Einfithrung in UNIX
W. Alex, G. Bernor und B. Alex

1998

Universitat Karlsruhe

Copyright: Wulf Alex, Gerhard Bernér, Universitit Karlsruhe, 1994, 1998

Email: wulf.alex@ciw.uni-karlsruhe.de
gerhard.bernoer@ciw.uni-karlsruhe.de
Telefon: 0721/608-2404

Fax: 0721/693965
Ausgabedatum: 20. April 1998.

Geschiitzte Namen wie UNIX oder Postscript werden ohne Kennzeichnung ver-
wendet.

Geschrieben mit dem Editor vi(1) auf einer Hewlett-Packard 9000/712 unter
HP-UX (UNIX System V), formatiert mit LaTeX auf einem PC unter LINUX,
ausgegeben auf einem Hewlett-Packard Laserjet 4Si unter Verwendung von Post-
script.

Alle Programmbeispiele sind im Internet mittels Anonymous-FTP von
ftp.ciw.uni-karlsruhe.de, Verzeichnis pub/skriptum/... abrufbar, ebenso
die angefiihrte elektronische Literatur im Verzeichnis pub/docs/... Ferner fin-
den sich unter http://www.ciw.uni-karlsruhe.de/technik.html Hinweise auf
weitere Informationen.

Dies ist ein Skriptum. Es ist unvollstindig und enthélt Fehler. Das Skriptum darf
vervielfiltigt, gespeichert und verbreitet werden, vorausgesetzt dafl

e die Verfasser genannt werden,
e Anderungen gekennzeichnet werden,

e kein Gewinn erzielt wird.

Das Skriptum ist bei der Skriptenverkaufsstelle des Studentenwerks der Uni-
versitit Karlsruhe erhiltlich, aulerdem per Anonymous-FTP als Postscript-File
(100 % logisch abbaubar) im Netz, siehe oben.

There is an old system called UNIX,
suspected by many to do nix,

but in fact it does more

than all systems before,

and comprises astonishing uniques.

Vorwort

Unser Buch wendet sich an Leser mit wenigen Vorkenntnissen in der Elek-
tronischen Datenverarbeitung (EDV); es soll — wie FRITZ REUTERs Urgeschicht
von Meckelnborg — ok fér Schaulkinner tau bruken sin. Fiir die wissenschaftliche
Welt zitieren wir aus dem Vorwort zu einem Buch des Mathematikers RICHARD
CouRANT: “Das Buch wendet sich an einen weiten Kreis: an Schiiler und Lehrer,
an Anfinger und Gelehrte, an Philosophen und Ingenieure.”, wobei wir ergédnzen,
dafl uns dieser Satz eine noch nicht erreichte Verpflichtung ist und vermutlich
bleiben wird. Das Nahziel ist eine Vertrautheit mit dem Betriebssystem UNIX|
der Programmiersprache C/C++ und dem internationalen Computernetz Inter-
net, die so weit reicht, dafl der Leser selbstindig weiterarbeiten kann. Ausgelernt
hat man nie.

Der Text besteht aus acht Teilen. Nach anfdnglichen Schritten zur Ein-
gewohnung in den Umgang mit dem Computer beschreibt der zweite Teil kurz
die Hardware, der dritte das Betriebssystem UNIX, der vierte die Programmier-
sprache C/C++, der fiinfte das Internet mit Schwerpunkt Netzdienste, der sech-
ste einige Anwendungen und der siebte Rechtsfragen im Zusammenhang mit der
EDV. Ein Anhang enthélt Fakten, die man immer wieder braucht. Fiir die zweite
Auflage wurden viele Kleinigkeiten verbessert, dem Internet ein eigenes Kapitel
gewidmet und die objektorientierten Zweige von C beriicksichtigt. Bei der Stoff-
auswahl haben wir uns von unserer Arbeit als Benutzer und Verwalter internatio-
nal vernetzter UNIX-Systeme sowie als Programmierer vorzugsweise in C/C++
und FORTRAN leiten lassen.

Hinsichtlich vieler Einzelheiten wird auf die Referenz-Handbiicher zu den Re-
chenanlagen und Programmiersprachen verwiesen. Wir wollen nicht den Text
durch Dinge aufbldhen, die man besser dort nachschligt. Den Umfang haben wir
auf rund 600 Seiten beschrankt, um den Leser nicht durch zu hohe Anforderungen
an seinen Geldbeutel und an seine Zeit abzuschrecken. Alles tdber UNIX, C und
das Internet ist kein Buch, sondern ein Biicherschrank.

UNIX ist das erste und einzige Betriebssystem, das auf einer Vielzahl von
Computertypen lduft. Das ist sein grofiter Vorzug. Wir haben versucht, moglichst
unabhiingig von einer bestimmten Anlage zu schreiben. Uber 6rtliche Beson-
derheiten miissen Sie sich daher aus weiteren Quellen unterrichten. In der
Universitdt Karlsruhe kommt dafiir das UNIX-Handbuch des Rechenzentrums
(http://www.uni-karlsruhe.de/ rz90/gesamt.dok.html) in Frage. Anderen-
orts gibt es dhnliche Hilfen. Eng mit UNIX zusammen hingt das X Window
System (X11), ein netzfihiges grafisches Fenstersystem, das heute fast iiberall die
Kommandozeile als Benutzerschnittstelle ersetzt hat.

vi

Die Programmiersprache C mit ihrer Erweiterung C++ ist — im Vergleich
zu BASIC etwa — ziemlich einheitlich. Wir haben die Programmbeispiele unter
mehreren Compilern getestet. Ob C/C++ besser ist als FORTRAN oder PASCAL
oder sonst irgendeine neuere Programmiersprache, dariiber 148t sich end- und
fruchtlos streiten, aber nicht mit uns.

Das Internet ist das grofite internationale Computernetz, eigentlich ein Zu-
sammenschluf} vieler regionaler Netze. Vor allem Universitéiten und Behorden sind
eingebunden, zum Teil auch die Industrie. Es ist nicht nur eine Daten-Autobahn,
sondern eine ganze Landschaft. Wir gehen etwas optimistisch davon aus, daf} jeder
Leser einen Zugang zum Netz hat. Bei der gegenwértigen raschen Entwicklung ist
der Netzzugang tatséchlich nur noch eine Zeitfrage. Diesem Buch liegt daher keine
Diskette oder Compact Disk bei, die Programme und ergénzende Texte stehen im
Netz zur Verfiigung. UNIX, C/C++ und das Internet konnten unabhéngig von-
einander betrachtet werden, in der Praxis jedoch sind sie miteinander verflochten.

An einigen Stellen gehen wir aufler auf das Wie auch auf das Warum ein. Von
Zeit zu Zeit sollte man den Blick weg von den Baumen auf den Wald richten,
sonst hduft man nur kurzlebiges Wissen an.

Man kann den Gebrauch eines Betriebssystems, einer Programmiersprache
oder der Netzdienste nicht ohne praktische Ubungen erlernen — das ist wie beim
Klavierspielen oder Kuchenbacken. Die Beispiele und Ubungen wurden auf einer
Hewlett-Packard 9000/712 unter HP-UX (UNIX V) 10.2 und einem Pentium-PC
der Marke Weingartener Katzenberg Auslese unter Microsoft DOS 6.2 sowie un-
ter LINUX entwickelt. Als Shell wurde die Korn-Shell (11/16/88) bevorzugt, als
Compiler wurden neben den zu den jeweiligen Betriebssystemen gehérenden Pro-
dukten der GNU gce 2.6.3 und der Watcom 10.6 verwendet.

Dem Text liegen eigene Erfahrungen aus vier Jahrzehnten Umgang mit elek-
tronischen Rechenanlagen und aus Kursen {iber BASIC, FORTRAN, C/C++ und
UNIX zugrunde. Wir haben auch fremde Hilfe beansprucht und danken Kollegen
in den Universitdten Karlsruhe und Lyon sowie Mitarbeitern der Firmen IBM und
Hewlett-Packard fiir schriftliche Unterlagen und miindliche Hilfe sowie zahlreichen
Studenten fiir Anregungen und Diskussionen. DR. IUR. ELKE L. BARNSTEDT, ih-
rerzeit Universitit Karlsruhe, hat freundlicherweise die erste Fassung des Kapitels
Computerrecht beigesteuert. Dariiber hinaus haben wir nach Kréften das Internet
angezapft und viele dort umlaufende Guides, Primers, Tutorials und Sammlungen
von Frequently Asked Questions (FAQs) verwendet. Dem Springer-Verlag danken
wir dafiir, dafl er uns geholfen hat, aus einem lockeren Skriptum ein ernsthaftes
Buch zu machen.

So eine Arbeit wird eigentlich nie fertig, man muf} sie fiir fertig erkldren, wenn
man nach Zeit und Umstidnden das Moglichste getan hat, um es mit JOHANN
WOLFGANG VON GOETHE zu sagen (Italienische Reise; Caserta, den 16. Mérz
1787). Wir erkliren unsere Arbeit fiir unfertig und bitten, uns die Mingel
nachzusehen.

Weingarten (Baden), 4. Januar 1998 Wulf Alex

Ubersicht

[\V]

T Q =7 #H O Q w o oe» @«

-

G

= B R

N

0)

Uber den Umgang mit Computern
UNIX

Internet

Zahlensysteme

Zeichensitze

Die wichtigsten UNIX-Kommandos
Besondere UNIX-Kommandos
UNIX-Systemaufrufe
UNIX-Signale

File-Kennungen

Slang im Netz

Formelbeispiele LaTeX

ISO 3166 Lindercodes

Requests For Comment (RFCs)
Frequently Asked Questions (FAQs)
Karlsruher Test

Zeittafel

Literatur

Sach- und Namensverzeichnis

vii

15

213

253

256

271

277

280

282

284

289

293

302

304

309

310

318

324

343

Zum Gebrauch

e Hervorhebungen im Text werden kursiv dargestellt.

e Zitate und Titel von Verdffentlichungen oder Abschnitten werden im Text
kursiv markiert.

e In Aussagen iiber Worter werden diese kursiv abgesetzt.

e Stichworter (wie sie fiir einen Vortrag oder eine Vorlesung bendtigt werden)
erscheinen in fetterer Schrift.

e Namen von Personen werden in KAPITALCHEN geschrieben.

e Eingaben von der Tastatur und Ausgaben auf den Bildschirm werden in
Schreibmaschinenschrift wiedergegeben.

e Hinsichtlich der deutschen Rechtschreibung befinden wir uns in einem Uber-
gangsstadium.

e Hinter UNIX-Kommandos folgt oft in Klammern die Nummer der Sekti-
on des Referenz-Handbuches, in der das Kommando erldutert wird. Diese
Nummer samt Klammern ist beim Aufruf des Kommandos nicht einzugeben.

e Suchen Sie die englische oder franzésische Ubersetzung eines deutschen Fach-
wortes, so finden Sie diese bei der erstmaligen Erlduterung des deutschen
Wortes. Die Ubersetzung folgt in Klammern hinter dem deutschen Wort und
ist nicht durch eine besondere Schrift gekennzeichnet.

e Suchen Sie die deutsche Ubersetzung eines englischen oder franzosischen
Fachwortes, so finden Sie einen Verweis im Sach- und Namensverzeichnis.

e An einigen Stellen wird auf Abschnitte aus dem C/C++-Skriptum verwie-
sen. Dies riihrt daher, dafl beide Skripten gemeinsam die Grundlage fiir ein
Buch bilden. Ebenso fehlt in beiden Skripten das Kapitel iiber Hardware.

e UNIX verstehen wir immer im weiteren Sinne als die Familie der aus dem
urspriinglich bei AT&T um 1970 entwickelten Unix abgeleiteten Betriebs-
systeme, nicht als geschiitzten Namen eines bestimmten Produktes.

e Wir geben moglichst genaue Hinweise auf weiterfiihrende Dokumente im
Netz. Der Leser sollte sich aber dessen bewufit sein, daf§ sich sowohl Inhalte
wie Adressen (URLs) rasch é&ndern.

e Unter Benutzer, Programmierer, System-Manager usw. verstehen wir immer
auch ihre weiblichen Erscheinungsformen, ohne dies hervorzuheben.

e Wir reden den Benutzer mit Sie an, obwohl unter Studenten und im Netz die
Anrede mit Du iiblich ist. Gegenwértig erscheint uns diese Wahl passender.
In Zukunft mag sich das &ndern.

viil

Inhaltsverzeichnis

1 Uber den Umgang mit Computern

1.1 Was macht ein Computer?
1.2 Woraus besteht ein Computer?
1.3 Was mufl man wissen?
1.4 Wie lduft eine Sitzung ab?
1.5 Wo schldgt man nach? oL
1.6 Warum verwendet man Computer (nicht)?

UNIX
2.1 Grundbegriffe
2.1.1 Braucht man ein Betriebssystem?
2.1.2 Verwaltung der Betriebsmittel
2.1.3 Verwaltung der Daten
2.1.4 Einteilung der Betriebssysteme
2.1.5 Laden des Betriebssystems
2.2 Das Besondere an UNIX
2.2.1 Die praunicische Zeit L.
2.2.2 Entstehungo L oo
2.2.3 Vor- und Nachteile
2.2.4 UNIX-Philosophie.
225 Aufbau.
2.3 Prozesse
2.3.1 Wasist ein Prozess?
2.3.2 Prozesserzeugung (exec, fork)
2.3.3 Selbsténdige Prozesse (nohup)
2.3.4 Prioritét (nice)
2.3.5 Damonen o
2.3.5.1 Was ist ein Ddmon?
2.3.5.2 Ddmon mit Uhr (cron)
2.3.5.3 Line Printer Scheduler (lpsched)
2.3.5.4 Internet-Damon (inetd)
2.3.5.5 Mail-Damon (sendmail)
2.3.6 Interprozess-Kommunikation (IPC)
2.3.6.1 IPC mittels Files
2.3.6.2 Pipes
2.3.6.3 Named Pipe (FIFO)
2.3.6.4 Signale (kill, trap)
2.3.6.5 Nachrichtenschlangen
2.3.6.6 Semaphore

X

2.4

2.5

2.6

2.7

Inhaltsverzeichnis

2.3.6.7 Gemeinsamer Speicher 38
2.3.6.8 Sockets 38
2.3.6.9 Streams 38
2.3.7 Memo Prozesse, 38
2.3.8 Ubung Prozesse, 39
Files o o 41
2.4.1 Filearten 41
2.4.2 File-System — Sicht von unten 41
2.4.3 File-System — Sicht von oben 42
2.4.4 Zugriffsrechteo 47
2.4.5 Set-User-ID-Bit 49
2.4.6 Zeitstempelo o1
2.4.7 Inodes und Links 52
2.4.8 stdin, stdout, stderr 55
2.4.9 Schreiben und Lesen von Files 56
2.4.10 Archivierer (tar, gtar) 56
2.4.11 Packer (compress, gzip) 57
2.4.12 Weitere Kommandos 58
2.4.13 Memo Files 61
2.414 Ubung Files 62
Shells. 63
2.5.1 Gespréachspartner L. 63
2.5.1.1 Kommandointerpreter 63
2.5.1.2 Umgebung 68
25.1.3 Umlenkung 72
2.5.2 Shellscripts 73
2.5.3 Noch eine Scriptsprache: Perl 84
254 Memo Shells. 86
2.5.5 Ubung Shells 87
Benutzeroberflichen L. 88
2.6.1 Lokale Benutzeroberflichen 88
2.6.1.1 Kommandozeilen-Eingabe 88
2.6.1.2 Meniis 88
2.6.1.3 Fenster, curses-Bibliothek 89
2.6.1.4 Grafische Fenster 90
2.6.1.5 Multimediale Oberflachen 91
2.6.1.6 Software fiir Behinderte 91
2.6.2 X Window System (X11) 92
2.6.2.1 Zweck 92
2.6.2.2 OSF/Motif 94
2.6.3 Memo Oberflichen, X Window System 96
2.6.4 Ubung Oberflichen, X Window System 97
Writer’s Workbench o000 98
2.7.1 Zeichensitze oder die Umlaut-Frage 98
2.7.2 Reguldre Ausdriicke oL 101

2.7.3 Editoren (ed, ex, vi, elvis, vim) 104

Inhaltsverzeichnis x1

2.8

2.9

2.10

2.7.4 Universalgenie (emacs) 107
2.7.4.1 Einrichtung 0oL 107
2.74.2 Benutzung L 108
2.7.5 Joe’s Own Editor (joe) 108
2.7.6 Stream-Editor (sed) 109
2.7.7 Listenbearbeitung (awk) 110
2.7.8 Verschliisseln (crypt) 112
2.7.8.1 Aufgaben der Verschliisselung 112
2.7.8.2 Symmetrische Verfahren 113
2.7.8.3 Unsymmetrische Verfahren 114
2784 Angriffe oo 115
2.7.9 Formatierer (nroff, LaTeX) 116
2.7.9.1 Inhalt, Struktur und Aufmachung 116
2.7.9.2 Ein einfacher Formatierer (adjust) 117
2.7.9.3 UNIX-Formatierer (nroff, troff) 117
2794 LaTeX oo oo 118
2.7.9.5 Computer Aided Writing 124
2.7.10 Weitere Werkzeuge (grep, diff, sort usw.) 125
2.7.11 Textfiles aus anderen Welten (DOS, Mac) 128
2.7.12 Druckerausgabe (Ip,lpr) 128
2.7.13 Memo Writer’s Workbench 131
2.7.14 Ubung Writer’s Workbench 132
Programmer’s Workbench 133
2.8.1 Nochmals die Editoren 133
2.8.2 Compiler und Linker (cc, ccom, 1d) 134
2.8.3 Unentbehrlich (make) 135
2.84 Debugger (xdb) 138
2.8.5 Profiler (time, gprof) oL 139
2.8.6 Archive, Bibliotheken (ar) 141
2.8.7 Weitere Werkzeuge 143
2.8.8 Programmverwaltung mit RCS und SCCS 144
2.8.9 Memo Programmer’s Workbench 149
2.8.10 Ubung Programmer’s Workbench 150
Grafikers Atelier. 154
2.9.1 Grundbegriffe oo 154
2.9.2 Diagramme (gnuplot) 155
2.9.3 Zeichnungen (xfig, xpaint) 157
2.9.4 Funktions-Bibliotheken 157
2.9.4.1 GNU Graphics Library () 157
2942 Starbase oL 157
2.9.4.3 Graphical Kernel System (GKS) 157
2.9.5 Memo Grafik oL 157
2.9.6 Ubung Grafik 158
Kommunikation oo Lo 158
2.10.1 Message (write, talk) 158
2.10.2 Mail (mail, mailx, elm) 159

xi1

2.11

2.12

2.13
2.14
2.15

2.16

Inhaltsverzeichnis

2.10.3 Neuigkeiten (news) 160
2.10.4 Message of the Day, 161
2.10.5 Ehrwiirdig: UUCP o 161
2.10.6 Memo Kommunikation 162
2.10.7 Ubung Kommunikation, 162
Systemaufrufe o 163
2.11.1 Was sind Systemaufrufe? 163
2.11.2 Beispiel Systemzeit (time) 164
2.11.3 Beispiel File-Informationen (access, stat, open) 167
2.11.4 Memo Systemaufrufe 0L 172
2.11.5 Ubung Systemaufrufe 172
Systemverwaltung oL 173
2.12.1 Systemgenerierung und -update 173
2.12.2 Systemstart und -stop 175
2.12.3 Benutzerverwaltung 176
2.12.4 Geréteverwaltung oo 178

2.124.1 Terminals L. 178
2.12.5 Einrichten von Damonen 180
2.12.6 Storungen und Fehler 182
2.12.7 Pflege des File-Systems 182
2.12.8 Weitere Dienstleistungen 183
2.12.9 Accounting Systemo 184
2.12.10Sicherheit o 185

2.12.10.1 Betriebssicherheit 185

2.12.10.2 Datensicherheit 186
2.12.11 Memo Systemverwaltung 194
2.12.12 Ubung Systemverwaltung 194
Echtzeit-Erweiterungen 195
GNUisnot UNIX o o o 196
UNIX auf PCs. o o 198
2.15.1 AT&T UNIX ..o o 198
2.15.2 MINIXo 199
2153 LINUX . . o oo 200

2.15.3.1 Entstehung 0oL 200

2.15.3.2 Distributioneno 200

2.15.3.3 Eigenschaften 201

2.15.3.4 Installation 202

2.15.3.5 GNU und LINUX 203

2.15.3.6 XFree - X11 fiir LINUX 204

2.15.3.7 Dokumentation 204

2.15.3.8 Installations-Beispiel 206
2.15.4 386BSD, NetBSD, FreeBSD 206
2.15.5 MKS-Tools und andere 207

Exkurs iber Informationen 208

Inhaltsverzeichnis

3 Internet
3.1 Grundbegriffe oo
3.2 Schichtenmodell oo
3.3 Entstehung
3.4 Protokolle (TCP/IP)
3.5 Adressen und Namen, Name-Server
3.6 BelWue
3.7 Netzdienste im Uberblick
3.8 Terminal-Emulatoren (telnet, rlogin, ssh)
3.9 File-Transfer (kermit, ftp, fsp)
3.10 Anonymous-FTP
3.11 Electronic Mail (Email).
3.11.1 Grundbegriffe 0oL
3.11.2 Mailing-Listen 0.
3.11.3 Privat und authentisch (PGP, PEM)
3.12 Neuigkeiten (Usenet, Netnews)
3.13 Netzgeschwiitz (irc)
3.14 Suchhilfen: Archie, Gopher, WAIS
3.15 WWW —das World Wide Web
3.15.1 Hypertext
3.15.2 Hypertext Markup Language (HTML)
3.153 DasWeb
3.16 Navigationshilfen (nslookup, whois, finger)
3.17 Die Zeit im Netz (ntp)
3.17.1 Aufgabe
3.17.2 UTC — Universal Time Coordinated
3.17.3 Einrichtung o oo

A Zahlensysteme

B Zeichensitze
B.1 EBCDIC, ASCII, Roman8, IBM-PC
B.2 German-ASCII
B.3 ASCII-Steuerzeichen
B.4 Latin-1 (ISO 8859-1)o
B.5 Latin-2 (ISO 8859-2)

C Die wichtigsten UNIX-Kommandos

D Besondere UNIX-Kommandos
D.1 printf(3), scanf(3)
D.2 vi(l)
D.3 emacs(l)
D4 joe(l)
D5 ftp(1) . . oo

E UNIX-Systemaufrufe

xiii

213
213
215
216
217
219
222
222
223
224
225
228
228
234
235
237
241
241
244
244
245
246
247
249
249
249
251

253

256
256
261
262
263
268

271

277
277
277
278
278
278

280

o Q=

i

L

M

N

@)

UNIX-Signale
File-Kennungen
Slang im Netz

Formelbeispiele LaTeX

[.1 Gelatexte Formeln
[.2 Formeln im Quelltext

ISO 3166 Liandercodes

Requests For Comment (RFCs)

K.1 Ausgewédhlte RFCs, ohne FYIs.
K2 AlleFYIs

Frequently Asked Questions (FAQs)
Karlsruher Test
Zeittafel

Literatur

Sach- und Namensverzeichnis

Inhaltsverzeichnis

282

284

289

293

............ 293
............ 296

302

304

............ 304
............ 307

309

310

318

324

343

Abbildungen

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1

Aufbau eines Computers 4
Aufbau UNIX 27
Prozesse 30
File-System, untere Ebene 42
Filehierarchie 44
Harter Link o 53
Weicher Linko oo 54
X Window Systemo 93
OSF/Motif-Fenster 95
Grafik-Programme oo 155
gnuplot von (Sin X)/X 156
Ubertragung einer Information 210
ISO-Schichtenmodell 215

XV

Programme

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10
211
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40

Shellscript Signalbehandlung 37
C-Programm Zeitstempel 52
Shellscript Sicheres Léschen o 0 0 0 0 0 0000 29
Shellscript Filehierarchie 61
C-Programm Umgebung 71
Shellscript Frequenzworterliste 73
Shellscript Positionsparameter 75
Shellscript Benutzerliste 76
Shellscript Menii o 7
Shellscript Primzahlen 7
Shellscript Anzahl Files. 78
Shellscript Frage oL 78
Shellscript Tiirme von Hanoi 79
Shellscript /etc/profileo Lo 83
Shellscript /etc/.profileo 83
Perlscript Primzahlen o000 85
Perlscript Anzahl Biicher 86
C-Programm Zeichenumwandlung 100
Shellscript Textersetzung 106
awk-Script Sachregister oo 111
LaTeX-File alex.sty 122
LaTeX-File main.tex 123
Shellscript Telefonverzeichnis 125
Shellscript Stilanalyse. L. 127
Shellscript Druckerspooler 130
make-Fileo 135
Erweitertes make-File o000 136
C-Programm mit Funktionsbibliothek 142
C-Funktion Mittelwert 142
C-Funktion Varianz oL 143
Makefile zum Sortierprogramm 146
Include-File zum Sortierprogramm 146
C-Programm Sortieren 147
C-Funktion Bubblesort 149
C-Programm mit Fehlern 151
gnuplot-Seript 156
C-Programm Systemzeit 165
FORTRAN-Programm Systemzeit 166
C-Programm File-Informationen 171
Shellscript Home-Verzeichnisse 183

XVvi

Programme xvii

2.41 C-Programm Trojanisches Pferd 189
2.42 Shellscript Backup Kassette 193
2.43 Shellscript Restore Kassette 193
2.44 Shellscript Backup Spule o L. 193

2.45 Shellscript Restore Spule 193

xviii Programme

Rien n’est simple.
Sempé

1 Uber den Umgang mit Computern

1.1 Was macht ein Computer?

Eine elektronische Datenverarbeitungsanlage, ein Computer, ist ein Werkzeug,
mit dessen Hilfe man Informationen

e speichert (Anderung der zeitlichen Verfiigharkeit),
e iibermittelt (Anderung der &rtlichen Verfiigbarkeit),
e crzeugt oder verindert (Anderung des Inhalts).

Fiir Informationen sagt man auch Nachrichten oder Daten®. Sie lassen sich
durch gesprochene oder geschriebene Worter, Zahlen, Bilder oder im Computer
durch elektrische oder magnetische Zustinde darstellen. Speichern heifit, die In-
formation so zu erfassen und aufzubewahren, dafl sie am selben Ort zu einem
spateren Zeitpunkt unverdndert zur Verfiigung steht. Ubermitteln heiBt, eine
Information unveréndert einem anderen — in der Regel, aber nicht notwendiger-
weise an einem anderen Ort — verfiighar zu machen, was wegen der endlichen
Geschwindigkeit aller irdischen Vorgéinge Zeit kostet. Da sich elektrische Trans-
porte jedoch mit Lichtgeschwindigkeit (nahezu 300 000 km/s) fortbewegen, spielt
der Zeitbedarf nur in seltenen Fillen eine Rolle. Die Juristen denken beim Uber-
mitteln weniger an die Ortsinderung als an die Anderung der Verfiigungsgewalt.
Zum Speichern oder Ubermitteln mufi die physikalische Form der Information
meist mehrmals verdindert werden, was sich auf den Inhalt auswirken kann, aber
nicht soll. Verdndern heif3t inhaltlich verindern: suchen, auswéhlen, verkniipfen,
sortieren, priifen, sperren oder l6schen. Tétigkeiten, die mit Listen, Karteien, Re-
chenschemata zu tun haben oder die mit geringen Abweichungen hiufig wieder-
holt werden, sind mit Computerhilfe schneller und sicherer zu bewéltigen. Com-
puter finden sich nicht nur in Form grauer Késten auf oder neben Schreibtischen,
sondern auch versteckt in Fotoapparaten, Waschmaschinen, Heizungsregelungen,
Autos und Telefonen.

Das Wort Computer stammt aus dem Englischen, wo es vor hundert Jahren
eine Person bezeichnete, die berufsmifig rechnete, zu deutsch ein Rechenknecht.
Heute versteht man nur noch die Maschinen darunter. Das englische Wort wieder-
um geht auf lateinisch computare zuriick, was berechnen, veranschlagen, erwégen,
iiberlegen bedeutet. Die Franzosen sprechen vom ordinateur, die Spanier vom

'Schon geht es los mit den FuBnoten: Bei genauem Hinsehen gibt es Unterschiede
zwischen Information, Nachricht und Daten, siehe Abschnitt 2.16 Fzkurs tiber Informa-
tionen.

2 1 Uber den Umgang mit Computern

ordenador, dessen lateinischer Ursprung ordo Reihe, Ordnung bedeutet. Die Por-
tugiesen — vielleicht um sich von den Spaniern abzuheben — verwenden das Wort
computador. Die Schweden nennen die Maschine dator, analog zu Motor, die Fin-
nen tietokone, was Wissensmaschine heif3t. Hierzulande sprach man eine Zeit lang
von FElektronengehirnen, etwas weniger respektvoll von Blechbregen. Wir ziehen
das englische Wort Computer dem deutschen Wort Rechner vor, weil uns Rechnen
zu eng mit dem Begriff der Zahl verbunden ist.

Die Wissenschaft von der Informationsverarbeitung ist die Informatik, eng-
lisch Computer Science, franzosisch Informatique. Thre Wurzeln sind die Mathe-
matik und die Elektrotechnik; kleinere Wurzelausldufer reichen auch in Wissen-
schaften wie Physiologie und Linguistik. Sie zdhlt zu den Ingenieurwissenschaften.
Der Begriff Informatik? ist rund vierzig Jahre alt, Computer gibt es seit fiinfzig
Jahren, Uberlegungen dazu stellten CHARLES BABBAGE vor rund zweihundert
und GOTTFRIED WILHELM LEIBNIZ vor vierhundert Jahren an, ohne Erfolg bei
der praktischen Verwirklichung ihrer Gedanken zu haben. Die Bedeutung der In-
formation war dagegen schon im Altertum bekannt. Der Liufer von Marathon
setzte 490 vor Christus sein Leben daran, eine Information so schnell wie méglich
in die Heimat zu iibermitteln. Neu in unserer Zeit ist die Méglichkeit, Informatio-
nen maschinell zu verarbeiten.

Informationsverarbeitung ist nicht an Computer gebunden. Insofern kdénnte
man Informatik ohne Computer betreiben und hat das — unter anderen Namen
— auch getan. Die Informatik beschrinkt sich insbesondere nicht auf das Herstel-
len von Computerprogrammen. Der Computer hat jedoch die Aufgaben und die
Moglichkeiten der Informatik ausgeweitet. Unter Technischer Informatik — ge-
legentlich Létkolben-Informatik geheiflen — versteht man den elektrotechnischen
Teil. Den Gegenpol bildet die Theoretische Informatik — nicht zu verwech-
seln mit der Informationstheorie — die sich mit formalen Sprachen, Grammati-
ken, Semantik, Automaten, Entscheidbarkeit, Vollstindigkeit und Komplexitit
von Problemen beschiftigt. Computer und Programme sind in der Angewand-
ten Informatik zu Hause. Die Grenzen innerhalb der Informatik sowie zu den
Nachbarwissenschaften sind jedoch unscharf und durchlissig.

Computer sind Automaten, Maschinen, die auf bestimmte Eingaben mit be-
stimmten Téatigkeiten und Ausgaben antworten. Dieselbe Eingabe fiihrt immer
zu derselben Ausgabe; darauf verlassen wir uns. Deshalb ist es im Grundsatz
unmoglich, mit Computern Zufallszahlen zu erzeugen (zu wiirfeln). Zwischen ei-
nem Briefmarkenautomaten (Postwertzeichengeber) und einem Computer besteht
jedoch ein wesentlicher Unterschied. Ein Briefmarkenautomat nimmt nur Miinzen
entgegen und gibt nur Briefmarken aus, mehr nicht. Es hat auch mechanische
Rechenautomaten gegeben, die fiir spezielle Aufgaben wie die Berechnung von
Geschoflbahnen oder Gezeiten eingerichtet waren. Das Verhalten von mechani-
schen Automaten ist durch ihre Mechanik unverénderlich vorgegeben.

Bei einem Computer hingegen wird das Verhalten durch ein Programm be-
stimmt, das im Gerét gespeichert ist und leicht ausgewechselt werden kann. Der-

2Die friiheste uns bekannte Erwihnung des Begriffes findet sich in der Firmenzeit-
schrift SEG-Nachrichten (Technische Mitteilungen der Standard Elektrik Gruppe) 1957
Nr. 4, S. 171: KARL STEINBUCH, Informatik: Automatische Informationsverarbeitung.

1.1 Was macht ein Computer? 3

selbe Computer kann sich wie eine Schreibmaschine, eine Rechenmaschine, eine
Zeichenmaschine, ein Telefon- Anrufbeantworter, ein Schachspieler oder wie ein Le-
xikon verhalten, je nach Programm. Er ist ein Universal-Automat. Der Verwand-
lungskunst sind natiirlich Grenzen gesetzt, Kaffee kochen sie vorldufig nicht. Das
Wort Programm ist lateinisch-griechischen Ursprungs und bezeichnet ein 6ffentli-
ches Schriftstiick wie ein Theater- oder Parteiprogramm. Im Zusammenhang mit
Computern ist an ein Arbeitsprogramm zu denken. Die englische Schreibweise ist
programme, Computer ziehen jedoch das amerikanische program vor. Die Gallier
reden hédufiger von einem logiciel als von einem programme, wobei logiciel das
gesamte zu einer Anwendung gehorende Programmpaket meint — bestehend aus
mehreren Programmen samt Dokumentation.

Ebenso wie man die Grofle von Massen, Kriften oder Langen mif3t, wer-
den auch Informationsmengen gemessen. Nun liegen Informationen in unter-
schiedlicher Form vor. Sie lassen sich jedoch alle auf Folgen von zwei Zeichen
zuriickfithren, die mit 0 und 1 oder H (high) und L (low) bezeichnet werden. Sie
diirfen auch Anna und Otto dazu sagen, es miissen nur zwei verschiedene Zeichen
sein. Diese einfache Darstellung wird binér genannt, zu lateinisch bini = je zwei.
Die Bin&rdarstellung beliebiger Informationen durch zwei Zeichen darf nicht
verwechselt werden mit der Dualdarstellung von Zahlen, bei der die Zahlen auf
Summen von Potenzen zur Basis 2 zuriickgefiihrt werden. Eine Dualdarstellung
ist immer auch binér, das Umgekehrte gilt nicht.

Warum bevorzugen Computer bindre Darstellungen von Informationen? Als
die Rechenmaschinen noch mechanisch arbeiteten, verwendeten sie das Dezimal-
system, denn es ist einfach, Zahnrider mit 20 oder 100 Zahnen herzustellen. Viele
elektronische Bauelemente hingegen kennen — von Wackelkontakten abgesehen —
nur zwei Zustdnde wie ein Schalter, der entweder offen oder geschlossen ist. Mit
binédren Informationen hat es die Elektronik leichter. In der Anfangszeit hat man
aber auch dezimal arbeitende elektronische Computer gebaut.

Eine 0 oder 1 stellt eine Binérziffer dar, englisch binary digit, abgekiirzt Bit.
Ein Bit ist das Datenatom. Hingegen ist 1 bit (kleingeschrieben) die Mafeinheit
fiir die Entscheidung zwischen 0 und 1 im Sinne der Informationstheorie von
CLAUDE ELwoOD SHANNON. Kombinationen von acht Bits spielen eine grofe
Rolle, sie werden daher zu einem Byte oder Oktett zusammengefafit. Auf dem
Papier wird ein Byte oft durch ein Paar hexadezimaler Ziffern — ein Hexpérchen
— wiedergegeben. Das Hexadezimalsystem — das Zahlensystem zur Basis 16 —
wird uns héufig begegnen, in UNIX auch das Oktalsystem zur Basis 8. Durch
ein Byte lassen sich 28 = 256 unterschiedliche Zeichen darstellen. Das reicht fiir
unsere europiischen Buchstaben, Ziffern und Satzzeichen. Ebenso wird mit einem
Byte eine Farbe aus 256 unterschiedlichen Farben ausgewihlt. 1024 Byte ergeben
1 Kilobyte, 1024 Kilobyte sind 1 Megabyte, 1024 Megabyte sind 1 Gigabyte, 1024
Gigabyte machen 1 Terabyte.

Der Computer verarbeitet die Informationen in Einheiten eines Maschinen-
wortes, das je nach der Breite der Datenregister des Prozessors ein bis 16 By-
tes umfaft. Der durchschnittliche Benutzer kommt mit dieser Einheit selten in
Beriihrung; fiir den Assembler-Programmierer sind die Datentypen am einfach-
sten, die sich gerade in einem Maschinenwort darstellen lassen.

4 1 Uber den Umgang mit Computern

1.2 Woraus besteht ein Computer?

Der Benutzer sieht von einem Computer vor allem den Bildschirm?® (screen,
écran) und die Tastatur (keyboard, clavier), auch Hackbrett genannt. Diese bei-
den Geréte werden zusammen als Terminal (terminal, terminal) bezeichnet und
stellen die Verbindung zwischen Benutzer und Computer dar. Mittels der Tastatur
spricht der Benutzer zum Computer, auf dem Bildschirm erscheint die Antwort.

Bildschirm Tastatur
\Terminal
N\ /
Arbeits- Massen-
) | CPU |~+~1—)
speicher speicher
Prozessor ‘ \
Drucker Netze

Abb. 1.1: Aufbau eines Computers

Der eigentliche Computer, die Prozessoreinheit (Zentraleinheit, central unit,
unité centrale) ist in die Tastatur eingebaut wie beim Schneider CPC 464 oder
Commodore C64, in das Bildschirmgehiuse wie beim ersten Apple Macintosh oder
in ein eigenes Geh#use. Seine wichtigsten Teile sind der Zentralprozessor (CPU,
central processing unit, processeur central) und der Arbeitsspeicher (memory,
mémoire centrale, mémoire secondaire).

Um recht in Freuden arbeiten zu kénnen, braucht man noch einen Massen-
speicher (mass storage, mémoire de masse), der seinen Inhalt nicht vergifit, wenn
der Computer ausgeschaltet wird. Nach dem heutigen Stand der Technik arbei-
ten die meisten Massenspeicher mit magnetischen Datentrigern dhnlich wie Ton-
oder Videobandgerédte. Tatsédchlich verwendeten die ersten Personal Computer
Tonbandkassetten. Weit verbreitet sind scheibenférmige magnetische Datentriager

3Aus der Fernsehtechnik kommend wird der Bildschirm oft Monitor genannt. Da
dieses Wort hier nicht ganz trifft und auch ein Programm bezeichnet, vermeiden wir es.

1.3 Was muf} man wissen? 5

in Form von Disketten (floppy disk, disquette) und Festplatten (hard disk,
disque dur).

Disketten, auch Schlappscheiben genannt, werden nach Gebrauch aus dem
Laufwerk (drive, dérouleur) des Computers herausgenommen und im Schreib-
tisch vergraben oder mit der Post verschickt. Festplatten verbleiben in ihrem
Laufwerk.

Da man gelegentlich etwas schwarz auf weifl besitzen méchte, gehort zu den
meisten Computern ein Drucker (printer, imprimante). Ferner ist ein Computer,
der etwas auf sich hélt, heutzutage durch ein Netz (network, reseau) mit anderen
Computern rund um die Welt verbunden. Damit ist die Anlage vollsténdig.

Was um den eigentlichen Computer (Prozessoreinheit) herumsteht, wird als
Peripherie bezeichnet. Die peripheren Gerite sind iiber Schnittstellen (Daten-
steckdosen, interface) angeschlossen.

In Abb. 1.1 sehen wir das Ganze schematisch dargestellt. In der Mitte die
CPU, untrennbar damit verbunden der Arbeitsspeicher. Um dieses Paar herum die
Peripherie, bestehend aus Terminal, Massenspeicher, Drucker und Netzanschluf.
Sie konnen aber immer noch nichts damit anfangen, allenfalls heizen. Es fehlt
noch die Intelligenz in Form eines Betriebssystems (operating system, systéme
d’exploitation) wie UNIX.

1.3 Was mufl man wissen?

Ihre ersten Gedanken werden darum kreisen, wie man dem Computer verniinftige
Reaktionen entlockt. Sie brauchen keine Angst zu haben: durch Tastatureinga-
ben (aufier Kaffee und &hnlichen Programming Fluids) ist ein Computer nicht zu
zerstoren. Zum Arbeiten mit einem Computer mufl man drei Dinge lernen:

e den Umgang mit der Hardware*,

e den Umgang mit dem Betriebssystem,

e den Umgang mit einem Anwendungsprogramm (application program,
logiciel d’application), zum Beispiel einer Textverarbeitung.

Dariiber hinaus sind Englischkenntnisse und Ubung im Maschinenschreiben
niitzlich. Das Lernen besteht zunéichst darin, sich einige hundert Begriffe anzueig-
nen. Das ist in jedem Wissensgebiet so. Man kann nicht iiber Primzahlen, Wahr-
scheinlichkeitsamplituden, Sonette oder Sonaten nachdenken oder reden, ohne sich
vorher iiber die Begriffe klargeworden zu sein.

*Wir wissen, daf§ wir ein deutsch-englisches Kauderwelsch gebrauchen, aber wir ha-
ben schon so viele schlechte Ubersetzungen der amerikanischen Fachworter gelesen, daf
wir der Deutlichkeit halber teilweise die amerikanischen Worter vorziehen. Oft sind auch
die deutschen Worter mit unerwiinschten Assoziationen befrachtet. Wenn die Medizi-
ner lateinische Fachausdriicke verwenden, die Musiker italienische und die Gastronomen
franzosische, warum sollten dann die Informatiker nicht auch ihre termini technici aus
einer anderen Sprache iibernehmen diirfen? Die Gallier sind da streng: Es ist bei Strafe
verboten, in der Offentlichkeit von Software zu reden. Man hat Logiciel zu sagen.

6 1 Uber den Umgang mit Computern

Die Hardware (matériel) umschlieft alles, was aus Kupfer, Eisen, Kunststof-
fen, Glas und dergleichen besteht, was man anfassen kann. Dichterfiirst FRIED-
RICH VON SCHILLER hat den Begriff Hardware trefflich gekennzeichnet:

Leicht beieinander wohnen die Gedanken,
doch hart im Raume stoflen sich die Sachen.

Die Verse stehen in Wallensteins Tod im 2. Aufzug, 2. Auftritt. WALLENSTEIN
spricht sie zu MAX PiccoLoMINI. Was sich hart im Raume stéfit, gehort zur
Hardware, was leicht beieinander wohnt, die Gedanken, ist Software (logiciel).
Die Gedanken stecken in den Programmen und den Daten. Mit Worten von RENE
DESCARTES (“cogito ergo sum”) koénnte man die Software als res cogitans, die
Hardware als res extensa ansehen, wobei keine ohne die andere etwas bewirken
kann. Er verstand unter der res cogitans allerdings nicht nur das Denken, son-
dern auch das Bewufitsein und die Seele und hétte jede Beziehung zwischen einer
Maschine und seiner res cogitans abgelehnt.

Die reine Hardware — ohne Betriebssystem — tut nichts anderes als elektrische
Energie in Wéarme zu verwandeln. Sie ist ein Ofen, mehr nicht. Das Betriebs-
system ist ein Programm, das diesen Ofen befihigt, Daten einzulesen und in be-
stimmter Weise zu antworten. Hardware plus Betriebssystem machen den Com-
puter aus. Wir bezeichnen diese Kombination als System. Andere sagen auch
Plattform dazu. Eine bestimmte Hardware kann mit verschiedenen Betriebssyste-
men laufen, umgekehrt kann dasselbe Betriebssystem auch auf unterschiedlicher
Hardware laufen (gerade das ist eine Stirke von UNIX).

Bekannte Betriebssysteme sind MS-DOS und Windows 95 bzw. N'T' von Micro-
soft sowie IBM OS/2 fiir IBM-PCs und ihre Verwandtschaft, VMS fiir die VAXen
der Digital Equipment Corporation (DEC) sowie die UNIX-Familie fiir eine ganze
Reihe von mittleren Computern verschiedener Hersteller.

Um eine bestimmte Aufgabe zu erledigen — um einen Text zu schreiben oder
ein Gleichungssystem zu l6sen — braucht man noch ein Anwendungsprogramm.
Dieses kauft man fertig, zum Beispiel ein Programm zur Textverarbeitung oder
zur Tabellenkalkulation, oder schreibt es selbst. In diesem Fall mufl man eine Pro-
grammiersprache (programming language, langage de programmation) beherr-
schen. Die bekanntesten Sprachen sind BASIC, COBOL, FORTRAN, PASCAL
und C/C++. Es gibt mehr als tausend®.

Das notige Wissen kann man auf mehreren Wegen erwerben und auf dem
laufenden halten:

e Kurse, Vorlesungen
e Lehrbiicher, Skripten
Zeitschriften

Electronic Information

e Lernprogramme

e Videobiander

°Zum Vergleich: es gibt etwa 6000 lebende natiirliche Sprachen. Die Bibel — oder
Teile von ihr — ist in rund 2000 Sprachen iibersetzt.

1.3 Was muf} man wissen? 7

Gute Kurse oder Vorlesungen verbinden Theorie und Praxis, das heifit Unter-
richt und Ubungen am Computer. Zudem kann man Fragen stellen und bekommt
Antworten. Nachteilig ist der feste Zeitplan. Die schwierigen Fragen tauchen im-
mer erst nach Kursende auf. Viele Kurse sind auch teuer.

Bei den Biichern muff man zwischen Lehrbiichern (Einfiihrungen, Tutori-
als, Primers, Guides) und Nachschlagewerken (Referenz-Handbiicher, Referen-
ce Manuals) unterscheiden. Lehrbiicher fithren durch das Wissensgebiet, treffen
eine Auswahl, werten oder diskutieren und verzichten auf Einzelheiten. Nach-
schlagewerke sind nach Stichwortern geordnet, beschreiben alle Einzelheiten und
helfen bei allgemeinen Schwierigkeiten gar nicht. Will man wissen, welche Werk-
zeuge UNIX zur Textverarbeitung bereit hilt, braucht man ein Lehrbuch. Will
man hingegen wissen, wie man den Editor vi (1) veranlaflt, nach einer Zeichenfol-
ge zu suchen, so schligt man im Referenz-Handbuch nach. Auf UNIX-Systemen
ist das UNIX-Referenz-Handbuch online verfiighar, siehe man(1).

Die Eintrége in den Referenz-Handbiichern sind knapp gehalten. Bei einfa-
chen Kommandos wie pwd (1) oder who(1) sind sie dennoch auf den ersten Blick
verstidndlich. Zu Kommandos wie vi(1), sh(1) oder xdb(1), die umfangreiche
Aufgaben erledigen, gehoren schwer verstdndliche Eintréige, die voraussetzen, dafl
man die wesentlichen Ziige des Kommandos bereits kennt. Diese Kenntnis ver-
mitteln Einzelwerke, die es zu einer Reihe von UNIX-Kommandos gibt, siehe
Anhang O Literatur.

Ohne Computer bleibt das Biicherwissen trocken und abstrakt. Man sollte
daher die Biicher in der N#he eines Terminals lesen, so dafl man sein Wissen
sofort ausprobieren kann®. Das Durcharbeiten der Ubungen gehort dazu, auch
wegen der Erfolgserlebnisse.

Zeitschriften berichten iiber Neuigkeiten. Manchmal bringen sie auch Kurse
in Fortsetzungsform. Ein Lehrbuch oder Referenz-Handbuch ersetzen sie nicht. Sie
eignen sich zur Ergédnzung und Weiterbildung, sobald man iiber ein Grundwissen
verfiigt. Von einer guten Computerzeitschrift darf man heute verlangen, daf sie
iiber Email erreichbar ist und ihre Informationen im Netz verfiighar macht.

Electronic Information besteht aus Mitteilungen in den Computernetzen.
Das sind Bulletin Boards (Schwarze Bretter), Computerkonferenzen, Electronic
Mail, Netnews, Veroffentlichungen, die per Anonymous-FTP kopiert werden, und
dhnliche Dinge. Sie sind aktueller als Zeitschriften, die Diskussionsmoglichkeiten
gehen weiter. Neben viel nutzlosem Zeug stehen hochwertige Beitrédge von Fach-
leuten aus Universitdten und Computerfirmen. Ein guter Tip sind die FAQ-Listen
(Frequently Asked Questions; Foire Aux Questions; Fragen, Antworten, Quellen
der Erleuchtung) in den Netnews. Hauptproblem ist das Filtern der Informations-
flut. Im Internet erscheinen téglich (!) mehrere 10.000 Beitrige.

6Es heifit, daB von der Information, die man durch Héren aufnimmt, nur 30 % im
Gedéchtnis haften bleiben. Beim Sehen sollen es 50 % sein, bei Sehen und Horen zusam-
men 70 %. Vollzieht man etwas eigenhiéindig nach — begreift man es im wortlichen Sinne
— ist der Anteil noch héher. Hingegen hat das maschinelle Kopieren von Informationen
keine Wirkungen auf das Gedéichtnis und kann daher nicht als Ersatz fiir die klassischen
Wege des Lernens gelten.

8 1 Uber den Umgang mit Computern

Das Zusammenwirken von Biichern oder Zeitschriften mit Electronic Informa-
tion sieht vielversprechend aus. Manchen Computerbiichern liegt eine Diskette
oder CD bei. Das sind statische Informationen ohne Moglichkeit zum Dialog mit
den Urhebern. Wir haben einen FTP-Server ftp.ciw.uni-karlsruhe.de einge-
richtet, auf dem ergéinzende Informationen verfiighar sind. Auf der WWW-Seite
http://www.ciw.uni-karlsruhe.de/technik.html haben wir — in erster Linie
fiir unseren eigenen Gebrauch — viele Verweise (Hyperlinks, URLs) zu den Themen
dieses Buchs gesammelt, die zumindest als Einstieg verwendet werden konnen.
Unsere Email-Anschrift steht im Impressum des Buches.

Es gibt Lernprogramme zu Hardware, Betriebssystemen und Anwendungs-
programmen. Man kénnte meinen, dafl sich gerade der Umgang mit dem Computer
mit Hilfe des Computers lernen 1i8t. Moderne Computer mit Hypertext?, beweg-
ter farbiger Grafik, Dialogfihigkeit und Tonausgabe bieten tatsdchlich Moglich-
keiten, die dem Buch verwehrt sind. Der Aufwand fiir ein Lernprogramm, das
diese Moglichkeiten ausnutzt, ist allerdings betrachtlich, und deshalb sind manche
Lernprogramme nicht gerade ermunternd. Es gibt zwar Programme — sogenann-
te Autorensysteme — die das Schreiben von Lernsoftware erleichtern, aber Arbeit
bleibt es trotzdem. Auch gibt es vorldufig keinen befriedigenden Ersatz fiir Unter-
streichungen und Randbemerkungen, mit denen einige Leser ihren Biichern eine
personliche Note geben. Erst recht ersetzt ein Programm nicht die Ausstrahlung
eines guten Padagogen.

Uber den modernen Wegen der Wissensvermittlung hitten wir beinahe einen
jahrzehntausendealten, aber immer noch aktuellen Weg vergessen: Fragen. Wenn
Sie etwas wissen wollen oder nicht verstanden haben, fragen Sie, notfalls per Email.
Die meisten UNIX-Wizards (wizard: person who effects seeming impossibilities;
man skilled in occult arts; person who is permitted to do things forbidden to
ordinary people) sind nette Menschen und freuen sich iiber Thren Wissensdurst.
Moglicherweise bekommen Sie verschiedene Antworten — es gibt in der Informatik
auch Glaubensfragen — doch nur so kommen Sie voran.

Weif auch Thr Wizard nicht weiter, konnen Sie sich an die Offentlichkeit wen-
den, das heifit an die schitzungsweise zehn Millionen Usenet-Teilnehmer. Den Weg
dazu finden Sie unter dem Stichwort Netnews. Sie sollten allerdings vorher [hre
Handbiicher gelesen haben und diesen Weg nicht blofl aus Bequemlichkeit wihlen.
Sonst erhalten Sie RTFM?® als Antwort.

1.4 Wie lauft eine Sitzung ab?

Die Arbeit mit dem Computer vollzieht sich meist im Sitzen vor einem Termi-
nal und wird daher Sitzung (session) genannt. Mittels der Tastatur teilt man
dem Computer seine Wiinsche mit, auf dem Bildschirm antwortet er. Diese Ar-

"Hypertext ist ein Text, bei dem Sie erklirungsbediirftige Worter mit der Maus
anklicken und dann die Erklirung auf den Bildschirm bekommen. In Hypertext wére
diese Fuinote eine solche Erklirung. Der Begriff wurde Anfang der 60er Jahre von TED
NELSON in den USA geprigt.

8siehe Anhang H Slang im Netz: Read The Fantastic Manual

1.4 Wie l4uft eine Sitzung ab? 9

beitsweise wird interaktiv genannt und als (Bildschirm-)Dialog bezeichnet, zu
deutsch Zwiegesprich. Die Tastatur sieht dhnlich aus wie eine Schreibmaschinen-
tastatur (weshalb Féhigkeiten im Maschinenschreiben niitzlich sind), hat aber ein
paar Tasten mehr. Oft gehort auch eine Maus dazu. Der Bildschirm ist ein naher
Verwandter des Fernsehers.

Falls Sie mit einem Personal Computer arbeiten, miissen Sie ihn als erstes
einschalten. Bei grofleren Anlagen, an denen mehrere Leute gleichzeitig arbeiten,
hat dies ein wichtiger Mensch fiir Sie erledigt, der Systemverwalter oder System-
Manager. Sie sollten seine Freundschaft suchen®.

Nach dem Einschalten lddt der Computer sein Betriebssystem, er bootet, wie
man so sagt. Booten heif}t eigentlich Bootstrappen und das hinwiederum, sich an
den eigenen Stiefelbdndern oder Schniirsenkeln (bootstraps) aus dem Sumpf der
Unwissenheit herausziehen wie weiland der Liigenbaron KARL FRIEDRICH HIE-
RONYMUS FREIHERR VON MUNCHHAUSEN an seinem Zopf'?. Zu Beginn kann der
Computer ndmlich noch nicht lesen, mufl aber sein Betriebssystem vom Massen-
speicher lesen, um lesen zu kénnen.

Ist dieser heikle Vorgang erfolgreich abgeschlossen, gibt der Computer einen
Prompt auf dem Bildschirm aus. Der Prompt ist ein Zeichen oder eine kur-
ze Zeichengruppe — beispielsweise ein Pfeil, ein Dollarzeichen oder C geteilt
durch grofler als — die besagt, dafl der Computer auf Thre Eingaben wartet. Der
Prompt wird auch Systemanfrage, Bereitzeichen oder Eingabeaufforderung ge-
nannt. Kénnen Sie nachempfinden, warum wir Prompt sagen?

Nun diirfen Sie in die Tasten greifen. Bei einem Mehrbenutzersystem erwartet
der Computer als erstes Ihre Anmeldung, das heifit die Eingabe des Namens,
unter dem Sie der System-Manager eingetragen hat. Auf vielen Anlagen gibt es
den Benutzer gast oder guest. Aufler bei Gésten wird als néchstes die Einga-
be eines Passwortes verlangt. Das Passwort (password, mot de passe) ist der
Schliissel zum Computer. Es wird auf dem Bildschirm nicht wiedergegeben. Bei
der Eingabe von Namen und Passwort sind keine Korrekturen zugelassen, Gro83-
und Kleinschreibung wird unterschieden. War Thre Anmeldung in Ordnung, heif}t
der Computer Sie herzlich willkommen und promptet wieder. Die Arbeit beginnt.
Auf einem PC geben Sie beispielsweise dir ein, auf einer UNIX-Anlage 1s. Jede
Eingabe wird mit der Return-Taste (auch mit Enter, CR oder einem geknickten
Pfeil nach links bezeichnet) abgeschlossen'!.

Zum Eingewthnen fithren wir eine kleine Sitzung durch. Suchen Sie sich
ein freies UNIX-Terminal. Betiitigen Sie ein paar Mal die Return- oder Enter-
Taste. Auf die Aufforderung zur Anmeldung (login) geben Sie den Namen gast
oder guest ein, Return-Taste nicht vergessen. Ein Passwort ist fiir diesen Be-

9Laden Sie ihn gelegentlich zu Kaffee und Kuchen oder einem Viertele Wein ein.

10Sjehe GOTTFRIED AUGUST BURGER, Wunderbare Reisen zu Wasser und zu Lande,
Feldziige und lustige Abenteuer des Freiherrn von Miinchhausen, wie er dieselben bei
der Flasche im Zirkel seiner Freunde selbst zu erzdhlen pflegt. Insel Taschenbuch 207,
Insel Verlag Frankfurt (Main) (1976), im 4. Kapitel

'Manche Systeme unterscheiden zwischen Return-Taste und Enter-Taste, rien n’est
simple. Auf Tastaturen fiir den kirchlichen Gebrauch trigt die Taste die Bezeichnung
Amen.

10 1 Uber den Umgang mit Computern

nutzernamen nicht vonnéten. Es konnte allerdings sein, dafl auf dem System
kein Gast-Konto eingerichtet ist, dann miissen Sie den System-Manager fragen.
Nach dem Willkommensgruf§ des Systems geben wir folgende UNIX-Kommandos
ein (Return-Taste!) und versuchen, ihre Bedeutung mithilfe des UNIX-Referenz-
Handbuchs, Sektion (1) ndherungsweise zu verstehen:

who

man who
date

man date
pwd

man pwd

1s

1ls -1 /bin
man 1s
exit

Falls auf dem Bildschirm links unten das Wort more erscheint, betéitigen Sie die
Zwischenraum-Taste (space bar). more (1) ist ein Pager, ein Programm, das einen
Text seiten- oder bildschirmweise ausgibt.

Die Grundform eines UNIX-Kommandos ist (dhnlich wie bei MS-DOS):

Kommando —-Optionen Argumente

Statt Option findet man auch die Bezeichnung Parameter, Flag oder Schalter.
Eine Option modifiziert die Wirkungsweise des Kommandos, beispielsweise wird
die Ausgabe des Kommandos 1s ausfiihrlicher, wenn wir die Option -1 (long)
dazuschreiben. Argumente sind Filenamen oder andere Informationen, die das
Kommando ben6tigt, oben der Verzeichnisname /bin. Bei den Namen der UNIX-
Kommandos haben sich ihre Schopfer etwas gedacht, nur was, bleibt hin und
wieder im Dunkeln. Hinter manchen Namen steckt auch eine ganze Geschichte, wie
man sie gelegentlich in der Newsgruppe comp.society.folklore im Netz erfihrt.
Das Kommando exit beendet die Sitzung. Es ist ein internes Shell-Kommando
und im Handbuch unter der Beschreibung der Shell sh(1) zu finden.

Jede Sitzung muf} ordnungsgeméf beendet werden. Es reicht nicht, sich einfach
vom Stuhl zu erheben. Laufende Programme - zum Beispiel ein Editor - miissen zu
Ende gebracht werden, auf einer Mehrbenutzeranlage meldet man sich mit einem
Kommando ab, das exit, quit, logoff, logout, stop, bye oder end lautet. Ar-
beiten Sie mit Fenstern, so findet sich irgendwo am Rand das Bild eines Knopfes
(button) namens exit. Einen PC diirfen Sie selbst ausschalten, ansonsten erledigt
das wieder der System-Manager. Das Ausschalten des Terminals einer Mehrbe-
nutzeranlage hat fiir den Computer keine Bedeutung, die Sitzung lauft weiter!

Merke: Fiir UNIX und C/C++ sind grofie und kleine Buchstaben verschiedene
Zeichen. Ferner sind die Ziffer 0 und der Buchstabe O auseinanderzuhalten.

1.5 Wo schlidgt man nach? 11

1.5 Wo schligt man nach?

Wenn es um Einzelheiten geht, sind die zu jedem UNIX-System gehorenden und
einheitlich aufgebauten Referenz-Handbiicher — auf Papier oder Bildschirm —
die wichtigste Hilfe'2. Sie gliedern sich in folgende Sektionen:

o1 Kommandos und Anwendungsprogramme

e IM Kommandos zur Systemverwaltung (maintenance)
o 2 Systemaufrufe

e 3C Subroutinen der Standard-C-Bibliothek

e 3M Mathematische Bibliothek

e 3S Subroutinen der Standard-I/O-Bibliothek

e 3X Besondere Bibliotheken

o 4 Fileformate

o5 Vermischtes (z. B. Filehierarchie, Zeichensétze)
e 6 Spiele

o7 Geriitefiles

e 8 Systemverwaltung

o9 Glossar

Subroutinen sind in diesem Zusammenhang vorgefertigte Funktionen fiir eigene
Programme, Standardfunktionen mit anderen Worten. Die erste Seite jeder Sekti-
on ist mit intro betitelt und fiihrt in den Inhalt der Sektion ein. Beim Erwihnen
eines Kommandos wird die Sektion des Handbuchs in Klammern angegeben, da
das gleiche Stichwort in mehreren Sektionen mit unterschiedlicher Bedeutung vor-
kommen kann, beispielsweise cpio(1) und cpio(4). Die Eintragungen zu den
Kommandos oder Stichwortern sind wieder gleich aufgebaut:

e Name (Name des Kommandos, Zweck)

e Synopsis, Syntax (Gebrauch des Kommandos)

e Remarks (Anmerkungen)

e Description (Beschreibung des Kommandos)

e Return Value (Riickgabewert nach Programmende)

e Examples (Beispiele)

e Hardware Dependencies (hardwareabhéingige Eigenheiten)
e Author (Urheber des Kommandos)

e Files (vom Kommando betroffene Files)

e See Also (&hnliche oder verwandte Kommandos)

12Real programmers don’t read manuals, behauptet das Netz.

12 1 Uber den Umgang mit Computern

e Diagnostics (Fehlermeldungen)

e Bugs (Méngel, soweit bekannt)

e Caveats, Warnings (Warnungen)

e International Support (Unterstiitzung européischer Absonderlichkeiten)

Bei vielen Kommandos finden sich nur Name, Synopsis und Description. Der Sinn
oder Nutzen des Kommandos wird verheimlicht; deshalb versuchen wir, diesen
Punkt zu erhellen. Was hilft die Beschreibung eines Schweiflbrenners, wenn Sie
nicht wissen, was und warum man schweif§t? Am Fuf} jeder Handbuch-Seite steht
das Datum der Verdffentlichung des Eintrags. Schlagen Sie unter pwd(1) und
time (2) nach.

Einige Kommandos oder Standardfunktionen haben keinen eigenen Eintrag,
sondern sind mit anderen zusammengefafit. So findet man das Kommando mv (1)
unter der Eintragung fiir das Kommando cp(1) oder die Standardfunktion
gmtime (3) bei der Standardfunktion ctime(3). In solchen Féllen mufl man das
Sachregister, den Index des Handbuchs befragen.

Mittels des Kommandos man(1) holt man die Eintrdge aus dem gespeicher-
ten Referenz-Handbuch (On-line-Manual, man-pages) auf den Bildschirm oder
Drucker. Das On-line-Manual sollte zu den auf dem System vorhandenen Kom-
mandos passen, wihrend das papierne Handbuch <er sein kann. Versuchen Sie
folgende Eingaben:

man time

man 2 time

man man

man man | col -b | 1lp

Die Zahlenangabe bei der zweiten Eingabe bezieht sich auf die gewiinschte Sektion.
Die letzte Eingabezeile druckt die Handbuchseiten zum Kommando man(1) auf
dem Default-Drucker aus (fragen Sie vorsichtshalber Thren Arzt oder Apotheker
oder besser noch Thren System-Manager, fiir das Drucken gibt es viele Wege).
Drucken Sie sich aber nicht das ganze Handbuch aus, die meisten Seiten braucht
man selten oder nie.

1.6 Warum verwendet man Computer (nicht)?

Philosophische Interessen sind bei Ingenieuren hé#ufig eine Alterserscheinung,
meint der Wiener Computerpionier HEINZ ZEMANEK. Wir glauben, das nétige
Alter zu haben, um dann und wann das Wort warum in den Mund nehmen oder
in die Tastatur hacken zu diirfen. Sehr junge Informatiker &uflern diese Frage auch
gern. Bei der Umstellung einer hergebrachten Tétigkeit auf Computer steht oft die
Zeitersparnis (= Kostenersparnis) im Vordergrund. Zumindest wird sie als Be-
griindung fiir die Umstellung herangezogen. Das ist weitgehend falsch. W&hrend
der Umstellung mufl doppelgleisig gearbeitet werden, und nach der Umstellung
erfordert das Computersystem eine stindige Pflege. Einige Arbeiten gehen mit

1.6 Warum verwendet man Computer (nicht)? 13

Computerhilfe schneller von der Hand, dafiir verursacht der Computer selbst Ar-
beit. Auf Dauer sollte eine Ersparnis herauskommen, aber die Erwartungen sind
oft iiberzogen.

Nach drei bis zehn Jahren Betrieb ist ein Computersystem veraltet. Die weitere
Benutzung ist unwirtschaftlich, das heifit man kénnte mit dem bisherigen Aufwand
an Zeit und Geld eine leistungsfihigere Anlage betreiben oder mit einer neuen
Anlage den Aufwand verringern. Dann stellt sich die Frage, wie die alten Daten
weiterhin verfiighar gehalten werden kénnen. Denken Sie an die Lochkartenstapel
verflossener Jahrzehnte, die heute nicht mehr lesbar sind, weil es die Maschinen
nicht langer gibt. Oft mufl man auch mit der Anlage die Programme wechseln. Der
Ubergang zu einem neuen System ist von Zeit zu Zeit unausweichlich, wird aber
von Technikern und Kaufleuten gleichermaflen gefiirchtet. Auch dieser Aufwand
ist zu beriicksichtigen. Mit Papier und Tinte war das einfacher; einen Brief unserer
Urgrofeltern konnen wir heute noch lesen.

Deutlicher als der Zeitgewinn ist der Qualitédtsgewinn der Arbeitsergebnisse.
In einer Buchhaltung sind dank der Unterstiitzung durch Computer die Auswer-
tungen aktueller und differenzierter als frither. Informationen — zum Beispiel aus
Einkauf und Verkauf — lassen sich schneller, sicherer und einfacher miteinander
verkniipfen als auf dem Papierweg. Manuskripte lassen sich bequemer dndern und
besser formatieren als zu Zeiten der mechanischen Schreibmaschine. Von techni-
schen Zeichnungen lassen sich mit minimalem Aufwand Varianten herstellen. Mit
Simulationsprogrammen kénnen Entwiirfe getestet werden, ehe man an echte und
kostspielige Versuche geht. Literaturrecherchen decken heute eine weit grofiere
Menge von Veréffentlichungen ab als vor dreiflig Jahren. Grofle Datenmengen wa-
ren friiher gar nicht oder nur mit Einschriankungen zu bewiltigen. Solche Aufgaben
kommen beim Suchen oder Sortieren sowie bei der numerischen Behandlung von
Problemen aus der Wettervorhersage, der Stromungslehre, der Berechnung von
Flugbahnen oder Verbrennungsvorgéngen vor. Das Durchsuchen umfangreicher
Datensammlungen ist eine Lieblingsbeschiftigung der Computer.

Noch eine Warnung ist angebracht. Die Arbeit wird durch den Computer nur
selten einfacher. Mit einem Bleistift konnen die meisten umgehen, die Benutzung
eines Texteditors erfordert in jedem Fall eine Einarbeitung und die Ausnut-
zung aller Méglichkeiten eines leistungsfiahigen Textsystems eine lange Einarbei-
tung und stindige Weiterbildung. Ein Schriftstiick wie das vorliegende wire vor
dreiflig Jahren nicht am Schreibtisch herzustellen gewesen; heute ist das mit Com-
puterhilfe kein Hexenwerk, setzt aber eine eingehende Beschiftigung mit mehreren
Programmen voraus.

Man darf nicht vergessen, dafl der Computer ein Hilfsmittel, ein Werkzeug
ist. Er bereitet Daten auf, interpretiert sie aber nicht. Er iibernimmt keine Ver-
antwortung und handelt nicht nach ethischen Grundsitzen. Er rechnet, aber
wertet nicht. Das ist keine technische Unvollkommenheit, die im Lauf der Zeit
ausgebiigelt wird, sondern eine grundsétzliche Eigenschaft. Die Fahigkeit zur Ver-
antwortung setzt die Willensfreiheit voraus und diese beinhaltet den eigenen
Willen. Ein Computer, der anfingt, einen eigenen Willen zu entwickeln, ist ein
Fall fiir die Werkstatt.

Der Computer soll den Menschen ebensowenig ersetzen wie ein Hammer die

14 1 Uber den Umgang mit Computern

Hand ersetzt, sondern den Menschen ergénzen. Das hort sich banal an, aber
manchmal ist die Aufgabenverteilung zwischen Mensch und Computer schwierig
zu erkennen. Und es ist bequem, die Entscheidung samt der Verantwortung dem
Computer zuzuschieben. Es gibt auch Aufgaben, bei denen der Computer einen
Menschen vielleicht ersetzen kann — wenn nicht heute, dann kiinftig — aber dennoch
nicht soll. Nehmen wir zwei Extremfille. Wenn ich die Telefonnummer 0721/19429
anrufe, antwortet ein Automat und teilt mir den Pegelstand des Rheins bei Karls-
ruhe mit. Das ist ok, denn ich will nur die Information bekommen. Ruft man
dagegen die Telefonseelsorge an, erwartet man, dafl ein Mensch zuhort, wobei das
Zuhoren wichtiger ist als das Ubermitteln einer Information. So klar liegen die
Verhéltnisse nicht immer. Wie sieht es mit dem Computer als Lehrer aus? Darf
ein Computer Schiiler oder Studenten priifen? Soll ein Arzt eine Diagnose vom
Computer stellen lassen? Hat der Computer als Spielpartner einen Einfluf§ auf
die seelische Entwicklung seines Benutzers? Ist ein Computer zuverlissiger als ein
Mensch? Ist die Kiinstliche Intelligenz in allen Fillen der Natiirlichen Dummbheit
iiberlegen? Soll man die Entscheidung iiber Krieg und Frieden dem Prisidenten
der USA iiberlassen oder besser seinem Computer? Und wenn der Président zwar
entscheidet, sich aber auf die Auskiinfte seines Computers verlassen muf3? Wer ist
dann wichtiger, der Préisident oder sein Computer?

Je besser die Computer funktionieren, desto mehr neigen wir dazu, die Daten-
welt fiir ma3gebend zu halten und Abweichungen der realen Welt von der Daten-
welt fiir Storungen. Hort sich {ibertrieben an, ist es auch, aber wie lange noch?
Fachliteratur, die nicht in einer Datenbank gespeichert ist, z&dhlt praktisch nicht
mehr. Texte, die sich nicht per Computer in andere Sprachen iibersetzen lassen,
gelten als stilistisch mangelhaft. Bei Meinungsverschiedenheiten iiber personen-
bezogene Daten hat zunéchst einmal der Computer recht, und wenn er Briefe
an Herrn Marianne Meier schreibt. Das lafit sich kldren, aber wie sieht es mit
dem Weltbild aus, das die Computerspiele unseren Kindern vermitteln? Wel-
che Welt ist wirklich? Kann man von Spielgeld leben? Haben die Mitmenschen
ein so einfaches Gemiit wie die virtuellen Helden? War Der lingste Tag nur ein
Bildschirmspektakel? Brauchten wir 1945 nur neu zu booten?

Unbehagen bereitet auch manchmal die zunehmende Abhingigkeit vom
Computer, die bei Storfillen unmittelbar zu spiiren ist — sei es, dafl der Com-
puter streikt oder dafl der Strom ausfillt. Da gibt es Augenblicke, in denen sich
die System-Manager fragen, warum sie nicht Minnesénger oder Leuchtturmwiérter
(oder beides, wie OTTO) geworden sind. Nun, der Mensch war immer abhéngig.
In der Steinzeit davon, daf} es geniigend viele nicht zu starke Béren gab, spéter
davon, dafl das Wetter die Ernte begiinstigte, und heute sind wir auf die Com-
puter angewiesen. Im Unterschied zu frither — als der erfahrene Bérenjiger die
Bérenlage iiberblickte — hat heute der Einzelne nur ein unbestimmtes Gefiihl der
Abhéngigkeit von Dingen, die er nicht kennt und nicht beeinflussen kann.

Vermutlich wird es uns mit den Computern dhnlich ergehen wie mit der Elek-
trizitdt: wir werden uns daran gewohnen. Wie man fiir Stromunterbrechungen eine
Petroleumlampe und einen Campingkocher bereithélt, sollte man fiir Computer-
ausfillle etwas Papier, einen Bleistift und ein gutes, zum Umbléttern geeignetes
Buch zuriicklegen.

Seid einig, einig, einig!
Schiller, Tell

2 UNIX

Dieses Kapitel erldutert das Betriebssystem UNIX samt seinen Familienan-
gehorigen (AIX, HP-UX, LINUX, SINIX, Solaris, ULTRIX usw.). Das zugehdorige
Referenz-Handbuch oder Online-Manual ist eine unerlidfiliche Begleitlektiire.

2.1 Grundbegriffe

2.1.1 Braucht man ein Betriebssystem?

In der frithen Kindheit der Computer — schitzungsweise vor 1950 — hatten die Ma-
schinen kein Betriebssystem. Die damaligen Computer waren jedoch trotz ihrer
gewaltigen rdumlichen Abmessungen logisch sehr iibersichtlich, die wenigen Be-
nutzer kannten sozusagen jedes Bit personlich. Beim Programmieren mufite man
sich auch um jedes Bit einzeln kiimmern. Wollte man etwas auf der Fernschreib-
maschine (so hief§ das I/O-Subsystem damals) ausgeben, so schob man Bit fiir Bit
iiber die Treiberstufen zu den Elektromagneten. In heutiger Sprechweise enthielt
jedes Anwendungsprogramm ein eigenes Betriebssystem.

Die Programmierer waren damals schon so arbeitsscheu (effektivitdtsbewuft)
wie heute und bemerkten bald, daf§ dieses Vorgehen nicht zweckméflig war. Viele
Programmteile wiederholten sich in jeder Anwendung. Man faflte diese Teile auf
einem besonderen Lochkartenstapel oder Lochstreifen zusammen, der als Vor-
spann zu jeder Anwendung eingelesen wurde. Der néichste Schritt war, den Vor-
spanns nur noch nach dem Einschalten der Maschine einzulesen und im Speicher
zu belassen. Damit war das Betriebssystem geboren und die Trennung von den
Anwendungen vollzogen.

