischen Verschl�usselung den Triple-DES-Algorithmus, zur unsym-
metrischen wie PGP den RSA-Algorithmus. F�ur die Verbreitung und Sicherung

der �o�entlichen Schl�ussel sieht RIPEM mehrere Wege vor. PGP und PEM kon-
kurrieren in einigen Punkten miteinander, in anderen setzen sie unterschiedliche
Gewichte. PEM ist ein Internet-Protokoll, PGP weiter verbreitet.

�Ahnliche Aufgaben wie bei Email stellen sich auch bei der Ver�o�entlichung von

WWW-Dokumenten. Ohne besondere Ma�nahmen k�onnte ein B�osewicht unter

meinem Namen schwachsinnige oder bedenkliche HTML-Seiten ins Netz stellen,

oder auch verf�alschte Kopien meiner echten Seiten.

3.12 Neuigkeiten (Usenet, Netnews)

Das Usenet ist kein Computernetz, keine Organisation, keine bestimmte Person

oder Personengruppe, keine Software, keine Hardware, sondern die Menge aller

Computer, die die Netnews vorr�atig halten. Genauer noch: die Menge der Per-
sonen, die mit Hilfe ihrer Computer die Netnews schreiben und verteilen. Diese

Menge deckt sich nicht mit der Menge aller Knoten oder Benutzer des Internet.

Nicht alle Internet-Hosts speichern die Netnews, umgekehrt gibt es auch au�erhalb

des Internets (im Bitnet/EARN beispielsweise) Hosts, die die Netnews speichern.

238 3 Internet

Netnews klingt nach Zeitung im Netz. Diese Zeitung

� wird im Internet und anderen Netzen verbreitet,

� besteht nur aus Leserbriefen,

� erscheint nicht periodisch, sondern stetig,

� hat keine Redaktion,

� behandelt alle Themen des menschlichen Hier- und Daseins.

Das funktioniert und kann so reizvoll werden, da� der davon befallene Leser zu-

mindest vor�ubergehend zum Fortschritt der Menschheit nichts mehr beitr�agt, son-

dern nur noch liest (No Netnews before lunch, dann ist wenigstens der Vormittag

gerettet.). Zwei Dinge braucht der Leser (au�er Zeit und Sprachkenntnissen):

� ein Programm zum Lesen und Schreiben, einen Newsreader wie tin(1) oder

trn(1),

� Verbindung zu einem News-Server (bei uns news.rz.uni-karlsruhe.de).

Als Newsreader setzen wir tin(1) f�ur alphanumerische Terminals und xn(1)

f�ur X-Window-Systeme ein. Pager wie more(1) oder Editoren wie vi(1) sind

zur Teilnahme an den Netnews ungeeignet, weil die Newsreader �uber das Le-
sen und Schreiben hinaus organisatorische Aufgaben erf�ullen. Der Newsreader
wird auf dem lokalen Computer aufgerufen und stellt eine Verbindung zu sei-

nem Default-News-Server her. �Ublicherweise arbeitet man immer mit demselben
News-Server zusammen, man kann jedoch vor�ubergehend die Umgebungsvaria-

ble NNTPSERVER auf den Namen eines anderen Servers setzen. tin(1) spricht
dann diesen an. Da tin(1) Buch dar�uber f�uhrt, welche Artikel man gelesen hat
und sich diese Angaben auf den Default-Server beziehen, der andere aber eine

abweichende Auswahl von Artikeln f�uhrt, kommt es leicht zu einem Durcheinan-
der. Au�erdem verweigern fremde News-Server meist den Zugang, ausprobiert mit
news.univ-lyon1.fr und news.uwasa.fi. Schade. �O�entlich zug�anglich sollen

unter anderen news.belwue.de, news.fu-berlin.de, news.uni-stuttgart.de
und newsserver.rrzn.uni-hannover.de sein, teilweise nur zum Lesen, nicht

zum Posten.

Woher bezieht der News-Server seine Nachrichten? Wie kommt mein Leserbrief

nach Australien? Eine zentrale Redaktion oder Sammelstelle gibt es ja nicht. Von

dem lokalen Computer, auf dem der Newsreader oder -client l�auft, wandert der

Leserbrief zun�achst zum zugeh�origen News-Server. Dort kann er von weiteren
Kunden dieses Servers sofort abgeholt werden. Von Zeit zu Zeit nimmt der News-

Server Verbindung mit einigen benachbarten News-Servern auf und tauscht neue

Artikel in beiden Richtungen aus. Da jeder News-Server Verbindungen zu wieder

anderen hat, verbreitet sich ein Artikel innerhalb weniger Tage im ganzen Usenet.

Das Verfahren wird dadurch beschleunigt, da� es doch so etwas wie �ubergeordnete
Server gibt, die viele Server versorgen. Hat ein Artikel einen solchen �ubergordneten

Server erreicht, verseucht er mit einem Schlag ein gro�es Gebiet. Das Zur�uckholen

von Artikeln ist nur beschr�ankt m�oglich und vollzieht sich auf demselben Weg,
indem man einen Artikel auf die Reise schickt, der eine Anweisung zum L�oschen

3.12 Neuigkeiten (Usenet, Netnews) 239

des ersten enth�alt. Wieviele Leser den verungl�uckten Artikel schon gelesen haben

(und entsprechend antworten), ist unergr�undlich. Also erst denken, dann posten.

Die Netnews sind umfangreich, sie sind daher wie eine herk�ommliche Zeitung in

Rubriken untergliedert, dieNewsgruppen hei�en. Bezeichnungen wie Area, Are-

na, Board, Brett, Echo, Forum, Konferenz, Round Table, Special Interest Group

meinen zwar etwas �Ahnliches wie die Newsgruppen, geh�oren aber nicht ins Inter-

net. Der News-Server der Universit�at Karlsruhe h�alt eine Auswahl von rund 10000

(zehntausend) Gruppen bereit. Die Gruppen sind hierarchisch aufgeteilt:

� mainstream-Gruppen (die Big Eight), sollten �uberall vorr�atig sein)

{ comp. Computer Science, Informatik f�ur Beruf und Hobby

{ humanities. Humanities, Geisteswissenschaften

{ misc. Miscellaneous, Vermischtes

{ news. Themen zu den Netnews selbst

{ rec. Recreation, Erholung, Freizeit, Hobbies

{ sci. Science, Naturwissenschaften

{ soc. Society, Politik, Soziologie

{ talk. Diskussionen, manchmal end- und fruchtlos

� alternative Gruppen (nicht alle werden �uberall gehalten)

� deutschsprachige Gruppen (nur im deutschen Sprachraum)

� lokale (z. B. Karlsruher) Gruppen

Mit Hilfe des Newsreaders abonniert oder subskribiert man einige der Gruppen;
alle zu verfolgen, ist unm�oglich. Ein Dutzend Gruppen scha�t man vielleicht. F�ur
den Anfang empfehlen wir:

� news.announce.newusers

� comp.unix.questions

� comp.lang.c

� de.newusers

� de.newusers.questions

� de.comm.internet

� de.comp.os.unix

� de.comp.lang.c

� de.sci.misc

und je nach pers�onlichen Interessen noch

� ka.uni.studium

� soc.culture.nordic

� de.rec.fahrrad

240 3 Internet

� rec.music.beatles

� rec.arts.startrek8

Die Auswahl l�a�t sich jederzeit �andern, in tin(1) mit den Kommandos y, s und u.

Viele Beitr�age sind Fragen nebst Antworten. Sokratische Denkw�urdigkeiten sind

im Netz so selten wie im wirklichen Leben, das meiste ist Alltag { Dummheit,

Arroganz oder b�oser Wille kommen auch vor. Das Netz sind nicht die Computer,

sondern ihre Benutzer.

Nach Aufruf von tin(1) erscheint ein Men�u der subskribierten Gruppen, man

w�ahlt eine aus und sieht dann in einem weiteren Men�u die noch nicht gelesenen,

neuen Artikel. Die interessierenden Artikel liest man und kann dann verschieden

darauf reagieren:

� Man geht zum n�achsten Artikel weiter. Der zur�uckliegende Artikel wird als

gelesen markiert und erscheint nicht mehr im Men�u. Man kann allerdings

alte Artikel, soweit auf dem Server noch vorr�atig (Verweilzeit zwei Tage bis

vier Wochen), wieder hervorholen.

� Mit s (save) wird der Artikel in ein File gespeichert.

� Mit o (output) geht der Artikel zum Drucker.

� Man antwortet. Daf�ur gibt es zwei Wege. Ein Follow-up wird an den Ar-

tikel bzw. die bereits vorhandenen Antworten angeh�angt und wird damit
ver�o�entlicht. Man tritt so vor ein ziemlich gro�es Publikum, unter Nennung

seines Namens. Artikel plus Antworten bilden einen Thread. Ein Reply ist
eine Antwort per Email nur an den urspr�unglichen Verfasser des Artikels.

Fortgeschrittene (threaded) Newsreader folgen einem Thread und sogar seinen
Verzweigungen, einfache unterscheiden nicht zwischen Artikel und Antwort. Bei

einem Follow-up ist zu beachten, ob der urspr�ungliche Schreiber sein Posting in
mehreren Newsgruppen ver�o�entlicht hat. Die eigene Antwort geh�ort meist nur

in eine. �Uberhaupt ist das gleichzeitige Posten in mehr als drei Newsgruppen eine
Unsitte. Will man selbst einen Artikel schreiben (posten), w�ahlt man in tin(1)

das Kommando w wie write. Man sollte aber erst einmal einige Wochen lesen

und die Gebr�auche { die Netiquette { kennenlernen, ehe man das Netz und
seine Leser beansprucht. F�ur Testzwecke stehen test-Newsgruppen bereit, die
entweder keine oder eine automatische Antwort liefern und niemand bel�astigen.

Manche Fragen wiederholen sich, die Antworten zwangsl�au�g auch. Diese Fre-

quently Asked Questions (FAQs; Fragen, Antworten, Quellen der Erleuch-

tung) werden daher mit den Antworten gruppenweise gesammelt und periodisch
in den Netnews ver�o�entlicht. Au�erdem stehen sie auf rtfm.mit.edu per FTP

zur Verf�ugung, in Deutschland gespiegelt von ftp.uni-paderborn.de. Als er-
stes w�are FAQs about FAQs zu lesen, monatlich ver�o�entlicht in der Newsgruppe

news.answers und unter http://www.faqs.org/faqs/faqs/about-faqs. Eini-

ge FAQs haben wir auch auf ftp.ciw.uni-karlsruhe.de kopiert, Sie brauchen
also nicht lange zu suchen. Ihr Studium ist dringend anzuraten, man lernt einiges

dabei, spart Zeit und schont das Netz.

8Erw�ahnt auf besonderen Wunsch eines Nachwuchs-Informatikers.

3.13 Netzgeschw�atz (irc) 241

3.13 Netzgeschw�atz (irc)

Fr�uher trieben die Leute, die Mu�e hatten, Konversation. Heute treiben die Leute,

die einen Internet-Anschlu� haben, Kommunikation. Eine Form davon, die der

Konversation nahe steht, ist das Netzgeschw�atz oder der globale Dorftratsch

mittels irc(1) (Internet Relay Chat). Man braucht:

� einen IRC-Server im Internet (bei uns irc.rz.uni-karlsruhe.de),

� einen IRC-Client auf dem eigenen System (bei uns /usr/local/bin/irc).

Nach Aufruf des Kommandos irc(1) erscheint ein Bildschirm, in dessen unter-

ster Zeile man IRC-Kommandos �ahnlich wie bei FTP eingeben kann, beispiels-

weise /list. Auf dem Schirm werden dann rund 1000 Gespr�achskreise, sogenann-

te Channels, aufgelistet. Mittels /join channel-name schlie�t man sich einem

Kreis an und je nachdem, ob die Teilnehmer ruhen oder munter sind, scrollt die

die Diskussion langsamer oder schneller �uber den Schirm. Die IRC-Kommandos

beginnen mit einem Schr�agstrich, alle sonstigen Eingaben werden als Beitrag zur

Runde verarbeitet. Hat man genug, tippt man /quit. Man mu� das mal erlebt
haben.

Unsere pers�onliche Haltung zum Netzgeschw�atz ist noch unentschieden. Im In-
ternet geht zwar die Sonne nicht unter, aber der Tag hat auch nur vierundzwanzig
Stunden. Da unsere Zeit kaum reicht, Email und Netnews zu bew�altigen, halten

wir uns zur�uck. Aber vielleicht einmal als r�ustige Rentner?

3.14 Suchhilfen: Archie, Gopher, WAIS

Im Netz liegt so viel an Information herum, da� man zum Finden der gew�unsch-
ten Information bereits wieder einen Netzdienst beanspruchen mu�. Sucht man ein

bestimmtes File, dessen Namen man kennt, helfen die Archies. Das sind Server
im Internet, die die Fileverzeichnisse einer gro�en Anzahl von FTP-Servern halten
und Suchwerkzeuge zur Verf�ugung stellen. Nach Schlag- oder Stichw�ortern kann

zun�achst nicht gesucht werden. Der �alteste Archie ist archie.mcgill.ca in Ka-
nada. Inzwischen gibt es weitere, auch in Deutschland (Darmstadt), siehe Anhang

?? Netzadressen. Auf dem eigenen Computer mu� ein Archie-Client eingerichtet

sein. Auf die Eingabe

archie

erh�alt man Hinweise zum Gebrauch (usage). Der Aufruf:

archie -s suchstring

f�uhrt zu einer Ausgabe aller Filenamen, auf die der Suchstring zutri�t, samt ihrer

Standorte nach stdout, Umlenkung in ein File empfehlenswert. Die Option -s

bewirkt die Suche nach einem Substring. Der Archie-Client wendet sich an sei-
nen Default-Archie-Server, falls nicht ein bestimmter Server verlangt wird. Ruft

man den Archie-Client interaktiv auf, stehen einige Archie-Kommandos bereit,
darunter whatis zur Textsuche in Programmbeschreibungen, was einer Suche

242 3 Internet

nach Schlagw�ortern nahe kommt. Archies sind n�utzlich, aber nicht allwissend:

ihre Auskunft ist oft unvollst�andig, aber man hat meistens eine erste F�ahrte zu

dem gefragten File.

Merke: Archies sagen, wo ein File liegt. Zum Bescha�en des Files braucht man

ein anderes Programm (ftp(1)).

Nun zu den Gophern, der n�achsten Stufe der Intelligenz und Bequemlichkeit.

Ein Gopher ist mancherlei:

� eine Nadelbaumart, aus deren Holz Noah seine Arche gebaut hat (Genesis

6,14), vielleicht eine Zypresse,

� ein Vertreter des Tierreichs, Unterrreich Metazoa, Unterabteilung Bilate-

ria, Reihe Deuterostomia, Stamm Chordata, Unterstamm Vertebrata, Klas-

se Mammalia, Unterklasse Placentalia, Ordnung Rodentia, Unterordnung

Sciuromorpha, �Uberfamilie Geomyoidea, Familie Geomyidae, Gattung Geo-

mys, zu deutsch eine Taschenratte9, kleiner als unser Hamster, in Nord- und

Mittelamerika verbreitet. Fri�t Wurzeln (System-Manager Vorsicht!),

� ein menschlicher Einwohner des Staates Minnesota (Gopher State),

� ein Informationsdienst im Internet, der an der Universit�at von Minnesota
entwickelt wurde.

Ein Gopher-Server im Internet hilft bei der Suche nach beliebigen Informationen.
Auf dem eigenen Computer l�auft ein Gopher-Client-Prozess, der sich mit seinem
Gopher-Server verst�andigt. Der Benutzer wird �uber Men�us gef�uhrt. Die Gopher-

Server sind intelligent; wei� einer nicht weiter, fragt er seinen Nachbarn { wie in
der Schule. Der Benutzer merkt davon nichts. Hat man die gesuchte Information

gefunden, bescha�t der Gopher auch noch die Files, ohne da� der Benutzer sich
mit Kermit, Mail oder FTP auseinanderzusetzen braucht. So w�unscht man sich's.
Hier die ersten beiden Bildschirme einer Gopher-Sitzung:

Internet Gopher Information Client 2.0 pl7

Rechenzentrum Uni Karlsruhe - Gopher

1. Willkommen

2. Anleitung/

3. Universitaetsverwaltung/

4. Zentrale Einrichtungen/

5. Fakultaeten/

.

9. Sonstiges/

10. Mensaplan/

W�ahlen wir Punkt 9. Sonstiges aus, gelangen wir in folgendes Men�u:

Internet Gopher Information Client 2.0 pl7

9keine Beutelratte (Didelphida). Diese Familie geh�ort zur Ordnung Marsupialia und

ist in S�udamerika verbreitet.

3.14 Suchhilfen: Archie, Gopher, WAIS 243

Sonstiges

1. Wissenschaftsfoerderung (Gopher-Giessen)/

2. Deutsche Kfz.-Kennzeichen (Gopher-Aachen).

3. Deutsche Bankleitzahlen (Gopher-ZIB, Berlin)<?>

4. Deutsche Postleitzahlen (Gopher-Muenchen)/

5. Postgebuehren (Gopher-ZIB, Berlin).

6. Telefonvorwahlnummern (Gopher-Aachen)<?>

7. Weather Images/Meteosat (Gopher-Hohenheim)/

Wie man sieht, holt sich der Karlsruher Gopher die Postleitzahlen von seinem

Kollegen in M�unchen, ohne da� der Benutzer davon etwas zu wissen braucht.

Gopher-Clients f�ur alle g�angigen Computertypen liegen frei im Netz herum.

Wir haben unseren Client f�ur HP-UX bei gopher.Germany.EU.net geholt, UNIX-

�ublich als Quelle mit Make�le. Der Aufruf:

gopher gopher.ask.uni-karlsruhe.de

verbindet mit einem Gopher-Server der Universit�at Karlsruhe; gibt man keinen
Namen an, erreicht man seinen Default-Gopher. Der Rest sind Men�us, die sich
nach Art der verf�ugbaren Information unterscheiden. Ende mit q f�ur quit. Der

Gopher-Dienst ist inzwischen vom WWW stark zur�uckgedr�angt worden.

Veronica ist ein Zusatz zum Gopher-Dienst, der Suchbegri�e auswertet. Eine
Veronica-Suche erstreckt sich �uber eine Vielzahl von Gopher-Servern und liefert
bei Erfolg Gopher-Eintr�age (Men�upunkte), die wie gewohnt angesprochen werden.

Der Vorteil liegt darin, da� man sich nicht von Hand durch die Men�us zu arbeiten
braucht. Der Veronica-Dienst wird von einigen Gopher-Servern angeboten, erfor-

dert also keinen lokalen Veronica-Client oder ein Veronica-Kommando. Probieren
Sie die folgende Gopher-Sitzung aus:

� mittels gopher gopher.rrz.uni-koeln.de mit dem Gopher-Server der

Universit�at K�oln verbinden,

� Punkt 2. Informationssuche mit ... Veronica ... / w�ahlen,

� Punkt 2. Weltweite Titelsuche (mit Veronica) <?> w�ahlen,

� Suchbegri� veronica eingeben,

� Ergebnis: 12 Seiten zu je 18 Eintr�agen (Files) zum Thema Veronica,

� Ka�ee aufsetzen, anfangen zu lesen.

Jughead ist ein Dienst �ahnlich Veronica, aber beschr�ankt auf eine Untermenge
aller Gopher-Server, zum Beispiel auf eine Universit�at. Das hat je nach Aufgabe

Vorteile. Jughead wird wie Veronica als Punkt eines Gopher-Men�us angesprochen.

WAIS (Wide Area Information Servers) ist ein Informationssystem zur
Volltextsuche. Man braucht wieder { wie bei Gopher { einen lokalen WAIS-Client

und eine Verbindung zu einem WAIS-Server, anfangs meist zu quake.think.com,

der ein directory-of-servers anbietet, aus dem man sich eine lokale Li-
ste von WAIS-Sources zusammenstellt. Als lokale Clienten kommen swais(1),

244 3 Internet

waissearch(1) oder xwais(1) f�ur das X Window System in Frage, erh�altlich per

Anonymous-FTP und mit den �ublichen kleinen Anpassungen zu compilieren.

Nehmen wir an, unser in solchen Dingen nicht unge�ubter System-Manager ha-

be alles eingerichtet. Dann rufen wir swais(1) oder ein darum herumgewickeltes

Shellscript wais auf. Es erscheint ein Bildschirm Source Selection, aus dem

wir eine Informationsquelle ausw�ahlen, beispielsweise das uns nahestehende ASK-

SISY. Dieses Wissen mu� man mitbringen, �ahnlich wie bei FTP. Man darf auch

mehrere Quellen ausw�ahlen. Dann gibt man einige Suchw�orter (keywords) ein,

beispielsweise wais. Nach einiger Zeit kommt das Ergebnis (Search Results).

An oberster Stelle steht die Quelle, die sich durch die meisten Tre�er auszeichnet,

was nicht viel �uber ihren Wert aussagt. Wir bleiben ASK-SISY treu, auch wenn

es erst an dritter Stelle auftaucht. Nach nochmals einiger Zeit wird ein Doku-

ment angezeigt (Document Display), nach Art und Weise von more(1). Dieses

k�onnen wir am Bildschirm lesen, in ein File abspeichern oder als Mail versenden.

Hier beschreibt das Dokument ein Programm namens wais, das bei ASK-SAM

per FTP erh�altlich ist. Genausogut k�onnen Sie sich �uber die geogra�schen Fakten
von Deutschland aufkl�aren lassen, wozu als Quelle das World-Factbook des CIA

auszuw�ahlen w�are.

3.15 WWW { das World Wide Web

3.15.1 Hypertext

Hypertext oder, falls auch stehende oder bewegte Bilder sowie akustische Infor-

mationen eingeschlossen sind, Hypermedia sind Informationen, die bei den we-
sentlichen Stichw�ortern Verweise (Links) auf weitere Informationen enthalten, die
elektronisch auswertbar sind, so da� man ohne Suchen und Bl�attern weitergef�uhrt

wird. Auf Papier dienen Fu�noten, Literatursammlungen, Register, Querverwei-
se und Konkordanzen diesem Zweck. Im ersten Kapitel war von Wallenstein

die Rede. Von diesem Stichwort k�onnten Verweise auf das Schauspiel von Fried-

rich Schiller, den Roman von Alfred D�oblin oder die Biogra�e von Golo

Mann f�uhren, die die jeweiligen Texte auf den Bildschirm bringen, in Schillers

Fall sogar mit einem Film. In den jeweiligen Werken w�aren wieder Verweise ent-

halten, die auf Essays zur Reichsidee oder zur Rolle B�ohmens in Europa lenken.

Leseratten w�urden vielleicht auf dem Alexanderplatz in Berlin landen oder bei

einem anderen Vertreter der schreibfreudigen Familie Mann. Von dort k�onnte

es nach Frankreich, Indien, �Agypten, in die USA oder die Schweiz weitergehen.

Vielleicht �ndet man auch Bemerkungen zum Verh�altnis zwischen Literatur und

Politik. Beim Nachschlagen in Enzyklop�adien ger�at man manchmal ins ziellose

Schm�okern. Mit Hypertext ist das noch viel schlimmer. So ist jede Information

eingebettet in ein Gespinst oder Netz von Beziehungen zu anderen Informationen,

und wir kommen zum World Wide Web.

3.15 WWW { das World Wide Web 245

3.15.2 Hypertext Markup Language (HTML)

Zum Schreiben von Hypertext-Dokumenten ist die Hypertext Markup Lan-

guage (HTML) entworfen worden worden, gegenw�artig in der Version 4 im Netz.

Zum Lesen von Hypertexten braucht man HTML-Browser wie netscape, mosaic

oder den Internet-Explorer von Microsoft. Leider halten sich nicht alle Browser

an den g�ultigen HTML-Standard. Sie erkennen nicht alle HTML-Konstrukte und

bringen eigene (propriet�are) Dinge mit.

Ein einfache HTML-Dokument, das nicht alle M�oglichkeiten von HTML 4.0

ausreizt, ist schnell geschrieben:

<HTML>

<HEAD>

<TITLE>Institut fuer Hoeheres WWW-Wesen</TITLE>

</HEAD>

<BODY BGCOLOR="#ffffff">

<H3>

Fakultät für Internetingenieurwesen

</H3>

<HR>

Gebäude 30.70

Telefon +49 721 608 2404

<H4>

Leiter der Verwaltung

</H4>

Dipl.-Ing. Schorsch Meier

<H4>

Werkstattleiter

</H4>

Hubert Auriol

<HR>

Zur Universität

<HR>

http://www.ciw.uni-karlsruhe.de/hwwww/index.html

Jüngste Änderung 10. Jan. 1998

 webmaster@ciw.uni-karlsruhe.de

246 3 Internet

</BODY>

</HTML>

Das ganze Dokument wird durch <HTML> und </HTML> eingerahmt. In seinem Inne-

ren �nden sich die beiden Teile <HEAD> und <BODY>. Die Formatanweisungen <H3>

usw. markieren �Uberschriften (Header). Sonderzeichen werden entweder durch

eine Umschreibung (ä) oder durch die Nummer im Latin-1-Zeichensatz

(ä) dargestellt.
 ist ein erzwungener Zeilenumbruch (break), <HR> eine

waagrechte Linie (horizontal ruler). Am Ende sollte jedes Dokument seinen Uni-

form Resource Locator (URL) enthalten, damit man es wieder�ndet, sowie

das Datum der j�ungsten �Anderung und die Email-Anschrift des Verantwortlichen.

Im Netz sind mehrere Kurzanleitungen und die ausf�uhrliche Referenz zu HTML

verf�ugbar.

3.15.3 Das Web

Das World Wide Web, W3 oder WWW, entwickelt von Tim Berners-Lee

am CERN in Genf, ist ein Informationssystem, das Dokumente nach dem Client-

Server-Schema bescha�t und verwertet. Mit dem Kommando www(1) landet man
in seiner Startseite, dem Ausgangspunkt f�ur alles weitere. Der lokale Client wird
auch Browser genannt, ein Programm zum Betrachten von WWW-Dokumenten,

etwas intelligenter als more(1). Wenn der vorliegende Text f�ur das WWW aufbe-
reitet w�are (was mit viel Handarbeit verbunden ist), k�onnten Sie jetzt das Stich-
wortWWW ausw�ahlen und w�urden zu einer ausf�uhrlicheren Information geleitet,

die sicher irgendwo im Netz herumliegt. So weit sind wir noch nicht.
Auf unserem System arbeiteten wir anfangs mit einer rustikalen zeilenorien-

tierten Ausf�uhrung von www(1). Die Startseite enth�alt einen allgemeinen �Uber-
blick �uber das Web und bietet unter anderem die M�oglichkeit, ein Thema, einen
Server oder einen Dienst per Zi�er auszuw�ahlen. Wir entscheiden uns f�ur die

Suche per Thema und landen in der WWW Virtual Library, die heute
achtundachtzig Themen im Angebot hat, darunter Verweise auf weitere Virtu-
al Libraries. Wir entscheiden uns f�ur Punkt 18: Climate Research und werden

mit der Home Page des Deutschen Klimarechenzentrums verbunden. Dort weckt

der Punkt 3: Klimaforschung unsere Neugier und unter diesem der Punkt 4:

The Climate of the Next Century, das wir zu erleben ho�en. Punkt 4 gibt
kurze Hinweise und bietet ein File von 1,6 MB Gr�o�e an. Wir nehmen das An-
gebot an und �nden nach einigen Sekunden ein File mit der Kennung .mpeg in

unserem lokalen Filesystem. Hier enden unsere technischen M�oglichkeiten, denn

dieses File ist ein digitaler Film, zu dessen Wiedergabe unser damaliges serielles,

monochromes, alphanumerisches Terminal denkbar ungeeignet war.
WWW-Informationen werden gem�a� dem Hypertext Transfer Protocol

HTTP �ubertragen, beschrieben im RFC 2068 vom Januar 1997. Die Informatio-

nen selbst werden durch einen Uniform Resource Locator URL gekennzeich-

net, im wesentlichen Protokoll-Host-Filename �ahnlich wie eine Email-Anschrift:

3.16 Navigationshilfen (nslookup, whois, �nger) 247

http://hoohoo.ncsa.uiuc.edu:80/docs/Overview.html

Zuerst wird das Protokoll genannt, dann der Name des Hosts. Nach dem Dop-

pelpunkt folgt die Portnummer, die samt Doppelpunkt entfallen kann, wenn der

Defaultwert (80) zutri�t. Als letztes Glied kommt der Pfad des gew�unschten Files

oder Verzeichnisses. Die Browser gestatten das direkte Ansprechen von Informatio-

nen, sofern man deren URL kennt. Unter dem X Window System ist der Browser

mosaic(1) oder xmosaic(1) des NCSA verbreitet, der eine Motif-�ahnliche Ober-

�ache mit viel Komfort bietet. Mit mosaic(1) h�atten wir uns den digitalen Film

ansehen und -h�oren k�onnen. Inzwischen haben sich netscape(1) und der Internet

Explorer von Microsoft verbreitet. Es gibt aber noch mehr Browser, darunter auch

sehr einfache wie lynx(1) f�ur Textterminals.

Die genannten Netzdienste sind allesamt Versuche, die in elektronischer Form

vorliegenden Informationen { das sind heute schon viele, wenngleich nicht so vie-

le wie auf Papier in einer Universit�atsbibliothek { netzweit leicht zug�anglich zu

machen. Leicht hei�t vor allem, unter einer einheitlichen Benutzer-Ober
�ache, so

da� der Benutzer sich nicht mit verschiedenen Such- und Bescha�ungsverfahren
(Protokollen) herumzuschlagen braucht. Die Versuche sind erst wenige Jahre alt

und daher noch im Flu�.

3.16 Navigationshilfen (nslookup, whois, �nger)

In den unendlichen Weiten des Netzes kann man sich leicht verirren. Sucht man
zu einer numerischen IP-Anschrift den Namen oder umgekehrt, so hilft das Kom-
mando nslookup(1) mit dem Namen oder der Anschrift als Argument. Es wendet

sich an den n�achsten Name-Server, dieser unter Umst�anden an seinen Nachbarn
usw. Eine Auskunft sieht so aus:

Name Server: netserv.rz.uni-karlsruhe.de

Address: 129.13.64.5

Name: mvmpc2.ciw.uni-karlsruhe.de

Address: 129.13.118.2

Aliases: ftp.ciw.uni-karlsruhe.de

Der Computer mit der IP-Anschrift 129.13.118.2 hat also zwei Namen:

mvmpc2.ciw.uni-karlsruhe.de und ftp.ciw.uni-karlsruhe.de.
Das Kommando whois(1) verscha�t n�ahere Ausk�unfte zu einem als Argu-

ment mitgegebenen Hostnamen, sofern der angesprochene Host { beispielsweise
whois.internic.net oder whois.nic.de { diesen kennt:

whois -h whois.internic.net gatekeeper.dec.com

liefert nach wenigen Sekunden:

Digital Equipment Corporation (GATEKEEPER)

Hostname: GATEKEEPER.DEC.COM

248 3 Internet

Address: 16.1.0.2

System: VAX running ULTRIX

Coordinator:

Reid, Brian K. (BKR) reid@PA.DEC.COM

(415) 688-1307

domain server

Record last updated on 06-Apr-92.

To see this host record with registered users, repeat the command

with a star ('*') before the name; or, use '%' to show JUST the

registered users.

The InterNIC Registration Services Host ONLY contains Internet

Information (Networks, ASN's, Domains, and POC's).

Please use the whois server at nic.ddn.mil for MILNET Information.

Der Gatekeeper (Torw�achter) ist ein gutsortierter FTP-Server von Digital Corpo-

rate Research (DEC) und nicht nur f�ur DEC-Freunde von Reiz.
Geht es um Personen, hilft das Kommando finger(1), das die Files

/etc/passwd(4), $HOME/.project und $HOME/.plan abfragt. Die beiden Dot�-
les kann jeder Benutzer in seinem Home-Verzeichnis mittels eines Editors anlegen.
.project enth�alt in seiner ersten Zeile (mehr werden nicht beachtet) die Projekte,

an denen man arbeitet, .plan einen beliebigen Text, �ublicherweise Sprechstunden,
Urlaubspl�ane, Mitteilungen und dergleichen. Nicht alle Hosts anworten jedoch auf
finger-Anfragen. Andere hinwiederum schicken ganze Text�les zur�uck. Be�ngern

Sie den Autor des LINUX-Betriebssystems:

finger torvalds@kruuna.helsinki.fi

so erhalten Sie eine Auskunft �uber den Stand des Projektes (gek�urzt):

[kruuna.helsinki.fi]

Login: tkol_gr1 Name: Linus B Torvalds

Directory: /home/kruuna3/tkol/tkol_gr1 Shell: /usr/local/bin/expired

last login on klaava Wed Dec 1 15:00:17 1993 on ttyqf from hydra

New mail received Thu Dec 2 21:34:52 1993;

unread since Wed Dec 1 15:00:35 1993

No Plan.

Login: torvalds Name: Linus Torvalds

Directory: /home/hydra/torvalds Shell: /bin/tcsh

last login on klaava Fri Mar 18 18:53:52 1994 on ttyq2 from klaava

No unread mail

Plan:

Free UN*X for the 386

3.17 Die Zeit im Netz (ntp) 249

LINUX 1.0 HAS BEEN RELEASED! Get it from:

ftp.funet.fi pub/OS/Linux

and other sites. You'd better get the documentation from there too:

no sense in having it in this plan.

Ruft man finger(1) nur mit dem Namen einer Maschine als Argument auf,

erf�ahrt man N�aheres �uber den Postmaster. Wird ein Klammera�e (ASCII-Zeichen

Nr. 64) vor den Maschinennamen gesetzt, werden die gerade angemeldeten Benut-

zer aufgelistet:

[mvmhp.ciw.uni-karlsruhe.de]

Login Name TTY Idle When Bldg. Phone

wualex1 W. Alex con Fri 08:05 30.70.003 2404

gebern1 G. Bernoer 1p0 1:15 Fri 08:52 30.70.107 2413

Das Werkzeug netfind(1) hilft, die genaue Email-Anschrift eines Benutzers

zu �nden, von dem man nur ungenaue Angaben kennt. netfind(1) vereinigt
mehrere Suchwerkzeuge und -verfahren, darunter finger(1). Seine T�atigkeit ist
einer Telefonauskunft vergleichbar.

3.17 Die Zeit im Netz (ntp)

3.17.1 Aufgabe

Computer { insbesondere im Netz { brauchen f�ur manche Aufgaben die genaue
Zeit. Dazu z�ahlen Anwendungen wie make(1), die die Zeitstempel der Files aus-

werten, Email, Datenbanken, einige Sicherheitsmechanismen wie Kerberos und
nat�urlich Echtzeit-Aufgaben. Abgesehen von diesen Erfordernissen ist es l�astig,

wenn die Systemuhr zu sehr von der b�urgerlichen Zeit abweicht. Die Systemuhr
wird zwar vom Systemtakt und damit von einem Quarz gesteuert, dieser ist jedoch
nicht auf die Belange einer Uhr hin ausgesucht. Mit anderen Worten: die System-

uhren m�ussen regelm�a�ig mit genaueren Uhren synchronisiert werden, fragt sich,
mit welchen und wie.

Eine v�ollig andere Aufgabe ist die Messung von Zeitspannen, beispielsweise zur
Geschwindigkeitsoptimierung von Programmen oder auch bei Echtzeit-Aufgaben.

Hier kommt es auf eine hohe Au
�osung an, aber nicht so sehr auf die �Uberein-

stimmung mit anderen Zeitmessern weltweit. Au�erdem ben�otigt man nur eine
Ma�einheit wie die Sekunde und keinen Nullpunkt wie Christi Geburt.

3.17.2 UTC { Universal Time Coordinated

Die Universal Time Coordinated (UTC) ist die Nachfolgerin der Green-

wich Mean Time (GMT), heute UT1 genannt, der mittleren Sonnenzeit auf dem
L�angengrad null, der durch die Sternwarte von Greenwich bei London verl�auft.

250 3 Internet

Beide Zeiten unterscheiden sich durch ihre De�nition und gelegentlich um Bruch-

teile von Sekunden. Als Weltzeit gilt seit 1972 die UTC. Computer-Systemuhren

sollten UTC haben. Daraus wird durch Addition von 1 h die in Deutschland g�ulti-

ge Mitteleurop�aische Zeit (MEZ) abgeleitet, auch Middle oder Central European

Time genannt.

Wie kommt man zur UTC? Die besten Uhren (C�asium- oder Atom-Uhren)

laufen so gleichm�a�ig, da� sie f�ur den Alltag schon nicht mehr zu gebrauchen

sind, wie wir sehen werden. Ihre Zeit wird als Temps Atomique International

(TAI) bezeichnet. In Deutschland stehen einige solcher Uhren in der Physikalisch-

Technischen Bundesanstalt (PTB) in Braunschweig. Weltweit verf�ugen etwa 60

Zeitinstitute �uber Atom-Uhren. Aus den Daten dieser Uhren errechnet das Bureau

International des Poids et Mesures (BIPM) in Paris einen Mittelwert, addiert eine

vereinbarte Anzahl von Schaltsekunden hinzu und erh�alt so die internationale

UTC oder UTC(BIPM). Dann teilt das Bureau den nationalen Zeitinstituten die

Abweichung der nationalen UTC(*) von der internationalen UTC mit, bei uns also

die Di�erenz UTC�UTC(PTB). Sie soll unter einer Mikrosekunde liegen und tut
das bei der PTB auch deutlich. Die UTC ist also eine nachtr�aglich errechnete Zeit.
Was die Zeitinstitute �uber Radiosender wie DCF77 verbreiten, kann immer nur die

nationale UTC(*) sein, in Deutschland UTC(PTB). Mit den paar Nanosekunden
Unsicherheit m�ussen wir leben.

Warum nun die Schaltsekunden? F�ur den Alltag ist die Erddrehung wichtiger
als die Schwingung von C�asiumatomen. Die Drehung wird allm�ahlich langsamer
{ ein heutiger Tag ist bereits drei Stunden l�anger als vor 600 Millionen Jahren {

und weist auch Unregelm�a�igkeiten auf. Die UTC wird aus der TAI abgeleitet,
indem nach Bedarf Schaltsekunden hinzugef�ugt werden, soda� Mittag und Mit-
ternacht, Sommer und Winter dort bleiben, wohin sie geh�oren. UTC und UT1

unterscheiden sich h�ochstens um 0,9 Sekunden, UTC und TAI durch eine ganze
Anzahl von Sekunden, gegenw�artig (Ende 1997) um 31. Nicht jede Minute der

j�ungeren Vergangenheit war also 60 Sekunden lang. Erlaubt sind auch negative
Schaltsekunden, jedoch noch nicht vorgekommen.

In den einzelnen L�andern sind nationale Beh�orden f�ur die Darstellung der Zeit

verantwortlich:

� Deutschland: Physikalisch-Technische Bundesanstalt, Braunschweig

� Frankreich:

� Schweiz:

� �Osterreich:

� England: National Physical Laboratory,

� USA: U. S. Naval Observatory

Au�er der Zeit bekommt man von diesen Instituten oft auch Informationen �uber

die Zeit und ihre Messung. In Deutschland wird die Zeit vor allem �uber den Sender
DCF77 bei Frankfurt (Main) auf 77,5 kHz verteilt. Funkuhren, die dessen Signale

verarbeiten, sind mittlerweile so preiswert geworden, da� sie kein Zeichen von

Exklusivit�at mehr sind. Auch funkgesteuerte Computeruhren sind erschwinglich,
so lange man keine hohen Anspr�uche stellt.

3.17 Die Zeit im Netz (ntp) 251

3.17.3 Einrichtung

Man k�onnte jeden Computer mit einer eigenen Funkuhr ausr�usten, aber das w�are

doch etwas aufwendig, zumal das Netz billigere und zuverl�assigere M�oglichkeiten

bietet. Au�erdem steht nicht jeder Computer an einem Platz mit ungest�ortem

Empfang der Radiosignale. Das Network Time Protocol nach RFC 1305

(Postscript-Ausgabe 120 Seiten) vom M�arz 1992 zeigt den Weg.

Im Netz gibt es eine Hierarchie von Zeitservern. Das Fundament bilden die

Stratum-1-Server. Das sind Computer, die eine genaue Hardware-Uhr haben, bei-

spielsweise eine Funkuhr. Diese Server sprechen sich untereinander ab, soda� der

vor�ubergehende Ausfall einer Funkverbindung praktisch keine Auswirkungen hat.

Von den Stratum-1-Servern holt sich die n�achste Schicht die Zeit, die Stratum-2-

Server. Als kleiner Netzmanager soll man fremde Stratum-1-Server nicht bel�asti-

gen. Oft erlauben die Rechenzentren den direkten Zugri� auch nicht.

Stratum-2-Server versorgen gro�e Netze wie ein Campus- oder Firmennetz mit

der Zeit. Auch sie sprechen sich untereinander ab und holen sich au�erdem die Zeit

von mehreren Stratum-1-Servern. So geht es weiter bis zum Stratum 16, das aber

praktisch nicht vorkommt, weil in Instituten oder Geb�auden die Zeit einfacher
per Broadcast von einem Stratum-2- oder Stratum-3-Server verteilt wird. Die
Mehrheit der Computer ist als Broadcast-Client kon�guriert.

Man braucht einen D�amon wie xntp(1M) samt ein paar Hilfs�les. Die Kon-
�guration steht �ublicherweise in /etc/ntp.conf. Dieses enth�alt Zeilen folgender
Art:

server ntp.rz.uni-karlsruhe.de

server servus05.rus.uni-stuttgart.de

server 127.127.1.1

peer mvmah90.ciw.uni-karlsruhe.de

peer mvmpc100.ciw.uni-karlsruhe.de

broadcast 129.13.118.255

driftfile /etc/ntp.drift

Server sind Maschinen, von denen die Zeit geholt wird, Peers Maschinen, mit

denen die Zeit ausgetauscht wird. Der Server 127.127.1.1 ist die Maschine

selbst f�ur den Fall, da� s�amtliche Netzverbindungen unterbrochen sind. Da

ntp.rz.uni-karlsruhe.de ein Stratum-1-Server ist, l�auft die Maschine mit obi-
ger Kon�guration als Stratum-2-Server. Sie sendet Broadcast-Signale in das Sub-
netz 129.13.118. Au�erdem spricht sie sich mit ihren Kollegen mvmah90 und

mvmpc100 ab, die zweckm�a�igerweise ihre Zeit von einer anderen Auswahl an Zeits-

ervern beziehen. Der Ausfall einer Zeitquelle hat so praktisch keine Auswirkungen.

In /etc/ntp.drift wird die lokale Drift gespeichert, soda� die Systemuhr auch
ohne Verbindung zum Netz etwas genauer arbeitet. Weitere Computer im Subnetz

129.13.118 sind mit broadcastclient yes kon�guriert.

Da die Synchronisation nur bis zu einer gewissen Abweichung arbeitet, ist
es angebracht, beim Booten mittels des Kommandos ntpdate(1M) die Zeit zu

252 3 Internet

setzen. Mit dem Kommando ntpq(1M) erfragt man aktuelle Daten zum Stand der

Synchronisation.

A Zahlensysteme

... aber die Daten fehlen, um den ganzen

Nonsens richtig zu �uberblicken {

Benn, Drei alte M�anner

Au�er dem Dezimalsystem sind das Dual-, das Oktal- und das Hexade-
zimalsystem gebr�auchlich. Ferner spielt das Bin�ar codierte Dezimalsystem
(BCD) bei manchen Anwendungen eine Rolle. Bei diesem sind die einzelnen De-
zimalstellen f�ur sich dual dargestellt. Die folgende Tabelle enth�alt die Werte von 0
bis dezimal 127. Bequemlichkeitshalber sind auch die zugeordneten ASCII-Zeichen
aufgef�uhrt.

dezimal dual oktal hex BCD ASCII

0 0 0 0 0 nul

1 1 1 1 1 soh

2 10 2 2 10 stx

3 11 3 3 11 etx

4 100 4 4 100 eot

5 101 5 5 101 enq

6 110 6 6 110 ack

7 111 7 7 111 bel

8 1000 10 8 1000 bs

9 1001 11 9 1001 ht

10 1010 12 a 1.0 lf

11 101 13 b 1.1 vt

12 1100 14 c 1.10 �

13 1101 15 d 1.11 cr

14 1110 16 e 1.100 so

15 1111 17 f 1.101 si

16 10000 20 10 1.110 dle

17 10001 21 11 1.111 dc1

18 10010 22 12 1.1000 dc2

19 10011 23 13 1.1001 dc3

20 10100 24 14 10.0 dc4

21 10101 25 15 10.1 nak

22 10110 26 16 10.10 syn

23 10111 27 17 10.11 etb

24 11000 30 18 10.100 can

25 11001 31 19 10.101 em

26 11010 32 1a 10.110 sub

27 11011 33 1b 10.111 esc

28 11100 34 1c 10.1000 fs

29 11101 35 1d 10.1001 gs

30 11110 36 1e 11.0 rs

31 11111 37 1f 11.1 us

253

254 A Zahlensysteme

32 100000 40 20 11.10 space

33 100001 41 21 11.11 !

34 100010 42 22 11.100 "

35 100011 43 23 11.101 #

36 100100 44 24 11.110 $

37 100101 45 25 11.111 %

38 100110 46 26 11.1000 &

39 100111 47 27 11.1001 '

40 101000 50 28 100.0 (

41 101001 51 29 100.1)

42 101010 52 2a 100.10 *

43 101011 53 2b 100.11 +

44 101100 54 2c 100.100 ,

45 101101 55 2d 100.101 -

46 101110 56 2e 100.110 .

47 101111 57 2f 100.111 /

48 110000 60 30 100.1000 0

49 110001 61 31 100.1001 1

50 110010 62 32 101.0 2

51 110011 63 33 101.1 3

52 110100 64 34 101.10 4

53 110101 65 35 101.11 5

54 110110 66 36 101.100 6

55 110111 67 37 101.101 7

56 111000 70 38 101.110 8

57 111001 71 39 101.111 9

58 111010 72 3a 101.1000 :

59 111011 73 3b 101.1001 ;

60 111100 74 3c 110.0 <

61 111101 75 3d 110.1 =

62 111110 76 3e 110.10 >

63 111111 77 3f 110.11 ?

64 1000000 100 40 110.100 @

65 1000001 101 41 110.101 A

66 1000010 102 42 110.110 B

67 1000011 103 43 110.111 C

68 1000100 104 44 110.1000 D

69 1000101 105 45 110.1001 E

70 1000110 106 46 111.0 F

71 1000111 107 47 111.1 G

72 1001000 110 48 111.10 H

73 1001001 111 49 111.11 I

74 1001010 112 4a 111.100 J

75 1001011 113 4b 111.101 K

76 1001100 114 4c 111.110 L

77 1001101 115 4d 111.111 M

78 1001110 116 4e 111.1000 N

79 1001111 117 4f 111.1001 O

80 1010000 120 50 1000.0 P

255

81 1010001 121 51 1000.1 Q

82 1010010 122 52 1000.10 R

83 1010011 123 53 1000.11 S

84 1010100 124 54 1000.100 T

85 1010101 125 55 1000.101 U

86 1010110 126 56 1000.110 V

87 1010111 127 57 1000.111 W

88 1011000 130 58 1000.1000 X

89 1011001 131 59 1000.1001 Y

90 1011010 132 5a 1001.0 Z

91 1011011 133 5b 1001.1 [

92 1011100 134 5c 1001.10 \

93 1011101 135 5d 1001.11]

94 1011110 136 5e 1001.100 ^

95 1011111 137 5f 1001.101

96 1100000 140 60 1001.110 `

97 1100001 141 61 1001.111 a

98 1100010 142 62 1001.1000 b

99 1100011 143 63 1001.1001 c

100 1100100 144 64 1.0.0 d

101 1100101 145 65 1.0.1 e

102 1100110 146 66 1.0.10 f

103 1100111 147 67 1.0.11 g

104 1101000 150 68 1.0.100 h

105 1101001 151 69 1.0.101 i

106 1101010 152 6a 1.0.110 j

107 1101011 153 6b 1.0.111 k

108 1101100 154 6c 1.0.1000 l

109 1101101 155 6d 1.0.1001 m

110 1101110 156 6e 1.1.0 n

111 1101111 157 6f 1.1.1 o

112 1110000 160 70 1.1.10 p

113 1110001 161 71 1.1.11 q

114 1110010 162 72 1.1.100 r

115 1110011 163 73 1.1.101 s

116 1110100 164 74 1.1.110 t

117 1110101 165 75 1.1.111 u

118 1110110 166 76 1.1.1000 v

119 1110111 167 77 1.1.1001 w

120 1111000 170 78 1.10.0 x

121 1111001 171 79 1.10.1 y

122 1111010 172 7a 1.10.10 z

123 1111011 173 7b 1.10.11 f
124 1111100 174 7c 1.10.100 |

125 1111101 175 7d 1.10.101 g
126 1111110 176 7e 1.10.110 ~

127 1111111 177 7f 1.10.111 del

B Zeichens�atze

B.1 EBCDIC, ASCII, Roman8, IBM-PC

Die Zeichens�atze sind in den Ein- und Ausgabeger�aten (Terminal, Drucker) ge-
speicherte Tabellen, die die Zeichen in Zahlen und zur�uck umsetzen.

dezimal oktal EBCDIC ASCII-7 Roman8 IBM-PC

0 0 nul nul nul nul

1 1 soh soh soh Gra�k

2 2 stx stx stx Gra�k

3 3 etx etx etx Gra�k

4 4 pf eot eot Gra�k

5 5 ht enq enq Gra�k

6 6 lc ack ack Gra�k

7 7 del bel bel bel

8 10 bs bs Gra�k

9 11 rlf ht ht ht

10 12 smm lf lf lf

11 13 vt vt vt home

12 14 � � � �

13 15 cr cr cr cr

14 16 so so so Gra�k

15 17 si si si Gra�k

16 20 dle dle dle Gra�k

17 21 dc1 dc1 dc1 Gra�k

18 22 dc2 dc2 dc2 Gra�k

19 23 dc3 dc3 dc3 Gra�k

20 24 res dc4 dc4 Gra�k

21 25 nl nak nak Gra�k

22 26 bs syn syn Gra�k

23 27 il etb etb Gra�k

24 30 can can can Gra�k

25 31 em em em Gra�k

26 32 cc sub sub Gra�k

27 33 esc esc Gra�k

28 34 ifs fs fs cur right

29 35 igs gs gs cur left

30 36 irs rs rs cur up

31 37 ius us us cur down

32 40 ds space space space

33 41 sos ! ! !

34 42 fs " " "

35 43 # # #

256

B.1 EBCDIC, ASCII, Roman8, IBM-PC 257

36 44 byp $ $ $

37 45 lf % % %

38 46 etb & & &

39 47 esc ' ' '

40 50 (((

41 51)))

42 52 sm * * *

43 53 + + +

44 54 , , ,

45 55 enq - - -

46 56 ack . . .

47 57 bel / / /

48 60 0 0 0

49 61 1 1 1

50 62 syn 2 2 2

51 63 3 3 3

52 64 pn 4 4 4

53 65 rs 5 5 5

54 66 uc 6 6 6

55 67 eot 7 7 7

56 70 8 8 8

57 71 9 9 9

58 72 : : :

59 73 ; ; ;

60 74 dc4 < < <

61 75 nak = = =

62 76 > > >

63 77 sub ? ? ?

64 100 space @ @ @

65 101 A A A

66 102 â B B B

67 103 �a C C C

68 104 �a D D D

69 105 �a E E E

70 106 ~a F F F

71 107 �a G G G

72 110 �c H H H

73 111 ~n I I I

74 112 [J J J

75 113 . K K K

76 114 < L L L

77 115 (M M M

78 116 + N N N

79 117 ! O O O

80 120 & P P P

81 121 �e Q Q Q

82 122 ê R R R

83 123 �e S S S

84 124 �e T T T

258 B Zeichens�atze

85 125 �� U U U

86 126 �̂ V V V

87 127 �� W W W

88 130 �� X X X

89 131 � Y Y Y

90 132] Z Z Z

91 133 $ [[[

92 134 * \ \ \

93 135)]]]

94 136 ; ^ ^ ^

95 137 ^

96 140 { ` ` `

97 141 / a a a

98 142 Â b b b

99 143 �A c c c

100 144 �A d d d

101 145 �A e e e

102 146 ~A f f f

103 147 �A g g g

104 150 C� h h h

105 151 ~N i i i

106 152 | j j j

107 153 , k k k

108 154 % l l l

109 155 m m m

110 156 > n n n

111 157 ? o o o

112 160 � p p p

113 161 �E q q q

114 162 Ê r r r

115 163 �E s s s

116 164 �E t t t

117 165 �I u u u

118 166 Î v v v

119 167 �I w w w

120 170 �I x x x

121 171 ` y y y

122 172 : z z z

123 173 # f f f
124 174 @ | | |

125 175 ' g g g
126 176 = ~ ~ ~

127 177 " del del Gra�k

128 200 � C�

129 201 a �u

130 202 b �e

131 203 c â

132 204 d �a

B.1 EBCDIC, ASCII, Roman8, IBM-PC 259

133 205 e �a

134 206 f �a

135 207 g �c

136 210 h ê

137 211 i �e

138 212 � �e

139 213 � �

140 214 �̂

141 215 �y ��

142 216 �A

143 217 � �A

144 220 �E

145 221 j �

146 222 k �

147 223 l ô

148 224 m �o

149 225 n �o

150 226 o û

151 227 p �u

152 230 q y

153 231 r �O

154 232 a
�

�U

155 233 o
�

156 234 � $

157 235 { Yen

158 236 � Pt

159 237 f

160 240 � �a

161 241 � �A ��

162 242 s Â �o

163 243 t �E �u

164 244 u Ê ~n

165 245 v �E ~N

166 246 w Î a
�

167 247 x �I o
�

168 250 y ' >

169 251 z ` Gra�k

170 252 < ^ Gra�k

171 253 > 1/2

172 254 ~ 1/4

173 255 �Y �U <

174 256 Û �
175 257 �
176 260 Gra�k

177 261 $ Gra�k

178 262 Yen Gra�k

179 263 � Gra�k

180 264 f C� Gra�k

260 B Zeichens�atze

181 265 x �c Gra�k

182 266 { ~N Gra�k

183 267 ~n Gra�k

184 270 < Gra�k

185 271 > Gra�k

186 272 Gra�k

187 273 | $ Gra�k

188 274 { Yen Gra�k

189 275 x Gra�k

190 276 f Gra�k

191 277 = Gra�k

192 300 f â Gra�k

193 301 A ê Gra�k

194 302 B ô Gra�k

195 303 C û Gra�k

196 304 D �a Gra�k

197 305 E �e Gra�k

198 306 F �o Gra�k

199 307 G �u Gra�k

200 310 H �a Gra�k

201 311 I �e Gra�k

202 312 �o Gra�k

203 313 ô �u Gra�k

204 314 �o �a Gra�k

205 315 �o �e Gra�k

206 316 �o �o Gra�k

207 317 ~o �u Gra�k

208 320 g �A Gra�k

209 321 J �̂ Gra�k

210 322 K � Gra�k

211 323 L � Gra�k

212 324 M �a Gra�k

213 325 N �� Gra�k

214 326 O � Gra�k

215 327 P � Gra�k

216 330 Q �A Gra�k

217 331 R �� Gra�k

218 332 �O Gra�k

219 333 û �U Gra�k

220 334 �u �E Gra�k

221 335 �u � Gra�k

222 336 �u � Gra�k

223 337 y Ô Gra�k

224 340 \ �A �

225 341 ~A �

226 342 S ~a �

227 343 T �

228 344 U �

229 345 V �I �

B.2 German-ASCII 261

230 346 W �I �

231 347 X �O �

232 350 Y �O �

233 351 Z ~O �

234 352 ~o

235 353 Ô �S �

236 354 �O �s 1
237 355 �O �U �

238 356 �O Y 2
239 357 ~O y \
240 360 0 thorn �
241 361 1 Thorn �
242 362 2 �
243 363 3 �
244 364 4 Haken

245 365 5 Haken

246 366 6 { �
247 367 7 1/4 �
248 370 8 1/2 �
249 371 9 a

�
�

250 372 o
�

�
251 373 Û � p
252 374 �U t n

253 375 �U � 2

254 376 �U � t
255 377 (FF)

B.2 German-ASCII

Falls das Ein- oder Ausgabeger�at einen deutschen 7-Bit-ASCII-Zeichensatz
enth�alt, sind folgende Ersetzungen der amerikanischen Zeichen durch deutsche
Sonderzeichen �ublich:

Nr. US-Zeichen US-ASCII German ASCII

91 linke eckige Klammer [�A

92 Backslash \ �O

93 rechte eckige Klammer] �U

123 linke geschweifte Klammer f �a

124 senkrechter Strich | �o

125 rechte geschweifte Klammer g �u

126 Tilde ~ �

Achtung: Der IBM-PC und Ausgabeger�ate von Hewlett-Packard verwenden keinen

7-Bit-ASCII-Zeichensatz, sondern eigene 8-Bit-Zeichens�atze, die die Sonderzeichen

unter Nummern h�oher 127 enthalten, siehe vorhergehende Tabelle.

262 B Zeichens�atze

B.3 ASCII-Steuerzeichen

Die Steuerzeichen der Zeichens�atze dienen der �Ubermittlung von Befehlen und
Informationen an das empfangende Ger�at und nicht der Ausgabe eines sicht- oder
druckbaren Zeichens. Die Ausgabeger�ate kennen in der Regel jedoch einen Modus
(transparent, Monitor, Display Functions), in der die Steuerzeichen nicht aus-
gef�uhrt, sondern angezeigt werden. Die meisten Steuerzeichen belegen keine eige-
ne Taste auf der Tastatur, sondern werden als Kombination aus der control-Taste
und einer Zeichentaste eingegeben.

dezimal ASCII Bedeutung Tasten

0 nul ASCII-Null control @

1 soh Start of heading control a

2 stx Start of text control b

3 etx End of text control c

4 eot End of transmission control d

5 enq Enquiry control e

6 ack Acknowledge control f

7 bel Bell control g

8 bs Backspace control h, BS

9 ht Horizontal tab control i, TAB

10 lf Line feed control j, LF

11 vt Vertical tab control k

12 � Form feed control l

13 cr Carriage return control m, RETURN

14 so Shift out control n

15 si Shift in control o

16 dle Data link escape control p

17 dc1 Device control 1, xon control q

18 dc2 Device control 2, tape control r

19 dc3 Device control 3, xo� control s

20 dc4 Device control 4, tape control t

21 nak Negative acknowledge control u

22 syn Synchronous idle control v

23 etb End of transmission block control w

24 can Cancel control x

25 em End of medium control y

26 sub Substitute control z

27 esc Escape control [, ESC

28 fs File separator control \

29 gs Group separator control]

30 rs Record separator control ^

31 us Unit separator control

127 del Delete DEL, RUBOUT

B.4 Latin-1 (ISO 8859-1) 263

B.4 Latin-1 (ISO 8859-1)

Die internationale Norm ISO 8859 beschreibt gegenw�artig zehn Zeichens�atze, die

jedes Zeichen durch jeweils ein Byte darstellen. Jeder Zeichensatz umfa�t also

maximal 256 druckbare Zeichen und Steuerzeichen. Der erste { Latin-1 genannt

{ ist f�ur west- und mitteleurop�aische Sprachen { darunter Deutsch { vorgesehen.

Latin-2 deckt Mittel- und Osteuropa ab, soweit das lateinische Alphabet verwen-

det wird. Wer einen polnisch-deutschen Text schreiben will, braucht Latin 2. Die

deutschen Sonderzeichen liegen in Latin 1 bis 6 an denselben Stellen. Weiteres sie-

he in der ISO-Norm und im RFC 1345 Character Mnemonics and Character Sets

vom Juni 1992. Auch http://wwwwbs.cs.tu-berlin.de/~czyborra/charsets/

hilft weiter.