Heutige Computer sind rdumlich nicht mehr so eindrucksvoll, aber logisch um
Groflenordnungen komplexer. Man faflt viele Einzelheiten zu iibergeordneten Ob-
jekten zusammen, man abstrahiert in mehreren Stufen. Der Benutzer sieht nur
die oberste Schicht der Software, die ihrerseits mit darunterliegenden Software-
Schichten verkehrt. Zuunterst liegt die Hardware. Ein solches Schichtenmodell
finden wir bei den Netzen wieder. In Wirklichkeit sind die Schichten nicht sauber
getrennt, sondern verzahnt, teils aus historischen Griinden, teils wegen Effekti-
vitét, teils aus Schlamperei. Neben dem Schichtenmodell werden objektorien-
tierte Ansétze verfolgt, in denen alle harten und weichen Einheiten abgekapselte
Objekte sind, die iiber Nachrichten miteinander verkehren. Aber auch hier bildet
sich eine Hierarchie aus.

Was muf} ein Betriebssystem als Minimum enthalten? Nach obigem das, was
alle Anwendungen gleichermaflen bendtigen. Das sind die Verbindungen zur Hard-
ware (CPU, Speicher, I/O) und die Verwaltung von Prozessen und Daten. Es gibt

15

16 2 UNIX

jedoch Bestrebungen, auch diese Aufgaben in Anwendungsprogramme zu verla-
gern und dem Betriebssystem nur noch koordinierende und kontrollierende Tétig-
keiten zu iiberlassen. Vorteile eines solchen Mikro-Kerns sind Ubersichtlichkeit
und Anpassungsfiahigkeit.

Wenn ein UNIX-Programmierer heute Daten nach stdout schreibt, setzt er
mehrere Megabyte System-Software in Bewegung, die andere fiir ihn erstellt ha-
ben. Als Programmierer diirfte man nur noch im pluralis modestatis reden.

2.1.2 Verwaltung der Betriebsmittel

Ein Betriebssystem vermittelt zwischen der Hardware und den Benutzern. Aus Be-
nutzersicht verdeckt es den miihsamen und schwierigen unmittelbaren Verkehr mit
der Hardware. Der Benutzer braucht sich nicht darum zu sorgen, daf} zu bestimm-
ten Zeiten bestimmte elektrische Impulse auf bestimmten Leitungen ankommen,
er gibt vielmehr nur das Kommando zum Lesen aus einem File namens xyz. Fiir
den Benutzer stellen Hardware plus Betriebssystem eine virtuelle Maschine mit
einem im Handbuch beschriebenen Verhalten dar. Was auf der Hardware wirklich
ablduft, interessiert nur den Entwicklungsingenieur. Daraus folgt, da} dieselbe
Hardware mit einem anderen Betriebssystem eine andere virtuelle Maschine bil-
det. Ein PC mit MS-DOS ist ein MS-DOS-Rechner, derselbe PC mit LINUX ist
ein UNIX-Rechner mit deutlich anderen Eigenschaften. Im Schichtenmodell stellt
jede Schicht eine virtuelle Maschine fiir ihren oberen Nachbarn dar, die oberste
Schicht die virtuelle Maschine fiir den Benutzer.

Aus der Sicht der Hardware sorgt das Betriebssystem dafiir, dafl die einzelnen
Betriebsmittel (Prozessor, Speicher, Ports fiir Ein- und Ausgabe) den Benutzern
bzw. deren Programmen in einer geordneten Weise zur Verfiigung gestellt werden,
so daf} sie sich nicht stéren. Die Programme diirfen also nicht selbst auf die Hard-
ware zugreifen, sondern haben ihre Wiinsche dem Betriebssystem mitzuteilen, das
sie moglichst sicher und zweckméBig weiterleitet!

Neben den harten, korperlich vorhandenen Betriebsmitteln kann man auch
Software als Betriebsmittel ansehen. Fiir den Benutzer macht es unter UNIX kei-
nen Unterschied, ob er einen Text auf einen Massenspeicher schreibt oder dem
Electronic Mail System {ibergibt, das aus ein paar Drihten und viel Software be-
steht. Schliellich gibt es virtuelle Betriebsmittel, die fiir den Benutzer oder seinen
Prozess scheinbar vorhanden sind, in Wirklichkeit aber durch Hard- und Soft-
ware vorgegaukelt werden. Beipielsweise wird unter UNIX der immer zu kleine
Arbeitsspeicher scheinbar vergroflert, indem man Massenspeicher zu Hilfe nimmt.
Dazu gleich mehr. Auch zwischen harten und virtuellen Druckern sind vielfiltige
Beziehungen herstellbar. Der Zweck dieser Scheinwelt? ist, den Benutzer von den
Beschréinkungen der harten Welt zu befreien. Die Kosten dafiir sind eine erhéhte

'Ein Nachteil von MS-DOS ist, daf8 ein Programmierer direkt die Hardware anspre-
chen kann und sich so um das Betriebssystem herummogelt.

2In UNIX kann ein Benutzer, den es nicht gibt, (ein Démon) ein File, das es nicht
gibt, (eine Oracle-View) auf einem Drucker, den es nicht gibt, (ein logischer Drucker)
ausgeben, und es kommt am Ende ein reales Blatt Papier mit Text heraus.

2.1 Grundbegriffe 17

Komplexitit des Betriebssystems und Zeit. Reichlich reale Betriebsmittel sind
immer noch das Beste.

An fast allen Aktivitdten des Computers ist der zentrale Prozessor beteiligt.
Ein Prozessor erledigt zu einem Zeitpunkt immer nur eine Aufgabe. Der Vertei-
lung der Prozessorzeit kommt daher eine besondere Bedeutung zu. Wenn in
einem leistungsfihigen Betriebssystem wie UNIX mehrere Programme (genau-
er: Prozesse) gleichzeitig Prozessorzeit verlangen, teilt das Betriebssystem jedem
nacheinander eine kurze Zeitspanne zu, die nicht immer ausreicht, das jeweilige
Programm zu Ende zu bringen. Ist die Zeitspanne (im Millisekundenbereich) ab-
gelaufen, beendet das Betriebssystem das Programm vorldufig und reiht es wieder
in die Warteschlange ein. Nach Bedienung aller anstehenden Programme beginnt
das Betriebssystem wieder beim ersten, so dafl bei den Benutzern der Eindruck
mehrerer gleichzeitig laufender Programme entsteht. Dieser Vorgang 1dft sich
durch eine gleichméfig rotierende Zeitscheibe veranschaulichen, von der jedes
Programm einen Sektor bekommt. Die Sektoren brauchen nicht gleich grofi zu
sein. Diese Form der Auftragsabwicklung wird prdemptives oder verdringen-
des Multi-Tasking genannt (lat. praeemere = durch Vorkaufsrecht erwerben).
Das Betriebssystem hat sozusagen ein Vorkaufsrecht auf die Prozessorzeit und
verdringt andere Prozesse nach Erreichen eines Zeitlimits.

Einfachere Betriebssysteme (Apple System 7, MS-Windows) verwalten zwar
auch eine Warteschlange von Programmen, vollenden aber einen Auftrag, ehe der
nidchste an die Reihe kommt. Die Programme konnen sich kooperativ zeigen
und ihren Platz an der Sonne freiwillig rdumen, um ihren Mitbewerbern eine
Chance zu geben; das Betriebssystem erzwingt dies jedoch nicht. Versucht ein
nicht-kooperatives Programm, die grofite Primzahl zu berechnen, warten die Mit-
benutzer lange. Noch einfachere Betriebssysteme (MS-DOS) richten nicht einmal
eine Warteschlange ein.

Den Algorithmus zur Verteilung der Prozessorzeit (scheduling algorithm) kann
man verfeinern. So gibt es Programme, die wenig Zeit beanspruchen, diese aber
sofort haben mochten (Terminaldialog), andere brauchen mehr Zeit, aber nicht
sofort (Hintergrundprogramme). Ein Programm, das auf andere Aktionen warten
muf}, zum Beispiel auf die Eingabe von Daten, sollte voriibergehend aus der Vertei-
lung ausscheiden. Man muf} sich vor Augen halten, dafl die Prozessoren heute mit
hundert Millionen Takten und mehr pro Sekunde arbeiten. Mit einem einzelnen
Bildschirmdialog langweilt sich schon ein Prozessor fiir zwo fuffzich.

Das Programm, das der Prozessor gerade abarbeitet, mufl sich im Arbeits-
speicher befinden. Wenn der Prozessor mehrere Programme gleichzeitig in Arbeit
hat, sollten sie auch gleichzeitig im Arbeitsspeicher liegen, denn ein stéindiges Ein-
und Auslagern vom bzw. zum Massenspeicher kostet Zeit. Nun sind die Arbeits-
speicher selten so grof}, daf} sie bei starkem Andrang alle Programme fassen, also
kommt man um das Auslagern doch nicht ganz herum. Das Auslagern des momen-
tan am wenigsten dringend benétigten Programms als Ganzes wird als Swapping
oder Speicheraustauschverfahren bezeichnet. Programm samt momentanen Daten
kommen auf die Swapping Area (Swap-File) des Massenspeichers (Platte). Dieser
sollte moglichst schnell sein, Swappen auf Band ist der allerletzte Ausweg. Bei
Bedarf werden Programm und Daten in den Arbeitsspeicher zuriickgeholt. Ein

18 2 UNIX

einzelnes Programm mit seinen Daten darf nicht gréfler sein als der verfiighare
Arbeitsspeicher.

Bei einer anderen Technik werden Programme und Daten in Seiten (pages) un-
terteilt und nur die augenblicklich benétigten Seiten im Arbeitsspeicher gehalten.
Die iibrigen Seiten liegen auf dem Massenspeicher auf Abruf. Hier darf eine Seite
nicht gréfler sein als der verfiigbare Arbeitsspeicher. Da ein Programm aus vielen
Seiten bestehen kann, darf seine Gréfle die des Arbeitsspeichers erheblich iiberstei-
gen. Dieses Paging oder Seitensteuerungsverfahren hat also Vorteile gegeniiber
dem Swapping.

Bei starkem Andrang kommt es vor, dafl der Prozessor mehr mit Aus- und
Einlagern beschéftigt ist als mit nutzbringender Arbeit. Dieses sogenannte Sei-
tenflattern (trashing) mufl durch eine zweckméBige Konfiguration (Verldngerung
der einem Prozess minimal zur Verfiigung stehenden Zeit) oder eine Vergrofierung
des Arbeitsspeichers verhindert werden. Auch ein Swapping oder Paging iibers
Netz ist durch ausreichend Arbeitsspeicher oder lokalen Massenspeicher zu ver-
meiden, da es viel Zeit kostet und das Netz belastet.

2.1.3 Verwaltung der Daten

Die Verwaltung der Daten des Systems und der Benutzer in einem File-System
ist die zweite Aufgabe des Betriebssystems. Auch hier schirmt das Betriebssystem
den Benutzer vor dem unmittelbaren Verkehr mit der Hardware ab. Wie die Daten
physikalisch auf den Massenspeichern abgelegt sind, interessiert ihn nicht, sondern
nur die logische Organisation, beispielsweise in einem Baum von Verzeichnissen.
Fiir den Benutzer ist ein File eine zusammengehorige Menge von Daten, die er iiber
den Filenamen anspricht. Dafl die Daten eines Files physikalisch iiber mehrere,
nicht zusammenhéngende Bereiche auf der Festplatte verstreut sein konnen, geht
nur das Betriebssystem etwas an. Ein File kann sogar iiber mehrere Platten, unter
Umstinden auf mehrere Computer verteilt sein. Im schlimmsten Fall existiert das
File, mit dem der Benutzer zu arbeiten wihnt, iiberhaupt nicht, sondern wird
aus Teilen verschiedener Files bei Bedarf zusammengesetzt. Beim Arbeiten mit
Datenbanken kommt das vor. Zum Benutzer hin sehen alle UNIX-File-Systeme
gleich aus, zur Hardware hin gibt es jedoch Unterschiede. Einzelheiten siehe im
Referenz-Handbuch unter fs(4).

2.1.4 Einteilung der Betriebssysteme

Nach ihrem Zeitverhalten werden Betriebssysteme eingeteilt in:
e Batch-Systeme
e Dialog-Systeme
e Echtzeit-Systeme

wobei gemischte Formen die Regel sind.

In einem Batch-System werden die Auftrige (Jobs) in eine externe Warte-
schlange eingereiht und unter Beachtung von Prioritdten und weiteren, der Effizi-
enz und Gerechtigkeit dienenden Gesichtspunkten abgearbeitet, ein Auftrag nach

2.1 Grundbegriffe 19

dem anderen. Einige Tage spéter holt der Benutzer seine Ergebnisse ab. Diese
Arbeitsweise war frither — vor UNIX — die einzige und ist heute noch auf Grof-
rechenanlagen verbreitet. Zur Programmentwicklung mit wiederholten Testldufen
und Fehlerkorrekturen ist sie praktisch nicht zu gebrauchen.

Bei einem Dialog-System arbeitet der Benutzer an einem Terminal in un-
mittelbarem Kontakt mit der Maschine. Die Reaktionen auf Tastatur-Eingaben
erfolgen nach menschlichen MaBstiben sofort, nur bei Uberlastung der Anlage
kommen sie zdher. Alle in die Maschine eingegebenen Auftrige sind sofort ak-
tiv und konkurrieren um Prozessorzeit und die weiteren Betriebsmittel, die nach
ausgekliigelten Gesichtspunkten zugewiesen werden. Es gibt keine externe Warte-
schlange fiir die Auftrige. UNIX ist in erster Linie ein Dialogsystem.

In einem Echtzeit-System bestimmt der Programmierer oder System-
Manager das Zeitverhalten vollig. Fiir kritische Programmteile wird eine maximale
Ausfiihrungsdauer garantiert. Das Zeitverhalten ist unter allen Umstédnden vorher-
sagbar. UNIX ist infolge der Pufferung der Datenstrome zunéchst kein Echtzeit-
System. Es gibt aber Erweiterungen, die UNIX fiir Echtzeit-Aufgaben geeignet
machen, siehe Abschnitt 2.13 Echtzeit- Erweiterungen.

Nach der Anzahl der scheinbar gleichzeitig bearbeiteten Aufgaben — wir haben
dariiber schon gesprochen — unterscheidet man:

e Single-Tasking-Systeme
e Multi-Tasking-Systeme

— kooperative Multi-Tasking-Systeme
— priaemptive Multi-Tasking-Systeme

Nach der Anzahl der gleichzeitig angemeldeten Benutzer findet man eine Ein-
teilung in:

e Single-User-Systeme
e Multi-User-Systeme

Ein Multi-User-System ist praktisch immer zugleich ein Multi-Tasking-System,
andernfalls konnten sich die Benutzer nur gemeinsam derselben Aufgabe widmen.
Das ist denkbar, uns aber noch nie iiber den Weg gelaufen. Ein Multi-User-System
enthilt vor allem Vorrichtungen, die verhindern, daf sich die Benutzer in die Quere
kommen (Benutzerkonten, Zugriffsrechte an Files).

Schliefllich gibt es, bedingt durch den Wunsch nach immer mehr Rechenlei-
stung, die Vernetzung und die Entwicklung von Computern mit mehreren Zen-
tralprozessoren, seit einigen Jahren:

e Einprozessor-Systeme
e Mehrprozessor-Systeme

Ein Sonderfall der Mehrprozessor-Systeme sind Netzwerk-Betriebssysteme,
die mehrere iiber ein Netz verteilte Prozessoren wie einen einzigen Computer
verwalten, im Gegensatz zu Netzwerken aus selbstdndigen Computern mit jeweils
einer eigenen Kopie eines Betriebssystems, das Netzfunktionen unterstiitzt.

20 2 UNIX

Stellt man die Einteilungen in einem vierdimensionalen Koordinatensystem
dar, so besetzen die wirklichen Systeme lingst nicht jeden Schnittpunkt, auflerdem
gibt es Ubergangsformen. MS-DOS ist ein Dialogsystem mit Single-Tasking-F#hig-
keiten fiir einen einzelnen Prozessor und einen einzelnen Benutzer. IBM-OS/2
ist ein Dialogsystem mit Multi-Tasking-Féahigkeiten, ebenfalls fiir einen einzelnen
Prozessor und einen einzelnen Benutzer. UNIX ist ein Dialogsystem mit Multi-
Tasking-Féahigkeiten fiir mehrere Benutzer und verschiedene Prozessorentypen,
in jlingerer Zeit erweitert um Echtzeit-Funktionen und Unterstiitzung mehrerer
paralleler Prozessoren. Das Betriebssystem Hewlett-Packard RTE VI/VM fiir die
Maschinen der HP 1000-Reihe war ein echtes Echtzeit-System mit einer einfa-
chen Batch-Verwaltung. Die IBM 3090 lief unter dem Betriebssystem MVS mit
Dialog- und Batch-Betrieb (TSO bzw. Job Control Language). Novell NetWare
ist ein Netzwerk-Betriebssystem, das auf vernetzten PCs anstelle von MS-DOS
oder OS/2 lauft, wohingegen das Internet aus selbstindigen Computern unter
verschiedenen Betriebssystemen besteht.

Um einen Brief zu schreiben oder die Primzahlen bis 100000 auszurechnen,
reicht MS-DOS. Soll daneben ein Fax-Programm sende- und empfangsbereit sein
und vielleicht noch die Mitgliederliste eines Vereins sortiert werden, braucht man
IBM OS/2 oder MS Windows NT. Wollen mehrere Benutzer gleichzeitig auf dem
System arbeiten, mufl es UNIX sein. Arbeitet man in internationalen Netzen, ist
UNIX der Standard. UNIX lduft zur Not auf einem einfachen PC mit Disketten,
aber fiir das, was man heute von UNIX verlangt, ist ein PC mit einem Intel 80386,
8 MB Arbeitsspeicher und einer 200-MB-Festplatte die untere Grenze.

2.1.5 Laden des Betriebssystems

Ein Betriebssystem wie MS-DOS oder UNIX wird auf Bindern, CD-ROMs, Dis-
ketten oder iiber das Netz geliefert. Die Installation auf den Massenspeicher gehort
zu den Aufgaben des System-Managers und wird im Abschnitt 2.12 Systemuver-
waltung beschrieben. Es ist mehr als ein einfacher Kopiervorgang.

Uns beschéftigt hier die Frage, wie beim Starten des Systems die Hardware,
die zunéchst noch gar nichts kann, das Betriebssystem vom Massenspeicher in den
Arbeitsspeicher 1ddt. Als kaltes Booten oder Kaltstart bezeichnet man einen
Start vom Einschalten des Starkstroms an, als warmes Booten oder Warmstart
einen erneuten Startvorgang einer bereits laufenden und daher warmen Maschine.
Beim Warmstart entfallen einige der ersten Schritte (Tests).

Nach dem Einschalten wird ein einfaches Leseprogramm entweder Bit fiir Bit
iiber eine besondere Tastatur eingegeben oder von einem permanenten Speicher
(Boot-ROM) im System geholt. Mittels dieses Leseprogramms wird anschliefend
das Betriebssystem vom Massenspeicher gelesen, und dann kann es losgehen.

Beim Booten wird das Betriebssystem zunéchst auf einem entfernbaren Da-
tentriger (Band, CD-ROM, Diskette) gesucht, dann auf der Festplatte. Auf diese
Weise 1d88t sich in einem bestehenden System auch einmal ein anderes Betriebs-
system laden, zum Beispiel LINUX statt MS-DOS, oder bei Beschidigung des
Betriebssystems auf der Platte der Start von einer Diskette oder einem Band
durchfiihren.

2.2 Das Besondere an UNIX 21

2.2 Das Besondere an UNIX

2.2.1 Die praunicische Zeit

Der Gedanke, Rechenvorgéinge durch mechanische Systeme darzustellen, ist alt.
Daf} wir heute elektronische Systeme bevorzugen — und vielleicht in Zukunft opti-
sche Systeme — ist ein technologischer Fortschritt, kein grundsétzlicher. Umgekehrt
hat man Zahlen schon immer dazu benutzt, Gegebenheiten aus der Welt der Dinge
zu vertreten.

Wenn in der Jungsteinzeit ein Hirte — sein Name sei OTz1 — sichergehen woll-
te, dal er abends genau so viel Stiick Vieh heimbrachte, wie er morgens auf die
Weide getrieben hatte, stand ihm nicht einmal ein Zahlensystem zur Verfiigung,
das nennenswert iiber die Zahl zwei hinausging. Da er nicht dumm war, wuflte er
sich zu helfen und bildete die Menge seines Viehs umkehrbar eindeutig auf eine
Menge kleiner Steinchen ab, die er in einem Beutel bei sich trug. Blieb abends ein
Steinchen iibrig, fehlte ein Stiick Vieh. Die Erkenntnis, dafl Mengen andere Men-
gen in Bezug auf eine bestimmte Eigenschaft (hier die Anzahl) vertreten kénnen,
war ein gewaltiger Sprung und der Beginn der Angewandten Mathematik.

Mit Zahlensystemen taten sich die Menschen frither schwer. Die Griechen —
denen die Mathematik viel verdankt — hatten zwei zum Rechnen gleichermafien
ungeeignete Zahlensysteme. Das milesische System bildete die Zahlen 1 bis 9,
10 bis 90, 100 bis 900 auf das Alphabet ab, die Zahl 222 schrieb sich also okf.
Das attische oder akrophonische System verwendete die Anfangsbuchstaben der
Zahlworter, die Zehn (deka) wurde als A geschrieben. Einen Algorithmus wie das
Sieb des ERATHOSTENES konnte nur ein Grieche ersinnen, dessen Zahlensystem
vom Rechnen abschreckte.

Die Roémer, deren Zahlenschreibweise wir heute noch allgemein kennen und
fiir bestimmte Zwecke — siehe die Seitennumerierung zu Anfang des Buches —
verwenden, hatten auch nur bessere Strichlisten. Uber ihre Rechenweise ist wenig
bekannt. Sicher ist, dafl sie wie OTzI Steinchen (calculi) gebrauchten.

Erst mit dem Stellenwertsystem der Araber und Inder wurde das Rech-
nen einfacher. Mit dem Einspluseins, dem Einmaleins und ein paar Regeln 16st
heute ein Kind arithmetische Aufgaben, deren Bewéltigung im Altertum Bewun-
derung erregt oder im Mittelalter zu einer thermischen Entsorgung gefiihrt hétte.
Versuchen Sie einmal, romische Zahlen zu multiplizieren. Dann lernen Sie das
Stellenwertsystem zu schétzen.

Seither sind Fortschritte erzielt worden, die recht praktisch sind, aber am We-
sen des Umgangs mit Zahlen nichts dndern. Wir schieben keine Steinchen mehr
iiber Rechentafeln, sondern Bits durch Register. Macht das einen Unterschied?

2.2.2 Entstehung

A long time ago in a galaxy far, far away ... so entstand UNIX nicht. Seine Ent-
stehungsgeschichte ist dennoch ungewdohnlich. Ende der sechziger Jahre schrieben
sich zwei Mitarbeiter der Bell-Labs des AT&T-Konzerns, KEN THOMPSON und

22 2 UNIX

DENNIS RITCHIE, ein Betriebssystem zu ihrem eigenen Gebrauch?®. Vorliufer rei-
chen bis in den Anfang der sechziger Jahre zuriick. Thre Rechenanlage war eine
ausgediente DEC PDP 7. Im Jahr 1970 prigte ein dritter Mitarbeiter, BRIAN
KERNIGHAN, den Namen UNIX (Plural: UNICES oder deutsch auch UNIXe) fiir
das Betriebssystem, auBerdem wurde die PDP 7 durch eine PDP 11/20% ersetzt,
um ein firmeninternes Textprojekt durchzufiihren.

Der Name UNIX geht auf die indoeuropéische Wurzel *oinos zuriick, karlsruhe-
risch oins, neuhochdeutsch eins, mit Verwandten in allen indoeuropéischen Spra-
chen, die aufler der baren Zahl einzigartig, aufSerordentlich bedeuten. UNIX hatte
einen Vorgianger namens MULTICS (Multiplexed Information and Computing Ser-
vice), der bereits viele Ideen vorwegnahm, aber fiir die damaligen Hardware- und
Programmiermoglichkeiten wohl etwas zu komplex war und erfolglos blieb. KEN
THOMPSON magerte MULTICS ab, bis es zuverlissig im Ein-Benutzer-Betrieb lief,
daher UNIX. Inzwischen hat UNIX wieder zugenommen und ist —im Widerspruch
zu seinem Namen — das Mehr-Benutzer-System.

DENNIS RITCHIE entwickelte auch eine neue Programmiersprache, die C ge-
tauft wurde (ein Vorgénger hieff B). Das UNIX-System wurde 1973 weitgehend
auf diese Sprache umgeschrieben, um es besser erweitern und auf neue Computer
iibertragen zu kénnen.

1975 wurde UNIX erstmals — gegen eine Schutzgebiihr — an andere abgegeben,
hauptséchlich an Universitiaten. Vor allem die University of California in Berkeley
beschiftigte sich mit UNIX und erweiterte es. Die Berkeley-Versionen — mit der
Abkiirzung BSD (Berkeley Software Distribution) versehen — leiten sich von der
Version 7 von AT&T aus dem Jahr 1979 her.

Seit 1983 wird UNIX von AT&T als System V vermarktet. Die lange Entwick-
lungszeit ohne den Einflufl kaufménnischer Interessen ist UNIX gut bekommen.
AT&T vergab Lizenzen fiir die Nutzung der Programme, nicht fiir den Namen.
Deshalb mufite jeder Nutzer sein UNIX anders nennen: Hewlett-Packard wihlte
HP-UX, Siemens SINIX, DEC ULTRIX, Sun SunOS und Solaris, Apple A/UX, so-
gar IBM nahm das ungeliebte, weil fremde Kind unter dem Namen AIX auf. Von
den NeXT-Rechnern ist NEXTSTEP iibriggeblieben, das auf unterschiedlicher
Hardware lduft, u. a. auf den HP 9000/7*. Eine der Portierungen auf PCs hief3
XENIX und machte vor einigen Jahren die Hélfte aller UNIX-Installationen aus.
UNIX ist heute also zum einen ein geschiitzter Name, urspriinglich dem AT&T-
Konzern gehdrend, und zum anderen ein Gattungsname fiir miteinander verwand-
te Betriebssysteme von AIX bis XINU.

Die UNIX-Abfiillung von Hewlett-Packard — HP-UX — entstand 1982 und
wurzelt in UNIX System IIT und Berkeley 4.1 BSD. Hewlett-Packard hat eigene
Beitrige zur Grafik, Kommunikation, Datenverwaltung und zu Echtzeitfunktio-
nen geleistet. In Europa gilt Siemens-Nixdorf mit SINIX als fiihrender UNIX-
Hersteller.

3Bine authentische Zusammenfassung findet sich in The Bell System Technical Jour-
nal, Vol. 57, July-August 1978, Nr.6, Part 2, p. 1897 - 2312

‘Die PDP 11 hatte einen Adressraum von 64 KByte. Ein heutiger PC/AT hat einen
Adressraum von wenigstens 16 MByte. Wenn UNIX allméhlich zu einem Speicherfresser
wird, liegt das nicht am Konzept, sondern daran, dafl immer mehr hineingepackt wird.

2.2 Das Besondere an UNIX 23

Im Jahr 1991 hat AT&T die UNIX-Geschifte in eine Tochtergesellschaft na-
mens Unix System Laboratories (USL) ausgelagert, mit der der amerikanische
Netzwerkhersteller Novell 1992 ein gemeinsames Unternehmen Univel gegriindet
hat. Anfang 1993 schliellich hat Novell USL iibernommen. Ende 1993 hat No-
vell den Namen UNIX der Open Software Foundation vermacht. Der Handel geht
weiter.

Die Viter von UNIX in den Bell Labs von AT&T — vor allem ROB PIKE und
KEN THOMPSON — haben sich nicht auf ihren Lorbeeren ausgeruht und ein neues
experimentelles Betriebssystem namens Plan9 entwickelt, das in bewéhrter Weise
seit, Herbst 1992 an Universitidten weitergegeben wird. Es behélt die Vorteile von
UNIX wie das Klarkommen mit heterogener Hardware bei, lauft auf vernetzten
Prozessoren (verteiltes Betriebssystem), kennt 16-bit-Zeichensitze und versucht,
den Aufwand an Software zu minimieren, was angesichts der Entwicklung des
alten UNIX und des X Window Systems als besonderer Vorzug zu werten ist.
Ein &hnliches Ziel schwebt auch HAX vor, das mit einem einfachen Basissystem
anfingt und sich durch Skalierbarkeit auszeichnet. Skalierbar heifit ausbauféhig,
an die Bediirfnisse anpafibar.

Seit 1985 lauft an der Carnegie-Mellon-Universitit in Pittsburgh ein Projekt
mit dem Ziel, einen von Grund auf neuen UNIX-Kernel unter Beriicksichtigung
moderner Erkenntnisse und Anforderungen zu entwickeln. Das System namens
Mach lduft bereits auf einigen Anlagen (z. B. unter dem Namen NeXTstep). Ob
es einen eigenen Zweig begriinden wird wie seinerzeit das Berkeley-System und
ob dieser im Lauf der Jahre wieder in die Linie von AT&T einmiinden wird, weif3
niemand zu sagen.

Die Open Software Foundation (OSF) arbeitet ebenfalls an einer neuen,
von AT&T unabhéngigen Verwirklichung eines UNIX-Systems unter dem Na-
men OSF /1. Dieses System wird von den Mitgliedern der OSF (IBM, Hewlett-
Packard, DEC, Bull, Siemens u. a.) angeboten werden.

Das amerikanische Institute of Electrical and Electronics Engineers (IEEE)
hat seit 1986 eine Sammlung von Standards namens POSIX (Portable Operating
System Interface for Computer Environments) geschaffen, die die grundsétzlichen
Anforderungen an UNIX-Systeme beschreibt. POSIX wird von der US-Regierung
und der européischen x/OPEN-Gruppe unterstiitzt und soll dazu fiithren, daf
Software ohne Anderungen auf allen POSIX-konformen Systemen liuft. POSIX
selbst ist also kein Betriebssystem.

Neben diesen kommerziellen UNIXen gibt es mehr oder weniger freie Abkomm-
linge. An mehreren Universitdaten sind UNIX-Systeme ohne Verwendung des ur-
spriinglichen UNIX von AT&T entstanden, um sie uneingeschrinkt im Unterricht
oder fiir Experimente einsetzen zu koénnen. Die bekanntesten sind MINIX, LI-
NUX, FreeBSD und NetBSD. Das GNU-Projekt der Free Software Foundation
Inc., einer Stiftung, verfolgt das Ziel, der UNIX-Welt Software im Quellcode oh-
ne Kosten zur Verfiigung zu stellen. Treibende Kraft ist RICHARD MATTHEW
STALLMAN, the Last of the True Hackers. Der Gedanke hinter dem Projekt ist,
dal jeder UNIX-Programmierer Software schreibt und braucht und unter dem
Strich besser fihrt, wenn er sich als Geber und Nehmer an GNU beteiligt. Einige
grofie Programme (C-Compiler, Gnuplot, Ghostscript) sind bereits verdffentlicht,

24 2 UNIX

siehe Abschnitt 2.14 GNU is not UNIX. Der erste Betriebssystem-Kernel namens
Hurd kam 1996 heraus. Viel aus dem GNU-Projekt findet sich auch bei LINUX
wieder.

Schlieflich gehort heute zu einem UNIX-System die grafische, netzfdhige Be-
nutzeroberfliche X Window System, die zwar vom Kern her gesehen nur eine
Anwendung und daher nicht notwendig ist, fiir den Benutzer jedoch das Erschei-
nungsbild von UNIX bestimmt.

Weiteres zur UNIX-Familie findet man im World Wide Web (WWW) unter
folgenden Uniform Resource Locators (URLSs):

e http://www.pasc.org/abstracts/posix.htm

e http://www.freebsd.org/

e http://wwww.netbsd.org/

e http://www.openbsd.org/

e http://www.linux.org/

e http://plan9.bell-labs.com/plan9/

e http://www.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html
e http://www.cs.utah.edu/projects/flexmach/mach4/html/Mach4-proj.html

e http://www.gnu.org/ (Free Software Foundation)

e http://www.camb.opengroup.org/ (OSF, X Window System)

sowie auf den Seiten der kommerziellen Hersteller.

Alle diese UNIX-Systeme sind in den wesentlichen Ziigen gleich. Sie bauen
aber auf verschiedenen Versionen von UNIX auf (vor allem unterscheiden sich der
AT&T-Zweig und der Berkeley-Zweig) und weichen daher in Einzelheiten vonein-
ander ab. Dennoch sind die Unterschiede gering im Vergleich zu den Unterschieden
zwischen grundsétzlich fremden Systemen. Weltweit laufen zur Zeit etwa ein bis
zwei Millionen Installationen.

Bei aller Verwandschaft der UNIXe ist trotzdem Vorsicht geboten, wenn es
heif}t, irgendeine Hard- oder Software sei fiir UNIX verfiigbar. Das ist bestenfalls
die halbe Wahrheit. Bei Hardware kann die Verbindung zum UNIX-System schon
an mechanischen Problemen scheitern. Eine Modemkarte fiir einen IBM-PC paf}t
weder mechanisch noch elektrisch in eine HP 9000/712. Ausfiihrbare Program-
me sind fiir einen bestimmten Prozessor kompiliert und nicht iibertragbar, sie
sind nicht bindrkompatibel. Nur der Quellcode von Programmen, die fiir UNIX-
Systeme geschrieben worden sind, 148t sich zwischen UNIX-Systemen austauschen,
unter Umsténden mit leichten Anpassungen.

2.2.3 Vor- und Nachteile

Niemand behauptet, UNIX sei das beste aller Betriebssysteme. Im Gegenteil, man-
che Computerhersteller halten ihre eigenen (proprietiren) Betriebssysteme fiir
besser®. Aber: ein IBM-Betriebssystem lduft nicht auf einem DEC-Rechner und

’Real programmers use IBM OS/370.

2.2 Das Besondere an UNIX 25

umgekehrt. UNIX hingegen stammt von einer Firma, die nicht als Computerher-
steller aufgefallen ist, und lduft auf den Maschinen vieler Hersteller. Man braucht
also nicht jedesmal umzulernen, wenn man den Computer wechselt. Bei Autos ist
man ldngst so weit.

Diese gute Portierbarkeit riihrt daher, dafl UNIX mit Ausnahme der Trei-
berprogramme in einer héheren Programmiersprache — ndmlich C — geschrieben
ist. Zur Portierung auf eine neue Maschine braucht man also nur einige Treiber
und einen C-Compiler in der maschinennahen und unbequemen Assemblersprache
zu schreiben. Der Rest wird fast unveréindert iibernommen.

Eng mit dem Gesagten hingt zusammen, dafl UNIX die Verbindung von Hard-
ware unterschiedlicher Hersteller unterstiitzt. Man kann unter UNIX an einen
Rechner von Hewlett-Packard Terminals von Wyse und Drucker von NEC an-
schlieflen. Das ist revolutionér. Eine Folge dieser Flexibilitéit ist, dafl die Eigen-
schaften der gesamten Anlage in vielen Konfigurations-Files beschrieben sind,
die Speicherplatz und Prozessorzeit verbrauchen. Stimmen die Eintragungen in
diesen Files nicht, gibt es Storungen. Und meist ist an einer Storung ein File
mehr beteiligt, als man denkt. Die Konfigurations-Files sind meist Klartext und
lassen sich mit jedem Editor bearbeiten; sie enthalten auch erkldrenden Kom-
mentar. Die System-Manager hiiten sie wie ihre Augépfel, es steckt viel Arbeit
darin.

Zweitens enthélt UNIX einige Gedanken, die wegweisend waren. Es war von
Anbeginn ein System fiir mehrere Benutzer (Multiuser-System). Andere Punk-
te sind die File-Hierarchie, die Umlenkung von Ein- und Ausgabe, Pipes, der
Kommando-Interpreter, das Ansprechen der Peripherie als Files, leistungs- und
erweiterungsfihige Werkzeuge und Dienstprogramme (fertige Programme zum Er-
ledigen hiufig vorkommender Aufgaben). Man mufl den Weitblick der Viter von
UNIX bewundern.

Die Stirken von UNIX liegen in der Programmierumgebung, in der Kom-
munikation und in der inzwischen etwas zuriickgebliebenen Textverarbeitung.
Schwichen von UNIX sind das Fehlen von Grafik- und Datenbankfunktionen so-
wie eine nur mittlere Sicherheit. Manchen ist die Benutzeroberfliche zu spar-
tanisch®. Wenn UNIX nichts sagt, geht es ihm gut, oder es ist mausetot. Wer
viel am Bildschirm arbeitet, ist fiir die Schweigsamkeit jedoch dankbar. Es gibt
auch technische Griinde fiir die Zuriickhaltung: wohin sollten die Meldungen eines
Kommandos in einer Pipe oder bei einem Hintergrundprozess gehen, ohne andere
Prozesse zu storen? Die Vielzahl und der Einfallsreichtum der Programmierer, die
an UNIX mitgearbeitet haben und noch weiterarbeiten, hat stellenweise zu einer
etwas uniibersichtlichen und den Anfinger verwirrenden Fiille von Werkzeugen
gefiithrt. Statt einer Shell gibt es gleich ein halbes Dutzend Geschmacksrichtun-
gen. Nach heutiger Erkenntnis hat UNIX auch Schwichen theoretischer Art, siehe
ANDREW S. TANENBAUM.

UNIX gilt als schwierig im Vergleich zu MS-DOS. In dieser Allgemeinheit tei-
len wir die Meinung nicht. Fiir den Benutzer ist UNIX eher einfacher, weil es mehr
kann, zuverldssiger ist und viele Dinge selbsttétig erledigt. Auch fiir den Anwen-

6Gegen eine kleinen Aufpreis hilft das X Window System aber diesem Mangel ab.

26 2 UNIX

dungsprogrammierer ist UNIX einfacher, insbesondere was die Speicherverwaltung
angeht (fiir UNIX steht der Speicher zusammenhéngend zur Verfiigung, und wenn
er nicht reicht, wird geschwoppt). Das System-Management hingegen ist schwieri-
ger. An einer Aufgabe wie Electronic Mail oder Druckerausgabe sind ein Dutzend
Files beteiligt, die zusammenarbeiten miissen.

UNIX ist sicherer als MS-DOS oder #hnliche Betriebssysteme. Den Reset-
Knopf brauchen wir vielleicht einmal im Vierteljahr, und das meist im Zusammen-
hang mit Systemumstellungen, die heikel sein konnen. Anwendungsprogramme
eines gewohnlichen Benutzers haben gar keine Moglichkeit, das System abstiirzen
zu lassen (sagen wir vorsichtshalber fast keine). Nicht ohne Grund arbeiten viele
Server im Internet mit UNIX.

2.2.4 UNIX-Philosophie

Unter UNIX stehen einige hundert Dienstprogramme (utility, utilitaire) zur
Verfiigung. Dienstprogramme werden mit dem Betriebssystem geliefert, gehéren
aber nicht zum Kern, sondern haben den Rang von Anwendungsprogrammen. Sie
erledigen immer wieder und iiberall vorkommende Arbeiten wie Anzeige von File-
verzeichnissen, Kopieren, Loschen, Editieren von Texten, Sortieren und Suchen.
Die Dienstprogramme von UNIX erfiillen jeweils eine iiberschaubare Funktion.
Komplizierte Aufgaben werden durch Kombinationen von Dienstprogrammen ge-
meistert. Eierlegende Wollmilchsdue widersprechen der reinen UNIX-Lehre, kom-
men aber vor (emacs(1)).

Der Benutzer wird mit unnoétigen Informationen verschont. No news are good
news. Riickfragen, ob man ein Kommando wirklich ernst gemeint hat, gibt es
nicht. UNIX rechnet mit dem miindigen Biirger. Ein gewisser Gegensatz zur MS-
Windows-Welt ist zu erkennen.

UNIX geht davon aus, daf alle Benutzer guten Willens sind und férdert ih-
re Zusammenarbeit. Es gibt aber Hilfsmittel zur Uberwachung. Schwarze Schafe
entdeckt ein gewissenhafter System-Manager und sperrt sie ein.

Der US-amerikanische Autor HARLEY HAHN schreibt Unix is the name of a
culture. Ubertrieben, aber ein eigener Stil im Umgang mit Benutzern und Daten
ist in der UNIX-Welt und dem von ihr geprédgten Internet zu erkennen.

2.2.5 Aufbau

Man kann sich ein UNIX-System als ein Gebdude mit mehreren Stockwerken
vorstellen (Abb. 2.1). Im Keller steht die Hardware. Dariiber sitzt im Erdge-
scho3 der UNIX-Kern (kernel, noyau), der mit der Hardware iiber die Treiber-
programme und mit den hoheren Etagen iiber die Systemaufrufe (system call,
fonction systeme) verkehrt. Aulerdem enthélt der Kern die Prozessverwaltung
und das File-System. Der betriebsfihige Kern ist ein einziges Programm, das im
File-System finden ist (hpux, vmux, vmlinuz). Hardware und UNIX-Kern bilden
die UNIX-Maschine. Die Grenze des Kerns nach oben (die Systemaufrufe) ist
in der UNIX System V Interface Definition (SVID) beschrieben. Was aus
den oberen Stockwerken kommt, sind fiir den UNIX-Kern Benutzer- oder An-

2.2 Das Besondere an UNIX 27

Benutzerprogramme

Anwendungen

Kommandointerpreter (Shell)

UNIX-Maschine

Systemaufrufe

Kernel
Treiber

Hardware

Abb. 2.1: Schematischer Aufbau von UNIX

wendungsprogramme, auch falls sie zum Lieferumfang von UNIX gehoren. Die
Anwendungsprogramme sind austauschbar, verdinderbar, ergdnzbar. Fiir den Be-
nutzer im Dachgeschof} ist die Sicht etwas anders. Er verkehrt mit der Maschine
iiber einen Kommandointerpreter, die Shell. Sie nimmt seine Wiinsche entgegen
und sorgt fiir die Ausfithrung. UNIX ist fiir ihn in erster Linie die Shell. Allerdings
konnte sich ein Benutzer eine eigene Shell schreiben oder Programme, die ohne
Shell auskommen. Dieses Doppelgesicht des Kommandointerpreters spiegelt seine
Mittlerrolle zwischen Benutzer und Betriebssystem-Kern wider.

Die Verteilung der Aufgaben zwischen Kern und Anwendungen ist in manchen
Punkten willkiirlich. Eigentlich sollte ein Kern nur die unbedingt notwendigen
Funktionen enthalten. Ein Monolith von Kern, der alles macht, ist bei den heutigen
Anforderungen kaum noch zu organisieren. In MINIX und OS/2 beispielsweise
ist das File-System eine Anwendung, also nicht Bestandteil des Kerns. Auch die
Arbeitsspeicherverwaltung — das Memory Management — l&8t sich auslagern, so
daB nur noch Steuerungs- und Sicherheitsfunktionen im Kern verbleiben.

Wer tiefer in den Aufbau von UNIX oder verwandten Betriebssystemen ein-
dringen mdochte, sollte mit den im Anhang O Literatur genannten Biichern von
ANDREW S. TANENBAUM beginnen. Der Quellcode zu dem dort beschriebenen
Betriebssystem MINIX ist ebenso wie fiir LINUX auf Papier, Disketten und im
Netz verfiigbar, einschlieflich Treibern und Systemaufrufen. Weiter ist in der Uni-
versitidt Karlsruhe, Institut fiir Betriebs- und Dialogsysteme ein Betriebssystem
KBS fiir einen Kleinrechner (Atari) entwickelt worden, das in der Zeitschrift ¢’t

28 2 UNIX

Nr. 2, 3 und 4/1993 beschrieben ist und zu dem ausfiihrliche Unterlagen erhéltlich
sind. Dieses System ist zwar kein UNIX, sondern etwas kleiner und daher iiber-
schaubarer, aber die meisten Aufgaben und einige Losungen sind UNIX-dhnlich.

2.3 Prozesse

2.3.1 Was ist ein Prozess?

Wir miissen — zumindest voriibergehend — unterscheiden zwischen einem Pro-
gramm und einem Prozess, auch Task genannt. Ein Programm [duft nicht, son-
dern ruht als File im File-System. Beim Aufruf wird es in den Arbeitsspeicher
kopiert, mit Daten erginzt und bildet dann einen Prozess (process, processus),
der Prozessorzeit anfordert und seine Titigkeit entfaltet. Man kann den Prozess
als die grundlegende, unteilbare Einheit ansehen, in der Programme ausgefiihrt
werden. Inzwischen unterteilt man jedoch in bestimmten Zusammenhéngen Pro-
zesse noch feiner (threads), wie auch das Atom heute nicht mehr unteilbar ist.
Ein Prozess ist eine kleine, abgeschlossene Welt fiir sich, die mit der Auflenwelt
nur iiber wenige, genau kontrollierte Wege Verbindung hélt.

Ein UNIX-Prozess besteht im Arbeitsspeicher aus drei Teilen: einem Code-
Segment (auch Text-Segment genannt, obwohl aus unlesbarem Maschinenco-
de bestehend), einem Benutzerdaten-Segment und einem Systemdaten-
Segment. Er bekommt eine eindeutige Nummer, die Prozess-ID (PID). Das
Code-Segment wird bei der Erzeugung des Prozesses beschrieben und ist dann vor
weiteren schreibenden Zugriffen geschiitzt. Das Benutzerdaten-Segment wird vom
Prozess beschrieben und gelesen, das Systemdaten-Segment darf vom Prozess gele-
sen und vom Betriebssystem beschrieben und gelesen werden. Im Benutzerdaten-
Segment finden sich unter anderem die dem Prozess zugeordneten Puffer. Unter
die Systemdaten fallen Statusinformationen iiber die Hardware und iiber offene
Files. Durch die Verteilung der Rechte wird verhindert, daf} ein wildgewordener
Prozess das ganze System lahmlegt”. Ein Booten wegen eines Systemabsturzes ist
unter UNIX duflerst selten vonndten.

Die gerade im System aktiven Prozesse listet man mit dem Kommando ps (1)
mit der Option —-ef auf. Die Ausgabe sieht so aus:

UID PID PPID C STIME TTY TIME COMMAND
root 0 0 0 Jan 22 7 0:04 swapper
root 1 0 0 Jan 22 7 1:13 init
root 2 0 0 Jan 22 7 0:00 pagedaemon
root 3 0 0 Jan 22 7 0:00 statdaemon
root 31 1 0 Jan 22 7 0:18 /etc/cron
root 46 1 0 Jan 22 console 0:00 sleep
root 48 1 0 Jan 22 console 0:00 sleep
root 59 1 0 Jan 22 7 0:00 /etc/delog

"In einfacheren Betriebssystemen als UNIX ist es moglich, da ein Programm
wéhrend der Ausfithrung seinen im Arbeitsspeicher stehenden Code verédndert. Man
konnte ein Programm schreiben, daf sich selbst auffrifit.

2.3 Prozesse 29

wualexl 1279 1 0 Feb 4 console 0:00 -ksh [ksh]
root 1820 1 0 00:48:00 ttyOp2 0:00 /etc/getty
1p 1879 1 0 00:51:17 7 0:00 1lpsched
root 2476 1 0 13:02:40 ttylp0 0:00 /etc/getty
root 2497 1 0 13:04:31 ttyOpl 0:00 /etc/getty
root 2589 1 0 13:31:34 ttylpl 0:00 /etc/getty
wualexl 2595 1279 4 13:32:39 console 0:00 -ksh [ksh]
wualexl 2596 2595 21 13:32:40 console 0:00 ps -ef
wualexl 2597 2595 3 13:32:40 console 0:00 [sort]

Die Spalten bedeuten folgendes:
e UID User-ID, Besitzer des Prozesses
e PID Prozess-ID, Prozessnummer
e PPID Parent Process ID, Nummer des Elternprozesses
e C Prozessorbenutzung (fiir Scheduler Priority)
e STIME Start Time des Prozesses
e TTY Kontroll-Terminal des Prozesses
e TIME Dauer der Ausfiithrung des Prozesses
e COMMAND Name des zugehorigen Programmes

Im obigen Beispiel ist der jiingste Prozess sort mit der Nr. 2597; er ist zusam-
men mit ps -ef Teil einer Pipe, um die Ausgabe nach der PID sortiert auf den
Bildschirm zu bekommen. Beide sind Kinder einer Shell ksh mit der Nr. 2595.
Die eckigen Klammern um den Namen weisen darauf hin, dal der Prozess bei sei-
ner Erzeugung moglicherweise einen anderen Namen hatte, was meist unwichtig
ist. Die Shell ihrerseits ist Kind der Login-Shell mit der Nr. 1279, die aus einem
getty-Prozess mit derselben Nummer entstanden ist. Elternprozess aller getty-
Prozesse ist der Ddmon init mit der PID 1, der Urahne der meisten Prozesse auf
dem System. Dieser und noch wenige andere Ddmonen wurden vom swapper mit
der PID 0 erzeugt, der den Verkehr zwischen Arbeits- und Massenspeicher regelt.
Man bemerkt ferner die Ddmonen cron(1M) und lpsched(1M) sowie zwei schla-
fende Prozesse (Nr. 46 und 48), die die Druckerports offen halten. Eine Erkldrung
der hier vorkommenden Begriffe folgt auf den néchsten Seiten.

Alle Prozesse, die von einem gemeinsamen Vorfahren abstammen, geh6ren
zu einer Prozessgruppe. Sie verkehren mit der Auflenwelt iiber dasselbe Kon-
trollterminal und empfangen bestimmte Signale als Gruppe. Der gemeinsame
Vorfahre ist der Prozessgruppenleiter. Uber den Systemaufruf setpgrp(2) er-
nennt sich ein Prozess zum Leiter einer neuen Gruppe. Ohne diese Moglichkeit
gibe es im System nur eine Prozessgruppe, da alle Prozesse auf init zuriickgehen.

2.3.2 Prozesserzeugung (exec, fork)

Nehmen wir an, wir héitten bereits einen Prozess. Dieser kopiert sich, dann haben
wir zwei gleiche Prozesse, einen Elternprozess und einen Kindprozess. Das

30 2 UNIX

Elternprozess
1. Kindprozess
synchron 2. Kindprozess

. synchron
1
1
1 1
1 wartend 1 wartend

) 1 1

Zeit 1

1

Asynchroner Kindprozess

Abb. 2.2: Synchrone und asynchrone Prozesse

Codesegment des Kindprozesses wird nun mit dem Code des neuen Kommandos
oder Programmes iiberlagert. Dann wird der Kindprozess ausgefiihrt, wihrend
der Elternprozess wartet. Ist der Kindprozess fertig, wird er im Speicher geldscht
und sein Ende dem Elternprozess mitgeteilt, der nun weitermacht. Der Kindpro-
zess kann seinerseits — solange er lebt — wieder Kinder bekommen, so dafl einem
lebhaften Familienleben nichts im Wege steht (Abb. 2.2). Durch das Kopieren
erbt der Kindprozess beide Datensegmente des Elternprozesses und kann damit
arbeiten. Eine Riickvererbung von den Kindern auf die Eltern gibt es im Ge-
gensatz zum biirgerlichen Recht (BGB, 5. Buch) nicht, die Vererbung ist eher
biologisch aufzufassen. Programmiertechnisch bedeutet die Prozesserzeugung den
Aufruf eines selbstéindigen Programmes (Hauptprogrammes) mittels der System-
aufrufe exec(2) und fork(2) aus einem anderen Programm heraus.

Wie gelangen wir nun zu dem ersten Prozess im System, der zwangsldufig
als Vollwaise auf die Welt kommen muf3? Beim Einschalten des Computers lduft
ein besonderer Vorgang ab, der den Prozess Nr. 0 mit Namen swapper erzeugt.
Der ruft sogleich einige zum Betrieb erforderliche Prozesse ins Leben, darunter
der init-Prozess mit der Nr. 1. init erzeugt fiir jedes Terminal einen getty-
Prozess, ist also unter Umsténden Elternteil einer zahlreichen Nachkommenschaft.
Die getty-Prozesse nehmen die Anmeldungen der Benutzer entgegen und erset-
zen sich ohne Erzeugung eines Kindprozesses durch den login-Prozess, der die
Anmeldung priift. Bei Erfolg ersetzt sich der login-Prozess durch den Komman-
dointerpreter, die Shell. Der Elternprozess dieser ersten Shell ist also init, ih-
re Prozess-ID und ihre Startzeit ist die des zugehorigen getty-Prozesses. Alle
weiteren Prozesse der Sitzung sind Kinder, Enkel, Urenkel usw. der Sitzungs-
shell. Am Ende einer Sitzung stirbt die Sitzungsshell ersatzlos. Der init-Prozess

2.3 Prozesse 31

— der Urahne — erfihrt dies und erzeugt aufgrund eines respawn-Eintrages in
/etc/inittab(4) wieder einen neuen getty-Prozess.

Wenn der Eltern-Prozess mit seiner Arbeit wartet, bis sein Abkémmling fertig
ist, spricht man beim Kind von einem synchronen oder Vordergrund-Prozess.
Das ist der Regelfall. Man kann aber auch als letztes Zeichen der Kommandozeile
das et-Zeichen & geben, dann ist der Elternprozess sofort zu neuen Taten bereit:

myprogram &

Der Kind-Prozess lauft asynchron oder im Hintergrund. Sinnvoll ist das nur,
falls der Elternprozess nicht die Ergebnisse seines Kindes benotigt. Ein im Vor-
dergrund gestarteter Prozess 483t sich auf einigen UNIX-Systemen — abhéngig von
Kernel und Shell — mit der Tastenkombination control-z unterbrechen und dann
mit dem Kommando bg prozessid in den Hintergrund schicken. Umgekehrt holt
ihn fg prozessid wieder in den Vordergrund.

Der Benutzer, der einen Prozess aus seiner Sitzung gestartet hat, ist der Be-
sitzer des Prozesses und verfiigt iiber ihn, insbesondere darf er ihn gewaltsam be-
enden. Das Terminal, von dem der Prozess aus gestartet wurde, ist sein Kontroll-
Terminal /dev/tty, iiber das er seinen Dialog abwickelt.

Das System fiihrt eine Prozesstabelle, in der fiir jeden Prozess alle zugehori-
gen Informationen von der Prozess-ID bis zu den Zeigern auf die Speichersegmente
liegen. Das Kommando ps (1) greift auf diese Tabelle zu.

2.3.3 Selbstéindige Prozesse (nohup)

Stirbt ein Elternprozess, so sterben automatisch alle etwa noch lebenden Kind-
prozesse; traurig, aber wahr. Mit dem Ende einer Sitzungsshell ist auch das Ende
aller in der Sitzung erzeugten Prozesse gekommen. Man mdochte gelegentlich je-
doch Rechenprogramme zum Beispiel iiber Nacht laufen lassen, ohne die Sitzung
wahrend der ganzen Zeit fortzusetzen.

Mit dem Vorkommando nohup(1) (no hang up) vor dem Programmaufruf
erreicht man, dafl das Programm bei Beendigung der Sitzung weiterlduft, es ist
von der Sitzung abgekoppelt. Gleichzeitig mufl man es natiirlich im Hintergrund
(&) laufen lassen, sonst ld8t sich die Sitzung nicht vom Terminal aus beenden.
Tatséchlich bewirkt das Vorkommando nohup (1), daf8 das Signal Nr. 1 (SIGHUP,
hangup) ignoriert wird. Der Aufruf sieht so aus:

nohup program &

Fiir program ist der Name des Programmes einzusetzen, das von der Sitzung abge-
koppelt werden soll. Will man nohup auf Kommandofolgen oder Pipes anwenden,
sind sie in ein Shellscript zu verpacken. Die Ausgabe eines nogehupten Program-
mes geht automatisch in ein File namens nohup.out, falls sie nicht umgelenkt
wird.

Starten wir das Shellscript traptest mit nohup traptest & und beenden
unsere Sitzung (zweimal exit geben), so konnen wir in einer neuen Sitzung mit
ps -—ef feststellen, dal traptest in Form einer Shell und eines sleep-Prozesses
weiterlebt. Besitzer und urspriingliches Kontrollterminal werden angezeigt. Wir
sollten die Shell moglichst bald mit ki11(1) beenden.

32 2 UNIX

2.3.4 Prioritit (nice)

Ein Dialog-Prozess sollte unverziiglich antworten, sonst nervt er. Bei einem Re-
chenprozess, der néchtelang im Hintergrund lduft, kommt es dagegen auf eine
Stunde mehr oder weniger nicht an. Deshalb werden den Prozessen unterschied-
liche Priorititen eingerdumt. In der Schlange der auf Prozessorzeit wartenden
Prozesse kommt ein Prozess hoher Prioritdt vor einem Prozess niedriger Prio-
ritdt, das heifit er kommt frither an die Reihe. Es bedeutet nicht, dafl ihm mehr
Prozessorzeit zugeteilt wird.

Die Prioritét eines Prozesses, die man sich mit ps -elf oder ps -al anzeigen
148t, setzt sich aus zwei Teilen zusammen. Der Benutzer kann einem Prozess beim
Aufruf einen nice-Faktor mitgeben. Ein hoher Wert des Faktors fiihrt zu einer
niedrigen Prioritéit. Den zweiten Teil berechnet das System unter dem Gesichts-
punkt moglichst hoher Systemeffizienz. In einem Echtzeit-System wire eine solche
eigenméchtige Verdnderung der Prioritét untragbar.

Die nice-Faktoren haben Werte von 0 bis 39. Der Standardwert eines Vorder-
grundprozesses ist 20. Mit dem Aufruf:

nice myprocess

setzt man den nice-Faktor des Prozesses myprocess auf 30 herauf, seine Prioritét
im System wird schlechter. Mittels:

nice -19 myprocess

bekommt der nice-Faktor den schlechtesten Wert (39). Groflere Zahlen werden
als 19 interpretiert. Negative Werte verbessern den nice-Faktor iiber den Stan-
dardwert hinaus und sind dem System-Manager fiir Notfélle vorbehalten. Der
nice-Faktor kann nur beim Prozessstart verdndert werden, die Prioritéit eines be-
reits laufenden Prozesses 1dt sich nicht mehr beeinflussen. In Verbindung mit
nohup ist nice gebréduchlich:

nohup nice program &
nohup time nice program &
nohup nice time program &

Im letzten Fall wird auch die Prioritéit des time-Oberprogrammes herabgesetzt,
was aber nicht viel bringt, da es ohnehin die meiste Zeit schléft.

Im GNU-Projekt findet sich ein Kommando renice, das die Prioritét eines
laufenden Prozesses zu dndern erméglicht. Weitere Uberlegungen zur Prioritiit
stehen im Abschnitt 2.13 Echtzeit-Erweiterungen.

2.3.5 Damonen
2.3.5.1 Was ist ein Dadmon?

Das griechische Wort davpwr bezeichnet alles zwischen Gott und Teufel, Holde
wie Unholde; die UNIX-D&monen sind in der Mitte angesiedelt, nicht immer zu

2.3 Prozesse 33

durchschauen und vorwiegend niitzlich. Es sind Prozesse, die nicht an einen Benut-
zer und ein Kontrollterminal gebunden sind. Das System erzeugt sie auf Veranlas-
sung des System-Managers, meist beim Starten des Systems. Wie Heinzelménn-
chen erledigen sie im stillen Verwaltungsaufgaben und stellen Dienstleistungen
zur Verfiigung. Beispiele sind der Druckerspooler 1psched (1M), Netzdienste wie
inetd (1M) oder sendmail (1M) und der Zeitddmon cron(1M). Didmonen, die beim
Systemstart von dem Shellscript /etc/rc ins Leben gerufen worden sind, weisen
in der Prozessliste als Kontrollterminal ein Fragezeichen auf. Mittlerweile ist der
Start der Ddmonen beim Booten etwas komplizierter geworden und auf eine Kette
von Shellscripts verteilt.

2.3.5.2 Dé&mon mit Uhr (cron)

Im System waltet ein Dimon namens cron(iM). Der schaut jede Minute® in
/var/spool/cron/crontabs und /var/spool/cron/atjobs nach, ob zu dem je-
weiligen Zeitpunkt etwas fiir ihn zu tun ist. Die Files in den beiden Verzeichnissen
sind den Benutzern zugeordnet. In den crontabs stehen periodisch wiederkehren-
de Aufgaben, in den atjobs einmalige.

In die periodische Tabelle tragt man Aufriumungsarbeiten ein, die regelmafig
wiederkehrend vorgenommen werden sollen. In unserer Anlage werden beispiels-
weise jede Nacht zwischen 4 und 5 Uhr sdmtliche Sitzungen abgebrochen, Files mit
dem Namen core gel6scht, die tmp-Verzeichnisse geputzt und der Druckerspooler
neu installiert. Das dient zum Sparen von Plattenplatz und dazu, dafl morgens
auch bei Abwesenheit der System-Manager die Anlage moglichst storungsfrei ar-
beitet. Auch fiir das Ziehen von Backup-Kopien wichtiger Files auf eine zweite
Platte ist die Tabelle gut.

Jeder Benutzer, dem der System-Manager dies erlaubt hat, kann sich eine
solche Tabelle anlegen, Einzelheiten siche im Handbuch unter crontab(1). Die
Eintragungen haben folgende Form:

50 0 * * *x exec /usr/bin/calendar

Das bedeutet: um 0 Uhr 50 an jedem Tag in jedem Monat an jedem Wochentag
fiihre das Kommando exec /usr/bin/calendar aus. Fiir den Benutzer wichtiger
ist die Tabelle der einmaligen Tétigkeiten. Mit dem Kommando at (1), wieder
die Erlaubnis des System-Managers vorausgesetzt, startet man ein Programm zu
einem beliebigen spéteren Zeitpunkt durch den Damon cron(iM). Der Aufruf
(mehrzeilig!) sieht so aus:

at 2215 Aug 29
$HOME/program
control-d

In diesem Fall wird am 29. August um 22 Uhr 15 Systemzeit (also mitteleu-
ropéische Sommerzeit) das Programm program aus meinem Homeverzeichnis ge-
startet. Weitere Zeitformate sind moglich, siehe Handbuch unter at (1).

8Die UNIX-Uhr zihlt Sekunden seit dem 1. Januar 1970, 00:00 Uhr GMT

34 2 UNIX

Weiterhin kann man dem cron seinen Terminkalender anvertrauen. Jeden
Morgen beim Anmelden erfihrt man dann die Termine des laufenden und des
kommenden Tages, wobei das Wochenende beriicksichtigt wird. Um die Einga-
be der Termine kommt man allerdings nicht herum, de nihilo nihil oder Input
ist aller Output Anfang. Einzelheiten im Handbuch unter calendar(1). Ein sol-
cher Reminder Service kann im Netz zur Koordination von Terminen mehrerer
Benutzer eingesetzt werden, calendar (1) ist jedoch zu schlicht dafiir.

Das Kommando leave(1) ist ein Wecker. Mit leave hh:mm kann man sich
5 Minuten vor hh:mm Uhr aus seiner Bildschirmarbeit reiflen lassen.

2.3.5.3 Line Printer Scheduler (lpsched)

Der Line-Printer-Scheduler-Dadmon oder Druckerspooler 1psched (1M) verwaltet
die Druckerwarteschlangen im System. Er nimmt Druckauftrige (request) entge-
gen, ordnet sie in die jeweilige Warteschlange ein und schickt sie zur rechten Zeit
an die Drucker. Ohne seine ordnende Hand kidme aus den Druckern viel Makulatur
heraus. Es darf immer nur ein Druckerspooler laufen; zeigt die Prozessliste mehre-
re an, ist etwas schiefgegangen. Weiteres sieche Abschnitt 2.7.12 Druckerausgabe.

2.3.5.4 Internet-Dimon (inetd)

Der Internet-Ddmon inetd(1M) ist ein Tiirsteher, der stindig am Netz lauscht.
Kommt von auflerhalb eine Anfrage mittels ftp(1), 1pr(1), telnet(1),
rlogin(1) oder ein Remote Procedure Call, wird er aktiv und ruft einen auf
den jeweiligen Netzdienst zugeschnittenen Unterddmon auf, der die Anfrage be-
dient. Es darf immer nur ein Internet-Ddmon laufen. Weiteres siehe Abschnitt 3.7
Netzdienste im Uberblick.

2.3.5.5 Mail-Damon (sendmail)

Email ist ein wichtiger Netzdienst. Stdndig kommt Post herein oder wird
verschickt. Die Verbindung des lokalen Mailsystems zum Netz stellt der
sendmail (1M)-Damon (Mail Transfer Agent) her, der wegen seiner Bedeutung
unabhéngig vom inetd (1M)-Didmon lduft. sendmail (1M) ist fiir seine nicht ganz
triviale Konfiguration beriichtigt, die vor allem daher riihrt, dafl die Mail-Welt
sehr bunt ist. Es gibt eben nicht nur das Internet mit seinen einheitlichen Proto-
kollen. Obwohl ein Benutzer unmittelbar mit sendmail (1M) arbeiten konnte, ist
fast immer ein Dienstprogramm wie mail (1) oder elm(1) (Mail Delivery Agent)
vorgeschaltet.

2.3.6 Interprozess-Kommunikation (IPC)
2.3.6.1 IPC mittels Files

Mehrere Prozesse konnen auf dasselbe File auf dem Massenspeicher lesend und
schreibend zugreifen, wobei es am Benutzer liegt, das Durcheinander in Grenzen
zu halten. Hiervon wird oft bei sogenannten Lock-Files (engl. to lock = zuschlie-
Ben, versperren) Gebrauch gemacht. Beipielsweise darf nur ein elm(1)-Prozess

2.3 Prozesse 35

zum Verarbeiten der Electronic Mail pro Benutzer existieren. Also schaut elm(1)
beim Aufruf nach, ob ein Lock-File /tmp/mbox .username existiert. Falls nein, legt
elm(1) ein solches File an und macht weiter. Falls ja, mufl bereits ein elm(1)-
Prozess laufen, und die weiteren Startversuche enden mit einer Fehlermeldung. Bei
Beendigung des Prozesses wird das Lock-File geloscht. Wird der Prozess gewalt-
sam abgebrochen, bleibt das Lock-File erhalten und tduscht einen elm(1)-Prozess
vor. Das Lock-File von Hand 16schen.

Die Kommunikation {iber Files erfordert Zugriffe auf den Massenspeicher und
ist daher langsam. In obigem Fall spielt das keine Rolle, aber wenn laufend Daten
ausgetauscht werden sollen, sind andere Mechanismen vorzuziehen.

2.3.6.2 Pipes

Man kann stdout eines Prozesses mit stdin eines weiteren Prozesses verbinden
und das sogar mehrmals hintereinander. Eine solche Konstruktion wird Pipe?,
Pipeline oder Fliefband genannt und durch den senkrechten Strich (ASCII-Nr.
124) bezeichnet:

cat filename | more

cat (1) schreibt das File filename in einem Stiick nach stdout, more (1) sorgt
dafiir, dafl die Ausgabe nach jeweils einem Bildschirm angehalten wird. more (1)
konnte auf cat (1) verzichten und selbst das File einlesen (anders als in MS-DOS):

more filename

aber in Verbindung mit anderen Kommandos wie 1s(1) ist die Pipe mit more (1)
als letztem Glied zweckmiflig. Physikalisch ist eine Pipe ein Pufferspeicher im
System, in den das erste Programm schreibt und aus dem das folgende Programm
liest. Die Pipe ist eine Einbahnstrafle. Das Piping in einer Sitzung wird von der
Shell geleistet; will man es aus einem eigenen Programm heraus erzeugen, braucht
man den Systemaufruf pipe(2).

2.3.6.3 Named Pipe (FIFO)

Wihrend die eben beschriebene Pipe keinen Namen hat und mit den beteiligten
Prozessen lebt und stirbt, ist die Named Pipe eine selbstédndige Einrichtung. [hr
zweiter Name FIFO bedeutet First In First Out und kennzeichnet einen Speicher-
typ, bei dem die zuerst einglagerten Daten auch als erste wieder herauskommen
(im Gegensatz zum Stack, Stapel oder Keller, bei dem die zuletzt eingelagerten
Daten als erste wieder herauskommen). Wir erzeugen im aktuellen Verzeichnis
eine Named Pipe:

mknod mypipe p

(mknod (1M) liegt in /bin, /sbin oder /etc) und iiberzeugen uns mit 1s -1 von
ihrer Existenz. Dann kénnen wir mit:

9 Auf Vektorrechnern gibt es ebenfalls eine Pipe, die mit der hier beschriebenen Pipe
nichts zu tun hat.

36 2 UNIX

who > mypipe &
cat < mypipe &

unsere Pipe zum Datentransport vom ersten zum zweiten Prozess einsetzen. Die
Reihenfolge der Daten ist durch die Eingabe festgelegt, beim Auslesen verschwin-
den die Daten aus der Pipe (kein Kopieren). Die Pipe existiert vor und nach den
beiden Prozessen und ist beliebig weiter verwendbar. Man wird sie mit rm mypipe
wieder los.

2.3.6.4 Signale (kill, trap)

Ein Prozess kann niemals von auflen beendet werden aufler durch Abschalten der
Stromversorgung. Er verkehrt mit seiner Umwelt einzig iiber rund dreiflig Signale.
Ihre Bedeutung ist im Anhang F UNIX-Signale nachzulesen oder im Handbuch
unter signal(2). Ein Prozess reagiert in dreierlei Weise auf ein Signal:

e er beendet sich (Default'®) oder
e ignoriert das Signal oder
e verzweigt zu einem anderen Prozess.

Mit dem Kommando kill(1) (ungliicklich gewihlter Name) wird ein Signal an
einen Prozess gesendet. Jedes der Kommandos

kill -s 15 4711
kill -s SIGTERM 4711

schickt das Signal Nr. 15 (SIGTERM) an den Prozess Nr. 4711 und fordert ihn
damit hoflich auf, seine Arbeit zu beenden und aufzurdumen. Das Signal Nr. 9
(SIGKILL) fiihrt zum sofortigen Selbstmord des jeweiligen Prozesses. Mit der
Prozess-ID 0 erreicht man alle Prozesse der Sitzung. Die Eingabe

kill -s 9 0

ist also eine etwas brutale Art, sich abzumelden. Mit kill -1 erhélt man eine
Ubersicht iiber die Signale mit Nummern und Namen, jedoch ohne Erklirungen.

Wie ein Programm bzw. Shellscript (was das ist, folgt in Abschnitt 2.5.2 Shell-
scripts) auf ein Signal reagiert, legt man in Shellscripts mit dem internen Shell-
Kommando trap und in Programmen mit dem Systemaufruf signal(2) fest. Ei-
nige wichtige Signale wie Nr. 9 kénnen nicht ignoriert oder umfunktioniert werden.
Das trap-Kommando hat die Form

trap "Kommandoliste" Signalnummer

Empfiangt die das Script ausfiihrende Shell das Signal mit der jeweiligen Num-
mer, wird die Kommandoliste ausgefiihrt. Das exit-Kommando der Shell wird
als Signal Nr. 0 angesehen, so daf§ man mit

OFiir viele Gréfien im System sind Werte vorgegeben, die solange gelten, wie man
nichts anderes eingibt. Auch in Anwenderprogrammen werden solche Vorgaben verwen-
det. Sie heiflen Defaultwerte, wortlich Werte, die fiir eine fehlende Eingabe einspringen.

2.3 Prozesse 37

trap "echo Arrivederci; exit" O

im File /etc/profile die Sitzungsshell zu einem freundlichen Abschied veranlas-
sen kann. Das nackte trap-Kommando zeigt die gesetzten Traps an. Ein Beispiel
fiir den Gebrauch von Signalen in einem Shellscript namens traptest:

trap "print Abbruch durch Signal; exit" 15
trap "print Lass den Unfug!" 16

while :

do

sleep 1

done

Programm 2.1 : Shellscript traptest mit Signalbehandlung

Setzen Sie die Zugriffsrechte mit chmod 750 traptest. Wenn Sie das Shell-
script mit traptest im Vordergrund starten, verschwindet der Prompt der Sit-
zungsshell, und Sie kénnen nichts mehr eingeben, weil traptest unbegrenzt lduft
und die Sitzungsshell auf das Ende von traptest wartet. Allein mit der Break-
Taste (Signal 2) werden Sie traptest wieder los. Starten wir das Shellscript mit
traptest & im Hintergrund, kommt der Prompt der Sitzungsshell sofort wieder,
auflerdem erfahren wir die PID der Shell, die traptest abarbeitet, die PID mer-
ken! Mit ps -f sehen wir uns unsere Prozesse an und finden den sleep-Prozess aus
dem Shellscript. Schicken wir nun mit kill -16 PID das Signal Nr. 16 an die zwei-
te Shell, antwortet sie mit der Ausfiihrung von print Lass den Unfug!. Da das
Shellscript im Hintergrund lauft, kommt md&glicherweise vorher schon der Prompt
der Sitzungsshell wieder. Schicken wir mit ki1l -15 PID das Signal Nr. 15, fiihrt
die zweite Shell die Kommandos print Abbruch durch Signal; exit aus, das
heifit sie verabschiedet sich. Auch hier kann der Sitzungsprompt schneller sein.

Wenn ein Prozess gestorben ist, seine Leiche aber noch in der Prozesstabelle
herumliegt, wird er Zombie genannt. Zombies sollten nicht auf Dauer in der
Prozesstabelle auftauchen. Notfalls booten.

Die weiteren Mittel zur Kommunikation zwischen Prozessen gehoéren in die
Systemprogrammierung und gehen iiber den Bereich dieses Buches hinaus. Wir
erwahnen sie kurz, um Thnen Stichworter fiir die Suche in der Literatur an die
Hand zu geben.

2.3.6.5 Nachrichtenschlangen

Nachrichtenschlangen (message queue) sind keine Konkurrenz der Brieftauben,
sondern im Systemkern gehaltene verkettete Listen mit jeweils einem Identifier,
deren Elemente kurze Nachrichten sind, die durch Typ, Lédnge und Inhalt gekenn-
zeichnet sind. Auf die Listenelemente kann aufler der Reihe zugegriffen werden.

2.3.6.6 Semaphore

Semaphore sind Zdhlvariablen im System, die entweder nur die Werte 0 und 1
oder Werte von 0 bis zu einem systemabhéngigen n annehmen. Mit ihrer Hilfe

38 2 UNIX

lassen sich Prozesse synchronisieren. Beispielsweise kann man Schreib- und Lese-
zugriffe auf dasselbe File mit Hilfe eines Semaphores in eine geordnete Abfolge
bringen (wenn ein Prozess schreibt, darf kein anderer lesen oder schreiben).

2.3.6.7 Gemeinsamer Speicher

Verwenden mehrere Prozesse denselben Bereich des Arbeitsspeichers zur Ablage
ihrer gemeinsamen Daten, so ist das der schnellste Weg zur Kommunikation, da
jeder Kopiervorgang entfillt. Natiirlich mufl auch hierbei fiir Ordnung gesorgt
werden.

Shared Memory ist nicht auf allen UNIX-Systemen verfiighbar. Man probiere
folgende Eingabe, die die Manualseite zu dem Kommando ipcs(1) (Interprocess
Communication Status) erzeugt:

man ipcs

Bei Erfolg diirften Nachrichtenschlangen, Semaphore und Shared Memory einge-
richtet sein.

2.3.6.8 Sockets

Sockets sind ein Mechanismus zur Kommunikation zwischen zwei Prozessen
auf derselben oder auf vernetzten Maschinen in beiden Richtungen. Die Socket-
Schnittstelle besteht aus einer Handvoll Systemaufrufe, die von Benutzerprozessen
in einheitlicher Weise verwendet werden. Darunter liegen die Protokollstapel, das
heifit die Programmmodule, die die Daten entsprechend den Schichten eines Netz-
protokolls aufbereiten, und schliellich die Gerétetreiber fiir die Netzkarten oder
sonstige Verbindungen.

2.3.6.9 Streams

Ein Stream ist eine Verbindung zwischen einem Prozess und einem Geritetreiber
zum Austausch von Daten in beiden Richtungen (vollduplex). Der Geritetreiber
braucht nicht zu einem physikalischen Gerét (Hardware) zu fiihren, sondern kann
auch ein Pseudotreiber sein, der nur bestimmte Funktionen zur Verfiigung stellt. In
den Stream lassen sich nach Bedarf dynamisch Programmmodule zur Bearbeitung
der Daten einfiigen, beispielsweise um sie einem Netzprotokoll anzupassen (was
bei Sockets nicht moglich ist). Das Streams-Konzept erhoht die Flexibilitiat der
Geritetreiber und erlaubt die mehrfache Verwendung einzelner Module auf Grund
genau spezifizierter Schnittstellen.

Die Terminalein- und -ausgabe wird in neueren UNIXen mittels Streams ver-
wirklicht. Auch Sockets kénnen durch Streams nachgebildet (emuliert) werden
ebenso wie die Kommunikation zwischen Prozessen auf derselben Maschine oder
auf Maschinen im Netz.

2.3.7 Memo Prozesse

e Ein Prozess ist die Form, in der ein Programm ausgefiihrt wird. Er liegt im
Arbeitsspeicher und verlangt Prozessorzeit.

2.3 Prozesse 39

e Ein Prozess wird erzeugt durch den manuellen oder automatischen Aufruf
eines Programmes (Ausnahme Prozess Nr. 0).

e Ein Prozess endet entweder auf eigenen Wunsch (wenn seine Arbeit fertig
ist) oder infolge eines von auflen kommenden Signals.

e Prozesse konnen untereinander Daten austauschen. Der einfachste Weg ist
eine Pipe (Einbahnstrafe).

e Das Kommando ps (1) mit verschiedenen Optionen zeigt die Prozessliste an.

e Mit dem Kommando kill wird ein Signal an einen Prozess geschickt. Das
braucht nicht unbedingt zur Beendigung des Prozesses zu fiihren.

2.3.8 Ubung Prozesse

Suchen Sie sich ein freies Terminal. Melden Sie sich als gast oder guest an.
Ein Passwort sollte dazu nicht erforderlich sein. Falls Sie schon als Benutzer auf
der Anlage eingetragen sind, verwenden Sie besser Thren Benutzernamen samt
Passwort. Passworter diirfen nicht zu einfach sein, eine Kombination aus sechs
Buchstaben und zwei Ziffern oder Satzzeichen ist gut. Bei Schwierigkeiten wenden
Sie sich an den System-Manager.

GroB3- und Kleinbuchstaben sind in UNIX verschiedene Zeichen. Auch die Leer-
taste (space) ist ein Zeichen. Bei rechtzeitig (vor dem Tippen von RETURN oder
ENTER) bemerkten Tippfehlern geht man mit der Taste BS oder BACKSPACE
zuriick — nur nicht beim Anmelden, da muf} alles stimmen.

Nach der Eingabe eines Kommandos ist immer die RETURN- oder ENTER-
Taste zu betdtigen. Hierauf wird im folgenden nicht mehr hingewiesen. Erst mit
dieser Taste wird das Kommando wirksam. Man kann allerdings Programme so
schreiben, daf sie auf die Eingabe eines Zeichens ohne RETURN antworten (siehe
curses(3)).

Lesen Sie wihrend der Sitzung im Referenz-Handbuch die Bedeutung der Kom-
mandos nach. Wenn der Prompt (das Dollarzeichen) kommt, ist der Computer be-
reit zum Empfangen neuer Kommandos. Geben Sie nacheinander folgende Kom-
mandos ein, warten Sie die Antwort des Systems ab:

who wer arbeitet zur Zeit?)

who -H wer arbeitet zur Zeit?)
wer arbeitet zur Zeit?)

falsche Option)

(
(
who -a (
who -x (
id (wer bin ich?)
whoami (wer bin ich?)
date (Datum und Uhrzeit?)
zeit (lokales Kommando)
(hhmm 10 min nach jetzt eingeben)
(Kalender)
(

die letzten Tage des Jahrtausends)

leave hhmm
cal
cal 12 2000

40

cal 9 1752
tty

pwd

1s

man 1s

ps -ef

ps —elf
sh

sh

ps -f
date

ps

exec date
ps

exec date
ps

exec date

wieder anmelden

ps
kill PID

kill -9 PID
erneut anmelden
sh

PS1="XXX "

set

exec date

set

nice -19 date

1s -1 &

exit

(Geschichte sollte man konnen)
(mein Terminal?)
(Arbeitsverzeichnis?)

(Inhalt des Arbeitsverzeichnisses?)
(Handbucheintrag zu Is)

(verfolgen Sie die Ahnenreihe vom
Prozess Nr.1 — init — bis zu [hrem
neuesten Prozess ps -ef)

(noch mehr Informationen)

(wieviele Shells haben Sie nun?)

(Damit ist Ihre erste Shell weg, warum?)

(PID Threr Shell merken)
(Das reicht nicht)
(Shell wieder weg)

(neuer Prompt)

(Erbfolge beachten)

(falls Betrieb herrscht,
warten Sie lange auf die Zeit)

(Prompt kommt sofort wieder,
samt PID von 1s)

(abmelden)

2 UNIX

2.4 Files 41

2.4 Files

2.4.1 Filearten

Eine Datei (file, fichier) ist eine Menge zusammengehoriger Daten, auf die mittels
eines Filenamens zugegriffen wird. Wir bevorzugen das Wort File, weil das Wort
Datei — das auch nicht rein deutsch ist — mit nicht immer zutreffenden Assozia-
tionen wie Daten und Kartei behaftet ist. Das englische Wort geht auf lateinisch
filum = Draht zuriick und bezeichnete friiher eine auf einem Draht aufgereih-
te Sammlung von Schriftstiicken. Man kann ein File als einen Datentyp hoherer
Ordnung auffassen. Die Struktur ist in dem File enthalten oder wird durch das
schreibende bzw. lesende Programm einem an sich strukturlosen Zeichenstrom
(byte stream) aufgepréigt. In UNIX ist das letztere der Fall.

Im UNIX-File-System kommen im wesentlichen drei Arten von Files vor:
gewohnliche Files (normales File, regular file, fichier regulair), Verzeichnisse (Ka-
talog, directory, data set, folder, répertoire) und Gerétefiles (special device fi-
le, fichier spécial). Gewohnliche Files enthalten Mefidaten, Texte, Programme.
Verzeichnisse sind Listen von Files, die wiederum allen drei Gruppen angehéren
konnen. Gerétefiles sind eine Besonderheit von UNIX, das periphere Gerite
(Laufwerke, Terminals, Drucker) formal als Files ansieht. Die gesamte Datenein-
und -ausgabe erfolgt {iber einheitliche Schnittstellen. Alle Geriitefiles finden sich
im Geriiteverzeichnis /dev, das insofern eine Sonderstellung einnimmt (device =
Geriit).

Dariiber hinaus unterscheidet man bei gewohnlichen Files noch zwischen les-
baren und bin&ren Files. Lesbare Files (text file) enthalten nur lesbare ASCII-
Zeichen und konnen auf Bildschirm oder Drucker ausgegeben werden. Bindre Fi-
les (binary) enthalten ausfithrbaren (kompilierten) Programmcode, Grafiken oder
gepackte Daten und sind nicht lesbar. Der Versuch, sie auf dem Bildschirm dar-
zustellen oder sie auszudrucken, fiihrt zu sinnlosen Ergebnissen und oft zu einem
Blockieren des Terminals oder erheblichem Papierverbrauch. Intelligente Lese-
oder Druckprogramme unterscheiden beide Arten und weigern sich, binére Files
zu verarbeiten. Auch bei Ubertragungen im Netz wird zwischen ASCII-Files und
bindren Files unterschieden, siche Abschnitt 3.9 File-Transfer.

2.4.2 File-System — Sicht von unten

Alle Daten sind auf dem Massenspeicher in einem File-System abgelegt, wobei
auf einer Platte ein oder mehrere File-Systeme eingerichtet sind. In modernen
Anlagen kann ein File-System auch iiber mehrere Platten gehen (spanning). Jedes
UNIX-File-System besteht aus einem Boot-Block am Beginn der Platte (Block 0),
einem Super-Block, einer Inode-Liste und dann einer Vielzahl von Datenbl&cken,
sieche Abb. 2.3. Der Boot-Block enthilt Software zum Booten des Systems und
muf} der erste Block im File-System sein. Er wird nur im root-System gebraucht
— also einmal auf der ganzen Anlage — ist aber in jedem File-System vorhanden.
Er wird beim Einrichten des File-Systems mittels der Kommandos mkfs (1M) oder
newfs (1M) angelegt.

42 2 UNIX

Boot- Super-
block block

Inode-Liste Datenblocke

Abb. 2.3: UNIX-File-System, untere Ebene

Der Super-Block wird ebenfalls bei der Einrichtung des File-Systems ge-
schrieben und enthélt Informationen zu dem File-System als Ganzem wie die
Anzahl der Datenblocke, die Anzahl der freien Datenblécke und die Anzahl der
Inodes.

Die Inode-Liste enthélt alle Informationen zu den einzelnen Files aufler den
File-Namen. Zu jedem File gehort eine Inode mit einer eindeutigen Nummer.
Einzelheiten siehe Abschnitt 2.4.7 Inodes und Links. Die Files selbst bestehen nur
aus den Daten.

Der Daten-Block ist die kleinste Einheit, in der blockorientierte Gerite —
vor allem Platten — Daten schreiben oder lesen. In den Daten-Blocken sind die
Files einschliefflich der Verzeichnisse untergebracht. Die Blockgréfle betrigt 512
Bytes oder ein Vielfaches davon. Grofle Blécke erhShen die Schreib- und Lesege-
schwindigkeit, verschwenden aber bei kleinen Files Speicherplatz, weil jedem File
mindestens ein Block zugeordnet wird.

Ein MS-DOS-Filesystem beginnt mit dem Boot-Sektor, gefolgt von mehreren
Sektoren mit der File Allocation Table (FAT), dem Root-Verzeichnis und schlief3-
lich den Sektoren mit den Files, also &hnlich, wenn auch wegen des fehlenden
Inode-Konzeptes nicht gleich. Es gibt weitere File-Systeme, wobei mit grofler wer-
denden Massenspeichern die Zugriffsgeschwindigkeit eine immer wichtigere Rolle
spielt.

2.4.3 File-System — Sicht von oben

Selbst auf einer kleinen Anlage kommt man leicht auf zehntausend Files. Da muf}
man Ordnung halten. Unter UNIX werden zum Benutzer hin alle Files in einer
File-Hierarchie, einer Baumstruktur angeordnet, siehe Abb. 2.4. An der Spitze
steht ein Verzeichnis namens root!!, das nur mit einem Schrigstrich bezeichnet
wird. Dieses Verzeichnis enthilt einige gewdhnliche Files und vor allem weitere

"root ist der Name des obersten Verzeichnisses und zugleich der Name des System-

Managers. Das Verzeichnis root ist genau genommen gar nicht vorhanden, sondern be-
zeichnet eine bestimmte Adresse auf dem Massenspeicher, auf der der Filebaum beginnt.
Fiir den Benutzer scheint es aber wie die anderen Verzeichnisse zu existieren. Wahrend
alle anderen Verzeichnisse in ein jeweils iibergeordnetes Verzeichnis eingebettet sind, ist
root durch eine Schleife sich selbst iibergeordnet.

2.4 Files 43

Verzeichnisse. Die Hierarchie kann viele Stufen enthalten, der Benutzer verliert
die Ubersicht eher als der Computer. In der Wurzel des Filebaumes, dem root-
Verzeichnis, finden sich folgende Unterverzeichnisse:

e bin (UNIX-Kommandos und -Programme)

e dev (Geriitefiles)

e etc (Konfigurationsfiles, Kommandos zur Systemverwaltung)
e homes (Home-Verzeichnisse der Benutzer)

e 1lib (Bibliotheken)

e lost+found (Fundbiiro)

e mnt (Mounting Point)

e opt (optionale Software, Compiler, Editoren)
e sbin (Kommandos zur Systemverwaltung)

e tmp (temporire Files)

e usr (Fortsetzung von bin)

e var (Verschiedenes)

und noch einige spezielle Verzeichnisse und Files fiir die Systemverwaltung. Diese
Gliederung ist auf allen UNIX-Systemen anzutreffen. Mit den wachsenden An-
forderungen an UNIX (X11, Netze) dndert sich von Zeit zu Zeit die Einteilung
etwas. Das Verzeichnis mit den Homes der Benutzer, hier homes, heif3t woanders
home, user, users oder auch mnt, ist aber auf jeden Fall vorhanden. Ein Moun-
ting Point ist ein leeres Verzeichnis, in das die Wurzel eines weiteren Filesystems
eingehingt werden kann. Auf diese Weise 1483t sich der urspriingliche Filebaum
nahezu unbegrenzt erweitern. Das Verzeichnis /usr enthilt einige wichtige Unter-
verzeichnisse:

adm (Systemverwaltung, Accounting)

e bin (UNIX-Kommandos und -Programme)
e contrib (Beitrige des Computerherstellers)
e 1ib (Bibliotheken und Kommandos)

e local (lokale Kommandos)

e mail (Mailsystem)

e man (Referenz-Handbuch)

e news (News, Nachrichten an alle)

e tmp (weitere temporire Files)

e spool (Drucker-Spoolsystem, cron-Files)

44

2 UNIX

bin mnt
| B
wualex gebern
unix cprog
text bilder
unixl1.tex bild1.tex

unix2.tex bild2.tex

Abb. 2.4: UNIX-Filehierarchie

und weitere Unterverzeichnisse fiir spezielle Zwecke.

Die Eintragungen im Geréte-Verzeichnis /dev weichen von denen in anderen
Verzeichnissen ab. Sie enthalten zusitzlich Angaben iiber den Treiber und den
[/O-Port, an den das jeweilige Gerét angeschlossen ist. Dasselbe Gerit kann am
selben Port mit anderem Treiber unter einem anderen Namen erscheinen. Ins-
besondere erscheinen Massenspeicher einmal als blockorientiertes und einmal als
zeichenorientiertes Gerét. Blockorientierte Gerite iibertragen nicht einzelne Zei-

chen,

sondern Blocke von 512 oder mehr Zeichen. Die Namen sind zwar beliebig,

es haben sich aber gewisse Regeln eingebiirgert:

console Konsol-Terminal des Systems

ct Cartridge Tape als Block Device

dsk Platte als Block Device (blockorientiert)
lan Netz-Interface

1p Drucker (line printer)

mt Magnetband als Block Device

null Papierkorb (bit bucket)

pty Pseudo-Terminal

2.4 Files 45

e rct Cartridge Tape als Character Device

e rdsk Platte als Character Device (raw, zeichenorientiert)
e rmt Magnetband als Character Device

e tty Kontrollterminal eines Prozesses

e ttylp2 Terminal an Multiplexer 1, Port 2

Bei umfangreicher Peripherie ist das /dev-Verzeichnis in Unterverzeichnisse geglie-
dert. Beim Schreiben nach /dev/null verschwinden die Daten unwiederbringlich
in einem Schwarzen Loch im Informationsraum, das Lesen aus /dev/null liefert
ein EOF-Zeichen (end of file).

Nach der Anmeldung landet der Benutzer in seinem Home-Verzeichnis (ho-
me directory, répertoire principal). Dort darf er nach Herzenslust Files und Un-
terverzeichnisse anlegen und l6schen. Das Kommando 1s (1) listet ein Verzeichnis
auf und ist das UNIX-Kommando mit den meisten Optionen. Die Form 11(1) ist
gleichwertig 1s -1. Sollte sie auf Threm System nicht verfiigbar sein, 148t sie sich
durch ein Alias oder ein Shellscript verwirklichen, ebenso andere Varianten von
1s(1).

Das Home-Verzeichnis ist zu Beginn das Arbeits-Verzeichnis oder aktuelle
Verzeichnis (working directory, répertoire courant, répertoire de travail), dessen
Files unmittelbar {iber ihren Namen ohne die bei root beginnende Verzeichnis-
kette verfiigbar sind. Man kann jedes Unterverzeichnis seines Home-Verzeichnisses
voriibergehend zum Arbeits-Verzeichnis machen, auch andere Verzeichnisse, so-
fern man dazu berechtigt ist. Mit cd(1) wechselt man in ein anderes Arbeits-
Verzeichnis. Nach einer Faustregel soll man ein Verzeichnis weiter unterteilen,
wenn es mehr als 100 Eintragungen enthilt. Das Kommando pwd(1) nennt das
Arbeits-Verzeichnis, falls man die Orientierung verloren hat.

Der Name eines Files wird entweder absolut angegeben, ausgehend von root.
Dann beginnt er mit dem Schrigstrich und wird auch Pfad (path, chemin d’acces)
genannt. Oder er wird relativ zum augenblicklichen Arbeits-Verzeichnis nur mit
seinem letzten Namensteil (basename) angegeben:

/mnt/wualex/buch/unix/einleitung/vorwort.tex
vorwort.tex

Das Kommando basename (1) verkiirzt einen absoluten Namen auf seinen letzten
Namensteil und wird in Shellscripts gebraucht. Umgekehrt zieht das Kommando
dirname (1) aus einem absoluten Filenamen alle Vorderglieder (= Namen von
Verzeichnissen) heraus.

Filenamen diirfen 14 Zeichen'? lang sein und sollen nur Buchstaben (keine
Umlaute), Ziffern sowie die Zeichen Unterstrich, Bindestrich oder Punkt enthal-
ten. Es ist {iblich, Kleinbuchstaben zu verwenden, Gro3buchstaben nur fiir Namen,
die auffallen sollen (README). Die Verwendung von TAB, Backspace, Space, Stern,
ESC und dergleichen ist nicht verboten, fiihrt aber zu lustigen Effekten. Verboten

12Es gibt UNIX-Systeme, die 255 Zeichen erlauben. Wird bei der Einrichtung des
Filesystems festgelegt. Vierzehn Zeichen sind heutzutage knapp.

46 2 UNIX

sind nur der Schrégstrich, der als Trennzeichen in der Pfadangabe dient, und das
Zeichen ASCII-Nr. 0, das einen String abschlieft. Filenamen sollten mindestens
vier Zeichen lang sein, um die Gefahr einer Verwechslung mit UNIX-Kommandos
zu verringern. Innerhalb eines Verzeichnisses darf ein Name nur einmal vorkom-
men; der gleiche Name in verschiedenen Verzeichnissen benennt verschiedene Files,
zum Beispiel /bin/passwd(1) und /etc/passwd(4). Bei Shellkommandos, die
Filenamen als Argument bené6tigen, kann man in den Filenamen Jokerzeichen
verwenden, siehe Abschnitt 2.5.1.1 Kommandointerpreter.

Die Verwendung von Namenserweiterungen (file.doc, file.dat,
file.bak) oder Kennungen (extension) ist erlaubt, aber nicht so gebrduchlich
wie unter MS-DOS. Programme im Quellcode bekommen eine Erweiterung (.c fiir
C-Quellen, .f fiir FORTRAN-Quellen, .p fiir PASCAL-Quellen), ebenso im Objekt-
code (.0). Der Formatierer LaTeX verwendet auch Erweiterungen. Es diirfen auch
Kennungen mit mehr als drei Zeichen oder eine Kette von Kennungen verwendet
werden wie myprogram.c.backup.old. Sammlungen gebriduchlicher Kennungen
finden sich im Netz und im Anhang.

Das jeweilige Arbeits-Verzeichnis wird mit einem Punkt bezeichnet, das un-
mittelbar iibergeordnete Verzeichnis mit zwei Punkten (wie in MS-DOS). Das
Kommando cd .. fiihrt also immer eine Stufe hoher in der Filehierarchie. Mit
cd ../.. kommt man zwei Stufen hoher. Will man erzwingen, daf} ein Komman-
do aus dem Arbeitsverzeichnis ausgefiihrt wird und nicht ein gleichnamiges aus
/bin, so stellt man Punkt und Schrigstrich voran wie bei ./cmd.

Beim Arbeiten im Netz ist zu bedenken, daf} die Beschrinkungen der File-
namen von System zu System unterschiedlich sind. MS-DOS gestattet beispiels-
weise nur acht Zeichen, dann einen Punkt und nochmals drei Zeichen. Ferner
unterscheidet es nicht zwischen Grof- und Kleinschreibung. In der Macintosh-
Welt sind Filenamen aus mehreren Wortern gebriduchlich. Will man sicher gehen,
so paflt man die Filenamen von Hand an, ehe man sich auf irgendwelche Automa-
tismen der Ubertragungsprogramme verlift.

In den Home-Verzeichnissen werden einige Files vom System erzeugt und ver-
waltet. Diese interessieren den Benutzer selten. IThr Name beginnt mit einem Punkt
(dot), zum Beispiel .profile, daher werden sie von 1s(1) nicht angezeigt. Gibt
man 1s (1) mit der Option -a, so erscheinen auch sie. Solche Files (dotfile) werden
als verborgen (hidden) bezeichnet, sind aber in keiner Weise geheim.

Ein Verzeichnis wird mit dem Kommando mkdir (1) erzeugt, mit rmdir (1)
16scht man ein leeres Verzeichnis, mit rm -r (r = rekursiv) ein volles samt Unter-
verzeichnissen. Frage: Was passiert, wenn Sie gleich nach der Anmeldung rm -r *
eingeben? Die Antwort nicht experimentell ermitteln!

Ein Arbeiten mit Laufwerken wie unter MS-DOS ist unter UNIX nicht vor-
gesehen. Man hat es stets nur mit einer einzigen File-Hierarchie zu tun. Weitere
File-Hierarchien — zum Beispiel auf Disketten oder Platten, lokal oder im Netz
— konnen voriibergehend in die File-Hierarchie des Systems eingehingt werden.
Dabei wird das Wurzel-Verzeichnis des einzuhdngenden File-Systems auf ein Ver-
zeichnis, einen Mounting Point des root-File-Systems abgebildet. Dieses Verzeich-
nis muf} bereits vorhanden sein, darf nicht in Gebrauch und soll leer sein. Falls es
nicht leer ist, sind die dort enthaltenen Files und Unterverzeichnisse so lange nicht

2.4 Files 47

verfiigbar, wie ein File-System eingehingt ist. Man nennt das mounten, Kom-
mando mount (1M). Mountet man das File-System eines entfernbaren Datentrigers
(Diskette) und entfernt diesen, ohne ihn vorher mittels umount (1M) unzumoun-
ten (zu unmounten?), gibt es Arger. Beim Mounten treten Probleme mit den
Zugriffsrechten auf. Deshalb gestatten die System-Manager dem Benutzer diese
Moglichkeit nur auf besonderen Wunsch. File-Systeme kénnen auch iiber das Netz
gemountet werden, siehe Network File System (NFS). Wir mounten beispielsweise
sowohl lokale File-Systeme von weiteren Platten und CD-Laufwerken wie auch
Verzeichnisse von Servern aus unserem Rechenzentrum in die root-Verzeichnisse
unserer Workstations. Das Weitermounten iiber das Netz gemounteter Verzeich-
nisse ist iiblicherweise nicht gestattet. Auch werden Superuser-Rechte meist nicht
iiber das Netz weitergereicht. Man sollte sich bewuf§t sein, dafl die Daten von iiber
das Netz gemounteten Filesystemen unverschliisselt durch die Kabel gehen und
mitgelesen werden koénnen.

Auf einen entfernbaren Datentrdger — ob Diskette oder Band ist unerheb-
lich — kann auf zwei Arten zugegriffen werden. Ist auf dem Datentriger mittels
newfs(1M) oder mkfs(1M) ein Filesystem eingerichtet, mufl dieses in das beim
Systemstart getffnete root-Filesystem an irgendeiner Stelle mit dem Komman-
do mount (1M) in ein vorhandenes Verzeichnis gemountet werden und wird damit
voriibergehend ein Zweig von diesem. Ist der Datentriger dagegen nur formatiert
(Kommando mediainit (1)), d. h. zum Lesen und Schreiben eingerichtet, ohne
daB} ein Filesystem angelegt wurde, so kann man mit den Kommandos cpio (1)
oder tar (1) darauf zugreifen. Kommandos wie cd(1) oder 1s(1) machen dann
keinen Sinn, es gibt auch keine Inodes. Der Datentriger ist iiber den Namen
des Geritefiles anzusprechen, beispielsweise /dev/rfd.0 oder /dev/rmt/Om, mehr
weifl das System nicht von ihm. Wer sowohl unter MS-DOS wie unter UNIX ar-
beitet, mache sich den Unterschied zwischen einem Wechsel des Laufwerks (A, B,
C ...) unter MS-DOS und dem Mounten eines File-Systems sorgfiltig klar.

2.4.4 Zugriffsrechte

Auf einem Mehrbenutzersystem ist es untragbar, dafl jeder Benutzer mit allen
Files alles machen darf. Jedes File einschliellich der Verzeichnisse wird daher in
UNIX durch einen Satz von neun Zugriffsrechten (permission, droit d’acces)
geschiitzt.

Die Benutzer werden eingeteilt in den Besitzer (owner, propriétaire), seine
Gruppe (group, groupe) und die Menge der sonstigen Benutzer (ohne den Be-
sitzer und seine Gruppe), auch Rest der Welt (others) genannt. Die Rechte
werden ferner nach Lesen (read), Schreiben (write) und Suchen/Ausfiihren
(search/execute) unterschieden. Bei einem gewohnlichen File bedeutet execute
Ausfiihren (was nur bei Programmen Sinn macht), bei einem Verzeichnis Durch-
suchen. Jedes Zugriffsrecht kann nur vom Besitzer erteilt und wieder entzogen
werden. Und natiirlich — wie immer — vom System-Manager.

Der Besitzer eines Files ist zunéchst derjenige, der es erzeugt hat. Mit dem
Kommando chown (1) 148t sich jedoch der Besitz an einen anderen Benutzer iiber-
tragen (ohne dafl dieser zuzustimmen braucht). Entsprechend &ndert chgrp(1)

48 2 UNIX

die zugehorige Gruppe. Will man ein File fiir andere lesbar machen, so reicht es
nicht, dem File die entsprechende Leseerlaubnis zuzuordnen oder den Besitzer zu
wechseln. Vielmehr miissen alle iibergeordneten Verzeichnisse von / an liickenlos
das Suchen gestatten. Das wird oft vergessen.

Die Zugriffsrechte lassen sich in Form einer dreistelligen Oktalzahl angeben,
und zwar hat

e die read-Erlaubnis den Wert 4,
e die write-Erlaubnis den Wert 2,
e die execute/search-Erlaubnis den Wert 1
Die drei Stellen der Oktalzahl sind in folgender Weise den Benutzern zugeordnet:
e links der Besitzer (owner),
e in der Mitte seine Gruppe (group), ohne Besitzer
e rechts der Rest der Welt (others), ohne Besitzer und Gruppe

Eine sinnvolle Kombination ist, dem Besitzer alles zu gestatten, seiner Gruppe
das Lesen und Suchen/Ausfiihren und dem Rest der Welt nichts. Die Oktalzahl
750 bezeichnet diese Empfehlung. Oft wird auch von den Gruppenrechten kein
Gebrauch gemacht, man setzt sie gleich den Rechten fiir den Rest der Welt, also
die Oktalzahl auf 700. Das Kommando zum Setzen der Zugriffsrechte lautet:

chmod 750 filename

Setzt man die Zugriffsrechte auf 007, so diirfen der Besitzer und seine Gruppe
gar nichts machen. Alle iibrigen (Welt minus Besitzer minus Gruppe) diirfen das
File lesen, &ndern und ausfiihren. Der Besitzer kann nur noch die Rechte auf
einen verniinftigeren Wert setzen. Mit der Option -R werden die Kommandos
chmod (1), chown (1) und chgrp(1) rekursiv und beeinflussen ein Verzeichnis samt
allem, was darunter liegt. Bei chmod(1) ist jedoch aufzupassen: meist sind die
Zugriffsrechte fiir Verzeichnisse anders zu setzen als fiir gew6hnliche Files. Es gibt
noch weitere Formen des chmod (1)-Kommandos. Aus Sicherheitsgriinden soll man
die Zugriffsrechte moglichst einschrinken. Will ein Benutzer auf ein File zugreifen
und darf das nicht, wird er sich schon riihren. Mittels des Kommandos:

1s -1 filename
erfihrt man die Zugriffsrechte eines Files. Die Ausgabe sieht so aus:
“IW-r————- 1 wualexl users 59209 May 15 16:21 unix.tex

Die Zugriffsrechte heiflen hier also read und write fiir den Besitzer wualex1, read
fiir seine Gruppe users und fiir den Rest der Welt nichts. Die Zahl 1 ist der Wert
des Link-Z&hlers, siehe Abschnitt 2.4.7 Inodes und Links. Dann folgen Besitzer
und Gruppe sowie die Grole des Files in Bytes. Das Datum gibt die Zeit des
letzten schreibenden (verdndernden) Zugriffs an. Schliefllich der Name. Ist das
Argument des Kommandos 1s (1) der Name eines Verzeichnisses, werden die Files
des Verzeichnisses in alphabetischer Folge aufgelistet.

2.4 Files 49

Beim Kopieren mufl man Zugang zum Original (Sucherlaubnis fiir alle iiber-
geordneten Verzeichnisse) haben und dieses lesen diirfen. Besitzer der Kopie wird
der Veranlasser des Kopiervorgangs. Er kann anschliefend die Zugriffsrechte der
Kopie dndern, die Kopie gehort ihm. Leserecht und Kopierrecht lassen sich nicht
trennen. Das Kommando zum Kopieren lautet:

cp originalfile copyfile

Falls das File copyfile schon vorhanden ist, wird es ohne Warnung tiberschrieben.
Ist das Ziel ein Verzeichnis, wird die Kopie dort eingehéngt. Der Versuch, ein File
auf sich selbst zu kopieren — was bei der Verwendung von Jokerzeichen oder Links
vorkommt — fiihrt zu einer Fehlermeldung.

Die Default-Rechte werden mittels des Kommandos umask(1) im File
/etc/profile oder $HOME/.profile gesetzt. Das Kommando braucht als Ar-
gument die Ergénzung der Rechte auf 7. Beispielsweise setzt

umask 077

die Default-Rechte auf 700, ein gingiger Wert. Ohne Argument aufgerufen zeigt
das Kommando den aktuellen Wert an.

Gelegentlich mochte man einzelnen Benutzern Rechte erteilen, nicht gleich
einer ganzen Gruppe. Wihrend so etwas unter Windows N'T vorgesehen ist, gehort
es nicht zum Standard von UNIX. Unter HP-UX 148t sich jedoch einem File eine
Access Control List zuordnen, in die Sonderrechte eingetragen werden, Nédheres
mittels man 5 acl.

Fiir das System ist ein Benutzer im Grunde nur ein Biindel von Rechten. Ob
dahinter eine natiirliche oder juristische Person, eine Gruppe von Personen oder
ein Damon steht, ist unwesentlich. Es gibt Betriebssysteme wie Windows NT
oder Datenbanken wie Oracle, die stirker differenzieren — sowohl nach der Art
der Rechte wie nach der Einteilung der Benutzer - aber mit diesem Satz von
neun Rechten kommt man schon weit. Die stirkere Differenzierung ist schwieriger
zu {iberschauen und birgt die Gefahr, Sicherheitsliicken zu iibersehen. In Netzen
sind die Zugangswege und damit die Uberlegungen zur Sicherheit komplexer. Der
Superuser oder Privileged User mit der User-ID 0 — der System-Manager oder
Administrator iiblicherweise — ist an die Zugriffsrechte nicht gebunden. Wollen Sie
Ihre hochst private Mail vor seinen Augen schiitzen, miissen Sie sie verschliisseln.

Merke: Damit jemand auf ein File zugreifen kann, miissen zwei Bedingungen
erfiillt sein:

e Er muf} einen ununterbrochenen Suchpfad vom Root-Verzeichnis (/) bis zu
dem File haben, und

e er muf} die entsprechenden Rechte an dem File haben.

2.4.5 Set-User-ID-Bit

Vor den drei Oktalziffern der Zugriffsrechte steht eine weitere Oktalziffer, die man
ebenfalls mit dem Kommando chmod (1) setzt. Der Wert 1 ist das Sticky Bit

50 2 UNIX

(klebrige Bit), das bei Programmen, die gleichzeitig von mehreren Benutzern be-
nutzt werden (sharable programs), dazu fiihrt, dafl die Programme stéindig im
Arbeitsspeicher verbleiben und somit sofort verfiigbar sind. Wir haben das Sticky
Bit eine Zeitlang beim Editor vi(1) verwendet. Bei einem Verzeichnis fiihrt das
Sticky Bit dazu, dal nur noch der Besitzer eines darin eingeordneten Files dieses
l6schen oder umbenennen kann, auch wenn die iibrigen Zugriffsrechte des Ver-
zeichnisses diese Operationen fiir andere erlauben, Beispiel /tmp. Das Sticky Bit
kann nur der Superuser vergeben.

Der Wert 2 ist das Set-Group-ID-Bit, der Wert 4 das Set-User-ID-Bit,
auch Setuid-Bit oder Magic Bit genannt. Sind diese gesetzt, so hat das Programm
die Zugriffsrechte des Besitzers (owner), die von den Zugriffsrechten dessen, der
das Programm aufruft, abweichen koénnen. Ein haufiger Fall ist, dal ein Pro-
gramm ausfiihrbar fiir alle ist, der root gehort und bei gesetztem suid-Bit auf
Files zugreifen darf, die der root vorbehalten sind. Wohlgemerkt, nur das Pro-
gramm bekommt die erweiterten Rechte, nicht der Aufrufende. Man sagt, der aus
dem Programm hervorgegangene Prozess laufe effektiv mit der Benutzer-ID des
Programmbesitzers, nicht wie {iblich mit der des Aufrufenden.

Das UNIX-Kommando /bin/passwd (1) gehort der root, ist fiir alle ausfiihr-
bar, sein suid-Bit ist gesetzt:

-r-sr-xr-x 1 root bin 112640 Nov 22 1989 /bin/passwd

Damit ist es moglich, dafl jeder Benutzer sein Passwort in dem File
/etc/passwd(4) dndern darf, ohne die Schreiberlaubnis fiir dieses File zu be-
sitzen:

---r--r--r 1 root other 3107 Dec 2 10:39 /etc/passwd

Da durch das Programm der Umfang der Anderungen begrenzt wird (nimlich
auf die Anderung des eigenen Passwortes), erhilt der Benutzer nicht die vollen
Rechte des Superusers. Fiir das sgid-Bit gilt Entsprechendes. Beide kénnen nur
fiir ausfiithrbare (kompilierte) Programme vergeben werden, nicht fiir Shellscripts,
aus Sicherheitsgriinden. Das Setzen dieser beiden Bits fiir Verzeichnisse fiihrt auf
unseren Anlagen zu Problemen, die Verzeichnisse sind nicht mehr verfiigbar. Wer
aufgepaflt hat, konnte auf folgende Gedanken kommen:

e Ich kopiere mir den Editor vi(1). Besitzer der Kopie werde ich.
e Dann setze ich mittels chmod 4555 vi das suid-Bit. Das ist erlaubt.

e AnschlieBend schenke ich mittels chown root vi meinen vi dem Superuser,
warum nicht. Das ist ebenfalls erlaubt.

Nun habe ich einen von allen ausfiihrbaren Editor, der Superuser-Rechte hat,
also beispielsweise das File /etc/passwd(4) unbeschrinkt verdndern darf. Der
Gedankengang ist zu naheliegend, als daf} nicht die Véter von UNIX auch schon
darauf gekommen wiren. Probieren Sie es aus.

Falls Sie schon Kap. ?? Programmieren in C/C++ verinnerlicht haben, kénn-
ten Sie weiterdenken und sich ein eigenes Kommando mychown schreiben wollen.
Dazu brauchen Sie den Systemaufruf chown (2); die Inode-Liste, die den Namen

2.4 Files ol

des File-Besitzers enthélt, ist nicht direkt mittels eines Editors beschreibbar. Lei-
der steht im Referenz-Handbuch, dafl der Systemaufruf bei gewhnlichen Files das
suid-Bit 16scht. Sie geben nicht auf und wollen sich einen eigenen Systemaufruf
chmod (2) schreiben: Das bedeutet, sich einen eigenen UNIX-Kern zu schreiben.
Im Prinzip mdoglich, aber dann ist unser Buch unter Ihrem Niveau. Dieses Leck ist
also dicht, aber Programme mit suid-Bit — zumal wenn sie der root gehoren — sind
immer ein bifichen verdéchtig. Ein gewissenhafter System-Manager beauftragt da-
her den Didmon cron(1M) mit ihrer regelmiBigen Uberwachung. Da das suid-Bit
selten vergeben wird, konnte der System-Manager auch ein eingeschréinktes chmod-
Kommando schreiben und die Ausfiihrungsrechte des urspriinglichen Kommandos
eingrenzen.

Sticky Bit, suid-Bit und sgid-Bit werden beim Kommando 1s -1 durch Mo-
difikationen der Anzeige der Zugriffsrechte kenntlich gemacht. Das Sticky-Bit ist
an einem t bei dem execute-Recht fiir alle zu erkennen, suid-Bit und sgid-Bit an
einem s bei den execute-Rechten fiir Besitzer beziehungsweise Gruppe.

2.4.6 Zeitstempel

Zu jedem UNIX-File gehoren drei Zeitangaben, die Zeitstempel genannt und au-
tomatisch verwaltet werden:

e die Zeit des jiingsten lesenden Zugriffs (access time),
e die Zeit der jiingsten schreibenden Zugriff (modification time),
e die Zeit der jiingsten Anderung des Filestatus (status change time).

Der Filestatus umfafit den Fileinhalt, die Zugriffsrechte und den Linkz#hler. Ein
Schreibzugriff dndert also zwei Zeitstempel. Bei Verzeichnissen gilt das Durchsu-
chen nicht als lesender Zugriff, Loschen oder Hinzufiigen von Files gilt als schrei-
bender Zugriff.

Das Kommando 1s -1 zeigt das Datum des jiingsten schreibenden Zugriffs an,
mit 1s -1lu erfdhrt man das Datum des jiingsten lesenden Zugriffs, mit 1s -1c
das Datum der jiingsten Anderung des Status. Das folgende C-Programm gibt
zu einem Filenamen alle drei Zeitstempel aus, falls DEBUG definiert ist, auch in
Rohform als Sekunden seit UNIX Geburt:

/* Information ueber die Zeitstempel einer Datei */
/* #define DEBUG */

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>

int main(int argc, char *argv[])

{
struct stat buffer;
struct tm *p;

52 2 UNIX

if (argc < 2) {
puts("Dateiname fehlt"); return (-1);
}

if (laccess(argv[1i], 0)) {
if (!(stat(argv[1l], &buffer))) {

#ifdef DEBUG
puts (argv[1]);
printf("atime = %1ld\n", buffer.st_atime);
printf ("mtime = %1d\n", buffer.st_mtime);
printf("ctime = %ld\n\n", buffer.st_ctime);

ttendif

p = localtime(&(buffer.st_atime));
printf("Gelesen: hd. %d. %4 %2d:%02d:%02d\n",
p—>tm_mday, p->tm_mon + 1, p->tm_year, p->tm_hour, p->tm_min, p->tm_sec);

p = localtime(&(buffer.st_mtime));
printf("Geschrieben: hd. %d. %4 %2d:%02d:%02d\n",
p—>tm_mday, p->tm_mon + 1, p->tm_year, p->tm_hour, p->tm_min, p->tm_sec);

p = localtime(&(buffer.st_ctime));
printf ("Status geaendert: %d. %d. %d %2d:%02d:%02d\n",
p—>tm_mday, p->tm_mon + 1, p->tm_year, p->tm_hour, p->tm_min, p->tm_sec);

}
else {
puts("Kein Zugriff auf Inode (stat)"); return (-1);
+
}
else {
puts("File existiert nicht (access)"); return (-1);
+
return O;
+

Programm 2.2 : C-Programm zur Anzeige der Zeitstempel eines Files

Der Zeitpunkt der Erschaffung eines Files wird nicht festgehalten und ist auch
aus technischer Sicht uninteressant. Anderungen an den Daten hingegen sind fiir
Werkzeuge wie make (1) wichtig.

2.4.7 Inodes und Links

Die Verzeichnisse enthalten nur die Zuordnung File-Name zu einer File-Nummer,
die als Inode-Nummer (Index-Node) bezeichnet wird. In der Inode-Liste, die
vom System verwaltet wird, stehen zu jeder Inode-Nummer alle weiteren Infor-
mationen iiber ein File einschlieflich der Startadresse und der Grofle des Daten-
bereiches. Insbesondere sind dort die Zugriffsrechte und die Zeitstempel vermerkt.
Einzelheiten sind im Handbuch unter inode(5) und fs(5) zu finden. Das Kom-

2.4 Files 53

mando 1s -i zeigt die Inode-Nummern an. Wie die Informationen der Inode in
eigenen Programmen abgefragt werden, steht in Abschnitt 2.11.3 Beispiel File-
Informationen.

Diese Zweiteilung in Verzeichnisse und Inode-Liste erlaubt eine niitzliche Kon-
struktion, die in MS-DOS oder IBM-OS/2 bei aller sonstigen Ahnlichkeit nicht
moglich ist. Man kann einem File sprich einer Inode-Nummer nidmlich mehre-
re Filenamen, unter Umsténden in verschiedenen Verzeichnissen, zuordnen. Das
nennt man linken!3. Das File, auf das mehrere Filenamen gelinkt sind, existiert
nur einmal (deshalb macht es keinen Sinn, von einem Original zu reden), aber
es gibt mehrere Zugangswege, sieche Abb. 2.5. Zwangslaufig gehoren zu gelinkten
Filenamen dieselben Zeitstempel und Zugriffsrechte, da den Namen nur eine ein-
zige Inode zugrunde liegt. Das Kommando zum Linken zweier Filenamen lautet
1n(1):

1n oldname newname

Auf diese Weise spart man Speicher und braucht beim Aktualisieren nur ein ein-
ziges File zu beriicksichtigen. Die Kopie eines Files mittels cp(1) hingegen ist ein
eigenes File mit eigener Inode-Nr., dessen weiterer Lebenslauf unabhéngig vom
Original ist. Beim Linken eines Files wird sein Linkz&hler um eins erhoht. Beim
Loschen eines Links wird der Zé&hler herabgesetzt; ist er auf Null angekommen,
wird der vom File belegte Speicherplatz freigegeben. Bei einem Verzeichnis hat

Directory 1

Name | Inode

abc 4711
Inode-Liste

Inode 4711 —— File

Directory 2

Name | Inode

Xyz | 4711

Abb. 2.5: Harter Link

13Das Wort linken hat eine zweite Bedeutung im Zusammenhang mit dem Kompilieren
von Programmen.

o4 2 UNIX

der Linkz#hler immer den Wert 2, da jedes Verzeichnis einen Link auf sich selbst
enthélt, dargestellt durch den Punkt beim Auflisten. So ist die wichtigste Informa-
tion iiber ein Verzeichnis — seine Inode-Nummer — doppelt gespeichert, ndmlich
im iibergeordneten Verzeichnis und im Verzeichnis selbst. Ebenso ist in jedem
Verzeichnis an zweiter Stelle die Inode-Nummer des iibergeordneten Verzeichnis-
ses abgelegt. Jedes Verzeichnis weifl selbst, wie es heiffit und wohin es gehort. Das
ermoglicht Reparaturen des Filesystems bei Unfillen. Als Benutzer kann man
Verzeichnisse weder kopieren noch linken, sondern nur die in einem Verzeichnis
versammelten Files. Old Root kann natiirlich wieder mehr, siehe 1ink (1M) und
1link(2).

Dieser sogenannte harte Link kann sich nicht {iber die Grenze eines File-
Systems erstrecken, auch falls es gemountet sein sollte. Der Grund ist einfach:
jedes File-System verwaltet seine eigenen Inode-Nummern und hat seinen eigenen
Lebenslauf. Es kann heute hier und morgen dort gemountet werden. Ein Link iiber
die Grenze kénnte dem Lebenslauf nicht folgen.

Im Gegensatz zu den eben erlduterten harten Links diirfen sich symbolische
Links oder weiche Links iiber die Grenze eines File-Systems erstrecken und
sind auch bei Verzeichnissen erlaubt und beliebt. Sie werden mit dem Kommando
1n(1) mit der Option -s erzeugt. Ein weicher Link ist ein File mit eigener Inode-
Nummer, das einen Verweis auf einen weiteren absoluten oder relativen Filenamen
enthélt, siehe Abb. 2.6. Das Kommando 1s -1 zeigt weiche Links folgendermaflen
an:

lrwx——-— 1 wualexl manager 4 Jun 2 17:13 scriptum -> unix

Das Verzeichnis scriptum ist ein weicher Link auf das Verzeichnis unix. Zugriffs-
rechte eines weichen Links werden vom System nicht beachtet, das Kommando
chmod (1) wirkt auf das zugrunde liegende File, rm(1) gliicklicherweise nur auf den
Link. Weiteres siehe 1n(1) unter cp(1), symlink(2) und symlink(4). Links

Directory 1 Directory 2
Name | Inode Name | Inode
abc 4043 Xyz 4104

abc : siehe xyz

Abb. 2.6: Weicher, Symbolischer oder Soft Link

diirfen geschachtelt werden. Im Falle des harten Links ist es ohnehin gleich, von

2.4 Files 55

welchem Namen der Inode man ausgeht, es gibt ja kein Original, sondern nur ein
einziges File. Bei weichen Links wird auch eine Kette von Verweisen richtig verar-
beitet. Insbesondere erkennt das Kopierkommando cp(1) die Links und verweigert
ein Kopieren eines Files auf seinen Link. Mit den Systemaufrufen 1stat(2) und
readlink(2) wird auf einen weichen Link direkt zugegriffen, wihrend die Sys-
temaufrufe stat(2) und read(2) auf das dem Link zugrunde liegende File zielen.
Wird einem weichen Link sein File weggenommen, besteht er weiter, Zugriffe iiber
den Link auf das File sind erfolglos. Hat man die Wahl zwischen einem harten
und einem weichen Link, so diirfte der harte geringfiigig schneller im Zugriff sein.

Eine dhnliche Aufgabe erfiillt die alias-Funktion der Kornshell. Ein alias
lebt und stirbt jedoch mit der Shell, wihrend ein Link im File-System verankert
ist und fiir alle Benutzer gilt.

Merke: Nach einem Kopiervorgang hat man zwei voneinander unabhéingige
Files, das Original und die Kopie. Nach einem Linkvorgang hat man zwei Namen
fiir dasselbe File.

2.4.8 stdin, stdout, stderr

Drei Files sind fiir jede Sitzung automatisch getffnet: stdin (in der Regel die
Tastatur), stdout (in der Regel der Bildschirm) und stderr (in der Regel ebenfalls
der Bildschirm). Wir erinnern uns, Geréite werden von UNIX formal als Files
angesprochen. Andere Systeme kennen noch stdaux (Standard Auxiliary Device)
und stdprn (Standard Printer Device).

Za1 den File-Pointern stdin, stdout und stderr gehoren die File-Deskriptoren
0, 1 und 2. File-Pointer sind Namen (genauer Namen von Pointern auf eine C-
Struktur vom Typ FILE), File-Deskriptoren fortlaufende Nummern der fiir ein
Programm gedffneten Files. Microsoft bezeichnet in MS-DOS die Deskriptoren
als Handles. In Programmen wird durch einen open-Aufruf einem Filenamen
ein File-Pointer oder ein File-Deskriptor zugeordnet, mit dem dann die weiteren
Anweisungen arbeiten. Die UNIX-Systemaufrufe (2) verwenden File-Deskriptoren,
die C-Standardfunktionen (3) File-Pointer. Beispiele finden sich im C-Programm
2.39 File-Informationen.

Werkzeuge soll man moglichst so schreiben, daf} sie von stdin lesen, ihre Aus-
gabe nach stdout und ihre Fehlermeldungen nach stderr schreiben. Dann sind sie
allgemein verwendbar und passen zu den iibrigen Werkzeugen. Solche Programme
werden als Filter bezeichnet.

Ein leeres File wird mit der Umlenkung > filename, mit cat(1) oder
touch (1) angelegt. Zum Leeren eines Files kopiert man /dev/null dorthin.

Das Kommando tee (1) liest von stdin, schreibt nach stdout und gleichzeitig
eine Kopie der Ausgabe in ein File, wie ein T-Stiick sozusagen:

who | tee whofile

Uber das Verbinden von stdout eines Prozesses mit stdin eines zweiten Pro-
zesses mittels einer Pipe wurde bereits in Abschnitt 2.3.6.2 Pipes gesprochen.

56 2 UNIX

2.4.9 Schreiben und Lesen von Files

Files werden mit einem Editor, z. B. dem vi (1), geschrieben (siehe Abschnitt 2.7.3
Editoren), von Compilern oder anderen Programmen erzeugt oder laufen einem
iiber das Netz zu. Zum Lesen von Files auf dem Bildschirm stehen die Kommandos
cat (1), more(1), pg(1), view(1) und vis(1) zur Verfiigung. cat (1) liest von
stdin und schreibt nach stdout. Lenkt man die Eingabe mit cat < filename
um, bekommt man das File filename auf den Bildschirm. Die Pager more (1) und
pg (1) arbeiten dhnlich, halten aber nach jeweils einer Bildschirmseite an. view(1)
ist der Editor vi(1) im Lesemodus, vis(1) wandelt etwaige nicht sichtbare Zei-
chen in ASCII-Nummern um. Der Versuch, Files zu lesen, die etwas anderes als in
Zeilen gegliederten Text enthalten, fiihrt in manchen Féllen zu einem Blockieren
des Terminals.

Will man sich den Inhalt eines beliebigen Files genau ansehen, so schreibt
man mit od(1), gegebenenfalls mit der Option -c, einen Dump nach stdout,
bei Schwierigkeiten niitzlich. Ein Dump ist eine zeichengetreue Wiedergabe des
Speicher- oder Fileinhalts ohne jede Bearbeitung. Begniigt man sich mit dem
Anfang oder Ende eines Files, leisten die Kommandos head (1) und tail(1) gute
Dienste.

2.4.10 Archivierer (tar, gtar)

Files werden oft mit drei Werkzeugen behandelt, die nichts miteinander zu tun
haben, aber hiufig kombiniert werden. Diese sind:

e Archivierer wie tar(1),
e Packer (Komprimierer) wie compress(1) oder gzip(1),
e Verschliisseler wie crypt(1).

Um Archivierer geht es in diesem Abschnitt, um Packer im folgenden. Verschliisselt
werden in erster Linie Textfiles, daher kommen wir im Abschnitt 2.7 Writer’s
Workbench zu diesem Thema. Mit der Verschliisselung hingen weitere Fragen
zusammen, die in Netzen eine Rolle spielen; im Abschnitt 3.11 Electronic Mail
wird der Punkt nochmals aufgerollt.

Zum Aufbewahren oder Verschicken von ganzen Filegruppen ist es oft
zweckméfig, sie in ein einziges File zu verpacken. Diesem Zweck dient das Kom-
mando tar(1). Der Aufruf

tar -cvf name.tar name*

stopft alle Files des Arbeits-Verzeichnisses, auf die das Namensmuster (Jokerzei-
chen!) zutrifft, in ein File name.tar, das als Archiv bezeichnet wird. Die Option
¢ bedeutet create, mit der Option v wird tar(1) geschwitzig (verbose), und £
weist den Archivierer an, das néichste Argument als Ziel der Packerei aufzufassen.
Das zweite Argument darf auch ein Verzeichnis sein. Eine Kompression oder Ver-
schliisselung ist damit nicht verbunden. Bei der Wahl der Argumente ist etwas
Nachdenken angebracht. Das frisch erzeugte Archiv darf nicht zum Kreis der zu
archivierenden Files gehoren, sonst beifit sich tar(1) unter Umsténden in den

2.4 Files 57

Schwanz. Ferner hilt sich tar(1) genau an die Namensvorgaben, absolute oder
relative Namen werden auch als solche verpackt:

tar -cvf unix.tar *.tex # (im Verzeichnis /buch/unix)
tar -cvf unix.tar ./*.tex # (im Verzeichnis /buch/unix)
tar -cvf unix.tar unix/*.tex # (im Verzeichnis /buch)

tar -cvf unix.tar /buch/unix/*.tex # (an beliebiger Stelle)

archivieren zwar dieselben Files, aber unter verschiedenen Namen, was beim Aus-
packen zu verschiedenen Ergebnissen fiihrt. Die erste und zweite Form lassen sich
in einem beliebigen Verzeichnis auspacken. Die dritte Form kann an beliebiger
Stelle entpackt werden und erzeugt dort ein Unterverzeichnis namens unix. Die
vierte Form ist unflexibel und fiihrt zu demselben absoluten Pfad wie beim Packen.
Zum Auspacken dient das Kommando (x = extract):

tar —-xvf name.tar

ZweckméBig kopiert man das auszupackende Archiv in ein eigenes Verzeichnis,
weil hinterher unter Umsténden ein umfangreicher Verzeichnisbaum an Stelle
des Archivs griint. Manchmal legt das Archiv beim Auspacken dieses Verzeich-
nis selbst an, am besten in einem temporédren Verzeichnis ausprobieren. Ein tar-
Archivfile kann mit einem beliebigen Packer verdichtet werden (erst archivieren,
dann packen). Das ist im Netz iiblich, um den Ubertragungsaufwand zu verrin-
gern. Das GNU-Kommando gtar (1) archiviert und komprimiert bei entsprechen-
der Option in einem Arbeitsgang:

gtar -cvzf myarchive.tar.gz filenames

2.4.11 Packer (compress, gzip)

Die meisten Files enthalten iiberfliissige Zeichen. Denken Sie an mehrere aufein-
anderfolgende Leerzeichen, fiir die die Angabe des Zeichens und deren Anzahl
aureichen wiirde. Um Speicherplatz und Ubertragungszeit zu sparen, verdichtet
man solche Files. Das Standard-Kommando dafiir ist compress(1), ein jiingeres
und wirkungsvolleres Kommando gzip(1) aus dem GNU-Projekt. Das urpsriing-
liche File wird gelscht, das verdichtete File bekommt die Kennung .Z oder .gz.
Zum Verdiinnen auf die urspriingliche Konzentration ruft man uncompress(1)
oder gunzip(1) mit dem Filenamen auf. Das Packen ist vollkommen umkehr-
bar!. Probieren Sie folgende Kommandofolge aus (textfile sei ein mittelgrofes
Textfile):

cp textfile textfilel
cp textfile textfile2
11 textfilex

compress textfilel
gzip textfile2

14Tm Zusammenhang mit dem Speichern von Bildern oder Klingen gibt es auch ver-
lustbehaftete Kompressionsverfahren.

o8 2 UNIX

11 textfilex
uncompress textfilel.Z
gunzip textfile2.gz

11 textfilex

cmp textfile textfilel
cmp textfile textfile2

Auch binére Files lassen sich verdichten. Ein mehrfaches Verdichten ist nicht zu
empfehlen. In der MS-DOS-Welt gibt es eine Vielzahl anderer Packprogramme,
teils frei, teils gegen Bares.

2.4.12 Weitere Kommandos

Mit mv (1) benennt man ein File um und verschiebt es gegebenenfalls in ein anderes
Verzeichnis, seine Inode-Nummer bleibt:

mv alex blex
mv alex ../../alex
1s | xargs -i -t mv {} subdir/{}

In der dritten Form listet 1s(1) das Arbeitsverzeichnis auf. Die Ausgabe wird
durch eine Pipe dem Kommando xargs (1) iibergeben, das wegen der Option -i
(insert) die iibernommenen Argumente in die beiden Klammernpaare einsetzt —
und zwar einzeln — und dann das Kommando mv (1) aufruft, erforderlichenfalls
mehrmals. Die Option -t (trace) bewirkt die Anzeige jeder Aktion auf stderr.
Auf diese Weise lassen sich alle Files eines Verzeichnisses oder eine Auswahl davon
verschieben. Ebenso 1488t sich ein Verzeichnis umbennen, ohne es zu verschieben.
Das Kommando mvdir (1M) verschiebt ein Verzeichnis an eine andere Stelle in sel-
ben Filesystem und ist dem System-Manager vorbehalten, da bei unvorsichtigem
Gebrauch geschlossene Wege innerhalb des Filebaums entstehen.

Zum Lo6schen von Files bzw. Verzeichnissen dienen rm(1) und rmdir(1).
Ein leeres Verzeichnis wird mit rmdir(1) geldscht, ein volles samt allen Unter-
verzeichnissen mit rm -r, Vorsicht bei der Verwendung von Jokerzeichen! UNIX
fragt nicht, sondern handelt — beinhart und gnadenlos. Gefédhrlich sind vor allem
die Kommandos rm * und rm -r directoryname, die viele Files auf einen Schlag
16schen. Das Loschen eines Files mittels rm(1) erfordert die Schreiberlaubnis im
zugehorigen Verzeichnis, aber keine Rechte am File selbst. Geldscht wird zunéchst
logisch, d. h. die angesprochene Inode samt zugehorigem Speicherplatz wird frei-
gegeben, die Bits bleiben noch auf der Platte, sind aber nicht mehr erreichbar.
Erst bei Bedarf an freiem Speicherplatz werden die Bits iiberschrieben, womit die
Daten auch physikalisch beseitigt sind. Deshalb wird bei hohen Anforderungen
an die Sicherheit ein File zunéchst iiberschrieben und dann gel6scht.

Ein mit rm(1) geloschtes File kann nicht wiederhergestellt werden, anders
als unter MS-DOS. Der als frei markierte Bereich auf dem Massenspeicher wird
im néichsten Augenblick von anderen Benutzern, einem Ddmon oder vom Sys-
tem erneut belegt. Wer dazu neigt, die Reihenfolge von Denken und Handeln zu
verkehren, sollte sich ein Alias fiir rm einrichten, das vor dem Lo6schen zuriickfragt:

2.4 Files 59

alias -x del=’rm -i’

oder das Loschen durch ein Verschieben in ein besonderes Verzeichnis ersetzen,
welches am Ende der Sitzung oder nach einer bestimmten Frist (cron(1) und
find (1)) geleert wird:

Shellscript saferm zum verzoegerten Loeschen 05.12.96
Verzeichnis /saferm 333 root root erforderlich

case $1 in
-*) option=$1; shift;;
*) 55
esac

/bin/cp $* /saferm
/bin/rm $option $x*

Programm 2.3 : Shellscript saferm zum verzdgerten Loschen von Files

Zum Leeren eines Files, ohne es zu l6schen, verwendet man am einfachsten
folgende Zeile:

> filename

Das File hat anschlieBend die Groéfle 0 Bytes. Eine andere Moglichkeit ist das
Kopieren von /dev/null in das File.

Nun zu einem Dauerbrenner in der entsprechenden Gruppe der Netnews. Wie
werde ich ein File mit einem absonderlichen Namen los? In UNIX-Filenamen
konnen — wenn es mit rechten Dingen zugeht — alle Zeichen aufler dem Schrigstrich
und dem ASCII-Zeichen Nr. 0 vorkommen. Der Schréigstrich trennt Verzeichnis-
namen voneinander, die ASCII-0 beendet einen Filenamen, einen String. Escape-
Folgen, die den Bildschirm l6schen oder die Tastatur blockieren, sind erlaubte,
wenn auch unzweckméfiige Namen. Aber auch die beiden genannten Zeichen fiangt
man sich gelegentlich iiber das Netz ein. Erzeugen Sie ein paar absonderlich be-
namte Files, am besten in einem fiir Experimente vorgesehenen Verzeichnis:

touch -abc
touch ’ ’
touch ’x vy’
touch ’/’

und schauen Sie sich Thr Verzeichnis mit:
1s -aliq

an. Wenn Sie vorsichtig sind, kopieren oder transportieren Sie alle verniinftigen
Files in ein anderes Verzeichnis, ehe Sie dem Ubel zu Leibe riicken. Das File -abc,
dessen Name mit einem Bindestrich wie bei einer Option beginnt, wird man mit
einem der folgenden Kommandos los (ausprobieren):

rm ./-abc
rm - —abc
rm —— -abc

60 2 UNIX

Enthalten die Namen Zeichen, die fiir die Shell eine besondere Bedeutung haben
(Metazeichen), hilft Einrahmen des Namens in Apostrophe (Quoten mit Single
Quotes), siehe oben. Zwei weitere, meist gangbare Wege sind:

rm -1 *
find . -inum 12345 -ok rm {3}’ \;

Das erste Kommando 16scht alle Files im Arbeitsverzeichnis, fragt aber zuvor bei
jedem einzelnen File um Erlaubnis. Das zweite Kommando ermittelt im Arbeits-
verzeichnis das File mit der Inode-Nummer 12345, fragt um Erlaubnis und fiihrt
gegebenenfalls das abschliefende Kommando rm(1) aus. Die geschweiften Klam-
mern, der Backslash und das Semikolon werden von find (1) verlangt. Wollen Sie
das widerspenstige File nur umbennen, sieht das Kommando so aus:

find . -inum 12345 -ok mv ’{}’ anstaendiger_name \;

Filenamen mit einem Schrigstrich oder ASCII-Null kommt man so jedoch nicht
bei. In diesem Fall kopiert man simtliche gesunden Files in ein anderes Verzeichnis,
16scht mittels clri(1M) die Inode des schwarzen Schafes, fiihrt einen File System
Check durch und holt sich die Daten aus lost+found zuriick. Man kann auch —
sofern man kann — mit einem File System Debugger den Namen im Verzeichnis edi-
tieren. Weiteres siehe in der FAQ-Liste der Newsgruppe comp.unix.questions.
Zur Zeit besteht sie aus acht Teilen und wird von TED TIMAR gepflegt. Unbedingt
lesenswert, auch wenn man keine Probleme hat.

Der System-Manager kann eine Inode mit dem Kommando clri(1M) 16schen,
etwaige Verzeichniseintrige dazu bleiben jedoch erhalten und miissen mit rm(1)
oder fsck (1M) beseitigt werden. Das Kommando ist eigentlich dazu gedacht, In-
odes zu 16schen, die in keinem Verzeichnis mehr aufgefiihrt sind.

Zum Auffinden von Files dienen which(1), whereis(1) und find(1).
which(1) sucht nach ausfiihrbaren Files (Kommandos), whereis (1) nach Kom-
mandos, deren Quellfiles und man-Seiten. type (1) und whence (1) geben dhnliche
Informationen:

which 1ls
whereis 1s
type 1s
whence 1s

Das Werkzeug £ind (1) ist vielseitig und hat daher eine umfangreiche Syntax:

find . -name vorwort.* -print

find . -name ’*.conf’ | xargs grep -i hallo
find $HOME -size [1000 -print

find / -atime +32 -print

Das Kommando der ersten Zeile sucht im Arbeits-Verzeichnis und seinen Un-
terverzeichnissen (rekursiv) nach Files mit dem Namen vorwort.* und gibt die
Namen auf stdout aus. Eigentlich sollte man vorwort.* in Hochkommas (Apo-
strophe, Single Quotes) setzen, da das Jokerzeichen nicht von der Sitzungsshell,

2.4 Files 61

sondern von find (1) ausgewertet werden soll, aber es funktioniert auch so. In der
néichsten Zeile setzen wir die Quotes und schicken die Ausgabe durch eine Pipe
zu dem Kommando xargs (1). Dieses fiigt die Ausgabe von find (1) an die Argu-
mentliste von grep(1) an und fiihrt grep (1) aus. xargs (1) ist also ein Weg unter
mehreren, die Argumentliste eines Kommandos aufzubauen. In der dritten Zeile
wird im Home-Verzeichnis und seinen Unterverzeichnissen nach Files gesucht, die
grofer als 1000 Blocke (zu 512 Bytes) sind. Der vierte Aufruf sucht im ganzen
File-System nach Files, auf die seit mehr als 32 Tagen nicht mehr zugegriffen wur-
de (access time, Zeitstempel). Der Normalbenutzer erhélt bei diesem Kommando
einige Meldungen, dafl ihm der Zugriff auf Verzeichnisse verwehrt sei, aber der
System-Manager benutzt es gern, um Ladenhiiter aufzuspiiren.

Ein Kommando wie MS-DOS tree zur Anzeige des Filebaumes gibt es in
UNIX leider nicht. Deshalb hier ein Shellscript fiir diesen Zweck, das wir irgendwo
abgeschrieben haben:

dir=${1:-$HOME}
(cd $dir; pwd)
find $dir -type d -print |

sort -f |
sed -e "s, $dir,," -e "/°$/d" -e \
"s, [°/1*/\C[°/1%\)$,\———->\1," -e "s,["/1%/, | ,g"

Programm 2.4 : Shellscript tree zur Anzeige der Filehierarchie

Die Zwischenrdume und Tiittelchen sind wichtig; fragen sie bitte jetzt noch
nicht nach ihrer Bedeutung. Schreiben Sie das Shellscript in ein File namens
tree und rufen Sie zum Testen tree usr— auf. Ohne die Angabe eines Ver-
zeichnisses zeigt tree das Home-Verzeichnis. Unter MINIX dient das Kommando
traverse (1) demselben Zweck.

Der System-Manager (nur er, wegen der Zugriffsrechte) verschafft sich mit:

/etc/quot -f myfilesystem

eine Ubersicht dariiber, wieviele Kilobytes von wievielen Files eines jeden Besit-
zers im Filesystem myfilesystem belegt werden. Das Filesystem kann das root-
Verzeichnis, ein gemountetes Verzeichnis oder ein Unterverzeichnis sein. Das Kom-
mando geht nicht iiber die Grenze eines Filesystems hinweg.

2.4.13 Memo Files

e Unter UNIX gibt es gewOhnliche Files, Verzeichnisse und Gerétefiles.

e Alle Files sind in einem einzigen Verzeichnis- und Filebaum untergebracht,
an dessen Spitze (Wurzel) das root-Verzeichnis steht.

e Jedes File oder Verzeichnis gehort einem Besitzer und einer Gruppe.

e Die Zugriffsrechte bilden eine Matrix von Besitzer - Gruppe - Rest der Welt
und Lesen - Schreiben - Ausfiihren/Durchsuchen.

62

2 UNIX

Jedes File oder Verzeichnis besitzt eine Inode-Nummer. In der Inode stehen
die Informationen iiber das File, in den Verzeichnissen die Zuordnung Inode-
Nummer - Name.

Ein harter Link ist ein weiterer Name zu einer Inode-Nummer. Ein weicher
Link ist ein File mit einem Verweis auf ein anderes File oder Verzeichnis.

Ein Filesystem kann in einen Mounting Point (leeres Verzeichnis) eines an-
deren Filesystems eingehéngt (gemountet) werden.

Ein Archivierprogramm wie tar(1) packt mehrere Files oder Verzeichnisse
ins ein einziges File (Archiv).

Ein Packprogramm wie gzip (1) verdichtet ein File ohne Informationsverlust
(reversibel).

2.4.14 Ubung Files

Melden Sie sich unter Ihrem Benutzernamen an. Ihr Passwort wissen Sie hoffent-
lich noch. Geben Sie folgende Kommandos ein:

id (Thre personlichen Daten)

who (Wer ist zur Zeit eingeloggt?)

users (dito, nur anders)

tty (Wie heifit mein Terminal?)

pwd (Wie heifit mein Arbeits-Verzeichnis?)

1s (Arbeits-Verzeichnis auflisten)

1s -1 oder 11

1s -1i

1s / (root-Verzeichnis auflisten)

1s /bin (bin-Verzeichnis)

1s /usr (usr-Verzeichnis)

1s /dev (dev-Verzeichnis, Geritefiles)

1s /mnt (mnt-Verzeichnis, enthilt die Home-Verzeichnisse)

cat lsfile (Isfile lesen)

news -a (alle News anzeigen)

mail (Falls Thnen Mail angezeigt wird, kommen
Sie mit RETURN weiter.)

mail root (Nun kénnen Sie dem System-Manager einen

mkdir privat

cd privat

Brief schreiben. Ende mit RETURN, control-d)
(Verzeichnis erzeugen)

(dorthin wechseln)

cp /mnt/student/beispiel beispiel

(Das File /mnt/student/beispiel ist bei uns ein
kurzes, allgemein lesbares Textfile. Fragen Sie

2.5 Shells 63

Thren System-Manager.)
cat beispiel File anzeigen)
head beispiel Fileanfang anzeigen)
more beispiel File bildschirmweise anzeigen)
File als ASCII-Text dumpen)

File hexadezimal dumpen)

(
(
(

pg beispiel (File bildschirmweise anzeigen)
od -c beispiel (
od -x beispiel (
(

file beispiel Filetyp ermitteln)
file /bin/cat
whereis /bin/cat (File suchen)
1n beispiel exempel (linken)
cp beispiel uebung (File kopieren)
1s -i
mv uebung schnarchsack
(File umbenennen)

1s
pg schnarchsack
rm schnarchsack (File 16schen)
(Auf die Frage mode? antworten Sie y)
vi textl (Editor aufrufen)
a
Schreiben Sie einen kurzen Text. Driicken Sie die ESCAPE-Taste.
o] (Editor verlassen)
pg textl
1p textl (Fragen Sie Thren System-Manager nach

dem {iblichen Druckkommando)

Abmelden mit exit

2.5 Shells

2.5.1 Gesprichspartner
2.5.1.1 Kommandointerpreter

Wenn man einen Dialog mit dem Computer fiihrt, mufl im Computer ein Pro-
gramm laufen, die rohe Hardware antwortet nicht. Der Gesprichspartner ist ein
Kommandointerpreter, also ein Programm, das unsere Eingaben als Komman-
dos oder Befehle auffalt und mit Hilfe des Betriebssystems und der Hardware
ausfithrt. Man findet auch den Namen Bediener fiir ein solches Programm, das
zwischen Benutzer und Betriebssystem vermittelt. Dieses erste Dialogprogramm

64 2 UNIX

einer Sitzung wird aufgrund der Eintragung im File /etc/passwd(4) gestartet;
es ist der Elternprozess aller weiteren Prozesse der Sitzung und fast immer eine
Shell, die Sitzungsshell, bei uns /bin/ksh(1) auf HP-Maschinen, bash (1) unter
Linux.

Ein solcher Kommandointerpreter gehort zwar zu jedem dialogfihigen Be-
triebssystem, ist aber im strengen Sinn nicht dessen Bestandteil (Abb. 2.1). Er ist
ein Programm, das fiir das Betriebssystem auf gleicher Stufe steht wie vom Anwen-
der geschriebene Programme. Er ist ersetzbar, es diirfen auch mehrere Komman-
dointerpreter gleichzeitig verfiighar sein (aber nicht mehrere Betriebssysteme).

Unter MS-DOS heifit der Standard-Kommandointerpreter command.com. Auf
UNIX-Anlagen sind es die Shells. Im Anfang war die Bourne-Shell sh(1) oder
bsh(1), geschrieben von STEPHEN R. BOURNE. Als Programmiersprache ist sie
ziemlich méchtig, als Kommando-Interpreter 148t sie Wiinsche offen. Dennoch ist
sie die einzige Shell, die auf jedem UNIX-System vorhanden ist.

Aus Berkeley kam bald die C-Shell csh(1), geschrieben von BIiLL JOvY, die
als Kommando-Interpreter mehr leistete, als Programmiersprache infolge ihrer
Anndherung an C ein Umgewdhnen erforderte. Sie enthielt auch anfangs mehr
Fehler als ertriglich. So entwickelte sich der unbefriedigende Zustand, dafl vie-
le Benutzer als Interpreter die C-Shell, zum Abarbeiten von Shellscripts aber
die Bourne-Shell wiihlten (was die doppelte Aufgabe der Shell verdeutlicht). Alle
neueren Shells lassen sich auf diese beiden zuriickfithren. Eine Weiterentwicklung
der C-Shell (mehr Funktionen, weniger Fehler) ist die tc-Shell tcsh(1). Wer bei
der C-Syntax bleiben mochte, sollte sich diese Shell ansehen.

Die Korn-Shell ksh(1) von DAvID G. KORN verbindet die Schreibweise
der Bourne-Shell mit der Funktionalitit der C-Shell. Einige weitere Funktionen,
die sich inzwischen als zweckméfig erwiesen hatten, kamen hinzu. Der Umstieg
von Bourne nach Korn ist einfach, manche Benutzer merken es nicht einmal. Die
Korn-Shell ist proprietir, sie wird nur gegen Bares abgegeben. Die Windowing-
Korn-Shell wksh (1) ist eine grafische Version der Korn-Shell, die vom X Window
System Gebrauch macht; in ihren Shellscripts werden auch X-Window-Funktionen
aufgerufen.

Das GNU-Projekt stellt die Bourne-again-Shell bash(1) frei zur Verfiigung,
die in vielem der Korn-Shell dhnelt. LINUX verwendet diese Shell. Die Z-Shell
zsh(1) kann mehr als alle bisherigen Shells zusammen. Wir haben sie auf unserer
Anlage eingerichtet, benutzen sie aber nicht, da uns bislang die Korn-Shell reicht
und wir den Aufwand der Umstellung scheuen. Dann gibt es noch eine rc-Shell,
die klein und schnell sein soll. Hinter uns steht kein Shell-Test-Institut, wir enthal-
ten uns daher einer Bewertung. Im iibrigen gibt es zu dieser Frage eine monatliche
Mitteilung in der Newsgruppe comp.unix.shell.

Wem das nicht reicht, dem steht es frei, sich eine eigene Shell zu schreiben. Die
Korn-Shell gibt es auch fiir MS-DOS-Rechner (siehe Abschnitt 2.15.5 MKS-Tools
und andere), was die Austauschbarkeit des Kommandointerpreters unterstreicht.
Im folgenden halten wir uns an die Korn-Shell ksh(1).