Die erste H�alfte (0 { 127) aller Latin-Zeichens�atze stimmt mit US-ASCII �ube-

rein, die zweite mit keinem der anderen Zeichens�atze. Zu jedem Zeichen geh�ort

eine standardisierte verbale Bezeichnung. Einige Zeichen wie das isl�andische Thorn

oder das Cent-Zeichen konnten hier mit LaTeX nicht dargestellt werden.

dezimal oktal hex Zeichen Bezeichnung

000 000 00 nu Null (nul)

001 001 01 sh Start of heading (soh)

002 002 02 sx Start of text (stx)

003 003 03 ex End of text (etx)

004 004 04 et End of transmission (eot)

005 005 05 eq Enquiry (enq)

006 006 06 ak Acknowledge (ack)

007 007 07 bl Bell (bel)

008 010 08 bs Backspace (bs)

009 011 09 ht Character tabulation (ht)

010 012 0a lf Line feed (lf)

011 013 0b vt Line tabulation (vt)

012 014 0c � Form feed (�)

013 015 0d cr Carriage return (cr)

014 016 0e so Shift out (so)

015 017 0f si Shift in (si)

016 020 10 dl Datalink escape (dle)

017 021 11 d1 Device control one (dc1)

018 022 12 d2 Device control two (dc2)

019 023 13 d3 Device control three (dc3)

020 024 14 d4 Device control four (dc4)

021 025 15 nk Negative acknowledge (nak)

022 026 16 sy Synchronous idle (syn)

023 027 17 eb End of transmission block (etb)

024 030 18 cn Cancel (can)

025 031 19 em End of medium (em)

026 032 1a sb Substitute (sub)

027 033 1b ec Escape (esc)

028 034 1c fs File separator (is4)

029 035 1d gs Group separator (is3)

264 B Zeichens�atze

030 036 1e rs Record separator (is2)

031 037 1f us Unit separator (is1)

032 040 20 sp Space

033 041 21 ! Exclamation mark

034 042 22 " Quotation mark

035 043 23 # Number sign

036 044 24 $ Dollar sign

037 045 25 % Percent sign

038 046 26 & Ampersand

039 047 27 ' Apostrophe

040 050 28 (Left parenthesis

041 051 29) Right parenthesis

042 052 2a * Asterisk

043 053 2b + Plus sign

044 054 2c , Comma

045 055 2d - Hyphen-Minus

046 056 2e . Full stop

047 057 2f / Solidus

048 060 30 0 Digit zero

049 061 31 1 Digit one

050 062 32 2 Digit two

051 063 33 3 Digit three

052 064 34 4 Digit four

053 065 35 5 Digit �ve

054 066 36 6 Digit six

055 067 37 7 Digit seven

056 070 38 8 Digit eight

057 071 39 9 Digit nine

058 072 3a : Colon

059 073 3b ; Semicolon

060 074 3c < Less-than sign

061 075 3d = Equals sign

062 076 3e > Greater-than sign

063 077 3f ? Question mark

064 100 40 @ Commercial at

065 101 41 A Latin capital letter a

066 102 42 B Latin capital letter b

067 103 43 C Latin capital letter c

068 104 44 D Latin capital letter d

069 105 45 E Latin capital letter e

070 106 46 F Latin capital letter f

071 107 47 G Latin capital letter g

072 110 48 H Latin capital letter h

073 111 49 I Latin capital letter i

074 112 4a J Latin capital letter j

075 113 4b K Latin capital letter k

076 114 4c L Latin capital letter l

077 115 4d M Latin capital letter m

078 116 4e N Latin capital letter n

B.4 Latin-1 (ISO 8859-1) 265

079 117 4f O Latin capital letter o

080 120 50 P Latin capital letter p

081 121 51 Q Latin capital letter q

082 122 52 R Latin capital letter r

083 123 53 S Latin capital letter s

084 124 54 T Latin capital letter t

085 125 55 U Latin capital letter u

086 126 56 V Latin capital letter v

087 127 57 W Latin capital letter w

088 130 58 X Latin capital letter x

089 131 59 Y Latin capital letter y

090 132 5a Z Latin capital letter z

091 133 5b [Left square bracket

092 134 5c \ Reverse solidus

093 135 5d] Right square bracket

094 136 5e ^ Circum
ex accent

095 137 5f Low line

096 140 60 ` Grave accent

097 141 61 a Latin small letter a

098 142 62 b Latin small letter b

099 143 63 c Latin small letter c

100 144 64 d Latin small letter d

101 145 65 e Latin small letter e

102 146 66 f Latin small letter f

103 147 67 g Latin small letter g

104 150 68 h Latin small letter h

105 151 69 i Latin small letter i

106 152 6a j Latin small letter j

107 153 6b k Latin small letter k

108 154 6c l Latin small letter l

109 155 6d m Latin small letter m

110 156 6e n Latin small letter n

111 157 6f o Latin small letter o

112 160 70 p Latin small letter p

113 161 71 q Latin small letter q

114 162 72 r Latin small letter r

115 163 73 s Latin small letter s

116 164 74 t Latin small letter t

117 165 75 u Latin small letter u

118 166 76 v Latin small letter v

119 167 77 w Latin small letter w

120 170 78 x Latin small letter x

121 171 79 y Latin small letter y

122 172 7a z Latin small letter z

123 173 7b f Left curly bracket

124 174 7c | Vertical line

125 175 7d g Right curly bracket

126 176 7e ~ Tilde

127 177 7f dt Delete (del)

266 B Zeichens�atze

128 200 80 pa Padding character (pad)

129 201 81 ho High octet preset (hop)

130 202 82 bh Break permitted here (bph)

131 203 83 nh No break here (nbh)

132 204 84 in Index (ind)

133 205 85 nl Next line (nel)

134 206 86 sa Start of selected area (ssa)

135 207 87 es End of selected area (esa)

136 210 88 hs Character tabulation set (hts)

137 211 89 hj Character tabulation with justi�cation (htj)

138 212 8a vs Line tabulation set (vts)

139 213 8b pd Partial line forward (pld)

140 214 8c pu Partial line backward (plu)

141 215 8d ri Reverse line feed (ri)

142 216 8e s2 Single-shift two (ss2)

143 217 8f s3 Single-shift three (ss3)

144 220 90 dc Device control string (dcs)

145 221 91 p1 Private use one (pu1)

146 222 92 p2 Private use two (pu2)

147 223 93 ts Set transmit state (sts)

148 224 94 cc Cancel character (cch)

149 225 95 mw Message waiting (mw)

150 226 96 sg Start of guarded area (spa)

151 227 97 eg End of guarded area (epa)

152 230 98 ss Start of string (sos)

153 231 99 gc Single graphic character introducer (sgci)

154 232 9a sc Single character introducer (sci)

155 233 9b ci Control sequence introducer (csi)

156 234 9c st String terminator (st)

157 235 9d oc Operating system command (osc)

158 236 9e pm Privacy message (pm)

159 237 9f ac Application program command (apc)

160 240 a0 ns No-break space

161 241 a1 < Inverted exclamation mark

162 242 a2 Cent sign

163 243 a3 $ Pound sign

164 244 a4 Currency sign

165 245 a5 Yen sign

166 246 a6 Broken bar

167 247 a7 x Section sign

168 250 a8 Diaresis

169 251 a9 c
 Copyright sign

170 252 aa a Feminine ordinal indicator

171 253 ab � Left-pointing double angle quotation mark

172 254 ac : Not sign

173 255 ad - Soft hyphen

174 256 ae Registered sign

175 257 af � Overline

176 260 b0 � Degree sign

B.4 Latin-1 (ISO 8859-1) 267

177 261 b1 � Plus-minus sign

178 262 b2 2 Superscript two

179 263 b3 3 Superscript three

180 264 b4 ' Acute accent

181 265 b5 � Micro sign

182 266 b6 { Pilcrow sign

183 267 b7 � Middle dot

184 270 b8 � Cedilla

185 271 b9 1 Superscript one

186 272 ba � Masculine ordinal indicator

187 273 bb � Right-pointing double angle quotation mark

188 274 bc 1/4 Vulgar fraction one quarter

189 275 bd 1/2 Vulgar fraction one half

190 276 be 3/4 Vulgar fraction three quarters

191 277 bf > Inverted question mark

192 300 c0 �A Latin capital letter a with grave

193 301 c1 �A Latin capital letter a with acute

194 302 c2 Â Latin capital letter a with circum
ex

195 303 c3 ~A Latin capital letter a with tilde

196 304 c4 �A Latin capital letter a with diaresis

197 305 c5 �A Latin capital letter a with ring above

198 306 c6 � Latin capital letter ae

199 307 c7 C� Latin capital letter c with cedilla

200 310 c8 �E Latin capital letter e with grave

201 311 c9 �E Latin capital letter e with acute

202 312 ca Ê Latin capital letter e with circum
ex

203 313 cb �E Latin capital letter e with diaresis

204 314 cc �I Latin capital letter i with grave

205 315 cd �I Latin capital letter i with acute

206 316 ce Î Latin capital letter i with circum
ex

207 317 cf �I Latin capital letter i with diaresis

208 320 d0 Latin capital letter eth (Icelandic)

209 321 d1 ~N Latin capital letter n with tilde

210 322 d2 �O Latin capital letter o with grave

211 323 d3 �O Latin capital letter o with acute

212 324 d4 Ô Latin capital letter o with circum
ex

213 325 d5 ~O Latin capital letter o with tilde

214 326 d6 �O Latin capital letter o with diaresis

215 327 d7 � Multiplication sign

216 330 d8 � Latin capital letter o with stroke

217 331 d9 �U Latin capital letter u with grave

218 332 da �U Latin capital letter u with acute

219 333 db Û Latin capital letter u with circum
ex

220 334 dc �U Latin capital letter u with diaresis

221 335 dd �Y Latin capital letter y with acute

222 336 de Latin capital letter thorn (Icelandic)

223 337 df � Latin small letter sharp s (German)

224 340 e0 �a Latin small letter a with grave

268 B Zeichens�atze

225 341 e1 �a Latin small letter a with acute

226 342 e2 â Latin small letter a with circum
ex

227 343 e3 ~a Latin small letter a with tilde

228 344 e4 �a Latin small letter a with diaresis

229 345 e5 �a Latin small letter a with ring above

230 346 e6 � Latin small letter ae

231 347 e7 �c Latin small letter c with cedilla

232 350 e8 �e Latin small letter e with grave

233 351 e9 �e Latin small letter e with acute

234 352 ea ê Latin small letter e with circum
ex

235 353 eb �e Latin small letter e with diaresis

236 354 ec �� Latin small letter i with grave

237 355 ed �� Latin small letter i with acute

238 356 ee �̂ Latin small letter i with circum
ex

239 357 ef �� Latin small letter i with diaresis

240 360 f0 Latin small letter eth (Icelandic)

241 361 f1 ~n Latin small letter n with tilde

242 362 f2 �o Latin small letter o with grave

243 363 f3 �o Latin small letter o with acute

244 364 f4 ô Latin small letter o with circum
ex

245 365 f5 ~o Latin small letter o with tilde

246 366 f6 �o Latin small letter o with diaresis

247 367 f7 � Division sign

248 370 f8 � Latin small letter o with stroke

249 371 f9 �u Latin small letter u with grave

250 372 fa �u Latin small letter u with acute

251 373 fb û Latin small letter u with circum
ex

252 374 fc �u Latin small letter u with diaresis

253 375 fd �y Latin small letter y with acute

254 376 fe Latin small letter thorn (Icelandic)

255 377 � �y Latin small letter y with diaresis

B.5 Latin-2 (ISO 8859-2)

Der Zeichensatz Latin-2 deckt folgende Sprachen ab: Albanisch, Bosnisch,

Deutsch, Englisch, Finnisch, Irisch, Kroatisch, Polnisch, Rum�anisch, Serbisch

(in lateinischer Transskription), Serbokroatisch, Slowakisch, Slowenisch, Sor-
bisch, Tschechisch und Ungarisch. Samisch wird in Latin-9 ber�ucksichtigt. Auf

http://sizif.mf.uni-lj.si/linux/cee/iso8859-2.html �nden sich Einzel-
heiten und weitere URLs. Hier nur die Zeichen, die von Latin-1 abweichen:

dezimal oktal hex Zeichen Bezeichnung

161 241 a1 Latin capital letter a with ogonek

162 242 a2 Breve

163 243 a3 Latin capital letter l with stroke

165 245 a5 Latin capital letter l with caron

166 246 a6 Latin capital letter s with acute

B.5 Latin-2 (ISO 8859-2) 269

169 251 a9 Latin capital letter s with caron

170 252 aa Latin capital letter s with cedilla

171 253 ab Latin capital letter t with caron

172 254 ac Latin capital letter z with acute

174 256 ae Latin capital letter z with caron

175 257 af Latin capital letter z with dot above

177 261 b1 Latin small letter a with ogonek

178 262 b2 Ogonek

179 263 b3 Latin small letter l with stroke

181 265 b5 Latin small letter l with caron

182 266 b6 Latin small letter s with acute

183 267 b7 Caron

185 271 b9 Latin small letter s with caron

186 272 ba Latin small letter s with cedilla

187 273 bb Latin small letter t with caron

188 274 bc Latin small letter z with acute

189 275 bd Double acute accent

190 276 be Latin small letter z with caron

191 277 bf Latin small letter z with dot above

192 300 c0 Latin capital letter r with acute

195 303 c3 Latin capital letter a with breve

197 305 c5 Latin capital letter l with acute

198 306 c6 Latin capital letter c with acute

200 310 c8 Latin capital letter c with caron

202 312 ca Latin capital letter e with ogonek

204 314 cc Latin capital letter e with caron

207 317 cf Latin capital letter d with caron

208 320 d0 Latin capital letter d with stroke

209 321 d1 Latin capital letter n with acute

210 322 d2 Latin capital letter n with caron

213 325 d5 Latin capital letter o with double acute

216 330 d8 Latin capital letter r with caron

217 331 d9 Latin capital letter u with ring above

219 333 db Latin capital letter u with double acute

222 336 de Latin capital letter t with cedilla

224 340 e0 Latin small letter r with acute

227 343 e3 Latin small letter a with breve

229 345 e5 Latin small letter l with acute

230 346 e6 Latin small letter c with acute

232 350 e8 Latin small letter c with caron

234 352 ea Latin small letter e with ogonek

236 354 ec Latin small letter e with caron

239 357 ef Latin small letter d with caron

240 360 f0 Latin small letter d with stroke

241 361 f1 Latin small letter n with acute

242 362 f2 Latin small letter n with caron

245 365 f5 Latin small letter o with double acute

248 370 f8 Latin small letter r with caron

249 371 f9 Latin small letter u with ring above

270 B Zeichens�atze

251 373 fb Latin small letter u with double acute

254 376 fe Latin small letter t with cedilla

255 377 � Dot above

C Die wichtigsten UNIX-Kommandos

Einzelheiten siehe Referenz-Handb�ucher { vor allem on-line. Das wichtigste Kom-

mando zuerst, die �ubrigen nach Sachgebiet und dann alphabetisch geordnet:

man man Beschreibung zum Kommando man(1) ausgeben

Allgemeines

alias Alias in der Shell einrichten

alias r='fc -e -'

at Programm zu einem beliebigen Zeitpunkt starten

at 0815 Jan 24

myprogram1

EOF (meist control-d)

bdf, df, du Plattenbelegung ermitteln
df

calendar Terminverwaltung (Reminder Service)
(File $HOME/calendar mu� existieren)
calendar

crontab Tabelle f�ur cron erzeugen
crontab crontabfile

date Datum und Zeit anzeigen

date

echo, print Argument auf stdout schreiben

echo 'Hallo, wie gehts?'

exit Shell beenden
exit

kill Signal an Prozess senden

kill myprocess_id

kill -s SIGHUP myprocess_id

leave an Feierabend erinnern
leave 2215

lock Terminal sperren

lock

newgrp Benutzergruppe wechseln

newgrp student

nice Priorit�at eines Programmes herabsetzen

nice myprogram

nohup Programm von Sitzung abkoppeln
nohup myprogram &

passwd Passwort �andern
passwd

271

272 C Die wichtigsten UNIX-Kommandos

ps laufende Prozesse anzeigen

ps -ef

script Sitzung mitschreiben

script (beenden mit exit)

set Umgebung anzeigen

set

sh, ksh, bash Shells (Bourne, Korn, Bash)

bash

stty Terminal-Schnittstelle anzeigen

stty

su Usernamen wechseln (substituieren)

su bjalex1

tset, reset Terminal initialisieren

tset vt100

tty Terminalnamen (/dev/tty*) anzeigen

tty

who eingeloggte Benutzer au
isten
who -H

whoami, id meinen Namen anzeigen
id

xargs Argumentliste aufbauen und Kommando ausf�uhren
ls | xargs -i -t mv {} subdir/{}

Files, Verzeichnisse

cd Arbeitsverzeichnis wechseln

cd

cd /usr/local/bin

chgrp Gruppe eines Files wechseln
chgrp students myfile

chmod Zugri�srechte eines Files �andern

chmod 755 myfile

chown Besitzer eines Files wechseln
chown aralex1 myfile

cmp, diff zwei Files vergleichen

cmp myfile1 myfile2

compress File komprimieren
compress myfile

uncompress myfile.Z

cp File kopieren

cp original kopie

file Filetyp ermitteln
file myfile

find, whereis Files suchen

find . -name myfile -print

gzip File komprimieren (GNU)

273

gzip myfile

gunzip myfile.gz

ln File linken

ln myfile hardlinkname

ln -s myfile softlinkname

ls Verzeichnisse au
isten

ls -al

mkdir Verzeichnis anlegen

mkdir newdir

mv File umbenennen

mv oldfilename newfilename

od (oktalen) Dump eines Files ausgeben

od -c myfile

pwd Arbeitsverzeichnis anzeigen

pwd

rm, rmdir File oder leeres Verzeichnis l�oschen
rm myfile

rm -r mydir

rmdir mydir

tar File-Archiv schreiben oder lesen

tar -cf /dev/st0 ./mydir &

touch leeres File erzeugen, Zeitstempel �andern
touch myfile

Kommunikation, Netz

archie nach File suchen
archie -s mysubstring > mysubstring.archie &

finger Auskunft �uber Benutzer
finger wualex1@mvmpc100.ciw.uni-karlsruhe.de

ftp File Transfer

ftp ftp.ciw.uni-karlsruhe.de

hostname Hostnamen anzeigen
hostname

irc Netzgeschw�atz
irc (beenden mit /quit)

kermit File �ubertragen, auch von/zu Nicht-UNIX-Anlagen

kermit (beenden mit exit)
mail, elm Mail lesen und versenden

mail wulf.alex@ciw.uni-karlsruhe.de < myfile

elm

netscape WWW-Browser (einer unter vielen)

netscape &

news Neuigkeiten anzeigen

news -a

nslookup Auskunft �uber Host

274 C Die wichtigsten UNIX-Kommandos

nslookup mvmpc100.ciw.uni-kalrsuhe.de

nslookup 129.13.118.100

ping Verbindung pr�ufen

ping 129.13.118.100

ssh verschl�usselte Verbindung zu Host im Netz

ssh mvmpc100.ciw.uni-karlsruhe.de

rlogin Dialog mit UNIX-Host im Netz (unverschl�usselt)

rlogin mvmpc100

telnet Dialog mit Host im Netz (unverschl�usselt)

telent mvmpc100

tin, xn Newsreader

rtin

uucp Programmpaket mit UNIX-Netzdiensten

whois Auskunft �uber Netzknoten

whois -h whois.internic.net gatekeeper.dec.com

write, talk Dialog mit eingeloggtem Benutzer
talk wualex1@mvmpc100

Programmieren

ar Gruppe von �les archivieren
ar -r myarchiv.a myfile1 myfile2

cb C-Beauti�er, Quelle versch�onern

cb myprog.c > myprog.b

cc C-Compiler mit Linker
cc -o myprog myprog.c

lint C-Syntax-Pr�ufer
lint myprog.c

make Compileraufruf vereinfachen
make (Make�le erforderlich)

sdb, xdb symbolischer Debugger

xdb (einige Files erforderlich)

Textverarbeitung

adjust Text formatieren (einfachst)

adjust -j -m60 mytextfile

awk Listengenerator
awk -f myawkscript mytextfile (awk-Script erforderlich)

cancel Druckauftrag l�oschen
cancel lp-4711

cat von stdin lesen, nach stdout schreiben

cat mytextfile

cat myfile1 myfile2 > myfile.all

cat mytextfile

cut Spalten aus Tabellen ausw�ahlen

275

cut -f1 mytablefile > newfile

ed Zeileneditor, mit diff(1) n�utzlich

ed mytextfile

emacs Editor, alternativ zum vi(1) (GNU)

emacs mytextfile

expand Tabs ins Spaces umwandeln

expand mytextfile > newfile

grep, fgrep Muster in Files suchen

grep -i Unix mytextfile

fgrep UNIX mytextfile

head, tail Anfang bzw. Ende eines Text�les anzeigen

head mytextfile

lp File �uber Spooler ausdrucken

lp -dlp2 mytextfile

lpstat, lpq Spoolerstatus anzeigen

lpstat -t

more, less, pg Text�le schirmweise anzeigen
more mytextfile

ls -l | more

nroff Textformatierer

nroff mynrofffile | lp

recode Filter zur Umwandlung von Zeichens�atzen (GNU)
recode --help

recode -l

recode -v ascii-bs:EBCDIC-IBM textfile

sed �lternder Editor

sed 's/[A-Z]/[a-z]/g' mytextfile > newfile

sort Text�le zeilenweise sortieren

sort myliste | uniq > newfile

spell Rechtschreibung pr�ufen
spell myspelling text�le+

tee stdout zugleich in ein File schreiben
who | tee whofile

tr Zeichen in Text�le ersetzen

tr -d "\015" < mytextfile1 > mytextfile2

uniq sortiertes Text�le nach doppelten Zeilen durchsuchen

sort myliste | uniq > newfile

vi Bildschirm-Editor, alternativ zum emacs(1)

vi mytextfile

view vi(1) nur zum Lesen aufrufen
view mytextfile

vis Files mit Steuersequenzen anzeigen
vis mytextfile

wc Zeichen, W�orter und Zeilen z�ahlen

wc mytextfile

276 C Die wichtigsten UNIX-Kommandos

Verwaltung (hier reichen Beispiele nicht, nachlesen!)

acctsh Accounting System einrichten

backup, restore Shellscript f�ur Backups

fsck File System Check

lpadmin, lpc Drucker-Spooler einrichten

mkfs Filesystem einrichten

mknod Ger�ate�le einrichten

mount weiteres File-System anschlie�en

mvdir Verzeichnis verschieben

stty Terminal-Schnittstelle kon�gurieren

tic, untic terminfo-Eintrag �ubersetzen

shutdown System zum Abschalten vorbereiten

D Besondere UNIX-Kommandos

D.1 printf(3), scanf(3)

printf(3) und scanf(3) sind die beiden Standardfunktionen zum Ein- und Aus-

geben von Daten. Wichtiger Unterschied: printf(3) erwartet Variable, scanf(3)

Pointer. Die Formatbezeichner stimmen weitgehend �uberein:

Bezeichner Typ Beispiel Bedeutung

%c char a Zeichen

%s char * Karlsruhe String

%d int -1234 dezimale Ganzzahl mit Vorzeichen
%i int -1234 dezimale Ganzzahl mit Vorzeichen
%u unsigned 1234 dezimale Ganzzahl ohne Vorzeichen

%ld long 1234 dezimal Ganzzahl doppelter L�ange
%f double 12.34 Gleitkommazahl mit Vorzeichen
%e double 1.234 E 1 Gleitkommazahl, Exponentialdarstellung

%g double 12.34 k�urzere Darstellung von %e oder %f
%o unsigned octal 2322 oktale Ganzzahl ohne Vorzeichen

%x unsigned hex 4d2 hexadezimale Ganzzahl o. Vorzeichen
%p void * 68�32e4 Pointer
%% - % Prozentzeichen

Weiteres im Referenz-Handbuch unter printf(3) oder scanf(3). L�ange, B�undig-

keit, Unterdr�uckung f�uhrender Nullen, Vorzeichenangabe k�onnen festgelegt wer-
den.

D.2 vi(1)

escape schaltet in Kommando-Modus um

h Cursor nach links
j Cursor nach unten

k Cursor nach oben

l Cursor nach rechts
0 Cursor an Zeilenanfang

$ Cursor an Zeilenende

nG Cursor in Zeile Nr. n
G Cursor in letzte Zeile des Textes

+n Cursor n Zeilen vorw�arts

-n Cursor n Zeilen r�uckw�arts

277

278 D Besondere UNIX-Kommandos

a schreibe anschlie�end an Cursor

i schreibe vor Cursor

o �o�ne neue Zeile unterhalb Cursor

O �o�ne neue Zeile oberhalb Cursor

r ersetze das Zeichen auf Cursor

R ersetze Text ab Cursor

x l�osche das Zeichen auf Cursor

dd l�osche Cursorzeile

ndd l�osche n Zeilen ab und samt Cursorzeile

nY �ubernimm n Zeilen in Zwischenspeicher

p schreibe Zwischenpu�er unterhalb Cursorzeile

P schreibe Zwischenpu�er oberhalb Cursorzeile

J h�ange n�achste Zeile an laufende an

/abc suche String abc nach Cursor

?abc suche String abc vor Cursor

n wiederhole Stringsuche
u mache letztes Kommando ung�ultig (undo)
% suche Gegenklammer (in Programmen)

:read �le lies file ein
:w schreibe Text zur�uck (write, save)

:q verlasse Editor ohne write (quit)
:wq write und quit

Weitere vi-Kommandos im Referenz-Handbuch unter vi(1) oder in dem Buch
von Morris I. Bolsky.

D.3 emacs(1)

D.4 joe(1)

D.5 ftp(1)

Wenn man eine ftp-Verbindung zu einem Computer im Netz unterh�alt, ste-

hen nur Kommandos f�ur die File�ubertragung zur Verf�ugung, die mit den UNIX-

Kommandos nichts zu tun haben. Die wichtigsten von etwa 70 sind:

Kommando Wirkung

ftp Beginn der FTP-Sitzung

open Verbinden mit angegebener Adresse

user Eingabe Benutzernamen
pwd print working directory, wie UNIX

cd change directory, wie UNIX

lcd change local directory

D.5 ftp(1) 279

dir Verzeichnis au
isten (geht immer)

ls Verzeichnis au
isten, wie UNIX (geht meist)

ascii in ASCII-Modus schalten (f�ur ASCII-Texte)

binary in bin�aren Modus schalten (f�ur alle �ubrigen Files)

get File vom Host holen

get README |more kurzes Text�le README on-line lesen

put File zum Host schicken

mget multi-get, mehrere Files auf einmal holen

mput multi-put, mehrere Files auf einmal schicken

passive auf passives FTP umschalten (Firewall)

prompt Abfragen bei mget und mput unterdr�ucken

rhelp Kommandos der �Ubertragung anzeigen

rstatus Status der Verbindung anzeigen

status Status des Hosts anzeigen

close Verbindung (nicht Sitzung) beenden

bye Sitzung beenden
quit Sitzung beenden
help lokale Hilfe zu Kommandos anzeigen

? cmd Hilfe zum Kommando cmd anzeigen

Eine FTP-Verbindung l�a�t sich teilweise automatisieren, siehe das Dot-File

.netrc. Ferner kann man die Kommandos in ein Batch�le packen, das in Ab-
wesenheit des Benutzers ausgef�uhrt wird, was f�ur regelm�a�ig wiederkehrende Ver-
bindungen (cron(1)) zweckm�a�ig ist.

E UNIX-Systemaufrufe

Systemaufrufe werden vom Anwendungsprogramm wie eigene oder fremde Funk-

tionen angesehen. Ihrem Ursprung nach sind es auch C-Funktionen. Sie sind jedoch

nicht Bestandteil einer Funktionsbibliothek, sondern geh�oren zum Betriebssystem

und sind nicht durch andere Funktionen erweiterbar.

Die Systemaufrufe { als Bestandteil des Betriebssystems { sind f�ur alle

Programmiersprachen dieselben, w�ahrend die Funktionsbibliotheken zur jewei-

ligen Programmiersprache geh�oren. Folgende Systemaufrufe sind unter UNIX

verf�ugbar:

access pr�uft Zugri� auf File

acct startet und stoppt Prozess Accounting
alarm setzt Weckeruhr f�ur Prozess
atexit Funktion f�ur Programmende

brk �andert Speicherzuweisung
chdir wechselt Arbeitsverzeichnis

chmod �andert Zugri�srechte eines Files
chown �andert Besitzer eines Files
chroot �andert Root-Verzeichnis

close schlie�t einen File-Deskriptor
creat �o�net File, ordnet Deskriptor zu
dup dupliziert File-Deskriptor

errno Fehlervariable der Systemaufrufe
exec f�uhrt ein Programm aus

exit beendet einen Prozess
fcntl Filesteuerung
fork erzeugt einen neuen Prozess

fsctl liest Information aus File-System

fsync schreibt File aus Arbeitsspeicher auf Platte
getaccess ermittelt Zugri�srechte

getacl ermittelt Zugri�srechte
getcontext ermittelt Kontext eines Prozesses

getdirentries ermittelt Verzeichnis-Eintr�age

getgroups ermittelt Gruppenrechte eines Prozesses
gethostname ermittelt Namen des Systems

getitimer setzt oder liest Intervall-Uhr
getpid liest Prozess-ID

gettimeofday ermittelt Zeit

getuid liest User-ID des aufrufenden Prozesses
ioctl I/O-Steuerung

kill schickt Signal an einen Prozess
link linkt ein File

280

281

lockf setzt Semaphore und Record-Sperren

lseek bewegt Schreiblesezeiger in einem File

mkdir erzeugt Verzeichnis

mknod erzeugt File

mount mountet File-System

msgctl Interprozess-Kommunikation

nice �andert die Priorit�at eines Prozesses

open �o�net File zum Lesen oder Schreiben

pause suspendiert Prozess bis zum Empfang eines Signals

pipe erzeugt eine Pipe

prealloc reserviert Arbeitsspeicher

profil ermittelt Zeiten bei der Ausf�uhrung eines Programmes

read liest aus einem File

readlink liest symbolisches Link

rename �andert Filenamen

rmdir l�oscht Verzeichnis
rtprio �andert Echtzeit-Priorit�at
semctl Semaphore

setgrp setzt Gruppen-Zugri�srechte eines Prozesses
setuid setzt User-ID eines Prozesses

signal legt fest, was auf ein Signal hin zu tun ist
stat liest die Inode eines Files
statfs liest Werte des File-Systems

symlink erzeugt symbolischen Link
sync schreibt Pu�er auf Platte
szsconf ermittelt Systemwerte

time ermittelt die Systemzeit
times ermittelt Zeitverbrauch eines Prozesses

truncate schneidet File ab
umask setzt oder ermittelt Filezugri�smaske
unlink l�oscht File

ustat liest Werte des File-Systems
utime setzt Zeitstempel eines Files

wait wartet auf Ende eines Kindprozesses

write schreibt in ein File

Die Aufz�ahlung kann durch weitere Systemaufrufe des jeweiligen Lieferanten des
Betriebssystems (z. B. Hewlett-Packard) erg�anzt werden. Diese erleichtern das
Programmieren, verschlechtern aber die Portabilit�at. Zu den meisten Systemauf-

rufen mit get... gibt es ein Gegenst�uck set..., das in einigen F�allen dem Super-

user vorbehalten ist.

F UNIX-Signale

Die Default-Reaktion eines Prozesses auf die meisten Signale ist seine Beendigung;

sie k�onnen aber abgefangen und umde�niert werden. Die Signale 09, 24 und 26

k�onnen nicht abgefangen werden. Die Bezeichnungen sind nicht ganz einheitlich.

Weiteres unter signal(2), signal(5) oder signal(7).