Einige der Kommandos, die Sie der Shell iibergeben, fiihrt sie personlich aus.
Sie werden interne oder eingebaute Kommandos genannt. Die Kommandos
cd (1) und pwd (1) gehoren dazu, unter MS-DOS beispielsweise dir. Das dir ent-

2.5 Shells 65

sprechende, externe UNIX-Kommando 1s (1) hingegen ist ein eigenes Programm,
das wie viele andere Kommandos vom Interpreter aufgerufen wird und irgendwo
in der File-Hierarchie zu Hause ist (/bin/1s oder /usr/bin/1s). Welche Kom-
mandos intern und welche extern sind, ist eine Frage der Zweckméifigkeit. Die
internen Kommandos finden Sie unter sh(1) beziehungsweise ksh(1), Abschnitt
Special Commands. Die Reihe der externen Kommandos konnen Sie durch eigene
Programme beliebig erweitern. Falls Sie fiir die eigenen Kommandos Namen wie
test (1) oder pc(1) verwenden, die durch UNIX schon belegt sind, gibt es Arger.
Die iibliche Form eines UNIX- oder Shell-Kommandos sieht so aus:

command -options argumentl argument2 (RETURN-Taste!)

Die Optionen modifizieren die Wirkung des Kommandos. Es gibt Komman-
dos ohne Optionen wie pwd(1) und Kommandos mit uniiberschaubar vielen wie
1s(1). Mehrere gleichzeitig gewédhlte Optionen diirfen meist zu einem einzigen Op-
tionswort zusammengefafit werden. Unter Argumenten werden Filenamen oder
Strings verstanden, soweit das Sinn macht. Die Reihenfolge von Optionen und Ar-
gumenten ist bei vielen Kommandos beliebig, aber da die UNIX-Kommandos auf
Programmierer mit unterschiedlichen Vorstellungen zuriickgehen, hilft im Zwei-
felsfall nur der Blick ins Referenz-Handbuch. Kommandoeingabe per Menii ist
uniiblich, aber machbar, sieche Programm 2.9 Shellscript fir ein Meni. Die Ver-
wendung einer Maus setzt erweiterte curses-Funktionen voraus, siehe Abschnitt
2.6.1.3 Fenster (Windows), curses-Bibliothek, oder das X Window System.

Die Namen von UNIX-Kommandos unterliegen nur den allgemeinen Regeln fiir
Filenamen, eine besondere Kennung wie .exe oder .bat ist nicht notwendig oder
iiblich. Eine Eingabe wie karlsruhe veranlafit die Shell zu folgenden Tétigkeiten:

e Zuerst priift die Shell, ob das Wort ein Aliasname ist (wird bald erklért).
Falls ja, wird es ersetzt.

e [st das — unter Umstédnden ersetzte — Wort ein internes Kommando, wird es
ausgefiihrt.

e Falls nicht, wird ein externes Kommando — ein File also — in einem der in der
PATH-Variablen (wird auch bald erklirt) genannten Verzeichnisse gesucht.
Bleibt die Suche erfolglos, erscheint eine Fehlermeldung: not found.

e Dann werden die Zugriffsrechte untersucht. Falls diese das Lesen und
Ausfiihren gestatten, geht es weiter. Andernfalls: cannot execute.

e Das File sei gefunden und ein Shellscript (wird auch bald erklirt) oder
ein ausfiihrbares (kompiliertes) Programm. Dann 148t die Shell es in einem
Kindprozess ausfithren. Das Verhalten bei Syntaxfehlern (falsche Option,
fehlendes Argument) ist Sache des Shellscripts oder Programmes, hingt also
davon ab, was sich der Programmierer gedacht hat. Ein guter Programmierer
148t den Benutzer nicht ganz im Dunkeln tappen.

e Das File sei gefunden, sei aber ein Textfile wie ein Brief oder eine Programm-
quelle. Dann bedauert die Shell, damit nichts anfangen zu kénnen, d. h. sie
sieht den Text als ein Shellscript mit furchtbar vielen Fehlern an. Das gleiche
gilt fiir Geriitefiles oder Verzeichnisse.

66 2 UNIX

Die Shell vermutet also hinter dem ersten Wort einer Kommandozeile immer ein
Kommando. Den Unterschied zwischen einem Shellscript und einem iibersetzten
Programm merkt sie schnell. Um sich ein Textfile anzusehen, gibt man ein ent-
sprechendes Kommando (more(1), pg(1) oder view(1)) mit dem Namen des
Textfiles als Argument ein. In der Maus-und-Fenster-Welt ist die Denkweise an-
ders, sofern Denken iiberhaupt noch nétig ist. karlsruhe war ein leeres File mit
den Zugriffsrechten 777. Was héitten Sie als Shell damit gemacht?

In Filenamen ermdglicht die Shell den Gebrauch von Jokerzeichen, auch
Wildcards genannt. Diese Zeichen haben nichts mit reguldren Ausdriicken zu tun,
sie sind eine Besonderheit der Shell. Die Auswertung der Joker heifit Globbing.
Ein Fragezeichen bedeutet genau ein beliebiges Zeichen. Ein Filename wie

ab?c

trifft auf Files wie

ablc abXc abcc ab_c

zu. Ein Stern bedeutet eine beliebige Anzahl beliebiger Zeichen. Das Kommando
1s abcx*z

listet alle Files des augenblicklichen Arbeits-Verzeichnisses auf, deren Name mit
abc beginnt und mit z endet, beispielsweise

abcz abclz abcl123z abc.z abc.fiz abc_z abc_xyz

Der Stern allein bedeutet alle Files des Arbeitsverzeichnisses. Eine Zeichenmenge
in eckigen Klammern wird durch genau ein Zeichen aus der Menge ersetzt. Der
Name

ab [xyz]
trifft also zu auf
abx aby abz

In der Regel setzt die Shell die Jokerzeichen um, es ist aber auch programmierbar,
daf} das aufgerufene Kommando diese Arbeit iibernimmt. Dann mufl man beim
Aufruf des Kommandos die Jokerzeichen quoten (unwirksam machen). Was be-
wirken die Kommandos rm a* und rm a * (achten Sie auf den Space im zweiten
Kommando)? Also Vorsicht bei rm in Verbindung mit dem Stern! Das Kommando
— hier rm(1) — bekommt von der Shell eine Liste der giiltigen Filenamen, sieht
also die Jokerzeichen gar nicht.

Es gibt weitere Zeichen, die fiir die Shells eine besondere Bedeutung haben.
Schauen Sie im Handbuch unter sh(1), Abschnitt File Name Generation and
Quoting oder unter ksh(1), Abschnitt Definitions, Metazeichen nach. Will
man den Metazeichen ihre besondere Bedeutung nehmen, mufl man sie quoten'®.

Benglisch quoting im Sinne von anfiihren, zitieren wird in den Netnews gebraucht.
Ferner gibt es einen quota(1)-Mechanismus zur Begrenzung der Belegung des Massen-
speichers. Hat nichts mit dem Quoten von Metazeichen zu tun.

2.5 Shells 67

Es gibt drei Stufen des Quotens, Sperrens, Zitierens, Entwertens oder Maskierens.
Ein Backslash quotet das nachfolgende Zeichen mit Ausnahme von Newline (line
feed). Ein Backslash-Newline-Paar wird einfach geléscht und kennzeichnet daher
die Fortsetzung einer Kommadozeile. Anfiihrungszeichen (double quotes) quoten
alle Metazeichen aufler Dollar, back quotes, Backslash und Anfiihrungszeichen.
Einfache Anfiihrungszeichen (Hochkomma, Apostroph, single quotes) quoten alle
Metazeichen auer dem Apostroph oder Hochkomma (sonst kime man nie wieder
aus der Quotung heraus). Ein einzelnes Hochkomma wird wie eingangs gesagt
durch einen Backslash gequotet. Probieren Sie folgende Eingaben aus (echo oder
fir die Korn-Shell print):

echo TERM
echo $TERM
echo \$TERM
echo "$TERM"
echo ’$TERM’

Wenn man jede Interpration einer Zeichenfolge durch die Shell verhindern will,
setzt man sie meist der Einfachheit halber in Single Quotes, auch wenn es vielleicht
nicht notig wire.

Schlieflich gibt es noch die back quotes (accent grave). Fiir die Shell bedeuten
sie Ersetze das Kommando in den back quotes durch sein Ergebnis. Sie erkennen
die Wirkung an den Kommandos

print Mein Verzeichnis ist pwd.
print Mein Verzeichnis ist ‘pwd‘.

Im Druck kommt leider der Unterschied zwischen dem Apostroph und dem Accent
grave meist nicht deutlich heraus; fiir die Shell liegen Welten dazwischen.

Die C-Shell und die Korn-Shell haben einen History-Mechanismus, der die
zuletzt eingetippten Kommandos in einem File .sh_history (bei der Korn-Shell,
lesbar) speichert. Mit dem internen Kommando fc greift man in der Korn-Shell
darauf zuriick. Die Kommandos lassen sich editieren und erneut ausfiihren. Tippt
man nur fc ein, erscheint das jiingste Kommando als Text in dem Editor, der
mittels der Umgebungsvariablen FCEDIT festgelegt wurde, meist im vi(1). Man
editiert das Kommando und verldfit den Editor auf die iibliche Weise, den vi (1)
also mit :wq. Das editierte Kommando wird erneut ausgefiihrt und in das History-
File geschrieben. Das Kommando fc -1 -20 zeigt die 20 jiingsten Kommandos
an, das Kommando fc -e - wiederholt das jiingste Kommando unverdandert. Wei-
teres im Handbuch unter ksh(1), Special Commands.

Der Ablauf einer Sitzung laft sich festhalten, indem man zu Beginn das Kom-
mando script (1) gibt. Alle Bildschirmausgaben werden gleichzeitig in ein File
typescript geschrieben, das man spéter lesen oder drucken kann. Die Wirkung
von script (1) wird durch das shellinterne Kommando exit beendet. Wir ver-
wenden script (1) bei Literaturrecherchen im Netz, wenn man nicht sicher sein
kann, daf} alles bis zum gliicklichen Ende nach Wunsch verlduft.

Mittels des shellinternen Kommandos alias (sprich ejlias) — das aus der C-
Shell stammt — lassen sich fiir bestehende Kommandos neue Namen einfiihren.

68 2 UNIX

Diese haben Giiltigkeit fiir die jeweilige Shell und je nach Option fiir ihre Abkémm-
linge. Der Aliasname wird von der Shell buchstéblich durch die rechte Seite der Zu-
weisung ersetzt; dem Aliasnamen mitgegebene Optionen oder Argumente werden
an den Ersatz angehéngt. Man iiberlege sich den Unterschied zu einem gelinkten
Zweitnamen, der im File-System verankert ist. Ein weiterer Unterschied besteht
darin, dafl interne Shell-Kommandos zwar mit einem Aliasnamen versehen, aber
nicht gelinkt werden konnen, da sie nicht in einem eigenen File niedergelegt sind.
Gibt man in der Sitzungsshell folgende Kommandos:

alias -x dir=ls
alias -x who=’who | sort’
alias -x r="fc -e -’

so steht das Kommando dir mit der Bedeutung und Syntax von 1s(1) zur
Verfiigung, und zwar zusétzlich. Ein Aufruf des Kommandos who fiihrt zum Auf-
ruf der Pipe, das echte who (1) ist nur noch iiber seinen absoluten Pfad /bin/who
erreichbar. Dieses who-Alias hat einen Haken. Ruft der nichtsahnende Benutzer
who mit einer Option auf, so wird die Zeichenfolge who durch das Alias ersetzt,
die Option mithin an sort angehéingt, das meist nichts damit anfangen kann und
eine Fehlermeldung ausgibt. Der Aufruf von r wiederholt das jiingste Kommando
unverdndert, entspricht also der F3-Taste auf PCs unter MS-DOS. Die Option
-x veranla3t den Export des Alias in alle Kindprozesse; sie scheint jedoch nicht
iberall verfiighbar zu sein. Die Quotes sind notwendig, sobald das Kommando
Trennzeichen (Space) enthélt. Das Kommando alias ohne Argumente zeigt die
augenblicklichen Aliases an. Mittels unalias wird ein Alias aufgehoben. Aliases
lassen sich nur unter bestimmten Bedingungen schachteln.

Einige Shells bieten Shellfunktionen als Alternative zu Aliasnamen an. In der
Bourne- und der Kornshell kann man eine Funktion dir() definieren:

dir O { pwd; 1s -1 $x; }

(die Zwischenriume um die geschweiften Klammern sind wichtig) die wie ein
Shellkommando aufgerufen wird. Einen Weg zum Exportieren haben wir nicht
gefunden. Mittels unset dir wird die Funktion geloscht.

Die durch die Anmeldung erzeugte erste Shell — die Sitzungsshell — ist gegen
einige Eingabefehler besonders geschiitzt. Sie 1afit sich nicht durch das Signal
Nr. 15 (SIGTERM) beenden, auch nicht durch die Eingabe von EOF (File-Ende,
tiblicherweise control-d, festgelegt durch stty(1) in $HOME/.profile), sofern
dies durch das Kommando set -o ignoreeof eingestellt ist.

2.5.1.2 Umgebung

Die Shells machen noch mehr. Sie stellen fiir jede Sitzung eine Umgebung (envi-
ronment) bereit. Darin sind eine Reihe von Parametern enthalten, die der Benut-
zer bzw. seine Programme immer wieder brauchen, beispielsweise die Namen des
Home-Verzeichnisses und der Mailbox, der Terminaltyp, der Prompt, der Such-
pfad fiir Kommandos, die Zeitzone. Mit dem internen Kommando set holen Sie

2.5 Shells 69

Ihre Umgebung auf den Bildschirm. Sie konnen die Umgebung verdndern und aus
Programmen oder Shellscripts heraus abfragen.

Einige dieser Parameter werden von der Sitzungsshell erzeugt und auf alle
Kindprozesse vererbt. Sie gelten global fiir die ganze Sitzung bis zu ihrem Ende.
Fiir diese Parameter besteht eine implizite oder explizite export-Anweisung; sie
werden als Umgebungs-Variable bezeichnet. Die anderen Parameter gelten nur
fiir die jeweilige Shell, sie werden nicht vererbt und als Shell-Variable bezeichnet.
Eine Umgebung, wie sie set auf den Bildschirm bringt, sieht etwa so aus:

CDPATH=:..:/mnt/alex
EDITOR=/usr/bin/vi
EXINIT=set exrc
FCEDIT=/usr/bin/vi
HOME=/mnt/alex

IFS=

LOGNAME=wualex1
MAIL=/usr/mail/wualex1
MAILCHECK=600
OLDPWD=/mnt/alex
PATH=/bin:/usr/bin:/usr/local/bin:/usr/contrib/bin: :
PPID=1

PS1=A

PS2=>

PS3=#7
PWD=/mnt/alex/unix
RANDOM=2474
SECONDS=11756
SHELL=/bin/ksh
TERM=ansi

TMOUT=0

TN=console
TTY=/dev/console
TZ=MSZ-2

_=unix.tex

Das bedeutet im einzelnen:

e CDPATH legt einen Suchpfad fiir das Kommando cd(1) fest. Die Namen
von Verzeichnissen, die sich im Arbeits-Verzeichnis, im iibergeordneten oder
im Home-Verzeichnis /mnt/alex befinden, kénnen mit ihrem Grundnamen
(relativ) angegeben werden.

e EDITOR nennt den Editor, der standardméBig zur Anderung von Komman-
dozeilen aufgerufen wird.

e EXINIT veranlaBt den Editor vi(1), beim Aufruf das zugehorige
Konfigurations-Kommando auszufiihren.

70 2 UNIX

e FCEDIT gibt den Editor an, mit dem Kommandos bearbeitet werden, die
tiber den History-Mechanismus zuriickgeholt worden sind (Kommando fc).

e HOME nennt das Home-Verzeichnis.

e [FS ist das Trennzeichen, der interne Feld-Separator, der die Bestandteile
von Kommandos trennt, in der Regel space, tab und newline.

e LOGNAME (auch USER) ist der beim Einloggen benutzte Name.
e MAIL ist die Mailbox.

e MAILCHECK gibt in Sekunden an, wie hiufig die Shell die Mailbox auf
Zuginge abfragt.

e OLDPWD nennt das vorherige Arbeits-Verzeichnis.

e PATH ist die wichtigste Umgebungsvariable. Sie gibt den Suchpfad fiir Kom-
mandos an. Die Reihenfolge spielt eine Rolle. Der zweite Doppelpunkt am
Ende bezeichnet das jeweilige Arbeits-Verzeichnis.

e PPID ist die Parent Process-ID der Shell, hier also der init-Prozess.

e PS1 ist der erste Prompt, in der Regel das Dollarzeichen, hier individuell
abgewandelt. PS2 und PS3 entsprechend.

e PWD nennt das augenblickliche Arbeits-Verzeichnis.

e RANDOM ist eine Zufallszahl zur beliebigen Verwendung.

e SECONDS ist die Anzahl der Sekunden seit dem Aufruf der Shell.
e SHELL nennt die Shell.

e TERM nennt den Terminaltyp, wie er in der terminfo(4) steht. Wird vom
vi(1) und den curses(3)-Funktionen benotigt.

e TMOUT gibt die Anzahl der Sekunden an, nach der die Shell sich beendet,
falls kein Zeichen eingegeben wird. Der hier gesetzte Wert 0 bedeutet kein
Timeout. Ublich: 1000.

e TN ist das letzte Glied aus TTY, eine lokale Erfindung.

e TTY ist die Terminalbezeichnung aus dem Verzeichnis /dev, wie sie das
Kommando tty(1) liefert.

e TZ ist die Zeitzone, hier mitteleuropéische Sommerzeit, zwei Stunden 6stlich
Greenwich.

e _ (underscore) enthilt das letzte Argument des letzten asynchronen Kom-
mandos.

Unter MS-DOS gibt es eine dhnliche Einrichtung, die ebenfalls mit dem Komman-
do set auf dem Bildschirm erscheint.

Zum Andern oder Anlegen einer Variablen geben Sie ein Kommando folgender
Art ein (keine Spaces um das Gleichheitszeichen):

TERM=hp2393
NEU=Unsinn

2.5 Shells 71

Danach hat die bereits vorher vorhandene Variable TERM den Wert hp2393, und
eine neue Variable NEU mit dem Wert Unsinn ist angelegt worden. Die Namen
der Variablen werden iiblicherweise grofl geschrieben. Die ganze Gleichung ist ein
String, dessen rechter Teil auch leer sein darf. In diesem Fall wird die Variable
geloscht. Soll der String Leerzeichen enthalten, muf} er in Génsefiiichen gesetzt
werden:

PS1="A
In der Korn-Shell kann man dem Prompt etwas Arbeit zumuten (back quotes):
PS1=>${pudit#+/}>

Er zeigt dann den Grundnamen des augenblicklichen Arbeitsverzeichnisses an, was
viele Benutzer vom PC her gewohnt sind. Soll eine Variable fiir die ganze Sitzung
gelten, muf} sie in der Sitzungsshell — also nicht in einer Subshell — eingerichtet
und exportiert werden (zwei Schreibweisen):

NEU=Unsinn; export NEU
export NEU=Unsinn

Meist setzt man individuelle Variable in einem Shellscript namens .profile im
Home-Verzeichnis entsprechend autoexec.bat unter MS-DOS. Ein C-Programm
zur Anzeige der Umgebung #hnlich dem Kommando set sieht so aus:

/* umgebung.c, Programm zur Anzeige der Umgebung */
#include <stdio.h>

int main(argc, argv, envp)
int argc;
char *argv[], *envpl[];

{

int i;

for (i = 0; envp[i] != NULL; i++)
printf ("%s\n", envpl[il);

return O;

3

Programm 2.5 : C-Programm zur Anzeige der Umgebung

Die Umgebung ist ein Array of Strings namens envp, dessen Inhalt genau das
ist, was set auf den Bildschirm bringt. In der for-Schleife werden die Elemente
des Arrays sprich Zeilen ausgegeben, bis das Element NULL erreicht ist. Statt die
Zeilen auszugeben, kann man sie auch anders verwerten.

72 2 UNIX

2.5.1.3 Umlenkung

Beim Aufruf eines Kommandos oder Programmes lassen sich Ein- und Ausgabe
durch die Umlenkungszeichen < und > in Verbindung mit einem Filenamen in
eine andere Richtung umlenken. Beispielsweise liest das Kommando cat (1) von
stdin und schreibt nach stdout. Lenkt man Ein- und Ausgabe um:

cat < input > output

so liest cat (1) das File input und schreibt es in das File output. Das Einlesen
von stdin oder dem File input wird beendet durch das Zeichen EOF (End Of
File) oder control-d. Etwaige Fehlermeldungen erscheinen nach wie vor auf dem
Bildschirm, stderr ist nicht umgeleitet.

Doppelte Pfeile zur Umlenkung der Ausgabe veranlassen das Anhéngen der
Ausgabe an einen etwa bestehenden Inhalt des Files, wihrend der einfache Pfeil
das File von Beginn an beschreibt. Existiert das File noch gar nicht, wird es in
beiden Fillen erzeugt.

Die Pfeile lassen sich auch zur Verbindung von File-Deskriptoren verwenden.
Beispielsweise verbindet

command 2>&1

den File-Deskriptor 2 (in der Regel stderr) des Kommandos command mit dem
File-Deskriptor 1 (in der Regel stdout). Die Fehlermeldungen von command landen
im selben File wie die eigentliche Ausgabe. Lenkt man noch stdout um, so spielt
die Reihenfolge der Umlenkungen eine Rolle. Die Eingabe

command 1>output 2>&1

lenkt zunéchst stdout (File-Deskriptor 1) in das File output. Anschliefend wird
stderr (File-Deskriptor 2) in das File umgelenkt, das mit dem File-Deskriptor
1 verbunden ist, also nach output. Vertauscht man die Reihenfolge der beiden
Umlenkungen, so wird zunichst stderr nach stdout (Bildschirm) umgelenkt
(was wenig Sinn macht, weil stderr ohnehin der Bildschirm ist) und anschlie-
B8end stdout in das File output. Im File output findet sich nur die eigentliche
Ausgabe. Sind Quelle und Ziel einer Umlenkung identisch:

command >filename <filename

so hat das unabhéngig von der Reihenfolge in der Kommandozeile die unerwiinsch-
te Wirkung, daf3 das File geleert wird.

Die Umlenkungen werden von der Shell geleistet. Das Kommando erhélt von
der Shell die bereits umgelenkten File-Deskriptoren. Das hat den Vorteil, dal man
sich beim Schreiben eigener Kommandos nicht um den Umlenkungsmechanismus
zu kiimmern braucht.

2.5 Shells 73

2.5.2 Shellscripts

Wenn man eine Folge von Kommandos hédufiger braucht, schreibt man sie in ein
File und iibergibt dem Kommandointerpreter den Namen dieses Files. Unter MS-
DOS heif}t ein solches File Stapeldatei oder Batchfile, unter UNIX Shellscript
und bei manchen Verfassern Kommandoprozedur, Makro oder Makrobefehl. Es
ist nicht selbstverstindlich, aber zweckméfig, fiir die Shellscripts dieselbe Kom-
mandosprache zu verwenden wie im Dialog. Der Teil der Shell, der Shellscripts ab-
arbeitet, wird auch als Abwickler bezeichnet. Es gibt weitere Scriptsprachen — vor
allem Perl (nicht Pearl, das ist eine andere Geschichte) — anstelle der Shellsprache.
Shellscripts diirfen geschachtelt werden (ohne call wie in MS-DOS). Die exter-
nen UNIX-Kommandos sind teils unlesbare kompilierte Programme, teils lesbare
Shellscripts.

Es gibt zwei Wege, ein Shellscript auszufiihren. Falls es nur lesbar, aber nicht
ausfiithrbar ist, iibergibt man es als Argument einer Subshell:

sh shellscript
Ist es dagegen les- und ausfiihrbar, reicht der Aufruf mit dem Namen allein:
shellscript

Bei der ersten Moglichkeit kann man eine andere als die augenblickliche Sitzungs-
shell aufrufen, also beispielsweise Bourne statt Korn. Es soll auch leichte Unter-
schiede in der Vererbung der Umgebung geben, die Literatur — so weit wie wir sie
kennen — héilt sich mit klaren Aussagen zuriick. Experimentell konnten wir nur
einen Unterschied hinsichtlich der Umgebungsvariablen EDITOR feststellen.

Der Witz an den Shellscripts ist, daf} sie weit mehr als nur Programmaufrufe
enthalten diirfen. Die Shells verstehen eine Sprache, die an BASIC heranreicht; sie
sind programmierbar. Es gibt Variable, Schleifen, Bedingungen, Ganzzahlarithme-
tik, Zuweisungen, Funktionen, nur keine Gleitkommarechnung. Die Syntax gleicht
einer Mischung von BASIC und C. Man muf} das Referenz-Handbuch sorgfiltig
lesen, gerade wegen der Ahnlichkeiten. Kommentar wird mit einem Doppelkreuz
eingeleitet und wirkt bis zum Zeilenende. Das folgende Beispiel zeigt, wie man eine
lingere Pipe in ein Shellscript verpackt:

Shellscript frequenz, Frequenzwoerterliste
cat $x |

tr [A-Z] [a-z] |

tI‘ -sC " [a_z:l (L] [\012*] " |

sort |
uniq -c |
sort —-nr

Programm 2.6 : Shellscript Frequenzworterliste

Dieses Shellscript — in einem File namens frequenz — nimmt die Namen von
einem oder mehreren Textfiles als Argument entgegen, liest die Files mittels cat,
ersetzt alle Groflbuchstaben durch Kleinbuchstaben, ersetzt weiterhin alle Zeichen,

74 2 UNIX

die keine Buchstaben sind, durch Linefeeds (d. h. schreibt jedes Wort in eine ei-
gene Zeile), sortiert das Ganze, wirft mit Hilfe von uniq mehrfache Eintragungen
hinaus, zdhlt dabei die Eintragungen und sortiert schliefllich die Zeilen nach der
Anzahl der Eintragungen, die grofite Zahl zuvorderst. Der Aufruf des Scripts er-
folgt mit frequenz filenames. Es ist zugleich ein schones Beispiel dafiir, wie
man durch eine Kombination einfacher Werkzeuge eine komplexe Aufgabe 16st.
Das Zuriickfithren der verschiedenen Formen eines Wortes auf die Grundform
(Infinitiv, Nominativ) mufl von Hand geleistet werden, aber einen grofien und
stumpfsinnigen Teil der Arbeit beim Aufstellen einer Frequenzworterliste erledigt
unser pfiffiges Werkzeug.

Bereinigt man unser Vorwort (fltere Fassung, nicht nachzéhlen) von allen
LaTeX-Konstrukten und bearbeitet es mit frequenz, so erhélt man eine Worter-
liste, deren Beginn so aussieht:

16 der
und
das
die
wir
mit
unix
fuer
in
man
auf
zZu
aus

[
(e}

S 01O OO O OO N N 00 WO ©

Solche Frequenzworterlisten verwendet man bei Stiluntersuchungen, zum Anlegen
von Stichwortverzeichnissen und beim Lernen von Fremdsprachen.

Auf Variable greift man in einem Shellscript zuriick, indem man ein Dollarzei-
chen vor ihren Namen setzt. Das Shellscript

print TERM
print $TERM
print TERM = $TERM

schreibt erst die Zeichenfolge TERM auf den Bildschirm und in der nichsten Zeile
den Inhalt der Variablen TERM, also beispielsweise hp2393. Die dritte Zeile kombi-
niert beide Ausgaben. Weiterhin kennen Shellscripts noch benannte Parameter
— auch Schliisselwort-Parameter geheiflen — und Positionsparameter. Benannte
Parameter erhalten ihren Wert durch eine Zuweisung

x=3
Pl=1pjet

wihrend die Positionsparameter von der Shell erzeugt werden. Thre Namen und
Bedeutungen sind:

2.5 Shells 75

e $0 ist das erste Glied der Kommandozeile, also das Kommando selbst ohne
Optionen oder Argumente,

$1 ist das zweite Glied der Kommandozeile, also eine Option oder ein Ar-
gument,

$2 ist das dritte Glied der Kommandozeile usw.

$# ist die Anzahl der Positionsparameter,

$* ist die gesamte Kommandozeile ohne das erste Glied $0, also die Folge
aller Optionen und Argumente.

Die Berzifferung der Positionsparameter geht bis 9, die Anzahl der Glieder der
Kommandozeile ist nahezu unbegrenzt. Die Glieder jenseits der Nummer 9 werden
in einem Sumpf verwahrt, aus dem sie mit einem shift-Kommando herausgeholt
werden konnen. Hier ein Shellscript, das zeigt, wie man auf Umgebungsvariable
und Positionsparameter zugreift:

Shellscript posparm zur Anzeige von Umgebungsvariablen und
Positionsparametern, 30.08.91

print Start $0
x=4711

print $x

print $#

print $1

print $2

print ${9:-nichts}
print $x

print $TERM

print Ende $0

Programm 2.7 : Shellscript zur Anzeige von Positionsparametern

Nun ein umfangreicheres Beispiel. Das Shellscript userlist wertet die Files
/etc/passwd und /etc/group aus und erzeugt zwei Benutzerlisten, die man sich
ansehen oder ausdrucken kann:

Shellscript userlist, 30. Okt. 86

Dieses Shellskript erzeugt eine formatierte Liste der User
und schreibt sie ins File userlist. Voraussetzung ist, dass
die Namen der User aus mindestens einem Buchstaben und
einer Ziffer bestehen. Usernamen wie root, bin, who, gast
werden also nicht in die Liste aufgenommen. Die Liste ist
sortiert nach der UID. Weiterhin erzeugt das Skript eine
formatierte Liste aller Gruppen und ihrer Mitglieder und
schreibt sie ins File grouplist.

HHEHHHHHH

cat liest /etc/passwd

cut schneidet die gewuenschten Felder aus
grep sortiert die gewuenschten Namen aus
sort sortiert nach der User-ID

H H HH

76

sed ersetzt die Doppelpunkte durch control-i (tabs)
expand ersetzt die tabs durch spaces

print Start /etc/userlist
print "Userliste vom ‘date ’+Jd. %F %y’‘ \n" > userlist

cat /etc/passwd | cut -f1,3,5 -d: |
grep ’[A-z] [A-z]*[0-9]’ | sort +1.0 -2 -t: |
sed -e "s/[:1/ /g" | expand -12 >> userlist

print "\n‘cat userlist | grep ’[A-z][A-z]*[0-9]’ |
cut -c13-15 | uniq |
wc -1¢ User. Userliste beendet'" >> userlist

cat liest /etc/group

cut schneidet die gewuenschten Felder aus
sort sortiert numerisch nach der Group-ID
sed ersetzt : oder # durch control I (tabs)
expand ersetzt tabs durch spaces

HHEHHFH

print "Gruppenliste vom ‘date ’+%d. %F %y’‘ \n" > grouplist
cat /etc/group | cut -f1,3,4 -d: |

sort -n +1.0 -2 -t: | sed -e "s/:/ /g" |

sed -e "s/#/ /g" | expand -12 >> grouplist

print "\nGruppenliste beendet" >> grouplist

print Ende userlist

Programm 2.8 : Shellscript zur Erzeugung einer Benutzerliste

2 UNIX

Das folgende Shellscript schreibt ein Menii auf den Bildschirm und wertet die
Antwort aus, wobei man statt der Ausgabe mittels echo oder print irgendetwas

Sinnvolles tun sollte

Shellscript menu zum Demonstrieren von Menues, 30.08.91

clear

print "\n\n\n\n\n\n"

print "\tMenu"

print "\t====\n\n\n"

print "\tAuswahl 1\n"

print "\tAuswahl 2\n"

print "\tAuswahl 3\n\n\n"

print "\tBitte Ziffer eingeben: \c"; read z

print "\n\n\n"

case $z in
1) print "Sie haben 1 gewaehlt.\n\n";;
2) print "Sie haben 2 gewaehlt.\n\n";;
3) print "Sie haben 3 gewaehlt.\n\n";;
*) print "Ziffer unbekannt.\n\n";;

2.5 Shells 77

esac

Programm 2.9 : Shellscript fiir ein Menii

Im obigen Beispiel wird die Auswahl case - esac verwendet, die der switch-
Anweisung in C entspricht. Es gibt weiterhin die Bedingung oder Verzweigung
mit if - then - else - fi, die das folgende Beispiel zeigt. Gleichzeitig wird
Arithmetik mit ganzen Zahlen vorgefiihrt:

Shellscript primscript zur Berechnung von Primzahlen, 26.05.92

typeset —-i ende=100 # groesste Zahl, max. 3600
typeset -i z=b # aktuelle Zahl

typeset -i i=1 # Index von p

typeset -i p[500] # Array der Primzahlen, max. 511
typeset -i n=2 # Anzahl der Primzahlen

pl0]=2; p[1]=3 # die ersten Primzahlen
while [z -le ende]
do
if [z%pli] -eq 0] # z teilbar
then
z=z+2
i=1
else # z nicht teilbar
if [plil*pli] -le z]
then
i=i+1
else
pln]l=z; n=n+1
z=z+2
i=1
fi
fi
done
1=0 # Ausgabe des Arrays
while [i -1t n]
do
print ${pl[il}
i=i+1
done

print Anzahl: $n

Programm 2.10 : Shellscript zur Berechnung von Primzahlen

Eine geschachtelte Verzweigung wie in obigem Shellscript darf auch kiirzer
mit if - then - elif - then - else - fi geschrieben werden. Man gewinnt
jedoch nicht viel damit.

Die for-Schleife hat in Shellscripts eine andere Bedeutung als in C. Im fol-

78 2 UNIX

genden Shellskript ist sie so aufzufassen: fiir die Argumente in dem Positionspa-
rameter $* (der Name user ist beliebig) fithre der Reihe nach die Kommandos
zwischen do und done aus.

Shellscript filecount zum Zaehlen der Files eines Users, 06.11.91

for user in $x

do

print $user ‘find /mnt -user $user -print | wc -1°
done

Programm 2.11 : Shellscript zum Z&hlen der Files eines Benutzers

Es gibt weiterhin die while-Schleife mit while - do - done, die der gleich-
namigen Schleife in anderen Programmiersprachen entspricht. Auf while folgt
eine Liste von Kommandos, deren Ergebnis entweder true oder false ist (also
nicht ein logischer Ausdruck wie in den Programmiersprachen). true(1) ist hier
kein logischer oder boolescher Wert, sondern ein externes UNIX-Kommando, das
eine Null (= true) zuriickliefert (entsprechend auch false(1)):

Shellscript mit Funktion zum Fragen, 21.05.1992
nach Bolsky + Korn, S. 183, 191

Funktion frage

function frage

{
typeset -1 antwort # Typ Kleinbuchstaben
while true
do read "antwort?$1" || return 1
case $antwort in
jljalylyesloui) return 0;;
n|nein|no|non) return 1;;
*) print ’Mit j oder n antworten’;;
esac
done
}

Anwendung der Funktion frage

while frage ’Weitermachen? ’
do

date # oder etwas Sinnvolleres
done

Programm 2.12 : Shellscript mit einer Funktion zum Fragen

Eine Schleife wird abgebrochen, wenn
e die Riicksprung- oder Eintrittsbedingung nicht mehr erfiillt ist oder

e im Rumpf der Schleife das shellinterne Kommando exit, return, break
oder continue erreicht wird.

2.5 Shells 79

Die Kommandos zeigen unterschiedliche Wirkungen. exit gibt die Kontrolle an
das aufrufende Programm (Sitzungsshell) zuriick. Auflerhalb einer Funktion hat
return die gleiche Wirkung. break beendet die Schleife, das Shellscript wird nach
der Schleife fortgesetzt wie bei einer Verletzung der Bedingung. continue hinge-
gen fiithrt zu einem Riicksprung an den Schleifenanfang. Fiir die gleichnamigen
C-Anweisungen gilt dasselbe.

Shellscripts lassen sich durch Funktionen strukturieren, die sogar rekursiv
aufgerufen werden diirfen, wie das folgende Beispiel zeigt:

Shellscript hanoiscript (Tuerme von Hanoi), 25.05.1992
Aufruf hanoi n mit n = Anzahl der Scheiben
nach Bolsky + Korn S. 84

Funktion, rekursiv

function fhanoi

{
typeset -i x=$1-1
((x>0)) && fhanoi $x $2 $4 $3
print "\tvon Turm $2 nach Turm $3"
((x>0)) && fhanoi $x $4 $3 $2

}

Hauptscript

case $1 in
[1-91 | [11[0-6])
print "\nTuerme von Hanoi (Shellscript)"
print "Start Turm 1, Ziel Turm 2, $1 Scheiben\n"
print "Bewege die oberste Scheibe"
fhanoi $1 1 2 3;;
*) print "Argument zwischen 1 und 16 erforderlich"
exit;;
esac

Programm 2.13 : Shellscript Tiirme von Hanoi, rekursiver Funktionsaufruf

Die Tiirme von Hanoi sind ein Spiel und ein beliebtes Programmbeispiel, bei
dem ein Stapel unterschiedlich grofier Scheiben von einem Turm auf einen zweiten
Turm gebracht werden soll, ein dritter Turm als Zwischenlager dient, mit einem
Zug immer nur eine Scheibe bewegt werden und niemals eine gréf8ere Scheibe iiber
einer kleineren liegen darf. Das Spiel wurde 1883 von dem franzdsischen Mathe-
matiker FRANGOIS EDUOUARD ANATOLE LUCAS erdacht. Im obigen Shellscript
ist die Anzahl der Scheiben auf 16 begrenzt, weil mit steigender Scheibenzahl die
Zeiten lang werden (Anzahl der Ziige minimal 2" — 1).

Das Hauptscript ruft die Funktion fhanoi mit vier Argumenten auf. Das erste
Argument ist die Anzahl der Scheiben, die weiteren Argumente sind Start-, Ziel-
und Zwischenturm. Die Funktion fhanoi setzt die Integervariable x auf den um
1 verminderten Wert der Anzahl, im Beispiel also zunéchst auf 2. Diese Variable
begrenzt die Rekursionstiefe. Ist der Wert des ersten Argumentes im Aufruf bei 1

80 2 UNIX

angekommen, ruft sich die Funktion nicht mehr auf, sondern gibt nur noch aus.
Die Zeile:

((x>0)) && fhanoi $x $2 $4 $3

ist in der Korn-Shell so zu verstehen:
e berechne den Wert des booleschen Ausdrucks x > 0,

e falls TRUE herauskommt, rufe die Funktion fhanoi mit den jeweiligen Ar-
gumenten auf, wobei $2 das zweite Argument ist usw.

Schreiben wir uns die Folge der Funktionsaufrufe untereinander, erhalten wir:

fhanoi 31 2 3
fhanoi 2 1 3 2
fhanoi 1 1 2 3 -> print 1 2
print 1 3
fhanoi 1 2 3 1 -> print 2 3
print 1 2
fhanoi 2 3 2 1
fhanoi 1 3 1 2 -> print 3 1
print 3 2
fhanoi 1 1 2 3 -> print 1 2

Die Ausgabe des Scripts fiir n = 3 sieht folgendermaflen aus:

Tuerme von Hanoi (Shellscript)
Start Turm 1, Ziel Turm 2, 3 Scheiben

Bewege die oberste Scheibe

von Turm 1 nach Turm 2
von Turm 1 nach Turm 3
von Turm 2 nach Turm 3
von Turm 1 nach Turm 2
von Turm 3 nach Turm 1
von Turm 3 nach Turm 2
von Turm 1 nach Turm 2

Fiir n = 1 ist die Losung trivial, fiir n = 2 offensichtlich, fiir n = 3 {iberschau-
bar, sofern die Sterne giinstig und die richtigen Getrianke in Reichweite stehen.
Bei grofleren Werten mufi man systematisch vorgehen. Ein entscheidender Mo-
ment ist erreicht, wenn nur noch die unterste (grofite) Scheibe im Start liegt und
sich alle {ibrigen Scheiben im Zwischenlager befinden, geordnet natiirlich. Dann
bewegen wir die gréfite Scheibe ins Ziel. Der Rest ist nur noch, den Stapel vom
Zwischenlager ins Ziel zu bewegen, eine Aufgabe, die wir bereits beim Transport
der n — 1 Scheiben vom Start ins Zwischenlager bewiltigt haben. Damit haben
wir die Aufgabe von n auf n — 1 Scheiben reduziert. Das Rezept wiederholen wir,
bis wir bei n = 2 angelangt sind. Wir ersetzen also eine vom Umfang her nicht zu
l6sende Aufgabe durch eine gleichartige mit geringerem Umfang so lange, bis die

2.5 Shells 81

Aufgabe einfach genug geworden ist. Das Problem liegt darin, sich alle angefange-
nen, aber noch nicht zu Ende gebrachten Teilaufgaben zu merken, aber dafiir gibt
es Computer. Mit der Entdeckung eines Algorithmus, der mit Sicherheit und in
kiirzestmoglicher Zeit zum Ziel fiihrt, ist der Charakter des Spiels verloren gegan-
gen, es ist nur noch ein Konzentrations- und Gedéchtnistest. Beim Schach liegen
die Verhiltnisse anders.

Dieses Programmchen haben wir etwas ausfiihrlich erklért, weil Rekursionen
fiir manchen Leser ungewohnt sind. Versuchen Sie, die Aufgabe ohne Rekursion zu
16sen (nicht alle Programmiersprachen kennen die Rekursion) und suchen Sie mal
im WWW nach Towers of Hanoi und recurs und ihren deutschen Ubersetzungen.

Beim Anmelden werden automatisch zwei Shellscripts ausgefiihrt, die Sie sich
als Beispiele ansehen sollten: /etc/profile wird fiir jeden Benutzer ausgefiihrt,
das Script .profile im Home-Verzeichnis fiir die meisten.

/etc/profile @(#) $Revision: 64.2, modifiziert 02.10.90

Default system-wide profile file (/bin/ksh initialization).
This should be kept to the bare minimum every user needs.

trap "" 1 2 3 # ignore HUP, INT, QUIT
PATH=/rbin:/usr/rbin: # default path
CDPATH=: .. :$HOME

TZ=MEZ-1

TTY=‘/bin/tty" # TERM ermitteln

TN=‘/bin/basename $TTY*
TERM=‘/usr/bin/fgrep $TN /etc/ttytype | /usr/bin/cut -f1°

if [-z "$TERM" 1] # if term is not set,
then #

TERM=vt100 # default terminal type
fi
TMOUT=500
LINES=24 # fuer tn3270
PS1="mvmhp " # Prompt
GNUTERM=hp2623A # fuer gnuplot

HOSTALIASES=/etc/hostaliases

export PATH CDPATH TZ TERM TMOUT LINES PS1
export GNUTERM HOSTALIASES

initialisiere Terminal gemaess TERMINFO-Beschreibung
/usr/bin/tset -s

set erase to "H , kill to "X , intr to “C, eof to "D
/bin/stty erase "“H" kill "“X" intr "°C" eof "~“D"

Set up shell environment:

82 2 UNIX

trap clear O
Background-Jobs immer mit nice und andere Optionen
set -o bgnice -o ignoreeof

Schirm putzen und Begruessung

/usr/rbin/clear
print " * Willkommen * "
if [$TN = "tty2p4"] # Modem
then
print
/usr/local/bin/speed
fi
if [$LOGNAME !'= root -a $LOGNAME != adm]
then
print
if [-f /etc/motd]
then
/bin/cat /etc/motd # message of the day.
fi
if [-f /usr/bin/news 1]
then /usr/bin/news # display news.
fi
print "\nHeute ist ‘/rbin/zeit ‘"

if [-r $HOME/.logdat -a -w $HOME/.logdat]

then

print "Letzte Anmeldung am \c"; /bin/cat $HOME/.logdat
fi

/bin/zeit > $HOME/.logdat

print "\nIhr Home-Directory $HOME belegt \c"

DU=‘/bin/du -s $HOME | /usr/bin/cut -f1°

print "‘/bin/expr $DU / 2°¢ Kilobyte.\n"
unset DU

/bin/sleep 4

/usr/bin/elm -azK
print

fi

cd
umask 077

2.5 Shells 83

/bin/mesg y 2>/dev/null
/usr/rbin/clear

if [$LOGNAME != gast]

then

print y | /bin/ln /mnt/.profile $HOME/.profile 2>/dev/null
/bin/ln /mnt/.exrc $HOME/ .exrc 2>/dev/null

fi

trap 1 2 3 # leave defaults in environment

Programm 2.14 : Shellscript /etc/profile

Das Shellscript .profile in den Home-Verzeichnissen dient persénlichen An-
passungen. Auf unserem System wird es allerdings vom System-Manager verwal-
tet, da es einige wichtige Informationen enthélt, die der Benutzer nicht dndern
soll. Seine Phantasie darf der Benutzer in einem File .autox ausleben. Das File
.logdat speichert den Zeitpunkt der Anmeldung, so dal man bei einer erneuten
Anmeldung feststellen kann, wann die vorherige Anmeldung stattgefunden hat,
eine Sicherheitsmafinahme.

.profile zum Linken in die HOME-Directories der Benutzer
von /etc kopieren nach /mnt/.profile, von dort linken
ausser gast und dergleichen. 16.02.1993

EDITOR=vi

FCEDIT=vi

TMOUT=1000
PATH=/bin:/usr/bin:/usr/local/bin:/oracle/bin:$HOME/bin: :

PS1="mvmhp> " # Prompt
PS1="${PWD#$HOME/}> °
PS1="${PWD##x/}> °’

export FCEDIT PATH PS1
alias h=’fc -1’

if [-f .autox]
then

.autox
fi

Programm 2.15 : Shellscript /etc/.profile

In dem obigen Beispiel /etc/.profile wird ein weiteres Script namens .autox
mit einem vorangestellten und durch einen Zwischenraum (Space) abgetrennten
Punkt aufgerufen. Dieser Punkt ist ein Shell-Kommando und hat nichts mit dem
Punkt von .autox oder .profile zu tun. Als Argument {ibernimmt der Punktbe-
fehl den Namen eines Shellscripts. Er bewirkt, dafl das Shellscript nicht von einer
Subshell ausgefiihrt wird, sondern von der Shell, die den Punktbefehl entgegen-

84 2 UNIX

nimmt. Damit ist es moglich, in dem Shellscript beispielsweise Variable mit Wir-
kung fiir die derzeitige Shell zu setzen, was in einer Subshell wegen der Unméglich-
keit der Vererbung von Kinderprozessen riickwérts auf den Elternprozess nicht
geht. Ein mit dem Punkt-Befehl aufgerufenes Shellscript wird als Punktscript
bezeichnet, obwohl der Aufruf das Entscheidende ist, nicht das Script.

Fiir den Prompt stehen in .profile drei Moglichkeiten zur Wahl. Die erste
setzt den Prompt auf einen festen String, den Netznamen der Maschine. Die zwei-
te verwendet den Namen des aktuellen Verzeichnisses, verkiirzt um den Namen
des Home-Verzeichnisses. Die dritte, nicht auskommentierte zeigt den Namen des
Arbeits-Verzeichnisses ohne die {ibergeordneten Verzeichnisse an.

Das waren einige Shellscripts, die vor Augen fiithren sollten, was die Shell
leistet. Der Umfang der Shellsprache ist damit noch lange nicht erschopft. Die
Méoglichkeiten von Shellscripts voll auszunutzen erfordert eine lingere Ubung. Die
Betonung liegt auf voll, einfache Shellscripts schreibt man schon nach wenigen
Minuten Uben.

Wir haben uns vorstehend mit der Korn-Shell ksh(1) befaf3t, die man heute
als die Standardshell ansehen kann (Protest von Seiten der csh(1)-Anhénger).
Verwenden Sie die Shell, die auf Ihrer Anlage iiblich ist, im Zweifelsfall die Bourne-
Shell sh(1), und wechseln Sie auf eine leistungsfihigere Shell, wenn Sie an die
Grenzen der Bourne-Shell stoflen. Die Bourne-Shell kennengelernt zu haben, ist auf
keinen Fall verkehrt. Wir erinnern daran, dafl die UNIX-Shells sowohl interaktive
Kommando-Interpreter als auch Programmiersprachen fiir Shellscripts sind, zwei
zunichst verschiedene Aufgaben.

2.5.3 Noch eine Scriptsprache: Perl

Perl ist eine jiingere Alternative zur Shell als Scriptsprache (nicht als Kommando-
interpreter) und vereint Ziige von sh(1), awk(1), sed(1) und der Programmier-
sprache C. Sie ist optimiert fiir Textverarbeitung und Systemverwaltung. Perl-
Interpreter sind im Netz frei unter der GNU General Public License verfiigbhar.
Einzelheiten sind einem Buch oder der man-Page (eher schon ein man-Booklet)
zu entnehmen, hier wollen wir uns nur an zwei kleinen Beispielen eine Vorstellung
von Perl verschaffen. Dazu verwenden wir das in Perl umgeschriebene Shellscript
zur Berechnung von Primzahlen.

#!/usr/local/bin/perl
perl-Script zur Berechnung von Primzahlen, 28. Nov. 1996

$ende = 10000; # groesste Zahl

$z = 5; # aktuelle Zahl

$i = 1; # Index von p

ep = (2, 3); # Array der Primzahlen
$n = 2; # Anzahl der Primzahlen

while ($z <= $ende) {
if ($z % op[$il == 0) { # z teilbar

$z —$z+2
$i = 1

2.5 Shells 85

}
else { # z nicht teilbar
if (ep[$i]l * Op[$il <= $z) {
$i++;
}
else {
Op[$n] = $z;
$n++;
$z = $z + 2;
$1i = 1;
}
}

3

Ausgabe des Arrays

$i = 0;
while ($i < $n) {

print (Op[$i++], "\n");
}

print ("Anzahl: ", $n, "\n");

Programm 2.16 : Perlscript zur Berechnung von Primzahlen

Man erkennt, dafl die Struktur des Scripts gleich geblieben ist. Die Unter-
schiede riihren von syntaktischen Feinheiten her:

e Die erste Zeile muf§ wie angegeben den Perl-Interpreter verlangen.
e Die Namen von Variablen beginnen mit Dollar, Buchstabe.
e Die Namen von Arrays beginnen mit dem at-Zeichen (Klammeraffe).

e Die Kontrollstrukturen erinnern an C, allerdings muf der Anweisungsteil in
geschweiften Klammern stehen, selbst wenn er leer ist.

e Zur Ausgabe auf stdout wird eine Funktion print () verwendet.

Der Perl-Interpreter unterliegt nicht den engen Grenzen des Zahlenbereiches und
der Arraygrofle der Shell. Die Stellenzahl der groten ganzen Zahl ist maschinen-
abhéngig und entspricht ungefihr der Anzahl der giiltigen Stellen einer Gleitkom-
mazahl. Zum Perl-Paket gehoren auch Konverter fiir awk (1)- und sed (1)-Scripts,
allerdings bringt das Konvertieren von Hand elegantere Ergebnisse hervor.

Im zweiten Beispiel soll aus dem Katalog einer Institutsbibliothek die Anzahl
der Biicher ermittelt werden. Zu jedem Schriftwerk gehort eine Zeile im Katalog,
jede Zeile enthélt ein Feld zur Art des Werkes: "BUC” heifit Buch, ” DIP” Diplom-
arbeit, "ZEI” Zeitschrift. Das Perlscript verwendet ein assoziatives Array, dessen
Elemente als Index nicht Ganzzahlen, sondern beliebige Strings gebrauchen. Uber
die Anordnung der Elemente im Array braucht man sich keine Gedanken zu ma-
chen. Das Perlscript:

#!/usr/local/bin/perl
perl-Script zum Zaehlen in Buecherliste, 28. Nov. 1996

86 2 UNIX

Verwendung eines assoziativen Arrays
hanzahl = ("BUC", O, "ZEI", O, "DIP", 0);
Leseschleife

while ($input = <STDIN>) {
while ($input =~ /BUC|ZEI|DIP/g) {
$anzahl{$&} += 1;
}

}

Ausgabe

foreach $item (keys(%anzahl)) {
print ("$item: $anzahl{$item}\n");
}

Programm 2.17 : Perlscript zur Ermittlung der Anzahl der Biicher usw. in einem
Katalog

In der ersten ausfiihrbaren Zeile wird ein assoziatives Array namens %anzahl
mit drei Elementen definiert und initialisiert. Die duflere while-Schleife liest Zei-
len von stdin, per Umlenkung mit dem Katalog verbunden. Die innere while-
Schleife zahlt das jeweilige Element des Arrays um 1 hoch, jedesmal wenn in der
aktuellen Zeile ein Substring "BUC” oder "ZEI” oder ”"DIP” gefunden wird. Die
Perl-Variable $& enthélt den gefundenen Substring und wird deshalb als Index
ausgenutzt. Die foreach-Schleife zur Ausgabe gleicht der gleichnamigen Schleife
der C-Shell oder der for-Schleife der Bourne-Shell.

Was man mit Shell- oder Perlscripts macht, 14t sich auch mit Programmen —
vorzugsweise in C — erreichen. Was ist besser? Ein Script ist schnell geschrieben
oder geéndert, braucht nicht kompiliert zu werden (weil es interpretiert wird),
lduft aber langsamer als ein Programm. Ein Script eignet sich daher fiir kleine
bis mittlere Aufgaben zur Textverarbeitung oder Systemverwaltung, wobei Perl
mehr kann als die Shell. Fiir umfangreiche Rechnungen oder falls die Laufzeit
entscheidet, ist ein kompiliertes Programm besser. Oft schreibt man auch zunéchst
ein Script, probiert es eine Zeitlang aus und ersetzt es dann durch ein Programm.
Gelegentlich spielt die Portierbarkeit auf andere Betriebssysteme eine Rolle. Ein
UNIX-Shellscript 1duft nur auf Systemen, auf denen eine UNIX-Shell verfiigbar ist,
Perl setzt den Perl-Interpreter voraus, ein C-Programm lduft auf jedem System,
fiir das ein C-Compiler zur Verfiigung steht. Und schlieflich hat man auch seine
Gewohnheiten.

2.5.4 Memo Shells

e Die Shell — ein umfangreiches Programm — ist der Gespriichspartner (Kom-
mandointerpreter) in einer Sitzung. Es gibt mehrere Shells zur Auswahl, die
sich in Einzelheiten unterscheiden.

2.5 Shells 87

e Die Shell fait jede Eingabe als Kommando (internes K., externes Kommando
= Shellscript oder Programm) auf.

e Die Shell stellt fiir die Sitzung eine Umgebung bereit, die eine Reihe von
Werten (Strings) enthilt, die von Shellscripts und anderen Programmen
benutzt werden.

e Die Shell ist zweitens ein Interpreter fiir Shellscripts, eine Art von Pro-
grammen, die nicht kompiliert werden. Shellscripts konnen alles aufler
Gleitkomma-Arithmetik.

e Perl ist eine Scriptsprache alternativ zur Shell als Sprache, nicht als Kom-
mandointerpreter. Sie setzt den Perl-Interpreter voraus.

2.5.5 Ubung Shells

Melden Sie sich — wie inzwischen gewohnt — unter [hrem Benutzernamen an. Die
folgende Sitzung lduft mit der der Korn-Shell. Die Shells sind umfangreiche Pro-
gramme mit vielen Moglichkeiten, wir kratzen hier nur ein bifichen an der Ober-
fldche.

set (Umgebung anzeigen)
PSi="zz " (Prompt aendern)
NEU=Unsinn (neue Variable setzen)
set

pwd (Arbeits-Verzeichnis?)

print Mein Arbeits-Verzeichnis ist pwd
(Satz auf Bildschirm schreiben)

print Mein Arbeits-Verzeichnis ist ‘pwd’
(Kommando-Substitution)

print Mein Home-Verzeichnis ist $HOME
(Shell-Variable aus Environment)

pg /etc/profile (Shellscript anschauen)
pg .profile

Schreiben Sie mit dem Editor vi(1) in Ihr Home-Verzeichnis ein File
namens .autox mit folgendem Inhalt:

PS1="KA "
trap "print Auf Wiedersehen!" 0
/usr/bin/clear
print
/usr/bin/banner " UNIX"
und schreiben Sie in Ihr File .profile folgende Zeilen:
if [-f .autox]
then

.autox

88 2 UNIX

fi (Die Spaces und Punkte sind wichtig. Die Zeilen
rufen das File .autox auf, falls es exisitiert.

Wenn das funktioniert, richten Sie in .autox einige Aliases nach
dem Muster von Abschnitt 2.5.1.1 Kommandointerpreter ein.
Was passiert, wenn in .autox das Kommando exit vorkommt?

Schreiben Sie ein Shellscript namens showparm nach dem Muster
aus dem vorigen Abschnitt und variieren es. Rufen Sie showparm mit
verschiedenen Argumenten auf, z. B. showparm eins zwei drei.

2.6 Benutzeroberflichen

2.6.1 Lokale Benutzeroberflaichen
2.6.1.1 Kommandozeilen-Eingabe

Unter einer Benutzer-Oberfldche (user interface) versteht man nicht die Haut,
aus der man nicht heraus kann, sondern die Art, wie sich ein Terminal (Bild-
schirm, Tastatur, Maus) dem Benutzer darstellt, wie es ausschaut (look) und wie
es auf Eingaben reagiert (feel). Lokal bedeutet nicht-netzfihig, beschrinkt auf
einen Computer — im Gegensatz zum X Window System.

Im einfachsten Fall tippt man seine Kommandos zeilenweise ein, sie werden
auf dem alphanumerischen Bildschirm geechot und nach dem Driicken der Return-
Taste ausgefiihrt. Die Ausgabe des Systems erfolgt ebenfalls auf den Bildschirm,
Zeile fiir Zeile nacheinander.

Diese Art der Eingabe heifit Kommandozeilen-Eingabe. Sie stellt die ge-
ringsten Anforderungen an Hard- und Software und ist mit Einschrinkungen so-
gar auf druckenden Terminals (ohne Bildschirm) méglich. Vom Benutzer verlangt
sie die Kenntnis der einzugebenden Kommandos und das zielsichere Landen auf
den richtigen Tasten. Die Programme bieten einfache Hilfen an, die iiblicherweise
durch die Tasten h (wie help), ? oder die Funktionstaste F1 aufgerufen werden.

Bei UNIX-Kommandos ist es eine gute Gepflogenheit, dafl sie — fehlerhaft
aufgerufen — einen Hinweis zum richtigen Gebrauch (usage) geben. Probieren Sie
folgende fehlerhafte Eingaben aus, auch mit anderen Kommandos:

who -x
who -7
who --help

Schreibt man selbst Programme, sollte man wenigstens diese Hilfe einbauen. Eine
zusitzliche man-Seite wire die Krone.

2.6.1.2 Meniis

Ein erster Schritt in Richtung Benutzerfreundlichkeit ist die Verwendung von
Meniis. Die erlaubten Eingaben werden in Form einer Liste — einem Menii —

2.6 Benutzeroberflachen 89

angeboten, der Benutzer wihlt durch Eintippen eines Zeichens oder durch ent-
sprechende Positionierung des Cursors die gewiinschte Eingabe aus. Der Cursor
wird mittels der Cursortasten oder einer Maus positioniert.

Meniis haben zwei Vorteile. Der Benutzer sieht, was erlaubt ist, und macht bei
der Eingabe kaum syntaktische Fehler. Nachteilig ist die beschrinkte Grofle der
Meniis. Man kann nicht mehrere hundert UNIX-Kommandos in ein Menii packen.
Ein Ausweg sind Menii-Hierarchien, die auf hichstens drei Ebenen begrenzt wer-
den sollten, um {iibersichtlich zu bleiben. Einfache Meniis ohne Grafik und Maus-
unterstiitzung stellen ebenfalls nur geringe Anforderungen an Hard- und Software.
Meniis lassen sich nicht als Filter in einer Pipe verwenden, weil stdin innerhalb
einer Pipe nicht mehr mit der Tastatur, sondern mit stdout des vorhergehenden
Gliedes verbunden ist.

Fiir den ungeiibten Benutzer sind Meniis eine grofle Hilfe, fiir den geiibten
ein Hindernis. Deshalb sollte man zusétzlich zum Menii immer die unmittelbare
Kommandozeilen-Eingabe zulassen. Zu den am h&ufigsten ausgewihlten Punkten
miissen kurze Wege fithren. Man kann Defaults vorgeben, die nur durch Betétigen
der RETURN-Taste ohne weitere Zeichen aktiviert werden.

Wir haben beispielsweise fiir die Druckerausgabe ein Menu namens p geschrie-
ben, das dem Benutzer unsere Moglichkeiten anbietet und aus seinen Angaben das
1p(1)-Kommando mit den entsprechenden Optionen zusammenbaut. Der Benut-
zer braucht diese gar nicht zu kennen. In dhnlicher Weise verbergen wir den Dialog
mit unserer Datenbank hinter Menus, die SQL-Scripts aufrufen. Das Eingangsme-
nu fiir unsere Datenbank sieht so aus:

Oracle-Hauptmenu (21.03.97 A)

Bibliothek
Buchaltung
Personen
Projekte

B W N =

Bitte Ziffer eingeben:

Nach Eingabe einer giiltigen Ziffer gelangt man ins erste Untermenu usf. Hinter
dem Menu steckt ein Shellscript mit einer case-Anweisung, das letzten Endes
die entsprechenden Shell- und SQLscripts aufruft. Der Benutzer braucht weder
von der Shell noch von SQL etwas zu verstehen. Er bekommt seine Daten nach
Wunsch entweder auf den Bildschirm oder einen Drucker.

2.6.1.3 Fenster, curses-Bibliothek

Bildschirme lassen sich in mehrere Ausschnitte aufteilen, die Fenster oder Win-
dows genannt werden. In der oberen Bildschirmhilfte beispielsweise konnte man
bei einem Benutzerdialog mittels write den eigenen Text darstellen, in der unteren
die Antworten des Gespriachspartners. Das UNIX-Kommando write (1) arbeitet
leider nicht so. Ein anderer Anwendungsfall ist das Korrigieren (Debuggen) von
Programmen. In der oberen Bildschirmhilfte steht der Quellcode, in der unteren
die zugehorige Fehlermeldung.

90 2 UNIX

Fiir den C-Programmierer stellt die curses(3)-Bibliothek Funktionen zum
Einrichten und Verwalten von monochromen, alphanumerischen Fenstern ohne
Mausunterstiitzung zur Verfiigung. Die curses(3) sind halt schon etwas é<er.
Ein Beispiel findet sich in Kap. ?? Programmieren in C/C++. Dariiberhinaus
gibt es weitere, kommerzielle Fenster- und Meniibibliotheken, vor allem im PC-
Bereich. An die Hardware werden keine besonderen Anforderungen gestellt, ein
alphanumerischer Bildschirm mit der Méglichkeit der Cursorpositionierung reicht
aus.

Wer seinen Bildschirm modern mit Farbe und Maus gestalten will, greift zum
X Window System und seinen Bibliotheken. Das kann man auch lernen, aber nicht
in einer Viertelstunde.

2.6.1.4 Grafische Fenster

Im Xerox Palo Alto Research Center ist die Verwendung von Meniis und Fenstern
weiterentwickelt worden zu einer grafischen Benutzeroberfliche (graphical
user interface, GUI), die die Arbeitsweise des Benutzers wesentlich bestimmt. Die-
se grafische Fenstertechnik ist von Programmen wie SMALLTALK und Microsoft
Windows sowie von Computerherstellern wie Apple iibernommen und verbreitet
worden. Wer’t mag, dei mag’t, un wer’t nich mag, dei mag’t jo woll nich mégen.

Ein klassisches UNIX-Terminal gestattet die Er6ffnung genau einer Sitzung,
deren Kontroll-Terminal es dann wird. Damit sind manche Benutzer noch nicht
ausgelastet. Sie stellen sich ein zweites und drittes Terminal auf den Tisch und
erdffnen auf diesen ebenfalls je eine Sitzung. Unter UNIX kénnen mehrere Sitzun-
gen unter einem Benutzernamen gleichzeitig laufen. Dieses Vorgehen wird begrenzt
durch die Tischfliche und die Anzahl der Terminalanschliisse. Also teilt man ein
Terminal in mehrere virtuelle Terminals auf, die Fenster oder Windows ge-
nannt werden, und erdffnet in jedem Window eine Sitzung. Auf dem Bildschirm
gehort jedes Fenster zu einer Sitzung, Tastatur und Maus dagegen konnen nicht
aufgeteilt werden und sind dem jeweils aktiven Fenster zugeordnet. Die Fenster
lassen sich vergroflern, verkleinern und verschieben. Sie diirfen sich iiberlappen,
wobei nur das vorderste Fenster vollstindig zu sehen ist. Wer viel mit Fenstern
arbeitet, sollte den Bildschirm nicht zu klein wéhlen, 17 Zoll Bildschirmdiagonale
ist die untere Grenze. Ein Schreibtisch hat eine Diagonale von 80 Zoll.

Was ein richtiger Power-User ist, der hat so viele Fenster gleichzeitig in Betrieb,
daf er fiir den Durchblick ein Werkzeug wie das Visual User Environment
(VUE) von Hewlett-Packard braucht. Dieses setzt auf dem X Window System
auf und teilt die Fenster in vier oder mehr Gruppen ein, von denen jeweils eine
auf dem Schirm ist. Zwischen den Gruppen wird per Mausklick umgeschaltet. Die
Gruppen konnen beispielsweise

e Allgemeines

Verwaltung
e Programmieren

Internet

Server A

2.6 Benutzeroberflachen 91

e Server B

heiflen und stellen virtuelle Schreibtische fiir die jeweiligen Arbeitsgebiete dar.
Man kann sich sehr an das Arbeiten mit solchen Umgebungen gewoéhnen und
beispielsweise — ohne es zu merken — dasselbe Textfile gleichzeitig in mehreren
Fenstern oder Gruppen editieren. Ein gewisser Aufwand an Hard- und Software
(vor allem Arbeitsspeicher) steckt dahinter, aber sechs Schreibtische sind ja auch
was. Den anklickbaren Papierkorb gibt es gratis dazu.

2.6.1.5 Multimediale Oberflichen

Der Mensch hat nicht nur Augen und Finger, sondern auch noch Ohren, eine
Nase, ein Zunge und eine Stimme. Es liegt also nahe, zum Gedankenaustausch
mit dem Computer nicht nur den optischen und mechanischen Ubertragungsweg
zu nutzen, sondern auch den akustischen und zumindest in Richtung vom Com-
puter zum Benutzer auch dessen Geruchssinn!®. Letzteres wird seit altersher bei
der ersten Inbetriebnahme elektronischer Gerite aller Art gemacht (smoke test),
weniger wihrend des ordnungsgeméiflen Betriebes. Der akustische Weg wird in
beiden Richtungen vor allem in solchen Féllen genutzt, in denen Augen oder Fin-
ger anderweitig beschiftigt sind (Fotolabor, Operationssaal) oder fehlen. In den
niichsten Jahren wird die Akustik an Bedeutung gewinnen. Uber die Nutzung des
Geschmackssinnes wird noch nachgedacht (wie soll das Terminal aussehen bzw.
ausschmecken?).

Im Ernst: unter einer multimedialen Oberfliche versteht man bewegte Grafi-
ken plus Ton, digitales Kino mit Dialog sozusagen. Der Computer gibt nicht nur
eine diirre Fehlermeldung auf den Bildschirm aus, sondern 148t dazu That ain’t
right mit FATS WALLER am Piano erténen. Lesen Sie Thre Email, singt im Hinter-
grund ELLA FITZGERALD Email special. Umgekehrt beantworten Sie die Frage
des vi(1), ob er ohne Zuriickschreiben aussteigen soll, nicht knapp und biindig
mit einem Ausrufezeichen, sondern singen wie EDITH PIAF Je ne regrette rien.
Die eintonige Arbeit am Terminal entwickelt sich so zu einem anspruchsvollen
kulturellen Happening. Die Zukunft liegt bei multisensorischen Schnittstellen, die
mit Menschen auf zahlreichen kognitiven und physiologischen Ebenen zusammen-
arbeiten (Originalton aus einem Prospekt).

2.6.1.6 Software fiir Behinderte

Das Thema Behinderte und Computer hat mehrere Seiten. An Behinderungen
kommen vor allem in Betracht:

e Behinderungen des Sehvermdgens
e Behinderungen des Horvermdogens

e Behinderungen der korperlichen Beweglichkeit

®Nachricht in Markt & Technik vom 31. Mérz 1994: IBM entwickelt kiinstliche Nase.
Vielleicht fordert Sie ihr Computer demniichst auf, die Socken zu wechseln oder den
Kaffee etwas stirker anzusetzen.

92 2 UNIX

Die Benutzung eines Computers durch einen Behinderten erfordert eine besonde-
re Anpassung der Maschine, insbesondere des Terminals. Andererseits kann ein
Computer als Hilfsmittel bei der Bewiltigung alltéiglicher Probleme dienen, zum
Beispiel beim Telefonieren. Der bekannteste behinderte Benutzer ist der Physiker
STEPHEN HAWKING, der sich mit seiner Umwelt per Computer verstandigt.

Im Netz finden sich einige Server, die Software und Informationen fiir Behin-
derte sammeln:

e ftp://ftp.th-darmstadt.de/pub/machines/ms-dos/SimTel/msdos/
e ftp://ftp.tu-ilmenau.de/pub/msdos/CDROM1/msdos/handicap/
e http://seidata.com/“marriage/rblind.html

sowie die Newsgruppen misc.handicap und de.soc.handicap, allerdings mit
mehr Fragen als Antworten. Eine archie-Suche nach dem Substring handicap
brachte {iberwiegend Material zum Golfspiel. In der Universitit Karlsruhe bemiiht
sich das Studienzentrum fiir Sehgeschddigte, diesen das Studium der Informatik
zu erleichtern: http://szswww.ira.uka.de/.

2.6.2 X Window System (X11)
2.6.2.1 Zweck

Das X Window System (nicht: Windows) ist ein netzfihiges, hardware- und
betriebssystem-unabhéngiges, grafisches Fenstersystem, das am Massachusetts
Institute of Technology (MIT) im Projekt Athena entwickelt wurde und frei
verfiigbar ist. Im Jahr 1988 wurde die Version 11 Release 2 verdffentlicht. Heu-
te wird es vom X Consortium betreut. Weitere korrekte Bezeichnungen sind X
Version 11, X11 und X, gegenwértig als sechstes Release X11R6. Eine freie Por-
tierung auf Intel-Prozessoren heifit XFree86. Netzfihig bedeutet, daf die Rechnun-
gen (die Client-Prozesse) auf einer Maschine im Netz laufen konnen, wihrend die
Terminal-Ein- und -Ausgabe (der Server-Prozess) iiber eine andere Maschine im
Netz erfolgen (Client-Server-Modell). Ein Client ist ein Prozess, der irgend-
welche Dienste verlangt, ein Server ein Prozess, der Dienste leistet. Die Trennung
einer Aufgabe in einen Client- und einen Server-Teil erhoht die Flexibilitdt und
ermoglicht das Arbeiten iiber Netz. Man muf} sich dariiber klar sein, daf} die Daten
ohne zusétzliche Maflnahmen unverschliisselt {iber das Netz gehen und abgehort
werden konnen. Das X Window System enthélt nur minimale Sicherheitsvorkeh-
rungen. Der Preis fiir die Flexibilitéit ist ein hoher Bedarf an Speicherkapazitit
und Prozessorzeit, proprietdre Lésungen waren bescheidener.

Das X Window System stellt die Funktionen bereit, um grafische Benutzero-
berflichen zu gestalten, legt aber die Art der Oberfliche nur in Grundziigen fest.
Die Einzelheiten der Oberfliche sind Sache besonderer Funktionsbibliotheken wie
Motif bzw. Sache bestimmter Programme, der Window-Manager, die nicht im-
mer Bestandteil des X Window Systems sind und teilweise auch Geld kosten.
Der in X11 enthaltene Window-Manager ist der Tab Window Manager twm(1),
Hewlett-Packard fiigt seinen Systemen den Motif Window Manager mwm (1X) und
den VUE Window Manager vuewm (1) bei, unter LINUX findet sich der Win95

2.6 Benutzeroberflachen 93

Window Manager fvwm95(1), dessen Fenster an Microsoft Windows 95 erinnern.
Das X Window System ist also keine Benutzeroberfliche, sondern hat eine oder
sogar mehrere.

Die X-Clients verwenden X11-Funktionen zur Ein- und Ausgabe, die in um-
fangreichen Funktionsbibliotheken wie X1ib und Xtools verfiigbar sind. Es bleibt
immer noch einiges an Programmierarbeit iibrig, aber schliellich arbeitet man
unter X11 mit Farben, Fenstern, M&usen und Symbolen, was es frither zu Zeiten
der einfarbigen Kommandozeile nicht gab. Inzwischen machen schon viele Anwen-
dungsprogramme von den Mdoglichkeiten von X11 Gebrauch.

Host 1 Host 3
(Client 1) Host 2 .
(Client 3) (Client 2)
X-Ter-
minal 1 _ Window 2
Window 1
Window 3
X-Terminal 2 (Server 2)

Abb. 2.7: X-Window-Computer und -Terminals, durch einen Ethernet-Bus ver-
bunden

Der X-Server liuft als einziges Programm auf einem kleinen, spezialisier-
ten Computer, dem X-Terminal, oder als eines unter vielen auf einem UNIX-
Computer. Ein X-Server kann gleichzeitig mit mehreren X-Clients verkehren.

Mit dem X Window System kann man auf dreierlei Weise zu tun bekommen:

e als Benutzer eines fertig eingerichteten X Window Systems (das gilt fiir
wachsende Kreise von UNIX-Benutzern),

e als System-Manager, der ein X Window System auf mehreren Netzknoten
einrichtet,

e als Programmierer, der Programme schreibt, die unmittelbar im Programm-
code vom X Window System Gebrauch machen, also nicht wie gewéhnliche
UNIX-Programme in einer Terminal-Emulation (xterm(1), hpterm(1X))
laufen.

94 2 UNIX

Der Benutzer muf} vor allem zwei Kommandos kennen. Auf der Maschine, vor der
er sitzt (wo seine Sitzung lduft, der X-Server), gibt er mit

xhost abcd

der entfernten Maschine namens abcd (wo seine Anwendung lauft, der X-Client)
die Erlaubnis zum Zugriff. Das Kommando ohne Argument zeigt wie iiblich die
augenblicklichen Einstellungen an. Auf der entfernten Maschine abcd setzt er mit

export DISPLAY=efgh:0.0

die Umgebungsvariable DISPALY auf den Namen efgh und die Fensternummer 0.0
des X-Servers. Erst dann kann ein Client-Programm, eine Anwendung iiber das
Netz den X-Server als Terminal nutzen. Die Fensternummer besteht aus Display-
nummer und Screennummer und hat nur auf Maschinen mit mehreren Terminals
auch Werte grofer null. Unter der Secure Shell ssh(1) werden beide Kommandos
automatisch abgesetzt.

Fiir den Programmierer stehen umfangreiche X11-Bibliotheken zur Verfiigung,
das heiffit X11-Funktionen zur Verwendung in eigenen Programmen, so daf} diese
mit einem X-Server zusammenarbeiten.

Wer tiefer in das X Window System eindringen mochte, beginnt am besten
mit man X, geht dann zu http://www.camb.opengroup.org/tech/desktop/x/
ins WWW und landet schliefllich bei den ebenso zahl- wie umfangreichen Binden
des Verlages O’Reilly.

2.6.2.2 OSF/Motif

OSF /Motif von der Open Software Foundation ist ein Satz von Regeln zur
Gestaltung einer grafischen Benutzeroberfliche fiir das X Window System, ei-
ne Bibliothek mit Funktionen gemifl diesen Regeln sowie eine Sammlung dar-
aus abgeleiteter Programme. Die Open Software Foundation OSF ist ein Zusam-
menschlufl mehrerer Hersteller und Institute, die Software fiir UNIX-Anlagen her-
stellen. Motif ist heute in der UNIX-Welt die am weitesten verbreitete grafische
Benutzeroberfliche und fiir viele Systeme verfiigbar, leider nicht kostenlos. Aber
es gibt freie Nachbauten. Das Common Desktop Environment (CDE), eine in-
tegrierte Benutzeroberfliche, baut auf Motif auf. Es schieben sich immer mehr
Schichten zwischen die CPU und den Benutzer.

Programme, die Motif benutzen, stellen sich dem Benutzer in einheitlicher
Weise dar. Thre Benutzung braucht man nur einmal zu lernen. Motif benétigt eine
Maus oder ein anderes Zeigegerét (pointing device). Die Maustasten haben drei
Funktionen:

e select (linker Knopf),

e menu (mittlerer Knopf bzw. bei einer Maus mit zwei Tasten beide gleich-
zeitig),

e custom (rechter Knopf).

2.6 Benutzeroberflachen 95

i linke obere Ecke ! i obere Kante i rechte obere Ecke i
: verschieben : verschieben i : verschieben
________________________ [Lo R SRR
Ft Y Y Y
' Fenster-)
— Titel .
Menii > JA A
""""""""""" Restore pTTTTTTmmemeeeTe
i Fenster '

Move :)

Resize + verschieben

Minimize | -eeeememmiieinnilis
1mi ‘Minimize i
i linke Kante ! Maximize| {¥IMZe i rechte Kante |
! . - Lower | ool - |- . '
¢ verschieben ! . : .]t verschieben
Raise i Maximize L

Close

A A [4

........................ [.... R I N
i linke untere Ecke : i untere Kante : : rechte untere Ecke :
: verschieben { verschieben i : verschieben :

Abb. 2.8: OSF /Motif-Fenster

Durch Verschieben der Maus auf einer Unterlage bewegt man eine Marke (Pointer,
Cursor) auf dem Bildschirm. Die Marke nimmt je nach Umgebung verschiedene
Formen an: Kreuz, Pfeil, Sanduhr, Motorradfahrer usw. Zeigen (to point) heift,
die Marke auf ein Bildschirmobjekt zu bewegen. Unter Klicken (to click) ver-
steht man das kurze Betétigen einer Taste der ruhenden Maus. Zwei kurze Klicks
unmittelbar nacheinander heifilen Doppel-Klick (double-click). Ziehen (to drag)
bedeutet Bewegen der Maus mit gedriickter Taste. In einigen Systemen lassen sich
die Mauseingaben durch Tastatureingaben ersetzen, aber das ist nur ein Behelf.

Falls das UNIX-System entsprechend konfiguriert ist, startet nach der An-
meldung automatisch das X Window System und darin wiederum der Motif
Window Manager mvm(1). Unter UNIX sind das Prozesse. Der Motif Win-
dow Manager erzeugt standardmiflig zunéchst einen Terminal-Emulator samt zu-
gehorigem Fenster auf dem Bildschirm. Dieses Fenster kann man seinen Wiinschen
anpassen. Es besteht aus einer Kopfleiste (title bar), dem Rahmen (frame) und
der Fenster- oder Arbeitsfliche. Die Kopfleiste enthilt links ein kleines Feld mit
einem Minuszeichen (menu button). Rechts finden wir ein Feld mit einem winzigen
Quadrat (minimize button) und ein Feld mit einem gréferen Quadrat (maximize
button) (Abb. 2.8).

Ehe ein Fenster bzw. der mit ihm verbundene Prozefl Eingaben annimmt, mufl
es durch Anklicken eines beliebigen Teils mit der Select-Maustaste aktiviert wer-
den. Dabei dndert sich die Rahmenfarbe. Gibt man nun auf der Tastatur Zeichen
ein, erscheinen sie im Fenster und gelangen auch zum Computer. Es ist immer nur

96 2 UNIX

ein Fenster aktiv. Ein Fenster wird deaktiviert, wenn ein anderes Fenster aktiviert
wird oder der Mauscursor das aktive Fenster verlafit.

Ein Fenster wird auf dem Bildschirm verschoben, indem man seine Kopfleiste
mit der Select-Maustaste in die neue Position zieht. Nach Loslassen der Taste
verharrt das Fenster an der neuen Stelle. Die Grofle eines Fenster wird durch
Ziehen einer Rahmenseite verindert. Zieht man eine Ecke, &ndern sich die beiden
angrenzenden Seiten gleichzeitig.

Gelegentlich mochte man ein Fenster voriibergehend beiseite legen, ohne es
jedoch ganz zu l6schen, weil mit ihm noch ein laufender Prozefl verbunden ist.
In diesem Fall klickt man mit der Select-Maustaste den Minimize-Button an,
und das Fenster verwandelt sich in ein Sinnbild, Symbol oder Icon. Das ist ein
Rechteck von Briefmarkengrofie am unteren Bildschirmrand. Der zugehorige Pro-
ze} 1lduft weiter, nimmt aber keine Eingaben von der Tastatur mehr an. Icons
lassen sich auf dem Bildschirm verschieben. Um aus dem Icon wieder ein Fenster
zu machen, klickt man es doppelt mit der Select-Maustaste an.

Durch Anklicken des Maximize-Buttons bringt man ein Fenster auf volle
Bildschirmgrofle, so dafl kein weiteres Fenster mehr zu sehen ist. Das empfiehlt
sich fiir lingere Arbeiten in einem Fenster. Auf die vorherige Fenstergrofle zuriick
kommt man durch nochmaliges Anklicken des Maximize-Buttons.

Jetzt fehlt noch der Menii-Button. Klickt man ihn an, erscheint unterhalb
der Kopfleiste ein Menii (Pull-down-Menii) mit einigen Funktionen zur Fenster-
gestaltung. Eine zur Zeit nicht verfiighare oder sinnlose Funktion erscheint grau.

Falls Sie nautisch vorbelastet sind und runde Fenster, sogenannte Bullaugen,
bevorzugen, sollten Sie einmal nach HAX /Rotif Ausschau halten, eine vielver-
sprechende Entwicklung aus fernerer Zukunft.

2.6.3 Memo Oberflichen, X Window System

e Die Oberfliche mit den geringsten Anspriichen an das System ist die Kom-
mandozeile.

e Der erste Schritt in Richtung Benutzerfreundlichkeit sind Menus. Man kann
allerdings nicht alle Kommandos in Menus verpacken.

e Das X Window System ist ein netzfihiges, grafisches Fenstersystem. Die
Netzfiahigkeit unterscheidet es von anderen grafischen Fenstersystemen.

e Der X-Server sorgt fiir die Ein- und Ausgabe auf einem grafischen Terminal.
e X-Clients sind die Anwendungsprogramme.

e X-Server und X-Clients konnen auf verschiedenen Computern im Netz lau-
fen, aber auch auf demselben.

e Das Aussehen und Verhalten (look and feel) wird von dem X Window Ma-
nager bestimmt. Es gibt verschiedene X Window Manager.

e Die Motif-Oberfliche (Motif-Bibliothek, Motif Window Manager) hat sich
in der UNIX-Welt durchgesetzt.

e Auf der Motif-Oberfliche baut das Common Desktop Environment (CDE)
auf, das zusétzliche Arbeitshilfen bietet.

2.6 Benutzeroberflachen 97

e Fiir Programmierer stehen umfangreiche X- und Motif-Bibliotheken zur
Verfiigung.

2.6.4 Ubung Oberflichen, X Window System

Die folgende Ubung setzt in ihrem letzten Teil voraus, daB Sie an einem X-
Window-fdhigen Terminal arbeiten, ein an einen seriellen Multiplexer angeschlos-
senes Terminal reicht nicht.

Melden Sie sich unter Threm Benutzernamen an. Der Verlauf der Sitzung hingt
davon ab, welche Moglichkeiten Thr UNIX-System bietet. Wir beginnen mit der
Kommandozeilen-Eingabe:

who 7
help who
who -x
who -a

primes 0 100
factor 5040

Programme mit Meniis sind nicht standardméfig in UNIX vorhanden. Wir geben
daher das Shellscript menu ein und verdndern es. Insbesondere ersetzen wir die
Ausgabe der gewahlten Ziffer durch den Aufruf eines Kommandos.

Um mit Fenstern und der curses(3)-Bibliothek arbeiten zu kénnen, miissen
wir in C programmieren. Hierzu 148t sich das Beispiel aus Kap. 7?7 Programmieren
in C/C++ heranziehen.

Das Arbeiten mit der Benutzeroberfliche OSF/Motif setzt voraus, dafl diese
eingerichtet ist. Auf vernetzten UNIX-Workstations ist das oft der Fall. In der Re-
gel startet Motif mit einer Terminalemulation, beispielsweise xterm oder hpterm.
Geben Sie in diesem Fenster zunéchst einige harmlose UNIX-Kommandos ein.

Verschieben Sie das Fenster, indem Sie mit der Maus den Cursor in die Ti-
telleiste bringen und dann bei gedriickter linker Maustaste das Fenster bewegen
(ziehen).

Verdndern Sie die Gréfie des Fensters, indem Sie mit der Maus den Cursor auf
einen Rand bringen und dann bei gedriickter linker Maustaste den Rand bewegen
(ziehen).

Reduzieren Sie das Fenster, indem Sie mit der Maus den Cursor auf den
Minimize-Button (rechts oben) bringen und dann die linke Maustaste driicken.
Verschieben Sie das Icon. Stellen Sie das Fenster wieder her, indem Sie den Cur-
sor auf das Icon bringen und zweimal die linke Maustaste driicken.

Bringen Sie das Fenster auf die maximale Grofle, indem Sie den Cursor auf
den Menii-Button (links oben) bringen und dann mit gedriickter linker Maustaste
maximize wéhlen. Stellen Sie die urspriingliche Gréfle durch erneute Anwahl von
maximize (Menii oder Button) wieder her.

Erzeugen Sie ein zweites Fenster, indem Sie den Cursor aus dem ersten Fenster
herausbewegen und mit dem linken Mausknopf eine Terminalemulation wéhlen.

98 2 UNIX

Bewegen Sie den Cursor abwechselnd in das erste und zweite Fenster, klicken Sie
links und achten Sie auf die Farbe der Rahmen.
Tippen Sie im aktiven Fenster

xterm -bg red -fg green -fn cr.12x20 &

ein. Nach Erscheinen eines Rahmens nochmals RETURN driicken. Die Optionen
bedeuten background, foreground und font. Warum muf} das et-Zeichen eingege-
ben werden? Tippen Sie

xclock &

ein und veschieben Sie die Uhr in eine Ecke.

Schliefen Sie ein Fenster, indem Sie den Cursor auf den Menii-Button bringen
und mit gedriickter linker Maustaste close wihlen. Verlassen Sie Motif mit der
Kombination control-shift-reset (System-Manager fragen) und beenden Sie
Ihre Sitzung mittels exit aus der Kommandozeile, wie gewohnt.

2.7 Writer’s Workbench

Unter der Werkbank des Schreibers werden Werkzeuge zur Textverarbeitung zu-
sammengefait. UNIX bietet eine ganze Reihe davon. Man darf jedoch nicht ver-
gessen, dal UNIX kein Textsystem, sondern ein Betriebssystem ist.

2.7.1 Zeichensitze oder die Umlaut-Frage

Wenn es um Texte geht, mufl man sich leider zuerst mit dem Problem der Zei-
chensétze (character set, data code, code de caractere) herumschlagen. Das hat
nichts mit UNIX zu tun, sondern tritt auflerhalb des englischen Sprachraumes
iiberall auf.

Der Computer kennt nur Bits. Die Bedeutung erhalten die Bits durch die
Programme. Ob eine Bitfolge eine Zahl, ein Wort oder einen Schnorkel darstellt,
entscheidet die Software.

Zu Zeiten, als Bits noch knapp waren, haben die Yankees!'” eine Tabelle aufge-
stellt, in der die ihnen bekannten Buchstaben, Ziffern und Satzzeichen zuziiglich
einiger Steueranweisungen wie Zeilen- und Seitenvorschub mit sieben Bits dar-
gestellt werden. Das war Sparsamkeit am falschen Platz. Mit sieben Bits unter-
scheide ich 27 = 128 Zeichen, numeriert von 0 bis 127. Diese Tabelle ist unter
dem Namen American Standard Code for Information Interchange ASCII weit
verbreitet. Genau heif}t sie 7-bit-US-ASCII. Jeder Computer kennt sie.

Die ersten 32 Zeichen der ASCII-Tabelle dienen der Steuerung der Ausgabe-
gerite, es sind unsichtbare Zeichen. Auf der Tastatur werden sie entweder in Form
ihrer Nummer oder mit gleichzeitig gedriickter control-Taste erzeugt. Die Ziffern
0 bis 9 tragen die Nummern 48 bis 57, die Gro3buchstaben die Nummern 65 bis

"Yankee im weiteren, auBerhalb der USA gebriuchlichen Sinne als Einwohner der
USA. Die Yankees im weiteren Sinne verstehen unter Yankee nur die Bewohner des
Nordostens der USA.

2.7 Writer’s Workbench 99

90. Die Kleinbuchstaben haben um 32 héhere Nummern als die zugehorigen Grof3-
buchstaben. Der Rest sind Satzzeichen. Im Anhang ist die ASCII-Tabelle samt
einigen weiteren Zeichensétzen wiedergegeben. Der Zeichensatz legt also fest, wel-
che Zeichen verfiigbar sind und welche Nummern ihnen zugeordnet werden. Es
besagt nichts iiber das Aussehen der Zeichen.

Textausgabegerite wie Bildschirme oder Drucker erhalten vom Computer die
ASCII-Nummer eines Zeichens und setzen diese mithilfe einer fest eingebauten
Software in das entsprechende Zeichen um. So wird beispielsweise die ASCII-
Nr. 100 in den Buchstaben d umgesetzt. Die Ausgabe der Zahl 100 erfordert das
Abschicken der ASCII-Nr. 49, 48, 48.

Die US-ASCII-Tabelle enthilt nicht die deutschen Umlaute und andere eu-
ropaische Absonderlichkeiten. Es gibt einen Ausweg aus dieser Klemme, leider
sogar mehrere. Bleibt man bei den sieben Bits, mul man einige nicht unbe-
dingt benotigte US-ASCII-Zeichen durch nationale Sonderzeichen ersetzen. Fiir
deutsche Zeichen ist eine Ersetzung gem#fl Anhang B.2 German ASCII iiblich.
Fiir Frankreich oder Schweden lautet die Ersetzung anders. Diese Ersatztabel-
le liegt nicht im Computer, sondern im Ausgabegerit, das die Umsetzung der
ASCII-Nummern in Zeichen vornimmt. Deshalb kann ein entsprechend ausge-
statteter Bildschirm oder Drucker dasselbe Textfile einmal mit amerikanischen
ASCII-Zeichen ausgeben, ein andermal mit deutschen ASCII-Zeichen.

Spendiert man ein Bit mehr, so lassen sich 28 = 256 Zeichen darstellen. Das ist
der bessere Weg. Hewlett-Packard hat die nationalen Sonderzeichen den Nummern
128 bis 255 zugeordnet und so den Zeichensatz ROMANS geschaffen, dessen
untere Hilfte mit dem ASCII-Zeichensatz identisch ist. Das hat den Vorzug, dafl
reine ASCII-Texte genau so verarbeitet werden wie ROMANS-Texte. Leider hat
sich dieser Zeichensatz nicht allgemein durchgesetzt.

Die Firma IBM hat schon friihzeitig bei grofleren Anlagen den Eztended Binary
Coded Decimal Interchange Code EBCDIC mit acht Bits verwendet, der aber
nirgends mit ASCII {ibereinstimmt. Hétte sich dieser Zeichensatz statt ASCII
durchgesetzt, wire uns Europédern einige Miihe erspart geblieben.

Die internationale Normen-Organisation ISO hat mehrere 8-bit-Zeichensitze
festgelegt, von denen einer unter dem Namen Latin-1 (ISO 8859-1) Verbreitung
gewonnen hat, vor allem in weltweiten Netzdiensten. Seine untere Hilfte ist wieder
mit US-ASCII identisch. Polnische und tschechische Sonderzeichen sind in Latin-
2 enthalten.

Bei ihren PCs schliefllich wollte IBM aufler nationalen Sonderzeichen auch
einige Halbgrafikzeichen wie Mondgesichter, Herzchen, Noten und Linien unter-
bringen und schuf einen weiteren Zeichensatz IBM-PC, der in seinem Kern mit
ASCII iibereinstimmt, ansonsten aber weder mit EBCDIC noch mit ROMANS.

Auch wenn die Ausgabegerite 8-bit-Zeichensétze kennen, ist noch nicht si-
cher, dafl man die Sonderzeichen benutzen kann. Die Programme miissen ebenfalls
mitspielen. Der hergebrachte vi(1)-Editor, die curses(3)-Bibliothek fiir Bild-
schirmfunktionen und einige Mail-Programme verarbeiten nur 7-bit-Zeichen. Erst
neuere Versionen von UNIX mit Native Language Support unterstiitzen 8-bit-
Zeichensitze. Textverarbeitende Software, die 8-bit-Zeichensétze vertrigt, wird
als 8-bit-clean bezeichnet. Bei Textiibertragungen zwischen Computern ist Mif}-

100 2 UNIX

trauen angebracht. Die Konsequenz heifit in kritischen Fillen Beschrankung auf
7-bit-US-ASCII.

Was macht man, wenn es zu viele Standards gibt? Man erfindet einen neuen,
der eine Obermenge der bisherigen ist. So wird zur Zeit ein internationaler Zei-
chensatz entwickelt, der mit 16 Bits alle abendldndischen Zeichen beriicksichtigt
Dieser Intercode ist aber noch nicht weit verbreitet. Und da sich immer Leute
finden, die etwas besser machen, ist noch ein weltweiter Unicode mit dhnlicher
Zielsetzung in der Mache.

Zur Umsetzung von Zeichen gibt es mehrere UNIX-Werkzeuge wie tr(1) und
sed(1). Ein C-Programm fiir diesen Zweck ist andererseits einfach:

/* Programm zum Umwandeln von bestimmten Zeichen eines
Zeichensatzes in Zeichen eines anderen Zeichensatzes,
hier ROMAN8 nach LaTeX. Als Filter (Pipe) einfuegen.
Die Zeichen werden durch ihre dezimale Nr. dargestellt. */

#include <stdio.h>

int main()
{

int c;

while ((c = getchar()) != EOF)
switch (c) {

case 189:
putchar(92) ;
putchar(83);
break;

case 204:
putchar (34) ;
putchar(97) ;
break;

case 219:
putchar (34) ;
putchar(85) ;
break;

case 222:
putchar(92) ;
putchar(51);
break;

default:
putchar(c) ;

Programm 2.18 : C-Programm zur Zeichenumwandlung

Aus dem GNU-Projekt stammt ein Filter namens recode (1), dafy etwa hun-
dert Zeichensétze ineinander umrechnet:

2.7 Writer’s Workbench 101

recode —--help
recode -1
recode ascii-bs:EBCDIC-IBM textfile

Man beachte jedoch, dafl beispielsweise ein HTML-Text, der mit ASCII-
Ersatzdarstellungen fiir die Umlaute (ä fiir a-Umlaut) geschrieben ist, bei
Umwandlung nach ASCII unveréndert bleibt. Es werden Zeichensitze umge-
wandelt, mehr nicht. Auch werden LaTeX-Formatanweisungen nicht in HTML-
Formatanweisungen iibersetzt, dafiir gibt es andere Werkzeuge wie latex2html.
Das Ursprungsfile wird iiberschrieben, daher sicherheitshalber mit einer Kopie
arbeiten. Nicht jede Umsetzung ist reversibel.

Man verwechsele nicht den Zeichensatz mit der Schriftart. Der Zeichensatz be-
sagt nur, welche Zeichen verfiigbar sind, nicht wie sie aussehen. Unter einer Schrift
oder Schriftart (typeface) versteht man einen stilistisch einheitlichen Satz von
Zeichen wie Times, Century Schoolbook, Garamond, Boldoni, Baskerville, Hel-
vetica, Futura, Schwabacher, Courier, OCR (optical character recognition) und
Schreibschriften. Diese Schriften liegen in verschiedenen Schriftschnitten (treat-
ment) vor: mager, fett, kursiv, dazu in verschiedenen Gréfien oder Schriftgraden
(point size). Die Schriftweite, der Zeichenabstand (pitch), ist entweder fest wie
bei einfachen Schreibmaschinen, beispielsweise 10 oder 12 Zeichen pro Zoll, oder
von der Zeichenbreite abhéngig wie bei den Proportionalschriften. Diese sind
besser lesbar und sparen Platz, machen aber in Tabellen Miihe. Ein vollsténdiger
Satz von Buchstaben, Ziffern, Satz- und Sonderzeichen einer Schrift, eines Schnit-
tes, eines Grades und gegebenenfalls einer Schriftweite wird Font genannt. Die
in diesem Text verwendeten Fonts heilen Roman (Times), Courier, Sans Serif,
Italic, KAPITALCHEN, im Manuskript in 12 pt Grofle.

Da die Papierformate langlich sind, spielt die Orientierung (orientation) eine
Rolle. Das Hochformat wird englisch mit portrait, das Querformat mit landscape
bezeichnet'®. Ferner trigt der Zeilenabstand oder Vorschub (line spacing) we-
sentlich zur Lesbarkeit bei. Weitere Gesichtspunkte zur Schrift und zur Gestaltung
von Schriftstiicken findet man in der im Anhang angegebenen Literatur.

2.7.2 Regulidre Ausdriicke

Regulire Ausdriicke (regular expression, expression réguliere, RE) sind Zeichen-
muster, die nach bestimmten Regeln gebildet und ausgewertet werden. Eine Zei-
chenkette (String) kann darauf hin untersucht werden, ob sie mit einem gegebenen
reguliren Ausdruck iibereinstimmt oder nicht. Einige Textwerkzeuge wie die Edi-
toren, grep(1), lex(1) und awk (1) machen von reguléren Ausdriicken Gebrauch,
leider in nicht vollig iibereinstimmender Weise. Die Jokerzeichen in Filenamen und
die Metazeichen der Shells haben nichts mit reguldren Ausdriicken zu tun. Ndher-
es findet man im Referenz-Handbuch beim Editor ed(1) und in dem Buch von
ALFRED V. AHO und anderen iiber awk(1). Hier einige einfache Regeln und
Beispiele:

8Woraus man schliefit, da Englinder ein Flachland bewohnende Langschidler sind,
wahrend alpine Querkdpfe die Bezeichnungen vermutlich andersherum gewéhlt héitten.

102 2 UNIX

e Ein Zeichen mit Ausnahme der Sonderzeichen trifft genau auf sich selbst zu
(klingt so selbstversténdlich wie a = a, muf} aber gesagt sein),

e cin Backslash gefolgt von einem Sonderzeichen trifft genau auf das Sonder-
zeichen zu (der Backslash quotet das Sonderzeichen),

e Punkt, Stern, linke eckige Klammer und Backslash sind Sonderzeichen, so-
fern sie nicht in einem Paar eckiger Klammern stehen,

e der Circumflex ist ein Sonderzeichen am Beginn eines reguldren Ausdrucks
oder unmittelbar nach der linken Klammer eines Paares eckiger Klammern,

e das Dollarzeichen ist ein Sonderzeichen am Ende eines regulidren Ausdrucks,
e cin Punkt trifft auf ein beliebiges Zeichen aufler dem Zeilenwechsel zu,

e cine Zeichenmenge innerhalb eines Paares eckiger Klammern trifft auf ein
Zeichen aus dieser Menge zu,

e ist jedoch das erste Zeichen in dieser Menge der Circumflex, so trifft der
regulire Ausdruck auf ein Zeichen zu, das weder der Zeilenwechsel noch ein
Zeichen aus dieser Menge ist,

e cin Bindestrich in dieser Menge kennzeichnet einen Zeichenbereich, [0-9]
bedeutet dasselbe wie [0123456789],

e cin reguldrer Ausdruck aus einem Zeichen gefolgt von einem Stern bedeutet
ein beliebig hiufiges Vorkommen dieses Zeichens, nullmaliges Vorkommen
eingschlossen (erinnert an Jokerzeichen in Filenamen, aber dort kann der
Stern auch ohne ein anderes Zeichen davor auftreten),

e cine Verkettung reguldrer Ausdriicke trifft zu auf eine Verkettung von
Strings, auf die die einzelnen reguldren Ausdriicke zutreffen.

Die Regeln gehen noch weiter. Am besten iibt man erst einmal mit einfachen
reguldren Ausdriicken. Nehmen Sie irgendeinen Text und lassen Sie grep(1) mit
verschiedenen reguldren Ausdriicken darauf los:

grep ’aber’ textfile

grep ’ab.a’ textfile

grep ’bb.[aeiou]’ textfile

grep ’\\[a-z][a-z]*{..*} > textfile

Die Single Quotes um die Ausdriicke sind eine Vorsichtsmafinahme, die verhin-
dern soll, daf sich die Shell die Ausdriicke zu Gemiite fiihrt. grep(1) gibt die
Zeilen aus, in denen sich wenigstens ein String befindet, auf den der regulére
Ausdruck paflt. Im ersten Beispiel sind das alle Zeilen, die den String aber ent-
halten wie aber, labern, Schabernack, aberkennen, im zweiten trifft unter
anderem abwarten zu, im dritten Abbruch, und das vierte Beispiel liefert die Zei-
len mit LaTeX-Kommandos wie \index{}, \begin{}, \end{} zuriick. Der vierte
Ausdruck ist folgendermaflen zu verstehen:

e cin Backslash,

e genau ein Kleinbuchstabe,

2.7 Writer’s Workbench 103

e cine beliebige Anzahl von Kleinbuchstaben,

eine linke geschweifte Klammer,

genau ein beliebiges Zeichen,

eine beliebige Anzahl beliebiger Zeichen,
e cine rechte geschweifte Klammer.

Wir wollen nun einen reguléren Ausdruck zusammenstellen, der auf alle giiltigen
Internet-Email-Anschriften zutrifft. Dazu schauen wir uns einige Anschriften an:

wualex1@mvmhp64.ciw.uni-karlsruhe.de
wulf.alex@ciw.uni-karlsruhe.de
1g030@rz.uni-karlsruhe.de
012345678-00010@t-online.de

Dr_Rolf .Muus@DEGUSSA.de

Links steht immer ein Benutzername, dessen Form vom jeweiligen Betriebssystem
bestimmt wird, dann folgen das @-Zeichen (Klammeraffe) und ein Maschinen-
oder Doménenname, dessen Teile durch Punkte voneinander getrennt sind. Im
einzelnen:

e Anfangs ein Zeichen aus der Menge der Ziffern oder kleinen oder groflen
Buchstaben,

e dann eine beliebige Anzahl einschliefflich null von Zeichen aus der Menge
der Ziffern, der kleinen oder groflen Buchstaben und der Zeichen _-.,

e genau ein Klammeraffe als Trennzeichen,

e im Maschinen- oder Dominennamen mindestens eine Ziffer oder ein Buch-
stabe,

e dann eine beliebige Anzahl von Ziffern, Buchstaben oder Strichen,
e mindestens ein Punkt zur Trennung von Doméne und Top-Level-Doméne,

e nochmals mindestens ein Buchstabe zur Kennzeichnung der Top-Level-
Doméne.

Daraus ergibt sich folgender regulirer Ausdruck:
~[0-9a-zA-Z] [0-9a-zA-Z_-.]1*0@[0-9a-zA-Z] [0-9a-zA-Z_-.1*\.[a-zA-Z] [a-zA-Z]*

Das sieht kompliziert aus, ist aber trotzdem der einfachste Weg zur Beschreibung
solcher Gebilde. Man denke daran, dafi die UNIX-Kommandos leicht unterschied-
liche Vorstellungen von reguldren Ausdriicken haben. Auflerdem ist obige Form
einer Email-Anschrift nicht gegen die RFCs abgepriift und daher vermutlich zu
eng. Eine Anwendung fiir den reguldren Ausdruck kénnte ein Programm sein, das
Email-Anschriften verarbeitet und sicherstellen will, daf§ die ihm iibergebenen
Strings wenigstens ihrer Form nach giiltig sind. Robuste Programme iiberpriifen
Eingaben oder Argumente, ehe sie sich weiter damit beschéftigen.

104 2 UNIX

2.7.3 Editoren (ed, ex, vi, elvis, vim)

Ein Editor ist ein Programm zum Eingeben und Andern von Texten, nach dem
Kommando-Interpreter das am hiufigsten benutzte Programm eines Systems. Alle
Editoren stehen vor der Aufgabe, dafl mittels derselben und einzigen Tastatur,
gegebenenfalls noch mit Maus, sowohl der Text wie auch die Editierkommandos
eingegeben werden miissen. Auf den meisten Computer-Tastaturen finden sich
zwar einige Editiertasten (insert character, delete character usw.), diese reichen
aber bei weitem nicht aus. Zudem sind sie von Tastatur zu Tastatur verschieden.
Die beiden wichtigsten Editoren unter UNIX — der vi(1) und der emacs(1) —
l16sen die Aufgabe in unterschiedlicher Weise.

In Editoren kommt man leicht hinein, aber nur schwer wieder hinaus, wenn
man nicht das Zauberwort kennt. Unzédhlige Benutzer wiren schon in den Laby-
rinthen der Editoren verschmachtet, wenn ihnen nicht eine kundige Seele geholfen
hétte. Deshalb hier vorab die Zauberworte:

e Falls Thr Terminal auf nichts mehr reagiert, ist entweder auf der Riickseite ein
Stecker locker, oder Sie haben es unwissentlich umkonfiguriert. Dann miissen
Sie eine Reset-Taste driicken, bei unseren HP-Terminals die Kombination
control-shift-reset.

e Aus dem vi(1)-Editor kommen Sie immer hinaus, indem Sie nacheinander
die fiinf Tasten escape : q ! return driicken.

e Den emacs (1)-Editor verlait man mittels Driicken der beiden Tastenkom-
binationen control-x control-c nacheinander.

e Den joe(1)-Editor beendet man mit der Tastenkombination control-k und
dann x.

Falls das alles nicht wirkt, ist es Zeit, um Hilfe zu rufen.
Das einfachste Kommando zur Eingabe von Text ist cat(1). Mittels

cat > textfile

schreibt man von der Tastatur in das File textfile. Die Eingabe wird mit dem
EOF-Zeichen control-d abgeschlossen. Die Féhigkeiten von cat(1) sind aller-
dings so bescheiden, daf} es nicht die Bezeichnung Editor verdient.

Einfache Editoren bearbeiten nur eine Zeile eines Textes und werden zeilenwei-
se weitergeschaltet. Auf dem Bildschirm sehen Sie zwar dank des Bildschirmspei-
chers mehrere Zeilen, aber nur in einer — der jeweils aktuellen — konnen Sie editie-
ren. Diese Editoren stammen aus der Zeit, als man noch Fernschreibmaschinen als
Terminals verwendete. Daher beschrinken sie den Dialog auf das Allernétigste.
Zeilen-Editoren wie MS-DOS edlin oder UNIX ed (1) werden heute nur noch
fiir kurze Texte benutzt. Der ed (1) ist robust und arbeitet auch unter ungiinstigen
Verhéltnissen (wihrend des Bootvorgangs, langsame Telefonleitungen, unbekann-
te Terminals) einwandfrei. Systemmanager brauchen ihn gelegentlich bei Konfi-
gurationsproblemen, wenn keine Terminalbeschreibung zur Verfiigung steht. Im
Handbuch findet man bei ed(1) die Syntax reguldrer Ausdriicke.

Das Kommando ex (1) ruft einen erweiterten Zeileneditor auf und dient nicht
etwa zum Abmelden. Wird praktisch nicht benutzt. Der nachfolgend beschriebene

2.7 Writer’s Workbench 105

Editor vi(1) greift zwar oft auf ex(1)-Kommandos zuriick, aber das braucht man
nicht zu wissen. Da ex auf einigen anderen Systemen das Kommando zum Beenden
der Sitzung ist und es immer wieder vorkommt, dafl Benutzer unserer UNIX-
Anlage dieses Kommando mit der letztgenannten Absicht eintippen, haben wir
den Editor in exed umbenannt und unter ex ein hilfreiches Shellscript eingerichtet.

Auf dem ex (1) baut der verbreitete UNIX-Bildschirm-Editor vi (1) auf. Ein
Bildschirm-Editor stellt einen ganzen Bildschirm oder mehr des Textes gleich-
zeitig zur Verfiigung, so dafl man mit dem Cursor im Text herumfahren kann. Da-
zu mufl der vi(1) den Terminaltyp kennen, den er in der Umgebungs-Variablen
TERM findet. Die zugehorige Terminal-Beschreibung sucht er im Verzeichnis
/usr/lib/terminfo'®. Falls diese fehlt oder — was noch unangenehmer ist — Feh-
ler enthélt, benimmt sich der vi (1) eigenartig. Ndheres zur Terminalbeschreibung
unter terminfo(4) sowie im Abschnitt 2.12.4.1 Terminals.

Da der vi (1) mit den unterschiedlichsten Tastaturen klar kommen muf, setzt
er nur eine minimale Anzahl von Tasten voraus, im wesentlichen die Schreib-
maschinentasten und Escape. Was sich sonst noch an Tasten oben und rechts
befindet, ist nicht notwendig. Dies fiihrt zu einer Doppelbelegung jeder Taste. Im
Schreibmodus des vi(1) veranlafit ein Tastendruck das Schreiben des jewei-
ligen Zeichens auf den Bildschirm und in den Speicher. Im Kommandomodus
bedeutet ein Tastendruck ein bestimmtes Kommando an den Editor. Beispiels-
weise 16scht das kleine x das Zeichen, auf dem sich gerade der Cursor befindet.

Beim Start ist der vi im Kommandomodus, auflerdem schaltet die Escape-
Taste immer in diesen Modus, auch bei mehrmaligem Driicken. In den Schreib-
modus gelangt man mit verschiedenen Kommandos:

a (append) schreibt anschliefend an den Cursor,

i (insert) schreibt vor den Cursor,

o (open) 6ffnet eine neue Zeile unterhalb der aktuellen,

R (replace) ersetzt den Text ab Cursorposition.

Die Kommandos werden auf dem Bildschirm nicht wiederholt, sondern machen
sich nur durch ihre Wirkung bemerkbar. Die mit einem Doppelpunkt beginnenden
Kommandos sind eigentlich ex (1)-Kommandos und werden in der untersten Bild-
schirmzeile angezeigt. Weitere vi (1)-Kommandos im Anhang.

Wie bekommt man mit dem vi(1) das Escape-Zeichen und gegebenenfalls
andere Sonderzeichen in Text? Man stellt control-v voran. Mit dem Komman-
do u fiir undo macht man das jlingste Kommando, das den Text verdndert hat,
riickgéngig.

Der vi (1) kann Zeichenfolgen in einem Text suchen und automatisch ersetzen.
Die Zeichenfolgen sind regulére Ausdriicke. Um im Text vorwirts zu suchen,
gibt man das Kommando /ausdruck ein, um riickwérts zu suchen, 7ausdruck. Der
Cursor springt auf das néichste Vorkommen von ausdruck. Mittels n wiederholt
man die Suche. Wollen wir das Wort kompilieren durch compilieren ersetzen, rufen
wir den vi mit dem Namen unseres Textfiles auf und geben folgendes Kommando
ein:

Yehemals /etc/termcap

106 2 UNIX

:1,$ s/kompil/compil/g

Im einzelnen heifit das: von Zeile 1 bis Textende ($) substituiere die Zeichenfolge
kompil durch compil, und zwar nicht nur beim ersten Auftreten in der Zeile,
sondern global in der gesamten Zeile, das heifft hier also im gesamten Text. Die
Zeichenfolgen brauchen nicht gleich lang zu sein. Grof- und Kleinbuchstaben sind
wie immer verschiedene Zeichen, deshalb wird man die Ersetzung auch noch fiir
grofle Anfangsbuchstaben durchfiihren. Der vorliegende Text ist auf mehrere Files
verteilt. Soll eine Ersetzung in allen Files vorgenommen werden, schreibt man ein
Shellscript korr und ruft es auf:

korr ’s/kompil/compil/g’ *.tex

Die korrigierten Texte findet man in den Files *.tex.k wieder, die urspriinglichen
Texte bleiben vorsichtshalber erhalten.

Shellscript fuer fileuebergreifende Text-Ersetzungen
print Start /usr/local/bin/korr

sedcom="¢1"
shift
files="$x"

for file in $files

do

sed -e "$sedcom" $file > "$file" .k
done

print Ende korr

Programm 2.19 : Shellscript zur Textersetzung in mehreren Files

Beim Aufruf des vi(1) zusammen mit dem Namen eines existierenden Text-

files:
vi textfile

legt er eine Kopie des Files an und arbeitet nur mit der Kopie. Erst das ab-
schlieBende write-Kommando — meist in der Form :wq fiir write und quit —
schreibt die Kopie zuriick auf den Massenspeicher. Hat man Unsinn gemacht, so
quittiert man den Editor ohne zuriickzuschreiben, und das Original ist nicht ver-
dorben. Will man den vi(1) verlassen ohne zuriickzuschreiben, warnt er. Greifen
zwei Benutzer gleichzeitig schreibend auf dasselbe Textfile zu, so kann zunéchst
jeder seine Kopie editieren. Wer als letzter zuriickschreibt, gewinnt.

In dem File $HOME/ . exrc legt man individuelle Tastatur-Anpassungen nie-
der. Auch in einem Unterverzeichnis darf man noch einmal ein File .exrc unter-
bringen, dies gilt dann fiir vi (1)-Aufrufe aus dem Unterverzeichnis. Beispielsweise
setzen wir fiir die Unterverzeichnisse, die unsere C-Quellen enthalten, die Tabu-
latorweite auf 4 statt 8 Stellen, um die Einriickungen nicht zu weit nach rechts
wandern zu lassen. Das .exrc-File fiir diesen Zweck enthélt folgende Zeilen:

2.7 Writer’s Workbench 107

:set tabstop=4
:map Q :wq

Die zweite Zeile bildet das Kommando Q (ein Makro) auf das vi(1)-Kommando
:wq ab. Dabei sollte der Macroname kein bereits bestehendes vi(1)-Kommando
sein. Die Ersetzung darf 100 Zeichen lang sein. Auch Funktionstasten lassen sich
abbilden. Auf diese Weise kann man sich Umlaute oder hiufig gebrauchte Kom-
mandos auf einzelne Tasten legen.

Vom vi(1) gibt es zwei Sonderausfithrungen. Der Aufruf view(1) startet den
vi(1) im Lesemodus; man kann alles machen wie gewohnt, nur nicht zuriick-
schreiben. Das ist ganz niitzlich zum Lesen und Suchen in Texten. Die Fassung
vedit (1) ist fiir Anfinger gedacht und {iiberfliissig, da man dieselbe Wirkung
durch das Setzen einiger Parameter erreicht und die anfinglichen Gewdhnungs-
probleme bleiben.

Aus dem GNU-Projekt stammt der vi(1)-&hnliche Editor elvis(1). Er liegt
wie alle GNU-Software im Quellcode vor und kann daher auf verschiedene UNIXe
und auch MS-DOS iibertragen werden. Bei MINIX und LINUX gehort er zum
Lieferumfang. Im Netz findet sich die vi (1)-Erweiterung vim(1), auch fiir vi(1)-
Liebhaber, die unter MS-DOS arbeiten.

Das soll gentigen. Den vi(1) lernt man nicht an einem Tag. Die Arbeitsweise
des vi(1) ist im Vergleich zu manchen Textsystemen unbequem, aber man mufl
die Umsténde beriicksichtigen, unter denen er arbeitet. Von seinen Leistungen her
erfiillt er mehr Wiinsche, als der Normalbenutzer hat. Man gew6hnt sich an jeden
Editor, nur nicht jede Woche an einen anderen.

2.7.4 Universalgenie (emacs)

Neben dem vi(1) findet man auf UNIX-Systemen oft den Editor emacs (1), der
aus dem GNU-Projekt stammt und daher im Quellcode verfiigbar ist. Es gibt auch
Portierungen auf andere Systeme einschliefilich IBM-PC unter MS-DOS sowie die
Variante microemacs. Der grundsitzliche Unterschied zum vi(1) ist, dafl der
emacs (1) nur einen Modus kennt und die Editorkommandos durch besondere
Tastenkombinationen mit den control- und alt-Tasten vom Text unterscheidet.
Im iibrigen ist er mindestens so méchtig (= gewohnungsbediirftig) wie der vi(1).
Chacun a son gotit.

2.7.4.1 Einrichtung

Falls der Emacs nicht — wie bei den LINUX-Distributionen — fertig eingerichtet
vorliegt, mufl man sich selbst darum bemiihen. Man holt ihn sich per Anonymous
FTP oder mittels eines WWW-Browsers von:

e ftp.informatik.rwth-aachen.de/pub/gnu/
e ftp.informatik.tu-muenchen.de/pub/comp/os/unix/gnu/

oder anderen Servern. Das File heifit beisspielsweise emacs-20.2.tar.gz, ist also
ein mit gzip gepacktes tar-Archiv. Man legt es in ein temporéres Verzeichnis,
entpackt es und droselt es in seine Teile auf:

108 2 UNIX

gunzip emacs-20.2.tar.gz
tar -xf emacs-20.2.tar

Danach hat man neben dem Archiv ein Verzeichnis emacs-20.2. Man wech-
selt hinein und liest die Files README und INSTALL, das File PROBLEMS heben
wir uns fiir spiater auf. Im File INSTALL wird angeraten, sich aus dem File
./etc/MACHINES die zutreffende Systembezeichnung herauszusuchen, in unserem
Fall hppal.1-hp-hpux10. Ferner soll man sich noch das File 1leim-20.2.tar.gz
zur Verwendung internationaler Zeichensitze (Latin-1 usw.) besorgen und ne-
ben dem Emacs-File entpacken und aufdroseln; seine Files gehen in das Emacs-
Verzeichnis. Dann ruft man ein Shellscript auf, das ein Makefile erzeugt:

./configure hppal.1l-hp-hpux10

Es folgen make(1), das hoffentlich ohne Fehlermeldung durchlauft, und
make install (als Benutzer root wegen der Schreibrechte in /usr/local/). Als
Fehler kommen in erster Linie fehlende Bibliotheken in Betracht, deren Beschaf-
fung in Arbeit ausarten kann. Mittels make clean und make distclean lassen
sich die nicht mehr benétigten Files 16schen. Sobald alles funktioniert, sollte man
auch das Verzeichnis emacs-20.2 16schen, man hat ja noch das Archiv. Der fertige
Editor — das File /usr/local/bin/emacs — sollte die Zugriffsrechte 755 haben.
Mittels man emacs sollte die Referenz auf den Schirm kommen.

2.7.4.2 Benutzung

Der Aufruf emacs mytext startet den Editor zur Erzeugung oder Bearbeitung des
Textfiles mytext. Mittels control-h und t bekommt man ein Tutorial auf den
Schirm, das vierzehn Seiten DIN A4 umfafit. Zum Einarbeiten ist das Tutorial
besser als die man-Seiten. Eine GNU Emacs Reference Card — sechs Seiten DIN
A4 — liegt dem Editor-Archiv bei. Mit control-h und i gibt es eine Information
von elf Seiten Umfang, von der University of Texas zieht man sich eine GNU Emacs
Pocket Reference List von vierzehn Seiten. Als ultimative Bettlektiire erhélt man
im guten Buchhandel schliellich ein Buch von 560 Seiten.

Eine Reihe von Programmen wie Compiler, Mailer, Informationsdienste arbei-
tet mit dem emacs (1) zusammen, so dafl man diesen nicht zu verlassen braucht,
wenn man etwas anderes als Textverarbeitung machen mdochte. Unter dem Na-
men emacspeak gibt es eine Sprachausgabe fiir sehgeschidigte Benutzer. Das geht
in Richtung integrierte Umgebungen. Eigentlich ist der emacs(1) gar kein Edi-
tor, sondern ein LISP-Interpreter mit einer Sammlung von Macros. Es spricht
nichts dagegen, diese Sammlung zu erweitern, so dafl man schliefflich alles mit
dem emacs (1) macht. Den vi(1) emuliert er natiirlich auch.

Zu MINIX gehort der emacs (1)-dhnliche Editor elle(1), neben dem vi(1)-
Clone elvis(1). Zu LINUX gibt es den originalen emacs (1) neben dem vi(1).

2.7.5 Joe’s Own Editor (joe)

Der joe(1) von JOSEPH. H. ALLEN soll als Beispiel fiir eine Vielzahl von Editoren
stehen, die im Netz herumschwimmen und entweder mehr kénnen oder einfacher

2.7 Writer’s Workbench 109

zu benutzen sind als die Standard-Editoren. Er bringt eine eigene Verhaltensweise
in normaler und beschrinkter Fassung mit, kann aber auch WordStar, pico(1)
oder emacs (1) emulieren (nachahmen), je nach Aufruf und Konfiguration. Diese
1Bt sich in einem File $HOME/. joerc den eigenen Wiinschen anpassen. Seine
Verwendung unterliegt der GNU General Public License, das heif}t sie ist praktisch
kostenfrei.

Der joe(1) kennt keine Modi. Nach dem Aufruf legt man gleich mit der Text-
eingabe los. Editorkommandos werden durch control-Sequenzen gekennzeichnet.
Beispielsweise erzeugt die Folge control-k und h ein Hilfefenster am oberen Bild-
schirmrand. Nochmalige Eingabe der Sequenz 16scht das Fenster. Am Ende verl&fit
man den Editor mittels control-c ohne Zuriickschreiben oder mit der Sequenz
control-k und x unter Speichern des Textes. Weitere Kommandos im Hilfefenster
oder mit man joe. In LINUX-Distributionen ist joe(1) meist enthalten, wie so
manches andere.

2.7.6 Stream-Editor (sed)

Der Stream-Editor sed (1) bearbeitet ein Textfile nach Regeln, die man ihm als
Option oder in einem getrennten File (sed-Script) mitgibt. Er ist im Gegensatz
zu den bisher genannten Editoren nicht interaktiv, er fiihrt keinen Dialog.

Die einfachste Aufgabe fiir den sed (1) wire der Ersatz eines bestimmten Zei-
chens im Text durch ein anderes (dafiir gibt es allerdings ein besseres, weil ein-
facheres Werkzeug tr(1)). Der sed(1) bewiiltigt ziemlich komplexe Aufgaben,
daher ist seine Syntax etwas umfangreich. Sie baut auf der Syntax des Zeilenedi-
tors ed (1) auf. Der Aufruf

sed ’Kommandos’ filename

veranlafit den sed(1), das File filename einzulesen und geméfl den Kommandos
bearbeitet nach stdout auszugeben. Der Aufruf

sed ’1d’ filename

16scht die erste Zeile im File filename und schreibt das Ergebnis nach stdout.
Die Quotes um das sed (1)-Kommando verhindern, daf§ die Shell sich das fiir den
sed (1) bestimmte Kommando ansieht und moglicherweise Metazeichen interpre-
tiert. Hier wéren sie nicht notig und stehen einfach aus Gewohnheit. Jokerzeichen
in filename dagegen werden von der Shell zu Recht interpretiert, so dafl der
sed (1) von der Shell eine Liste giiltiger Namen erhilt.

Folgender Aufruf ersetzt alle Grobuchstaben durch die entsprechenden Klein-
buchstaben:

sed ’s/[A-Z]1/[a-z]/g’ filename

Im Kommando steht s fiir substitute. Dann folgt ein regulédrer Ausdruck zur Kenn-
zeichnung dessen, was ersetzt werden soll. An dritter Stelle ist der Ersatz (repla-
cement) aufgefiihrt und schliefllich ein Flag, das hier besagt, den Ersatz global
(iiberall, nicht nur beim ersten Auftreten des reguldren Ausdrucks in der Zeile)
auszufiihren.

110 2 UNIX

Merke: Der vi(1) ist ein interaktiver Editor, der Tastatureingaben erfordert
und nicht Bestandteil einer Pipe sein oder im Hintergrund laufen kann. Der sed (1)
ist ein Filter, das keine Tastatureingaben verlangt, Glied einer Pipe oder eines
Shellscripts sein und unbeaufsichtigt laufen kann.

2.7.7 Listenbearbeitung (awk)

Das Werkzeug awk(1) ist nach seinen Urhebern ALFRED V. AHO, PETER J.
WEINBERGER und BRIAN W. KERNIGHAN benannt und firmiert als program-
mierbares Filter oder Listengenerator. Er 1463t sich auch als eine Programmier-
sprache fiir einen bestimmten, engen Zweck auffassen. Der awk (1) bearbeitet ein
Textfile zeilenweise, wobei er jede Zeile — auch Satz genannt — in Felder zerlegt.
Eine typische Aufgabe ist die Bearbeitung von Listen. Hier ist er angenehmer als
der sed (1), allerdings auch langsamer. Fiir die Verwaltung eines kleinen Vereins
ist er recht, fiir das Telefonbuch von Berlin nicht.

In einfachen Fillen werden dem awk (1) beim Aufruf die Befehle zusammen mit
den Namen der zu bearbeitenden Files mitgegeben, die Befehle in Hochkommas,
um sie vor der Shell zu schiitzen:

awk ’befehle’ files

Ein awk (1)-Befehl besteht aus den Teilen Muster und Aktion. Jede Eingabe-
zeile, auf die das Muster zutrifft, wird entsprechend der Aktion behandelt. Die
Ausgabe geht auf stdout. Ein Beispiel:

awk ’{if (NR < 8) print $0}’ myfile

Das File myfile wird Zeile fiir Zeile gelesen. Die vorgegebene awk (1)-Variable NR
ist die Zeilennummer, beginnend mit 1. $0 ist die ganze jeweilige Zeile. Falls die
Zeilennummer kleiner als 8 ist, wird die Zeile nach stdout geschrieben. Es werden
also die ersten 7 Zeilen des Files ausgegeben. Nun wollen wir das letzte Feld der
letzten Zeile ausgeben:

awk ’END {print $NF}’ myfile

Das Muster END trifft zu, wenn die letzte Zeile verarbeitet ist. Ublicherweise betrifft
die zugehorige Aktion irgendwelche Abschluflarbeiten. Die Variable NF enthélt die
Anzahl der Felder der Zeile, die Variable $NF ist also das letzte Feld. Nun wird es
etwas anspruchsvoller:

awk ’$1 != prev { print; prev = $1 }’ wortliste

Das File wortliste enthalte in alphabetischer Folge Worter und gegebenenfalls
weitere Bemerkungen zu den Wortern, pro Wort eine Zeile. Der awk (1) liest das
File zeilenweise und spaltet jede Zeile in durch Spaces oder Tabs getrennte Felder
auf. Die Variable $1 enthilt das erste Feld, also hier das Wort zu Zeilenbeginn.
Falls dieses Wort von dem Wort der vorangegangen Zeile abweicht (Variable prev),
wird die ganze Zeile ausgegeben und das augenblickliche Wort in die Variable prev
gestellt. Zeilen, die im ersten Feld {ibereinstimmen, werden nur einmal ausgege-
ben. Dieser awk (1)-Aufruf hat eine dhnliche Funktion wie das UNIX-Kommando

2.7 Writer’s Workbench 111

uniq(1). Da Variable mit dem Nullstring initialisiert werden, wird auch die erste
Zeile richtig bearbeitet.

Wenn die Anweisungen an den awk (1) umfangreicher werden, schreibt man
sie in ein eigenes File (awk-Script). Der Aufruf sieht dann so aus:

awk —-f awkscript textfiles

awk-Scripts werden in einer Sprache geschrieben, die teils an Shellscripts, teils
an C-Programme erinnert. Sie bestehen — wie ein deutscher Schulaufsatz — aus
Einleitung, Hauptteil und Schluf}. Sehen wir uns ein Beispiel an, das mehrfache
Eintragungen von Stichwortern in einem Sachregister aussortiert und die zugehori-
gen Seitenzahlen der ersten Eintragung zuordnet:

awk-Script fuer Sachregister

BEGIN { ORS = ""
print "Sachregister"
by
{
if ($1 == altwort)
print ", " $NF
else
{
print "\n" $0
altwort = $1
nor++
b
by
END { print "\n\n"
print "gelesen: " NR " geschrieben: " nor "\n"

Programm 2.20 : awk-Script fiir Sachregister

Das Doppelkreuz markiert einen Kommentar. Der Einleitungsblock wird mit
BEGIN gekennzeichnet, der Hauptteil steht nur in geschweiften Klammern und der
Schluf} beginnt mit END. Die vorbestimmte, awk (1)-eigene Variable ORS (Output
Record Separator, d. h. Trennzeichen zwischen Sétzen in der Ausgabe), stan-
dardméBig das Newline-Zeichen, wird mit dem Nullstring initialisiert. Dann wird
die Uberschrift Sachregister ausgegeben.

Im Hauptteil wird das aktuelle erste Feld gegen die Variable altwort gepriift.
Bei Ubereinstimmung werden ein Komma, ein Space und das letzte Feld der ak-
tuellen Zeile ausgegeben, ndmlich die Seitenzahl. Die awk (1)-eigene Variable NF
enthélt die Anzahl der Felder des aktuellen Satzes, die Variable $NF mithin das
letzte Feld.

Bei Nichtiibereinstimmung (einem neuen Stichwort also) werden ein Newline-
Zeichen und dann die ganze Zeile ($0) ausgegeben. Anschliefflend werden das erste
Feld in die Variable altwort gestellt und die vom Programmierer definierte Va-
riable nor inkrementiert. So wird mit dem ganzen Textfile verfahren.

Am Ende des Textfiles angelangt, werden noch zwei Newline-Zeichen, die
awk (1)-eigene Variable NR (Number of Records) und die Variable nor ausgegeben.

112 2 UNIX

Die Aufgabe wére auch mit dem sed(1) oder einem C-Programm zu lésen, aber
ein awk-Script ist der einfachste Weg. Der awk (1) vermag noch viel mehr.

Eine Besonderheit des awk (1) sind Vektoren mit Inhaltindizierung (associative
array). In Programmiersprachen wie C oder FORTRAN werden die Elemente eines
Arrays oder Vektors mit fortlaufenden ganzen Zahlen (Indizes) bezeichnet. Auf
ein bestimmtes Element wird mittels des Arraynamens und des Index zugegriffen:

arrayname [13]

In einem awk-Array diirfen die Indizes nicht nur ganze Zahlen, sondern auch be-
liebige Strings sein:

telefon[’’Meyer’’]

ist eine giiltige Bezeichnung eines Elementes. Es konnte die Anzahl der Telefon-
anschliisse namens Meyer in einem Telefonbuch enthalten.

Neuere Alternativen zu awk(1) sind GNU gawk und perl. Letzteres ist eine
interpretierte Programmiersprache zur Verarbeitung von Textfiles, die Elemente
aus C, sed(1), awk(1) und der Shell sh(1) enthilt. Ihre Moglichkeiten gehen
iiber das Verarbeiten von Texten hinaus in Richtung Shellscripts, siehe Abschnitt
2.5.3 Noch eine Scriptsprache: Perl.

2.7.8 Verschliisseln (crypt)
2.7.8.1 Aufgaben der Verschliisselung

Auf einem UNIX-System kann der Superuser (System-Manager) auf jedes File
zugreifen, auf MS Windows N'T mit gewissen Einschrénkungen auch. Das Netz
ist mit einfachen Mitteln unaufféllig abzuhéren. Will man seine Daten vor Un-
befugten schiitzen, hilft nur Verschliisseln. Man darf aber nicht vergessen, dafl
bereits die Analyse des Datenverkehrs einer Quelle oder eines Ziels Informationen
liefert. Wer ganz unbemerkt bleiben will, muf} sich mehr einfallen lassen als nur
eine Verschliisselung.

Eng verwandt mit der Verschliisselung (encryption, cryptage, chiffrement)
ist die Authentifizierung oder Authentisierung (authentication, authentificati-
on). Diese Aufgabe behandeln wir im Abschnitt 3.11 Electonic Mail, weil sie dort
eine Rolle spielt. Hier geht es nur darum, einen Text oder auch andere Daten
fiir Unbefugte unbrauchbar zu machen; fiir Befugte sollen sie natiirlich weiterhin
brauchbar bleiben.

Das Gangze ist heute eine Wissenschaft und heifit Kryptologie. In den letzten
Jahrzehnten hat sie einen stark mathematischen Einschlag bekommen. Trotzdem
bietet sie einen gewissen Unterhaltungswert, insbesondere die Kryptanalyse, der
Versuch, Verschliisselungen zu knacken.

Die zu verschliisselnden Daten nennen wir Klartext (plain text), die ver-
schliisselten Daten Geheimtext (cipher text).

2.7 Writer’s Workbench 113

2.7.8.2 Symmetrische Verfahren

Im einfachsten Fall wird jedes Zeichen des Klartextes nach einer Regel durch
ein anderes Zeichen desselben Alphabetes ersetzt. Die einfachste Regel ist die
Verschiebung um eine feste Anzahl von Stellen im Alphabet, beispielsweise um
+3 Stellen. Aus A (Zeichen Nr. 1) wird D (Zeichen Nr. 1 + 3). Dieses Verfah-
ren soll CA1Us JuLius CAESAR benutzt haben. Er hatte viel Vertrauen in die
Dummbheit seiner Gegner. Zum Entschliisseln des Geheimtextes nimmt man das-
selbe Verfahren mit —3 Stellen. W#hlt man eine Verschiebung um 13 Stellen, so
fithrt bei einem Alphabet mit 26 Zeichen eine Wiederholung der Verschliisselung
zum Klartext zuriick. Dieses Verfahren ist unter dem Namen ROT13 bekannt
und wird im Netz verwendet, um einen Text — beispielsweise die Auflosung ei-
nes Rétsels — zu verfremden. Man kann die Verfahren raffinierter gestalten, indem
man Zeichengruppen verschliisselt, Blindzeichen unter den Geheimtext mischt, die
Algorithmen wechselt usw.
Seit zwei Jahrzehnten unterscheidet man zwei Gruppen von Verfahren:

e Symmetrische Verfahren (Private-Key-V.),
e Unsymmetrische Verfahren (Public-Key-V.).

Dazu kommen fiir bestimmte Aufgaben noch die Einweg-Hash-Verfahren. Bei den
symmetrischen Verfahren kennen Sender und Empfanger neben dem Algo-
rithmus sowohl den Chiffrier- wie den Dechiffrierschliissel. Beide Schliissel sind
identisch oder voneinander ableitbar. Da der Algorithmus kaum geheim zu hal-
ten ist, beruht die Sicherheit auf dem Schliissel, der nicht zu einfach sein darf
und geheim bleiben muf}. Das Problem liegt darin, den Schliissel zum Empfinger
zu schaffen. Das geht nur iiber einen vertrauenswiirdigen Kanal, also nicht iiber
Email. Treffen Sie Thren Brieffreund gelegentlich bei Kaffee und Kuchen, kénnen
Sie ihm einen Zettel mit dem Schliissel zustecken. Wohnen Sie in Karlsruhe, Th-
re Brieffreundin in Fatmomakke, wird der Schliisselaustausch aufwendiger. Ein
weiteres Problem liegt in der Anzahl der bené6tigten Schliissel beim Datenverkehr
unter mehreren Beteiligten. Geht es nur darum, Daten vor dem Superuser zu ver-
stecken, ist kein Schliisselaustausch notig und daher ein symmetrisches Verfahren
angebracht.

Die Verschliisselung nach dem weit verbreiteten Data Encryption Stan-
dard (DES) gehort in diese Gruppe, zur Ver- und Entschliisselung wird derselbe
Schliissel benutzt. DES wurde von IBM entwickelt und 1977 von der US-Regierung
als Standard angenommen. Es gilt heute schon nicht mehr als sicher, Triple-DES
ist besser. Ein weiteres Mitglied dieser Gruppe ist IDEA. Symmetrische Verfahren
arbeiten im allgemeinen schneller als unsymmetrische.

Unter UNIX stehen ein Kommando crypt (1) sowie eine C-Standardfunktion
crypt (3) zur Verfiigung, die ein nicht sehr ausgefeiltes symmetrisches Verfahren
verwenden. Man ver- und entschliisselt mittels des Kommandos:

crypt < eingabe > ausgabe

Das Kommando fragt nach einem Schliissel. Dieser wird fiir beide Richtungen
eingesetzt. Der Klartext ist erforderlichenfalls gesondert zu 16schen (physikalisch,

114 2 UNIX

nicht nur logisch). Die Crypt Breaker’s Workbench enthilt alles Notige, um diese
Verschliisselung zu knacken (http://axion.physics.ubc.ca/cbw.html).

2.7.8.3 Unsymmetrische Verfahren

Die asymmetrischen Verfahren verwenden zum Verschliisseln und Entschliisseln
zwei vollig verschiedene, nicht voneinander ableitbare Schliissel. Benutzer A
hat sich ein Paar zusammengehoriger Schliissel gebastelt, den ersten zum Ver-
schliisseln, den zweiten zum Entschliisseln, wie, werden wir noch sehen. Den ersten
Schliissel gibt er 6ffentlich bekannt, daher Public Key. Jeder kann ihn benutzen,
zum Beispiel Benutzer B, der A eine vertrauliche Email schicken mdéchte. Was
einmal damit verschliisselt ist, 148t sich nur noch mit dem zweiten Schliissel ent-
schliisseln, und den hélt Benutzer A geheim. Er teilt ihn niemandem mit, daher
Private Key. Jetzt kann es nur noch passieren, dafl ein Benutzer C unter Mif3-
brauch des Namens von B an A eine beleidigende Mail schickt und B darauf hin
mit A Krach bekommt. Das ist das Authentifizierungs-Problem, auf das wir bei
der Email eingehen.

Wie kommt man nun zu einem derartigen Schliisselpaar? Ein Weg beruht
auf der Tatsache, dafl man leicht zwei ganze Zahlen grofler Linge miteinander
multiplizieren kann, sogar ohne Computer, wihrend die Zerlegung einer grofien
Zahl (um die zweihundert dezimale Stellen entsprechend etwa 500 Bits) in ihre
Primfaktoren mit den heute bekannten Algorithmen und Computern aufwendig
ist, jedenfalls wenn gewisse Voraussetzungen eingehalten werden. RON RIVEST,
ApI SHAMIR und LEONARD ADLEMAN haben auf diesem Gedanken aufbauend
das verbreitete RSA-Verfahren entwickelt.

Man wihle zufillig zwei grofle Primzahlen p und ¢, zweckmifig von annihernd
gleicher Lange. Thr Produkt sei n = pq. Weiter wiahle man eine Zahl e so, daf} e
und (p — 1)(q — 1) teilerfremd (relativ prim) zueinander sind. Eine vierte Zahl d
berechne man aus:

d=e""mod ((p—1)(qg—1)) (2.1)

Die Zahlen e und n bilden den o6ffentlichen Schliissel, die Zahl d ist der private,
geheime Schliissel. Die beiden Primzahlen p und ¢ werden nicht weiter benétigt,
miissen aber geheim bleiben (16schen).

Wir sehen den Klartext K als eine Folge von Ziffern an. Er wird in Blocke K;
kleiner n aufgeteilt. Die Geheimnachricht G' besteht aus Blécken G, die sich nach

G = K modn (2.2)
berechnen. Zur Entschliisselung berechnet man
K; =G modn (2.3)

Einzelheiten und Begriindung hierzu siehe die Biicher von FRIEDRICH L. BAUER
oder BRUCE SCHNEIER. Nun ein Beispiel aus dem Buch von F. L. BAUER. Wir
wéhlen einen Text aus lateinischen Buchstaben samt Zwischenraum und ersetzen
die Zeichen durch die Nummern von 00 bis 26. Er bekommt folgendes Aussehen:

K = 051818011805000821 . .. (2.4)

2.7 Writer’s Workbench 115

und wéhlen:
p =47 q =59 n=p*q=2773 (2.5)

Wir teilen den Klartext in vierziffrige Blocke kleiner n auf:
K, = 0518 K, = 1801 K3 =1805... (2.6)
Zur Bestimmung von e berechnen wir:
(p—1)(g — 1) = 46 x 58 = 2668 (2.7)

Die Zahl 2668 hat die Teiler 2, 4, 23, 29, 46, 58, 92, 116, 667 und 1334. Fiir e
wahlen wir 17, teilerfremd zu 2668. Dann ergibt sich d zu:

d = 17" mod 2668 (2.8)

Diese vielleicht unbekannte Schreibweise ist gleichbedeutend damit, ein Paar gan-
zer Zahlen d, x so zu bestimmen, daf} die Gleichung:

d*17 = 2668 x x + 1 (2.9)

erfiillt ist. Die Zahl d = 157 ist eine Losung mit x = 1. Gezielt ermittelt man
Losungen mittels des Erweiterten Euklidischen Algorithmus. Nun haben wir mit
n, e und d alles, was wir brauchen und gehen ans Verschliisseln:

G1 = K¢ mod n = 05187 mod 2773 = 1787 (2.10)

und entsprechend fiir die weiteren Blocke. Gleiche Klartextblocke ergeben gleiche
Geheimtextblocke, was bereits ein Risiko ist. Zum Entschliisseln berechnet man:

K, = GY mod n = 1787"" mod 2773 = 518 (2.11)

und so weiter. Die Arithmetik grofler Ganzzahlen ist fiir Computer kein Problem,
fiir Taschenrechner schon eher. Man kann sie sogar in Silizium gieflen und erhélt
schnelle Chips zum Ver- und Entschliisseln, ohne Software bemiihen zu miissen.
Da n und e 6ffentlich sind, kénnte man durch Zerlegen von n in seine Primfaktoren
leicht den privaten Schliissel d ermitteln, aber das Zerlegen grofier Zahlen ist nach
heutigem Wissensstand sehr aufwendig.

Es gibt weitere unsymmetrische Verfahren wie das von TAHER ELGAMAL.
Auf http://www.rsa.com/ findet sich Material zur Vertiefung des Themas. Eine
zehnteilige FAQ-Sammlung zur Kryptografie liegt im Netz.

2.7.8.4 Angriffe

Angriffe auf verschliisselte Daten — wissenschaftlich als Kryptanalyse, sonst
als Cracking bezeichnet — gehen mdglichst von irgendwelchen bekannten oder
vermuteten Zusammenhingen aus. Das kleinste Zipfelchen an Vorkenntnissen
kann entscheidend sein. Die Wahrscheinlichkeit, daf§ ein Benutzer seinen nur ge-
ring modifizierten Benutzernamen als Passwort verwendet, ist leider hoch. Da-
mit fingt man an. Das Ausprobieren aller nur mdéglichen Schliissel wird Brute

116 2 UNIX

Force Attack genannt und ist bei kurzen Schliisseln dank Computerhilfe auch
schnell von Erfolg gekront. Das Faktorisieren kleiner Zahlen ist ebenfalls kein
Problem. Aber selbst bei groflen Zahlen, die fiir einen einzelnen Computer — auch
wenn er zu den schnellsten gehort — eine praktisch unlosbare Aufgabe darstel-
len, kommt man in kurzer Zeit zum Ziel, wenn man die Leerlaufzeiten von ei-
nigen Hundert durchschnittlichen Computern fiir seinen Zweck einsetzen kann.
Das ist ein organisatorisches Problem, kein mathematisches, und bereits gelost,
siehe http://www.distributed.net/rc5/. Das ganze Nachdenken {iber sichere
Verschliisselung eriibrigt sich im iibrigen bei schlampigem Umgang mit Daten und
Schliisseln. Der Benutzer ist erfahrungsgeméfl immer das grofite Risiko.

2.7.9 Formatierer (nroff, LaTeX)
2.7.9.1 Inhalt, Struktur und Aufmachung

Ein Schriftstiick - sei es Brief oder Buch - hat einen Inhalt, ndmlich Text, ge-
gebenenfalls auch Abbildungen, der in einer bestimmten Form dargestellt ist. Bei
der Form unterscheiden wir zwischen der logischen Struktur und ihrer Darstel-
lung auf Papier oder Bildschirm, auch Aufmachung oder Layout genannt. Beim
Schreiben des Manuskriptes macht sich der Autor Gedanken iiber Struktur und
Inhalt, aber kaum iiber Schrifttypen und Schriftgréfien, den Seitenumbruch, die
Numerierung der Abbildungen. Das ist Aufgabe des Metteurs oder Layouters im
Verlag, der seinerseits nur wenig am Text dndert. Schreiben und Setzen sind
unterschiedliche Aufgaben, die unterschiedliche Kenntnisse erfordern.

Der Computer wird als Werkzeug fiir alle drei Aufgaben (Inhalt, Struktur,
Layout) eingesetzt. Mit einem Editor schreibt man einen strukturierten Text,
weitergehende Programme priifen die Rechtschreibung, helfen beim Erstellen eines
Sachregisters, analysieren den Stil. Ein Satz- oder Formatierprogramm erledigt
den Zeilen- und Seitenumbruch, sorgt fiir die Numerierung der Abschnitte, Seiten,
Abbildungen, Tabellen, Fufinoten und Formeln, legt die Schriftgréfien fest, stellt
das Inhaltsverzeichnis zusammen usw.

Formatierer sind Werkzeuge, die strukturierten Text in bestimmter Weise,
in einer bestimmten Form zu Papier oder auf den Bildschirm bringen. Eine typi-
sche Aufgabe ist der Zeilen- und Seitenumbruch. Man kann zwar diese Aufgabe
auch von Hand im Editor erledigen, iiblicherweise iiberldfit man sie aber dem
Formatierer.

Der UNIX-Formatierer nroff (1) und LaTeX halten Struktur und Layout aus-
einander. Man schreibt mit einem beliebigen Editor den Text und formatiert an-
schlieflend. LaTeX verfolgt dariiberhinaus den Gedanken, dafl der Autor seine
Objekte logisch beschreiben und von der typografischen Gestaltung, dem Layout,
die Finger lassen soll. Der Autor soll sagen: Jetzt kommt eine Kapiteliberschrift
oder Jetzt folgt eine Fufinote. LaTeX legt dann nach typografischen Regeln die
Gestaltung fest. Man kann dariiber streiten, ob diese Regeln das Nonplusultra
der Schwarzen Kunst sind, ihr Ergebnis ist jedenfalls besser als vieles, was Laien
erzeugen.

Sowohl nroff (1) wie LaTeX zielen auf die Wiedergabe der Dokumente mit-
tels Drucker auf Papier ab. Die Hypertext Markup Language HTML, der wir im

2.7 Writer’s Workbench 117

Abschnitt iiber das World Wide Web begegnen, hat viel mit LaTeX gemeinsam,
eignet sich jedoch in erster Linie fiir Dokumente, die auf dem Bildschirm darge-
stellt werden sollen.

Textverarbeitungsprogramme wie Word, Wordperfect oder Wordstar haben
Formatierungsaufgaben integriert, so dal man sich am Bildschirm nicht nur den
rohen Text, sondern wiahrend des Schreibens auch den formatierten ansehen kann.
Diese Moglichkeit wird als WYSIWYG bezeichnet: What you see is what you
get. Das erleichtert in vielen Fillen die Arbeit, birgt aber eine Versuchung in
sich. Die reichen Mittel aus dem typografischen Kosmetikkoffer namens Desktop
Publishing sind sparsam einzusetzen, unser Ziel heifit Lesbarkeit, nicht Kunst.

2.7.9.2 Ein einfacher Formatierer (adjust)

Ein einfacher Formatierer ist adjust (1). Der Aufruf
adjust -j —m60 textfile

versucht, den Text in textfile beidseits biindig (Blocksatz) mit 60 Zeichen pro
Zeile zu formatieren. Die Ausgabe geht nach stdout. adjust(1) trennt keine
Silben, sondern fiillt nur mit Spaces auf. Fiir bescheidene Anforderungen geeignet.

2.7.9.3 UNIX-Formatierer (nroff, troff)

Die Standard-Formatierer in UNIX sind nroff(1) fiir Druckerausgabe und
sein Verwandter troff (1) fiir Fotosatzbelichter. Da wir letztere nicht ha-
ben, ist bei uns troff(1) nicht installiert. Das n steht fiir new, da der
Vorgénger von nroff(1) ein roff war, und dieser hiefl so, weil man damit
run off to the printer verband.

Ein File fiir nroff(1) enthilt den unformatierten Text und nroff-
Kommandos. Diese stehen stets in eigenen Zeilen mit einem Punkt am Anfang.
Ein nroff-Text konnte so beginnen:

.po 1c
.11 60
fi

.ad ¢

.cu 1
Ein Textbeispiel

von W. Alex

.ad b

.ti 1c

Dies ist ein Beispiel fuer einen Text, der mit nroff
formatiert werden soll. Er wurde mit dem Editor vi
geschrieben.

118 2 UNIX

.ti 1c

Hier beginnt der zweite Absatz.

Die Zeilenlaenge im Textfile ist unerheblich.
Man soll die Zeilen kurz halten.

Fuer die Ausgabe formatiert nroff die Zeilen.

Die nroff-Kommandos bedeuten folgendes:
e po 1c page offset 1 cm (zusétzlicher linker Seitenrand)
e 11 60 line length 60 characters
e fi fill output lines (fiir Blocksatz)
e ad c adjust center
e cu 1 continuous underline 1 line (auch Spaces unterstreichen)
e ad b adjust both margins
e ti 1c temporary indent 1 cm

Die Kommandos kénnen wesentlich komplexer sein als im obigen Beispiel, es sind
auch Makros, Tests und Rechnungen moglich. S. R. BOURNE fiihrt in seinem im
Anhang O Literatur genannten Buch die Makros auf, mit denen die amerikanische
Ausgabe seines Buches formatiert wurde. Es gibt ganze Makrobibliotheken.