Name Nummer Bedeutung

SIGHUP 01 hangup

SIGINT 02 interrupt (meist Break-Taste)

SIGQUIT 03 quit

SIGILL 04 illegal instruction
SIGTRAP 05 trace trap
SIGABRT 06 software generated abort

SIGIOT 06 software generated signal
SIGEMT 07 software generated signal

SIGFPE 08
oating point exception
SIGKILL 09 kill (sofortiger Selbstmord)
SIGBUS 10 bus error

SIGSEGV 11 segmentation violation
SIGSYS 12 bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it

SIGALRM 14 alarm clock
SIGTERM 15 software termination (bitte Schlu� machen)

SIGUSR1 16 user de�ned signal 1
SIGSTKFLT 16 stack fault on coprocessor
SIGUSR2 17 user de�ned signal 2

SIGCHLD 18 death of a child

SIGCLD 18 = SIGCHLD
SIGPWR 19 power fail

SIGINFO 19 = SIGPWR
SIGVTALRM 20 virtual timer alarm

SIGPROF 21 pro�ling timer alarm

SIGIO 22 asynchronous I/O signal
SIGPOLL 22 = SIGIO

SIGWINDOW 23 window change or mouse signal
SIGSTOP 24 stop

SIGTSTP 25 stop signal generated from keyboard

SIGCONT 26 continue after stop
SIGTTIN 27 background read attempted from control terminal

SIGTTOU 28 background write attempted from control terminal
SIGURG 29 urgent data arrived on an I/O channel

282

283

SIGLOST 30 NFS �le lock lost

SIGXCPU 30 CPU time limit exceeded

SIGXFSZ 31 �le size limit exceeded

G File-Kennungen

Unter UNIX ist es nicht gebr�auchlich, den Typ eines Files durch ein Anh�angsel

(Kennung, Erweiterung, Extension) an seinen Namen zu kennzeichnen, aber es ist

erlaubt. Die L�ange der Kennung ist beliebig. Folgende Kennungen (a = ASCII-

Text, b = bin�ares File, ? = wechselnd oder unbekannt) sind verbreitet:

$$$? Tempor�ares File

a b UNIX-Archiv, mit ar(1) erzeugt

adf ? Adapter Description File (IBM)

adi b AutoCAD DXF

adn ? Add In Utility (Lotus)

afm ? Adobe Font Metrics (Adobe)

ani b Atari ST Graphics Format

ans b ANSI-Gra�k

app ? Application (RBase, NeXT)

arc ? Archiv, mit arc oder pkpak komprimiert

arj b Archiv, mit ??? komprimiert

asc a ASCII-Text�le

asm a Assembler-Quelle

au b Sound-File (Sun, NeXT)

aux ? TeX Hilfs�le, mit Bez�ugen

avi b Microsoft RIFF

avs b Intel DVI

bak a Backup-File

bas b BASIC-File

bat a Batch�le unter MS-DOS, entsprechend Shellscript

bbl a BIBTeX Literaturverzeichnis

bfx b Bitfax-File

bgi b Borland Graphic Interface

bib ? Bibliographie

bif b Binary Image File

bin b bin�ares File

bit b TeX Ausgabe des Druckertreibers

bk a Backup-File (WordPerfect)

bld b BASIC Bload Graphics

bmp b Microsoft Bitmap Graphics (Windows, OS/2)

bnd b Microsoft RIFF

bpx b Lumena Paint

bsc ? Boyan Script-File

bsv b BASIC Bsave Graphics

btm a Batch�le unter 4DOS

bw b SGI Image File Format

c a C-Quelle

284

285

C a C++-Quelle

cal b CAL Raster

cap a Capture-File (Telix)

cat a Catalogue, Verzeichnis

cbl a COBOL-Quelle

cc a C++-Quelle

cco b Btx-Gra�k

cdf ? Comma delimited format

cdr b Corel Draw Vektorgra�k

cdx ? Compund index (FoxPro)

cfg ? Kon�gurations-File

cgm b Computer Graphics Meta�le (Harvard Graphics, Lotus)

chk ? von chkdsk erzeugtes File (MS-DOS)

cht b Harvard Graphics

clp ? Clipboard (Windows), Clip Art, GRASP

cmd a Command, Skript, Batch�le unter OS/2

cmi b Intel DVI

cnc a CNC-Programme

cnf ? Kon�gurations-File

cob a COBOL-Quelle

cod ? Codeliste

com b Kommando-File (MS-DOS), ausf�uhrbares Programm

cpi ? Code Page Information (MS-DOS)

cpp a C++-Quelle

cpt ? Compact Pro (Kompressor Macintosh)

crd ? Card�le

crf ? Cross Reference File

csv a Comma Separated Values

ctx b Signatur�le (PGP)

cut b Dr. Halo Bitmap

cvf b Compressed Volume File

cxx a C++-Quelle

dat a Daten

db b Datenbank (Paradox)

dbf ? Datenbank (dBase)

dcf ? Driver Con�guration �le

dct ? Dictionary

dcx b Fax-File

dd ? Disk Doubler

def ? De�nitionen, Defaultwerte

dem b Demonstration

des ? Description

dhp b Dr. Halo PIC

dib b Microsoft Windows Bitmap, OS/2 Bitmap

dic ? Dictionary

dif ? Lotus Data Interchange Format

dir a Directory, Verzeichnis

dll b Dynamically Linked Library (OS/2, Windows)

doc a Dokument, Text�le

286 G File-Kennungen

dok a Dokument, Text�le

drs b Driver Resource (WordPerfect)

drv b Device Driver

drw b Drawing

dta a Daten

dv a Desqview Script�le

dvi b Meta�le von TeX, ger�ateunabh�angig

dvr b Device Driver

dxb b Drawing Interchange Binary (AutoCAD)

dxf b Data Exchange Format (Autocad)

ega b EGA-Gra�k

el a Emacs Lisp

elc b Emacs Lisp compiled

eml a Electronic Mail

enc b encoded

eps b Encapsulated Postscript

err a Error, Fehlerprotokoll

etx ? Setext File

exe b executable, ausf�uhrbares Programm (MS-DOS)

f a FORTRAN-Quelle

fax b Fax-File

�f ? Fractal Image Format

i b EmTeX Fontlibrary

fnt b Font�le

for a FORTRAN-Quelle

fxs b Fax-File (Winfax)

gem ? GEM Metadateien

gfb b Gifblast compressed GIF image

gif b Graphics Interchange File

glo a TeX Glossar

gz b mit GNU gzip(1) komprimiert

h a Header-File , include-File

hex b Hexdump

hdf ? Hierarchical Data Format

hpp a Header-File C++

hqx b Macintosh BinHex encoded

htm a Hypertext-Markup-Language-File (DOS-Welt)

html a Hypertext-Markup-Language-File (UNIX-Welt)

i a C-Quelle nach Pr�aprozessor-Durchlauf

idx a Index

i� b Interchange File Format (Amiga, Autodesk Animator)

img b GEM Paint, Rastergra�k/Bitmap

inf a Information

ini ? Kon�gurations�le (Initialisierung)

j� b JPEG File Interchange Format

jif b JPEG Interchange Format

jpeg b JPEG File

jpg b JPEG File

l a lex(1)-Quelle

287

lib b Library, Bibliothek

lof a TeX Bildverzeichnis (list of �gures)

log a Protokoll�le, TeX Meldungen w�ahrend der �Ubersetzung

lot a TeX Tabellenverzeichnis (list of tables)

lst a Liste

lzh b Archiv, mit lha komprimiert

m4 a m4(1)-Pr�aprozessor-File

mac b Macintosh Paint

map b Map-Files (Quick C)

mak a Make-File

mdf ? Menu De�nition File

mid b Midi Sound F�le

mif b Maker Interchange Format (FrameMaker)

mod b MODULA-Quelle, Amiga-Modul (Sound)

mpeg b Motion Pictures Expert Group (Filme)

msp b Microsoft Windows Paint

n� ? Neutral File Format

o b Objekt-Code

obj b Objekt-Code

old ? Kopie eines Files vor �Uberschreiben

ovl b Overlay-File

ovr b Overlay-File

p a PASCAL-Quelle

pak b Archiv, mit pkpak komprimiert

pax b Portable Archive Exchange

pcd b Kodak Photo Compact Disc

pct b Macintosh PICT

pcx b Paintbrush, Rastergra�k

pic b Lotus Picture File

pif b Program Information File

pit b PackIt �le (Kompressor Macintosh)

pix b Inset PIX, Lumena Paint

pov b Persistance of Vision

prn a Drucker�le

prt b Parallel Ray Trace

ps b Postscript-File

psf b Permanent Swap File

qfx b Fax-File (Quicklink)

qtm b QuickTime

r a Rational-FORTRAN-Quelle

ras b SUN/CALS Raster Gra�k

rdi b Microsoft RIFF

r� b Dore Raster File Format

rla b Wavefront Run Length Encoded Version A

rlb b Wavefront Run Length Encoded Version B

rpm ? Red Hat Package Manager

rtf ? Rich Text Format

s a Assembler-Quelle

sdf ? Space Delimited File

288 G File-Kennungen

sea ? Self Extracting Archive (Macintosh)

sgi b SGI Image File Format

sh a Bourne-Shell-Script

shar a Bourne-Shell-Archiv

shr a Shell-Archiv

sit b Macintosh Stu�It Archive

src a Program Source Code

stf ? Structured File

sys b Treiber unter MS-DOS

tar b tar(1)-Archiv

tdf ? Trace/Typeface De�nition File

tex a TeX- oder LaTeX-Quelltext

tfm b TeX-Font-Metrics

tga b TARGA-Bild�le

tgz b .tar.gz, tar-Archiv, GNUzip komprimiert

tif b Tag Image File Format (Scanner)

tmp ? tempor�ares File

toc a Hilfs�le von TeX (table of contents)

tpu b Turbo Pascal Unit

ttf b TrueType Font

txt a Text�le, lesbar

tz b tar.Z, tar-Archiv, compress(1)-komprimiert

uu a uuencoded File, ASCII, aber nicht lesbar

uud a uuencoded File, ASCII, aber nicht lesbar

uue a uuencoded File, ASCII, aber nicht lesbar

vcf b Visiting Card File

voc b Creative Labs Sound File

wav b Microsoft Windows Sound File (RIFF)

web a WEB-Quelle

wfx b Fax-File (Winfax)

wmf b Windows Meta�le Format

wpg a WordPerfect Graphics Meta�le

wri a Windows Text�le

wps a MS Works Text�le

x b SuperDisk self-extracting archive

xwd b X Window Dump

y a yacc(1)-Quelle

Z b mit compress(1) (UNIX) komprimiert

z b mit GNU gzip komprimiert (veraltet, besser gz)

zip b mit pkzip komprimiert

zoo b mit zoo komprimiert

Postscript-Files bestehen zwar aus ASCII-Zeichen und lassen sich auch editie-

ren, sofern man die Sprache kennt, d�urfen aber nur im bin�aren Modus von FTP

�ubertragen werden, um keine Zeichen zu ver�andern.

H Slang im Netz

Diese Sammlung von im Netz vorkommenden Slang-Abk�urzungen ist ein Aus-

zug aus der Abklex-Liste (http://www.ciw.uni-karlsruhe.de/abklex.html)

mit rund 6000 Abk�urzungen aus Informatik und Telekommunikation.

AAMOF As A Matter Of Fact (Slang)

AEG Auspacken, Einschalten, Geht (nicht) (Slang)

AFAIAA As Far As I Am Aware (Slang)

AFAIC As Far As I am Concerned (Slang)

AFAIK As Far As I Know (Slang)

AFJ April Fool's Joke (Slang)

AFK Away From Keyboard (Slang)

AIMB As I Mentioned Before (Slang)

AISI As I See It (Slang)

AIUI As I Understand It (Slang)

AKA Also Known As (Slang)

ANFSCD And Now For Something Completely Di�erent (Slang)

APOL Alternate Person On Line (Slang)

ASAP As Soon As Possible (Slang),

ATFSM Ask The Friendly System Manager (Slang)

ATM At The Moment (Slang)

ATST At The Same Time (Slang)

ATT At This Time (Slang)

AWA A While Ago (Slang)

AWB A While Back (Slang)

AYOR At Your Own Risc (Slang)

B4N Bye For Now (Slang)

BBL Be Back Later (Slang)

BBR Backbone Ring, Burnt Beyond Recognition (Slang)

BCNU Be Seeing You (Slang)

BFBI Brute Force and Bloody Ignorance (Slang)

BFI Brute Force and Ignorance (Slang)

BFMI Brute Force and Massive Ignorance (Slang)

BFN British Forces Network, Bye For Now (Slang)

BNF Backus-Naur Form, Big Name Fan (Slang)

BNFSCD But Now For Something Completely Di�erent (Slang)

BOF Board of Fellows, Birds Of a Feather (Slang)

BOT Begin Of Tape/Table/Transaction, Back On Topic (Slang)

BRB Be Right Back (Slang)

BTAIM Be That As It May (Slang)

BTC Bit Test and Complement, Biting The Carpet (Slang)

BTHOM Beats The Hell Outta Me (Slang)

BTIC But Then, I'am Crazy (Slang)

BTK Back To Keyboard (Slang)

289

290 H Slang im Netz

BTSOOM Beats The Shit Out Of Me (Slang)

BTW By The Way (Slang)

CU See You (Slang)

CUL See You Later (Slang)

DAU D�ummster Anzunehmender User (Slang), Digital Announcement Unit

DHRVVF Ducking, Hiding and Running Very Very Fast (Slang)

DIY Do It Yourself (Slang)

DSH Desparately Seeking Help (Slang)

DWIM Do What I Mean (Slang)

EMFBI Excuse Me For Butting In (Slang)

ETOL Evil Twin On Line (Slang)

F2F Face to Face (Slang)

FAFWOA For A Friend Without Access (Slang)

FB Fine Business (Slang)

FHS For Heaven's Sake (Slang)

FIAWOL Fandom Is A Way Of Life (Slang)

FISH First In, Still Here (Slang)

FITB Fill In The Blank (Slang)

FITNR Fixed In The Next Release (Slang)

FOAF Friend Of A Friend (Slang)

FTASB Faster Than A Speeding Bullet (Slang)

FTL Faster Than Light (Slang)

FUBAR Fouled Up Beyond All Repair/Recognition (Slang)

FUBB Fouled Up Beyond Belief (Slang)

FUBS Fido Used Book Squad (Slang)

FUD (spreading) Fear, Uncertainty, and Disinformation (Slang),

FWIW For What It's Worth (Slang)

FYA For Your Amusement (Slang)

GAFIA Get Away From It All (Slang)

GAL Gate/Generic Array Logic, Get A Life (Slang)

GIGO Garbage In, Garbage/Gospel Out (Slang)

GIWIST Gee I Wish I'd Said That (Slang)

GR+D Grinning, Running + Ducking (Slang)

HAK Hugs and Kisses (Slang)

HHOK Ha Ha Only Kidding (Slang)

HHOS Ha Ha Only Serious (Slang)

HTH Hope This/That Helps (Slang)

IAC In Any Case (Slang), Interapplication Communication (Apple)

IAE ISDN Anschalteinheit/Anschlusseinheit, In Any Event (Slang)

IANAL I Am Not A Lawyer (Slang)

IBTD I Beg To Di�er (Slang)

IC I see (Slang), Incoming Call, Input/Integrated Circuit,

ICOCBW I Could, Of Course, Be Wrong (Slang)

IIRC If I Remember Correctly (Slang)

IIWM If It Were Me/Mine (Slang)

ILLAB Ich liege lachend am Boden (Slang, vgl. ROTFL)

IMAO In My Arrogant Opinion (Slang)

IMCO In My Considered Opinion (Slang)

IME In My Experience (Slang)

291

IMHO In My Humble Opinion (Slang)

IMNSCO In My Not So Considered Opinion (Slang)

IMNSHO In My Not So Humble Opinion (Slang)

IMO In My Opinion (Slang)

IMOBO In My Own Biased Opinion (Slang)

INPO In No Particular Order (Slang)

IOW In Other Words (Slang)

IRL Inter Repeater Link, In Real Life (Slang)

ISTM It Seems To Me (Slang)

ISTR I Seem To Remember (Slang)

IWBNI It Would Be Nice If (Slang)

IYSWIM If You See What I Mean (Slang)

ISWYM I See What You Mean (Slang)

JSNM Just Stark Naked Magic (Slang)

KIBO Knowledge In, Bullshit Out (Slang)

LLTA Lots and Lots of Thundering Applause (Slang)

LOL Laughing Out Loud (Slang)

LOL Lots Of Luck (Slang)

MHOTY My Hat's O� To You (Slang)

MNRE Manual Not Read Error (Slang)

MOTAS Member Of The Appropriate Sex (Slang)

MTFBWY May The Force Be With You (Slang)

MYOB Mind Your Own Business (Slang)

NCNCNC No Co�ee, No Chocolate, No Computer (Slang)

NFI No Frigging Idea (Slang)

NIMBY Not In My Backyard (Slang)

NLA Not Long Ago (Slang)

NRN Netware Remote Node, No Reply Necessary (Slang)

NTTAWWT Not That There's Anything Wrong With That (Slang)

OATUS On A Totally Unrelated Subject (Slang)

OAUS On An Unrelated Subject (Slang)

OBTW Oh, By The Way (Slang)

OBO Or Best O�er (Slang)

OIC Oh, I See (Slang)

ONNA Oh No, Not Again (Slang)

ONNTA Oh No, Not This Again (Slang)

OOP Object Oriented Pleasure/Programming, Out Of Print (Slang)

OOTB Out Of The Box (Slang)

OOTC Obligatory On-topic Comment (Slang)

OT Object Technology, Open Transport, O� Topic (Slang)

OTOH On The Other Hand (Slang)

OTTH On The Third Hand (Slang)

PDQ Pretty Darned Quick (Slang)

PFM Postscript Font Metric, Pure Fantastic Magic (Slang)

PITA Pine In The Ass (Slang)

PMFJIB Pardon Me For Jumping In But (Slang)

POV Point Of View (Slang), Persistence Of Vision

PTO Public Telecommunication Network Operator, Please Turn Over (Slang)

RAEBNC Read And Enjoyed, But No Comment (Slang)

292 H Slang im Netz

RL Remote Loopback, Real Life (Slang)

ROFL Rolling On the Floor Laughing (Slang)

ROFLBTC Rolling On the Floot Biting The Carpet (Slang)

ROFLMAO Rolling On The Floor Laughing My Ass O� (Slang)

ROTFL Roll/Rolling On The Floor Laughing (Slang)

RSN Real Soon Now (Slang)

RTFAQ Read The FAQ list (Slang)

RTFB Read The Funny Binary (Slang)

RTFF Read The Fantastic FAQ (Slang)

RTFM Read The Fine/Fantastic/Funny ... Manual (Slang)

RTFS Read The Funny Source (Slang)

RTM Read The Manual (Slang)

SCNR Sorry, Could Not Resist (Slang)

SEP Separation, Somebody else's problem (Slang)

SFMJI Sorry For My Jumping In (Slang)

SIASL Stranger In A Strange Land (Slang)

SIMCA Sitting In My Chair Amused (Slang)

SITD Still In The Dark (Slang)

SNAFU Situation Normal All Fed/Fucked Up (Slang)

TAFN That's All For Now (Slang)

TANJ There Ain't No Justice (Slang)

TANSTAAFL There Ain't No Such Things As A Free Lunch (Slang)

TBH To Be Honest (Slang)

TGAL Think Globally, Act Locally (Slang)

THWLAIAS The hour was late, and I am senile (Slang)

TIA Thanks In Advance (Slang)

TIC Tongue In Cheek (Slang)

TINAR This Is Not A Review (Slang)

TINWIS That Is Not What I Said (Slang)

TNX Thanks (Slang)

TPTB The Powers That Be (Slang)

TRDMC Tears Running Down My Cheers (Slang)

TTBOMK To The Best Of My Knowledge (Slang)

TTFN Ta Ta For Now (Slang)

TTYL Type/Talk To You Later (Slang)

TYCLO Turn Your Caps Lock O� (Slang)

TYVM Thank You Very Much (Slang)

UL Urban Legend (Slang)

UTSL Use The Source, Luke (Slang)

VL Virtual Life (Slang)

WAMKSAM Why Are My Kids Staring At Me? (Slang)

WDYMBT What Do You Mean By That (Slang)

WOMBAT Waste Of Money, Brains, And Time (Slang)

WRT With Respect To (Slang)

WT Write Through, Without Thinking (Slang)

WTTM Without Thinking Too Much (Slang)

YMMV Your Mileage May Vary (Slang)

I Formelbeispiele LaTeX

I.1 Gelatexte Formeln

c =
p
a2 + b2 (I.1)

3
p
1 + x � 1 +

x

3
f�ur x� 1 (I.2)

r =
3

s
3

4�
V (I.3)

lim
x!0

sin x

x
= 1 (I.4)

a =
F0

k

1r
(1�
2

!2
0

)2 + (
c

k
)2

(I.5)

m�x + c _x + kx =
X
k

Fk cos
kt (I.6)

�
d2'

dt2
+ k�

d'

dt
+D�' = j ~Dj (I.7)

�Y � f(�x) +
1

2

N � 1

N
f 00(�x) s2x (I.8)

~F� = ��mM

r2
~er = ��mM

r3
~r (I.9)

Arbeit = lim
�ri!0

X
~Fi�~ri

=

~r(t)Z
~r0

~F (~r) d~r (I.10)

Y
j�0

0
@X
k�0

ajkz
k

1
A =

X
n�0

zn

0
BB@ X

h0;k1:::�0

k0+k1+���=0

a0koa1k1 : : :

1
CCA (I.11)

~x =

0
B@ x� xs

y � ys
z � zs

1
CA (I.12)

293

294 I Formelbeispiele LaTeX

	 =

0
BBB@

ab

cd

!
e + f

g � h

<z
���� ijkl

����

1
CCCA (I.13)1

dE! = V
�h

�2c3
!3 � e� �h!

T � d! (I.14)

I
~E d~s = � @

@t

Z
~B d ~A (I.15)

1

2�j

x+j1Z
x�j1

ets f(s) ds =

(
0 f�ur t < 0

F (t) f�ur t > 0
(I.16)

n + 1

k

!
=

n

k

!
+

n

k � 1

!
(I.17)

8x 2 R : x2 � 0 (I.18)

8x; y; z 2 M : (xRy ^ xRz)) y = z (I.19)

A �B = �A+ �B (I.20)

� � �vk �
@�vj

@xk
= � @�p

@xj
+

@

@xk

�
@�vj

@xk
� � v0kv

0
j

!
(I.21)

r0 =
v01v

0
2q

�v021

q
�v022

(I.22)

�tur = �l2 j@ �v1
@x2

j @ �v1
@x2

(I.23)

�R =
1

	
(Vr � _R) +R _�2

�� = [
1

	
(V' � R _�)� 2 _R _�]

1

R
(I.24)

�Z =
1

	
(VZ � _Z)

1Fette Griechen gibt es nur als Gro�buchstaben. Die Erzeugung dieser Fu�note war

�ubrigens nicht einfach.

I.1 Gelatexte Formeln 295

�̂2 =
n(n� 1)

B(n� B)

kX
i=1

(Bi � Ei)
2

ni
> �2k�1;� (I.25)

V (r; #; ') =
1X
l=0

4�

2l + 1

lX
m=�l

ql;m
Yl;m#; ')

rl+1
(I.26)

~q =

0
BBBBBBBBBBBBBBB@

q0;0
q1;1
q1;0
q1;�1
q2;2
q2;1
q2;0
q2;�1
q2;�2

1
CCCCCCCCCCCCCCCA

(I.27)

q0l0;m0 =
1X
o=0

oX
p=�o

no;p qo;p (r)l0+o;m0�p;o;p

Yl0+o;m0�p(#a; 'a)

al
0+o+1

(I.28)

ql;m = �q0l;mR2l+1 l(�i � �a)

l(�a + �i) + �a
(I.29)

~q01;1 = ~q01;0 + Ind2;1 ~q02;0 (I.30)

~q02;1 = ~q02;0 + Ind1;2 ~q01;0 (I.31)

r�1

1X
l=0

4�

2l + 1

lX
m=�l

ql;m
Yl;m(#; ')

rl+1

=
1X
l=0

4�

2l + 1

lX
m=�l

(~r�1)l;m ql;m
Yl+1;m�1(#; ')

rl+2
(I.32)

a+

123z }| {
b + � � �+ y+z| {z }

��

Lange Formeln mu� man selbst in Zeilen au
�osen:

w + x + y + z =

a + b+ c+ d+ e+ f + (I.33)

g + h+ i+ j + k + l

296 I Formelbeispiele LaTeX

N+1 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

(~r+)0;0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 (~r+)1;1 0 0 0 0 0 0 0

0 0 (~r+)1;0 0 0 0 0 0 0

0 0 0 (~r+)1;�1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 (~r+)2;2 0 0 0 0

0 0 0 0 0 (~r+)2;1 0 0 0

0 0 0 0 0 0 (~r+)2;0 0 0

0 0 0 0 0 0 0 (~r+)2;�1 0

0 0 0 0 0 0 0 0 (~r+)2;�2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

I.2 Formeln im Quelltext

\begin{equation}

c = \sqrt{a^{2} + b^{2}}

\end{equation}

\begin{equation}

\sqrt[3]{1 + x} \approx 1 + \frac{x}{3}

\qquad \mbox{f"ur} \quad x \ll 1

\end{equation}

\begin{equation}

r = \root 3 \of {\frac{3}{4\pi} V}

\end{equation}

\begin{equation}

\lim_{x \to 0} \frac{\sin x}{x} = 1

\end{equation}

\begin{equation}

a = \frac{F_0}{k}\:\frac{1}{\sqrt{(1 - \frac{\Omega^2}

{\omega_0^2})^2 + (\frac{\Omega_c}{k})^2}}

\end{equation}

I.2 Formeln im Quelltext 297

\begin{equation}

m\ddot x + c\dot x + kx = \sum_k F_k \cos \Omega_k t

\end{equation}

\begin{equation}

\Theta \frac{d^2 \varphi}{dt^2} + k^\ast \frac{d \varphi}{dt}

+ D^\ast \varphi = | \vec D |

\end{equation}

\begin{equation}

\bar{Y} \approx f(\bar x) + \frac{1}{2}\, \frac{N - 1}{N}

\,f''(\bar{x})\,s_x^2

\end{equation}

\begin{equation}

\vec{F_\Gamma} = - \frac{\Gamma m M}{r^2} \vec{e_r} =

- \frac{\Gamma m M}{r^3} \vec{r}

\end{equation}

\begin{eqnarray}

\mbox{Arbeit} & = & \lim_{\Delta r_i \to 0} \sum

{\vec F_i \Delta \vec r_i}\nonumber \\

& = & \int\limits_{\vec r_0}^{\vec r(t)}

{\vec F(\vec r\,)\:d\vec r}

\end{eqnarray}

\begin{equation}

\prod_{j\ge0}\left(\sum_{k\ge0} a_{jk}z^k \right) =

\sum_{n \ge0} z^n \left(\sum_{h_0,k_1\ldots\ge0

\atop k_0+k_1+\cdots=0}

a_{0k_o} a_{1k_1}\ldots \right)

\end{equation}

\begin{equation}

\vec x =

\left(\begin{array}{c}

x - x_s \\

y - y_s \\

z - z_s \\

\end{array} \right)

\end{equation}

\begin{minipage}{120mm}

\begin{displaymath}

{\bf\Psi} = \left(\begin{array}{cc}

298 I Formelbeispiele LaTeX

\displaystyle{ab \choose cd}

& \displaystyle \frac{e+f}{g-h} \\

\Re z & \displaystyle \left| {ij \atop kl} \right|

\end{array} \right)

\end{displaymath}

\end{minipage}

\stepcounter{equation}

\hspace*{\fill} (\theequation)\makebox[0pt][l]{\footnotemark}

\footnotetext{Fette Griechen gibt es nur als Gro\3buchstaben.

Die Erzeugung dieser Fu\3note war "ubrigens nicht einfach.}

\vspace{1mm}

\begin{equation}

dE_\omega = V \frac{\hbar}{\pi^2 c^3}\omega^3 \cdot

e ^{-\frac{\hbar \omega} {T}} \cdot d\omega

\end{equation}

\begin{equation}

\oint \vec E\:d\vec s = - \frac {\,\partial}{\partial t}

\int \vec B \:d\vec A

\end{equation}

\begin{equation}

\frac{1}{2 \pi j} \int\limits_{x-j\infty}^{x+j\infty}

e^{ts} \:f(s)\:ds =

\left\{\begin{array}{r@{\quad \mbox{f"ur} \quad}l}

0 & t < 0\\

F(t) & t > 0

\end{array} \right.

\end{equation}

\begin{equation}

{n+1 \choose k} = {n \choose k} + {n \choose k-1}

\end{equation}

\begin{equation}

\mbox{

\fbox{\parbox{60mm}{\begin{displaymath}

\forall x \in {\rm R}: \qquad x^2 \geq 0

\end{displaymath}}}}

\end{equation}

\vspace{1mm}

\begin{equation}

\forall x,y,z \in {\rm M}: \qquad (xRy \wedge xRz)

\Rightarrow y = z

I.2 Formeln im Quelltext 299

\end{equation}

\begin{equation}

A \cdot B = \overline{\bar A + \bar B}

\end{equation}

\begin{equation}

\rho \cdot \bar{v}_k \cdot \frac{\partial \bar{v}_j}

{\partial{x}_k} = - \frac{\partial \bar{p}}

{\partial x_j} + \frac{\partial}{\partial x_k}

\left(\mu \frac{\partial \bar{v}_j}{\partial x_k}

- \rho\:\overline{v'_k v'_j} \right)

\end{equation}

\begin{equation}

r' = \frac{\overline{v'_1 v'_2}}{\sqrt{\bar{v'^2_1}}

\: \sqrt{\bar{v'^2_2}}}

\end{equation}

\begin{equation}

\tau_{tur} = \rho l^2 \; | \frac{\partial \bar{v_1}}

{\partial x_2} | \; \frac{\partial \bar{v_1}}{\partial x_2}

\end{equation}

\begin{eqnarray}

\ddot R & = & \frac{1}{\Psi} (V_r - \dot R)

+ R {\dot \Phi}^2 \nonumber\\

\ddot \Phi & = & \big\lbrack \frac{1}{\Psi}

(V_\varphi - R \dot \Phi)

- 2 \dot R \dot \Phi \big\rbrack \frac{1}{R} \\

\ddot Z & = & \frac{1}{\Psi}(V_Z-\dot Z) \nonumber\\

\nonumber

\end{eqnarray}

\begin{equation}

{\hat\chi}^2 = \frac{n(n-1)}{B(n-B)} \sum_{i=1}^k

\frac{(B_i - E_i)^2}{n_i} > \chi_{k-1;\alpha}^2

\end{equation}

\begin{equation}

V(r,\vartheta,\varphi)=\sum\limits_{l=0}^\infty \frac{4\pi}{2l+1}

\sum\limits_{m=-l}^l \, q_{l,m} \frac{Y_{l,m}

\vartheta,\varphi)}{r^{l+1}}

\end{equation}

\begin{eqnarray}

300 I Formelbeispiele LaTeX

\vec{q}= \left(\begin{array}{c}

q_{0,0}\\

q_{1,1}\\q_{1,0}\\q_{1,-1}\\

q_{2,2}\\q_{2,1}\\q_{2,0}\\q_{2,-1}\\q_{2,-2}\\

\end{array} \right)

\end{eqnarray}

\begin{equation}

q'_{l',m'}=\sum\limits_{o=0}^\infty\sum\limits_{p=-o}^o

n_{o,p} \; q_{o,p} \; (\nabla)_{l'+o,m'-p;o,p} \,

\frac{Y_{l'+o,m'-p}(\vartheta_a,\varphi_a)}{a^{l'+o+1}}

\end{equation}

\begin{equation}

q_{l,m}= -q'_{l,m} R^{2l+1} \,

\frac{l(\epsilon_i-\epsilon_a)}{l(\epsilon_a+\epsilon_i)+\epsilon_a}

\end{equation}

\begin{eqnarray}

\vec{q'}_{1,1}=\vec{q'}_{1,0}+Ind_{2,1} \; \vec{q'}_{2,0} \\[0.3cm]

\vec{q'}_{2,1}=\vec{q'}_{2,0}+Ind_{1,2} \; \vec{q'}_{1,0}

\end{eqnarray}

\begin{eqnarray}

\lefteqn{\nabla_{\pm 1} \sum\limits_{l=0}^{\infty}

\frac{4\pi}{2l+1} \,

\sum\limits_{m=-l}^{l} \: q_{l,m} \: \frac{Y_{l,m}

(\vartheta,\varphi)}{r^{l+1}}}

\nonumber \\[0.3cm]

&&=\sum\limits_{l=0}^{\infty}\frac{4\pi}{2l+1} \,

\sum\limits_{m=-l}^{l} \: (\tilde{\nabla_{\pm 1}})_{l,m}

\, q_{l,m} \:

\frac{Y_{l+1,m \pm 1}(\vartheta,\varphi)}{r^{l+2}}

\end{eqnarray}

\[\underbrace{a + \overbrace{b + \cdots + y}^{123}

+ z}_{\alpha\beta\gamma} \]

Lange Formeln mu\3 man selbst in Zeilen aufl"osen:

\begin{eqnarray}

\lefteqn{w + x + y + z = } \hspace{1cm} \nonumber\\

& & a + b + c + d + e + f + \\

& & g + h + i + j + k + l \nonumber

\end{eqnarray}

\begin{eqnarray*}

I.2 Formeln im Quelltext 301

N_{+1}=\left(\begin{array}{*{8}{c@{\;}}c}

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\

(\tilde{\nabla}_{+})_{0,0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\

0 & (\tilde{\nabla}_{+})_{1,1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\

0 & 0 & (\tilde{\nabla}_{+})_{1,0} & 0 & 0 & 0 & 0 & 0 & 0 \\

0 & 0 & 0 & (\tilde{\nabla}_{+})_{1,-1} & 0 & 0 & 0 & 0 & 0 \\

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\

0 & 0 & 0 & 0 & (\tilde{\nabla}_{+})_{2,2} & 0 & 0 & 0 & 0 \\

0 & 0 & 0 & 0 & 0 & (\tilde{\nabla}_{+})_{2,1} & 0 & 0 & 0 \\

0 & 0 & 0 & 0 & 0 & 0 & (\tilde{\nabla}_{+})_{2,0} & 0 & 0 \\

0 & 0 & 0 & 0 & 0 & 0 & 0 & (\tilde{\nabla}_{+})_{2,-1} & 0 \\

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & (\tilde{\nabla}_{+})_{2,-2} \\

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\

0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\

\end{array}\right)

\end{eqnarray*}

J ISO 3166 L�andercodes

Bei den Namen von Computern im Internet ist es au�erhalb der USA

�ublich, als letzten Teil den L�andercode nach ISO 3166 anzugeben. Dies

ist jedoch nicht zwingend, es gibt auch Bezeichnungen, die kein Land

sondern eine Organisation oder dergleichen angeben und daher nicht von

ISO 3166 festgelegt werden. Die vollst�andige Tabelle �ndet sich unter

ftp://ftp.ripe.net/iso3166-countrycodes.