Da sich Formeln und Tabellen nur schlecht mit den Textbefehlen beschreiben
lassen, gibt es fiir diese beiden Fille eigene Befehle samt Préprozessoren, die die
Spezialbefehle in nroff (1)-Befehle umwandeln. Fiir Tabellen nimmt man tb1 (1),
fiir Formeln neqn(1), meist in Form einer Pipe:

tbl textfile | neqn | nroff | col | 1p

wobei col(1) ein Filter zur Behandlung von Backspaces und dergleichen ist.

2.7.9.4 LaTeX

TeX ist ein Formatierungsprogramm, das von DONALD E. KNUTH entwickelt
wurde — dem Mann, der seit Jahrzehnten an dem siebenbéndigen Werk The Art
of Computer Programming schreibt und hoffentlich noch lange lebt — und wird
von der AMERICAN MATHEMATICAL SOCIETY herausgegeben. Seine Stérke sind
umfangreiche mathematische Texte, seine Schwéche ist die Grafik. Inzwischen
gibt es aber Zusatzprogramme (TeXCAD) zu LaTeX, die es erleichtern, den Text
durch Zeichnungen zu ergénzen. Auflerdem kann man Grafiken bestimmter For-
mate (Encapsulated Postscript) in den Text einbinden.

TeX ist sehr leistungsfihig, verlangt aber von seinem Benutzer die Kenntnis
vieler Einzelheiten, dhnlich wie das Programmieren in Assembler. LaTeX ist eine
Makrosammlung, die auf TeX aufbaut. Die LaTeX-Makros von LESLIE LAM-
PORT erleichtern bei Standardaufgaben und -formaten die Arbeit betrichtlich,
indem viele TeX-Befehle zu einfach anzuwendenden LaTeX-Befehlen zusammen-
gefafit werden. Kleinere Modifikationen der Standardeinstellungen sind vorgese-
hen, weitergehende Sonderwiinsche erfordern das Hinabsteigen auf TeX-Ebene,
was ldngeres Lernen voraussetzt.

2.7 Writer’s Workbench 119

Arbeitsweise Man schreibt seinen Text mit einem beliebigen Editor. Dabei
wird nur von den druckbaren Zeichen des US-ASCII-Zeichensatzes zuziiglich Line-
feed Gebrauch gemacht. In den Text eingestreut sind die LaTeX-Anweisungen.
Der Name des Textfiles mufl die Kennung .tex haben. Dann schickt man das
Textfile durch den LaTeX-Compiler. Dieser erzeugt ein Binérfile, dessen Na-
men die Kennung .dvi trégt. Das bedeutet device independent, das Binérfile
ist also noch nicht auf ein bestimmtes Ausgabegerit hin ausgerichtet. Mittels eines
gerdteabhéngigen Treiberprogrammes wird aus dem dvi-File das bit-File erzeugt
— Kennung .bit — das mit einem UNIX-Kommando wie cat durch eine hundert-
prozentig transparente Schnittstelle zum Ausgabegerit geschickt wird. Es gibt
auch ein Programm dvips (1), das ein Postscript-File erzeugt, welches auf einem
beliebigen Postscript-Drucker ausgegeben werden kann.

Format dieses Textes Der vorliegende Text wurde mit LaTeX2e auf einem
LINUX-PC formatiert, mittels dvips(1) von Radical Eye auf Postscript umge-
setzt und auf einem Laserdrucker von Hewlett-Packard ausgegeben.

Im wesentlichen verwenden wir die Standardvorgaben. Die Zeichnungen wur-
den mit TeXCAD entworfen. TeXCAD erzeugt LaTeX-Files, die man editieren
kann, so man das fiir nétig befindet.

In dem Text kommen viele Quelltexte von Programmen vor, die wir dhnlich
wie Abbildungen oder Tabellen in einer eigenen Umgebung formatieren wollten.
Eine solche Umgebung war seinerzeit nicht fertig zu haben. Man muf}te selbst zur
Feder greifen, moglichst unter Verwendung vorhandenen Codes. Die Schwierigkeit
lag darin herauszufinden, wo was definiert wird, da viele Makros wieder von an-
deren Makros abhéngen. Die source-Umgebung wird zusammen mit einigen wei-
teren Kleinigkeiten in einem File alex.sty definiert, das dem LaTeX-Kommando
usepackage als Argument mitgegeben wird:

% alex.sty mit Erweiterungen fuer UNIX-Skriptum, 15. Mai 1994
% als Option in \documentstyle angeben:

% \documentstyle[12pt,twoside ... alex]{report}

h

% Aenderungen von Zeilen aus latex.tex, report.sty, repl2.sty
h

% Meldung fuer Bildschirm und main.log:

\typeout{Formatoption alex.sty fuer report.sty, 15. Mai 1994 W. Alex}
A

% Stichwoerter hervorheben und in Index aufnehmen:

% (hat sich als unzweckmaessig erwiesen)

\newcommand{\stw} [1]{{\em#1}\index{#1}}

h

% Hervorhebungen mittels \em:

\renewcommand{\em}{\bf}

A

% Fussnoten-Schriftgroesse vergroessern:
\renewcommand{\footnotesize}{\small}

h

% in Tabellen:

\newcommand{\h}{\hspace*{25mm}}

120 2 UNIX

\newcommand{\hh}{\hspace*{30mm}}
\newcommand{\hhh}{\hspace*{40mm}}

b

%» falls \heute nicht bekannt:
\newcommand{\heute}{\today?}

b

% Abkuerzung:

\newcommand{\1lra}{\longrightarrow}

b

%» Plazierung von Gleitobjekten (Bilder usw.):
\setcounter{totalnumber}{8}
\renewcommand{\textfraction}{0.1}

b

% Numerierung der Untergliederungen:
\setcounter{secnumdepth}{3}

\setcounter{tocdepth}{3}

b

% Satzspiegel vergroessern:

% Standardwerte 10, 138 und 187 mm; Springer 146, 236 mm
\topmargin-5mm

\textwidth146mm

\textheight236mm

b

% zusaetzlicher Seitenrand fuer beidseitigen Druck:
\oddsidemarginl4mm

\evensidemarginOmm

b

/» eigene Bezeichnungen, lassen sich beliebig aendern:
\def\contentsname{Inhaltsverzeichnis}
\def\chaptername{Kapitel}
\def\listfigurename{Abbildungen}
\def\listtablename{Tabellen}
\def\listsourcename{Programme}

\def\indexname{Sach- und Namensverzeichnis}
\def\figurename{Abb.}

\def\tablename{Tabelle}

\def\sourcename{Programm}

b

% wegen Quotes (Gaensefuesschen) in source-Umgebung,
%» darf auch sonst verwendet werden:
\def\qunormal{\catcode‘\"=12}
\def\quactive{\catcode‘\"=\active}

b

%» in Unterschriften Umlaute ("a, "o, "u) ermoeglichen
% (der Programmtext wird mit qunormal geschrieben):
\def\caption{\quactive \refstepcounter\@captype \@dblarg{\Qcaption\Qcaptypel}}
b

%» neue Umgebung source fuer Programmtexte

% aehnlich figure, aber nicht floatend, Seitenumbruch erlaubt
% abgestimmt auf \verbinput{file} aus verbtext.sty
% qunormal + quactive sind enthalten

%» neuer Zaehler, kapitelweise:
\newcounter{source}[chapter]

2.7 Writer’s Workbench 121

\def\thesource{\thechapter.\arabic{source}\ }

\def\fnum@source{{\sl\sourcename\ \thesource}}

A

% Filekennung fuer List of Sources (main.los):

\def\ext@source{los}

h

% neue Umgebung, Aufruf: \begin{source} \end{source},

% vor end{source} kommt caption:

\newenvironment{source}{\vskip 12pt \qunormal \def\@captype{source}}{\quactive \v:

A

% neuer Befehl \listofsources analog \listoffigures

% zur Erzeugung eines Programmverzeichnisses:
\def\listofsources{\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
\fi\chapter*{\listsourcename\@mkboth
{{\listsourcename}}{{\listsourcename}}}\@starttoc{los}
\if@restonecol\twocolumn\fi}

\let\1l@source\l@figure

A

% Kapitelkopf, aus repl2.sty. Siehe Kopka 2, S. 187 + 289:

% ohne Kapitel + Nummer:

\def\@makechapterhead#1{ \vspace*{36pt} { \parindent Opt \raggedright
\LARGE \bf \thechapter \hspace{6mm} #1 \par

\nobreak \vskip 10pt } }

\def\@makeschapterhead#1{ \vspace*{36pt} { \parindent Opt \raggedright
\LARGE \bf #1 \par

\nobreak \vskip 10pt } }

h

% aus repl2.sty; ergaenzt wegen source

% (sonst fehlt der vspace im Programmverzeichnis):
\def\@chapter [#1]#2{\ifnum \c@secnumdepth >\m@ne
\refstepcounter{chapter}
\typeout{\@chapapp\space\thechapter.}
\addcontentsline{toc}{chapter}{\protect
\numberline{\thechapter}#1i}\else
\addcontentsline{toc}{chapter}{#1}\fi
\chaptermark{#1}
\addtocontents{lof}{\protect\addvspace{10pt}}
\addtocontents{los}{\protect\addvspace{10pt}}
\addtocontents{lot}{\protect\addvspace{10pt}}
\if@twocolumn \@topnewpage[\O@makechapterhead{#2}]
\else \O@makechapterhead{#2}

\Q@afterheading \fi}

h

% Inhaltsverzeichnis modifiziert:
\def\tableofcontents{\Q@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
\fi\chapter*{\contentsname
\@mkboth{{\contentsname}}{\contentsname}}
\@starttoc{toc}\if@restonecol\twocolumn\fi}

A

% weniger Luft in itemize (listI), aus repl2.sty:
\def\@listI{\leftmargin\leftmargini

\parsep 4pt plus 2pt minus 1pt

\topsep 6pt plus 4pt minus 4pt

122 2 UNIX

\itemsep 2pt plus 1pt minus 1pt}

b

% Seitennumerierung, aus report.sty uebernommen

/» in main.tex erforderlich \pagestyle{uxheadings}

%» nur fuer Option twoside passend:

\def\ps@uxheadings{\let\@mkboth\markboth

\def\@oddfoot{} \def\@evenfoot{}

\def\@evenhead{\small{{\rm \thepage} \hfil {\rm \leftmark}}}

\def\@oddhead{\small{{\rm \rightmark} \hfil {\rm \thepage}}}

\def\chaptermark##1{\markboth {\ifnum \c@secnumdepth

>\m@ne \thechapter \ \ \fi ##1}{}}

\def\sectionmark##1{\markright

{\ifnum \c@secnumdepth >\zQ
\thesection \ \ \fi ##1}}}

b

% Abb., Tabelle slanted, wie Programm:

\def\fnum@figure{{\s1l\figurename\ \thefigurel}}

\def\fnum@table{{\sl\tablename\ \thetable}}

b

% ersetze im Index see durch \it s.:

\def\see#1#2{{\it s.\/} #1}

b

% Indexvorspann, siehe Kopka 2, Seite 66:

\def\theindex#1{\Q@restonecoltrue\if@twocolumn\@restonecolfalse\fi

\columnseprule \z@

\columnsep 35pt\twocolumn[\@makeschapterhead{\indexnamel}#1]
\@mkboth{\indexname}{\indexname}\thispagestyle
{plain}\parindent\z@

\parskip\z@ plus .3pt\relax\let\item\Q@idxitem}
% Man koennte noch ein Namensverzeichnis (name index) erfinden

T

Programm 2.21 : LaTeX-File alex.sty mit eigenen Makros, insbesondere der
source-Umgebung

Das Prozentzeichen leitet Kommentar ein und wirkt bis zum Zeilenende. Der
Text wurde auf mehrere Files aufgeteilt, die mittels \include in das Hauptfile
main.tex eingebunden werden. Das Hauptfile sieht so aus:

%» Hauptfile main.tex fuer das UNIX-Skriptum

% File alex.sty erforderlich, 15. Mai 1994, fuer source usw.
%» Files bigtabular.sty und verbtext.sty erforderlich

% Umgestellt auf LaTeX2e 16.01.98 W. Alex

\NeedsTeXFormat{LaTeX2e}
\documentclass[12pt,twoside,adpaper]{report}
\usepackage{german,makeidx,bigtabular,verbatim,verbtext,alex}
\pagestyle{uxheadings}

\sloppy

% Universitaetslogo einziehen
\input{unilogo}

2.7 Writer’s Workbench 123

A
% Trennhilfe
\input{hyphen}

% Indexfile main.idx erzeugen
\makeindex

A

%» nach Bedarf:

% \includeonly{copyright,vorwort,anhang}
A
\begin{document}

\unitlengthl.Omm

\include{verweis}

\begin{titlepage}

\begin{center}

\vspace*{20mm}

\hspace*{13mm} \unilogo{32}\\

\vspace*{26mm}

\hspace*{14mm} {\Huge Einf"uhrung in UNIX\\}
\vspace*{11imm}

\hspace*{13mm} {\Large W. Alex, G. Bern"or und B. Alex\\}
\vspace*{11imm}

\hspace*{13mm} {\Large 1998\\}

\vspace*{80mm}

\hspace*{13mm} {\Large Universit"at Karlsruhe\\}
\end{center}

\end{titlepage}

\include{einleit/copyright}
\pagenumbering{roman}

\setcounter{page}{5}

\include{einleit/vorwort}

\overview

\tableofcontents

\listoffigures

t\listoftables

\listofsources

\include{einleit/gebrauch}

\cleardoublepage

\pagenumbering{arabic}
\include{einleit/umgang}

\include{unix/unix}
\include{internet/internet}

\begin{appendix}

\include{anhang/anhangU}

\end{appendix}

\cleardoublepage
\addcontentsline{toc}{chapter}{\indexname}
\printindex

\end{document}

Programm 2.22 : LaTeX-Hauptfile main.tex fiir Manuskript

LaTeX kennt mehrere Dokumentklassen, die sich unter anderem auf die Tiefe

124 2 UNIX

der Strukturierung auswirken:
e book kennt Binde (volumes), Kapitel (chapters) usw.,
e report beginnt mit Kapiteln (chapters), Abschnitten (sections),
e article hat den Abschnitt (section) als oberste Einheit.

Im Gegensatz zum Inhaltsverzeichnis wird das Sachverzeichnis nicht automa-
tisch erzeugt. LaTeX stellt nur Hilfen zur Verfiigung. Der Befehl makeindex im
Vorspann von main.tex fiihrt zur Eintragung der im Text mit \index markier-
ten Worter samt ihren Seitenzahlen in ein File main.idx. In der Markierung
der Worter steckt viel Arbeit. Das idx-File {ibergibt man einem zu den LaTeX-
Erweiterungen gehorenden Programm makeindex von PEHONG CHEN (nicht zu
verwechseln mit dem zuvor genannten LaTeX-Kommando \makeindex). Das Pro-
gramm erzeugt ein File namens main. ind, das ein bifichen editiert und durch den
\printindex-Befehl am Ende des Manuskripts zum Dokument gebunden und
ausgegeben wird.

2.7.9.5 Computer Aided Writing

Die Verwendung von Computern und Programmen wirkt sich auf die Technik
und das Ergebnis des Schreibens aus, insgesamt hoffentlich positiv. LaTeX fiihrt
typischerweise zu Erzeugnissen, die stark gegliedert sind und ein entsprechend
umfangreiches Inhaltsverzeichnis aufweisen, aber wenig Abbildungen und nicht
immer ein Sachregister haben. Von der Aufgabe her ist das selten gerechtfertigt,
aber das Programm erleichtert nun einmal das eine und erschwert das andere.
Manuskripte, die auf einem WYSIWY G-System hergestellt worden sind, zeichnen
sich hdufig durch eine Vielfalt von grafischen Spielereien aus.

Neben diesen Auflerlichkeiten weisen Computertexte eine tiefer gehende Eigen-
art auf. In einem guten Text beziehen sich Sétze und Absétze auf vorangegangene
Teile, sie bilden eine Kette, die nicht ohne weiteres unterbrochen werden darf. Ein
roter Faden zieht sich durch das Ganze. Der Computer erleichtert das Verschie-
ben von Textteilen und das voneinander unabhéngige Arbeiten an verschiedenen
Stellen des Textes. Man beginnt mit dem Schreiben nicht immer am Anfang des
Manuskriptes, sondern dort, wo man den meisten Stoff bereit hat oder wo das
Bediirfnis am dringendsten scheint. Von einer Kette, in der jedes Glied mit dem
vorangehenden verbunden ist, bleibt nicht viel iibrig, die Absétze oder Sitze ste-
hen beziehungslos nebeneinander, oder es entstehen falsche Beziige, manchmal
auch ungewollte Wiederholungen. Der rote Faden kommt unklar.

Bei Hypertext-Dokumenten, wie sie im World Wide Web stehen, ist der Aufbau
aus einer Vielzahl voneinander unabhéngiger Bausteine, die in beliebiger Reihen-
folge betrachtet werden konnen, noch ausgeprigter. Das fiihrt zu anderen Arten
des Schreibens und Lesens, die nicht schlechter zu sein brauchen als die traditio-
nellen. Hypertext ermoglicht eine Strukturierung eines Textes, die Papier nicht
bieten kann und die der Struktur unseres Wissens vielleicht besser entspricht.
Hypertexte gleichen eher einem Gewebe als einer Kette oder einem roten Faden.
Wie ein Roman oder ein Gedicht in Hypertext aussehen konnten, ist noch nicht
erprobt. Auf jeden Fall 148t sich Hypertext nicht vorlesen.

2.7 Writer’s Workbench 125

Heute kann ein Autor am Schreibtisch buchidhnliche oder auch eigenstéindige
Erzeugnisse schaffen, an deren Zustandekommen frither mehrere Berufe beteiligt
waren und entsprechend Zeit bendtigt haben. Biicher werden heute nach repro-
duktionsreifen (camera-ready) Vorlagen gedruckt, die aus dem Computer und dem
Laser-Drucker stammen. Auch die Verteilung iiber elektronische Medien geht ein-
facher und schneller als auf dem hergebrachten Weg. Sogar die Riickkopplung vom
Leser zum Autor ist im Netz eine Kleinigkeit.

2.7.10 Weitere Werkzeuge (grep, diff, sort usw.)

Fiir einzelne Aufgaben der Textverarbeitung gibt es Spezialwerkzeuge in UNIX.
Hiufig gebraucht werden grep(1) (= global regular expression print), egrep(1)
und fgrep(1). Sie durchsuchen Textfiles nach Zeichenmustern. Ein einfacher Fall:
suche im File telefon nach einer Zeile, die das Zeichenmuster alex enthélt. Das
Kommando lautet

grep -i alex telefon

Die Option -i weist grep(1) an, keinen Unterschied zwischen Grof}- und Klein-
buchstaben zu machen. Die gleiche Suche leistet auch ein Editor wie der vi(1),
nur ist der ein zu umfangreiches Werkzeug fiir diesen Zweck. Unter MS-DOS heif3t
das entsprechende Werkzeug find, das nicht mit UNIX-find (1) verwechselt wer-
den darf.

Fiir unsere Anlage haben wir mit dem grep(1) ein etwas leistungsfihigeres
Shellscript namens it (= info Telefon) geschrieben, das erst in einem privaten,
dann in einem o6ffentlichen Telefonverzeichnis sucht:

grep -s $* $HOME/inform/telefon /mnt/inform/telefon |
sed -e "s/"\/[":1x://g"

Programm 2.23 : Shellscript zum Suchen in einem Telefonverzeichnis

grep (1) ist nicht rekursiv, das heifit es geht nicht in Unterverzeichnisse hinein.
Nimmt man find (1) zur Hilfe, das rekursiv arbeitet, so 148t sich auch rekursiv

greppen:
find . -print | xargs grep suchstring

Das Kommando xargs (1) hingt die Ausgabe von find (1) an die Argumentliste
von grep(1) an und fiihrt es aus.

Mittels diff (1) werden die alte und die neue Version eines Files miteinander
verglichen. Bei entsprechendem Aufruf wird ein drittes File erzeugt, das dem Edi-
tor ed(1) als Kommandoscript (ed-Script) iibergeben werden kann, so daf dieser
aus der alten Version die neue erzeugt. Gebréduchlich zum Aktualisieren von Pro-
grammgquellen. Schreiben Sie sich ein kleines Textfile alt, stellen Sie eine Kopie
namens neu davon her, verdndern Sie diese und rufen Sie dann diff (1) auf:

diff -e alt neu > edscript

126

2 UNIX

Fiigen Sie mit einem beliebigen Editor am Ende des edscript zwei Zeilen mit den
ed(1)-Kommandos w und q (write und quit) hinzu. Dann rufen Sie den Editor
ed (1) mit dem Kommandoscript auf:

ed - alt < edscript

Anschlieflend vergleichen Sie mit dem simplen Kommando cmp (1) die beiden Ver-
sionen alt und neu auf Unterschiede:

cmp alt neu

Durch den ed (1)-Aufruf sollte die alte Version genau in die neue Version iiberfiihrt
worden sein, cmp (1) meldet nichts.

Weitere Werkzeuge, deren Syntax man im Handbuch, Sektion 1 nachlesen mu#f,
sollen hier nur tabellarisch aufgefiihrt werden:

bfs big file scanner, untersucht grofle Textfiles auf Muster
col filtert Backspaces und Reverse Line Feeds heraus
comm common, vergleicht zwei sortierte Files auf gemeinsame Zeilen
cut schneidet Spalten aus Tabellen heraus

diff3 vergleicht drei Files

expand/unexpand wandelt Tabs in Spaces um und umgekehrt
fold faltet lange Zeilen (bricht Zeilen um)

hyphen findet Zeilen, die mit einem Trennstrich enden

nl number lines, numeriert Zeilen

paste mischt Files zeilenweise

ptx permuted index, erzeugt ein Sachregister

rev reverse, mu nelieZ trhek

rmnl remove newlines, entfernt leere Zeilen

rmtb remove trailing blanks (lokale Erfindung)

sort sortiert zeilenweise, niitzlich

spell priift amerikanische Rechtschreibung?®

split spaltet ein File in gleich grofie Teile

ssp entfernt mehrfache leere Zeilen

tr translate, ersetzt Zeichen

uniq findet wiederholte Zeilen in einem sortierten File
vis zeigt ein File an, das unsichtbare Zeichen enthélt

wc word counter, zdhlt Zeichen, Worter, Zeilen

20Es gibt eine internationale Fassung ispell im GNU-Projekt.

2.7 Writer’s Workbench 127

Die Liste 148t sich durch eigene Werkzeuge beliebig erweitern. Das kénnen Pro-
gramme oder Shellscripts sein. Hier ein Beispiel zur Beantwortung einer zunéchst
anspruchsvoll erscheinenden Fragestellung mit einfachen Mitteln. Ein Sachtext
soll nicht unnotig schwierig zu lesen sein, die Sachzusammenhénge sind schwierig
genug. Ein grobes Ma# fiir die Lesbarkeit eines Textes ist die mittlere Satzlinge.
Erfahrungsgeméfl sind Werte von zehn bis zwolf Woértern pro Satz fiir deutsche
Texte zu empfehlen. Wie kann eine Pipe aus UNIX-Werkzeugen diesen Wert ermit-
teln? Schauen wir uns das Vorwort an. Als erstes miissen die LaTeX-Konstrukte
herausgeworfen werden. Hierfiir gibt es ein Programm delatex, allerdings nicht
standardméfig unter UNIX. Dann sollten Leerzeilen entfernt werden — Werkzeug
rmnl (1) — sowie einige Satzzeichen — Werkzeug tr -d. Schliellich muf} jeder Satz
in einer eigenen Zeile stehen. Wir ersetzen also alle Linefeed-Zeichen (ASCII-Nr.
10, oktal 12) durch Leerzeichen und danach alle Punkte durch Linefeeds. Ein klei-
ner Fehler entsteht dadurch, daf§ Punkte nicht nur ein Satzende markieren, aber
bei einem durchschnittlichen Text ist dieser Fehler gering. Schicken wir den so auf-
bereiteten Text durch das Werkzeug wc (1), so erhalten wir die Anzahl der Zeilen
gleich Anzahl der Sétze, die Anzahl der Worter (wobei ein Wort ein maximaler
String begrenzt durch Leerzeichen, Tabs oder Linefeeds ist) und die Anzahl der
Zeichen im Text. Die Pipe sieht so aus:

cat textfile | rmnl | tr -d ’[0-9],;"()" |
tr >\012’ ’\040’ | tr ’.’ ’\012’ | wc

Programm 2.24 : Shellscript zur Stilanalyse

Die Anzahl der Worter geteilt durch die Anzahl der Séitze liefert die mittlere
Satzldnge. Die Anzahl der Zeichen durch die Anzahl der Worter ergibt die mittlere
Wortlénge, infolge der Leerzeichen am Wortende erh6ht um 1. Auch das ist ein
Stilmerkmal. Die Ergebnisse fiir das Vorwort (dltere Fassung) sind 29 Sitze, 417
Worter und 3004 Zeichen, also eine mittlere Satzlinge von 14,4 Wortern pro Satz
und eine mittlere Wortléinge (ohne Leerzeichen) von 6,2 Zeichen pro Wort. Z&hlt
man von Hand nach, kommt man auf 24 Sitze. Die Punkte bei den Zahlenangaben
verursachen den Fehler. Man miifite das Satzende genauer definieren. Die erste
Verbesserung des Verfahrens wire, nicht nur die Mittelwerte, sondern auch die
Streuungen zu bestimmen. Hierzu wére der awk(1) zu bemiihen oder gleich ein
C-Programm zu schreiben. Das Programm liefert nur Zahlen; ihre Bedeutung
erhalten sie, indem man sie zu Erfahrungswerten in Beziehung setzt. Soweit sich
Stil durch Zahlen kennzeichnen 148t, hilft der Computer; wenn das Verstéindnis von
Wértern, Siatzen oder noch hoheren Einheiten verlangt wird, ist er {iberfordert.

Es soll ein UNIX-Kommando style(1) geben, das den Stil eines englischen
Textes untersucht und Verbesserungen vorschldgt. Dagegen ist das Kommando
diplom(1), das nach Eingabe eines Themas und einer Seitenanzahl eine Diplom-
arbeit schreibt — mit spell(1) und style(1) gepriift — noch nicht ausgereift.

128 2 UNIX

2.7.11 Textfiles aus anderen Welten (DOS, Mac)

In UNIX-Textfiles wird der Zeilenwechsel durch ein newline-Zeichen \n markiert,
hinter dem das ASCII-Zeichen Nr. 10 (LF, Line feed) steckt, das auch durch
die Tastenkombination control-j dargestellt wird. In MS-DOS-Textfiles wird
ein Zeilenwechsel durch das Zeichenpaar Carriage return — Line feed (CR LF,
ASCII Nr. 13 und 10, verb—control-m— und control-j) markiert, das Fileende
durch das ASCII-Zeichen Nr. 26, control-z. Auf Macs ist die dritte Moglichkeit
verwirklicht, das Zeichen Carriage return (CR, ASCII Nr. 13) allein veranlafit den
Sprung an den Anfang der néchsten Zeile.

Auf einer UNIX-Maschine lassen sich die storenden Carriage returns (oktal 15)
der DOS-Texte leicht durch folgenden Aufruf entfernen:

tr -d "\015" < filel > file2

Der vi(1) oder sed(1) konnen das natiirlich auch, ebenso ein einfaches C-
Programm.

Wenn Thr Text auf einem Bildschirm oder Drucker treppenférmig dargestellt
wird — nach rechts fallend — erwartet das Gerét einen Text nach Art von MS-
DOS mit CR und LF, der Text enthélt jedoch nach Art von UNIX nur LF als
Zeilenende. In einigen Féllen 148t sich das Gerét entsprechend konfigurieren, auf
jeden Fall kann man den Text entsprechend ergénzen. Wenn umgekehrt auf dem
Bildschirm kein Text zu sehen ist, erwartet das Ausgabeprogramm einen UNIX-
Text ohne CR, das Textfile stammt jedoch aus der MS-DOS-Welt mit CR und
LF. Jede Zeile wird geschrieben und gleich wieder durch den Riicksprung an den
Zeilenanfang geloscht. Viele UNIX-Pager beriicksichtigen das und geben das CR
nicht weiter. Auf Druckern kann sich dieses Mifiverstindnis durch Verdoppelung
des Zeilenabstandes &uflern. Kein Problem, nur léstig.

2.7.12 Druckerausgabe (lp, lpr)

Auf einer UNIX-Anlage arbeiten in der Regel mehrere Benutzer gleichzeitig, aber
auch ein einzelner Benutzer kann gleichzeitig mehrere Textfiles zum Drucker
schicken. Damit es nicht zu einem Durcheinander kommt, sorgt ein Dédmon, der
Line Printer Spooler, dafiir, daf§ sich die Druckauftrige (requests) in eine
Warteschlange einreihen und der Reihe nach zu dem jeweils verlangten Drucker
geschickt werden. Die Schreibberechtigung auf /dev/printer hat nur der Ddmon,
nicht der Benutzer.

Der Damon sorgt auch dafiir, dafl die Drucker richtig eingestellt werden, bei-
spielsweise auf Querformat oder deutschen Zeichensatz. Auf manchen Systemen
findet sich ein File /etc/printcap mit einer Beschreibung der Drucker, dhnlich
wie in /usr/1ib/terminfo oder /etc/termcap die Terminals beschrieben werden.

Das Kommando zum Drucken lautet:

1p -dlpl textfile
lpr -Plpl textfile

Die erste Form stammt aus der System-V-Welt, die zweite aus der BSD-Welt.
Die Option wéhlt in beiden Féllen einen bestimmten Drucker aus, fehlt sie,

2.7 Writer’s Workbench 129

wird der Default-Drucker genommen. Die Kommandos kennen weitere Optio-
nen, die mittels man nachzulesen sind. Mit dem Kommando lpstat(1l) oder
1pq(1) schaut man sich den Spoolerstatus an, Optionen per man(1) ermitteln.
Mit cancel request-id oder 1lprm(1) 16scht man einen Druckauftrag (nicht mit
kill(1)), auch fremde. Der Auftraggeber erhélt eine Nachricht, wer seinen Auf-
trag geloscht hat.

Bei der Einrichtung des Spoolers sind einige Punkte zu beachten. Wir wollen
sie anhand eines Shellscripts /etc/lpfix erldutern, das den laufenden Spooler
beendet und neu einrichtet. Dieses Shellscript wird auf unserer Anlage jede Nacht
vom cron aufgerufen und sorgt dafiir, dafl morgens die Druckerwelt in Ordnung
ist. Papier oder Toner fiillt es nicht nach.

echo "Start /etc/lpfix"

Skript zum Flottmachen des lp-Schedulers, 30.09.93
Auftraege nicht retten, Warteschlangen putzen.

usl=/usr/spool/lp # lp-Directory

plist="1pjet 1lpplus plot" # Liste der Drucker/Plotter
for p in $plist

do

/usr/lib/reject -rUnterbrechung $p # Auftragsannahme schliessen
done

/usr/1lib/1pshut # Jetzt herrscht Ruhe

rm -f $usl/pstatus $usl/qgstatus # Statusfiles putzen

touch $usl/pstatus $usl/qgstatus

chown 1lp $usl/pstatus $usl/gstatus

chgrp bin $usl/pstatus $usl/gstatus

rm -f $usl/SCHEDLOCK # Lockfile loeschen
interface-Files loeschen

rm -fr $usl/interface/* $usl/member/* $usl/request/*

Konfigurieren der Schnittstellen

stty 9600 opost onlcr ixon ixoff < /dev/lpplus &

stty 19200 -opost ixon ixoff < /dev/lpjet &

stty 9600 ixon ignbrk icanon isig clocal < /dev/plot_mux &
stty erase "°-" kill "°-" < /dev/plot_mux &

sleep 4 # Konfiguration dauert etwas

Neuinstallation /dev/lpjet

/usr/lib/lpadmin -plpjet -v/dev/lpjet -mlpjet -h
/usr/lib/accept lpjet

130 2 UNIX

/usr/bin/enable lpjet
Neuinstallation /dev/lpplus

/usr/lib/lpadmin -plpplus -v/dev/lpplus -mlpplus -h
/usr/lib/accept lpplus
/usr/bin/enable lpplus

Neuinstallation /dev/plot

/usr/lib/lpadmin -pplot -v/dev/plot -mhp7550a -h
/usr/lib/accept plot
/usr/bin/enable plot

/usr/lib/lpadmin -dlpjet # default printer
/usr/lib/lpsched # Start lp-Scheduler
echo "Ende 1pfix"

Programm 2.25 : Shellscript zum Flottmachen des Druckerspoolers

Das erste Spoolerkommando /usr/lib/reject(1M) — zu finden unter dem
Kommando accept (1M) — sorgt dafiir, dafl der Spooler keine Auftrige mehr ent-
gegennimmt. Ein Auftraggeber wird entsprechend unterrichtet. Das folgende Kom-
mando /usr/1ib/lpshut (1M) — unter lpsched(1M) beschrieben — beendet den
Spoolprozef3.

Dann werden einige Files des Spoolsystems geloscht und neu erzeugt, um
zu verhindern, daB Miill herumliegt und beim Start Arger macht. Das File
/usr/spool/1p/SCHEDLOCK ist ein sogenanntes Lockfile, das beim Starten des
Spoolers erzeugt wird, nichts enthélt und allein durch sein Vorhandensein darauf
hinweist, dafl in dem System bereits ein Spooler lduft. Es diirfen nicht mehrere
Spooler gleichzeitig arbeiten. Als néchstes werden etwaige Auftrége in den War-
teschlangen fiir die jeweiligen Drucker geléscht.

Mittels des Kommandos stty(1) werden die seriellen Drucker-Schnittstellen
(Multiplexer-Ports) konfiguriert. Diese Zeilen sind eine Wiederholung von Zeilen
aus dem Shellscript /etc/rc, das beim Systemstart (Booten) ausgefiihrt wird. Die
Bedeutung der Argumente findet sich aufler bei stty (1) auch unter termio (7).

SchlieBlich werden die Drucker mit dem Kommando /usr/1ib/lpadmin(1M)
wieder installiert. Dieses Kommando erwartet hinter der Option -p den Namen
des Druckers, unter dem er von den Benutzern angesprochen wird. Auf die Op-
tion -v folgt der Name des zugeordneten Druckers, wie er im Verzeichnis /dev
eingetragen ist. Dieser braucht nicht mit dem erstgenannten iibereinzustimmen.
Es konnen einem physikalischen Drucker (Hardware) mehrere logische Drucker
(Namen) zugeordnet werden. Der Spooler legt fiir jeden logischen Drucker eine
eigene Warteschlange an. Falls mehrere Warteschlangen {iber ein physikalisches
Gerét gleichzeitig herfallen, gibt es ein Durcheinander. Unter LINUX dient das
Kommando 1pc(8) der Verwaltung der Drucker.

Hinter der Option -m wird das Modell-File angegeben, ein Shellscript oder

2.7 Writer’s Workbench 131

kompiliertes Programm, das den zu druckenden Text bearbeitet, Druckersteuerse-
quenzen erginzt und das Ganze zum Drucker schickt. Hier bringt der System-
Manager ortliche Besonderheiten unter. Die Modell-Files finden sich im Ver-
zeichnis /usr/spool/lp/model. Sie sind zunéchst nur eine unverbindliche Samm-
lung von Shellscripts oder Programmen; erst das 1lpadmin(1M)-Kommando ord-
net einem logischen Drucker ein Modell-File zu, das dazu in das Verzeichnis
/usr/spool/lp/interface kopiert und dann Interface-File genannt wird.

Mit /usr/lib/accept (1M) wird die Auftragsannahme wieder geoffnet (Ge-
genstiick zu reject (1M)). Das Kommando /usr/bin/enable(1) aktiviert die
Drucker. Mit disable (1) konnte man einen Drucker voriibergehend unterbrechen
ohne die Auftragsannahme zu schlieflen, um beispielsweise Papier nachzulegen.

Zu guter Letzt startet /usr/1ib/1lpsched (1M) den Spooler wieder, und er be-
ginnt mit der Abarbeitung der Warteschlangen. 1pstat (1) mit der Option -t
zeigt zur Kontrolle den Status des gesamten Spoolsystems an. Mit dem Komman-
do 1p(1) iibergeben nun die Benutzer ihre Auftrige an den Spooler.

Auf unserer Maschine haben wir ein lokales Druckmenii p geschrieben, das
das Drucken von Textfiles fiir die Benutzer weiter vereinfacht. Es baut aus den
Antworten des Benutzers das UNIX-Kommando 1p(1) mit den entsprechenden
Optionen und Argumenten auf. Die Optionen werden von dem angesprochenen
Modell-File in Steuersequenzen fiir den Drucker umgesetzt. Das Menii und das
Modell-File arbeiten Hand in Hand. Da die Druckausgabe unterschiedlich gestaltet
werden kann, miissen Sie Thren System-Manager fragen.

Laserdrucker gehobener Preisklassen bieten heute meist eine Moglichkeit zum
unmittelbaren Anschlufi an ein Netz (Ethernet). Sie erhalten dann eine eigene
IP-Adresse im Internet und einen Namen wie ein Computer. Der Vorteil ist die
hohere Geschwindigkeit bei der Ubertragung der Daten, der Nachteil liegt darin,
da man die Daten nicht unmittelbar vor dem Drucken durch ein Skript filtern
kann, das beispielweise die Ausgabe von kompilierten Programmen oder unsin-
nigen Steuerzeichen abfingt. Aus mancherlei Griinden gehoren Druckerstérungen
in einem heterogenen Netz leider zum téglichen Brot der System-Manager.

2.7.13 Memo Writer’s Workbench

e Zeichen werden im Computer durch Nummern dargestellt. Die Zuordnung
Zeichen-Nummer findet sich in Zeichensatz-Tabellen wie US-ASCII. Die Ta-
belle legt damit auch fest, welche Zeichen iiberhaupt verfiighar sind, nicht
jedoch wie sie aussehen. Werden bei Ein- und Ausgabe unterschiedliche Ta-
bellen verwendet, gibt es Zeichensalat.

e Ein Editor ist ein Werkzeug zum Schreiben von Text. Auf irgendeine Weise
miissen die Editorkommandos vom Text unterschieden werden (Vergleiche
vi(1) und emacs(1)).

e Soll der Text in einer bestimmten Form ausgegeben werden, muf} er Forma-
tierkommandos enthalten, die sich von dem eigentlichen Text unterscheiden.
Die Formatierung vor der Ausgabe auf Drucker oder Bildschirm nehmen For-

matierprogramme vor. Verbreitete Formatiersprachen sind nroff (1), La-
TeX und HTML.

132

2 UNIX

Im Gegensatz zu Editoren stehen Wortprozessoren (What You See Is What
You Get), bei denen man sofort beim Eingeben die Formatierung sieht. Hier
gibt es jedoch unterschiedliche, nicht miteinander vertrégliche Welten. Au-
Berdem kann man mit den vorgenannten Formatierprogrammen noch mehr
machen als mit Wortprozessoren, bei entprechendem Lernaufwand.

Neben Editoren und Formatierern enthélt UNIX eine Vielzahl kleine-
rer Werkzeuge zur Textbearbeitung (grep(1), sort(1), diff(1), awk(1)
usw.).

Die Zeilenstruktur eines Textes wird in UNIX, in MS-DOS und auf Macs
durch unterschiedliche Zeichen dargestellt, so dafl gelegentlich Umformungen
notig werden.

Die Verschliisselung ist beim Arbeiten in Netzen der einzige Schutz vor un-
befugten Zugriffen auf Daten wéhrend einer Ubertragung.

Ein symmetrischer Schliissel dient sowohl zum Ver- wie zum Entschliisseln
und muf} daher auf einem sicheren Weg dem Empfinger der verschliisselten
Nachrichten iiberbracht werden.

Bei einer unsymmetrischen Verschliisselung besitzt man ein Paar von
Schliisseln, einer davon darf veroffentlicht werden. Entweder verschliisselt
man mit dem geheimen, privaten Schliissel und entschliisselt mit dem o6ffent-
lichen oder umgekehrt.

2.7.14 Ubung Writer’s Workbench

Anmelden wie gewohnt. Sphreiben Sie mit dem Editor vi(1) einen knapp zwei-
seitigen Text mit einer Uberschrift und einigen Absétzen. Das Textfile heifle
beispiel. Spielen Sie mit folgenden und weiteren Werkzeugen:

tr "[A-Z]" "[a-z]" < beispiel > beispiel.k
cmp beispiel beispiel.k

sed ’s/[A-Z]/[a-z]/g’ beispiel

grep —-i unix beispiel

spell beispiel

fold -50 beispiel

adjust -j —m60 beispiel

wc beispiel

Verzieren Sie das Beipiel mit nroff (1)-Kommandos, lassen Sie es durch nroff (1)
laufen und sehen Sie sich die Ausgabe auf dem Bildschirm und auf Papier an. Zum
Drucken nroff (1) und Druckkommando durch Pipe verbinden.

Bearbeiten Sie Thren Text mit dem Shellscript frequenz. Welche Worter kom-

men héufig vor, welche selten? Wo tauchen Tippfehler wahrscheinlich auf? Suchen
Sie die Tippfehler in Threm Text mit dem vi(1) (Schrégstrich).

2.8 Programmer’s Workbench 133

Schreiben Sie eine unsortierte zweispaltige Liste mit Familiennamen und Te-
lefonnummern. Das File namens liste soll auch einige mehrfache Eintragungen
enthalten. Bearbeiten Sie es wie folgt:

sort liste

sort -u liste

sort -d liste

sort +1 -2 liste

sort liste | uniq

sort liste | cut -f1

sort liste | awk ’$1 != prev {print; prev = $1 }’

Untersuchen Sie mit dem Shellscript zur Textanalyse einen leichten Text - aus
einer Tageszeitung etwa - und einen schwierigen. Wir empfehlen IMMANUEL KANT
Der Streit der Fakultiten, immer aktuell. Wo sind Thre eigenen Texte einzuordnen?
Beenden der Sitzung mit exit.

2.8 Programmer’s Workbench

Unter der Werkbank des Programmierers werden Werkzeuge zusammengefaft, die
beim Programmieren benotigt werden. Auf UNIX-Anlagen, die nicht zur Pro-
grammentwicklung eingesetzt werden, konnen sie fehlen.

2.8.1 Nochmals die Editoren

Editoren wurden bereits im Abschnitt 2.7 Writer’s Workbench erlautert. Hier geht
es nur um einige weitere Eigenschaften des Editors vi(1), die beim Schreiben von
Programmquellen von Belang sind.

Im Quellcode werden iiblicherweise Schleifenriimpfe und dergleichen um eine
Tabulatorbreite eingeriickt, die als Default 8 Leerzeichen entspricht. Bei geschach-
telten Schleifen gerit der Text schnell an den rechten Seitenrand. Es empfiehlt sich,
in dem entsprechenden Verzeichnis ein File .exrc mit den Zeilen:

set tabstop=4
set showmatch
set number

anzulegen. Die Option showmatch veranlafit den vi(1), bei jeder Eingabe einer
rechten Klammer kurz zur zugehorigen linken Klammer zu springen. Die Opti-
on number fiihrt zur Anzeige der Zeilennummern, die jedoch nicht Bestandteil
des Textes werden. Eine Zeile set 1lisp ist eine Hilfe beim Eingeben von LISP-
Quellen.

Steht der Cursor auf einer Klammer, so 1afit das Kommando % den Cursor zur
Gegenklammer springen und dort verbleiben.

Auch beim emacs(1) gibt es einige Wege, das Schreiben von Quellen zu er-
leichtern, insbesondere natiirlich, falls es um LISP geht.

134 2 UNIX

2.8.2 Compiler und Linker (cc, ccom, 1d)

Auf das Schreiben der Quelltexte mit einem Editor folgt ihre Ubersetzung in die
Sprache der jeweiligen Maschine mittels eines Ubersetzungsprogrammes, meist
eines Compilers. Jedes vollstindige UNIX-System enthélt einen C-Compiler;
Compiler fiir weitere Programmiersprachen sind optional. Auf unserer Anlage
sind zusétzlich ein FORTRAN- und ein PASCAL-Compiler vorhanden, wobei von
FORTRAN gegenwiirtig die Versionen 77 und 90 nebeneinander laufen.

Kompilieren bedeutete vor der EDV-Zeit zusammentragen. Im alten Rom hat-
te es auch noch die Bedeutung von pliindern. In unseren Herzensergiefungen ha-
ben wir viel aus Biichern, Zeitschriften, WWW-Seiten und Netnews kompiliert.

Ein Compiler iibersetzt den Quellcode eines Programmes in Maschinenspra-
che. Die meisten Programme enthalten Aufrufe von externen Programmodulen,
die bereits voriibersetzt und in Bibliotheken zusammengefafit sind. Beispiele sind
Ausgaberoutinen oder mathematische Funktionen. Der ausfiihrbare Code dieser
externen Module wird erst vom Linker?! mit dem Programmcode vereinigt, so daf3
ein vollsténdiges ausfithrbares Programm entsteht. Es gibt die M6glichkeit, die ex-
ternen Module erst zur Laufzeit hinzuzunehmen; das heifit dynamisches Linken
und spart Speicherplatz. Benutzen mehrere Programme ein in den Arbeitsspeicher
kopiertes Modul gemeinsam anstatt jeweils eine eigene Kopie anzulegen, so kommt
man zu den Shared Libraries und spart nochmals Speicherplatz.

Die Aufrufe lauten cc(1), £77(1), £90(1) und pc(1). Diese Kommandos
rufen Compilertreiber auf, die ihrerseits die eigentlichen Compiler /1ib/ccom,
f77comp, £90comp und pascomp starten und noch weitere Dinge erledigen. Ohne
Optionen rufen die Compilertreiber auch noch den Linker /bin/1d (1) auf, so dafl
das Ergebnis ein lauffidhiges Programm ist, das als Default den Namen a.out (4)
tragt. Mit dem Namen a.out(4) sollte man nur voriibergehend arbeiten (mit
mv (1) dndern). Der Aufruf des C-Compilers sieht beispielsweise so aus:

cc —-g source.c -lm

Die Option -g veranlafit den Compiler, zusitzliche Informationen fiir den sym-
bolischen Debugger zu erzeugen. Der Quelltext des C-Programmes steht im File
source.c, das einen beliebigen Namen tragen kann, nur sollte der Name mit der
Kennung .c enden. Die abschlieBende Option -1m fordert den Linker auf, die
mathematische Bibliothek einzubinden. Weitere Optionen sind:

e -v (verbose) fiihrt zu etwas mehr Bemerkungen beim Ubersetzen,

e -0 (output) benennt das ausfiilhrbare File mit dem auf die Option
folgenden Namen, meist derselbe wie die Quelle, nur ohne Kennung:
cC -0 myprogram myprogram.c,

e —c hort vor dem Linken auf, erzeugt Objektfile mit der Kennung .o,

e -p (profile) erzeugt beim Ablauf des Programmes ein File mon.out, das mit
dem Profiler prof (1) ausgewertet werden kann, um Zeitinformationen zum
Programm zu erhalten,

2ILinker werden auch Binder, Mapper oder Loader genannt. Manchmal wird auch
zwischen Binder und Loader unterschieden, soll uns hier nicht beschéftigen.

2.8 Programmer’s Workbench 135

e -0 optimiert das ausfithrbare Programm oder auch nicht.

Speichermodelle wie unter MS-DOS gibt es in UNIX nicht. Hat man Speicher,
kann man ihn uneingeschrinkt nutzen.

Fiir C-Programme gibt es einen Syntax-Priifer namens 1lint(1), den
man unbedingt verwenden sollte. Er reklamiert nicht nur Fehler, sondern auch
Stilméngel. Manchmal beanstandet er auch Dinge, die man bewuf}t gegen die Re-
geln geschrieben hat. Man muf} seinen Kommentar sinnvoll interpretieren. Aufruf:

lint source.c

Ferner gibt es fiir C-Quelltexte einen Beautifier namens cb(1), der den Text
in eine standardisierte Form mit Einriickungen usw. bringt und die Lesbarkeit
erleichtert:

cb source.c > source.b

Wenn man mit dem Ergebnis source.b zufrieden ist, 16scht man das urspriingliche
File source.c und benennt source.b in source.c um.

2.8.3 Unentbehrlich (make)

Groflere Programme sind stark gegliedert und auf mehrere bis viele Files und
Verzeichnisse verteilt. Der Compileraufruf wird dadurch ldnglich, und die Wahr-
scheinlichkeit, etwas zu vergessen, steigt. Hier hilft make (1). Man schreibt einmal
alle Angaben fiir den Compiler in ein makefile (auch Makefile) und ruft dann
zum Kompilieren nur noch make(1) auf. Auch fiir Manuskripte ist make(1) zu
gebrauchen. Eigentlich 148t sich mit Makefiles fast alles erledigen, was man auch
mit Shellscripts macht, die Stirke von make (1) liegt jedoch im Umgang mit Files
unter Beachtung der Zeitstempel. Umgekehrt kann man auch mit Shellscripts fast
alles bewiltigen, was make (1) leistet, nur umsténdlicher.

Man lege fiir das Projekt ein eigenes Unterverzeichnis an, denn make (1) sucht
zunichst im Arbeits-Verzeichnis. Das makefile beschreibt die Abhéingigkeiten der
Programmteile voneinander und enthéilt die Kommandozeilen zu ihrer Erzeugung.
Ein einfaches makefile sieht so aus (Zeilen mit Kommandos miissen durch einen
Tabulatorstop — nicht durch Spaces — eingeriickt sein):

pgm: a.o b.o

cc a.o b.o -o pgm
a.o: incl.h a.c

cc -c a.c
b.o: incl.h b.c

cc -¢c b.c

Programm 2.26 : Einfaches make-File

und ist folgendermaflen zu verstehen:

e Das ausfiihrbare Programm (Ziel, Target) namens pgm héngt ab von den
Modulen im Objektcode a.o und b.o. Es entsteht durch den Compileraufruf
cc a.o b.o -o pgm.

136 2 UNIX

e Das Programmodul a.o hédngt ab von dem include-File incl.h und dem
Modul im Quellcode a.c. Es entsteht durch den Aufruf des Compilers mit
cc —c a.c. Die Option - c unterbindet das Linken.

e Das Programmodul b.o hiingt ab von demselben include-File und dem Mo-
dul im Quellcode b.c. Es entsteht durch den Compileraufruf cc -c b.c.

Ein makefile ist dhnlich aufgebaut wie ein Backrezept: erst werden die Zutaten
aufgelistet, dann folgen die Anweisungen. Zu beachten ist, dafl man mit dem Ziel
beginnt und riickwérts bis zu den Quellen geht.

make (1) verwaltet auch verschiedene Versionen der Programmodule und paf}t
auf, dafl eine neue Version in alle betroffenen Programmteile eingebunden wird.
Umgekehrt wird eine aktuelle Version eines Moduls nicht unnétigerweise kompi-
liert. Warum wird im obigen Beispiel das include-File incl.h ausdriicklich ge-
nannt? Der Compiler weifl doch auf Grund einer entsprechenden Zeile im Quell-
text, daf} dieses File einzubinden ist? Richtig, aber make (1) muf} das auch wissen,
denn das include-File kénnte sich &ndern, und dann miissen alle von ihm abhéngi-
gen Programmteile neu iibersetzt werden. make (1) schaut nicht in die Quellen hin-
ein, sondern nur auf die Zeitstempel der jiingsten Anderungen. Unverinderliche
include-Files wie stdio.h brauchen nicht im makefile aufgefiihrt zu werden.

Nun ein etwas umfangreicheres Beispiel, das aber ldngst noch nicht alle Fahig-
keiten von make (1) ausreizt:

Kommentar, wie ueblich
CC = /bin/cc

CFLAGS =

FC = /usr/bin/f77
LDFLAGS = -1cl

all: csumme fsumme clean

csumme: csumme.C CSV.O0 CSTr.O
$(CC) -0 csumme csumme.C CSV.0 CSI.O

CSV.0: CSV.C
$(CC) -c csv.c

cSr.o: csr.c
$(CC) -c csr.c

fsumme: fsumme.c fsr.o
$(CC) -o fsumme fsumme.c fsr.o $(LDFLAGS)

fsr.o: fsr.f
$(FC) -c fsr.f

clean:
rm *.0

Programm 2.27 : Makefile mit Makros und Dummy-Zielen

2.8 Programmer’s Workbench 137

Zunichst werden einige Makros definiert, z. B. der Compileraufruf ¢C. Uber-
all, wo im Makefile das Makro mittels $(CC) aufgerufen wird, wird es vor der
Ausfithrung wortlich ersetzt. Auf diese Weise kann man einfach einen anderen
Compiler wihlen, ohne im ganzen Makefile per Editor ersetzen zu miissen. Dann
haben wir ein Dummy-Ziel all, das aus einer Aufzihlung weiterer Ziele besteht.
Mittels make all wird dieses Dummy-Ziel erzeugt, d. h. die aufgezéhlten Ziele.
Unter diesen befindet sich auch eines namens clean, das ohne Zutaten daher-
kommt und offenbar nur bestimmte Tétigkeiten wie das Loschen temporérer File
bezweckt. Ein Dummy-Ziel ist immer out-of-date, die zugehorigen Kommandos
werden immer ausgefiihrt. Ein weiteres Beispiel fiir make (1) findet sich in Ab-
schnitt 7?7 Arrays von Funktionen.

Im GNU-Projekt wird Software im Quellcode fiir verschiedene Systeme
verdffentlicht. In der Regel mufi man die Quellen auf der eigenen Anlage kom-
pilieren. Infolgedessen gehéren zu den GNU-Programmen fast immer umfangrei-
che Makefiles oder sogar Hierarchien davon. Ubung im Gebrauch von make (1)
erleichtert die Einrichtung von GNU-Software daher erheblich. Oft wird ein an
das eigene System angepafites Makefile erst durch ein Kommando ./configure
erzeugt. Die Reihenfolge bei solchen Programmeinrichtungen lautet dann:

./configure
make

make install
make clean

wobei make install Schreibrechte in den betroffenen Verzeichnissen erfordert,
also meist Superuserrechte. Die hiufigsten Uberraschungen beim Einrichten von
GNU-Software sind:

e Fehlende include-Files oder Funktionsbibliotheken, irgendwoher beschaffen,

e die Files sind zwar vorhanden, liegen aber im falschen Verzeichnis (in diesem
Fall Links anlegen),

e es ist zwar alles an Ort und Stelle, aber die Typen der Argumente und
Riickgabewerte sind anders, als sie die GNU-Software erwartet. Dann passen
irgendwelche Versionen nicht zueinander, und es ist Hand- und Hirnarbeit
angesagt.

Ein allgemeines Rezept 148t sich nicht angeben. Gelegentlich hatten wir mit dem
Editieren der Makefiles Erfolg, manchmal auch nicht. Dann kann man sich noch
nach der neuesten Version der GNU-Software umschauen oder eine Email an den
Autor schreiben. Es kommen aber auch angenehme Uberraschungen vor, und die
GNU-Software ist den Versuch der Einrichtung allemal wert. Zudem kann man
einiges iiber das Programmieren portabler Software und die Struktur von Pro-
grammen lernen.

138 2 UNIX

2.8.4 Debugger (xdb)

Programme sind Menschenwerk und daher fehlerhaft??. Es gibt keine Méglich-
keit, die Fehlerfreiheit eines Programmes festzustellen oder zu beweisen aufler in
trivialen oder idealen Féllen.

Die Fehler lassen sich in drei Klassen einteilen. Verstofle gegen die Regeln
der jeweiligen Programmiersprache heilen Grammatikfehler oder Syntaxfeh-
ler. Sie fiihren bereits zu einem Abbruch des Kompiliervorgangs und lassen sich
schnell lokalisieren und beheben. Der C-Syntax-Priifer 1int ist das beste Werk-
zeug zu ihrer Entdeckung. wihle statt while wéire ein einfacher Syntaxfehler.
Fehlende oder unpaarige Klammern sind auch beliebt, deshalb enthilt der vi (1)
eine Funktion zur Klammerpriifung. Unzuldssige Operationen mit Pointern sind
ebenfalls an der Tagesordnung.

Falls das Programm die Kompilation ohne Fehlermeldung hinter sich gebracht
hat, startet man es. Dann melden sich die Laufzeitfehler, die unter Umstéinden
nur bei bestimmten und womdglich seltenen Parameterkonstellationen auftreten.
Ein typischer Laufzeitfehler ist die Division durch eine Variable, die manchmal den
Wert Null annimmt. Die Fehlermeldung lautet Floating point exception. Ein ande-
rer hiufig vorkommender Laufzeitfehler ist die Uberschreitung von Arraygrenzen
oder die Verwechslung von Variablen und Pointern, was zu einem Memory fault,
einem Speicherfehler fiihrt.

Die dritte Klasse bilden die logischen Fehler oder Denkfehler. Sie werden
auch semantische Fehler genannt. Das Programm arbeitet einwandfrei, nur tut
es nicht das, was sich der Programmierer vorgestellt hat. Ein typischer Denkfehler
ist das Verzihlen bei den Elementen eines Arrays oder bei Schleifendurchgingen
um genau eins. Hier hilft der Computer nur wenig, da der Armste ja gar nicht weif,
was sich der Programmierer vorstellt. Diese Fehler kosten viel Miihe, doch solcher-
lei Verdriisse pflegen die Denkungskrifte anzuregen, meint WILHELM BUSCH und
hat recht.

Eine vierte Fehlerklasse liegt fast schon auflerhalb der Verantwortung des Pro-
grammierers. Wenn das mathematische Modell zur Beschreibung eines realen
Problems ungeeignet ist, mag das Programm so fehlerarm sein wie es will, sei-
ne Ergebnisse gehen an der Wirklichkeit vorbei. Fiir bestimmte Zwecke ist eine
Speisekarte ein brauchbares Modell einer Mahlzeit, fiir andere ein unbrauchbares.

Ein Fehler wird im Englischen auch als bug bezeichnet, was soviel wie Wanze
oder Laus bedeutet. Ein Programm zu entlausen heifit Debugging. Dazu braucht
man einen Debugger (déverminateur, déboguer). Das sind Programme, unter de-
ren Kontrolle das verlauste Programm ablduft. Man hat dabei vielfiltige M&glich-
keiten, in den Ablauf einzugreifen. Ein absoluter Debugger wie der adb(1) be-
zieht sich dabei auf das lauffihige Programm im Arbeitsspeicher — nicht auf den

22Es irrt der Mensch, so lang er strebt. GOETHE, Faust. Oder errare humanum
est, wie wir Lateiner sagen. Noch etwas dlter: auapTwlar ev avdpwrorowv emovTal
JdvnTows. Die entsprechende Aussage in babylonischer Keilschrift aus dem Codex Kom-
bysis konnen wir leider aus Mangel an einem TeX-Font vorldufig nicht wiedergeben. In
der nichsten Auflage werden wir jedoch eine eingescannte Zeichnung aus der Hohle von
Rienne-Vaplus zeigen, die als die dlteste Dokumentation obiger Weisheit gilt.

2.8 Programmer’s Workbench 139

Quellcode — und ist somit fiir die meisten Aufgaben wenig geeignet. Ein symbo-
lischer Debugger wie der sdb(1) oder der xdb(1) bezieht sich auf die jeweilige
Stelle im Quelltext?®. Debugger sind méchtige und hilfreiche Werkzeuge. Manche
Programmierer gehen so weit, dafl sie das Schreiben eines Programms als Debug-
gen eines leeren Files bzw. eines weifien Blattes Papier ansehen. In der Ubung
wird eine einfache Anwendung des Debuggers vorgefiihrt.

Falls Sie auch mit dem UNIX-Debugger nicht alle Wiirmer in [hrem Programm
finden und vertreiben konnen, méchten wir [hnen noch ein altes Hausrezept ver-
raten, das aus einer Handschrift des 9. Jahrhunderts stammt. Das Rezept ist im
Raum Wien — Miinchen entstanden und unter den Namen Contra vermes oder
Pro nescia bekannt. Leider ist das README-File, das die Handhabung erklart, ver-
lorengegangen. Wir schlagen vor, die Zeilen als Kommentar in das Programm
einzufiigen. Hier der Text:

Gang ut, nesso, mid nigun nessiklinon,
ut fana themo marge an that ben,

fan thémo béne an that flesg,

ut fan themo flesgke an thia hud,

ut fan thera hiid an thesa strala.
Drohtin. Uuerthe so!

2.8.5 Profiler (time, gprof)

Profiler sind ebenfalls Programme, unter deren Kontrolle ein zu untersuchendes
Programm abléduft. Ziel ist die Ermittlung des Zeitverhaltens in der Absicht, das
Programm schneller zu machen. Ein einfaches UNIX-Werkzeug ist time (1):

time prim 1000000
Die Ausgabe sieht so aus:

real Om 30.65s
user Om 22.53s
Sys Om 1.07s

und bedeutet, daf die gesamte Laufzeit des Programms prim 30.65 s betrug, da-
von entfielen 22.53 s auf die Ausfiihrung von Benutzeranweisungen und 1.07 s auf
Systemtitigkeiten. Die Ausgabe wurde durch einen Aufruf des Primzahlenpro-
gramms aus Abschnitt ?? Ein Herz fiir Pointer erzeugt, das selbst Zeiten mittels
des Systemaufrufs time (2) mifit und rund 22 s fiir die Rechnung und 4 s fiir die
Bildschirmausgabe meldet.

Ein weiterer Profiler ist gprof (1). Seine Verwendung setzt voraus, dafl das
Programm mit der Option -G kompiliert worden ist. Es wird gestartet und erzeugt
neben seiner normalen Ausgabe ein File gmon.out, das mit gprof (1) betrachtet
wird. Besser noch lenkt man die Ausgabe von gprof (1) in ein File um, das sich
lesen und editieren l&ft:

23Real programmers don’t use source language debuggers.

140 2 UNIX
gprof prim > prim.gprofile
Eine stark gekiirzte Analyse mittels gprof (1) sieht so aus:
Jtime the percentage of the total running time of the
program used by this function.
cumsecs a running sum of the number of seconds accounted
for by this function and those listed above it.
seconds the number of seconds accounted for by this
function alone. This is the major sort for this
listing.
calls the number of times this function was invoked, if
this function is profiled, else blank.
name the name of the function. This is the minor sort
for this listing.
Jtime cumsecs seconds calls msec/call name
52.1 12.18 12.18 $$remU
22.2 17.38 5.20 $$mulU
20.8 22.26 4.87 333332 0.01 ttest
2.1 22.74 0.49 9890 0.05 _doprnt
0.8 22.93 0.19 _mcount
0.6 23.08 0.15 $$divide_by_constant
0.6 23.22 0.14 1 140.00 main
0.3 23.29 0.07 9890 0.01 _memchr
0.2 23.34 0.05 _write_sys
0.1 23.36 0.02 9890 0.00 _printf
0.0 23.37 0.01 9887 0.00 _write
0.0 23.38 0.01 9887 0.00 _xflsbuf
0.0 23.39 0.00 9890 0.00 _wrtchk
0.0 23.39 0.00 1 0.00 _sscanf
0.0 23.39 0.00 1 0.00 _start
0.0 23.39 0.00 1 0.00 _strlen
0.0 23.39 0.00 1 0.00 atexit
0.0 23.39 0.00 1 0.00 exit
0.0 23.39 0.00 1 0.00 ioctl

Wir sehen, dafl die Funktion ttest() sehr oft aufgerufen wird und 4,87 s ver-
brit. Die beiden ersten Funktionen werden vom Compiler zur Verfiigung gestellt
(Millicode aus /usr/1ib/milli.a) und liegen auBerhalb unserer Reichweite.

Fiir genauere Auskiinfte zieht man den Systemaufruf times(2), den De-
bugger oder das UNIX-Kommando prof (1) in Verbindung mit der Subroutine
monitor(3) heran.

2.8 Programmer’s Workbench 141

2.8.6 Archive, Bibliotheken (ar)

Viele Teilaufgaben in den Programmen wiederholen sich immer wieder. Das sind
Aufgaben, die mit dem System zu tun haben, Befehle zur Bildschirmsteuerung,
mathematische Berechnungen wie Logarithmus oder trigonometrische Funktionen,
Datenbankfunktionen oder Funktionen zur Abfrage von Mefigerdten am Bus.

Damit man diese Funktionen nicht jedesmal neu zu erfinden braucht, wer-
den sie in Bibliotheken gepackt, die dem Programmierer zur Verfiigung stehen.
Teils stammen sie vom Hersteller des Betriebssystems (also urspriinglich AT&T),
teils vom Hersteller der Compiler (bei uns Hewlett-Packard und GNU) oder der
Anwendungssoftware, teils von Benutzern. Bibliotheken enthalten Programmbau-
steine, es lassen sich aber auch andere Files (Texte, Grafiken) in gleicher Weise
zusammenfassen. Dann spricht man allgemeiner von Archiven. Aufler den Files
enthalten Archive Verwaltungsinformationen (Index) zum schnellen Finden der
Inhalte. Diese Informationen wurden frither mit dem Kommando ranlib(1) ei-
gens erzeugt, heute erledigt ar(1) das mit. Die Verwendung von Bibliotheken
beim Programmieren wird in Abschnitt 77 Funktions-Bibliotheken erldutert.

Aufler den mit dem Compiler gelieferten Bibliotheken kann man zusétzlich
erworbene oder selbst erstellte Bibliotheken verwenden. Im Handel sind beispiels-
weise Bibliotheken mit Funktionen fiir Bildschirmmasken, zur Verwaltung index-
sequentieller Files, fiir Grafik, zur Mefiwerterfassung und -aufbereitung und fiir
besondere mathematische Aufgaben. Auch aus dem Netz laufen Bibliotheken zu.
Eigene Bibliotheken erzeugt man mit dem UNIX-Kommando ar(1); das Filefor-
mat ist unter ar (4) beschrieben. Ein Beispiel zeige den Gebrauch. Wir haben ein
Programm statistik.c zur Berechnung von Mittelwert und Varianz der in der
Kommandozeile mitgegebenen ganzen Zahlen geschrieben:

/* Statistische Auswertung von eingegebenen Werten
Privat-Bibliothek ./libstat.a erforderlich
Compileraufruf cc statistik.c -L . -lstat

*/

#define MAX 100 /* max. Anzahl der Werte x/
#include <stdio.h>

void exit(); double mwert(), varianz();
main(int argc, char *argvl[])

{
int i, a[MAX];

if (argc < 3) {
puts("Zuwenig Werte"); exit(-1);
+

if (argc > MAX + 1) {
puts ("Zuviel Werte"); exit(-1);
+

142 2 UNIX

/* Uebernahme der Werte in ein Array */
al0] = argc - 1;

for (i = 1; i < argc; i++) {
sscanf (argv[i], "%d", a + i);

}
/* Ausgabe des Arrays */

for (1 = 1; i < argc; i++) {
printf ("%d\n", alil);
}

/* Rechnungen */

printf ("Mittelwert: %f\n", mwert(a));
printf ("Varianz: %f\n", varianz(a));

return O;

¥

Programm 2.28 : C-Programm Statistik mit Benutzung einer eigenen Funktions-
bibliothek

Das Programm verwendet die Funktionen mwert () und varianz(), die wir aus
einer hausgemachten Funktionsbibliothek namens 1ibstat.a entnehmen. Der im
Kommentar genannte Compileraufruf mit der Option -L . veranlaflt den Linker,
diese Bibliothek im Arbeits-Verzeichnis zu suchen. Die Funktionen sehen so aus:

double mwert (x)
int *x;

{

int j, k;
double m;

for (j =1, k =0; j <= *xx; j++) {
k =k + x[jl;

+

m = (double)k / (double)*x;

return m;

¥

Programm 2.29 : C-Funktion Mittelwert ganzer Zahlen

extern double mwert();

double varianz(x)
int *x;

{

int j;

double m, s, v;

2.8 Programmer’s Workbench 143

m = mwert(x);

for (j =1, s =0; j <= *x; j++) {
*

s =s + (x[3j] -) x[j] - m);
}

v=s/ (xx - 1);

return v;

}

Programm 2.30 : C-Funktion Varianz ganzer Zahlen

Diese Funktionen werden mit der Option -c¢ kompiliert, so da} wir zwei Ob-
jektfiles mwert.o und varianz.o erhalten. Mittels des Aufrufes

ar -r libstat.a mwert.o varianz.o

erzeugen wir die Funktionsbibliothek 1ibstat.a, auf die mit der Compileroption
-1stat zugegriffen wird. Der Vorteil der Bibliothek liegt darin, dafl man sich
nicht mit vielen einzelnen Funktionsfiles herumzuschlagen braucht, sondern mit
der Compileroption gleich ein ganzes Biindel verwandter Funktionen erwischt.
In das Programm eingebunden werden nur die Funktionen, die wirklich bené&tigt
werden.

Merke: Ein Archiv ist weder verdichtet noch verschliisselt. Dafiir sind andere
Werkzeuge (gzip(1), crypt (1)) zusténdig.

2.8.7 Weitere Werkzeuge

Das Werkzeug cflow(1l) ermittelt die Funktionsstruktur zu einer Gruppe von
C-Quell- und Objektfiles. Der Aufruf:

cflow statistik.c
liefert auf stdout

main: int(), <statistik.c 15>
puts: <>

exit: <>

sscanf: <>

printf: <>

mwert: <>

varianz: <>

~NOoO O WN -

was besagt, dafl die Funktion main() vom Typ int ist und in Zeile 15 des Quell-
textes statistik.c definiert wird. main() ruft seinerseits die Funktionen puts,
exit, sscanf und printf auf, die in statistik.c nicht definiert werden, da
sie Teil der Standardbibliothek sind. Die Funktionen mwert und varianz werden
ebenfalls aufgerufen und nicht definiert, da sie aus einer Privatbibliothek stam-
men.

Das Werkzeug cxref (1) erzeugt zu einer Gruppe von C-Quellfiles eine Kreuz-
referenzliste aller Symbole, die nicht rein lokal sind. Der Aufruf

144 2 UNIX

cxref fehler.c

gibt nach stdout eine Liste aus, deren erste Zeilen so aussehen:

fehler.c:

SYMBOL FILE FUNCTION LINE

BUFSIZ /usr/include/stdio.h - *10

EOF /usr/include/stdio.h -- 70 *71

FILE /usr/include/stdio.h - x18 78 123
127 128 201
223

FILENAME_MAX /usr/include/stdio.h - *67

FOPEN_MAX /usr/include/stdio.h - *68

L_ctermid /usr/include/stdio.h - x193

L_cuserid /usr/include/stdio.h - *x194

L_tmpnam /usr/include/stdio.h - *61

NULL /usr/include/stdio.h - 35 %36

PI fehler.c -- *27

P_tmpdir /usr/include/stdio.h -- *209

SEEK_CUR /usr/include/stdio.h - *55

SEEK_END /usr/include/stdio.h - *56

SEEK_SET /usr/include/stdio.h - 53 *54

TMP_MAX /usr/include/stdio.h - 63 *64

_CLASSIC_ANSI_TYPES /usr/include/stdio.h - 162

Durch das include-File stdio.h und gegebenenfalls durch Bibliotheksfunktionen
kommen viele Namen in das Programm, von denen man nichts ahnt. Ferner gibt
es einige Werkzeuge zur Ermittlung und Bearbeitung von Strings in Quellfiles und
ausfithrbaren Programmen, teilweise beschrénkt auf C-Programme.

2.8.8 Programmverwaltung mit RCS und SCCS

Groflere Projekte werden von zahlreichen, unter Umstdnden wechselnden Pro-
grammierern gemeinsam bearbeitet. Es hat auch schon Projekte gegeben, deren
Programmierer iiber alle Kontinente und verschiedene Firmen verstreut waren. In
der Regel werden die so entstandenen Programmpakete iiber Jahre hinweg wei-
terentwickelt und vielleicht auf mehrere Systeme portiert. Das von WALTER F.
TicHY entwickelte Revision Control System RCS ist ein Werkzeug, um bei
der Entwicklung von Programmen Ordnung zu halten. Es ist einfach handzuhaben
und vertrigt sich gut mit make (1). Das RCS erledigt drei Aufgaben:

e Es fithrt Buch iiber die Anderungen an den Quelltexten.

e Es ermoglicht, <ere Versionen wiederherzustellen,
vollstiandig gespeichert zu werden brauchen (Differenzen).

ohne daf} diese

e Es verhindert gleichzeitige schreibende Zugriffe mehrerer Benutzer auf einen
Quelltext.

2.8 Programmer’s Workbench 145

Sowie es um mehr als Wegwerfprogramme geht, sollte man make(1) und RCS
einsetzen. Arbeiten mehrere Programmierer an einem Projekt, kommt man um
RCS oder Ahnliches nicht herum. Beide Werkzeuge sind auch fiir Manuskripte
oder WWW-Files zu verwenden. RCS ist in den meisten LINUX-Distributionen
enthalten. Man beginnt folgendermafien:

e Unterverzeichnis anlegen, hineingehen.

e Mit einem Editor die erste Fassung des Quelltextes schreiben. Irgendwo
im Quelltext - z. B. im Kommentar - sollte $Header$ vorkommen, siehe
unten. Dann iibergibt man mit dem Kommando ci filename (check in)
das File dem RCS. Dieses erginzt das File durch Versionsinformationen
und macht ein nur lesbares RCS-File (444) mit der Kennung ,v daraus. Das
urspriingliche File 16schen.

e Mit dem Kommando co filename (ohne ,v) (check out) bekommt man
eine Kopie seines Files zuriick, und zwar nur lesbar. Diese Kopie kann man
mit allen UNIX-Werkzeugen bearbeiten, nur das Zuriickschreiben mittels ci
verweigert das RCS.

e Mit dem Kommando co -1 filename wird eine les- und schreibbare Kopie
erzeugt. Dabei wird das RCS-File fiir weitere, gleichzeitige Schreibzugrif-
fe gesperrt (1 = lock). Die Kopie kann man mit allen UNIX-Werkzeugen
bearbeiten, Umbenennen wire jedoch ein schlechter Einfall.

e Beim Zuriickstellen mittels ci filename hat man Gelegenheit, einen kurzen
Kommentar in die Versionsinformationen zu schreiben, z. B. Grund und
Umfang der Anderung.