Land A 2 A 3 Nummer

ALBANIA AL ALB 008

ALGERIA DZ DZA 012

ANDORRA AD AND 020

ANTARCTICA AQ ATA 010

ARGENTINA AR ARG 032

AUSTRALIA AU AUS 036

AUSTRIA AT AUT 040

BELARUS BY BLR 112

BELGIUM BE BEL 056

BOSNIA AND HERZEGOWINA BA BIH 070

BRAZIL BR BRA 076

BULGARIA BG BGR 100

CANADA CA CAN 124

CHILE CL CHL 152

CHINA CN CHN 156

CROATIA HR HRV 191

CYPRUS CY CYP 196

CZECH REPUBLIC CZ CZE 203

DENMARK DK DNK 208

EGYPT EG EGY 818

ESTONIA EE EST 233

FAROE ISLANDS FO FRO 234

FINLAND FI FIN 246

FRANCE FR FRA 250

GEORGIA GE GEO 268

GERMANY DE DEU 276

GIBRALTAR GI GIB 292

GREECE GR GRC 300

GREENLAND GL GRL 304

HUNGARY HU HUN 348

ICELAND IS ISL 352

INDIA IN IND 356

INDONESIA ID IDN 360

IRELAND IE IRL 372

302

303

ISRAEL IL ISR 376

ITALY IT ITA 380

JAPAN JP JPN 392

KOREA, REPUBLIC OF KR KOR 410

LATVIA LV LVA 428

LEBANON LB LBN 422

LIECHTENSTEIN LI LIE 438

LITHUANIA LT LTU 440

LUXEMBOURG LU LUX 442

MACEDONIA, REPUBLIC OF MK MKD 807

MALAYSIA MY MYS 458

MALTA MT MLT 470

MEXICO MX MEX 484

MONACO MC MCO 492

MOROCCO MA MAR 504

NETHERLANDS NL NLD 528

NEW ZEALAND NZ NZL 554

NORWAY NO NOR 578

PAKISTAN PK PAK 586

POLAND PL POL 616

PORTUGAL PT PRT 620

ROMANIA RO ROM 642

RUSSIAN FEDERATION RU RUS 643

SAN MARINO SM SMR 674

SAUDI ARABIA SA SAU 682

SINGAPORE SG SGP 702

SLOVAKIA SK SVK 703

SLOVENIA SI SVN 705

SOUTH AFRICA ZA ZAF 710

SPAIN ES ESP 724

SVALBARD AND JAN MAYEN SJ SJM 744

SWEDEN SE SWE 752

SWITZERLAND CH CHE 756

TAIWAN TW TWN 158

TUNISIA TN TUN 788

TURKEY TR TUR 792

UKRAINE UA UKR 804

UNITED KINGDOM GB GBR 826

UNITED STATES US USA 840

VATICAN VA VAT 336

YUGOSLAVIA YU YUG 891

K Requests For Comment (RFCs)

Das Internet wird nicht durch Normen, sondern durch RFCs (Request For Com-

ment) beschrieben, gegenw�artig etwa 2500 an der Zahl. Wird ein RFC durch

einen neueren abgel�ost, bekommt dieser auch eine neue, h�ohere Nummer. Es gibt

also keine Versionen oder Ausgaben wie bei den DIN-Normen. Sucht man ei-

ne Information, besorgt man sich einen aktuellen Index der RFCs und startet

in den Titeln, bei der h�ochsten Nummer beginnend, eine Stichwortsuche. Eini-

ge RFCs sind zugleich FYIs (For Your Information) mit eigener Z�ahlung. Diese

enthalten einf�uhrende Informationen. Andere RFCs haben den Rang von o�zi-

ellen Internet-Protokoll-Standards mit zus�atzlicher, eigener Numerierung, siehe

RFC 2200 Internet O�cial Protocol Standards vom Juni 1997, wobei ein Stan-

dard mehrere RFCs umfassen kann. Schlie�lich sind einige RFCs zugleich BCPs
(Best Current Practice), siehe RFC 1818, oder RTRs (RARE Technical Report).

Eine vollst�andige Sammlung �ndet sich auf ftp.nic.de/pub/doc/rfc/. Die Files
mit den �Ubersichten sind:

� Request For Comment: rfc-index.txt, 300 kbyte,

� For Your Information: fyi-index.txt, 10 kbyte,

� Internet Standard: std-index.txt, 10 kbyte.

Hier folgt eine Auswahl, nach der Nummer sortiert.

K.1 Ausgew�ahlte RFCs, ohne FYIs

0001 Host Software (1969)

0681 Network Unix (1975)

0814 Name, Addresses, Ports, and Routes (1982)

0821 Simple Mail Transfer Protocol (1982)

0822 Standard for the Format of ARPA Internet Text Messages (1982)

0902 ARPA-Internet Protocol policy (1984)

0959 File Transfer Protocol (1985)

1000 The Request For Comments Reference Guide (1987)

1034 Domain names { concepts and facilities (1987)

1087 Ethics and the Internet (1989)

1094 NFS: Network File System Protocol speci�cation (1989)

1118 Hitchhiker's Guide to the Internet (1989)

1173 Responsibilities of Host and Network Managers (1991)

1180 TCP/IP Tutorial (1991)

1208 Glossary of Networking Terms (1991)

1281 Guidelines for the secure operations of the Internet (1991)

1295 User bill of rights for entries and listing in the public directory (1992)

1296 Internet Growth (1981 { 1991) (1992)

304

K.1 Ausgew�ahlte RFCs, ohne FYIs 305

1310 Internet standards process (1992)

1327 Mapping between X.400(1988)/ISO 10021 and RFC 822 (1992)

1331 Point-to-Point Protocol (PPP) (1992)

1336 Who's who in the Internet (1992)

1345 Character Mnemonics and Character Sets (1992)

1361 Simple Network Time Protocol (1992)

1378 PPP AppleTalk Control Protocol (1992)

1432 Recent Internet books (1993)

1436 Internet Gopher Protocol (1993)

1441 SMTP Introduction to version 2 of the Internet-standard

Network Management Framework (1993)

1459 Internet Relay Chat Protocol 91993)

1460 Post O�ce Protocol - Version 3 (1993)

1466 Guidelines for Management of IP Address Space (1993)

1475 TP/IX: The Next Internet (1993)

1501 OS/2 User Group (1993)

1506 A Tutorial on Gatewaying between X.400 and Internet Mail (1993)

1510 The Kerberos Network Authentication Service (1993)

1511 Common Authentication Technology Overview (1993)

1591 Domain Name System Structure and Delegation (1994)

1601 Charter of the Internet Architecture Board (IAB) (1994)

1603 IETF Working Group Guidelines and Procedures (1994)

1607 A VIEW FROM THE 21ST CENTURY (1994)

1618 PPP over ISDN (1994)

1661 The Point-to-Point Protocol (PPP) (1994)

1684 Introduction to White Pages Services based on X.500 (1994)

1690 Introducing the Internet Engineering and Planning Group

(IEPG) (1994)

1700 ASSIGNED NUMBERS (1994)

1704 On Internet Authentication (1994)

1738 Uniform Resource Locators (URL) (1994)

1750 Randomness Recommendations for Security (1994)

1752 The Recommendation for the IP Next Generation Protocol (1995)

1775 To Be On the Internet (1995)

1789 INETPhone: Telephone Services and Servers on Internet (1995)

1808 Relative Uniform Resource Locators (1995)

1825 Security Architecture for the Internet Protocol (1995)

1835 Architecture of the WHOIS++ service (1995)

1871 Addendum to RFC 1602 { Variance Procedure (1995)

1881 IPv6 Address Allocation Management (1995)

1882 The 12-Days of Technology Before Christmas (1995)

1898 CyberCash Credit Card Protocol Version 0.8. (1996)

1912 Common DNS Operational and Con�guration Errors (1996)

1913 Architecture of the Whois++ Index Service (1996)

1918 Address Allocation for Private Internets (1996)

1924 A Compact Representation of IPv6 Addresses (1996)

1925 The Twelve Networking Truths (1996)

1928 SOCKS Protocol Version 5. (1996)

1935 What is the Internet, Anyway? (1996)

306 K Requests For Comment (RFCs)

1938 A One-Time Password System (1996)

1939 Post O�ce Protocol - Version 3. (1996)

1945 Hypertext Transfer Protocol { HTTP/1.0. (1996)

1952 GZIP �le format speci�cation version 4.3. (1996)

1955 New Scheme for Internet Routing and Addressing (ENCAPS)

for IPNG (1996)

1957 Some Observations on Implementations of the Post O�ce Protocol

(POP3) (1996)

1958 Architectural Principles of the Internet (1996)

1963 PPP Serial Data Transport Protocol (SDTP) (1996)

1968 The PPP Encryption Control Protocol (ECP) (1996)

1972 A Method for the Transmission of IPv6 Packets over Ethernet

Networks (1996)

1984 IAB and IESG Statement on Cryptographic Technology and the

Internet (1996)

2014 IRTF Research Group Guidelines and Procedures (1996)

2015 MIME Security with Pretty Good Privacy (PGP) (1996)

2026 The Internet Standards Process { Revision 3. (1996)

2030 Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and

OSI (1996)

2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies (1996)

2046 Multipurpose Internet Mail Extensions (MIME) Part Two: Media

Types (1996)

2047 MIME (Multipurpose Internet Mail Extensions) Part Three: Message

Header Extensions for Non-ASCII Text (1996)

2048 Multipurpose Internet Mail Extension (MIME) Part Four:

Registration Procedures (1996)

2049 Multipurpose Internet Mail Extensions (MIME) Part Five:

Conformance Criteria and Examples (1996)

2068 Hypertext Transfer Protocol { HTTP/1.1. (1997)

2070 Internationalization of the Hypertext Markup Language (1997)

2083 PNG (Portable Network Graphics) Speci�cation (1997)

2084 Considerations for Web Transaction Security (1997)

2100 The Naming of Hosts (1997)

2110 MIME E-mail Encapsulation of Aggregate Documents, such as HTML

(MHTML) (1997)

2111 Content-ID and Message-ID Uniform Resource Locators (1997)

2112 The MIME Multipart/Related Content-type (1997)

2133 Basic Socket Interface Extensions for IPv6 (1997)

2134 Articles of Incorporation of Internet Society (1997)

2135 Internet Society By-Laws (1997)

2145 Use and Interpretation of HTTP Version Numbers (1997)

2146 U.S. Government Internet Domain Names (1997)

2147 TCP and UDP over IPv6 Jumbograms (1997)

2153 PPP Vendor Extensions (1997)

2167 Referral Whois (RWhois) Protocol V1.5. (1997)

2168 Resolution of Uniform Resource Identi�ers using the Domain Name

System (1997)

K.2 Alle FYIs 307

2180 IMAP4 Multi-Accessed Mailbox Practice (1997)

2182 Selection and Operation of Secondary DNS Servers (1997)

2185 Routing Aspects of IPv6 Transition (1997)

2186 Internet Cache Protocol (ICP), version 2 (1997)

2187 Application of Internet Cache Protocol (ICP) (1997)

2192 IMAP URL Scheme (1997)

2200 INTERNET OFFICIAL PROTOCOL STANDARDS (1997)

2202 Test Cases for HMAC-MD5 and HMAC-SHA-1 (1997)

2212 Speci�cation of Guaranteed Quality of Service (1997)

2222 Simple Authentication and Security Layer (SASL) (1997)

2223 Instructions to RFC Authors (1997)

2228 FTP Security Extensions (1997)

2231 MIME Parameter Value and Encoded Word Extensions: Character Sets,

Languages, and Continuations (1997)

2237 Japanese Character Encoding for Internet Messages (1997)

2245 Anonymous SASL Mechanism (1997)

K.2 Alle FYIs

1150 FYI on FYI: Introduction to the FYI notes (FYI 1) (1990)

1470 FYI on a Network Management Tool Catalog: Tools for monitoring

and debugging TCP/IP internets and interconnected

devices (FYI 2) (1993)

1175 FYI on Where to Start: A bibliography of internetworking

information (FYI 3) (1991)

1594 FYI on Questions and Answers - Answers to Commonly asked New

Internet User Questions (1994) (FYI 4)

1178 Choosing a name for your computer (FYI 5) (1991)

1198 FYI on the X window system (FYI 6) (1991)

1207 FYI on Questions and Answers: Answers to commonly asked

experienced Internet user questions (FYI 7) (1991)

2196 Site Security Handbook (1997) (FYI 8)

1336 Who's Who in the Internet: Biographies of IAB, IESG and

IRSG Members (1992) (FYI 9)

1402 There is Gold in them thar Networks! or Searching for Treasure

in all the Wrong Places (FYI 10) (1993)

2116 X.500 Implementations Catalog-96 (1997) (FYI 11)

1302 Building a Network Information Services Infrastructure

(1992) (FYI 12)

1308 Executive Introduction to Directory Services Using the

X.500 Protocol (1992) (FYI 13)

1309 Technical Overview of Directory Services Using the

X.500 Protocol (1992) (FYI 14)

1355 Privacy and Accuracy Issues in Network Information Center

Databases (1992) (FYI 15)

1359 Connecting to the Internet { What Connecting Institutions

Should Anticipate (1992) (FYI 16)

308 K Requests For Comment (RFCs)

1718 The Tao of IETF - A Guide for New Attendees of the Internet

Engineering Task Force (1994) (FYI 17)

1983 Internet Users' Glossary (1996) (FYI 18)

1463 FYI on Introducing the Internet { A Short Bibliography of

Introductory Internetworking Readings (FYI 19) (1993)

1462 FYI on What is the Internet (FYI 20) (1993)

1491 A Survey of Advanced Usages of X.500 (FYI 21) (1993)

1941 Frequently Asked Questions for Schools (1996) (FYI 22)

1580 Guide to Network Resource Tool (1994) (FYI 23)

1635 How to Use Anonymous FTP (1994) (FYI 24)

1689 A Status Report on Networked Information Retrieval:

Tools and Groups (1994) (FYI 25)

1709 K-12 Internetworking Guidelines (1994) (FYI 26)

1713 Tools for DNS debugging (1994) (FYI 27)

1855 Netiquette Guidelines (1995) (FYI 28)

2007 Catalogue of Network Training Materials (1996) (FYI 29)

2151 A Primer On Internet and TCP/IP Tools and Utilities (1997) (FYI 30)

2150 Humanities and Arts: Sharing Center Stage on the Internet

(1997) (FYI 31)

2235 Hobbes' Internet Timeline (1997) (FYI 32)

L Frequently Asked Questions (FAQs)

In vielen Newsgruppen tauchen immer wieder dieselben Fragen auf. Irgendwann

erbarmt sich ein Leser und sammelt sie samt den zugeh�origen Antworten unter der
�Uberschrift Frequently Asked Questions, abgek�urzt FAQ. Diese FAQs (man beach-

te: der Plural eines Plurals) sind eine wertvolle Informationsquelle. Die Spektren

der Themen und der Qualit�at sind so breit wie das Netz. Innerhalb der Netnews

enthalten die FAQs naturgem�a� nur Text, manche werden jedoch auch parallel

dazu im WWW angeboten und k�onnen dort Gra�k verwenden. Sie sind zu �nden:

� in der jeweiligen Newsgruppe,

� in der Newsgruppe news.answers bzw. de.answers,

� auf rtfm.mit.edu in den Verzeichnissen /pub/usenet-by-group/ bzw.
/pub/usenet-by-hierarchie/

Um einen �Uberblick zu gewinnen, hole man sich per FTP von dort das File

Index-byname.gz. Nachfolgend sind einige FAQs aufgef�uhrt:

� Unix - Frequently Asked Questions. Siebenteilig, von Ted Timar. In
news.answers und comp.unix.questions, seit 1989, daher ausgereift.

309

M Karlsruher Test

Nicht jedermann eignet sich f�ur so schwierige Dinge wie die elektronische Da-

tenverarbeitung. Um Ihnen die Entscheidung zu erleichtern, ob Sie in die EDV

einsteigen oder sich angenehmeren Dingen widmen sollten, haben wir ganz beson-

ders f�ur Sie einen Test entwickelt. Woran denken Sie bei:

Bit Bier aus der Eifel (1 Punkt)
Hundefutter (0 Punkte)

kleinste Dateneinheit (2 Punkte)

Festplatte Was zum Essen, vom Partyservice (1)

Schallplatte (0)
Massenspeicher (2)

Menu Was zum Essen (1)
Dialogtechnik (2)

mittelalterlicher Tanz (0)

CPU politische Partei (0)

Zentralprozessor (2)
Carnevalsverein (0)

Linker Linksh�ander (0)
Anh�anger einer Linkspartei (1)

Programm zum Binden von Modulen (2)

IBM Ich Bin M�ude (1)

International Business Machines (2)
International Brotherhood of Magicians (1)

Schnittstelle Verletzung (1)

Verbindungsstelle zweier EDV-Ger�ate (2)

Werkstatt eines Bartscherers (0)

310

311

Slot Steckerleiste im Computer (2)

einarmiger Bandit (1)

niederdeutsch f�ur Kamin (0)

Fortran starker Lebertran (0)

amerikanisches Fort (0)

Programmiersprache (2)

Mainframe Frachtkahn auf dem Main (0)

Schi�, mit dem Fridtjof Nansen zum Nordpol wollte (0)

gro�er Computer (2)

PC Plumpsklo (Gravitationstoilette) (1)

Personal Computer (2)

Power Computing Language (0)

Pu�er Was zum Essen (1)
Was am Eisenbahnwagen (1)

Zwischenspeicher (2)

Software Rohsto� f�ur Softice (0)
Programme, Daten und so Zeugs (2)
was zum Trinken (0)

Port was zum Trinken (1)
Hafen (1)

Steckdose f�ur Peripherieger�ate (2)

Strichcode maschinell lesbarer Code (2)
Geheimsprache im Rotlichtviertel (0)
Urliste in der Statistik (0)

Chip was zum Essen (1)
was zum Spielen (1)

Halbleiterbaustein (2)

Pointer Hund (1)

starker Whisky (0)
Zeiger auf Daten, Adresse (2)

Page Hotelboy (1)

englisch, Seite in einem Buch (1)

Untergliederung eines Speichers (2)

312 M Karlsruher Test

Character was manchen Politikern fehlt (1)

Schriftzeichen (2)

Wasserfall (0)

Betriebssystem Konzern (0)

betriebsinternes Telefonsystem (0)

wichtigstes Programm im Computer (2)

Traktor Papiereinzugsvorrichtung (2)

landwirtschaftliches Fahrzeug (1)

Zahl beim Multiplizieren (0)

Treiber Hilfsperson bei der Jagd (1)

Programm zum Ansprechen der Peripherie (2)

Vorarbeiter (0)

Animator was zum Trinken (1)
Unterhalter (1)

Programm f�ur bewegte Gra�k (2)

Hackbrett Musikinstrument (1)
Werkzeug im Hackbau (0)
Tastatur (2)

emulieren nachahmen (2)
�Ol in Wasser verteilen (0)
entp
ichten (0)

Font Menge von Schriftzeichen (2)
So�engrundlage (1)
Hintergrund, Geldmenge (0)

Server Brettsegler (0)

Kellner (0)
Computer f�ur Dienstleistungen (2)

Yabbawhap Datenkompressionsprogramm (2)

Kriegsruf der S�udstadt-Indianer (0)

was zum Essen (0)

Terminal Schnittstelle Mensch - Computer (2)

Bahnhof oder Hafen (1)

Zubeh�or zu Drahttauwerk (1)

313

Ampersand Sand aus der Amper (1)

et-Zeichen (2)

Untiefe im Wattenmeer (0)

Alias altgriechisches Epos (0)

alttestamentarischer Prophet (0)

Zweitname eines Kommandos (2)

Buscontroller Busfahrer (0)

Busscha�ner (0)

Programm zur Steuerung eines Datenbusses (2)

Algol was zum Trinken (0)

Doppelstern (1)

Programmiersprache (2)

Rom Stadt in Italien (1)
schwedisch f�ur Rum (1)

Read only memory (2)

Dram Dynamic random access memory (2)
d�anisch f�ur Schnaps (1)
Stra�enbahn (0)

Diskette M�adchen, das oft in Discos geht (0)
weiblicher Diskjockey (0)

Massenspeicher (2)

Directory oberste Etage einer Firma (0)
Inhaltsverzeichnis (2)
Kunststil zur Zeit der Franz. Revolution (0)

Dekrement was die Verdauung �ubrig l�a�t (0)
Anordnung von oben (0)

Wert, um den ein Z�ahler verringert wird (2)

Sprungbefehl Vorkommnis w�ahrend Ihres Wehrdienstes (0)

Kommando im Pferdesport (0)
Anweisung in einem Programm (2)

Oktalzahl Ma� f�ur die Klopffestigkeit (0)

Zahl zur Basis 8 (2)

Anzahl der Oktaven einer Orgel (0)

314 M Karlsruher Test

Subroutine Kleidungsst�uck eines Priesters (0)

was im Unterbewu�ten (0)

Unterprogramm (2)

C Vitamin (1)

Programmiersprache (2)

K�orperteil (0)

virtuell tugendhaft (0)

die Augen betre�end (0)

nicht wirklich vorhanden, scheinbar (2)

Klammera�e ASCII-Zeichen (2)

B�uroger�at (1)

A�enart in S�udamerika (0)

ESC Eisenbahner-Spar- und Creditverein (0)
Eishockeyclub (0)

escape, Fluchtsymbol (2)

Monitor Karlsruher Brauerei (0)
Fernsehsendung (1)

Bildschirmger�at, �Uberwachungsprogramm (2)

Unix T�utensuppe (0)

Freund von Asterix und Obelix (0)
hervorragendes Betriebssystem (2)

Joystick Computerzubeh�or (2)
m�annlicher K�orperteil (0)
Hebel am Spielautomat (0)

Maus kleines S�augetier (1)

Computerzubeh�or (2)
junge Dame (1)

Icon russisches Heiligenbild (0)

Sinnbild (2)

Kamerafabrik (0)

Pascal franz�osischer Mathematiker (1)

Ma�einheit f�ur Druck (1)

Programmiersprache (2)

315

IEC-Bus Schnittstelle (2)

Intercity-Bus (0)

Internationale Bus-Gesellschaft (0)

Wysiwig englisch f�ur Wolpertinger (0)

franz�osisch f�ur Elmentritschen (0)

what you see is what you get (2)

Register was in Flensburg (1)

was an der Orgel (1)

Speicher (2)

Record was im Sport (1)

englisch f�ur Block
�ote (0)

Datensatz (2)

HP High Price (0)
Hewlett-Packard (2)

Horse Power (1)

Kermit Klebsto� (0)
Frosch aus der Muppet-Show (1)
File�ubertragungs-Protokoll (2)

Ethernet Bausto� (Asbestzement) (0)
Local Area Network (2)

Student der ETH Z�urich (0)

Algorithmus �Uberm�a�iger Genu� geistiger Getr�anke (0)
Krankheit (0)
Rechenvorschrift (2)

File Was zum Essen (0)

Menge von Daten (2)
Durchtriebener Kerl (0)

Bug Vorderteil eines Schi�es (1)
Fehler im Programm (2)

englisch f�ur Wanze (1)

Router jemand mit Routine (0)

franz�osischer LKW-Fahrer (0)

Verbindungsglied zweier Netze (2)

316 M Karlsruher Test

Zylinder Kopfbedeckung (1)

Teil einer Kolbenmaschine (1)

Unterteilung eines Plattenspeichers (2)

FTP kleine, aber liberale Partei (0)

File Transfer Protocol (2)

Floating Point Processor (0)

Datex Klebsto� (0)

Datendienst der Post (2)

Kommando zum L�oschen von Daten (0)

Bridge Kartenspiel (1)

internationales Computernetz (0)

Verbindung zweier Computernetze (2)

Email Glasur (1)
elektronische Post (2)

Sultanspalast (0)

Baum was im Wald (Wurzel unten) (1)
was auf einem Schi� (keine Wurzel) (1)
was aus der Informatik (Wurzel oben) (2)

Internet Schule mit Schlafgelegenheit (0)
Zwischenraum (0)

Weltweites Computernetz (2)

Split UNIX-Kommando (2)
kantige Steinchen (0)
Stadt in Dalmatien (1)

Mini Damenoberbekleidung (1)
kleiner Computer (2)

Frau von Mickey Mouse (0)

Cut Herrenoberbekleidung (1)

Colonia Ulpia Traiana (1)
UNIX-Kommando (2)

2B|!2B Parallelprozessor (0)

Assembler-Befehl (0)

ein Wort Hamlets (2)

317

Shell Filmschauspielerin (Maria S.) (0)

Kommando-Interpreter (2)

Mineral�ol-Gesellschaft (1)

Slip Unterbekleidung (1)

Schlupfschuh (0)

Internet-Protokoll (2)

Di�aresis Durchfall (0)

Diakritisches Zeichen (Umlaute) (2)

Ern�ahrungslehre (0)

Space Bar Kneipe im Weltraum (www.spacebar.com) (0)

Ma�einheit f�ur den Druck im Weltraum (0)

Gr�o�te Taste auf der Tastatur (2)

Popper Popcorn-R�oster (0)
Mail-Programm (2)

Philosoph aus Wien (1)

Rohling W�uster Kerl (1)
Noch zu beschreibende CD (2)
Rohkost-Liebhaber (0)

Schleife Kleidungsst�uck (1)
Schlitterbahn (1)

Kontrollstruktur eines Programmes (2)

Alex Altlasten-Expertensystem (1)
Automatic Login Executor (1)
Globales Filesystem (1)

Altair Stern (Alpha Aquilae) (1)
Gebirge in Zentralasien (0)

fr�uher Personal Computer (2)

Eure Priorit�at Anrede des Priors in einem Kloster (0)

Anrede des Ersten Sekret�ars im Vatikan (0)
Anrede des System-Managers (6)

Z�ahlen Sie Ihre Punkte zusammen. Die Auswertung ergibt Folgendes:

� �uber 169 Punkte: �Uberlassen Sie das Rechnen k�unftig dem Computer.

� 84 bis 169 Punkte: Mit etwas Flei� wird aus Ihnen ein EDV-Experte.

� 17 bis 83 Punkte: Machen Sie eine m�oglichst steile Karriere au�erhalb der

EDV und suchen Sie sich f�ahige Mitarbeiter.

� unter 17 Punkten: Vielleicht hatten Sie schlechte Lehrer?

N Zeittafel

Diese �Ubersicht ist auf Karlsruher Verh�altnisse zugeschnitten. Ausf�uhrlichere An-

gaben sind den im Anhang O Literatur in Abschnitt Geschichte aufgef�uhrten

Werken zu entnehmen. Die meisten Errungenschaften entstanden nicht zu einem

Zeitpunkt, sondern entwickelten sich �uber manchmal lange Zeitspannen, so da�

vor viele Jahreszahlen um etwa zu setzen ist. Das Deutsche Museum in M�unchen

zeigt in den Abteilungen Informatik und Telekommunikation einige der hier ge-

nannten Maschinen.

ca. 108 v. Chr. Der beliebte Tyrannosaurus hatte zwei Finger an jeder Hand

und rechnete vermutlich im Dualsystem, wenn �uberhaupt.

ca. 2000 v. Chr. Die Babylonier verwenden f�ur besondere Aufgaben ein
gemischtes Stellenwertsystem zur Basis 60.

ca. 400 v. Chr. In China werden Z�ahlst�abchen zum Rechnen verwendet.

ca. 20 In der Bergpredigt wird das Bin�arsystem erw�ahnt (Matth. 5, 37).
Die R�omer schieben Rechensteinchen (calculi).

600 Die Inder entwickeln das heute �ubliche reine Stellenwertsystem,
die Null ist jedoch �alter. Etwa gleichzeitig entwicklen die Mayas
in Mittelamerika ein Stellenwertsystem zur Basis 20.

1200 Leonardo von Pisa, genannt Fibonacci, setzt sich f�ur die
Einf�uhrung des indisch-arabischen Systems im Abendland ein.

1550 Die europ�aischen Rechenmeister verwenden sowohl die r�omische

wie die indisch-arabische Schreibweise.
1617 John Napier er�ndet die Rechenknochen (Napier's Bones).

1623 Erste mechanische Rechenmaschine mit Zehner�ubertragung
und Multiplikation, von Wilhelm Schickard, T�ubingen.

1642 Rechenmaschine von Blaise Pascal, Paris f�ur kaufm�annische

Rechnungen seines Vaters.

1674 Gottfried Wilhelm Leibniz baut eine mechanische
Rechenmaschine f�ur die vier Grundrechenarten und befa�t sich

mit der dualen Darstellung von Zahlen. In der Folgezeit
technische Verbesserungen an vielen Stellen in Europa.

1801 Joseph Marie Jacquard er�ndet die Lochkarte und

steuert Webst�uhle damit.
1821 Charles Babbage stellt der Royal Astronomical Society

eine programmierbare mechanische Rechenmaschine vor, die
jedoch keinen wirtschaftlichen Erfolg hat. Er denkt auch an

das Spielen von Schach oder Tic-tac-toe auf Maschinen.

1840 Samuel Morse entwickelt einen aus zwei Zeichen plus Pausen
bestehenden Telegrafencode, der die Buchstaben entsprechend

ihrer H�au�gkeit codiert.
1847 George Boole entwickelt die symbolische Logik.

318

319

1890 Herman Hollerith er�ndet die Lochkartenmaschine und

setzt sie bei einer Volksz�ahlung in den USA ein. Das ist der

Anfang von IBM.

1894 Otto Luegers Lexikon der gesamten Technik f�uhrt

unter dem Stichwort Elektrizit�at als Halbleiter Aether,

Alkohol, Holz und Papier auf.

1896 Gr�undung der Tabulating Machine Company, der sp�ateren IBM.

1910 Gr�undung der Deutschen Hollerith Maschinen GmbH, Berlin,

der Vorl�auferin der IBM Deutschland.

1924 Aus der Tabulating Machine Company von Herman Hollerith,

sp�ater in Computing-Tabulating-Recording Company umbenannt,

wird die International Business Machines (IBM).

Eugen Nesper schreibt in seinem Buch Der Radio-Amateur ,

jeder schlechte Kontakt habe gleichrichtende

Eigenschaften, ein Golddraht auf einem Siliziumkristall sei aber

besonders gut als Kristalldetektor geeignet; eine hei�e Spur.
1937 Alan Turing ver�o�entlicht sein Gedankenmodell eines

Computers.

1938 Konrad Zuse baut den programmgesteuerten Rechner Z 1.
Sein wichtigstes Werkzeug dabei ist die Laubs�age.

1939 Gr�undung der Firma Hewlett-Packard, Palo Alto, Kalifornien
durch William Hewlett und David Packard. Ihr erstes
Produkt ist ein Oszillator f�ur Tonfrequenzen.

1941 Konrad Zuse baut die Z3.
1942 Die Purdue University beginnt mit der Halbleiterforschung und

untersucht Germaniumkristalle.

1944 Die Zuse Z4 wird fertig (2200 Relais, mechanischer Speicher).
Sie arbeitet von 1950 bis 1960 in der Schweiz.

1945 Konrad Zuse entwickelt den Plankalk�ul, die erste h�ohere
Programmiersprache. William Bradford Shockley startet
ein Forschungsprojekt zur Halbleiterphysik in den Bell-Labs.

1946 John von Neumann ver�o�entlicht sein Computerkonzept.
J. Presper Eckert und John W. Mauchly bauen in

den USA die ENIAC (Electronic Numerical Integrator and

Calculator), die erste elektronische Rechenmaschine. Die ENIAC
arbeitet dezimal, enth�alt 18000 Vakuumr�ohren, wiegt 30 t,

ist 5,5 m hoch und 24 m lang, braucht f�ur eine Addition 0,2 ms,
ist an der Entwicklung der Wassersto�bombe beteiligt und

arbeitet bis 1955. Sie ist der Urahne der UNIVAC.

1948 Claude E. Shannon begr�undet die Informationstheorie.
John Bardeen, Walter Houser Brattain und

William Bradford Shockley entwickeln in den Bell-Labs
den Transistor, der 10 Jahre sp�ater die Vakuumr�ohre abl�ost.

1949 Erster Schachcomputer: Manchester MADM.

1952 IBM bringt ihre erste elektronische Datenverarbeitungs-
anlage, die IBM 701, heraus. Vorschl�age f�ur integrierte Schalt-

320 N Zeittafel

kreise, nicht verwirklicht.

1954 Remington-Rand bringt die erste UNIVAC heraus, IBM die 650.

Silizium beginnt, das Germanium zu verdr�angen.