Das ist fiir den Anfang alles. Die RCS-Kommandos lassen sich in Makefiles ver-
wenden. Die vom RCS vergebenen Zugriffsrechte kénnen von UNIX-Kommandos
iiberrannt werden, aber das ist nicht Sinn der Sache. Der Einsatz von RCS setzt
voraus, daf} sich die Beteiligten an die Disziplin halten. Hier ein Makefile mit
RCS-Kommandos fiir das nachstehende Sortierprogramm:

makefile zu mysort.c, im RCS-System
$Header: makefile,v 1.5 95/07/04 14:56:09 wualexl Exp $

CC = /bin/cc
CFLAGS = -Aa -DDEBUG

all: mysort clean

mysort: mysort.o bubble.o
$(CC) $(CFLAGS) -o mysort mysort.o bubble.o

mysort.o: mysort.c myheader.h
$(CC) $(CFLAGS) -c mysort.c

bubble.o: bubble.c myheader.h
$(CC) $(CFLAGS) -c bubble.c

mysort.c: mysort.c,v

146 2 UNIX

Cco mysort.c

bubble.c: bubble.c,v
co bubble.c

myheader.h: myheader.h,v
co myheader.h

clean:
/bin/rm -f *.c *.0 *.h makefile

Programm 2.31 : Makefile zum Sortierprogramm mysort.c

Da dieses Beispiel sich voraussichtlich zu einer kleinen Familie von Quelltexten
ausweiten wird, legen wir ein privates include-File mit unseren eigenen, fiir alle
Teile giiltigen Werten an:

/* myheader.h zum Sortierprogramm, RCS-Beispiel
W. Alex, Universitaet Karlsruhe, 04. Juli 1995
*/

/* $Header: myheader.h,v 1.5 95/07/04 14:58:41 wualexl Exp $ */

int bubble(char *text);
int insert(char *text);

#define USAGE "Aufruf: mysort filename"
#tdefine NOTEXIST "File existiert nicht"
#define NOTREAD "File ist nicht lesbar"
#define NOTSORT "Problem beim Sortieren"

#define LINSIZ 64 /* Zeilenlaenge */
#define MAXLIN 256 /* Anzahl Zeilen */

Programm 2.32 : Include-File zum Sortierprogramm mysort.c

Nun das Hauptprogramm, das die Verantwortung trégt, aber sonst nicht viel tut.
Hier ist der Platzhalter $Header$ Bestandteil des Codes, die Versionsinformatio-
nen stehen also auch im ausfiihrbaren Programm. Man kénnte sogar mit ihnen
etwas machen, ausgeben beispielsweise:

/* Sortierprogramm mysort, als Beispiel fuer RCS
W. Alex, Universitaet Karlsruhe, 04. Juli 1995
*/

static char rcsid[] =
"$Header: mysort.c,v 1.9 95/07/04 14:18:37 wualexl Exp $";

#include <stdio.h>
#include "myheader.h"

int main(int argc, char *argvl[])

{

2.8 Programmer’s Workbench 147

long timel, time2;
/* Pruefung der Kommandozeile */
if (argec !'= 2) {
puts (USAGE) ; return(-1);
}
/* Pruefung des Textfiles x*/
if (access(argv[1], 0)) {
puts (NOTEXIST); return(-2);
}

if (access(argv[1], 4)) {
puts (NOTREAD) ; return(-3);
}
/* Sortierfunktion und Zeitmessung */
timel = time((long *)0);
if (bubble(argv[1])) {
puts (NOTSORT) ; return(-4);
}
time2 = time((long *)0);
/* Ende */

printf("Das Sortieren dauerte %1ld sec.\n", time2 - timel);
return O;

}
Programm 2.33 : C-Programm Sortieren, fiir RCS

Hier die Funktion zum Sortieren (Bubblesort, nicht optimiert). Der einzige Witz in
dieser Funktion ist, dal wir nicht die Strings durch Umkopieren sortieren, sondern
nur die Indizes der Strings. Ansonsten kann man hier noch einiges verbessern und
vor allem auch andere Sortieralgorithmen nehmen. Man sollte auch das Einlesen
und die Ausgabe vom Sortieren trennen:

/* Funktion bubble() (Bubblesort), als Beispiel fuer RCS
W. Alex, Universitaet Karlsruhe, 04. Juli 1995
*/

/* $Header: bubble.c,v 1.23 95/07/04 18:11:04 wualexl Exp $ */
#include <stdio.h>
#include <string.h>

#include '"myheader.h"

int bubble(char *text)

148 2 UNIX

{

int i = 0, j = 0, flag = 0, z, line[MAXLIN];
char array[MAXLIN] [LINSIZ];

FILE xfp;

#if DEBUG
printf ("Bubblesort %s\n", text);
t#tendif

/* Einlesen */
if ((fp = fopen(text, "r")) == NULL) return(-1);

while ((!feof(fp)) && (i < MAXLIN)) {
fgets(array[i++], LINSIZ, fp);
+

fclose(fp);

#if DEBUG
puts ("Array:");
j=0;
while (j < i) {
printf("%s", array[j++]);
}

puts ("Ende Array");
t#tendif

/* Sortieren (Bubblesort) */

for (j = 0; j < MAXLIN; j++)
line[j] = j;

while (flag == 0) {
flag = 1;
for (j = 0; j < i; j++) A
if (strcmp(array[linel[jl], array[line[j + 111) > 0) {

z = line[j + 1];
line[j + 1] = line[j];
line[j] = z;
flag = 0;

}
/* Ausgeben nach stdout */
#if DEBUG
puts("Array:");
j=0;
while (j < i) {
printf ("%d\n", line[j++]);
}

puts ("Ende Array");

2.8 Programmer’s Workbench 149

#tendif

J =05
while (j < 1) {

printf ("%s", array[line[j++1]);
}

/* Ende */

return O;

3

Programm 2.34 : C-Funktion Bubblesort

Bubblesort eignet sich fiir kleine Sortieraufgaben bis zu etwa hundert Elementen.
Kopieren Sie sich die Bausteine in ein eigenes Verzeichnis und entwickeln Sie das
Programm unter Verwendung des RCS weiter. Weiteres siehe rcsintro(5).

Das Source Code Control System SCCS verwaltet die Versionen der Mo-
dule, indem es die erste Fassung vollstindig speichert und dann jeweils die Diffe-
renzen zur nédchsten Version, wihrend RCS die jiingste Version speichert und die
dlteren aus den Differenzen rekonstruiert.

Alle Versionen eines Programmes samt den Verwaltungsdaten werden in einem
einzigen SCCS-File namens s.filename abgelegt, auf das schreibend nur iiber be-
sondere SCCS-Kommandos zugegriffen werden kann. Das erste dieser Kommandos
ist admin (1) und erzeugt aus einem C-Quellfile program.c das zugehorige SCCS-
Dokument:

admin -iprogram.c s.program.c

Mit admin(1) lassen sich noch weitere Aufgaben erledigen, siehe Referenz-
Handbuch. Mittels get(1) holt man das Quellfile wieder aus dem SCCS-
Dokument heraus, mitttels delta(1) gibt man eine gedinderte Fassung des Quell-
files an das SCCS-Dokument zuriick.

CASE bedeutet Computer Aided Software Engineering. An sich ist das nichts
Neues, beim Programmieren hat man schon immer Computer eingesetzt. Das
Neue bei CASE Tools wie SoftBench von Hewlett-Packard besteht darin, dafl
die einzelnen Programmierwerkzeuge wie syntaxgesteuerte Editoren, Compiler,
make (1), Analysewerkzeuge, Debugger und Versionskontrollsysteme unter einer
einheitlichen Oberfliche — hier X Window System und Motif - zusammengefaf3t
werden. Damit zu arbeiten ist die moderne Form des Programmierens und kann
effektiv sein.

2.8.9 Memo Programmer’s Workbench

e Die Programmquellen werden mit einem Editor geschrieben.

e Mit dem Syntaxpriifer 1int (1) 148t sich die syntaktische Richtigkeit von
C-Programmen priifen, leider nicht die von C++-Programmen.

e Schon bei kleinen Programmierprojekten ist das Werkzeug make (1) drin-
gend zu empfehlen.

150 2 UNIX

e Mit einem Compiler wird der Quellcode in den Maschinencode des jeweiligen
Prozessors iibersetzt.

e Der schwerste Hammer bei der Fehlersuche ist ein Debugger, lernbediirftig,
aber nicht immer vermeidbar.

e Programmfunktionen (aber auch andere Files) lassen sich in Bibliotheken
archivieren, die bequemer zu handhaben sind als eine Menge von einzelnen
Funktionen.

e Bei grofleren Projekten kommt man nicht um ein Kontrollsystem wie RCS
herum, vor allem dann, wenn mehrere Personen beteiligt sind. Das Lernen
kostet Zeit, die aber beim Ringen mit dem Chaos mehr als gutgemacht wird.

e CASE-Tools vereinigen die einzelnen Werkzeuge unter einer gemeinsamen
Benutzeroberfliche. Der Programmierer braucht gar nicht mehr zu wissen,
was ein Compiler ist.

2.8.10 Ubung Programmer’s Workbench

Anmelden wie gewohnt. Zum Uben brauchen wir ein kleines Programm mit
bestimmten Fehlern. Legen Sie mit mkdir prog ein Unterverzeichnis prog an,
wechseln Sie mit cd prog dorthin und geben Sie mit vi fehler.c folgendes C-
Programm (ohne den Kommentar) unter dem Namen fehler.c ein:

/* Uebungsprogramm mit mehreren Fehlern */

/* 1. Fehler: Es wird eine symbolische Konstante PI
definiert, die nicht gebraucht wird. Dieser Fehler
hat keine Auswirkungen und wird von keinem
Programm bemerkt.

2. Fehler: Es wird eine Ganzzahl-Variable d deklariert,
die nicht gebraucht wird. Dieser Fehler hat keine
Auswirkungen, wird aber von lint beanstandet.

3. Fehler: Die Funktion scanf verlangt Pointer als
Argument, es muss &a heissen. Heimtueckischer
Syntaxfehler. lint gibt eine irrefuehrende Warnung
aus, der Compiler merkt nichts. Zur Laufzeit ein
memory fault.

4., Fehler: Es wird durch nichts verhindert, dass fuer
b eine Null eingegeben wird. Das kann zu einem
Laufzeitfehler fuehren, wird weder von lint noch

vom Compiler bemerkt.

5. Fehler: Es sollte die Summe ausgerechnet werden,
nicht der Quotient. Logischer Fehler, wird weder

von lint noch vom Compiler bemerkt.

6. Fehler: Abschliessende Klammer fehlt. Syntaxfehler,
wird von lint und Compiler beanstandet.

Darueberhinaus spricht lint noch Hinweise bezueglich
main, printf und scanf aus. Diese Funktionen sind
aber in Ordnung, Warnungen ueberhoeren. */

2.8 Programmer’s Workbench 151

#tdefine PI 3.14159
#include <stdio.h>

int main()

{
int a, b, c, d;

puts("Bitte 1. Summanden eingeben: ");
scanf ("%d", a);

puts("Bitte 2. Summanden eingeben: ");
scanf ("%d", &b);

c=a/ b;

printf("Die Summe ist: %d\n", c);

Programm 2.35 : C-Programm mit Fehlern

Als erstes lassen wir den Syntaxpriifer 1int (1) auf das Programm los:
lint fehler.c
und erhalten das Ergebnis:

fehler.c

(36) warning: a may be used before set
(41) syntax error
(41) warning: main() returns random value to environment

function returns value which is always ignored
printf scanf

Zeile 41 ist das Programmende, dort steckt ein Fehler. Die Warnungen sind nicht
so dringend. Mit dem vi(1) ergéinzen wir die fehlende geschweifte Klammer am
Schluf}. Der Fehler hétte uns eigentlich nicht unterlaufen diirfen, da der vi(1)
eine Hilfe zur Klammerpriifung bietet (Prozentzeichen). Neuer Lauf von lint (1):

(36) warning: a may be used before set
(33) warning: d unused in function main
(41) warning: main() returns random value to environment

function returns value which is always ignored
printf scanf

Wir werfen die iiberfliissige Variable d in der Deklaration heraus. Nochmals
lint(1).

152 2 UNIX

fehler.c

(36) warning: a may be used before set
(41) warning: main() returns random value to environment

function returns value which is always ignored
printf scanf

Jetzt ignorieren wir die Warnung von lint (1) beziiglich der Variablen a (obwohl
heimtiickischer Fehler, aber das ahnen wir noch nicht). Wir lassen kompilieren
und rufen das kompilierte Programm a.out (4) auf:

cc fehler.c
a.out

Der Compiler hat nichts zu beanstanden. Ersten Summanden eingeben, Ant-
wort: memory fault oder Bus error - core dumped. Debugger?! einsetzen, da-
zu nochmals mit der Option -g und dem vom Debugger verwendeten Objektfile
/usr/1lib/xdbend.o kompilieren und anschliefend laufen lassen, um einen aktu-
ellen Speicherauszug (Coredump) zu erzeugen:

cc -g fehler.c /usr/lib/xdbend.o
chmod 700 a.out

a.out

xdb

StandardméBig greift der Debugger auf das ausfithrbare File a.out(4) und das
beim Zusammenbruch erzeugte Corefile core (4) zuriick. Er promptet mit >. Wir
wahlen mit der Eingabe s Einzelschritt-Ausfiithrung. Mehrmals mit RETURN wei-
tergehen, bis Aufforderung zur Eingabe von a kommt (kein Prompt). Irgendeinen
Wert fiir a eingeben. Fehlermeldung des Debuggers Bus error. Wir holen uns
weitere Informationen vom Debugger:

T (stack viewing)
S (Einzelschritt)
q (quit)

Nachdem wir wissen, dafl der Fehler nach der Eingabe von a auftritt, schauen
wir uns die Zeile mit scanf(..., a) an und bemerken, da} wir der Funktion
scanf (3) eine Variable statt eines Pointers {ibergeben haben (man scanf oder
im Anhang nachlesen). Wir ersetzen also a durch &a. Das Compilieren erleichtern
wir uns durch make(1). Wir schreiben ein File namens makefile mit folgenden
Zeilen:

fehler: fehler.c
cc fehler.c -o fehler

24Real programmers can read core dumps.

2.8 Programmer’s Workbench 153

und rufen anschliefend nur noch das Kommando make (1) ohne Argumente auf.
Das Ergebnis ist ein lauffihiges Programm mit Namen fehler. Der Aufruf von
fehler fiihrt bei sinnvollen Eingabe zu einer Ausgabe, die richtig sein konnte.
Wir haben aber noch einen Denkfehler darin. Statt der Summe wird der Integer-
Quotient berechnet. Wir berichtigen auch das und testen das Programm mit ei-
nigen Eingaben. Da unser Quelltext richtig zu sein scheint, verschénern wir seine
vorldufig endgiiltige Fassung mit dem Beautifier cb(1):

cb fehler.c > fehler.Db
rm fehler.c
mv fehler.b fehler.c

Schliefllich 16schen wir das nicht mehr benétigte Corefile und untersuchen das
Programm noch mit einigen Werkzeugen:

time fehler
cflow fehler.c
cxref fehler.c
strings fehler
nm fehler

size fehler

1s -1 fehler
strip fehler
1s -1 fehler

strings (1) ist ein ziemlich dummes Werkzeug, das aus einem ausfiihrbaren File
alles heraussucht, was nach String aussieht. Das Werkzeug nm(1) gibt eine Liste
aller Symbole aus, die lang werden kann. strip(1) wirft aus einem ausfiihrbaren
File die nur fiir den Debugger, nicht aber fiir die Ausfithrung wichtigen Informa-
tionen heraus und verkiirzt dadurch das File. Abmelden mit exit.

Das Programmieren vollzieht sich in mehreren Stufen parallel zur Zeitachse:

e Aufgabenstellung

e Aufgabenanalyse

Umsetzung in eine Programmiersprache

Testen

Dokumentieren

vorldufige Freigabe

endgiiltige Freigabe

Des weiteren wird ein Programm in viele iiberschaubare Module aufgeteilt. Von
jedem Modul entstehen im Verlauf der Arbeit mehrere Fassungen oder Versionen.
Der Zustand des ganzen Projektes 148t sich in einem dreidimensionalen Koordi-
natensystem mit den Achsen Modul, Stufe und Version darstellen.

154 2 UNIX

2.9 Grafikers Atelier

2.9.1 Grundbegriffe

Es gibt keine UNIX-Grafik. Das heif3t, es gibt in UNIX keine Standardpro-
gramme fiir die Bearbeitung grafischer Daten analog etwa zu den Werkzeugen
fiir die Bearbeitung alphanumerischer Daten und keine Standard-Bibliotheken
mit Grafik-Funktionen. Selbstverstindlich kann man unter UNIX Grafik machen,
aber man braucht dazu zusétzliche Programme, die nicht standardisiert sind und
gelegentlich Geld kosten. Das Gleiche gilt auch fiir die Bearbeitung akustischer
Daten, was technisch mdoglich, bisweilen wiinschenswert, aber weit entfernt von
jeder Standardisierung ist. Die Ursachen hierfiir sind:

e Als UNIX begann, war die Hardware noch zu leistungsschwach fiir die Bear-
beitung grafischer Daten (z. B. serielle Terminals). Deshalb waren grafische
Werkzeuge — im Gegensatz zu Textwerkzeugen — nicht von Anfang an dabei.

e Die Grafik ist enger an die Hardware gebunden als die Ein- und Ausgabe
von Zeichen.

e Die Vielfalt grafischer Objekte (Form, Farbe, Beleuchtung, Perspektive) ist
weit grofler als die von Zeichen, von denen es in Europa nur wenige hundert
und selbst in Fernost nur etwa zehntausend gibt.

e Die Vielfalt grafischer Operationen ist ebenfalls gréfer als die der Zeichen-
operationen.

Heute ist die Bearbeitung grafischer und akustischer Daten mit durchschnittlicher
Hardware moglich, aber iiber das Wie und Womit besteht noch keine Einigkeit.
Auch iiber die Schnittstelle der Werkzeuge zum Menschen ist noch nicht alles
gesagt, wihrend bei den Zeichen die Schreibmaschine Vorarbeit geleistet hat. Die
Lage ist nicht ganz so schlimm. Insbesondere in LINUX-Distributionen sind viele
Grafikwerkzeuge enthalten, und es werden laufend mehr. Aber — wie gesagt —
Einigkeit darf man nicht erwarten.

Hier sollen zuniichst die Grundbegriffe der Verarbeitung von Grafiken erldutert
werden. Die Aufgaben lassen sich in zwei Gruppen einteilen:

e die Erzeugung (Synthese) und anschlieBende Weiterverarbeitung von gra-
fischen Objekten (CAD, Finite Elemente, Simulationen),

e die Verarbeitung (Analyse) von grafischen Objekten, die auflerhalb des
Computers entstanden sind (Schrifterkennung, Mustererkennung, Bildana-

lyse).

Wir befassen uns nur mit dem ersten Punkt.

Alle Grafikgeriite arbeiten entweder nach dem Raster- oder dem Vektorverfah-
ren. Beim Vektorverfahren bestehen die Grafiken aus ununterbrochenen Linien,
die jeweils zwei Punkte verbinden. Diese Linien werden im Computer durch Glei-
chungen dargestellt. Beim Rasterverfahren besteht die Grafik aus einer grofien
Anzahl von Punkten unterschiedlicher Helligkeit und gegebenenfalls Farbe (Bit-
map). Beide Verfahren haben ihre Vor- und Nachteile.

2.9 Grafikers Atelier 155

Anwender-Programm plotd, digit, gnuplot
Funktions-Bibliothek PHIGS, GKS, Starbase
Zwischenspeicherung (Gerédteunabhéngiges Metafile)
Gerédteabhéingiges Programm Treiber
Geriiteabhéngige Ausgabe HPGL, PCL, Postscript
ESC-Sequenzen

Ausgabegerit Plotter, Drucker, Bildschirm

Abb. 2.9: Grafik von der Anwendung zur Ausgabe

Ausgabegerite sind grafische Bildschirme, Plotter und grafikfihige Drucker.
Die Eingabe ist das Ergebnis eines Programmes oder stammt von einem Scanner
oder Digitalisiertablett. Die Ausgabegerite werden in einer bestimmten Steuer-
sprache angesprochen. Viele Plotter und manche Drucker verstehen die Hewlett-
Packard Graphics Language (HPGL). Diese Sprachen enthalten elementare Be-
fehle wie select pen, pen up, pen down, ziehe Linie von A nach B, page feed.
Grafische Bildschirme und manche Drucker verlangen Escape-Sequenzen. Der Be-
nutzer konnte ein File in dieser Sprache schreiben und zum Ausgabegerét schicken.
Dieser Weg ist mithsam und dem Programmieren in Assembler vergleichbar. Des-
halb gehoren zu einer Grafikbibliothek auch Unterprogramme und Treiber, die
dem Benutzer die Verwendung hoherer Befehle d&hnlich wie in FORTRAN oder C
ermoglichen.

Farbe, Grafik-File-Formate

2.9.2 Diagramme (gnuplot)

gnuplot (1) ist ein Programm zum Zeichnen von Diagrammen, das GNU-iiblich
als Quellcode vorliegt, aber nicht aus dem GNU-Projekt stammt. Ausgangspunkt
ist entweder eine Funktionsgleichung oder eine Wertetabelle. Sowohl cartesische
wie Polarkoordinaten kénnen verwendet werden. Dreidimensionale Darstellungen
in cartesischen, Kugel- oder Zylinderkoordinaten sind ebenfalls moglich. Die Ach-
sen konnen linear oder logarithmisch geteilt sein. Andere Teilungen mufl man
selbst programmieren. Soweit sinnvoll, werden reelle und komplexe Argumen-
te verarbeitet. Das Programm wird entweder interaktiv (Terminal-Dialog) oder
durch ein Script gesteuert.

Die Ausgabe geht in ein File oder auf ein Gerét. Treiber fiir einige Terminals

156 2 UNIX

und den HP Laserjet gehoren dazu, ebenso die Moglichkeit, Postscript-, LaTeX-
oder HPGL-Files zu erzeugen. Hier ein einfaches Beispiel. Wir schreiben ein Script
plotscript:

set term latex # Ausgabe im LaTeX-Format
set output "plot.tex" # Ausgabe nach File plot.tex
plot sin(x)/x # zu zeichnende Funktion

Programm 2.36 : gnuplot-Script zum Zeichnen der Funktion y = (sin x)/x, Aus-
gabe im LaTeX-Format auf File plot.tex

und rufen gnuplot (1) mit dem Script als Argument auf:
gnuplot plotscript
Interaktiv wéren die Kommandos:

gnuplot

set term latex

set output "plot.tex"

plot sin(x)/x

quit

einzugeben. Fiir alle nicht genannten Parameter werden Default-Werte genommen.
Als Ausgabe erhalten wir eine LaTeX-Picture-Umgebung, die sich in ein LaTeX-
Dokument einbinden 148t, siehe Abb. 2.10

1 T T T T
0.8 - .’/ \ -
0.6 / \ -
0.4 | / \ 4
02 F / \ .

_04 1 1 1 1 1 1 1 1

Abb. 2.10: Diagramm von (sin x)/x, erzeugt mit gnuplot

Nun wollen wir zu einer Menge von Wertepaaren eine Regressionsgerade be-
rechnen, mittels gnuplot(1) in einem Diagramm darstellen und dieses in eine
WWW-Seite einbinden.

Fiir Konstruktions-Zeichnungen oder Illustrationen ist gnuplot (1) nicht ge-
dacht. Unter http://www.uni-karlsruhe.de/~ig25/gnuplot-faq/. findet sich
ein FAQ-Text zu gnuplot (1).

2.9 Grafikers Atelier 157

2.9.3 Zeichnungen (xfig, xpaint)

xfig(1) und xpaint (1) sind Werkzeuge, die unter dem X Window System laufen.
Sie machen von dessen Funktionen Gebrauch und sind infogedessen netzfdhig.

2.9.4 Funktions-Bibliotheken
2.9.4.1 GNU Graphics Library ()

Zur Verarbeitung von Zahlen braucht man Zahlenfunktionen wie Addition, Lo-
garithmus, Regula falsi. Grafikfunktionen sind Verschieben (Translation), Drehen
(Rotation), Spiegeln, Verzerren.

2.9.4.2 Starbase

Starbase ist eine Grafik-Bibliothek von Hewlett-Packard und nicht auf anderen
Fabrikaten zu finden. Die Grundziige sind jedoch &hnlich wie den iibrigen Biblio-
theken, so dafl wir hier an einem Beispiel den Gebrauch von Grafik-Funktionen
lernen koénnen.

2.9.4.3 Graphical Kernel System (GKS)

Ein weit verbreitetes und vom American National Standards Institute (ANSI) ge-
normtes Grafikpaket ist das Graphical Kernel System (GKS). Das unter ANSI
X3.124-1985, DIN 66 292 und ISO 7942 beschriebene System enthilt Grundfunk-
tionen zur Bewiéltigung grafischer Aufgaben auf dem Computer. Die Norm legt
die Funktionalitit und die Syntax fest, Softwarehersteller bieten GKS-Pakete als
compilierte C- oder FORTRAN-Funktionen fiir eine Reihe von Prozessoren an.
Die Sammlung enthélt Funktionen:

e zur Ausgabe grafischer Grundelemente,

e fiir die Attribute der Grundelemente,

e zur Steuerung der Workstation,

e fiir Transformationen und Koordinatensysteme,

e zur Bearbeitung von Elementgruppen (Segmenten),
e zur Eingabe,

e zur Bearbeitung von Metafiles,

e fiir Statusabfragen,

e zur Fehlerbehandlung.

2.9.5 Memo Grafik

e Fiir die Verarbeitung grafischer Daten gibt es keinen Standard (oder zuviele,
was auf dasselbe hinauslduft).

158 2 UNIX

e Unter UNIX gibt es keine Standard-Werkzeuge oder -Funktionen, wohl aber
mehrere, teils freie Grafik-Pakete.

e gnuplot (1) ist ein interaktives Werkzeug zur Erzeugung von Diagrammen,
ausgehend von Wertetabellen oder Funktionsgleichungen.

e xfig(1) und xpaint (1) sind Werkzeuge zum Herstellen und Bearbeiten
von Zeichnungen, die auf dem X Window System aufbauen und in LINUX-
Distributionen enthalten sind.

e Das Graphical Kernel System (GKS) ist eine von mehreren Bibliotheken mit
Grafikfunktionen. Eine Alternative ist Starbase von Hewlett-Packard.

e Auch das X Window System (X11) enthilt Grafikfunktionen, der Schwer-
punkt liegt jedoch in der Gestaltung von Fenstern, die iiber das Netz gehen.

2.9.6 Ubung Grafik
e Noch nichts.

2.10 Kommunikation

2.10.1 Message (write, talk)

Unter Kommunikation verstehen wir den Nachrichtenaustausch unter Benut-
zern, zunédchst beschrinkt auf die Benutzer einer Anlage. Zur Kommunikation im
Netz kommen wir im Kapitel 3 Internet. Zwei gleichzeitig angemeldete Benut-
zer (mit who (1) abfragen) konnen {iber ihre Terminals einen Dialog miteinander
fiihren. Das Kommando lautet write(1):

write username ttynumber
also beispielsweise
write gebernl ttylpl

Die Angabe des Terminals darf entfallen, wenn der Benutzer nur auf einem Ter-
minal angemeldet ist. Der eingegebene Text wird mit der RETURN-Taste abge-
schickt, der Dialog wie iiblich mit control-d beendet. Da der Bildschirm eigene
und fremde Zeichen wiedergibt, wie sie kommen, ist Disziplin angebracht, genau
wie beim Wechselsprechen iiber Funk. Eine Konferenz mit mehreren Teilnehmern
ist technisch moglich, praktisch aber kaum durchzufiihren.

Das nicht iiberall vorhandene Kommando talk (1) teilt den Bildschirm unter
den beiden Gesprichspartnern auf, so dafl auch bei gleichzeitigem Senden die
Ubersicht gewahrt bleibt. Jeder Buchstabe wird sofort gesendet.

Ein Benutzer verhindert mit dem Kommando mesg(1) mit dem Argument
n, dafl er wihrend seiner Sitzung durch Messages gestort wird. Er entzieht der
Allgemeinheit die Schreiberlaubnis fiir sein Terminal /dev/tty. . .. Das entspricht
allerdings nicht dem Geist von UNIX. Die Standardeinstellung unserer Anlage ist
mesg y (in /etc/profile gesetzt).

2.10 Kommunikation 159

2.10.2 Mail (mail, mailx, elm)

Ein elektronisches Mailsystem ermoglicht, einem Benutzer, der momentan nicht
angemeldet zu sein braucht, eine Nachricht zu schreiben. Bei néchster Gelegenheit
findet er den elektronischen Brief; ob er ihn liest, ist seine Sache. Eine Riickmel-
dung kommt nicht zum Absender. Man kann auch Rundschreiben an Benutzer-
gruppen oder an alle versenden. Das System selbst macht ebenfalls von dieser
Moglichkeit Gebrauch, wenn es einen Benutzer nicht im Dialog erreichen kann.
Eine niitzliche Sache, sowohl als Hauspost wie als weltweite Electronic Mail,
nur die Briefmarkensammler trauern. Die herkémmliche, auf dem Transport von
Papier beruhende Post wird demgegeniiber als Snail-Mail oder kurz Snail bezeich-
net, was im Englischen Schnecke heif}t. Mailsysteme befordern grundsétzlich nur
Texte, oft in 7-bit-ASCII, keine Grafiken oder andere binére Files (komprimierte
Files, kompilierte Programme). Hat man binére Files per Mail zu iibertragen, muf3
man sie erst in Textfiles umwandeln (siehe uuencode (1) oder Metamail). Andere
Wege wie ftp(1) sind fiir bindre Daten geeigneter.

Mit dem Kommando mail(1) wird der Inhalt der eigenen Mailbox (das Fi-
le /var/mail/username oder /var/spool/mail/username) angezeigt, Brief fiir
Brief, der jiingste zuerst. mail(1) fragt bei jedem Brief mit dem Prompt 7, was
es damit machen soll: im Briefkasten lassen, in einem File mbox ablegen oder
16schen. Mit der Antwort * auf den Mail-Prompt erhalten Sie eine Auskunft iiber
die Kommandos von mail(1).

mail (1) mit einem Benutzernamen als Argument aufgerufen offnet einen
einfachen Editor zum Schreiben eines Briefes. Mit return control-d wird der
Brief beendet und abgeschickt. Man kann auch ein Textfile per Redirektion als
Briefinhalt einlesen:

mail wualexl < textfile
oder mail (1) in einer Pipe verwenden:
who | mail wualex1

mail(1) kommt mit den einfachsten Terminals zurecht und ist daher die Rettung,
wenn bessere Mail-Programme wegen fehlender oder falscher Terminalbeschrei-
bung versagen.

Die Umgebungsvariable MAILCHECK bestimmt, in welchen Zeitabstdnden
wihrend einer Sitzung die Mailbox auf neue Mail iiberpriift werden soll. Ublich
sind 600 s. Durch das Kommando mail(1) in /etc/profile wird automatisch
beim Anmelden die Mailbox angezeigt. Ein dead.letter ist ein unzustellbarer
Brief, aus welchen Griinden auch immer. Enthélt eine Mailbox als erste Zeile:

Forward to person

(mit grofem F) so wird alle Mail fiir den Inhaber der Mailbox an den Benutzer
person auf dieser Maschine weitergeleitet. Damit kann man Mail an logische Be-
nutzer wie root bestimmten natiirlichen Benutzern zuweisen, je nach Abwesenheit
(Urlaub, Krankheit) an verschiedene. Lautet die Zeile:

Forward to person@abc.xyz.de

160 2 UNIX

geht die Mail an einen Benutzer auf der Maschine abc.xyz.de. Das ist praktisch,
falls ein Benutzer Mailboxen auf mehreren Systemen hat, die Mail aber nur auf
seinem wichtigsten System liest. Die Mailboxen miissen als Gruppe mail sowie
Lese- und Schreiberlaubnis fiir die Gruppe (660) haben.

Das UNIX-Kommando mailx (1) bietet erweiterte Moglichkeiten, insbesonde-
re die Konfiguration mittels eines Files $HOME/ .mailrc. Auf vielen Systemen ist
auch das bildschirmorientierte und benutzerfreundlichere Mailkommando elm(1)
vorhanden. Es setzt die richtige Terminalbeschreibung (TERM, terminfo oder
termcap) voraus, fragt nach den notwendigen Informationen, ruft zum Schrei-
ben den gewohnten Editor auf und 1483t sich durch ein File $HOME/.elm/elmrc
an personliche Wiinsche anpassen. In $HOME/ .elm/elmheaders werden zuséitzli-
che Kopfzeilen — z. B. die Organisation — festgelegt, in $HOME/.signature eine
Signatur am Ende der Mail. Die Signatur sollte nicht linger sein als vier Zeilen,
sonst macht man sich unbeliebt. elm(1) ist mit mail (1) vertréglich, man kann sie
durcheinander benutzen. Zu einem Zeitpunkt darf immer nur ein Mailprogramm
aktiv sein, sonst gerit die Mailverwaltung durcheinander. Wird durch Lockfiles
geregelt.

Es empfiehlt sich, einen logischen Benutzer namens postmaster mit einem
Sternchen als Passwort in /etc/passwd(4) einzurichten und seine Mail an den
System-Manager oder eine andere vertrauenswiirdige Person weiterzuleiten, die
taglich ihren Briefkasten leert. Der Postmaster erhélt als Default die Pro-
blemfille des Mail-Systems zugeschickt; auflerdem kann man ihn als Anschrift
fiir alle Benutzer gebrauchen, die nicht wissen, was eine Mailbox ist.

Wihrend die Mail innerhalb einer Anlage einfach ist, erfordert eine weltweite
Mail einen gréfleren Aufwand, ist aber auch viel spannender, siehe Abschnitt 3.11
Electronic Mail.

Merke: Mail kann man nur an einen Benutzer schicken, nicht an eine Maschine.

2.10.3 Neuigkeiten (news)

Neuigkeiten oder News sind Mitteilungen, die jedermann schreiben und lesen
darf. Die Files sind in /var/spool/news zu finden. Falls Sie eine Runde locker
machen wollen, tippen Sie

vi /var/spool/news/freibier

a

Heute gibt es Freibier.

escape

1wq

chmod 644 /var/spool/news/freibier

Vergessen Sie nicht, Thren News die Leseerlaubnis fiir alle (644) mitzugeben und
das Bier bereitzustellen. News innerhalb einer Maschine sind wie die Mail eine
harmlose Angelegenheit, im Netz wird es aufwendiger, sieche Abschnitt 3.12 Neu-
wgkeiten.

Das File .news_time im Home-Verzeichnis hélt die Zeit der letzten News-
Anzeige fest, so dafl man im Regelfall nur neue Mitteilungen zu lesen bekommt.

2.10 Kommunikation 161

Das Kommando news (1) im File /etc/profile sorgt dafiir, dafl bei jeder An-
meldung die Neuigkeiten angezeigt werden. Sie konnen es aber auch gesondert
eingeben. Mittels news -a werden alle, auch alte Nachrichten angezeigt.

2.10.4 Message of the Day

Mittels der Message of the Day — das Wort zum Alltag — schickt der System-
Manager eine Mitteilung an alle Benutzer, die sie jedesmal beim Einloggen zu
lesen bekommen. Der Text steht in /etc/motd, Anzeige mittels cat /etc/motd
in /etc/profile. Hinweise auf neue Programmversionen, drohende Reparaturen
oder ein neues, fabelhaftes Buch iiber UNIX, C und das Internet geh6ren hierhin.

2.10.5 Ehrwiirdig: UUCP

UUCP heifit uniz-to-uniz-copy und ist ein Programmpaket zur Ubertragung von
Files zwischen UNIX-Anlagen iiber serielle Kabel oder Modemstrecken, eine Al-
ternative aus der Friihzeit der Netze zu den Internet-Diensten nach TCP/IP-
Protokollen. Mail und Netnews werden auflerhalb des Internets noch viel {iber
UUCP ausgetauscht. Im Gegensatz zu den Auftréigen an Internet-Dienste werden
UUCP-Auftrége zwischengespeichert (gespoolt), erklirlich aus der Verwendung
von Modemstrecken iiber Wihlleitungen.

Zu dem Paket gehort ein Terminal-Emulator cu(1) (= call UNIX), der ein
einfaches serielles Terminal emuliert (aus einem Computer ein Terminal macht).
Das Programm kann benutzt werden, um einen Computer iiber ein serielles Kabel
— gegebenenfalls verldngert durch Modem und Telefonleitung — an einen anderen
Computer anzuschliefen, falls man keine Netzverbindung mittels rlogin(1) oder
telnet (1) hat.

Die UUCP-Programme bilden eine Hierarchie, auf deren unterster Ebene die
Programme uucico (1) und uuxqt (1) die Verbindung zwischen zwei Maschinen
herstellen. In der Mitte finden sich Programme wie uucp (1), uux (1) und uuto (1),
die zwar Aufgaben im Auftrag eines Benutzers erledigen, normalerweise aber nicht
unmittelbar von diesem aufgerufen werden, sondern in periodischen Abstdnden
durch einen Dédmon. Zuoberst liegen die vom Benutzer aufgerufenen Program-
me wie mail (1) und news(1). Dazu kommen Hilfsprogramme wie uuencode (1)
oder uustat (1). uuencode (1) wird gelegentlich auch auflerhalb der UUCP-Welt
benutzt, um bindre Files in Textfiles zum Versand per Email umzucodieren:

uuencode myfile | mailx -s ’Subject’ wualex1@mvmhp64

und zuriick:

uudecode < mymail

wobei die Mail-Header-Zeilen nicht storen. Da die UUCP-Programme innerhalb

des Internets keine Rolle spielen, verweisen wir fiir Einzelheiten auf das Buch von
B. ANDERSON und den Text von I. L. TAYLOR.

162

2 UNIX

2.10.6 Memo Kommunikation

Zwischen den Benutzern derselben UNIX-Maschine bestehen seit altersher
Maoglichkeiten der Kommunikation. Die Kommunikation im Netz (auf ver-
schiedenen Maschinen) erfordert zusétzliche Protokolle und Programme.

Zwei gleichzeitig angemeldete Benutzern konnen mittels write (1) oder
talk (1) einen Dialog per Tastatur und Bildschirm fiihren.

Email ist ein zeitversetzter Nachrichtenaustausch zwischen zwei Benutzern
(oder Dédmonen), wie eine Postkarte.

News sind Aushénge am Schwarzen Brett, die alle lesen kénnen.

Die Message of the Day ist eine Mitteilung des System-Managers, die alle
lesen miissen.

UUCP ist ein Biindel mehrerer Programme, das dem Datenaustausch zwi-
schen UNIX-Maschinen iiber Wihlleitungen (Modemstrecken) dient und im
wesentlichen durch das Internet abgelost worden ist.

2.10.7 Ubung Kommunikation

Zur Kommunikation brauchen Sie einen Gesprichspartner, nur Mail konnen Sie
auch an sich selbst schicken. Im Notfall steht Thr Freund, der System-Manager
(root), oder der Postmaster zur Verfiigung.

Umgebung ansehen)

Partner bereit?)

Bell abwarten)

nur mit RETURN, kein control-d)

set (
(
(
(
00 (over and out, als letze Zeichen des Gespriichs)
(
(
(
(

who

write partner
Dialog fiihren
control-d Ende des Gesprichs)
Thr Briefkasten)

mail-Kommandos ansehen)

mail
*

mail username Brief an username)

Brief schreiben, RETURN

control-d (Ende des Briefes)
elm (elm gibt Hinweise)
cat > /usr/news/heute (News schreiben)
Heute gibts Freibier.

control-d (Ende News)

chmod 644 /usr/news/heute

abmelden, wieder anmelden

news -a (alle News anzeigen)

rm /usr/news/heute

2.11 Systemaufrufe 163

cat /etc/motd (MOTD anzeigen)
Falls es keine Message of the Day gibt, Mail an root schicken.

Abmelden mit exit.

2.11 Systemaufrufe

2.11.1 Was sind Systemaufrufe?

Dem Programmierer stehen zwei Hilfsmittel zur Verfiigung, um seine Wiinsche
auszudriicken:

e die Schliisselworter (Wortsymbole) der Programmiersprache,
e die Systemaufrufe des Betriebssystems.

Die Schliisselworter (keyword, mot-clé) der Programmiersprache (zum Beispiel
C) sind auch unter verschiedenen Betriebssystemen (MS-DOS, OS/2 oder UNIX)
dieselben. Sie gehoren zur Programmiersprache bzw. zum Compiler. Die System-
aufrufe (system call, system primitive, fonction systéme) eines Betriebssystems
(UNIX) sind fiir alle Programmiersprachen (C, FORTRAN, PASCAL, COBOL)
dieselben. Sie gehoren zum Betriebssystem. Man findet auch die Bezeichnung
Kernschnittstellenfunktion, die besagt, daf§ ein solcher Aufruf sich unmittelbar
an den Kern des Betriebssystems richtet. Der Kreis der Systemaufrufe liegt fest
und kann nicht ohne Eingriffe in den Kern des Betriebssystems verdndert wer-
den. Da UNIX zum groflen Teil in C geschrieben ist, sind die Systemaufrufe von
UNIX C-Funktionen, die sich in ihrer Syntax nicht von eigenen oder fremden
C-Funktionen unterscheiden. Deshalb miissen auch FORTRAN- oder PASCAL-
Programmierer etwas von der Programmiersprache C verstehen. Im Handbuch
werden die Systemaufrufe in Sektion (2) beschrieben.

In Sektion (3) finden sich vorgefertigte Unterprogramme, Subroutinen
oder Standardfunktionen (standard function, fonction élémentaire) fiir hiufig
vorkommende Aufgaben. Fiir den Anwender besteht kein Unterschied zu den Sy-
stemaufrufen. Streng genommen gehdren diese Standardfunktionen jedoch zu den
jeweiligen Programmiersprachen (zum Compiler) und nicht zum Betriebssystem.
Der Kreis der Standardfunktionen ist beliebig ergénzbar. Um den Benutzer zu
verwirren, sind die Systemaufrufe und die Standardfunktionen in einer Funkti-
onsbibliothek (/1ib/1libc.a und andere) vereinigt.

Die Aufgabenverteilung zwischen Schliisselwortern, Systemaufrufen und Stan-
dardfunktionen ist in gewissem Umfang willkiirlich. Systemaufrufe erledigen Auf-
gaben, die aus dem Aufbau und den kennzeichnenden Eigenschaften des Betriebs-
systems herriihren, bei UNIX also in erster Linie

Ein- und Ausgabe auf unterster Stufe,

Umgang mit Prozessen,

e Umgang mit dem File-System,

Sicherheitsvorkehrungen.

164 2 UNIX

Nach auflen — Sie erinnern sich an das Bild mit dem H#uschen — definiert die
Menge der Systemaufrufe das Betriebssystem. Zwei Systeme, die in ihren Aufru-
fen iibereinstimmen, sind fiir den Benutzer identisch. Neue Funktionalitdten des
Betriebssystems stellen sich dem Programmierer als neue Systemaufrufe dar, siehe
zum Beispiel unter stream(2).

Einige UNIX-Systemaufrufe haben gleiche oder dhnliche Aufgaben wie Shell-
Kommandos. Wenn man die Zeit wissen mochte, verwendet man im Dialog das
Shell-Kommando date(1). Will man diese Information aus einem eigenen Pro-
gramm heraus abfragen, kann man das UNIX-Shell-Kommando nicht verwenden,
sondern muf} auf den Systemaufruf time(2) zuriickgreifen. Es ist aber nicht so,
daf} sich grundsétzlich Shell-Kommandos und Systemaufrufe entsprechen, es sind
nur einige Shell-Kommandos in C-Programme verpackte Systemaufrufe.

In UNIX sind Systemaufrufe Funktionen der Programmiersprache C. Eine
Funktion iibernimmt beim Aufruf Argumente oder Parameter und gibt ein Er-
gebnis zuriick. Dieser Mechanismus wird Parameteriibergabe genannt. Man
muf ihn verstanden haben, um Funktionen in eigenen Programmen verwenden zu
konnen. Eine Erkldrung findet sich in Abschnitt ?? Parameteribergabe.

Falls Sie mit der Programmiersprache C nicht vertraut sind, sollten Sie jetzt
zuerst das Kap. 7?7 Programmieren in C/C++ iiberfliegen.

2.11.2 Beispiel Systemzeit (time)

Im folgenden Beispiel wird der Systemaufruf time(2) verwendet. time (2) liefert
die Zeit in Sekunden seit 00:00:00 Greenwich Mean Time, 1. Januar 1970. Com-
puteruhren laufen {ibrigens erstaunlich ungenau, falls sie nicht durch eine Quarz-
oder Funkuhr oder iiber das Netz synchronisiert werden. Ferner brauchen wir die
Standardfunktion gmtime(3), Beschreibung unter ctime(3), die aus den obigen
Sekunden eine Struktur erzeugt, die Datum und Uhrzeit enthélt. Die Umrechnung
von Greenwich auf Karlsruhe nehmen wir selbst vor. Eleganter wére ein Riickgriff
auf die Zeitzonen-Variable der Umgebung. Laut Referenz-Handbuch hat time (2)
die Syntax

long time ((long *) 0)

Die Funktion verlangt ein Argument vom Typ Pointer auf long integer, und zwar
im einfachsten Fall den Nullpointer. Der Returnwert ist vom Typ long integer.
Der grofite Wert dieses Typs liegt etwas iiber 2 Milliarden. Damit lduft diese Uhr
etwa 70 Jahre. Die Subroutine gmtime (3) hat die Syntax

#include <time.h>
struct tm *gmtime(clock)
long *clock

Die Funktion verlangt ein Argument vom Typ Pointer auf long integer. Wir
miissen also den Returnwert von time(2) in einen Pointer umwandeln (re-
ferenzieren). Der Returnwert ist vom Typ Pointer auf eine Struktur namens tm.
Diese Struktur ist im include-File time.h definiert. Die include-Files sind lesbarer
Text; es ist ratsam hineinzuschauen. In der weiteren Beschreibung zu ctime (3)
wird die Struktur tm erldutert:

2.11 Systemaufrufe 165

struct tm {
int tm_sec; /* seconds (0 - 59) x/
int tm_min; /* minutes (0 - 59) %/
int tm_hour; /* hours (0 - 23) *x/
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year - 1900 */
int tm_wday; /* day of week (sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst; /* nonzero if daylight saving t. */
}

Von den beiden letzten Komponenten der Struktur machen wir keinen Gebrauch.
Da die Komponenten alle vom selben Typ sind, ist statt der Struktur auch ein
Array denkbar. Vermutlich wollte sich der Programmierer den Weg offenhalten,
kiinftig auch andere Typen aufzunehmen (Zeitzone). Das Programm, das die Quel-
le zu dem Kommando zeit aus der ersten Ubung ist, sieht folgendermafen aus:

/* Ausgabe der Zeit auf Bildschirm */
/* Filename zeit.c, Compileraufruf cc -o zeit zeit.c */

#include <stdio.h>
#include <time.h>

char *ptagl] = {"Sonntag, ", "Montag, ", "Dienstag, ",
"Mittwoch, ", "Donnerstag,", "Freitag, ",
"Samstag, "}

char *pmon[] = {"Januar", "Februar", "Maerz", "April", "Mai',
"Juni", "Juli", "August", "September",
"Oktober", "November'", "Dezember'};

main()

{

long sec, time();
struct tm *gmtime(), *p;

sec = time((long *) 0) + 3600; /* MEZ = GMT + 3600 x/
p = gmtime (&sec);

printf("%s %d. ", ptaglp->tm_wday], p->tm_mday);

printf ("%s %d ", pmon[p->tm_mon], p->tm_year +1900);
printf ("%d:%02d MEZ\n", p->tm_hour, p->tm_min);

}

Programm 2.37 : C-Programm zur Anzeige der Systemzeit

Nun wollen wir dieselbe Aufgabe mit einem FORTRAN-Programm bewéltigen.
Der UNIX-Systemaufruf time (2) bleibt, fiir die C-Standardfunktion gmtime (3)
suchen wir die entsprechende FORTRAN-Routine. Da wir keine finden, miissen
wir sie entweder selbst schreiben (was der erfahrene Programmierer scheut) oder
nach einem Weg suchen, eine beliebige C-Standardfunktion in ein FORTRAN-
Programm hineinzuquetschen.

166 2 UNIX

Der Systemaufruf time (2) macht keinen Kummer. Er benétigt ein Argument
vom Typ Pointer auf long integer, was es in FORTRAN gibt. Der Riickgabewert
ist vom Typ long integer, auch kein Problem. Die C-Standardfunktion gmtime (3)
erwartet ein Argument vom Typ Pointer auf long integer, was machbar wére,
aber ihr Ergebnis ist ein Pointer auf eine Struktur. Das hat FORTRAN noch
nie gesehen?®. Deshalb weichen wir auf die C-Standardfunktion ctime(3) aus,
deren Riickgabewert vom Typ Pointer auf character ist, was es in FORTRAN
naherungsweise gibt. In FORTRAN ist ein Zeichen ein String der Lénge eins.
Strings werden per Deskriptor iibergeben. Ein String-Deskriptor ist der Pointer
auf das erste Zeichen und die Anzahl der Zeichen im String als Integerwert. Das
Programm sieht dann so aus:

program zeit
$ALIAS foratime = ’sprintf’ c

integer*4 time, tloc, sec, ctime
character atime*26

sec = time(tloc)

call foratime(atime, ’%s’//char(0), ctime(sec))
write(6, ’(a)’) atime

end

Programm 2.38 : FORTRAN-Programm zur Anzeige der Systemzeit

Die ALIAS-Anweisung ist als Erweiterung zu FORTRAN 77 in vielen Com-
pilern enthalten und dient dazu, den Aufruf von Unterprogrammen anderer Spra-
chen zu ermdéglichen. Der Compiler weify damit, dafl das Unterprogramm auflerhalb
des Programms — zum Beispiel in einer Bibliothek — einen anderen Namen hat als
innerhalb des Programms. Wird eine Sprache angegeben (hier C), so erfolgt die
Parameteriibergabe gem&f der Syntax dieser Sprache. Einzelheiten siehe im Falle
unserer Anlage im HP FORTRAN 77/HP-UX Reference Manual im Abschnitt
Compiler Directives.

Die Anweisung teilt dem Compiler mit, dafl hinter der FORTRAN-Subroutine
foratime die C-Standard-Funktion sprintf(3) steckt und daB diese nach den
Regeln von C behandelt werden soll. Der Riickgabewert von sprintf (3) (die
Anzahl der ausgegebenen Zeichen) wird nicht verwertet, deshalb ist foratime eine
FORTRAN-Subroutine (keine Funktion), die im Programm mit call aufgerufen
werden muf.

Der Systemaufruf time(2) verlangt als Argument einen Pointer auf
long integer, daher ist tloc als vier Bytes lange Integerzahl deklariert. tloc
spielt weiter keine Rolle. Die Ubergabe als Pointer (by reference) ist in FORT-
RAN Standard fiir Zahlenvariable und braucht nicht eigens vereinbart zu werden.
Der Riickgabewert von time geht in die Variable sec vom Typ long integer =

25FORTRAN 90 kennt Strukturen.

2.11 Systemaufrufe 167

integerx4.

Die call-Zeile ruft die Subroutine foratime alias C-Funktion sprintf (3)
auf. Diese C-Funktion erwartet drei Argumente: den Ausgabestring als Pointer auf
char, einen Formatstring als Pointer auf char und die auszugebende Variable von
einem Typ, wie er durch den Formatstring bezeichnet wird. Der Riickgabewert der
Funktion ctime (3) ist ein Pointer auf char. Da dies kein in FORTRAN zul&ssiger
Typ ist, deklarieren wir die Funktion ersatzweise als vom Typ 4-Byte-integer. Der
Pointer 148t sich auf jeden Fall in den vier Bytes unterbringen. Nach unserer
Erfahrung reichen auch zwei Bytes, ebenso funktioniert der Typ logical, nicht
jedoch real.

Der Formatstring besteht aus der Stringkonstanten %s, gefolgt von dem ASCII-
Zeichen Nr. 0, wie es bei Strings in C Brauch ist. Fiir sprintf (3) besagt dieser
Formatstring, das dritte Argument — den Riickgabewert von ctime (3) — als einen
String aufzufassen, das heifit als Pointer auf das erste Element eines Arrays of
characters.

atime ist ein FORTRAN-String-Deskriptor, dessen erste Komponente ein
Pointer auf character ist. Damit weifl sprintf (3), wohin mit der Ausgabe. Die
write-Zeile ist wieder pures FORTRAN.

An diesem Beispiel erkennen Sie, daf§ Sie auch als FORTRAN- oder PASCAL-
Programmierer etwas von C verstehen miissen, um die Systemaufrufe und C-
Standardfunktionen syntaktisch richtig zu gebrauchen.

Bei manchen FORTRAN-Compilern (Hewlett-Packard, Microsoft) lassen sich
durch einen einfachen Interface-Aufruf Routinen fremder Sprachen so ver-
packen, dafl man sie iibernehmen kann, ohne sich um Einzelheiten kiimmern zu
miissen.

2.11.3 Beispiel File-Informationen (access, stat, open)

In einem weiteren Beispiel wollen wir mithilfe von Systemaufrufen Informationen
iiber ein File gewinnen, dazu noch eine Angabe aus der Sitzungsumgebung. Die
Teile des Programms lassen sich einfach in andere C-Programme iibernehmen.

Dieses Programm soll beim Aufruf (zur Laufzeit, in der Kommandozeile) den
Namen des Files als Argument iibernehmen, wie wir es von UNIX-Kommandos
her kennen. Dazu ist ein bestimmter Formalismus vorgesehen:

int main(argc, argv, envp)
int argc;
char *argv[], *envp[];

Die Funktion main() iibernimmt die Argumente argc, argv und gegebenenfalls
envp. Das Argument argc ist der Argument Counter, eine Ganzzahl. Sie ist
gleich der Anzahl der Argumente in der Kommandozeile beim Aufruf des Pro-
gramms. Das Kommando selbst ist das erste Argument. Das Argument argv ist
der Argument Vector, ein Array of Strings, also ein Array of Arrays of Charac-
ters. Der erste String, Index 0, ist das Kommando; die weiteren Strings sind die
mit dem Kommando iibergebenen Argumente, hier der Name des gefragten Files.
Der Environment Pointer envp wird nur benotigt, falls man Werte aus der

168 2 UNIX

Umgebung abfragt. Es ist wie argv ein Array of Strings. Die Namen argc, argv
und envp sind willkiirlich, aber iiblich. Typ und Reihenfolge sind vorgegeben.

Die Umgebung besteht aus Strings (mit Kommando set (Shell) anschau-
en). In der for-Schleife werden die Strings nacheinander mittels der Funktion
strncmp(3) (siehe string(3)) mit dem String LOGNAME verglichen. Das Er-
gebnis ist der Index i des gesuchten Strings im Array envp[].

Den Systemaufruf access(2) finden wir in der Sektion (2) des Referenz-
Handbuches. Er untersucht die Zugriffsmoéglichkeiten auf ein File und hat die
Syntax

int access(path, mode)
char x*xpath;
int mode;

Der Systemaufruf erwartet als erstes Argument einen String, ndmlich den Namen
des Files. Wir werden hierfiir argv[1] einsetzen. Als zweites steht eine Ganzzahl,
die die Art des gefragten Zugriffs kennzeichnet. Falls der gefragte Zugriff moglich
ist, liefert access (2) den Wert null zuriick, der in einem C-Programm zugleich die
Bedeutung von logisch falsch (FALSE) hat und deshalb in den if-Zeilen negiert
wird.

Den Systemaufruf stat(2) finden wir ebenfalls in Sektion 2. Er ermittelt
Fileinformationen aus der Inode und hat die Syntax

#include <sys/types.h>
#include <sys/stat.h>

int stat(path, buf)
char *path;
struct stat *buf;

Sein erstes Argument ist wieder der Filename, das zweite der Name eines Puffers
zur Aufnahme einer Struktur, die die Informationen enthilt. Diese Struktur vom
Typ stat ist in dem include-File /usr/include/sys/stat.h deklariert, das sei-
nerseits Bezug nimmt auf Deklarationen in /usr/include/types.h. Auch einige
Informationen wie S_IFREG sind in sys/stat.h definiert. Die Zeitangaben werden
wie im vorigen Abschnitt umgerechnet.

In UNIX-Filesystemen enthilt jedes File am Anfang eine Magic Number,
die iiber die Art des Files Auskunft gibt (man magic). Mittels des Systemaufrufs
open(2) wird das fragliche File zum Lesen geoffnet, mittels 1seek(2) der Lese-
zeiger auf die Magic Number gesetzt und mittels read(2) die Zahl gelesen. Der
Systemaufruf close(2) schlielt das File wieder. Die Systemaufrufe findet man
unter ihren Namen in Sektion (2), eine Erlduterung der Magic Numbers unter
magic(4). Nun das Programm:

/* Informationen ueber eine Datei */
#tdefine MEZ 3600

#include <stdio.h>

2.11 Systemaufrufe

#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include <fcntl.h>
#include <magic.h>

void exit(); long lseek();
int main(argc, argv, envp)

int argc; char *argv[], *envp[];
{

int i, fildes;

struct stat buffer;

long asec, msec, csec;
struct tm *pa, *pm, *pcC;

if (argc < 2) {
puts ("Dateiname fehlt"); return (-1);
+

/* Informationen aus dem Environment */

for (i = 0; envp[i] != NULL; i++)
if (! (strncmp(envp[i], "LOGNAME", 4)))
printf ("\n%s\n", envp[i]);

/* Informationen mittels Systemaufruf access(2) */
printf("\nFile heisst: %8s\n", argv[i]);

if (laccess(argv[1], 0))
puts("File existiert");

else
puts("File existiert nicht");

if (laccess(argv[1]l, 1))
puts("File darf ausgefuehrt werden");
else
puts("File darf nicht ausgefuehrt werden");

if (laccess(argv[i]l, 2))
puts("File darf beschrieben werden");
else
puts("File darf nicht beschrieben werden");

if (laccess(argv[1], 4))
puts("File darf gelesen werden");
else
puts("File darf nicht gelesen werden");

/* Informationen aus der Inode, Systemaufruf stat(2)

169

170

if (! (stat(argv[1], &buffer))) {

printf ("\nDevice: %1d\n", buffer.st_dev);
printf ("Inode-Nr.: %1lu\n", buffer.st_ino);
printf("File Mode: %hu\n\n", buffer.st_mode);

switch(buffer.st_mode & S_IFMT) {
case S_IFREG:
{
puts("File ist regulaer");
break;
+
case S_IFDIR:
{
puts("File ist ein Verzeichnis");
break;
}
case S_IFCHR:
case S_IFBLK:
case S_IFNWK:

{

puts("File ist ein Special File");

break;

+

case S_IFIFO:

{

puts("File ist eine Pipe");

break;

+

default:

{

puts("Filetyp unbekannt (Inode)");

+
}
printf ("\nLinks: %hd\n", buffer.st_nlink);
printf ("Owner-ID: %hu\n", buffer.st_uid);
printf ("Group-Id: %hu\n", buffer.st_gid);
printf ("Device-ID: %1d\n", buffer.st_rdev);
printf ("Filegroesse: %1d\n", buffer.st_size);
asec = buffer.st_atime + MEZ; pa = gmtime(&asec);
msec = buffer.st_mtime + MEZ; pm = gmtime(&msec);
csec = buffer.st_ctime + MEZ; pc = gmtime(&csec);

printf ("Letzter Zugriff: %d. %d. %d\n",
pa->tm_mday, pa->tm_mon + 1, pa->tm_year);

printf(”Letzte Modifik.: %d. %d. %d\n",
pm->tm_mday, pm->tm_mon + 1, pm->tm_year);

printf("Letzte Stat.Ae.: %d. %d. %d\n",
pc->tm_mday, pc->tm_mon + 1, pc->tm_year);

}
else
puts("Kein Zugriff auf Inode");

2 UNIX

2.11 Systemaufrufe 171

/* Pruefung auf Text oder Code (magic number) */
/* Systemaufrufe open(2), lseek(2), read(2), close(2) */
/* Magic Numbers siehe magic(4) */

{
MAGIC magbuf;
fildes = open(argv[1], O_RDONLY);
if (lseek(fildes, MAGIC_OFFSET, 0) >= (long)0) {
read(fildes, &magbuf, sizeof magbuf);
switch(magbuf.file_type) {
case RELOC_MAGIC:
{
puts("File ist relocatable");
break;
}
case EXEC_MAGIC:
case SHARE_MAGIC:
case DEMAND_MAGIC:
{
puts("File ist executable");
break;
+
case DL_MAGIC:
case SHL_MAGIC:
{
puts("File ist Library");
break;
}
default:
puts("Filetyp ist unbekannt (Magic Number)");
lseek (fildes, OL, 0);
}
+
else {
puts ("Probleme mit dem Filepointer");
}
}
close(fildes);
}

Programm 2.39 : C-Programm zum Abfragen von Informationen iiber ein File

Die Verwendung von Systemaufrufen oder Standardfunktionen in C-
Programmen ist nicht schwieriger als der Gebrauch anderer Funktionen. Man muf}
sich nur an die im Referenz-Handbuch Sektionen (2) und (3) nachzulesende Syn-
tax halten. Es empfiehlt sich, die genannten Sektionen einmal durchzublittern,
um eine Vorstellung davon zu gewinnen, wofiir es Systemaufrufe und Standard-
funktionen gibt. Die Ausgabe des Programms sieht folgendermaflen aus:

LOGNAME=wualex1

172

File heisst:

File existiert

a.out

File darf ausgefuehrt werden.

File darf nicht beschrieben werden.

File darf gelesen werden.

Device:
Inode-Nr.:
File Mode:

File ist regulaer

Links:
Owner-1ID:
Group-ID:
Device-1ID:
Filegroesse:

Letzter Zugriff:
Letzte Modifik.:
Letzte Stat.Ae.:
File ist executable

13
43787
33216

1

101

20

102536
53248

24. 1. 91
24. 1. 91
24. 1. 91

2 UNIX

Die Bedeutung von File Mode finden Sie bei mknod(2). Es handelt sich um

ausfiihrliche Informationen iiber die Zugriffsrechte usw.

2.11.4 Memo Systemaufrufe

e Systemaufrufe sind die Verbindungen des Betriebssystems nach oben, zu den
Anwendungsprogrammen.

e Systemaufrufe haben vorwiegend mit Prozessen, den Filesystemen und der
Ein- und Ausgabe zu tun.

o UNIX-Systemaufrufe sind C-Funktionen, die sich in keiner Weise von ande-
ren C-Funktionen unterscheiden.

e (C-Standardfunktionen gehéren zum C-Compiler.

e Ein FORTRAN-Programmierer auf einem UNIX-System ist auf die UNIX-
Systemaufrufe angewiesen, nicht aber auf die C-Standardfunktionen.

2.11.5 Ubung Systemaufrufe

Schreiben Sie in einer Programmiersprache Threr Wahl (wir empfehlen C) ein

Programm, daf

e cin File mittels creat (2) erzeugt,

e dessen Zugriffsrechte mittels chmod(2) und seine Zeitstempel mittels

utime (2) setzt,

2.12 Systemverwaltung 173

e die verwendeten Werte mittels fprintf(3) als Text in das File schreibt.
fprintf (3) finden Sie unter printf (3).

Schreiben Sie ein Programm #hnlich who(1). Sie brauchen dazu getut(3) und
utmp (4).

2.12 Systemverwaltung

Ein Betriebssystem wie UNIX l4f3t sich von drei Standpunkten aus betrachten,
von dem

e des Benutzers,
e des System-Managers,
e des System-Entwicklers.

Der Benutzer mdochte eine moglichst komfortable und robuste Oberfléche fiir die
Erledigung seiner eigenen Aufgaben (Anwenderprogramme, Textverarbeitung, In-
formation Retrieval, Programmentwicklung) vorfinden. Der System-Manager
will sein System optimal an die vorliegenden Aufgaben anpassen und einen siche-
ren Betrieb erreichen. Der System-Entwickler muf3 sich mit Anpassungen an
neue Bediirfnisse (Netze, Parallelrechner, Echtzeitbetrieb), mit Fragen der Porta-
bilitdt und der Standardisierung befassen. Wéhrend sich die bisherigen Abschnitte
mit UNIX vom Standpunkt des Benutzers aus beschéftigt haben, gehen wir nun
zum Standpunkt des System-Managers iiber. Dank LINUX, FreeBSD und Kom-
panie hat jeder PC-Besitzer die Moglichkeit, diesen Standpunkt auch praktisch
einzunehmen.

Zum Teil braucht auch der gewthnliche Benutzer eine ungefihre Vorstellung
von den Aufgaben des System-Managers, zum Teil muf er — vor allem auf kleineren
Anlagen — diese Tétigkeiten selbst durchfiihren. Ein System-Manager kommt um
das griindliche Studium der Handbiicher nicht herum.

Die Systempflege ist die Aufgabe des System-Managers. Er braucht dazu
die Vorrechte des Superusers. Beide Begriffe werden oft synonym gebraucht. Der
Begriff System-Manager ist jedoch von der Aufgabe her definiert und daher tref-
fender. Bei groflen Anlagen findet man noch den Operator. Er ist unmittelbar
fiir den Betrieb zusténdig, iiberwacht die Anlage, beseitigt Stérungen, wechselt
Datentriager, hat aber weniger Aufgaben in Planung, Konfiguration oder Pro-
grammierung.

2.12.1 Systemgenerierung und -update

Unter einer Systemgenerierung versteht man die Erstinstallation des Betriebs-
systems auf einer neuen Anlage oder die erneute Installation des Betriebssystems
auf einer Anlage, die v6llig zusammengebrochen und zu keiner brauchbaren Re-
aktion mehr fahig ist. Auch die Umpartitionierung der root-Platte erfordert eine
Generierung.

Ein System-Update ist die Nachfiihrung eines laufenden Systems auf eine
neuere Version des Betriebssystems oder eine Erweiterung — unter Umstédnden

174 2 UNIX

auch Verkleinerung — des Betriebssystems. Die Hinzunahme weiterer Hardware
oder eines Protokolles erfordert eine solche Erweiterung. Eine Erweiterung ohne
Anderung der Version wird auch System-Upgrade genannt.

Alle drei Aufgaben sind &hnlich und im Grunde nicht schwierig. Da man aber
derartige Aufgaben nicht jede Woche erledigt und sich das System zeitweilig in
einem etwas empfindlichen Zustand befindet, ist die Wahrscheinlichkeit sehr hoch,
daf etwas schiefgeht und man erst nach mehreren Versuchen Erfolg hat. Deshalb
soll man den Zeitpunkt fiir diese Arbeit so wahlen, dafl eine ldngere Sperre des
Systems von den Benutzern hingenommen werden kann. Der System-Manager

sollte sich vorher noch einmal gut ausschlafen und seinen Vorrat an Kaffee und
Schokolade auffiillen.

Hat man ein laufendes System mit wertvollen Daten, ist der erste Schritt ein
vollstindiges Backup. Dabei ist es zweckméfBig, nicht das gesamte File-System
auf einen oder eine Folge von Datentrégern zu sichern, sondern die obersten Ver-
zeichnisse (unter root) jeweils fiir sich. Das erleichtert das gezielte Wiederherstel-
len. /tmp beispielsweise braucht {iberhaupt nicht gesichert zu werden, /dev sollte
man zwar sichern, spielt es aber in der Regel nach einer Systeménderung nicht
zuriick, weil es entsprechend den Anderungen neu erzeugt wird. Weiterhin sollte
man schon im téglichen Betrieb darauf achten, daf} alle fiir die jeweilige Anlage
spezifischen Files in wenigen Verzeichnissen (/usr/local/bin, /usr/local/etc,
/usr/local/config usw.) versammelt und erforderlichenfalls nach /bin oder
/etc gelinkt sind. Nur so 148t sich nach einer System#nderung ohne viel Auf-
wand entscheiden, was aus den alten und was aus den neuen Files iibernommen
wird. Gerade im /etc-Verzeichnis sind viele Konfigurations-Files zu Hause, die
nach einer Systeminderung editiert werden miissen, und da ist es gut, sowohl
die alte wie die neue Fassung zu haben. Es ist auch beruhigend, die obersten
Verzeichnisse und die systemspezifischen Textfiles auf Papier zu besitzen.

Der néchste Schritt ist das Zurechtlegen der Handbiicher und das Erkunden
der Hardware, insbesondere des I/O-Subsystems. Falls man keine Handbiicher
hat, sondern nur mit dem man(1)-Kommando arbeitet, drucke man sich die Be-
schreibung der einschldgigen Kommandos auf Papier aus, es sei denn, man habe
ein zweites System derselben Art. Wichtig sind auch die beim Booten angezeig-
ten Hardware-Adressen fiir den Primary Boot Path und den Alternate Boot
Path, bei uns 4.0.0.0.0.0 und 4.0.2.1.0.0. Ferner sollte die Konsole von dem Typ
sein, mit dem die Anlage am liebsten zusammenarbeitet (bei uns also Hewlett-
Packard). Dann wirft man alle Benutzer und Ddmonen hinaus und wechselt in
den Single-User-Modus. Von jetzt ab wird die Installation hardwareabhéngig und
herstellerspezifisch.

Falls man die neuen Files nicht iiber das Netz holt, kommen sie von einem
entfernbaren Datentriiger (removable medium) wie Band (Spule oder Kassette)
oder CD-ROM iiber den Alternate Boot Path. Man legt also den Datentriger ein
und bootet. Die Boot-Firmware fragt zu Beginn nach dem Boot Path, worauf man
mit der Adresse des Alternate Boot Path antwortet. Dann wird noch gefragt, ob
interaktiv gebootet werden soll, was zu bejahen ist. Schliellich meldet sich ein
Programm — der Initial System Loader ISL - das einige wenige Kommandos
versteht, darunter das Kommando zum Booten:

2.12 Systemverwaltung 175

hpux -a disc0(4.0.0) disc0(4.0.2.1;0x400020)

Eine Beschreibung des Kommandos (Secondary System Loader) findet sich un-
ter hpux (1M). Die Option -a bewirkt, daf§ die I/O-Konfiguration entsprechend
der nachfolgenden Angabe gedindert wird. discO ist der Treiber fiir die Platte,
4.0.0 die Hardware-Adresse der Platte, auf der kiinftig der Boot-Sektor und das
root-Verzeichnis liegen sollen. discO ist ebenfalls der Treiber fiir das Kassetten-
Bandlaufwerk, von dem das neue System installiert werden soll, 4.0.2.1 seine
Hardware-Adresse. 0x400020 ist die Minor Number des Kassetten-Bandlaufwerks
und sorgt fiir eine bestimmte Konfiguration, hat also in diesem Zusammenhang
nichts mit einer Adresse zu tun. Das Kommando 1ddt von dem Installations-
Datentriiger (Kassette) ein einfaches lauffihiges System in den Arbeitsspeicher.

Dann erscheint — wenn alles gut geht — eine Halbgrafik zur Partitionierung
der root-Platte. Bootsektor, Swap Area und root miissen auf derselben Platte
liegen, da man zu Beginn des Bootens noch keine weiteren File-Systeme gemountet
hat. Falls man nach der Lénge der Filenamen gefragt wird, sollte man sich fiir lange
Namen (maximal 255 Zeichen) entscheiden.

Im weiteren Verlauf werden viele Files auf die Platte kopiert, zwischendurch
auch einmal gebootet und erforderlichenfalls der Datentriger gewechselt. Die Files
werden zu Filesets gebiindelt heriibergezogen, wobei ein Fileset immer zu einer
bestimmten Aufgabe wie Kernel, UNIX-Tools, Grafik, Netz, C, FORTRAN, PAS-
CAL, COBOL, Native Language Support gehort. Teilweise bestehen gegenseitige
Abhéngigkeiten, die das Installationsprogramm von sich aus beriicksichtigt. Man
kann sich die Filesets anzeigen lassen und entscheiden, ob sie geladen werden sol-
len oder nicht. Dinge, die man nicht braucht (Grafik, COBOL, NLS), kann man
getrost weglassen, Dinge, fiir die keine Hardware im Kasten steckt (Netzadapter,
bit-mapped Terminals), sind {iberfliissig. Nur auf den Kernel und die UNIX-Tools
sollte man nicht verzichten, auch wenn der Speicherplatz noch so knapp ist.

SchlieBlich ist die Ubertragung beendet, und man bootet vom Primary Boot
Path. Das System lauft und kennt zumindest den Benutzer root, dem man sofort
ein Passwort zuordnet. Nun beginnt die Feinarbeit mit dem Wiederherstellen der
Konfiguration.

2.12.2 Systemstart und -stop

Wenn das System eingeschaltet wird, steht als einziges Programm ein spezielles
Test- und Leseprogramm in einem Boot-ROM zur Verfiigung. Der Computer ist
einem Neugeborenen vergleichbar, der noch nicht sprechen, schreiben, lesen und
rechnen kann, aber ungeheuer lernfihig ist. Das Programm lddt den Swapper
(Prozess Nr. 0) von der Platte in den Arbeitsspeicher. Der Swapper lidt das
/etc/init (1M)-Programm, das die Prozess-ID 1 bekommt und der Urahne aller
weiteren Prozesse ist.

Der init-Prozess liest das File /etc/inittab(4) und fiihrt die dort auf-
gelisteten Tétigkeiten aus. Dazu gehoren die im File /etc/rc genannten Shell-
Kommandos und die Initialisierung der Terminals. Im File (Shellscript) /etc/rc
werden der Ddmon cron(1M), einige Netzddmonen, das Accounting System
und der Line Printer Scheduler gestartet und die Gerétefiles fiir Drucker und

176 2 UNIX

Plotter getffnet. In den letzten Jahren ist — vor allem infolge der Vernetzung —
aus dem File /etc/rc eine ganze Verzeichnisstruktur geworden, die bei Start und
Stop durchlaufen wird.

Die Terminals werden initialisiert, indem ein Prozess /etc/getty(1M)
fiir jedes Terminal erzeugt wird. Jeder getty-Prozess schaut in dem File
/etc/gettydefs(4) nach den Parametern seines Terminals, stellt die Schnitt-
stelle ein und schreibt den login-Prompt auf den Bildschirm.

Nach Eingabe eines Benutzernamens ersetzt sich getty durch /bin/login(1),
der den Namen gegen das File /etc/passwd(4) priift. Dann wird das Passwort
gepriift. Sind Name und Passwort giiltig, ersetzt sich der login-Prozess durch das
in /etc/passwd angegebene Programm, iiblicherweise eine Shell. Das ebenfalls in
/etc/passwd angegebene Home-Verzeichnis wird zum anfinglichen Arbeits-
Verzeichnis.

Die Shell fiihrt als erstes das Skript /etc/profile(4) aus, das die Umgebung
bereitstellt und einige Mitteilungen auf den Bildschirm schreibt, News zum Bei-
spiel. Anschlieflend sucht die Shell im Home-Verzeichnis nach einem File .profile
(der Punkt kennzeichnet das File als verborgen). Dieses Skript konnte fiir jeden
Benutzer individuell gestaltet sein. Bei uns ist es jedoch zumindest gruppenweise
gleich. Wir haben in dieses Skript eine Abfrage nach einem weiteren Skript namens
.autox eingebaut, das sich jeder Benutzer selbst schreiben kann. Wir haben also
eine dreifache Stufung: /etc/profile fiir alle, auch gast, $HOME/.profile fiir
die Gruppe und $HOME/ .autox fiir das Individuum. Grafische Oberflichen brin-
gen zum Teil weitere .profile-Files mit, die zu Beginn einer Sitzung abgearbeitet
werden.