1955 IBM entwickelt die erste h�ohere Programmiersprache:

FORTRAN (Formula Translator) und verwendet Transistoren.

1956 Konrad Zuse baut die Z22. Sie kommt 1958 auf den

Markt. Bis 1961 werden 50 St�uck verkauft.

Bardeen, Brattain und Shockley erhalten den Nobelpreis

f�ur Physik.

IBM stellt die erste Festplatte vor, 5 MByte, gro� wie ein Schrank.

1957 Die IBM 709 braucht f�ur eine Multiplikation 0,12 ms.

Weltweit arbeiten rund 1300 Computer.

Seminar von Prof. Johannes Weissinger �uber Programm-

gesteuerte Rechenmaschinen im SS 1957 der TH Karlsruhe.

Karl Steinbuch pr�agt den Begri� Informatik.

Erster Satellit (Sputnik, Sowjetunion) kreist um die Erde.
1958 Die TH Karlsruhe erh�alt eine Zuse Z22. Die Maschine

verwendet 400 Vakuumr�ohren und wiegt 1 t. Der Arbeits-

speicher fa�t 16 W�orter zu 38 Bits, d. h. 76 Byte. Der Massen-
speicher, eine Magnettrommel, fa�t rund 40 KByte. Eine Gleit-

kommaoperation dauert 70 ms. Das System versteht nur
Maschinensprache (Freiburger Code). Es l�auft bis 1972.
Im SS 1958 h�alt Priv.-Doz. Karl Nickel (Institut f�ur Angew.

Mathematik) eine Vorlesung Programmieren mathematischer und

technischer Probleme f�ur die elektronische Rechenmaschine Z22 .
Die Programmiersprache ALGOL 58 kommt heraus.

Bei Texas Instuments baut Jack St. Clair Kilby den ersten IC.
1959 Im SS 1959 h�alt Priv.-Doz. Karl Nickel erstmals die

Vorlesung Programmieren I , im WS 1959/60 die Vorlesung
Programmieren II . Erstes Werk von Hewlett-Packard in
Deutschland. Siemens baut die Siemens 2002.

1960 Programmieren steht noch in keinem Studienplan, sondern
ist freiwillig. Die Karlsruher Z22 l�auft Tag und Nacht. Die

Programmiersprache COBOL wird ver�o�entlicht. Ein Computer-

spiel namens Spacewar l�auft auf einer PDP-1 im MIT.
Digital Equipment (DEC) bring die PDP 1 heraus.

Al Shugart etnwickelt ein Verfahren zur Aufzeichnung von
Daten auf einer magnetisch beschichteten Scheibe.

1961 Die TH Karlsruhe erh�alt eine Zuse Z23, die mit

2400 Transistoren arbeitet. Ihr Hauptspeicher fa�t 240 W�orter
zu 40 Bits. Eine Gleitkommaoperation dauert 15 ms. Au�er

Maschinensprache versteht sie ALGOL. Weltweit arbeiten etwa
7300 Computer.

1962 Die TH Karlsruhe erh�alt eine SEL ER 56, die bis 1968 l�auft.

An der Purdue University wird die erste Fakult�at f�ur Informatik
(Department of Computer Science) gegr�undet. Texas Instruments

321

und Fairchild nehmen die Serienproduktion von ICs (Chips) auf.

1963 Weltweit arbeiten etwa 16.500 Computer.

Erster geostation�arer Satellit (Syncom).

1964 Die Programmiersprache BASIC erscheint. In den USA wird der

Begri� Computer Science gepr�agt.

IBM legt das Byte zu 8 Bits fest (IBM 360).

Ein Chip enth�alt auf 0,5 cm2 10 Transistoren.

1966 Die TH Karlsruhe erh�alt eine Electrologica X 8, die bis

1973 betrieben wird. Gr�undung des Karlsruher Rechenzentrums.

Hewlett-Packard steigt in die Computerei ein (HP 2116 A).

1967 Erster elektronischer Taschenrechner (Texas Instruments).

Beim Bundesministerium f�ur wissenschaftliche Forschung wird

ein Fachbeirat f�ur Datenverarbeitung gebildet.

1968 Die Programmiersprache PASCAL kommt heraus.

Die Firma Intel wird gegr�undet.

Hewlett-Packard baut den ersten wissenschaftlichen programmierbaren
Tischrechner (HP 9100 A).

1969 In Karlsruhe wird das Institut f�ur Informatik gegr�undet,

erster Direktor Karl Nickel. Im WS 1969/70 beginnt in
Karlsruhe die Informatik als Vollstudium mit 91 Erstsemestern.

Gr�undung der Gesellschaft f�ur Informatik (GI) in Bonn.
In den Bell Labs UNIX in Assembler auf einer DEC PDP 7.
Beginn des ARPANET-Projektes und der TCP/IP-Protokolle,

erste Teilnehmer U. of California at Los Angeles, Stanford Research
Institute, U. of California at Santa Barbara und U. of Utah.
RFC 0001: Host Software, von Steve Crocker.

1970 Die Universit�at Karlsruhe erh�alt eine UNIVAC 1108,
die bis 1987 l�auft und damit den Rekord an Betriebsjahren

h�alt. Die Karlsruher Fakult�at f�ur Informatik wird gegr�undet.
1971 UNIX auf C umgeschrieben, erster Mikroprozessor (Intel 4004).
1972 IBM entwickelt das Konzept des virtuellen Speichers und

stellt die 8-Zoll-Floppy-Disk vor. Xerox (Bob Metcalfe),
DEC und Intel entwickeln den Ethernet-Standard.

Das ARPANET wird der �O�entlichkeit vorgestellt.

Ein Student namens Stephan G. Wozniak l�otet sich einen

Computer zusammen, der den Smoke-Test nicht �ubersteht.

In der Bundesrepublik arbeiten rund 8.200 Computer.

Hewlett-Packard baut den ersten wissenschaftlichen Taschenrechner (HP 35).

1973 Erste internationale Teilnehmer am ARPANET: U. College of

London und Royal Radar Establishment, Norwegen.

1974 Der erste programmierbare Taschenrechner kommt auf den

Markt (Hewlett-Packard 65), Preis 2500 DM.

1975 UNIX wird ver�o�entlicht, Beginn der BSD-Entwicklung.
Die Zeitschrift Byte wird gegr�undet.

Erste, m�a�ig erfolgreiche Personal Computer (Altair).

1976 Steven P. Jobs und Stephan G. Wozniak gr�unden

322 N Zeittafel

die Firma Apple und bauen den Apple I. Er kostet 666,66 Dollar.

Al Shugart stellt die 5,25-Zoll-Diskette vor.

K�onigin Elizabeth II. von England verschickt eine E-Mail.

1978 In der Bundesrepublik arbeiten rund 170.000 Computer.

Der Commodore PET { ein Vorl�aufer des C64 { kommt heraus.

1979 Faxdienst in Deutschland eingef�uhrt.

Die Zusammenarbeit von Apple mit Rank Xerox f�uhrt zur Apple

Lisa, ein Mi�erfolg, aber der Wegbereiter f�ur den Macintosh.

1980 Erster Jugendprogrammier-Wettbewerb der GI.

Sony f�uhrt die 3,5-Zoll-Diskette ein. In den Folgejahren entwickeln

andere Firmen auch Disketten mit Durchmessern von 3 bis 4 Zoll.

1981 Die Universit�at Karlsruhe erh�alt eine Siemens 7881 als

zentralen Rechner. IBM bringt in den USA den IBM-PC heraus

mit MS-DOS (PC-DOS 1.0) als wichtigstem Betriebssystem.

1982 Die Firma SUN wird gegr�undet, entscheidet sich f�ur UNIX

und baut die ersten Workstations.
1983 Die Universit�at Karlsruhe erh�alt einen Vektorrechner Cyber 205

und eine Siemens 7865. Die Cyber leistet 400 Mio. Gleitkomma-

operationen pro Sekunde.
IBM bringt den PC auf den deutschen Markt.

UNIX kommt als System V von AT&T in den Handel,
Gr�undung der X/Open-Gruppe.
MS-DOS 2.0 (PC-DOS 2.0) und Novell Netware kommen heraus.

1984 Der erste Macintosh kommt auf den Markt.
Der IBM PC/AT mit Prozessor Intel 80 286 und MS-DOS 3.0
kommen heraus. Siemens steigt in UNIX ein.

Entwicklung des X Window Systems am MIT.
1985 MS-Windows 1.0, IBM 3090 und IBM Token Ring Netz.

X-Link an der Uni Karlsruhe stellt als erstes deutsches Netz
eine Verbindung zum nordamerikanischen ARPA-Net her.
Hewlett-Packard bringt den ersten Laserjet-Drucker heraus.

1986 Weltweit etwa eine halbe Million UNIX-Systeme und
3000 �o�entliche Datenbanken.

Mit dem Computer-Investitionsprogramm des Bundes und der

L�ander (CIP) kommen mehrere HP 9000/550 unter UNIX an
die Universit�at Karlsruhe.

1987 Microsoft XENIX f�ur den IBM PC/AT
IBM bringt die PS/2-Reihe unter MS-OS/2 heraus.

Weltweit mehr als 5 Millionen Apple Computer und etwa

100 Millionen PCs nach Vorbild von IBM.
Das MIT ver�o�entlicht das X Window System Version 11 (X11).

In Berkeley wird die RAID-Technologie entwickelt.
1988 Eine Siemens (Fujitsu) VP 400 ersetzt die Cyber 205.

Das Campusnetz KARLA wird durch das Glasfasernetz KLICK

ausgetauscht. Das BELWUE-Netz nimmt den Betrieb auf.
Gr�undung der Open Software Foundation und der UNIX

323

International Inc. MS-DOS 4.0 f�ur PCs.

Der Internet-Wurm namens Morris geht auf die Reise, darauf

hin Gr�undung des Computer Emergency Response Teams (CERT).

Erstes landmobiles Satellitensystem f�ur Datenfunk (Inmarsat-C).

1989 Im Rechenzentrum Karlsruhe l�ost die IBM 3090 die

Siemens 7881 ab. ISDN in Deutschland eingef�uhrt.

1990 Zunehmende Vernetzung, Anschlu� an weltweite Netze.

Computer-Kommunikation mittels E-Mail, Btx und Fax vom

Arbeitsplatz aus. Optische Speichermedien (CD-ROM, WORM).

UNIX System V Version 4. Die mittlere Computerdichte in technisch

orientierten Instituten und Familien erreicht 1 pro Mitglied.

1991 Das UNIX-System OSF/1 mit dem Mach-Kernel der Carnegie-

Mellon-Universit�at kommt heraus.

Anf�ange von LINUX, einem freien UNIX aus Finnland.

Der Vektorrechner im RZ Karlsruhe wird erweitert auf den Typ S600/20.

MS-DOS 5.0 f�ur PCs. Anf�ange von Microsoft Windows NT.
IBM, Apple und Motorola kooperieren mit dem Ziel, einen
Power PC zu entwickeln.

Tim Berners-Lee entwickelt am CERN das World Wide Web.
1992 Die Universit�at Karlsruhe nimmt den massiv parallelen

Computer MasPar 1216A mit 16000 Prozessoren in Betrieb.
Novell �ubernimmt von AT&T die UNIX-Aktivit�aten (USL).
Eine Million Knoten im Internet.

1993 MS-DOS Version 6.0. Microsoft k�undigt Windows-NT an.
DEC stellt PC mit Alpha-Prozessor vor, 150 MHz, 14.000 DM.
UNIX-Workstations konkurrieren preislich mit hochwertigen PCs.

Novell tritt das Warenzeichen UNIX an die X/Open-Gruppe ab.
Das DE-NIC kommt ans RZ der Universit�at Karlsruhe.

1994 Weltweit 10 Mio. installierte UNIX-Systeme prognostiziert.
Das Internet umfa�t etwa 4 Mio. Knoten und 20 Mio. Benutzer.
Erste Spam-Mail (Canter + Siegel).

1995 Die Universit�at Karlsruhe erm�oglicht in Zusammenarbeit
mit dem Oberschulamt nordbadischen Schulen den Zugang zum

Internet. �Ahnliche Projekte werden auch an einigen anderen

Hoch- und Fachhochschulen durchgef�uhrt.

Die mittlere Computerdichte in technisch orientierten Instituten

und Familien erreicht 2 pro Mitglied.

1996 Die Massen erobern das Internet.

1997 100-Ethernet ist erschwinglich geworden, �uber das Gigabit-Ethernet

wird geredet. In Deutschland gibt es rund 20 Mio. PCs und

1 Mio. Internetanschl�usse (Quelle: Fachverband Informationstechnik).

1998 Compaq �ubernimmt die Digital Equipment Corporation (DEC). Einer der

Gr�unde f�ur den Niedergang von DEC ist die zu sp�ate und halbherzige
Unterst�utzung von UNIX. Der Trend zum Drittcomputer h�alt an.

O Literatur

Die Auswahl ist subjektiv und enth�alt Texte, die wir noch lesen wollen, schon

haben oder sogar schon gelesen haben. Die hier angef�uhrte Electronic Information

ist auf ftp.ciw.uni-karlsruhe.de, www.ciw.uni-karlsruhe.de und anderen

verf�ugbar.

1. Sammlung von URLs (Bookmarks)

W. Alex, B. Alex, A. Alex UNIX, C/C++, Internet usw.

http://www.ciw.uni-karlsruhe.de/technik.html

Zu jedem Thema des Buches �nden sich dort weiterf�uhrende

WWW-Seiten. Mit dieser Sammlung arbeiten wir selbst.

2. Literaturlisten

{ Newsgruppen:
de.etc.lists (wechselnde Listen aus dem deutschsprachigen Raum)

news.lists (internationale Listen)
alt.books.technical
misc.books.technical

{ RFC 1175 (FYI 3): FYI on Where to Start {

A Bibliography of Internetworking Information
ftp://ftp.nic.de/pub/doc/rfc/rfc-1100-1199/rfc1175.txt
1990, 45 S., ASCII

Empfehlungen und kurze Kommentare, Erkl�arungen

{ X Technical Bibliography, presented by The X Journal

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/xws/xbiblio.ps.gz
1994, 22 S., Postscript

Kurze Inhaltsangaben, teilweise kommentiert

J. December Information Sources: The Internet and Computer-

Mediated Communication

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/cmc.gz
1994, 33 S., ASCII

Hinweise, wo welche Informationen im Netz zu �nden sind.

S. Ko A Concise Guide to UNIX Books

Netnews: misc.books.technical oder comp.unix.questions
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/unix/unix-books

1993, 22 S., ASCII

Empfehlungen und kurze Kommentare

D. A. Lamb Software Engineering Readings
Netnews: comp.software-eng

324

325

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/misc/sw-engng-reading

1994, 10 S., ASCII Teilweise kommentiert

R. E. Maas MaasInfo.DocIndex

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/maasinfo-idx

1994, 20 S., ASCII

Bibliogra�e von rund 100 On-line-Texten zum Internet

J. Quarterman RFC 1432: Recent Internet Books

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/rfc/rfc1432.txt

1993, 15 S., ASCII

Empfehlungen und kurze Kommentare

C. Spurgeon Network Reading List: TCP/IP, Unix and Ethernet

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/reading-

list.ps.gz

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/reading-

list.txt.gz

1993, ca. 50 S., Postscript und ASCII
Ausf�uhrliche Kommentare und Hinweise

M. Wright Yet Another book List (YABL)
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/misc/yabl.gz
1993, ca. 100 S., ASCII

Tabellarisch, kurze Kommentare

3. Lexika, Glossare, W�orterb�ucher

{ Newsgruppen:
news.answers

de.etc.lists
news.lists

{ RFC 1392 (FYI 18): Internet Users' Glossary
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/rfc/rfc1392.txt
1993, 53 S.

{ Duden Informatik

Dudenverlag, Mannheim, 1993, 800 S., 42 DM

Nachschlagewerk, sorgf�altig gemacht, theorielastig,

Begri�e wie Ethernet, LAN, SQL, Internet fehlen.

{ Fachausdr�ucke der Informationsverarbeitung Englisch { Deutsch,

Deutsch { Englisch
IBM Deutschland, Form-Nr. Q12-1044, 1698 S., 113 DM

W�orterbuch und Glossar

W. Alex Abk�urzungs-Liste ABKLEX (Informatik, Telekommunikation)

ftp://ftp.ciw-karlsruhe.de/pub/misc/abklex.txt

http://www.ciw-karlsruhe.de/abklex.html

V. Anastasio W�orterbuch der Informatik Deutsch { Englisch {

Franz�osisch { Italienisch { Spanisch

VDI-Verlag, D�usseldorf, 1990, 400 S., 128 DM

326 O Literatur

A. E. Cawkell Encyclopedic Dictionary of Information Technology

and Systems

Saur, M�unchen, 1993, 350 S., 190 DM

F. Kr�uckeberg, O. Spaniol Lexikon Informatik und Kommunikations-

technik

VDI-Verlag, D�usseldorf, 1990, 693 S., 168 DM

A. Ralston, E. D. Reilly Encyclopedia of Computer Science

Chapman + Hall, London, 1993, 1558 S., 60 $

Ausf�uhrliche Erl�auterungen

E. S. Raymond The New Hacker's Dictionary

The MIT Press, Cambridge, 1996, 547 S., 41 DM

Siehe auch http://www.ciw.uni-karlsruhe.de/kopien/jargon/

Begri�e aus dem Netz, die nicht im Duden stehen

H.-J. Schneider Lexikon der Informatik und Datenverarbeitung

Oldenbourg, M�unchen, 1991, 989 S., 128 DM
Ethernet, SQL stehen darin, Internet nicht.

4. Informatik

{ Newsgruppen:

comp.* (alles, was mit Computer Science zu tun hat, mehrere
hundert Untergruppen)
de.comp.* (dito, deutschsprachig)

alt.comp.*

F. L. Bauer, G. Goos Informatik 1. + 2. Teil
Springer, Berlin, 1991/92, 1. Teil 393 S., 42 DM
2. Teil 345 S., 42 DM

Umfassende Einf�uhrung, auch f�ur Nicht-Informatiker

W. Coy Aufbau und Arbeitsweise von Rechenanlagen
Vieweg, Braunschweig, 1992, 367 S., 50 DM
Digitale Schaltungen, Rechnerarchitektur, Betriebssysteme am

Beispiel von UNIX

L. Goldschlager, A. Lister Informatik

Hanser und Prentice-Hall, M�unchen, 1990, 366 S., 40 DM
Einf�uhrung, �ahnlich wie Bauer + Goos

G. Goos Vorlesungen �uber Informatik

Springer, Berlin, 1995, Band 1 393 S., ?? DM

D. E. Knuth The Art of Computer Programming, 3 B�ande

Addison-Wesley, zusammen 330 DM

Klassiker, stellenweise mathematisch, 7 B�ande geplant

W. Schi�mann, R. Schmitz Technische Informatik
Springer, Berlin, 1993/94, 1. Teil Grundlagen der digitalen

Elektronik, 282 S., 38 DM; 2. Teil Grundlagen der Computer-
technik, 283 S., 42 DM

327

U. Sch�oning Theoretische Informatik kurz gefa�t

BI-Wissenschaftsverlag, Mannheim, 1992, 188 S., 20 DM

Automaten, Formale Sprachen, Berechenbarkeit, Komplexit�at

K. W. Wagner Einf�uhrung in die Theoretische Informatik

Springer, Berlin, 1994, 238 S.,

Grundlagen, Berechenbarkeit, Komplexit�at, Boolesche Funktionen,

Autoamten, Grammatiken, Formale Sprachen

H. Waldschmidt Informatik f�ur Ingenieure

Oldenbourg, M�unchen, 1987, 258 S., 40 DM

Algorithmen und Programme, Programmierfehler, Erg�anzung

zu einem Programmierkurs

5. Algorithmen, Numerische Mathematik

{ Newsgruppen:

sci.math.*
zer.z-netz.wissenschaft.mathematik

G. Engeln-M�ullges, F. Reutter Formelsammlung zur
Numerischen Mathematik mit C-Programmen
BI-Wissenschaftsverlag, Mannheim, 1990, 744 S., 88 DM

Algorithmen und Formeln der Numerischen Mathematik samt
C-Programmen. Auch f�ur FORTRAN, PASCAL, BASIC und

MODULA erh�altlich

E. Horowitz, S. Sahni Algorithmen
Springer, Berlin, 1981, 770 S., 116 DM

D. E. Knuth (siehe unter Informatik)

T. Ottmann, P. Widmayer Algorithmen und Datenstrukturen
BI-Wissenschafts-Verlag, Mannheim, 1993, 755 S., 74 DM

W. H. Press u. a. Numerical Recipes in C
Cambridge University Press, 1993, 994 S., 98 DM

mit Diskette, auch f�ur FORTRAN und PASCAL erh�altlich

H. R. Schwarz Numerische Mathematik
Teubner, Stuttgart, 1993, 575 S., 48 DM

R. Sedgewick Algorithmen in C

Addison-Wesley, Bonn, 1992, 742 S., 90 DM
Erkl�arung gebr�auchlicher Algorithmen und Umsetzung in C.

Auch in Englisch und f�ur PASCAL

R. Sedgewick Algorithmen in C++

Addison-Wesley, Bonn, 1992, 742 S., 90 DM

Wie vorstehend.

J. Stoer, R. Bulirsch Numerische Mathematik

Springer, Berlin, 1. Teil 1993, 314 S., 32 DM,

2. Teil 1990, 341 S., 32 DM

328 O Literatur

F. Stummel, K. Hainer Praktische Mathematik

Teubner, Stuttgart, 1982, 367 S., 40 DM

N. Wirth Algorithmen und Datenstrukturen

Teubner, Stuttgart, 1983, 320 S., 42 DM

Viel zu Datenstrukturen, weniger zu Algorithmen

6. Betriebssysteme

{ Newsgruppen:

comp.os.*

de.comp.os.*

{ Microsoft MS-DOS-Handb�ucher

{ Microsoft MS-Windows-NT-Handb�ucher

{ OS/2 Version 2.0 Technical Compendium (Red Books)

IBM, Boca Raton, 1992, 5 B�ande, 1158 S., 100 DM

OPD software.watson.ibm.com im Verzeichnis /pub/os2/misc
auch auf ftp://ftp.uni-stuttgart.de/pub/soft/os2/info/redbooks

L. Bic, A. C. Shaw Betriebssysteme

Hanser, M�unchen, 1990, 420 S., 58 DM
Allgemeiner als Tanenbaum 1

H. M. Deitel, M. S. Kogan The Design of OS/2
Addison-Wesley, Reading, 1992, 389 S., 95 DM

A. S. Tanenbaum Operating Systems, Design and Implementation

Prentice-Hall, London, 1987, 719 S., 79 DM
Einf�uhrung in Betriebssysteme am Beispiel von UNIX

A. S. Tanenbaum Modern Operating Systems
Prentice-Hall, London, 1992, 728 S., 100 DM
Allgemeiner und moderner als vorstehendes Buch; MS-DOS, UNIX,

MACH und Amoeba

H. Wettstein Systemarchitektur

Hanser, M�unchen, 1993, 514 S., 68 DM

Grundlagen, kein bestimmtes Betriebssystem

7. UNIX allgemein

{ Newsgruppen:

comp.unix.*

comp.sources.unix
comp.std.unix

de.comp.os.unix
fr.comp.os.unix

alt.unix.wizards

cern.unix

M. J. Bach Design of the UNIX Operating System

Prentice-Hall, London, 1987, 512 S., 52 US-$

Filesystem und Prozesse, wenig zur Shell

329

S. R. Bourne Das UNIX System V (The UNIX V Environment)

Addison-Wesley, Bonn, 1988, 464 S., 62 DM

Einf�uhrung in UNIX und die Bourne-Shell

D. Gilly u. a. UNIX in a Nutshell

O'Reilly, Sebastopol, 1992, ca. 250 S., 22 DM

Nachschlagewerk zu den meisten UNIX-Kommandos

J. Gulbins, K. Obermayr UNIX

Springer, Berlin, 4. Au
. 1995, 838 S., ?? DM

Benutzung von UNIX, ausf�uhrlich, geht in die Einzelheiten

H. Hahn A Student's Guide to UNIX

McGraw-Hill, New York, 1993, 633 S., 66 DM

Einf�uhrendes Lehrbuch, ohne C, mit Internet-Diensten

J. A. Illik (siehe unter Programmieren in C)

B. W. Kernighan, P. J. Plauger Software Tools

Addison-Wesley, Reading, 1976, 338 S., 38 US-$

Grundgedanken einiger UNIX-Werkzeuge, Programmierstil

B. W. Kernighan, R. Pike Der UNIX-Werkzeugkasten

Hanser, M�unchen, 1986, 402 S., 76 DM
Gebrauch der UNIX-Kommandos, fast nichts zum vi(1)

D. G. Korn, M. I. Bolsky The Kornshell, Command and
Programming Language

auf deutsch: Die KornShell, Hanser, M�unchen, 1991, 98 DM
Einf�uhrung in UNIX und die Korn-Shell

M. Loukides UNIX for FORTRAN Programmers
O'Reilly, Sebastopol, 1990, 244 S., 55 DM
Kurze, allgemeine Einf�uhrung in UNIX, ausf�uhrliche Behandlung

der Programmer's Workbench im Hinblick auf FORTRAN

J. Peek u. a. UNIX Power Tools

O'Reilly, Sebastopol, 1993, 1119 S., 119 DM
Viele n�utzliche Hinweise f�ur den Anwender, mit CD

M. J. Rochkind Advanced UNIX Programming
Prentice-Hall, London, 1986, 224 S., 47 US-$

Beschreibung aller UNIX System Calls

A. T. Schreiner Professor Schreiners UNIX-Sprechstunde

Hanser, M�unchen, 1987, 316 S., 64 DM
Shellscripts und kurze C-Programme f�ur verschiedene Zwecke

R. M. Stallman The GNU Manifesto

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/misc/manifest-gnu

1985, 8 S., ASCII

Ziele des GNU-Projekts

W. R. Stevens Advanced Programming in the UNIX Environment

Addison-Wesley, Reading, 1992, 744 S., 110 DM
�Ahnlich wie Rochkind

330 O Literatur

S. Strobel, T. Uhl LINUX - vom PC zur Workstation

Springer, Berlin, 1994, 238 S., 38 DM

L. Wirzenius, M. Welsh LINUX Information Sheet

Netnews: comp.os.linux

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/unix/linux-info

1993, 6. S., ASCII

Anfangsinformation zu LINUX, was und woher.

8. UNIX Einzelthemen

{ Newsgruppen:

comp.unix.*

A. V. Aho, B. W. Kernighan, P. J. Weinberger The AWK

Programming Language

Addison-Wesley, Reading, 1988, 210 S., 58 DM

Standardwerk zum AWK

B. Anderson u. a. UNIX Communications
Sams, North College, 1991, 736 S., 73 DM

Unix-Mail, Usenet, uucp und weiteres

M. I. Bolsky The vi User's Handbook

Prentice-Hall, Englewood Cli�s, 1985, 66 S., 59 DM (!)
Alle vi-Kommandos �ubersichtlich, aber keine Interna

D. Cameron, B. Rosenblatt Learning GNU Emacs
O'Reilly, Sebastopol, 1991, 442 S., 21 $

F. da Cruz, C. Gianone C-Kermit
Heise, Hannover, 1994, 650 S., 90 DM
Kermit-Terminalemulation und -File�ubertragung

I. F. Darwin Checking C Programs with lint
O'Reilly, Sebastopol, 1988, 82 S., 10 $

B. Goodheart UNIX Curses Explained
Prentice-Hall, Englewood-Cli�s, 1991, 287 S., ca. 80 DM

Einzelheiten zu curses(3) und terminfo(4)

L. Lamb Learning the vi Editor

O'Reilly, Sebastopol, 1990, 192 S., 17 $

E. Nemeth, G. Snyder, S. Seebass UNIX System Administration

Handbook
Prentice-Hall, Englewood-Cli�s, 1990, 624 S., 47 US-$

Empfehlung eines Stuttgarter Kollegen

A. Oram, S. Talbott Managing Projects with make

O'Reilly, Sebastopol, 1993, 149 S., 35 DM

W. R. Stevens UNIX Network Programming

Prentice Hall, Englewood Cli�s, 1990, 772 S., 60 US-$

C-Programme f�ur Clients und Server der Netzdienste

331

J. Strang u. a. termcap & terminfo

O'Reilly, Sebastopol, 1988, 270 S., 17 $

I. A. Taylor Taylor UUCP

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/unix/uucp.ps.gz

1993, 93 S., Postscript

L. Wall, R. Schwartz Programming Perl

O'Reilly, Sebastopol, 1991, 482 S., 22 $

9. Gra�k

{ Newsgruppen:

comp.graphics.*

alt.graphics.*

{ American National Standard for Information Systems

Computer Graphics { Graphical Kernel System (GKS)

Functional Description. ANSI X3.124-1985
GKS-Referenz

J. Bechlars, R. Buhtz GKS in der Praxis
Springer, Berlin, 1994, 500 S., 98 DM
GKS f�ur FORTRAN-Programmierer

J. D. Foley Computer Graphics { Principles and Practice
Addison-Wesley, Reading, 1992, 1200 S., 83 US-$

Standardwerk zur Computer-Gra�k

T. Gaskins The PHIGS Programming Manual

O'Reilly, Sebastopol, 1992, 908 S., 102 DM
Lehrbuch und Nachschlagewerk, auch unter X11

I. Grieger Graphische Datenverarbeitung
mit einer Einf�uhrung in PHIGS und PHIGS-PLUS
Springer, Berlin, 1992, 389 S., 48,{ DM

H. Kopp Graphische Datenverarbeitung
Hanser, M�unchen, 1989, 211 S., 40 DM

mathematische Methoden, Algorithmen, GKS

10. Netze (TCP/IP, OSI, Internet)

{ Newsgruppen:
comp.infosystems.*
comp.internet.*

comp.protocols.*

alt.best.of.internet

alt.bbs.internet
alt.internet.*

de.comm.internet

de.comp.infosystems

fr.comp.infosystemes

332 O Literatur

{ Internet Resources Guide

NSF Network Service Center, Cambridge, 1993

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/resource-guide-

help

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/resource-

guide.ps.tar.gz

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/resource-

guide.txt.tar.gz

Beschreibung der Informationsquellen im Internet

S. Carl-Mitchell, J. S. Quarterman Practical Internetworking

with TCP/IP and UNIX

Addison-Wesley, Reading, 1993, 432 S., 52 US-$

D. E. Comer Internetworking with TCP/IP (4 B�ande)

Prentice-Hall, Englewood Cli�s, I. Band 1991, 550 S., 90 DM;

II. Band 1991, 530 S., 88 DM; IIIa. Band (BSD) 1993, 500 S., 86 DM;
IIIb. Band (AT&T) 1994, 510 S., 90 DM

Prinzipien, Protokolle und Architektur des Internet

EARN Guide to Network Resource Tools
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/nettools.ps.gz

1993, 70 S., Postscript
�Ubersicht �uber Netzdienste wie Gopher, WWW, WAIS, ARCHIE,

NETSERV, NetNews und Listserv

A. Ga�n, J. Heitk�otter Big Dummy's Guide to the Internet
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/bdgtti2.ps.gz

1993, 220 S., Postscript, andere Formate im Netz
Einf�uhrung in die Dienste des Internet

H. Hahn, R. Stout The Internet Complete Reference

Osborne MacGraw-Hill, Berkeley, 1994, 818 S., 60 DM
Das Netz und seine Dienste von Mail bis WWW; Lehrbuch und
Nachschlagewerk f�ur Benutzer des Internet, Standardwerk

Ch. Hedrick Introduction to the Internet Protocols
ftp://ftp.ciw.uni-karlsruhe.e/pub/docs/net/general/tcp-ip-intro.ps.gz

ftp://ftp.ciw.uni-karlsruhe.e/pub/docs/net/general/tcp-ip-

intro.doc.gz
1988, 20 S., ASCII und Postscript

Ch. Hedrick Introduction to Administration of an Internet-based

Local Network
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/tcp-ip-

admin.ps.gz
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/tcp-ip-

admin.doc.gz

1988, 39 S., ASCII und Postscript
Adressen, Routing, Netztopologie im Internet

333

K. Hughes Entering the World-Wide Web: A Guide to Cyberspace

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/www/hughes-guide.ps.gz

1993, 20 S., Postscript

Erkl�arungen, Entstehung, Glossar

B. P. Kehoe Zen and the Art of the Internet

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/zen.ps.gz

1992, 100 S., Postscript

Einf�uhrung in die Dienste des Internet

E. Krol The Hitchhikers Guide to the Internet

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general/hitchhg.txt

1987, 16 S., ASCII

Erkl�arung einiger Begri�e aus dem Internet

E. Krol The Whole Internet

O'Reilly, Sebastopol, 1992, 376 S., 25 US-$

T. L. LaQuey User's Directory of Computer Networks
Digital Press, Bedford, 1990, 653 S.,
Ins einzelne gehende Informationen �uber zahlreiche Netze

J. S. Quarterman The Matrix: Computer Networks and
Conferencing Systems Worldwide

Digital Press, Bedford, 1990, 746 S., 80 DM
Praxisnahe Einf�uhrung, Netzliste nicht mehr aktuell

M. T. Rose The Open Book

Prentice-Hall, Englewood Cli�s, 1990, 682 S., 64 US-$
OSI-Protokolle, Vergleich mit TCP/IP

M. Scheller u. a. Internet: Werkzeuge und Dienste
Springer, Berlin, 1994, 280 S., 49 DM
http://www.ask.uni-karlsruhe.de/books/inetwd.html

A. S. Tanenbaum Computer Networks
Prentice-Hall, London, 1988, 658 S., 88 DM

Einf�uhrung in Netze mit Schwerpunkt auf dem OSI-Modell

11. X-Window-System, Motif

{ Newsgruppen:

comp.windows.x.*
fr.comp.windows.x11

{ OSF/Motif Users's Guide
OSF/Motif Programmer's Guide

OSF/Motif Programmer's Reference

Prentice-Hall, Englewood Cli�s, 1990
Beschreibung der OSF/Motif Benutzerober
�ache

F. Culwin An X/Motif Programmer's Primer
Prentice-Hall, New York, 1994, 344 S., 80 DM

334 O Literatur

K. Gottheil u. a. X und Motif

Springer, Berlin, 1992, 694 S., 98 DM

A. Nye XLib Programming Manual

O'Reilly, Sebastopol, 1990, 635 S., 90 DM

Einf�uhrung in das XWS und den Gebrauch der XLib

V. Quercia, T. O'Reilly X Window System Users Guide

O'Reilly, Sebastopol, 1990, 749 S., 90 DM

Einf�uhrung in X11 f�ur Benutzer

R. J. Rost X and Motif Quick Reference Guide

Digital Press, Bedford, 1993, 400 S., 22 $

Zusammenfassung aus den Referenz-Handb�uchern

12. Programmieren allgemein

{ Newsgruppen:

comp.programming
comp.unix.programmer

comp.lang.*
comp.software.*
comp.software-eng

comp.compilers
de.comp.lang.*

A. V. Aho u. a. Compilers, Principles, Techniques and Tools
Addison-Wesley, Reading, 1986, 796 S., 78 DM

Zum tieferen Verst�andnis von Programmiersprachen

B. Beizer Software Testing Techniques

Van Nostrand-Reinhold, 1990, 503 S., 43 US-$

F. P. Brooks jr. The Mythical Man-Month
Addison-Wesley, Reading, 1995, 322 S., 44 DM
Organisation gro�er Software-Projekte

N. Ford Programmer's Guide

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/misc/pguide.txt

1989, 31 S., ASCII
allgemeine Programmierhinweise, Shareware-Konzept

T. Grams Denkfallen und Programmierfehler

Springer, Berlin, 1990, 159 S., 58 DM
PASCAL-Beispiele, gelten aber auch f�ur C-Programme

D. Gries The Science of Programming
Springer, Berlin, 1981, 366 S., 48 DM

Grunds�atzliches zu Programmen und ihrer Pr�ufung,

mit praktischer Bedeutung.

E. Horowitz Fundamentals of Programming Languages

Springer, Berlin, 1984, 446 S., ??? DM

335

�Uberblick �uber Gemeinsamkeiten und Konzepte von

Programmiersprachen von FORTRAN bis Smalltalk,

kein Programmierkurs, sondern eine Erg�anzung dazu

M. Marcotty, H. Ledgard The World of Programming Languages

Springer, Berlin, 1987, 360 S., 90 DM

S. P
eeger Software Engineering: The Production of Quality

Software

Macmillan, 1991, 480 S., 22 $(Studentenausgabe)

Empfehlung aus dem Netz

R. W. Sebesta Concepts of Programming Languages

Benjamin/Cummings, Redwood City, 1993, 560 S., 65 US-$

�ahnlich wie Horowitz

I. Sommerville Software Engineering

Addison-Wesley, Reading, 1992, 688 S., 52 US-$

Wie man ein Programmierprojekt organisiert;
Werkzeuge, Methoden; sprachenunabh�angig

N. Wirth Systematisches Programmieren
Teubner, Stuttgart, 1993, 160 S., 27 DM

Allgemeine Einf�uhrung ins Programmieren, PASCAL-nahe

13. Programmieren in C/C++/Objective C

{ Newsgruppen:
comp.lang.c
comp.std.c

comp.lang.object
comp.lang.c++

comp.lang.objective-c
comp.std.c++
de.comp.lang.c

de.comp.lang.c++

{ Microsoft Quick-C-, C-6.0- und Visual-C-Handb�ucher
mehrere B�ande bzw. Ordner

G. Booch Object-Oriented Analysis and Design with Applications

Benjamin + Cummings, Redwood City, 1994, 590 S., 112 DM

U. Claussen Objektorientiertes Programmieren
Springer, Berlin, 1993, 246 S., 48 DM

Konzept und Methodik von OOP, Beispiele und �Ubungen in C++,
aber kein Lehrbuch f�ur C++

B. J. Cox, A. J. Novobilski Object-Oriented Programming

Addison-Wesley, Reading, 1991, 270 S., 76 DM

Objective C

H. M. Deitel, P. J. Deitel C How to Program

Prentice Hall, Englewood Cli�s, 1994, 926 S., 74 DM

Enth�alt auch C++. Ausgepr�agtes Lehrbuch.

336 O Literatur

A. R. Feuer Das C-Puzzle-Buch

Hanser Verlag, M�unchen, 1991, 196 S., 38 DM

Kleine, feine Aufgaben zu C-Themen

O. Hartwig C Referenz-Handbuch

Sybex, D�usseldorf, 1987, 432 S., 54 DM (vergri�en?)

Nachschlagewerk f�ur K&R-C und ANSI-C

R. House Beginning with C

An Introduction to Professional Programming

International Thomson Publishing, Australien, 1994, 568 S., 64 DM

Ausgepr�agter Lehrbuch-Charakter, ANSI-C, vorbereitend auf C++

J. A. Illik Programmieren in C unter UNIX

Sybex, D�usseldorf, 1992, 750 S., 89 DM

Lehrbuch, C und UNIX mit Schwerpunkt Programmieren

R. Jones, I. Steart The Art of C Programming

Springer, Berlin, 1987, 186 S., 52 DM

B. W. Kernighan, D. M. Ritchie The C Programming Language

Deutsche �Ubersetzung: Programmieren in C
Zweite Ausgabe, ANSI C
Hanser Verlag, M�unchen, 1990, 283 S., 56 DM

Standardwerk zur Programmiersprache C, Lehrbuch

R. Klatte u. a. C-XSC
Springer, Berlin, 1993, 269 S., 74 DM
auch auf englisch erh�altlich

C++-Klassenbibliothek f�ur wissenschaftliches Rechnen

S. Lippman, J. Lajoie C++ Primer

Addison-Wesley, Reading, 3. Au
. 1998, 1072 S., ?? DM
Verbreitetes Lehrbuch f�ur Anf�anger

P. J. Plauger, J. Brodie Referenzhandbuch Standard C
Vieweg, Braunschweig, 1990, 236 S., 64 DM

P. J. Plauger The Standard C Library
Prentice-Hall, Englewood Cli�s, 1991, 498 S., 73 DM

Die Funktionen der Standardbibliothek nach ANSI

H. Schildt ANSI C made easy
Osborne McGraw-Hill, Berkeley, 1989, 452 S., 50 DM
Leichtverst�andliche Einf�uhrung in ANSI-C

B. Stroustrup The C++ Programming Language
bzw. Die C++ Programmiersprache

Addison-Wesley, Reading/Bonn, 3. Au
. 1997, 976 S., 100 DM
Lehrbuch f�ur Fortgeschrittene, der Klassiker f�ur C++

R. Ward Debugging C

Addison-Wesley, Bonn, 1988, 322 S., 68 DM

Systematische Fehlersuche, haupts�achlich in C-Programmen

337

14. Anwendungen

{ Newsgruppen:

comp.theory.info-retrieval

comp.databases.*

{ Guide to Commands

STN International c/o FIZ Karlsruhe, 1991, 314 S.

Beschreibung der Retrieval-Sprache Messenger

M. Gossens u. a. The LaTeX-Companion

Addison-Wesley, Reading, 1994, 530 S., 40 US-$

H. Kopka LaTeX - eine Einf�uhrung

Addison-Wesley, Bonn, 1990, 340 S., 68 DM

Ausf�uhrliche Anleitung zu LaTeX, viele Beispiele

H. Kopka LaTeX - Erweiterungsm�oglichkeiten

Addison-Wesley, Bonn, 1990, 479 S., 80 DM
Erweiterungen, AMS-TeX, Gra�k, Metafont, WEB

L. Lamport LaTeX User's Guide and Reference Manual
Addison-Wesley, Reading, 1986, 242 S., 78 DM

Standardwerk zu LaTeX

H. Partl u. a. LaTeX-Kurzbeschreibung

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/latex/lkurz.ps.gz
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/latex/lkurz.tar.gz
1990, 46 S., Postscript und LaTeX-Quellen

Einf�uhrung, mit deutschsprachigen Besonderheiten (Umlaute)

E. D. Stiebner Handbuch der Drucktechnik

Bruckmann, M�unchen, 1992, 362 S., 98 DM

F. W. Weitershaus Duden Satz- und Korrekturanweisungen
Dudenverlag, Mannheim, 1980, 268 S., 17 DM (vergri�en?)

Hilfe beim Herstellen von Druckvorlagen

15. Sicherheit

{ Newsgruppen:

comp.security.*
comp.virus

sci.crypt

alt.security.*
alt.comp.virus

de.comp.security

{ RFC 1244 (FYI 8): Site Security Handbook
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/rfc/rfc1244.txt

1991, 101 S., ASCII

Sicherheits-Ratgeber f�ur Internet-Benutzer

338 O Literatur

{ Department of Defense Trusted Computer Systems

Evaluation Criteria (Orange Book)

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/secur/orange-book.gz

1985, 120 S., ASCII. Abgel�ost durch:

Federal Criteria for Information Technology Security

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/secur/fcvol1.ps.gz

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/secur/fcvol2.ps.gz

1992, 2 B�ande mit zusammen 500 S., Postscript

Die amtlichen amerikanischen Sicherheitsvorschriften

F. L. Bauer Kryptologie

Springer, Berlin, 1994, 369 S., 48 DM

R. L. Brand Coping with the Threat of Computer Security Incidents

A Primer from Prevention through Recovery

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/secur/primer.ps.gz

1990, 44 S., Postscript

D. A. Curry Improving the Security of Your UNIX System
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/secur/secdoc.ps.gz

1990, 50 S., Postscript
Hilfe f�ur UNIX-System-Manager, mit Checkliste

D. Ferbrache A Pathology of Computer Viruses
Springer, Berlin, 1992, 299 S., 74 DM

Geschichte, Wirkungsweise, Gegenma�nahmen, Reaktionen
der �O�entlichkeit; auch UNIX- und Internet-Viren

B. Schneier Angewandte Kryptographie

Addison-Wesley, Bonn, 1996, 844 S., 120 DM

16. Geschichte der Informatik

{ Newsgruppen:

comp.society.folklore
alt.folklore.computers

de.alt.folklore.computer

{ Kleine Chronik der IBM Deutschland
1910 { 1979, Form-Nr. D12-0017, 138 S.
1980 { 1991, Form-Nr. D12-0046, 82 S.

Reihe: �Uber das Unternehmen, IBM Deutschland

{ Die Geschichte der maschinellen Datenverarbeitung Band 1

Reihe: Enzyklop�adie der Informationsverarbeitung

IBM Deutschland, 228 S., Form-Nr. D12-0028

{ 100 Jahre Datenverarbeitung Band 2
Reihe: �Uber die Informationsverarbeitung

IBM Deutschland, 262 S., Form-Nr. D12-0040

F. L. Bauer, G. Goos Informatik 2. Teil
(siehe unter Informatik)

339

O. A. W. Dilke Mathematik, Ma�e und Gewichte in

der Antike (Universalbibliothek Nr. 8687 [2])

Reclam, Stuttgart, 1991, 135 S., 6 DM

A. Hodges Alan Turing, Enigma

Kammerer & Unverzagt, Berlin, 1989, 680 S., 58 DM

S. Levy Hackers { Heroes of the Computer Revolution

Penguin Books, London, 1994, 455 S., 33 DM

R. Oberliesen Information, Daten und Signale

Deutsches Museum, rororo Sachbuch Nr. 7709 (vergri�en)

B. Sterling A short history of the Internet

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/history/origins

1993, 6 S., ASCII

K. Zuse Der Computer - Mein Lebenswerk

Springer, Berlin, 3. Au
. 1993, 220 S., 58 DM
Autobiogra�e Konrad Zuses

17. Computerrecht

{ Newsgruppen:

comp.society.privacy
comp.privacy
comp.patents

alt.privacy
de.soc.recht

{ Computerrecht (Beck-Texte)

Beck, M�unchen, 1994, 13 DM

U. Dammann, S. Simitis Bundesdatenschutzgesetz

Nomos Verlag, Baden-Baden, 1993, 606 S., 38 DM
BDSG mit Landesdatenschutzgesetzen und Internationalen
Vorschriften; Texte, kein Kommentar

G. v. Gravenreuth Computerrecht von A { Z (Beck Rechtsberater)

Beck, M�unchen, 1992, 17 DM

H. Hubmann, M. Rehbinder Urheber- und Verlagsrecht

Beck, M�unchen, 1991, 319 S., 40 DM

A. Junker Computerrecht. Gewerblicher Rechtsschutz,

M�angelhaftung, Arbeitsrecht. Reihe Recht und Praxis

Nomos Verlag, Baden-Baden, 1988, 267 S., 45 DM

18. Philosophische Feigenbl�atter

{ Newsgruppen:

comp.ai.philosophy

sci.philosophy.tech

alt.fan.hofstadter

340 O Literatur

D. R. Hofstadter G�odel, Escher, Bach - ein Endloses

Ge
ochtenes Band

dtv/Klett-Cotta, M�unchen, 1992, 844 S., 30 DM

J. Ladd Computer, Informationen und Verantwortung

in: Wissenschaft und Ethik, herausgegeben von H. Lenk

Reclam-Band 8698, Ph. Reclam, Stuttgart, 15 DM

H. Lenk Chancen und Probleme der Mikroelektronik

und: K�onnen Informationssysteme moralisch verantwortlich sein?

in: Hans Lenk, Macht und Machbarkeit der Technik

Reclam-Band 8989, Ph. Reclam, Stuttgart, 1994, 152 S., 6 DM

P. Schefe u. a. Informatik und Philosophie

BI Wissenschaftsverlag, Mannheim, 1993, 326 S., 38 DM

Sammlung von 18 Aufs�atzen verschiedener Themen und Meinungen

K. Steinbuch Die desinformierte Gesellschaft

Busse + Seewald, Herford, 1989, 269 S. (vergri�en?)

J. Weizenbaum Die Macht der Computer und die Ohnmacht
der Vernunft (Computer Power and Human Reason.

From Judgement to Calculation)
Suhrkamp Taschenbuch Wissenschaft 274, Frankfurt (Main),

1990, 369 S., 20 DM

H. Zemanek Das geistige Umfeld der Informationstechnik
Springer, Berlin, 1992, 303 S., 39 DM

Zehn Vorlesungen �uber Technik, Geschichte und Philosophie
des Computers, von einem der Pioniere

19. Zeitschriften

{ IX
Verlag Heinz Heise, Hannover, monatlich, ca. 130 S.

f�ur Anwender von Multi-User-Systemen, technisch
http://www.ix.de/

{ O�ene Systeme

GUUG/Springer, Berlin, viermal im Jahr,

o�zielle Zeitschrift der German UNIX User Group

{ The C/C++ Users Journal
Miller Freeman Inc., USA, monatlich, ca. 150 S.

http://www.cuj.com/

{ Dr. Dobb's Journal
Miller Freeman Inc., USA, monatlich, ca. 180 S.

Software Tools for the Professional Programmer; viel C und C++

{ unix/mail

Hanser Verlag, M�unchen, sechsmal im Jahr, ca. 70 S.

f�ur Entwickler und Benutzer

341

{ UNIX Open

Aktuelles Wissen Verlagsgesellchaft mbH, Trostberg

monatlich, ca. 100 S.

{ Unix Welt

IDG Communications Verlag, M�unchen, monatlich, ca. 110 S.

{ Unix World

MacGraw-Hill, USA, monatlich, ca. 200 S.

das Neueste aus dem Ursprungsland von UNIX

Hier noch einige Verlage:

� Addison-Wesley, Bonn, http://www.addison-wesley.de/

� Carl Hanser Verlag, M�unchen, http://www.hanser.de/

� Verlag Heinz Heise, Hannover, http://www.ix.de\

� R. Oldenbourg Verlag, M�unchen, http://www.oldenbourg.de/

� O'Reilly, Deutschland, http://www.ora.de/

� O'Reilly, USA, http://www.ora.com/

� Osborne McGraw-Hill, USA, http://www.osborne.com/

� Prentice-Hall, USA, http://www.prenhall.com/

� Sams Publishing (Macmillan Computer Publishing), USA,

http://www.mcp.com/

� Springer-Verlag, Berlin, Heidelberg usw., http://www.springer.de/

Und �uber allem, mein Sohn, la� dich warnen;

denn des vielen B�uchermachens ist kein Ende,

und viel Studieren macht den Leib m�ude.

Prediger 12, 12

342 O Literatur

Sach- und Namensverzeichnis
Einige Begri�e sind unter ihren Oberbegri�en zu �nden, beispielsweise Ger�ate�le

unter File oder Bourne-Shell unter Shell. Verweise (s. ...) zeigen entweder auf ein

bevorzugtes Synonym, auf einen Oberbegri� oder auf die deutsche �Ubersetzung

eines englischen oder franz�osischen Fachwortes.

.autox 83

.elm/elmrc 160

.exrc 106

.logdat 83

.news time 160

.plan 248

.pro�le 71, 81, 83

.project 248

.sh history 67

/bin 42

/dev 41, 42, 44, 178

/dev/console 44

/dev/dsk 44

/dev/lp 44

/dev/mt 44

/dev/null 44

/dev/rdsk 44

/dev/tty 31, 44

/etc 42

/etc/checklist(4) 182

/etc/gettydefs(4) 176

/etc/group(4) 176

/etc/inittab(4) 175, 176, 181

/etc/lp�x 129

/etc/motd 81, 161

/etc/passwd(4) 176, 194, 248

/etc/printcap 128

/etc/pro�le 81

/etc/pro�le(4) 176

/etc/rc 175

/etc/resolv.conf 221

/etc/termcap 105

/homes 42

/lib 42

/lost+found 42

/mnt 42

/sbin 42

/tmp 42

/user 42

/users 42

/usr 42

/usr/adm 43

/usr/adm/pacct 184

/usr/bin 43

/usr/contrib 43

/usr/lib 43

/usr/lib/terminfo(4) 105, 178

/usr/local 43

/usr/mail 43

/usr/man 43

/usr/news 43

/usr/spool 43

/usr/spool/lp/SCHEDLOCK 130

/usr/spool/lp/interface 130

/usr/spool/lp/model 130

/usr/tmp 43

/var 42

/var/spool/news 160

$* 74

$0 74

$# 74

386BSD 206

8-bit-clean 99

a.out(4) 134, 152

A/UX 22

Abh�angigkeit 14

Abwickler 73

accept(1M) 131

Access Control List 49

access(2) 168

Account 177

Accounting System 175, 184

acct(1M) 184

acct(4) 184

acctcom(1M) 184

acctsh(1M) 184

ACL s. Access Control List

343

344 Sach- und Namensverzeichnis

adb(1) 138

adjust(1) 117, 132

Adleman, L. 114

adm (Benutzer) 184

admin(1) 149

AIX 22

Akronym s. Abk�urzung

Aktion (awk) 110

alex.sty 119

Alias 55

alias (Shell) 67, 83

Alternate Boot Path 174

American Mathematical Society 118

analog 208

Anf�uhrungszeichen (Shell) 66

Anmeldung 9

anonymous (Benutzer) 225

Anonymous-FTP 7

Anweisung

ALIAS-A. 166

Compiler-A. 166

LaTeX-A. 119

Shell-A. s. Kommando

Anwendungsprogramm 5, 6, 15, 26

Anwendungsschicht 216

Appel syst�eme s. Systemaufruf

Application s. Anwendungsprogramm

ar(1) 141

ar(4) 141

Archie 241

Archiv 141

argc 167

Argument (Kommando) 10, 65

argv 167

Arobace s. Klammera�e

Arobase s. Klammera�e

ARPANET 216

Array

A. mit Inhaltindizierung 112

assoziatives A. 85, 112

awk-Array 112

Typ (C) s. Typ

Zeiger s. Index

ASCII

German-ASCII 99, 261

Steuerzeichen 98, 262

Zeichensatz 98, 253

at(1) 33

AT&T 21

Athena 92

attisches System 21

Ausdruck

regul�arer A. 101, 109

Ausf�uhren (Zugri�srecht) 47

Ausgangswert s. Defaultwert

Auslagerungsdatei s. File

Auswahl (Shell) 77

Automat 2

Autorensystem 8

awk(1) 110, 133

awk-Script 111

Babbage, C. 2, 318

Babel s. Babbilard �electronique

Babillard �electronique s. Bulletin Board

Back Quotes (Shell) 67

Backgammon-Server 222

Background s. Prozess

Backslash (Shell) 66

Backspace-Taste 39

Backup

inkrementelles B. 192

vollst�andiges B. 192

backup(1M) 193

banner(1) 87

Bardeen, J. 318

basename(1) 45

bash(1) s. Shell

BASIC 6

Batch-Betrieb 183

Batch-System 18

Batch�le s. Shellscript

BCD-System 253

bdf(1M) 182, 194

Beauti�er 135

Bedingung (Shell) 77

Befehl s. Anweisung

Befehl (Shell) s. Kommando

BelWue 222

Benutzer 173, 176

Benutzerdaten-Segment 28

Bereit-Zeichen s. Prompt

Berkeley 22

Betriebssystem 5, 6, 15

Bezugszahl s. Flag

bfs(1) 126

Bibliothek 141

Big Blue s. IBM

Sach- und Namensverzeichnis 345

Big Eight 239

Bildpunkt s. Pixel

Bildschirm 4

Diagonale 90

Screen saver s. Schoner

Bin�ardarstellung 3

Binary 41

Binder s. Linker

Binette s. Grinsling

Bit 3

bit (Ma�einheit) 3

Bitmap 154

Blechbregen 1

blockorientiert 44

Bookmark s. Lesezeichen

Boole, G. 318

Boot-Block 41

Boot-Manager 202

Boot-ROM 175

Boot-Sektor 175

Booten 20

booten 9

Bourne, Stephen R. 64

Brattain, W. H. 318

break (Shell) 78

Break-Taste 37, 283

Briefkasten s. Mailbox

Browser (WWW) 246

Brute Force Attack 115

BSD s. Berkeley Software Distribution,

22

Bubblesort 144

B�ucherei s. Bibliothek

Bu�er s. Pu�erspeicher

Bug s. Fehler

Bulletin Board 7

bye 10

Byte 3

C 6

Entstehung 21

Cache s. Speicher

Cadre s. Frame

Cahier de charge s. P
ichtenheft

cal(1) 39

Caldera 200

calendar(1) 33

Call by reference s. Adress�ubergabe

Call by value s. Wert�ubergabe

cancel(1) 128

Carnegie-Mellon-Universit�at 23, 318

Carriage return s. Zeilenwechsel

CASE s. Computer Aided Software En-

gineering, 149

case { esac (Shell) 77

cat(1) 55, 56, 62, 72, 75, 104, 162

cb(1) 135, 153

cc(1) 134

cd(1) 45, 62, 64, 81, 194

CDPATH 69, 81

Centronics s. Schnittstelle

CERT s. Computer Emergency Respon-

se Team, 191

Certi�cation Authority 236

c
ow(1) 143, 153

Channel (IRC) 241

Character set s. Zeichensatz

chgrp(1) 47

chmod(1) 48, 162

chmod(2) 172

chown(1) 47

CIAC s. Computer Incident Advisory

Capability, 191

ckpacct(1M) 184

clear(1) 77, 81, 87

Client 214

Client (Prozess) 92

Client-Server-Modell 92

close(2) 168

clri(1M) 60

cmp(1) 125, 132

COBOL 6

Code-Segment 28, 29

col(1) 126

comm(1) 126

command.com 64

Common Desktop Environment 94

comp.society.folklore 10

comp.unix.questions 59

Compiler 134

Controler s. Treiber

compress(1) 57

Computador 1

Computer

Aufgaben 1

Herkunft des Wortes 1

Home C. s. Heim-C.

PC s. Personal C.

346 Sach- und Namensverzeichnis

Personal C. 198

Computer Science 2

con�gure (make) 137

continue (Shell) 78

Contra vermes 139

Cookie-Server 222

Copyleft 196

core(4) 152

Courrier �electronique s. Email

cp(1) 49, 54, 62

cpio(1) 47, 192

CPU s. Prozessor

Cracking 115

creat(2) 172

cron(1M) 33, 175, 181

crontab(1) 33, 184

csh(1) s. Shell

ctime(3) 165

cu(1) 161

curses(3) 89, 99

cut(1) 75, 81, 126, 133

cxref(1) 143, 153

Cyber
ic s. Net cop

Cybernaute s. Netizen

D�amon 32, 180

Darstellungsschicht 216

Data code s. Zeichensatz

Data Encryption Standard 113

Data Glove s. Steuerhandschuh

Data-Link-Schicht 216

Datagramm 214, 218

date(1) 39, 177

Datei s. File, 41

Daten 1, 209

Daten-Block 42

Datensicherung s. Backup

Datentabelle s. Array

Dator 1

dead.letter 159

Debian LINUX 200

Debit s. �Ubertragungsgeschwindigkeit

Debugger

absoluter D. 138

Hochsprachen-D. s. symbolischer D.

symbolischer D. 138

Defaultwert 36

De�nitonsdatei s. File

delog(1M) 181

delta(1) 149

DES s. Data Encryption Standard

Desktop Publishing 117

df(1M) 182, 194

DFN s. Deutsches Forschungsnetz

DFN-CERT 191

Dialog 8, 63, 158, 183

Dialog-System 19

Dienstprogramm 25, 26

di�(1) 125

di�3(1) 126

digital 208

diplom(1) 127

Directive s. Anweisung

Directory s. Verzeichnis

dirname(1) 45

disable(1) 131

Diskette 4

DISPLAY 94

Display s. Bildschirm

Distribution (LINUX) 200

DNS s. Domain Name Service

dodisk(1M) 184

Dollarzeichen 74

Domain (DNS) 219

Dorftratsch 241

Dotted Quad 219

Drive s. Laufwerk

Droit d'acc�es s. Zugri�srecht

Druckauftrag 128

Drucker 5

logischer D. 130

physikalischer D. 130

Drucker-Server 222

du(1) 81, 183, 194

Dualsystem 3, 253

Dump 56

dvips(1) 119

Echappement s. Escape

echo (Shell) 67

Echtzeit-System 19, 195

Eckert, J. P. 318

Ecran s. Bildschirm

ed(1) 125

EDITOR 69, 83

Editor

Aufgabe 104

Bildschirm-E. 105

Sach- und Namensverzeichnis 347

ed(1) 104

emacs 107

ex(1) 104

microemacs 107

sed(1) 75, 109

Stream-E. 109

vi(1) 56, 62, 105, 133

view(1) 56

Zeilen-E. 104

egrep(1) 125

Eigent�umer s. File

Einarbeitung 13

Eingabeaufforderung s. Prompt

einloggen s. Anmeldung

Einprozessor-System 19

Einzelverarbeitung s. Single-Tasking

Electronic Information 6, 7

Electronic Mail 7, 159, 222, 228

Elektronengehirn 1

Elektrotechnik 2

Elgamal, T. 115

elle 108

elm(1) 34, 81, 160, 162, 232

else s. if

elvis(1) 107

emacs(1) 278

Email s. Electronic Mail, 228

En-tête s. Header

enable(1) 131

end 10

Engin de recherche s. Suchmaschine

Enter-Taste s. Return-Taste

entwerten s. quoten

Environment s. Umgebung

Environnement s. Umgebung

envp 167

EOF s. File

EOL s. Zeilenwechsel

Ersatzzeichen s. Jokerzeichen

esac s. case

Escargot s. Klammera�e, Snail-Mail

Esperlu�ete s. Et-Zeichen

Ethernet 219

Eudora 228

exec (Shell) 39

EXINIT 69

exit 10

exit (Shell) 10, 39, 78

expand(1) 75, 126

export (Shell) 71, 81, 83

Expression r�eguli�ere s. regul�arer Aus-

druck

f77(1) 134

f90(1) 134

factor(1) 97

Fallt�ur 190

Fallunterscheidung s. case, switch

false(1) 78

FAQ s. Frequently Asked Questions

Fassung s. Programm

fbd(1M) 181

fc (Shell) 67

FCEDIT 67, 69, 83

fcntl.h 168

Fehler

Denkfehler 138

Fehlermeldung 88, 138

Grammatik-F. 138

Laufzeit-F. 138

logischer F. 138

Modell-F. 138

semantischer F. 138

Syntax-F. 138

Feld

Feld (awk) 110

Feld (Typ) s. Typ

Feldgruppe s. Array

Fenêtre s. Fenster

Fenster 89, 90

Button 95

F. aktivieren 95

Kop
eiste 95

Rahmen 95

Schalt
�ache s. Button

Title bar s. Kop
eiste

Festplatte 4

fgrep(1) 125

Fichier s. File

FIFO 35

File 41

absoluter Name 45

Auslagerungsdatei s. Swap-F.

Besitzer 47

bin�ares F. 41

De�nitonsdatei s. Include-F.

Deskriptor 55, 72

Dot�le 46

348 Sach- und Namensverzeichnis

Eigent�umer s. Besitzer

Ende 68, 128

EOF s. File-Ende

Fileset 175

Ger�ate�le 41

gew�ohnliches F. 41

Gruppe 47

Handle s. Deskriptor

Header�le s. Include-F.

Hierarchie 42

Interface-F. 130

Kennung 46, 284

Kon�gurations-F. 25

l�oschen 58

leeres F. 55

lesbares F. 41

lock-F. 34

Mode 172

Modell-F. 130

Name 45, 59

normales F. 41

Owner s. Besitzer

Pfad s. absoluter Name, 45

Pointer 55

regul�ares F. s. gew�ohnliches F.

relativer Name 45

Rest der Welt 47

Swap-F. 17

System 18, 27, 41, 42, 182

Transfer 222, 224

verborgenes F. 46

Zeitstempel 51

Zugri�srecht 47

File Service Protocol 225

File Transfer Protocol

Anonymous-FTP 225

ftp (Benutzer) 225

ftp(1) 224, 225

Kommando 224

Modus 225

�le(1) 62

Filter 55, 110

�nd(1) 59, 60, 125, 182, 183, 192, 194

�nger(1) 177, 248

Fitzgerald, E. 91

Flag (Option) 10

Flicken (Programm) s. Patch

Flie�band s. Pipe

Floppy Disk s. Diskette

Foire Aux Questions s. FAQ

fold(1) 126, 132

Folder s. Verzeichnis

Follow-up (News) 240

Fonction syst�eme s. Systemaufruf

Font 101

For Your Information 217, 304

for-Schleife (Shell) 77

Foreground s. Prozess

Format

Adressformat 228

Hochformat 101

Landscape s. Querformat

Portrait s. Hochformat

Querformat 101

formatieren (Datentr�ager) 47

FORTRAN 6

Forum s. Newsgruppe

Forwarding 159

Forwarding (Mail) 229

fprintf(3) 172

Fragen 8

Free Software Foundation 23, 196

FreeBSD 23, 206

Frequently Asked Questions 7, 240, 309

Frequenzw�orterliste 73

fsck(1M) 182

FSP s. File Service Protocol

FTP s. File Transfer Protocol

ftp(1) 278

FTP-Server 227

ftp.ciw.uni-karlsruhe.de 324

ftpd(1M) 227

Funktion (C)

Standardfunktion 163

Funktion (Shell) 68, 79

Fureteur s. Browser

fvwm 204

FYI s. For Your Information

Garde-barri�ere s. Firewall

Gast-Konto 9

gatekeeper.dec.com 247

Gateway 219

gawk 112

GECOS-Feld 177

Gegenschr�agstrich s. Zeichen

General Public License (GNU) 196

get(1) 149

Sach- und Namensverzeichnis 349

getprivgrp(1) 195

getty(1M) 176

getut(3) 173

Gigabyte 3

GKS s. Graphical Kernel System, 157

Globbing s. Metazeichen, 66

gmtime(3) 12, 164

GNU-Projekt 23, 107, 137, 196

gnuplot 155

Good Times 191

Gopher 242

gprof(1) 139

Gra�k 154

Graphical Kernel System 157

Gratuiciel s. Freeware

grep(1) 75, 125, 132

grget(1) 194

Grimace s. Grinsling

Grinsling 233

Groupe s. Gruppe

Gruppe 47

gtar(1) 56

guest s. Gast-Konto

gunzip(1) 57

Gutenberg-Projekt 227

gzip(1) 57, 210

Hôte s. Host

Hackbrett s. Tastatur

Handheld s. Laptop

Handle s. File

Hanoi, T�urme von H. (Shell) 79

Hard Link s. Link

Harddisk s. Festplatte

Hardware 5, 26

Hardware-Adresse (Ethernet) 219

Hawking, S. 91

HAX 23, 96

head(1) 56, 62

Heinzelm�annchen s. D�amon

Hewlett, W. 318

Hexadezimalsystem 3, 253

Hexp�archen 3

Hintergrund s. Prozess

History 67

Hoax 191

Hochkomma (Shell) 66

Hollerith, H. 318

HOME 69, 81, 87

Home Computer s. Computer

Home Page (WWW) 246

Host 214

HOWTO (LINUX) 205

HP SoftBench 149

HP-UX 22

HP-VUE 94

HPGL 154

hpux(1M) 175

HTML s. Hypertext Markup Language

HTML-Browser 245

Hurd 23

Hypermedia 244

Hypertext 8, 244

Hypertext Markup Language 245

Hypertext Transfer Protocol 246

hyphen(1) 126

Icon 96

id(1) 39, 62

IDEA 113, 236

Identi�er s. Name

IEEE s. Institute of Electrical and Elec-

tronics Engineers

IEEE (Institut) 23

if - then - elif - ... (Shell) 77

if - then - else - � (Shell) 77

IFS 69

Index (Array) s. Array

Index Node s. Inode

inetd 181

inetd(1M) 34

Infobahn 213

Informatik

Angewandte I. 2

Herkunft 2

L�otkolben-I. 2

Technische I. 2

Theoretische I. 2

Information 1, 208, 209

Informationshilfe 222

Informationsmenge 3

Informationstheorie 209

Informatique 2

Inhaltsverzeichnis s. Verzeichnis

init(1M) 175, 181

Initial System Loader 174

Inode 168

I.-Liste 41, 52

350 Sach- und Namensverzeichnis

I.-Nummer 52

insmod(1) 203

Instruktion s. Anweisung

Integer s. Zahl

interaktiv 8

Intercode 100

Interface s. Schnittstelle

Drucker-I. 130

Interface-File 130

Interface (Sprachen) 167

Internaute s. Netizen

Internet 213

Internet Explorer 245

Internet Relay Chat 241

Internet-Adresse 219

Internet-D�amon 34

Interprozess-Kommunikation 34

Invite s. Prompt

IP s. Internet Protocol

IP-Adresse 219

IP-Protokoll 218

IPC s. Interprozess-Kommunikation

ipcs(1) 38

irc 241

ISDN s. Integrated Services Digital Net-

work, 213

ISO s. International Standardizing Or-

ganisation, 215

ISO 10021 228

ISO 3166 302

Jacquard, J. M. 318

Jobs, S. P. 318

joe(1) 108, 278

Jokerzeichen 45, 66

Jolitz, W. F. und L. G. 206

Joy, Bill 64

Jughead 243

Jukebox s. Plattenwechsler

K�unstliche Intelligenz 211

Kaltstart 20

Karlsruher Test 310

Katalog s. Verzeichnis

KBS 27

KDE 204

Keller 35

kermit(1) 224

Kern s. UNIX

Kernelmodul 203

Kernighan, B. 21

Kernschnittstellenfunktion s. System-

aufruf

Key Server 237

Keyboard s. Tastatur

kill(1) 36, 39

Kilobyte 3

Klammera�e 228

klicken (Maus) 94

Knuth, D. E. 118

Kommando

externes Shell-K. 64

FTP-Kommando 225

internes Shell-K. 64

Shell-K. 65

UNIX-K. 10, 65

Kommandointerpreter 26, 63

Kommandomodus (vi) 105

Kommandoprozedur s. Shellscript

Kommandozeile 74, 88

Kommentar

Kommentar (awk) 111

Kommentar (LaTeX) 122

Kommentar (Shell) 73

Kommunikation 158

Kon�guration 18, 183

Konsole 174, 190

Konto s. Account

kopieren 48

Korn, David G. 64

Kreuzreferenz 143

Kryptanalyse 112, 115

Kryptologie 112

ksh(1) s. Shell

Kurs 6

L�andercode 302

Lamport, L. 118

LAN s. Local Area Network

Landscape s. Format

Langage de programmation s. Program-

miersprache

last(1) 182

LaTeX 116, 118

Editor 119

Formelbeispiel 293

L.-Anweisung 119

L.-Compiler 119

Laufvariable s. Schleifenz�ahler

Sach- und Namensverzeichnis 351

Laufwerk 5

ld(1) 134

leave(1) 34, 39

Leerzeichen s. Space

Lehrbuch 6, 324

Leibniz, G. W. 2, 318

Leistung 183

Lernprogramm 6, 8

Lesbarkeit 127

Lesen (Zugri�srecht) 47

LessTif 204

Library s. Bibliothek

Lien s. Link, Verbindung

Ligne s. Zeile

LILO 202

Line feed s. Zeilenwechsel

Line Printer Scheduler 34, 175

Line Printer Spooler 128

Line spacing s. Zeilenabstand

Linguistik 2

Link

Hard L. s. harter L.

harter L. 53

Soft L. s. weicher L.

symbolischer L. s. weicher L.

weicher L. 54

Link (Hypertext) 244

link(1M) 53

linken (Files) 53

linken (Programme) 134

Linkz�ahler 53

lint(1) 135, 151

LINUX 23, 27, 200

LINUX Documentation Project 205

List-Owner 235

Liste

Benutzer-L. 75

Liste (awk) 110

Mailing-L. 234

Prozess-L. 28

Verteiler-L. 234

Liste de di�usion s. Mailing-Liste

Listengenerator 110

Listproc 235

Listserv 235

Literal s. Konstante

Lizenz s. Nutzungsrecht

ll(1) 45

ln(1) 53, 62, 81

Loader s. Linker

local 214

Lock-File 34

Lock�le 130

l�oschen

logisch l. 58

physikalisch l. 58

Verzeichnis l. 58

Logiciel 2

login(1) 176

Logische Bombe 190

LOGNAME 69, 81

logo� 10

logout 10

look + feel 88

lp(1) 62, 128, 131

lpadmin(1M) 130

lpc(8) 130

lpq(1) 128

lpr(1) 128

lprm(1) 128

lpsched(1M) 34, 131, 181

lpshut(1M) 130

lpstat(1) 128, 131

ls(1) 39, 45, 48, 51, 52, 62, 64, 153

lseek(2) 168

lstat(2) 54

Lucas, E. A. L. 79

lynx(1) 246

M�emoire centrale s. Arbeitsspeicher

M�emoire secondaire s. Massenspeicher

Mâitre ou�ebe s. Webmaster

Mâitre poste s. Postmaster

Mach 23

Magic Number 168

magic(4) 168

magic.h 168

MAIL 69

Mail Delivery Agent 34, 232

Mail Transfer Agent 34

Mail Transport Agent 232

mail(1) 62, 159, 162

Mailbox 69, 228

MAILCHECK 69, 159

Maildrop 228

Mailing-Liste 234

Mailserver 228

mailx(1) 160

352 Sach- und Namensverzeichnis

main() 167

main.tex 119

Majordomo 235

make(1) 135, 152

Make�le 135

make�le 135

Makro (make) 135

Makro (Shell) s. Shellscript

Makro (vi) 106

man(1) 12, 39

Mapper s. Linker

Marke (C) s. Label

Marke (Fenster) s. Cursor

Maschinenwort 3

maskieren s. quoten

Masquerading 206

Mat�eriel s. Hardware

Mathematik 2

Mauchly, J. W. 318

Maus 90, 94

Maximize-Button 96

mediainit(1) 47

Medium s. Speicher

Megabyte 3

Mehrprozessor-System 19

Memory s. Speicher

Memory Management 27

Men�u 88

Men�u (Shellscript) 76

Men�u-Button 96

mesg(1) 81, 158

Message Digest 5 236

Message of the Day 161

Message queue 37

Metazeichen 66

Mikro-Kern 15

milesisches System 21

MIME 233

Minimize-Button 96

MINIX 23, 27, 199

Miroir s. Mirror

MIT s. Massachusetts Institute of Tech-

nology, 92

mkdir(1) 46, 62

mkfs(1M) 47

mknod(1M) 35, 178

mknod(2) 172

MKS-Tools 207

mksf(1M) 178

Modul 134

monacct(1M) 184

Monitor s. Bildschirm

monitor(3) 140

more(1) 12, 56, 62

Morris 190

Morse, S. 318

mosaic(1) 245, 246

Mot de passe s. Passwort

Motif 92, 94

mount(1M) 46

mounten 46

Mounting Point 42, 46

mpack(1) 233

MS-DOS 19

MS-Xenix 198

Multi-Tasking 19

kooperatives M. 17

pr�aemptives M. 17

Multi-User-Modus 176

Multi-User-System 19

MULTICS 22

multimedia-f�ahig 213

Multipurpose Internet Mail Extensions

233

munpack(1) 233

Muster (awk) 110

Mustererkennung 101

mv(1) 12, 58, 62

mvdir(1M) 58

Nachricht 1, 209

Nachrichten s. News

Nachrichtendienst 222

Nachrichtenschlange 37

Nachschlagewerk 7

Name

Benutzer-N. 9, 177

File-N. 45

Ger�ate-N. 44

Hostname 219

Name-Server 219, 222

Named Pipe 35

Napier, J. 318

Native Language Support 99

Navigateur s. Browser

Nelson, T. 8

NetBSD 23, 206

net�nd(1) 249

Sach- und Namensverzeichnis 353

Netiquette 240

netlogstart 181

Netnews 7, 8, 237

netscape(1) 245

Network s. Netz

Network Time Protocol 251

Netz 213

Betriebssystem 19

Computernetz 5, 214

Entwicklung 213

Netzd�amon 175

Netzdienst 213, 222

Protokoll 217

Netzwerk-File-System 222

Netzwerkschicht 216

Neumann, J. von 318

newfs(1M) 47

newline s. Zeilenwechsel

News 160

news(1) 62, 81, 160, 162

Newsgruppe 239

NEXTSTEP 22

NeXTstep 23

NF (awk) 111

NIC s. Network Information Center, 219

nice(1) 32, 39

Nickel, K. 318

nl(1) 126

nm(1) 153

Noeud s. Knoten

nohup(1) 31

nohup.out 31

Nouvelles s. News

Novell 22

Novell NetWare 19

NR (awk) 111

nro�(1) 116, 117, 132

nslookup(1) 247

Num�eriser s. Scannen

Numero IP s. IP-Adresse

Ober
�ache

Benutzer-O. 25, 88

gra�sche O. 90

multimediale O. 91

od(1) 56, 62

Oktalsystem 3, 253

Oktett 3

OLDPWD 69

On-line-Manual s. man(1)

Open Software Foundation 23, 94

open(2) 168

OpenBSD 206

Operating System s. Betriebssystem

Operator (Person) 173

Option 10, 65

Ordenador 1

Ordinateur 1

Ordner s. Verzeichnis

Orientierung 101

Original Point of Distribution 226

ORS (awk) 111

OS/2 19, 27

OSF/1 23

Outil s. Werkzeug

Owner

File-O. s. File

List-O. s. Liste

Packard, D. 318

Page d'accueil s. Homepage

pagedaemon 181

Pager 12

Paging 18

Parameter

benannter P. 74

P. (Option) 10

Positions-P. 74

Schl�usselwort-P. 74

Partagiciel s. Shareware

Partitionierung 175

PASCAL 6

Pascal, B. 318

Passage de param�etres s. Parame-

ter�ubergabe

Passerelle s. Gateway

Passive FTP 225

passwd(1) 50

passwd(4) 176

password aging 187

Passwort 9, 177, 186

paste(1) 126

pasv (FTP) 225

PATH 69, 81, 83

Pattern s. Muster

PC s. Computer

pc(1) 134

Peripherie 5

354 Sach- und Namensverzeichnis

Perl 73

perl 84, 112

Pfad s. File, 45

Pfeiltaste s. Cursor

pg(1) 56, 62, 87

physikalische Schicht 216

Physiologie 2

Piaf, E. 91

Pike, R. 23

Pile s. Stapel

Pipe 35

pipe(2) 35

Pirate s. Hacker

Pitch s. Schrift

Plan9 23

Plattform s. System

plock(2) 196

Point size s. Schrift

Pointer (Fenster) s. Cursor

Portierbarkeit 25, 86

Portrait s. Format

POSIX 23

Post O�ce Protocol 228

posten (News) 240

Postmaster 160, 229

PPID 69

prep.ai.mit.edu 196

Pretty Good Privacy 235

Primary Boot Path 174

primes(1) 97

Primzahl 84

print (Shell) 77, 78, 81, 87

printf(3) 277

Privacy Enhanced Mail 235

Privileged User 49

Pro nescia 139

Processus s. Prozess

prof(1) 140

Pro�ler 139

Programm 2

Fassung s. Version

Programmiersprache 6

Prompt 9, 69, 84

Propri�etaire s. Besitzer

Proxy 206

Prozess 28

asynchroner P. 31

Background s. Hintergrund

Besitzer 29, 31

Client-P. 92, 214

Dauer 29

Elternprozess 29

Foreground s. Vordergrund

getty-P. 30

Gruppenleiter 29

Hintergrund-P. 31

init-P. 30

Kindprozess 29

login-P. 30

Parent-P.-ID 29, 69

Priorit�at 32

Prozess-ID 28, 29

Prozessgruppe 29

Prozesstabelle 31

Server-P. 92, 214

Startzeit 29

synchroner P. 31

Vererbung 29

Vordergrund-P. 31

Prozessor

CPU s. Zentralprozessor

Prozessorzeit 17

Scheduling 17

Zentralprozessor 4

Prozessrechner 195

Pr�ufsumme 191

ps(1) 28, 31, 32, 39

PS1 39, 69, 81, 83

Pseudo-Virus 191

pstat(2) 183

ptx(1) 126

ptydaemon 181

Pu�er s. Speicher

Pull-down-Men�u 96

Punktscript 83

PWD 69

pwd(1) 39, 45, 62, 64, 87

pwget(1) 194

Qt-Bibliothek 204

Quali�er s. Typ

Qualit�atsgewinn 13

Quantor s. Jokerzeichen

quit 10

quot(1M) 61

quota(1) 66, 183

quota(5) 183

quoten 66

Sach- und Namensverzeichnis 355

r-Dienstprogramm 223

R�epertoire s. Verzeichnis

R�epertoire courant s. Arbeitsverzeichnis

R�epertoire de travail s. Arbeitsverzeich-

nis

R�eseau s. Netz

R�eseau local s. LAN

R�uckschritt s. Backspace

Racine s. Root

RAID s. Redundant Array of Indepen-

dent Disks

RAM s. Speicher

RANDOM 69

Random Access s. Zugri�, wahlfreier

Random Access Memory s. Speicher

ranlib(1) 141

Rastergra�k 154

RCS s. Revision Control System, 144

read (Shell) 77

read(2) 168

readlink(2) 54

Realtime-System s. Echtzeit-S.

Rechenanlage s. Computer

recode(1) 100

Record (Datenbank) s. Satz

Red Hat LINUX 200

Redirektion s. Umlenkung

Referenz s. Bezug

Referenz-Handbuch 7, 11

Register s. Speicher

regul�arer Ausdruck s. Ausdruck

regul�ares File s. File

reject(1M) 130, 131

Rekursion 79

Reminder Service 33

remote 214

Remote Execution 222

Reply (News) 240

Request s. Druckauftrag

Request For Comment 217, 304

reset(1) 195

Rest der Welt s. Menge der sonstigen

Benutzer, 47

restore(1M) 193

return (Shell) 78

Return-Taste 9, 39

Returnwert s. R�uckgabewert

rev(1) 126

Revision Control System 144

RFC s. Request For Comment

RFC 1421 - 1424 237

RFC 821 218

Rienne-Vaplus, H�ohle von R. 138

Riordan, M. 237

RIPEM 237

Ritchie, D. 21

Rivest, R. 114

rlb(1M) 181

rlbdaemon(1M) 181

rlogin(1) 223

rm(1) 58, 66, 186

rmdir(1) 46, 58

rmmod(1) 203

rmnl(1) 126

RMS s. Stallman, R. M.

rmtb(1) 126

Rollkugel s. Trackball

ROM s. Speicher

root (Benutzer) 186

root (Verzeichnis) 42, 175

ROT13 113

Rotif 96

Routine s. Unterprogramm

Routing 213

RSA-Verfahren 114

rtprio(1) 196

Run Level 176

runacct(1M) 184

ruptime(1M) 181

rwho(1) 181

rwhod(1M) 181

Sachregister 111

Sachverzeichnis 122

Satz (awk) 110

scanf(3) 277

SCCS s. Source Code Control System,

149

Schalter (Option) 10

Schaltvariable s. Flag

Schichtenmodell 15, 215

Schickard, W. 318

Schl�usselwort 163

Schlappscheibe s. Diskette

Schnittstelle 5

Centronics-S. s. parallele S.

Schreiben (Zugri�srecht) 47

Schreibmodus (vi) 105

356 Sach- und Namensverzeichnis

Schrift

Art 101

Grad 101

Pitch s. Weite

Point size s. Grad

Proportionalschrift 101

Schnitt 101

Treatment s. Schnitt

Typeface s. Art

Weite 101

SCO-UNIX 198

Scope s. Geltungsbereich

Screen s. Bildschirm

script(1) 67

SCSI s. Small Computer Systems Inter-

face

sdb(1) 138

SECONDS 69

sed(1) 100, 132

sed-Script 109

Seitene�ekt s. Nebenwirkung

Seiten
attern 18

Seitenwechsel s. Paging

Sektion 11

Semaphor 37

sendmail(1) 218

sendmail(1M) 34, 181, 232, 233

Separator s. Trennzeichen

Server (Computer) 214

Server (Prozess) 92, 214

Serveur s. Server

Session s. Sitzung

Session Manager 224

set (Shell) 39, 68, 71, 87

Set-Group-ID-Bit 50

Set-User-ID-Bit 50

setprivgrp(1M) 195

sh(1) s. Shell, 39

Shamir, A. 114

Shannon, C. E. 3, 209, 318

Shared Library 134

Shared Memory 38

SHELL 69

Shell 26

bash 64

Bourne-Shell 64

bsh(1) 64

C-Shell 64

csh(1) 64

Funktion 68

Korn-Shell 64

ksh(1) 64

rc 64

Secure Shell 223

sh(1) 64

Sitzungsshell 30, 63, 68

ssh(1) 223

Subshell 73

tcsh 64

Windowing-Korn-Shell 64

wksh(1) 64

z-Shell 64

Shellscript 73

shift (Shell) 74

Shockley, W. B. 318

shutacct(1M) 184

shutdown(1M) 176, 184

Sicherheit

Betriebssicherheit 185

Datenschutz 185

Datensicherheit 185, 186

Sicherungskopie s. Backup

Sieb des Erathostenes 21

SIGHUP 31

SIGKILL 36

Signal 29, 36, 208, 282

signal(2) 36

Signatur 160

SIGTERM 36

Simple Mail Transfer Protocol 218, 228

Single-Tasking 19

Single-User-Modus 176

Single-User-System 19

SINIX 22

Sinnbild s. Icon

Sitzung 8

Sitzungsschicht 216

size(1) 153

skalierbar 23

Slackware LINUX 200

Slang 289

sleep(1) 81

SMALLTALK 90

Smiley 233

Smoke Test 91

SMTP s. Simple Mail Transfer Protocol,

218

Snail 159

Sach- und Namensverzeichnis 357

Socket 38

sockregd 181

Soft Link s. Link

Software 5

Solaris 22

Solidus s. Schr�agstrich

Sonderzeichen (Shell) s. Metazeichen

Sonderzeichen (vi) 105

sort(1) 75, 126, 133

Source Code Control System 149

source-Umgebung (LaTeX) 119

Sourcecode s. Quellcode

Souriard s. Grinsling

Souris s. Maus

Spam 233

Spanning 41

Speicher

Arbeitsspeicher 4

Datentr�ager 4

Diskette s. dort

Festplatte s. dort

gemeinsamer S. 38

Hauptspeicher s. Arbeitsspeicher

Keller 35

Massenspeicher 4

Medium s. Datentr�ager

Memory s. Arbeitsspeicher

MO-Disk s. dort

RAM s. Random Access Memory

ROM s. Read Only Memory

Speichermodell 134

Stack 35

Stapel 35

WORM s. dort

Zwischenspeicher s. Cache

spell(1) 126, 132

sperren s. quoten

Spiegel 226

split(1) 126

squid 206

ssp(1) 126

Stack s. Stapel, 35

Stallman, R. M. 23, 196

Stapel 35

Stapeldatei s. Shellscript

Stapelverarbeitung s. Batch-Betrieb

startup(1M) 184

stat(2) 168

statdaemon 181

stderr 55

stdin 55

stdout 16, 55

Steinbuch, K. 2

Stellenwertsystem 21

Steuersprache (Bildschirm) 154

Steuersprache (Drucker) 154

Steuersprache (Plotter) 154

Sticky Bit 49

stop 10

Stream 38

string(3) 168

String-Deskriptor 166

strings(1) 153

strip(1) 153

strncmp(3) 168

Struktur s. Programmstruktur

Struktur (C) s. Typ

stty(1) 81, 130, 195

style(1) 127

Subroutine 11, 163

subskribieren 235, 239

Suchen (Zugri�srecht) 47

Suchpfad 69

Sumpf 74

SunOS 22

Super-Block 41

Superuser 49, 173, 178

Superutilisateur s. Superuser

SuSE LINUX 200

swais(1) 243

swap-Area 175

Swapper 175

swapper 181

Swapping 17

Symbol (Fenster) s. Icon

Symbol (Wort) s. Schl�usselwort

symbolischer Debugger s. Debugger

symbolischer Link

seeLink 1

sync(2) 181

Synopsis 12

Syntax-Pr�ufer 135

sys/stat.h 168

syslogd(1M) 181

Syst�eme d'exploitation s. Betriebssys-

tem

System 6

System call s. Systemaufruf

358 Sach- und Namensverzeichnis

System primitive s. Systemaufruf

System V 22

System, dyadisches s. Dualsystem

System-Entwickler 173

System-Manager 9, 173

System-Start 175

System-Stop 176

System-Update 173

System-Upgrade 173

Systemanfrage s. Prompt

Systemaufruf 163, 280

Systemdaten-Segment 28

Systemgenerierung 173

Tableau s. Array

tail(1) 56

talk(1) 158

Tampon s. Pu�erspeicher

tar(1) 47, 56, 192

Target (make) 135

Task s. Prozess

Tastatur 4

Tastatur-Anpassung (vi) 106

tcio(1) 192

TCP s. Transport Control Protocol

TCP-Protokoll 218

TCP/IP 217

tcsh(1) s. Shell

tee(1) 55

telnet(1) 223, 233

TERM 69, 81

Term s. Ausdruck

Terminal 4

Initialisierung 176

Kontroll-T. 29, 31

T.-Beschreibung 105, 178

T.-Emulation 161, 222, 223

T.-Server 224

Terminaltyp 69

virtuelles T. 90

Terminkalender 33

termio(4) 180

termio(7) 130

test(1) 64

TeX 118

TeXCAD 118

Thompson, K. 21, 23

Thread (Netnews) 237

Thread (Prozess) 28

tic(1M) 178

Tichy, W. F. 144

Tietokone 1

time(1) 139, 153

time(2) 164

Timeout 69, 81

times(2) 140

tin 237

TMOUT 69, 81, 83

tn3270(1) 223

Tool s. Werkzeug

top(1) 183

Top-Level-Domain 219

Torvalds, L. B. 200

touch(1) 55

tr(1) 100, 126, 128, 132

Transportschicht 216

trap (Shell) 36, 81, 87

traverse 61

Treatment s. Schrift

tree 61

Treiber

Compilertreiber 134

Treiberprogramm 25, 26, 44, 175

Trennzeichen (awk) 111

Trennzeichen (Shell) 69

Triple-DES 113

trn 237

tro�(1) 117

Trojanisches Pferd 188

Trombine s. Grinsling

true(1) 78

tset(1) 81, 195

TTY 69, 81

tty(1) 39, 62

Tube s. Pipe

T�urme von Hanoi (Shell) 79

Turing, A. 318

Typ

Feld s. Array

leerer T. s. void

Quali�er s. Attribut

Record s. Struktur

skalarer T. s. einfacher T.

starker T. s. System-Manager

strukturierter T. s. zusammenge-

setzter T.

Variante s. Union

Vektor) s. Array

Sach- und Namensverzeichnis 359

Verbund s. Struktur

Vereinigung s. Union

Zeichentyp s. alphanumerischer T.

Zeiger s. Pointer

type(1) 60

Typeface s. Schrift

types.h 168

typeset (Shell) 77

Tyrannosaurus 318

TZ 69, 81

�Ubersetzer s. Compiler

�ubertragen s. portieren

Uhr 33, 164, 196

ULTRIX 22

umask(1) 49, 81

Umgebung 68, 176

Umlaut 99

Umlenkung 72

umount(1M) 46

unalias (Shell) 67

uncompress(1) 57

unexpand(1) 126

Unicode 100

Uniform Resource Locator 246

Union s. Typ

uniq(1) 110, 126, 133

Universal Time Coordinated 249

UNIX 19

Aufbau 26

Editor s. vi(1)

Entstehung 21

Kern 26, 27, 196

Kommando 10, 271

Kon�guration 25

Name 22

pr�aunicische Zeit 21

System V Interface De�nition 26

Uhr 196

Vor- und Nachteile 24

unset (Shell) 81

Unterprogramm 163

untic(1M) 178

usage 88

Usenet s. Netnews

USER 69

User s. Benutzer

users(1) 62

Utilisateur s. Benutzer

Utilitaire s. Dienstprogramm

Utility s. Dienstprogramm

utime(2) 172

utmp(4) 173

UUCP 161

uudecode(1) 233

uuencode(1) 161, 233

Valeur par defaut s. Defaultwert

Value s. Wert

Variable

awk-Variable 111

Shell-V. 69

Umgebungs-V. 69

Variante) s. Typ

vedit(1) 107

Vektor (Typ) s. Typ

Vektorgra�k 154

Verantwortung 13

Verbindung

leitungsvermittelte V. 214

paketvermittelte V. 214

Vereinigung s. Typ

Verf�ugbarkeit 186

Veronica 243

verschieblich s. relozierbar

Verschl�usselung 112

ROT13 113

RSA-Verfahren 114

Symmetrische V. 113

Unsymmetrische V. 114

Version 125

Verteilerliste s. Liste

Verzeichnis 41

�ubergeordnetes V. 46

Arbeits-V. 45, 46

Ger�ate-V. 41, 44

Haus-V. s. Home-V.

Heimat-V. s. Home-V.

Home-V. 45, 176

l�oschen 58

Verzweigung (Shell) 77

vi(1) 87, 99, 132, 277

Videoband 6

view(1) 107

vim(1) 107

Viren-Scanner 191

Virtual Library (WWW) 246

Virus 190

360 Sach- und Namensverzeichnis

vis(1) 56, 126

Visual User Environment 90

Vordergrund s. Prozess

Vorlesung 6

VUE 90

WAIS 243

waissearch(1) 243

Waller, F. 91

WAN s. Wide Area Network

Warmstart 20

wc(1) 126, 132

Wecker 34

Weissinger, J. 318

Weiterbildung 13

Werkzeug 25, 55

whatis (Archie) 241

whence(1) 60

whereis(1) 60, 62

which(1) 60

while-Schleife (Shell) 77, 78

who(1) 39, 62, 97, 173, 177

whoami(1) 39

whois(1) 247

Wildcard s. Jokerzeichen

Willensfreiheit 13

Window-Manager 92, 204

Wissen 211

Wizard 8

Workaround s. Umgehung

World Wide Web 246

Wozniak, S. G. 318

write(1) 158, 162

Wurm 190

Wurzel s. root

WWW 246

www(1) 246

WYSIWYG 117

X Version 11 92

X Window System 24, 92, 224

X.400 228

X.500-Anschriften 229

X11 s. X Window System, 92

xargs(1) 58, 60, 125

xclock(1) 98

xdb(1) 138, 152

XENIX 22

Xerox 90

XFree 204

xhost(1) 94

xmodem 224

xmosaic(1) 246

xrn 237

xterm(1) 98

xwais(1) 243

Zahl

Integer s. ganze Z.

Zufallszahl 69

Zahlensystem 21, 253

Zeichen 209

Gegenschr�agstrich s. Backslash

Steuerzeichen 98

Umlaut 99

Zeichenkette s. String

zeichenorientiert 44

Zeichensatz 98

ASCII 98, 256

EBCDIC 99, 256

IBM-PC 99, 256

Intercode 100

ISO 8859-1 99

Latin-1 99, 263

Latin-2 268

ROMAN8 99, 256

Unicode 100

Zeichenstrom 41

zeigen (Maus) 94

Zeiger (Array) s. Array

Zeiger (Marke) s. Cursor

Zeiger (Typ) s. Typ

Zeilenabstand 101

Zeilenende s. Zeilenwechsel

Zeilenwechsel 128

Zeit-Server 222

Zeit�uberschreitungsfehler s. Timeout

Zeitersparnis 12

Zeitscheibe 17

Zeitschrift 6, 340

Zeitstempel s. File

Zeitzone 69, 81

Zemanek, H. 12

Zentraleinheit s. Prozessor, 4

ziehen (Maus) 94

Ziel (make) 135

zitieren s. quoten

zmodem 224

Zombie 37

Sach- und Namensverzeichnis 361

Zugri�

Zugri�srecht s. File

Zuse, K. 318

Zweiersystem s. Dualsystem

Zwischenraum s. Space