Ist dies alles erledigt, wartet die Shell auf Eingaben. Wenn sie mit exit beendet
wird, erfihrt /etc/init davon und erzeugt einen neuen getty-Prozess fiir das
Terminal. Der getty-Prozess wird "respawned “.

In dem File /etc/inittab(4) werden Run Levels definiert. Das sind Sy-
stemzustinde, die festlegen, welche Terminals ansprechbar sind, d. h. einen getty-
Prozess bekommen, und welche Ddmonen laufen. Der Run Level S ist der Single-
User-Modus, in dem nur die Konsole aktiv ist. Run Level 3 ist der iibliche
Multi-User-Modus, in dem auf unserer Anlage alle Ddmonen aktiv sind. Die
iibrigen Run Levels legt der System-Manager fest. Die Einzelheiten sind wieder
von System zu System verschieden.

Beim System-Stop sollen zunichst alle laufenden Prozesse ordnungsgemifl
beendet und alle Puffer geleert werden. Dann soll das System in den Single-User-
Modus iiberfiihrt werden. Das Skript /sbin/shutdown(1M) erledigt diese Arbei-
ten automatisch. Mit der Option - r bootet shutdown (1M) sofort wieder, anson-
sten dreht man anschliefend den Strom ab. Dabei gilt die Regel, daf} zuerst die
Zentraleinheit und dann die Peripherie ausgeschaltet werden sollen. Einschalten
umgekehrt.

2.12.3 Benutzerverwaltung

Die Benutzer eines UNIX-Systems lassen sich in vier Klassen einteilen:

e Programme wie who(1), die als Benutzer in /etc/passwd(4) eingetragen

2.12 Systemverwaltung 177

sind. Auch Ddmonen verhalten sich teilweise wie Benutzer, beispielsweise
der Line Printer Spooler 1p, der Files besitzt,

e Benutzer mit begrenzten Rechten wie gast, ftp oder Benutzer, die statt der
Shell gleich ein bestimmtes Anwendungsprogramm bekommen, das sie nicht
verlassen konnen,

e Normale Benutzer,
e Benutzer mit Superuser-Rechten wie root.

Formal ist der Eintrag in /etc/passwd(4) entscheidend. Deshalb ist dieses File
so wichtig und eine Schwachstelle der System-Sicherheit.

Zur Einrichtung eines neuen Benutzers trigt der System-Manager den Benut-
zernamen in die Files /etc/passwd(4):

wualex1:%:101:20:W. Alex:/mntl/homes/wualex:/usr/bin/ksh
und /etc/group(4) ein:
users::20:root,wualexl,ig03,gebernl, ig05

Dann richtet er ein Home-Verzeichnis ein, {ibereignet es dem Benutzer und linkt
schliefflich ein .profile in das Home-Verzeichnis, ohne das der Benutzer nicht
viel machen darf. Der Benutzer hat nun ein Konto oder einen Account auf dem
System. Das erste Feld in der /etc/passwd(4)-Zeile enthélt den Benutzerna-
men. Als Passwort wird zuniichst die Kombination Komma-Punkt-Punkt ein-
getragen, die den Neuen beim ersten Einloggen dazu veranlafit, sich ein Passwort
zu geben. Das sollte unverziiglich erfolgen, da dieser Account voriibergehend je-
dermann offen steht. Ein Stern im Passwortfeld fiihrt dazu, dal man sich unter
dem zugehorigen Namen nicht anmelden kann. Nur root kann dann das Passwort
andern. Das braucht man fiir Ddmonen wie 1p, die als Filebesitzer auftreten, so-
wie bei Mafinahmen gegen unbotméflige oder verschollene Benutzer. Das dritte
und vierte Feld speichern die Benutzer- und Gruppennummer. Fiinftens folgt das
Kommentar- oder GECOS-Feld (GECOS = General Electric Comprehensive Ope-
rating System, ein historisches Relikt) mit Kommentar, der von Kommandos wie
finger (1) ausgewertet wird. Schliefilich das Home-Verzeichnis und die Sitzungs-
shell. Letztere darf kein weicher Link sein, sonst gibts Probleme. Der Eintrag in
/etc/group(4) listet nach Gruppennamen und -nummer die zugehorigen Benut-
zer auf, durch Komma ohne Leerzeichen getrennt. Ein Benutzer kann mehreren
Gruppen angehoren. Die Anzahl der Benutzer pro Gruppe ist begrenzt. Die Gren-
ze ist systemabhéngig und liegt bei unseren Maschinen teilweise schon bei etwas
iiber 80 Benutzern, daher keine Riesengruppen planen. Eine zu grofle Gruppe in
/etc/group(4) fiihrt dazu, dafl das File von dieser Gruppe an nicht mehr gelesen
wird.

Auch UNIX-Kommandos wie who (1) oder date(1) lassen sich als Benutzer
eintragen. Der folgende Eintrag in /etc/passwd(4):

who::90:1:Kommando who:/:/usr/local/bin/who

178 2 UNIX

samt dem zugehorigen Eintrag in /etc/group(4) ermoglicht es, sich durch Einga-
be von who als login-Name ohne Passwort eine Ubersicht iiber die augenblicklich
angemeldeten Benutzer zu verschaffen. Das who aus /usr/local/bin ist eine Va-
riante des urspriinglichen /bin/who (1) mit einer verlingerten Dauer der Anzeige:

/bin/who; sleep 8

Solche Kommandos als Benutzer haben keine Sitzungsumgebung, kénnen also
nicht auf Umgebungsvariable zugreifen. Sie gelten als Sicherheitsliicke, wegen des
fehlenden Passwortes. Falls man sie dennoch einrichtet, soll man darauf achten,
daf} der aufrufende Benutzer keine Moglichkeit hat, das Kommando zu verlassen
oder abzubrechen.

Der Benutzer mit Superuser-Rechten, iiblicherweise der System-Manager unter
dem Namen root mit der User-ID 0 (null), ist auf groBen oder besonders gefihr-
deten Anlagen eine Schwachstelle. Ist er ein Schurke, so kann er infolge seiner
Allmacht im System viel anrichten. Es gibt daher Ansétze, seine Allmacht etwas
aufzuteilen, indem fiir bestimmte Aufgaben wie das Accounting ein eigener Benut-
zer namens adm eingerichtet wird. Das File /etc/passwd(4) sollte man von Zeit
zu Zeit darauf ansehen, welche Benutzer die User-ID oder Gruppen-ID 0 haben.
Dieser Kreis sollte klein sein und unbedingt ein Passwort haben. Der Eintrag fiir
den Benutzer root steht meist an erster Stelle. Beschddigt man ihn durch unvor-
sichtigen Umgang mit dem Editor, kann guter Rat teuer werden. Deshalb haben
wir einen weiteren Benutzer mit der ID 0 unter einem passenden Namen mitten in
dem File angelegt, auf den man ausweichen kann, wenn der root-Eintrag hiniiber
ist. Durch Schaden wird man klug.

Auch wére es manchmal zweckmifig, einzelne Aufgaben wie das Einrichten
von Benutzern oder das Beenden von Prozessen an Unter-Manager delegieren zu
kénnen. Man denke an Netze, in denen solche Aufgaben besser vor Ort erledigt
werden. Das herkommliche UNIX kennt jedoch nur den einzigen und allméchtigen
Superuser. Windows NT dagegen beschéftigt eine Schar von subalternen Mana-
gern unter dem Administrator.

2.12.4 Geriteverwaltung
2.12.4.1 Terminals

Alle Peripheriegerite (Platten, Terminals, Drucker) werden von UNIX als Files
behandelt und erscheinen im Verzeichnis /dev. Dieses Verzeichnis hat einen be-
sonderen Aufbau. Schauen Sie sich es einmal mit 1s -1 /dev | more an. Das
Kommando zum Eintragen neuer Gerite lautet /etc/mknod (1M) oder mksf (1M)
und erwartet als Argument Informationen iiber den Treiber und den Port (Steck-
dose) des Geriites. Die Namen der Gerite sind der besseren Ubersicht wegen stan-
dardisiert. /dev/tty ist beispielsweise das Kontroll-Terminal, /dev/null der Bit
Bucket oder Papierkorb. Die ganze Sektion 7 des Referenz-Handbuches ist den
Geriétefiles gewidmet.

Bei der Einrichtung eines Terminals ist darauf zu achten, daf} eine zutref-
fende terminfo (4)-Eintragung verfiigbar ist. Bei neueren Terminals ist das leider

2.12 Systemverwaltung 179

eine Ausnahme, so dafl der System-Manager die Terminalbeschreibung fiir das
terminfo-Verzeichnis selbst in die Hinde nehmen muf}, zumindest beim ersten
Mal mit Nachdenken verbunden.

Ein UNIX-System arbeitet mit den unterschiedlichsten Terminals zusammen.
Zu diesem Zweck ist eine Beschreibung einer Vielzahl von Terminaltypen in dem
Verzeichnis /usr/lib/terminfo(4) gespeichert (frither in /etc/termcap), und
zwar in einer compilierten Form. Die curses(3)-Funktionen zur Bildschirmsteu-
erung greifen darauf zuriick und damit auch alle Programme, die von diesen Funk-
tionen Gebrauch machen wie der Editor vi(1).

Der Compiler heif3t tic(1M), der Decompiler untic (1M). Um sich die Be-
schreibung eines Terminals auf den Bildschirm zu holen, gibt man untic (1M) mit
dem Namen des Terminals ein, so wie er in der terminfo steht:

untic vt100
Die Ausgabe sieht so aus:

vt100|vt100-am|dec vt100,
am, xenl,
cols#80, it#8, lines#24, vt#3,
bel="G, cr=\r, csr=\E[)ikplld;%p2kdr, tbc=\E[3g,
clear=\E[H\E[2J, el=\E[K, ed=\E[J, cup=\E[%i%p1%d;%p2%dH,
cudi=\n, home=\E[H, cubl=\b, cufil=\E[C,
cuul=\E[A, blink=\E[5m, bold=\E[1m, rev=\E[7m,
smso=\E[7m, smul=\E[4m, sgrO0=\E[m, rmso=\E[m,
rmul=\E[m, kbs=\b, kcud1=\E0B, kcubl=\EOD,
kcuf1=\EOC, kcuul=\EOA, rmkx=\E[?11\E>, smkx=\E[?71h\E=,
cud=\E[%p1%dB, cub=\E[%p1%dD, cuf=\E[%p1%dC, cuu=\E[%p1%dA,
rs2=\E>\E[?31\E[?41\E[?51\E[?7h\E[?8h,
rc=\E8, sc=\E7, ind=\n, ri=\EM,
sgr=\E[4h?%p1%t; 7h; h7hp2ht ;4% ; hohp3%ht ; Th; h?hpaht ;

5%;%?hp6%ht;1%;m,

hts=\EH, ht=\t,

Die erste Zeile enthélt den gingigen Namen des Terminaltyps, dahinter durch den
senkrechten Strich abgetrennt weitere Namen (Aliases), als letzten die vollstéindige
Typbezeichnung. Die weiteren Zeilen geben die Eigenschaften (capabilities) des
Typs an, eingeteilt in drei Klassen

e Boolesche Variable, das sind Eigenschaften, die entweder vorhanden sind
oder nicht,

e Zahlenwerte wie die Anzahl der Zeilen und Spalten,
e Strings, das sind vielfach Steuersequenzen (Escapes).

Die Bedeutung der einzelnen Abkiirzungen entnimmt man terminfo(4), hier nur
einige Beispiele:

e am Terminal has automatic margins (soll heiflen: wenn man iiber den rechten
Rand hinaus schreibt, wechselt es automatisch in die néchste Zeile),

180 2 UNIX

e xenl Newline ignored after 80 columns (wenn man nach 80 Zeichen ein
newline eintippt, wird es ignoriert, weil automatisch eines eingefiigt wird,
siehe oben),

e cols#80 Number of columns in a line (80 Spalten),

e it#8 Tabs initially every 8 spaces (Tabulatoren),

e lines#24 Number of lines on screen or page (24 Zeilen),
e vt#3 Virtual terminal number,

e bel="G Audible signal (die Zeichenfolge, welche die Glocke erschallen 148}t,
control-g, ASCII-Zeichen Nr. 7),

e tbc=\E[3g Clear all tab stops (die Zeichenfolge, die alle Tabulatoren 15scht,
ESCAPE, linke eckige Klammer, 3, g),

e clear=\E[H\E[2J Clear screen and home cursor (die Zeichenfolge, die den
Bildschirm putzt und den Cursor in die linke obere Ecke bringt, ESCAPE,
linke eckige Klammer, H, nochmal ESCAPE, linke eckige Klammer, 2, J),

e kcud1=\EOB Sent by terminal down arrow key (die Zeichenfolge, die die
Cursortaste Pfeil nach unten abschickt, mufl nicht notwendig mit der Zei-
chenfolge {ibereinstimmen, die den Cursor zu der entsprechenden Bewegung
veranlafit),

e sgr=\E[%7.... Define the video attributes,

e cup=\E[%i%p1%d;%p2%dH Screen relative cursor motion row #1 column #2
(Cursorpositionierung nach Bildschirmkoordinaten)

In termio(4) findet man rund 200 solcher Eigenschaften erldutert; Farbe, Gra-
fik und Maus fehlen. Der Zusammenhang zwischen den knappen Erkldrungen im
Referenz-Handbuch und der Beschreibung im Terminal-Handbuch ist manchmal
dunkel und bedarf der Kldrung durch das Experiment. Man geht am besten von
der Beschreibung eines d&hnlichen Terminals aus, streicht alles, was man nicht ver-
steht und nimmt Schritt um Schritt eine Eigenschaft hinzu. Eine falsche Beschrei-
bung macht mehr Arger als eine unvollstindige. Wenn die Kommandos vi (1) und
more (1) oder pg(1) richtig arbeiten, stimmt wahrscheinlich auch die Terminal-
beschreibung.

Die mit einem Editor verfate Beschreibung wird mit tic(1M) compiliert,
anschlieffend werden die Zugriffsrechte in der terminfo auf 644 gesetzt, damit die
Menschheit auch etwas davon hat.

2.12.5 Einrichten von Dimonen

Déamonen sind Prozesse, die im System stindig laufen oder periodisch aufge-
rufen werden und nicht an ein Kontrollterminal gebunden sind. In der Liste der
Prozesse erscheint daher bei der Angabe des Terminals ein Fragezeichen. Die mei-
sten werden beim Systemstart ins Leben gerufen und haben infolgedessen niedrige
Prozess-1Ds.

2.12 Systemverwaltung 181

Einige Ddmonen werden von der Bootprozedur gestartet, einige von init (1M)
aufgrund von Eintragungen in der inittab(4) und einige durch einen Aufruf im
Shellscript /etc/rc samt Unterscripts oder in .profile. Die Shellscripts kann
der System-Manager editieren und so iiber die Bevolkerung seines Systems mit
Démonen entscheiden. Der Anschlufl ans Netz bringt eine gréflere Anzahl von
Démonen mit sich.

In unserem System walten nach der Auskunft von ps -e folgende Démonen,
geordnet nach ihrer PID:

swapper mit der PID 0 (keine Vorfahren) besorgt den Datenverkehr zwischen
Arbeitsspeicher und Platte.

init (1M) mit der PID 1 ist der Urahne fast aller iibrigen Prozesse und
arbeitet die inittab(4) ab.

pagedaemon beobachtet den Pegel im Arbeitsspeicher und lagert bei Uber-
schwemmungsgefahr Prozesse auf die Platte aus.

statdaemon gehort zu den ersten Damonen auf dem System, weshalb wir
vermuten, dafl er etwas mit dem Filesystem zu tun hat.

syncer (1M) ruft periodisch — in der Regel alle 30 Sekunden — den System-
aufruf sync(2) auf und bringt das File-System auf den neuesten Stand.

1psched(1M) ist der Line Printer Spooler und verwaltet die Drucker- und
Plotter-Warteschlangen.

rlbdaemon (1M) gehort in die LAN/9000-Familie und wird fiir Remote Loop-
back Diagnostics mittels r1b(1M) benoétigt.

sockregd dient der Network Interprocess Communication.

syslogd (1M) schreibt Mitteilungen des Systemkerns auf die Konsole, in be-
stimmte Files oder zu einer anderen Maschine.

rwhod (1IM) beantwortet Anfragen der Kommandos rwho(1) und
ruptime (1).

inetd (1M) ist der ARPA-Oberddmon, der an dem Tor zum Netz
wacht und eine Schar von Unterddmonen wie ftpd(1M) befehligt, siehe
/etc/inetd.conf und /etc/services(4).

sendmail (1M) ist der Simple Mail Transfer Protocol Ddmon — auch aus der
ARPA-Familie — und Voraussetzung fiir Email im Netz.

portmap (1M), nfsd (1M), biod (1M) usw. sind die Ddmonen, die das Network
File System betreiben, so dal Filesysteme iiber das Netz gemountet werden
konnen (in beiden Richtungen).

cron(1M) ist der Ddmon mit der Armbanduhr, der piinktlich die Auftréige
aus der crontab und die mit at (1) versehenen Programmaufrufe erledigt.

ptydaemon stellt Pseudo-Terminals fiir Prozesse bereit.

delog(1M) ist der Diagnostic Event Logger fiir das I/O-Subsystem.

182 2 UNIX

Wenn Sie dies lesen, sind es vermutlich schon wieder ein paar mehr geworden. Die
Netzdienste und das X Window System bringen ganze Scharen von Ddmonen mit.
Unser jlingster Zugang ist der Festplatten-Bestell-Dédmon £bd (1M), der automa-
tisch bei unserem Lieferanten eine weitere Festplatte per Email bestellt, wenn das
Kommando df (1) anzeigt, daf} eine Platte iiberzulaufen droht.

2.12.6 Storungen und Fehler

Das Beheben von Stérungen und Beseitigen von Fehlern ist das tégliche Brot ei-
nes System-Managers. Ein so komplexes Gebilde wie ein heterogenes Netz, das
stdndig im Wandel begriffen ist, erfordert (noch) die dauernde Betreuung durch
hochintelligente Lebensformen, die mit unvorhergesehenen Situationen fertig wer-
den. Wir kénnen nur einige allgemeine Hinweise geben, die fiir Hard- und Software
gleichermaflen gelten:

e Ursache und Auswirkung eines Fehlers kénnen meilenweit auseinander lie-
gen, bildlich gesprochen.

e Die meisten Fehlermeldungen sagen nichts oder fiithren in die Irre. Nur dafl
etwas faul ist, darf man glauben.

e Viel lesen. Manchmal findet sich ein Hinweis unter einer Uberschrift, die
dem Anschein nach nichts mit dem Fehler zu tun hat.

e Nachdem man gelesen hat, darf man auch fragen. Vielleicht hat ein Leidens-
genosse schon mit dem gleichen Fehler gerungen.

e Sich niemals auf eine einzige Fehlerursache versteifen.

2.12.7 Pflege des File-Systems

Das File-System kann durch Stromausfille und &hnliche Unregelméfigkeiten
fehlerhaft (korrupt) werden und wird mit Sicherheit nach einiger Zeit iiberfliissige
Daten enthalten. Nahezu volle File-Systeme geben leicht Anlafl zu Stérungen.
Deshalb ist eine Pflege notwendig.

Den Fiillstand der File-Systeme ermittelt man mit dem Kommando df (1M)
oder bdf (1M). Zum Erkennen und Beseitigen von Fehlern dient das Kommando
/etc/fsck(1M). Ohne Optionen oder Argumente aufgerufen iiberpriift es die im
File /etc/checklist (4) aufgelisteten File-Systeme und erfragt bei Fehlern die
Rettungsmafinahmen. Da dem durchschnittlichen System-Manager kaum etwas
anderes {ibrig bleibt als die Vorschlidge von fsck (1M) anzunehmen, kann man die
zustimmende Antwort auch gleich als Option mitgeben und fsck -y eintippen.
Eine Reparatur von Hand kann zwar im Prinzip mehr Daten retten als die Repa-
ratur durch fsck(1M), setzt aber eine griindliche Kenntnis des File-Systems und
der Plattenorganisation voraus. Meistens vergroflert man den Schaden noch. Bei
der Anwendung von fsck(1M) soll das System in Ruhe, das heift im Single User
Modus sein. In der Regel fithrt man die Priifung vor einem gréfleren Backup und
beim Booten durch.

Das Aufspiiren iiberfliissiger Files erfordert eine regelméfige, wenigstens
wochentliche Beobachtung, wobei der cron(iM) hilft. Files mit Namen wie

2.12 Systemverwaltung 183

core(4), a.out(4) oder *.bit werden {iblicherweise nicht fiir eine lingere Zeit
benétigt und sollten automatisch geléscht werden. Files, auf die seit einem Monat
nicht zugegriffen wurde, gehoren nicht auf die kostbare Platte; mit

find -atime +32 -print

aufspiiren und die Benutzer bitten, sich ein anderes Medium zu suchen. Es kommt
auch vor, dal Benutzer verschwinden, ohne sich beim System-Manager abzumel-
den. Dies 148t sich mittels 1ast (1) oder des Accounting Systems feststellen.

Schliellich sollte man die Grofe aller Files und Verzeichnisse iiberwachen. Ei-
nige Protokollfiles des Systems wachsen unbegrenzt und miissen von Zeit zu Zeit
von Hand bereinigt werden. Auch sind sich manche Benutzer der Knappheit des
Massenspeichers nicht bewuf3t. Mit

find -size +n -print

lassen sich alle Files ermitteln, deren Grofle iiber n Blocken liegt, mit folgendem
Script die Grofle aller Home-Verzeichnisse, sortiert nach der Anzahl der Blocke:

Script Uebersicht Home-Directories

print ’Home-Directories, Groesse in Bloecken\n’

{

cd /mnt

for dir in ‘1ls .°
do

du -s $dir

done

} | sort -nr
print ’\nEnde, ’ ‘date’
Programm 2.40 : Shellscript zur Ermittlung der Grofie aller Home-Verzeichnisse

Mittels du(1) kann man auch in dem Script /etc/profile, das fiir jeden
Benutzer beim Anmelden aufgerufen wird, eine Ermittlung und Begrenzung der
Grofle des Home-Verzeichnisses erzielen. Auf neueren Systemen findet man auch
einen fertigen Quoten-Mechanismus, siehe quota(1) und quota(5).

2.12.8 Weitere Dienstleistungen

Zu den Pflichten der System-Manager gehéren weiterhin die Beschaffung und Pfle-
ge der Handbiicher auf Papier oder als CD-ROM, das Herausdestillieren von
benutzerfreundlichen Kurzfassungen (Quick Guides), das Schreiben oder Her-
beischaffen (GNU!) von Werkzeugen in /usr/local/bin, Konvertierungen aller
denkbaren Datenformate ineinander, das Beobachten der technischen Entwick-
lung und des Marktes, der Kontakt zum Hersteller der Anlage, das Einrichten
von Software wie Webservern, Datenbanken oder LaTeX usw. sowie das Beraten
und Trosten der Benutzer.

184 2 UNIX

Eine Anlage wird mit einer durchschnittlichen Konfiguration in Betrieb genom-
men. Es kann sich im Lauf der Zeit herausstellen, daf§ die Aufgaben grundsétzlich
oder zu gewissen Zeiten mit einer angepafiten Konfiguration — unter Umsténden
nach einer Ergidnzung der Hard- oder Software — schneller zu bewiltigen sind. Bei-
spielsweise iiberwiegt tags der Dialog mit vielen kurzen Prozessoranforderungen,
nachts der Batch-Betrieb mit rechenintensiven Prozessen. Die Auslastung der Ma-
schine zeigt das Werkzeug top (1) oder ein eigenes Programm unter Verwendung
des Systemaufrufs pstat(2) an.

2.12.9 Accounting System

Das Accounting System ist die Buchhaltung des Systems, der Buchhalter ist
der Benutzer adm, oft aber nicht notwendig derselbe Mensch wie root. Die zu-
gehorigen Prozesse werden durch das Kommando /usr/lib/acct/startup(1M),
zu finden unter acctsh(1M), im File /etc/rc in Gang gesetzt. Das Gegenstiick
/usr/lib/acct/shutacct (1M) ist Teil des Shellscripts shutdown (1M). Das Ac-
counting System erfiillt drei Aufgaben:

e Es liefert eine Statistik, deren Auswertung die Leistung des Systems verbes-
sert.

e Es ermoglicht das Aufspiiren von Bosewichtern, die die Anlage mifibrauchen.
e Es erstellt die Abrechnung bei Anlagen, die gegen Entgelt rechnen.

Zu diesem Zweck werden bei der Beendigung eines jeden Prozesses die zugehori-
gen statistischen Daten wie Zeitpunkt von Start und Ende, Besitzer, CPU- und
Plattennutzung usw. in ein File geschrieben, siehe acct (4). Das ist eine Unmenge
von Daten, die man sich selten unmittelbar ansieht. Zu dem Accounting System
gehoren daher Werkzeuge, die diese Daten auswerten und komprimieren, siehe
acct (1M). Man kann sich dann eine tégliche, wochentliche oder monatliche Uber-
sicht, geordnet nach verschiedenen Kriterien, ausgeben lassen. Fiir das Grobste
nehmen wir den cron(1M); das crontab-File des Benutzers adm sieht so aus:

30 23 * *x 0-6 /usr/lib/acct/runacct 2> /usr/adm/acct/nite/fd2log &
10 01 * * 0,3 /usr/lib/acct/dodisk
20 * x * * /usr/lib/ckpacct
30 01 1 *x % /usr/lib/acct/monacct
X X

45 23 * /usr/lib/acct/acctcom -1 tty2p4 | mail root

Das File wird mit dem Kommando crontab(1) compiliert. Im einzelnen bewirken
die Zeilen

e runacct (1M) ist ein Shellscript, das téglich ausgefiihrt wird und den Tages-
verlauf in verschiedenen Files zusammenfaflt.

e dodisk(1M), beschrieben unter acctsh(1M), ermittelt die Plattenbelegung
zu den angegebenen Zeitpunkten (sonntags, mittwochs), um Ausgangsdaten
fiir die mittlere Belegung bei der Monatsabrechnung zu haben.

2.12 Systemverwaltung 185

e ckpacct (1M), beschrieben unter acctsh (1M), iiberpriift stiindlich die Grofe
des Protokollfiles /usr/adm/pacct, in das jeder Prozess eingetragen wird,
und ergreift bei Uberschreiten einer Grenze geeignete Vorkehrungen.

e monacct (1M), beschrieben unter acctsh(1M), stellt die Monatsabrechnung
in einem File /usr/adm/acct/fiscal/fiscrpt zusammen, das gelesen oder
gedruckt werden kann.

e acctcom(1M) protokolliert die Prozesse des Terminals /dev/tty2p4, wohin-
ter sich unser Modem verbirgt. Eine Sicherheitsmafinahme.

Weiteres kann man im Referenz-Handbuch und vor allem im System Administra-
tor’s Manual nachlesen. Nicht mehr aufzeichnen, als man auch auswertet, Altpa-
pier gibt es schon genug.

2.12.10 Sicherheit

Zur Sicherheit gehoren drei Bereiche:
e die Betriebssicherheit oder Verfiigharkeit des Systems,

e der Schutz der Daten vor Verlust oder Beschidigung (Datensicherheit
oder Datenintegritit),

e der Schutz personenbezogener oder sonstwie vertraulicher Daten vor Mif3-
brauch (Datenschutz oder Datenvertraulichkeit).

In allen drei Bereichen sind Mafinahmen auf der Hard- und der Softwareseite
erforderlich. Bei hohen Anforderungen erstrecken sich die Mafinahmen auch auf
Gebéude, Personen und Organisationsstrukturen. Besonderen Wert lege man auf
die Auswahl und Pflege der System-Manager.

2.12.10.1 Betriebssicherheit

Mafinahmen zur Betriebssicherheit stellen das ordnungsgeméfle Funktionieren des
Systems sicher. Dazu gehdren:

e Schaffung von Ausweichmoglichkeiten bei Hardwarestorungen

e Sicherung der Stromversorgung

e Vermeidung von Staub in den EDV-Rdumen, Rauchverbot

e Vermeidung von elektrostatischen Aufladungen

e Klimatisierung der EDV-Ridume, zumindest Temperierung

e vorbeugende Wartung der Hardware (Filter!) und der Klimaanlage
e vorbeugendes Auswechseln hochbeanspruchter Teile (Festplatten)

e Vorbereitung von Programmen oder Skripts zur Beseitigung von Softwa-
restorungen

e regelmiifliges (z. B. wochentliches) Rebooten der Anlage

e Protokollieren und Analysieren von Stérungen

186 2 UNIX

e Uberwachung des Zugangs zu kritischen Systemteilen
e Uberwachung des Netzverkehrs, Beseitigung von Engpiissen

e Kenntnisse der Systemverwaltung bei mehreren, aber nicht zu vielen Mitar-
beitern

Wir setzen teilweise PC-Hardware fiir zentrale Aufgaben ein und achten darauf,
daf} die Gehduse gerdumig sind und mehrere Liifter haben. Einfache Liifter tau-
schen wir gegen kugelgelagerte Liifter aus dem Schwarzwald. Ferner entstauben
wir Computer und Drucker mindestens einmal im Jahr (Osterputz). Festplatten,
die im Dauerbetrieb laufen, wechseln wir nach drei Jahren aus. Dann sind sie
auch technisch iiberholt; in weniger beanspruchten Computern tun sie noch einige
Zeit Dienst. Ein Sorgenkind sind die winzigen Liifter auf den Prozessoren. Eine
Zeitlang haben wir sie gegen grofle statische Kiihlkorper getauscht. Das setzt vor-
aus, dafl man sich mittels Temperaturmessungen iiber die Erwdrmung Klarheit
verschafft. Hohe Temperaturen fiihren sowohl bei mechanischen wie bei elektro-
nischen Bauteilen zunéchst nicht zum Ausfall, sondern setzen die Lebensdauer
herab und verursachen gelegentliche Stérungen, die unangenehmer sind als ein
klarer Defekt.

Bei ausgereiften Einzelsystemen erreicht man heute eine Verfiigharkeit von
etwa 99 %. Das sind immer noch drei bis vier Fehltage im Jahr. Nach MURPHY’s
Law sind das die Tage, an denen man den Computer am dringendsten braucht.
Hohere Verfiigbarkeit erfordern besondere Mafinahmen wie mehrfach vorhandene,
parallel arbeitende Hard- und Software. Damit erreicht man zu entsprechenden
Kosten Verfiigharkeiten bis zu etwa 99,999 % gleich fiinf Fehlminuten pro Jahr?®.

2.12.10.2 Datensicherheit

Auch bei einer gut funktionierenden Anlage gehen Daten verloren. Héufigste Ur-
sache sind Fehler der Benutzer wie versehentliches Loschen von Files.

Versehentliches Loschen Das Loschkommando rm(1) fragt nicht, sondern
handelt. Kopierkommandos wie cp(1) l6schen oder iiberschreiben stillschweigend
das Zielfile. Eine Riicknahme des Kommandos mit undelete oder dhnlichen Werk-
zeugen wie vom PC bekannt gibt es nicht. Will man vorsichtig sein, ruft man es
grundsétzlich interaktiv auf, Option - i. Traut der System-Manager seinen Be-
nutzern nicht, benennt er das Original um und verpackt es mit besagter Option
in ein Shellscript oder Alias namens rm. Man kann auch aus dem Lo6schen ein
Verschieben in ein besonderes Verzeichnis machen, dessen Files nach einer be-
stimmten Frist vom cron endgiiltig geloscht werden, aber das kostet Platz auf der
Platte. Gehen dennoch Daten verloren, bleibt die Hoffnung aufs Backup.

Passworter Die Passworter sind der Schliissel zum System. Da die Benutzer-
namen Offentlich zugénglich sind, sind jene der einzige Schutz vor Miflbrauch.
Besonders reizvoll ist das Passwort des System-Managers, der bekanntlich den

26Welche Verfiigbarkeit haben Organe wie Herz oder Hirn?

2.12 Systemverwaltung 187

Namen root fiihrt. Das root-Passwort sollte nie unverschliisselt iiber ein Netz
laufen, sondern nur auf der Konsole eingegeben werden. Die einfachsten und daher
haufigsten Angriffe zielen auf Passworter ab, und oft haben sie wegen Schlampe-
rei im Umgang mit den Passwortern Erfolg. Eine internationale Gruselgeschichte
baut darauf auf, dafl ein Hacker das Passwort der root erraten hat.

Ein Passwort darf nicht zu einfach aufgebaut und leicht zu erraten sein. UNIX
verlangt sechs bis acht Zeichen, davon mindestens zwei Buchstaben und eine Zif-
fer oder ein Satzzeichen. Ferner kann der System-Manager einen Automatismus
einrichten, der die Benutzer zwingt, sich in regelméfligen Zeitabstéinden ein neues
Passwort zu geben (password aging). Das hat aber auch Nachteile. So habe ich
noch meine vor Jahren giiltigen Passworter im Kopf, selten jedoch meine neuesten.

Ein Passwort soll nicht aus allgemein bekannten Eigenschaften des Benutzers
oder des Systems erraten werden koénnen oder ein Wort aus einem Worterbuch
oder der bekannteren Literatur sein. Folgende Passworter sind leicht zu erraten,
inzwischen ohne Miihe per Programm, und daher verpont:

e biirgerlicher Vor- oder Nachname (w_alex), Ubernamen (oldstormy),

e Namen von nahen Verwandten (rainer),

e Namen von Haustieren (hansi),

e Namen von Freunden, Freundinnen, Kollegen, Sportkameraden (steffig),
e Namen bekannter Personlichkeiten (thmann),

e Namen von bekannten Romanfiguren (hamlet, winnetou, slartibartfast),
e Namen von Betriebssystemen oder Computern (Unix, pclinux),

e Telefonnummern, Autokennzeichen, Postleitzahlen, Jahreszahlen (1972),
e Geburtstage, historische Daten (issos333),

e Worter aus Worterbiichern, insbesondere englischen oder deutschen,

e Benutzernamen oder Gruppennamen auf Computern (owner, student),
e Orts-, Pflanzen- oder Tierbezeichnungen (karlsruhe, drosophila),

e Substantive jeder Sprache,

e nebeneinanderliegende Zeichenfolgen der Tastatur (qwertyu),

e einfache, wenn auch sinnlose, Kombinationen aus Buchstaben, Ziffern oder
Satzzeichen (aaAAbbBB),

e ctwas aus obiger Aufzihlung mit vorangestellter oder angehidngter Ziffer
(3anita),

e etwas aus obiger Aufzdhlung riickwérts oder abwechselnd grofl und klein
geschrieben.

Ein zuféllig zusammengewdiirfeltes Passwort 148t sich nicht merken und fiihrt da-
zu, dal man einen Zettel ans Terminal klebt oder unter die Schreibunterlage legt.
Eine brauchbare Methode ist, einen Satz (eine Gedichtzeile oder einen Bibelvers)
auswendig zu lernen und das Passwort aus den Anfangsbuchstaben der Worter zu

188 2 UNIX

bilden oder zwei Worter mit einer Primzahl zu mischen. Auch der Roman Finne-
gans Wake von JAMES JOYCE gibt gute Passworter her, weil ihn kaum jemand
liest. Ein Passwort wie gnob96meosulphidosalamermauderman — die Ziffern sind
die Seitenzahl — treibt jeden Cracker in den Wahnsinn. Und schlief8lich beherzige
man den Rat unserer Altvordern?’

Selber wisse mans,
nicht sonst noch jemand,
das Dorf weif3, was drei wissen.

Bedenken Sie, es sind nicht nur Ihre Daten, die gefiahrdet sind, sondern die ganze
Maschine ist kompromittiert und moglicherweise die Bresche fiir weitere Angriffe,
falls Sie ein zu einfaches Passwort verwenden. Es gibt Programme wie crack oder
satan, die einfache Passworter herausfinden und so dem System-Manager helfen,
leichtsinnige Benutzer zu ermitteln.

Einige Versuche, an Passworter zu gelangen, sind in die Literatur eingegan-
gen. Der simpelste Trick ist, einem Benutzer beim Einloggen zuzuschauen. Auch
in Papierkoérben findet man Zettel mit Passwortern. Einem intelligenten UNIX-
Liebhaber angemessener sind Programme, die als Trojanische Pferde?® bekannt
sind. Vom Chaos Computer Club, Hamburg soll folgende Definition stammen: Ein
Trojanisches Pferd ist ein Computerprogramm, welches in einen fremden Stall
(Computer) gestellt wird und bei Fiitterung mit dem richtigen Kennwort alle
Tore 6ffnet.

Ein solches Programm startet man aus seiner Sitzung. Es schreibt die iibliche
Aufforderung zum Einloggen auf den Bildschirm und wartet auf ein Opfer. Dieses
tippt nichtsahnend seinen Namen und sein Passwort ein, das Pferd schreibt beides
in ein File und verabschiedet sich mit der Meldung login incorrect. Darauthin
meldet sich der ordnungsgeméfe getty-Prozess, und das Opfer — in dem Glauben,
sich beim erstenmal vertippt zu haben — wiederholt seine Anmeldung, diesmal mit
Erfolg. Ein Trojanisches Pferd ist einfach zu schreiben:

2T eider konnen wir Thnen hier nur die Ubersetzung von FELIX GENZMER bieten, der
Suche nach der originalen Fassung war noch kein Erfolg vergdnnt, aber wir sind dank
http:
www.lysator.liu.se/runeberg/eddais/on-02.html nahe dran. Vermutlich liegen
dem Ratschlag folgende Zeilen zu Grunde:

Einn vita
né annar skal,
thjoth veit ef thrir eru.

2Die Definition des urspriinglichen Trojanischen Pferdes ist nachzulesen in HOMERS
Odyssee im 8. Gesang (hier in der Ubertragung von JOHANN HEINRICH VO0SsS):

Fahre nun fort und singe des holzernen Rosses Erfindung,
Welches Epeios baute mit Hilfe der Pallas Athene

Und zum Betrug in die Burg einfiihrte der edle Odysseus,
Mit bewaffneten Ménnern gefiillt, die Troja bezwangen.

2.12 Systemverwaltung

/* Trojanisches Pferd */

/* Filename horse.c, Compileraufruf cc -o horse horse.c */

#define PROMPTO "UNIX\n"
#define PROMPT1 "HP-login: "
#define PROMPT2 "Passwort: "

#define CLEAR "\033H\033J" /* Escapes fuer HP x/
#define INVIS "\033&dS\033*dR"
#define VISIB "\033&d@\033*dQ"

#include <stdio.h>
#include <sys/ioctl.h>
#include <signal.h>

main()

{

char name[32], pwort[32], zucker[8];
unsigned long sleep();

signal (SIGINT, SIG_IGN);
signal (SIGQUIT, SIG_IGN);

printf (CLEAR) ;
printf (PROMPTO) ;

while (strlen(name) == 0) {
printf (PROMPT1) ;
gets (name) ;

3

printf (PROMPT2) ;
printf (INVIS);
gets (pwort) ;
printf (VISIB);

sleep((unsigned long) 2);

printf ("\nIhr Name ist %s.\n", name);

printf ("Ihr Passwort lautet J%s.\n", pwort);

printf ("\nIch werde gleich Ihre Daten fressen,\n");
printf("falls Sie mir keinen Zucker geben!\n\n");
scanf ("%s", zucker);

if (strcmp("Zucker", zucker) == 0)
kill1(0, 9);

else {
printf("\nDas war kein Zucker!\n");
kill(0, 9);

}

}

Programm 2.41 : C-Programm Trojanisches Pferd

189

Denken Sie einmal dariiber nach, wie Sie sich als Benutzer verhalten kénnen,

190 2 UNIX

um aus diesem Gaul ein Cheval évanoui zu machen.

Was tut der System-Manager, wenn er sein wertvolles Passwort vergessen hat?
Er bewahrt die Ruhe und veranlafit das System durch voriibergehenden Entzug
des Starkstroms zum Booten. Wihrend des Bootvorgangs kann man vom iiblichen
automatischen Modus in den interaktiven Modus wechseln. In diesem befiehlt er
dem System, unabhéngig von dem Eintrag in /etc/inittab(4) im Single-User-
Modus zu starten. Nach Vollendung des Bootens lauft auf der Konsole eine Sit-
zung des Superusers, ohne Passwort. Einzige Voraussetzung fiir diesen Trick ist
der Zugang zur Konsole. Man sollte daher die Konsole und sémtliche Verbindun-
gen zu ihr sorgfiltig vor unbefugten Zugriffen schiitzen. Auch diesen Trick kann
man abstellen, dann bedeutet aber der Passwortverlust eine Neueinrichtung des
Systems.

Viren Unter dem Schlagwort Viren werden mehrere Arten von Programmen
zusammengefaft, die die Arbeit der Anlage stéren (malicious software). Die PC-
Welt wimmelt von Viren, entsprechend der Verbreitung dieses Computertyps. Eine
bekannte Virenliste (MacAfee) zihlte Anfang 1994 {iber 2700 Viren fiir PCs unter
MS-DOS auf, darunter so poetische Namen wie Abraxas, Black Monday, Cinde-
rella, Einstein, Halloechen, Mexican Mud, Particle Man, Silly Willy, Tequila und
Vienna. Die Betroffenen haben voriibergehend weniger Sinn fiir Poesie.

UNIX-Systeme sind zum Gliick nicht so bedroht wie PCs. Das héngt unter
anderem mit ihrer Komplexitit zusammen. Dafiir ist der Schaden meist betréicht-
licher. Die System-Manager stecken in dem Zwiespalt zwischen dem volligen Dicht-
machen des Systems und der UNIX-iiblichen und personlichen Veranlagung ent-
sprechenden Weltoffenheit. Aufpassen mufl man bei UNIX-PCs mit Diskettenlauf-
werk, die beim Booten zuerst nach einer bootfdhigen Diskette suchen. Finden sie
eine solche, und die ist verseucht, dann kann trotz UNIX allerhand passieren.

Aufler den bereits erwihnten Trojanischen Pferden gehoren Logische
Bomben dazu. Das sind Programme, die auf ein bestimmtes Ereignis hin den
Betrieb storen. Das Ereignis ist ein Zeitpunkt oder der Aufruf eines legalen Pro-
grammes.

Falltiiren oder Trap Doors sind Nebenzugéinge zu Daten oder Programmen
unter Umgehung der ordnungsgemifien Sicherheitsvorkehrungen. Diese Falltiiren
kénnen von boswilligen Programmierern eingerichtet worden sein, gelegentlich
aber auch zur Erleichterung der Arbeit des Systempersonals. Natiirlich sollten
in diesem Fall die Nebenzugénge nicht allgemein bekannt sein, aber 148t sich das
mit Sicherheit verhindern?

Wiirmer sind Programme, die sich selbst vermehren und insbesondere iiber
Datennetze ausbreiten. Thr Schaden liegt im wesentlichen in der Belegung der
Ressourcen. Im Internet ist vor einigen Jahren ein Wurm namens Morris (nach
seinem Schopfer) berithmt geworden.

Echte Viren sind Befehlsfolgen innerhalb eines ansonsten legalen Program-
mes (Wirtprogramm), die in der Lage sind, sich selbst in andere Programme zu
kopieren, sobald das Wirtprogramm ausgefiihrt wird. Sofort oder beim Eintre-
ten bestimmter Ereignisse (zum Beispiel freitags) offenbaren sie sich durch eine
Storung des Betriebes. Die besondere Heimtiicke der Viren liegt in ihrer zunéchst

2.12 Systemverwaltung 191

unbemerkten Verbreitung.

Viren kommen von auflen mit befallenen Programmen, die iiber Disketten,
Bénder oder Netze ins System kopiert werden. Die erste Gegenmafinahme ist also
Vorsicht bei allen Programmen, die eingespielt werden sollen. Niemals auf wichti-
gen Computern Programme zweifelhafter Herkunft ausfiihren, am besten gar nicht
erst dorthin kopieren. Texte, Programme im Quellcode, Mefldaten und dergleichen
sind passive Daten, konnen nicht wie ein Programm ausgefiihrt werden und daher
auch keinen Virus verbreiten. Das Lesen einer Email oder eines sonstigen Tex-
tes kann niemals einen Virus verbreiten oder aktivieren. Es gibt aber auflerhalb
der UNIX-Welt Textsysteme, die in Text ausfiihrbare Programmteile (Makros)
einbinden und so mit einem scheinbar harmlosen Text Viren verbreiten kdnnen.
Leseprogramme, die ohne vorherige Riickfrage solche Makros ausfiihren, geh6ren
abgeschossen. Anhéinge (attachments) an Email enthalten beliebige binére Daten,
deren Ausfithrung — nicht Lesen — wie die Ausfiihrung jedes anderen Programmes
Viren verbreiten kann.

Die zweite Maflnahme ist der Einsatz von Viren-Scannern, die die bekann-
testen Viren erkennen und Alarm schlagen. Da sie ausfiihrbare Programme auf
bestimmte Zeichenfolgen untersuchen, die typisch fiir die bisher bekannten Viren
sind, sind sie gegeniiber neuen Viren oft blind.

Drittens kann man alle ausfiihrbaren Files mit Priifsummen oder dhnlichen
Schutzmechanismen versehen. Stimmt eine Priifsumme iiberraschenderweise nicht
mehr, ist das File manipuliert worden.

Viertens kann man alle ausfiihrbaren Files verschliisseln oder komprimieren.
Der Virus, der das verschliisselte File befillt, wird beim Entschliisseln veréndert.
Damit ist das Programm nicht mehr ablauffihig, der Virus ist lahmgelegt.

Fiinftens sollten die Benutzer in den Verzeichnissen, in denen ausfiihrbare
Programme gehalten werden (/bin, /usr/bin, /usr/local/bin, /etc), keine
Schreibberechtigung haben. Nur der System-Manager darf dort nach griindlicher
Untersuchung in einer Quarantédnestation neue Programme einfiigen. Bewahren
Sie auflerdem die Originale aller Programme sorgfiltig auf und lesen sie die Da-
tentrager nur schreibgeschiitzt ein. Viren auf Originalen sind auch schon vorge-
kommen. Das gleiche gilt fiir Backups. Alle Zugriffsrechte sollten nicht grofiziigiger
vergeben werden als die Arbeit erfordert.

Pseudo-Viren sind Programme, die einem Viren-Suchprogramm einen echten
Virus vorgaukeln, ansonsten aber harmlos sind. Sie enthalten fiir Viren typische
Bitfolgen. Im Unterschied zu einem Virus, der immer Teil des verseuchten Wirt-
programmes ist, ist ein Pseudo-Virus ein eigensténdiges Programm.

Und dann gibt es noch Viren, die es gar nicht gibt. Im Netz vagabundieren
— zum Teil seit Jahren — nur Warnungen davor, die jeder Grundlage entbehren.
Diese Warnungen werden als Hoax bezeichnet, was Schwindel oder blinder Alarm
bedeutet. Beispielweise soll eine Email mit dem Subject Good Times beim Gele-
senwerden die Platte ruinieren. Man moge sie ungelesen 16schen und die Warnung
an alle Bekannten weitergeben. Dieser Hoax ist so bekannt, dafl sogar eine FAQ
dazu im Netz steht. Der Schaden eines Hoax liegt in der Belédstigung der Netzteil-
nehmer. In diesem Sinne ist ein Hoax selbst ein Virus, aber kein Computervirus.

Woran erkennt man eine Virenwarnung als Hoax?” In obigem Fall daran, dafl

192 2 UNIX

technischer Unsinn verzapft wird. Zweitens gibt es im Netz Stellen, die sich in-
tensiv mit Viren befassen und meist friither informiert sind als die Mehrheit der
Benutzer. Warnungen solcher Stellen — aus erster Hand und nicht iiber zweifelhaf-
te Umwege — sind ernst zu nehmen, alles andere sollte einen Benutzer nur dazu
bringen, seine Sicherheitsmafinahmen zu iiberdenken, mehr nicht. Solche Stellen
sind:

e die Computer Incident Advisory Capability (CIAC) des US Department of
Energy (http://ciac.1llnl.gov/),

e das Computer Emergency Response Team (CERT) Coordination Center an
der Carnegie-Mellon-Universitit (http://www.cert.org/),

e das DFN-CERT (http://www.cert.dfn.de/).
Auch Virenscanner-Hersteller wie:

e McAfee (http://www.mcafee.com/),

e Datafellows (http://www.datafellows.fi/)

sind zuverldssige Informationsqellen und immer einen Besuch wert.

Backup Daten sind vergénglich. Es kommt nicht selten vor, daf} sich Benutzer
ungewollt die eigenen Files 16schen. Sie erinnern sich, UNIX gehorcht aufs Wort,
ohne Riickfragen. Fiir solche und #hnliche Fille zieht der System-Manager re-
gelméfBig ein Backup. Das ist eine Bandkopie des gesamten File-Systems oder
wenigstens der Zweige, die sich dndern.

Der Zeitraum zwischen den Backups héngt ab von der Geschwindigkeit, mit
der sich die Daten dndern, und von dem Wert der Daten. Wir ziehen wéchentlich
ein Backup. Es gibt Betriebe, in denen téglich mehrmals ein Backup durchgefiihrt
wird, denken Sie an eine Bank oder Versicherung. Eine Art von stdndigem Backup
ist das Doppeln (Spiegeln) einer Platte.

Ferner gibt es zwei Strategien fiir das Backup. Man kopiert entweder jedesmal
das gesamte File-System oder nur die Anderungen gegeniiber dem vorhergehen-
den Backup. Dieses inkrementelle Backup geht schneller, verlangt aber bei
der Wiederherstellung eines Files unter Umstédnden das Einspielen mehrerer Ko-
pien bis zum letzten vollstindigen Backup zuriick. Wir ziehen wochentlich ein
vollstindiges Backup des Zweiges mit den Home-Verzeichnissen und einmal im
Quartal ein vollstéindiges Backup des ganzen File-Systems. In groflen Anlagen
werden gemischte Strategien verfolgt. Zusétzlich kopieren wir per cron(1) taglich
wichtige Files auf andere Platten oder Computer.

Fiir das Backup verwendet man zweckméifBig ein zugeschnittenes Shellscript
backup. Das folgende Beispiel zieht ein Backup eines Verzeichnisses (Default: HO-
ME) samt Unterverzeichnissen auf Bandkassette. Es ist fiir den Gebrauch durch
die Benutzer gedacht, fiir ein Gesamtbackup mufl man einige Dinge mehr tun (Sin-
gle User Modus, File System Check). Das Bandgerit ist hier /dev/rct/c2d1s2.

Skript zum Kopieren auf Bandkassette

BDIR=${1:-$HOME}

2.12 Systemverwaltung 193

cd $BDIR

echo Backup von ‘pwd‘ beginnt.
/bin/find . -print |

/bin/cpio -ocx |

/bin/tcio -0S 256 /dev/rct/c2d1s2
/bin/tcio -urV /dev/rct/c2d1s2
echo Backup fertig.

Programm 2.42 : Shellscript fiir Backup auf Bandkassette

Zum Zuriickspielen des Backups verwendet man ein #hnliches Shellscript
restore. Das Verzeichnis kann angegeben werden, Default ist wieder HOME.

Script zum Rueckspielen eines Backups von Kassette

RDIR=${1:-$HOME}

cd $RDIR

print Restore nach ‘pwd‘ beginnt.
/bin/tcio -ivS 256 /dev/rct/c2di1s2 |
/bin/cpio -icdvm ’*’

/bin/tcio -urV /dev/rct/c2d1s2
print Restore fertig.

Programm 2.43 : Shellscript fiir Restore von Bandkassette

Das Werkzeug tcio (1) wird nur in Verbindung mit Kassettengeriten benotigt
und optimiert die Dateniibertragung unter anderem durch eine zweckméflige Puf-
ferung. Fiir ein Backup auf ein Spulenbandgerit /dev/rmt/Om lauten die beiden
Shellscripts:

Skript zum Kopieren auf Bandspule

BDIR=${1:-$HOME}

cd $BDIR

echo "Backup auf /dev/rmt/Om (Spule) beginnt."
echo Zweig ‘pwd‘

find . -print | cpio -ocBu > /dev/rmt/Om
/bin/date >> lastbackup

Programm 2.44 : Shellscript fiir Backup auf Bandspule

Script zum Rueckspielen eines Backups

RDIR=${1:-$HOME}

cd $RDIR

print Restore von Band (Spule) /dev/rmt/Om nach ‘pwd‘ beginnt.
cpio -icdvBR < /dev/rmt/Om

Programm 2.45 : Shellscript fiir Restore von Bandspule

Die letzte Zeile des Backup-Scripts schreibt noch das Datum in ein File
./lastbackup. Im Verzeichnis /etc finden sich zwei Shellscripts backup (1M) und

194 2 UNIX

restore(1M), die man auch verwenden oder als Vorlage fiir eigene Anpassungen
nehmen kann. Oft wird fiir das Backup auch das Kommando tar (1) verwendet,
bei dem man aufpassen muf}, in welcher Form man den Pfad der zu sichernden
Files angibt. Fiir das Zuriickspielen hat der Pfad eine gewisse Bedeutung, am
besten mal testen.

2.12.11 Memo Systemverwaltung

e Ein UNIX-System darf nicht einfach ausgeschaltet werden, sondern muf
vorher mittels shutdown (1M) heruntergefahren werden.

e Ein Benutzer muf} in /etc/passwd(4) und /etc/group(4) eingetragen wer-
den und sich ein nicht zu einfaches Passwort wéhlen.

e Man unterscheidet Betriebssicherheit (Verfiigharkeit) und Datensicherheit
(Datenintegritét).
e Datenschutz ist der Schutz auf individuelle Personen bezogener Daten vor

Miflbrauch, per Gesetz geregelt.

e Viren im weiteren Sinne (malicious software) sind unerwiinschte Programme
oder Programmteile, die absichtlich Schaden anrichten. Auf UNIX selten,
aber nicht unmdéglich.

e Das Ziehen von Backup-Kopien ist ldstig, aber ungemein beruhigend.

2.12.12 Ubung Systemverwaltung

Viele Tétigkeiten in der Systemverwaltung setzen aus gutem Grund die Rech-
te eines Superusers voraus. Auf diese verzichten wir hier. Vielleicht diirfen Sie
[hrem System-Manager einmal bei seiner verantwortungsvollen Tétigkeit helfen.
Wir schauen uns ein bifichen im File-System um:

cd (ins Home-Verzeichnis wechseln)
du (Plattenbelegung)
df (dito, nur anders)
bdf (dito, noch anders)
find . -atime +30 -print
(suche Ladenbhiiter)
find . -size +100 -print

(suche Speicherfresser)

Dann sehen wir uns das File /etc/passwd(4) an:

pwget (Benutzereintrige)

grget (Gruppeneintréige)

2.13 Echtzeit-Erweiterungen 195

und schliellich versuchen wir, die Konfiguration unserer Terminalschnittstelle zu
verstehen:

stty -a (in Sektion 1 nachlesen)

Mit diesem Kommando lassen sich die Einstellungen auch &ndern, aber Vorsicht,
das hat mit dem Roulettespiel einiges gemeinsam. Die Kommandos tset (1) oder
reset (1) — sofern sie noch eingegeben werden konnen — setzen die Schnittstelle
auf verniinftige Werte zuriick.

Es wire auch kein Fehler, wenn Sie mit Unterstiitzung durch Thren System-
Manager ein Backup Ihres Home-Verzeichnisses ziehen und wieder einspielen
wiirden. Mit einem ausgetesteten Backup schlift sich’s ruhiger.

2.13 Echtzeit-Erweiterungen

Unter UNIX wird die Reihenfolge, in der Prozesse abgearbeitet werden, vom Sys-
tem selbst beeinfluit, ebenso der Verkehr mit dem Massenspeichers (Pufferung).
Fiir einen Computer, auf dem nur gerechnet, geschrieben und gezeichnet wird, ist
das eine verniinftige Losung. Bei einem Prozessrechner hingegen, der Meflwerte
erfafit und eine Produktionsanlage, eine Telefonvermittlung oder ein Verkehrsleit-
system steuert, miissen bestimmte Funktionen in garantierten, kurzen Zeitspannen
erledigt werden, hier darf das System keine Freiheiten haben. Ein solches System
mit einem genau bestimmten Zeitverhalten nennt man Echtzeit-System (real
time system). Um mit einem UNIX-System Echtzeit-Aufgaben zu bewiltigen, hat
die Firma Hewlett-Packard ihr HP-UX um folgende Fahigkeiten erweitert:

e Echtzeit-Vorrechte fiir bestimmte Benutzergruppen,
e Verfeinerung der Prioritdten von Prozessen,

e Blockieren des Arbeitsspeichers durch einen Prozess,
e hohere Zeitauflosung der System-Uhr,

e verbesserte Interprozess-Kommunikation,

e schnelleres und zuverléssigeres Filesystem,

e schnellere Ein- und Ausgabe,

e Vorbelegung von Platz auf dem Massenspeicher,

e Unterbrechung von Kernprozessen.

Der Preis fiir diese Erweiterungen ist ein erhhter Aufwand beim Programmieren
und die gelegentlich nicht so effektive Ausnutzung der Betriebsmittel. Wenn Mil-
lisekunden eine Rolle spielen, kommt es auf einige Kilobyte nicht an. Die nicht
privilegierten Benutzer miissen auch schon einmal ein bifichen warten, wenn eine
brandeilige Meldung bearbeitet wird.

Bestimmte Benutzergruppen erhalten das Vorrecht, ihre Programme oder Pro-
zesse mit Echtzeitrechten laufen zu lassen. Sie diirfen wie der Super-User hohere
Prioritdten ausnutzen, bleiben aber wie andere Benutzer an die Zugriffsrechte der

196 2 UNIX

Files gebunden. Wiirde dieses Vorrecht allen gewihrt, wére nichts gewonnen. Der
System-Manager vergibt mit setprivgrp(1M) die Vorrechte, mit getprivgrp(1)
kann jeder die seinigen abfragen.

Ein Benutzer-Prozess hoher Prioritét braucht nicht nur weniger lange zu
warten, bis er an die Reihe kommt, er kann sogar einen in Arbeit befind-
lichen Benutzer-Prozess niedriger Prioritdt unterbrechen (priority-based pre-
emptive scheduling), was normalerweise nicht moglich ist. Das Vorkommando
rtprio(1) gibt d&hnlich wie nice (1) einem Programm eine Echtzeit-Prioritit mit,
die wihrend des Laufes vom System nicht verdndert wird, aber vom Benutzer
gedndert werden kann.

Ein Prozess kann mittels des Systemaufrufs plock(2) seinen Platz im Arbeits-
speicher blockieren (memory locking), so daf er nicht durch Swapping oder Pa-
ging ausgelagert wird. Das trégt zu kurzen, vorhersagbaren Antwortzeiten bei und
geht zu Lasten der nicht privilegierten Prozesse, falls der Arbeitsspeicher knapp
ist.

Die Standard-UNIX-Uhr, die vom cron-Ddmon benutzt wird, hat eine
Auflésung von einer Sekunde. Zu den Echtzeit-Erweiterungen gehoéren prozess-
eigene Uhren (interval timer) mit im Rahmen der Moglichkeiten der Hardware
definierbarer Auflésung bis in den Mikrosekundenbereich hinunter. Bei unserer
Anlage betréigt die feinste Zeitauflésung 10 ms.

Die Verbesserungen am Filesystem und an der Ein- und Ausgabe sind Einzel-
heiten, die wir iibergehen. Die Unterbrechung von Kernprozessen durch Benutzer-
prozesse, die normalerweise nicht erlaubt ist, wird durch entsprechende Prioritéiten
der Benutzerprozesse und Soll-Bruchstellen der Kernprozesse ermdoglicht (preemp-
table kernel). Diese weitgehenden Eingriffe in den Prozessablauf setzen strikte Re-
gelungen fiir die Programme voraus, die auf einer allgemeinen UNIX-Anlage nicht
durchzusetzen sind. Deshalb bemerkt und braucht der normale Benutzer, der Tex-
te bearbeitet, Aufgaben rechnet und die Netnews liest, die Echtzeit-Erweiterungen
nicht. Auf einem Prozessrechner haben sie den Vorteil, daff man in der gewohn-
ten UNIX-Welt bleiben kann und nicht ein besonderes Echtzeit-Betriebssystem
benotigt.

2.14 GNU is not UNIX

Die Gnus (Connochaetes) sind eine Antilopenart in Siid- und Ostafrika, von den
Buren Wildebeest genannt. Nach ALFRED BREHM sind es hichst absonderliche,
gesellig lebende Tiere, in deren Wesen etwas Komisches, Feuriges, Uberspanntes
steckt.

Das GNNU-Projekt der Free Software Foundation bezweckt, Programmie-
rern — hauptséchlich aus dem UNIX-Bereich — Software ohne Einschriankungen ju-
ristischer oder finanzieller Art zur Verfiigung zu stellen. Die Software ist durch Co-
pyright?® geschiitzt, darf aber unentgeltlich benutzt, verindert und weitergegeben
werden, jedoch immer nur zusammen mit dem Quellcode, so dafl andere Benut-

29Die GNU-Leute bezeichnen ihre besondere Art des Copyrights als Copyleft, sieche
http://www.gnu.org/copyleft/copyleft.html.

2.14 GNU is not UNIX 197

zer die Programme ebenfalls anpassen und weiterentwickeln kénnen. Einzelheiten
siche die GNU General Public License (GPL). Strenggenommen ist zwischen
Software aus dem GNU-Projekt und Software beliebiger Herkunft, die unter GNU-
Regeln zur Verfiigung gestellt wird, zu unterscheiden. Fiir den Verbraucher ist das
nebenséchlich. Der Original Point of Distribution ist prep.ai.mit.edu, aber die
GNU-Programme werden auch auf vielen anderen FTP-Servern gehalten. Eine
kleine Auswahl aus dem Projekt:

e emacs — ein miéchtiger Editor,

e gnuchess — ein Schachspiel,

e gcc — ein ANSI-C-Compiler (auch fiir MS-DOS, siehe djgpp),
e g++ — ein C+—+-Compiler,

e gawk — eine Alternative zu awk (1),

e flex — eine Alternative zu lex(1),

e bison — eine Alternative zu yacc(1),

e ghostscript — ein Postscript-Interpreter,

e ghostview — ein Postscript-Pager,

e ispell — ein Rechtschreibungspriifer,

e gzip — ein wirkungsvoller File-Kompressor,

e f2¢c — ein FORTRAN-zu-C-Konverter,

e gtar — ein Archivierer wie tar(1),

e bash — die Bourne-again-Shell,

e gimp — das GNU Image Manipulation Program,

e recode — ein Filter zur Umwandlung von Zeichensétzen

Besonders wertvoll ist der Zugang zum Quellcode, so dafl man die Pro-
gramme erginzen und portieren kann. Die Werkzeuge sind nicht nur ko-
stenfrei, sondern zum Teil auch besser als die entsprechenden originalen
UNIX-Werkzeuge. Die Gedanken hinter dem Projekt, das 1984 von RICHARD
MATTHEW STALLMAN begriindet wurde, sind im GNU Manifesto nachzulesen
(http://www.gnu.org/gnu/manifesto.html).

Die GNU-Programme sind immer als Quellen verfiigbar, oft zusammen mit
Malkefiles fiir verschiedene Systeme, selten als unmittelbar ausfiihrbare Program-
me. Man muf also noch etwas Arbeit hineinstecken, bis man sie nutzen kann. Gute
Kenntnisse von make (1) sind hilfreich. Vereinzelt nehmen auch Firmen die Kom-
pilierung vor und verkaufen die ausfiihrbaren Programme zu einem gemifligten
Preis. Am Beispiel des oft verwendeten Packers gzip(1) wollen wir uns ansehen,
wie eine Installation auf einer UNIX-Maschine vor sich geht:

e Wir legen ein Unterverzeichnis gzip an, gehen hinein und bauen eine
Anonymous-FTP-Verbindung mit ftp.rus.uni-stuttgart.de auf.

198 2 UNIX

e Dann wechseln wir dort in das Verzeichnis pub/unix/gnu, das ziemlich viele
Eintrige enthélt.

e Wir stellen den biniiren Ubertragungsmodus (binary oder image) ein und
holen uns mittels mget gzip* die gewiinschten Dateien. Angeboten werden
gzip...msdos.exe, gzip...shar, gzip...tar und gzip...tar.gz. Letz-
teres ist zwar in der Regel das beste Format, setzt jedoch voraus, dafl man
gzip(1) bereits hat. Wir wihlen also das tar-Archiv, rund 200 Kbyte.

e Mittels tar -xf gzip-1.2.4.tar entpacken wir das Archiv. Anschlieflend
finden wir ein Unterverzeichnis gzip-1.2.4 und wechseln hinein.

e Mindestens die Textfiles README und INSTALL sollte man lesen, bevor es
weitergeht.

e Mittels ./configure wird ein angepafites Makefile erzeugt. Man sollte es
sich ansehen, allerdings nur duflerst vorsichtig editieren, falls unvermeidbar.

e Dann folgt ein schlichtes make. Lauft es ohne Fehlermeldungen durch, gehort
man zu den Gliicklichen dieser Erde.

e Hier kann man noch make check aufrufen, gibt es nicht immer.

e Zum Kopieren in die iiblichen Verzeichnisse (/usr/local/bin usw.) gibt
man als Superuser make install ein.

e Zu guter Letzt riumt man mittels make clean auf. Nun haben wir gzip(1)
sowie gunzip(1) und konnen weitere GNU-Werkzeuge in gzippter Form
holen.

Die Installation geht nicht immer so glatt iiber die Biihne.

2.15 UNIX auf PCs

2.15.1 AT&T UNIX

Auf Workstations ist UNIX die Regel, auf Mainframes kommt es vor, macht es auf
einem PC Sinn? Das am weitesten verbreitete Betriebssystem fiir PCs ist MS-
DOS mit dem Zusatz Windows. Es wurde Ende der siebziger Jahre entwickelt fiir
den Prozessor Intel 8086 unter Riicksichtnahme auf das noch <ere Betriebssystem
CP/M. MS-DOS ist ein Single-Tasking-Single-User-System, d. h. es kennt nur
einen Benutzer und kann immer nur eine Aufgabe bearbeiten. Wenn diese erledigt
ist, kommt die nédchste dran. Mehr war dem damaligen Prozessor auch kaum
zuzumuten.

Die Prozessoren haben sich weiterentwickelt, heute steht der Intel Pentium II
in den Schaufenstern. Auch MS-DOS und Windows haben sich verbessert. Bei der
Fortschreibung der Software wurde immer darauf geachtet, daf dltere Programme
auch auf neuen Versionen ablaufen konnten, es gab nie einen Bruch. Das ist eine
Stiarke und eine Schwiche zugleich. Die Weiterverwendbarkeit der Anwendungs-
programme ist ein wesentliches Argument fiir MS-DOS auf PCs. Auf der anderen
Seite krankt MS-DOS samt Windows an vielen Beschrinkungen, die vor fiinfzehn
Jahren keine Rolle spielten, weil die Hardware der Flaschenhals war.

2.15 UNIX auf PCs 199

AT&T hat mehrere UNIX-Systeme fiir PCs lizensiert. Am weitesten verbreitet
war MS-Xenix, ein UNIX fiir den Prozessor Intel 80286, das heute keine Rol-
le mehr spielt. Bei den neueren UNIXen ist/war der Marktfiihrer SCO UNIX,
daneben gibt/gab es Interactive UNIX, EURIX und andere. Die Systeme kosten
zwischen 1000 und 3000 DM. Fiir den beruflichen Einsatz ist dieser Preis kein
Hindernis, wohl aber die vorldufig noch beschrinkte Verfiigharkeit von Portie-
rungen der zahllosen Anwendungsprogramme aus der MS-DOS-Welt. Natiirlich
gibt es Textprogramme, Datenbanken und Tabellenkalkulationen fiir UNIX-PCs,
aber nicht immer die von MS-DOS und Windows her gewohnten. Aufgrund der
geringeren Stiickzahlen bei den UNIX-Anwendungen liegt ihr Preis auch etwa um
den Faktor zehn hoher als in der MS-DOS-Welt und ist damit fiir Studenten und
Offentliche Bedienstete unerschwinglich. Zum Gliick stehen Auswege offen.

Die PC-UNIXe enthalten oft sogenannte DOS-Boxen. Das sind Anwendungs-
programme, unter deren Kontrolle wiederum MS-DOS-Anwendungsprogramme
ablaufen. Als Ubergangslésung brauchbar, aber nicht die sinnvollste Nutzung des
Prozessors.

2.15.2 MINIX

Das Betriebssystem UNIX war in seinen ersten Jahren kein kommerzielles Pro-
dukt, sondern wurde gegen eine Schutzgebiihr an Universititen und andere In-
teressenten im Quellcode weitergegeben, die ihrerseits viel zur Weiterentwicklung
beitrugen, insbesondere die University of California at Berkeley (UCB).

Also verwandte Professor ANDREW S. TANENBAUM von der Freien Univer-
sitdt Amsterdam UNIX zur Untermalung seiner Vorlesung iiber Betriebssysteme.
Als AT&T mit UNIX Geld verdienen wollte und die Weitergabe des Codes ein-
schrinkte, stand er plotzlich ohne ein Beispiel fiir seine Vorlesung da, und nur
Theorie wollte er nicht predigen.

In seinem Zorn setzte er sich hin und schrieb ein neues Betriebssystem fiir
den IBM PC, das sich zum Benutzer wie UNIX verhielt, schon pddagogisch und
iibersichtlich aufgebaut und unabhéingig von den Rechtsanspriichen irgendwelcher
Pfeffersicke war. Dieses Betriebssystem heifit MINIX und war von jedermann
fiir 300 DM k&auflich. Eine Installation auf einem PC mit 80386SX und IDE-
Platte verlief reibungslos. Die zugehorige Beschreibung steht in TANENBAUMS
Buch Operating Systems.

MINIX ist durch Urheberrecht (Copyright) geschiitzt; es ist nicht Public Do-
main und auch nicht Teil des GNU-Projektes. Der Inhaber der Rechte — der Ver-
lag Prentice Hall — gestattet jedoch Universitéiten, die Software fiir Zwecke des
Unterrichts und der Forschung zu kopieren. Er gestattet weiter Besitzern von MI-
NIX, die Software zu verdindern und die Anderungen frei zu verbreiten, was auch
in grolem Umfang geschah. Die MINIX-Usenet-Gruppe (comp.os.minix) zihlte
etwa 25000 Mitglieder. In den letzten Jahren ist MINIX als das UNIX des Bettel-
studenten von LINUX und weiteren freien UNIXen iiberholt worden. Ehre seinem
Andenken.

200 2 UNIX

2.15.3 LINUX
2.15.3.1 Entstehung

Um die erweiterten Fihigkeiten des Intel-80386-Prozessors zu erkunden, begann
im April 1991 der finnische Student LiNUs BENEDICT TORVALDS, unter MINIX
kleine Assembler-Programme zu schreiben. Eines seiner ersten Programme lief§
zwei Prozesse die Buchstabenfolgen AAAA... und BBBB... auf dem Bildschirm
ausgeben. Bald fiigte er einen Treiber fiir die serielle Schnittstelle hinzu und er-
hielt so einen einfachen Terminalemulator. Zu diesem Zeitpunkt entschlof er sich,
mit der Entwicklung eines neuen, freien UNIX-Betriebssystemes zu beginnen. In
der Newsgruppe comp.os.minix verdffentlichte er seinen Plan und fand bald in-
teressierte Mitstreiter auf der ganzen Welt, die iiber das Internet in Verbindung
standen. Von ftp.funet.fi konnten sie sich die erste Kernel-Version 0.01 herun-
terladen.

Am 5. Oktober 1991 gab LiNUs die Fertigstellung des ersten offiziellen Kernels
0.02 bekannt. Er benotigte immer noch MINIX als Basissystem. Nur drei Monate
vergingen, bis mit der LINUX-Version 0.12 ein brauchbarer Kernel verfiigbar war,
der stabil lief. Mit dieser Version setzte eine schnelle Verbreitung von LINUX ein.

Die Entwicklung ging weiter ziigig voran. Es folgte ein Versionssprung von 0.12
nach 0.95; im April 1992 konnte erstmals das X Window System benutzt werden.
Im Verlauf der néchsten zwei Jahre wurde der Kernel um immer mehr Features
erginzt, sodafl LINUs am 16. April 1994 die Version 1.0 herausgeben konnte. Die
neue Versionsnummer sollte widerspiegeln, dafl aus dem einstigen Hacker-UNIX
ein fiir den Endanwender geeignetes System entstanden war.

Seitdem hat LINUX weiter an Popularitit gewonnen und dabei auch seinen
Ziehvater MINIX (von dem jedoch keine einzige Zeile Code {ibernommen wurde)
weit hinter sich gelassen. Im Jahr 1996 begann mit der Versionsnummer 2.0.0 eine
neue Kernel-Generation, die mit ihren Féahigkeiten selbst kommerziellen Betriebs-
systemen Konkurrenz macht. Die Stabilitit und Leistungsfihigkeit von LINUX
kann man daran erkennen, dafli LINUX heute auch auf zentralen Servern einge-
setzt wird, von deren Funktionieren ein ganzes LAN abhingt.

An dieser Stelle eine Anmerkung zu den Versionsnummern der LINUX-Kernel.
Sie bestehen heutzutage aus drei Zahlen. Ist die mittlere Zahl ungerade, so handelt
es sich um einen Entwickler-Kernel mit einigen moglicherweise instabilen Features.
Andernfalls liegt ein Benutzerkernel vor, dessen Codebasis weitgehend stabil ist.

2.15.3.2 Distributionen

Da es sehr umsténdlich und oft auch schwierig ist, alle fiir ein vollstdndiges UNIX-
System erforderlichen Komponenten selbst zusammenzusuchen und zu kompilie-
ren, entstanden schon friih sogenannte Distributionen, die den LINUX-Kernel
mitsamt vieler niitzlicher Anwendungen vorkompiliert und mit einem einfach zu
bedienenden Installations-Programm bieten. Zu den bekannteren Distributionen
zéhlen:

e Caldera (http://www.caldera.com/), kommerziell,

e Debian (http://www.debian.org/),

2.15 UNIX auf PCs 201

e Red Hat LINUX (http://www.redhat.com/),
e Slackware (http://www.slackware.org/),
e SuSE (http://www.suse.de/).

Wir haben gute Erfahrungen mit Red Hat LINUX gemacht. Neben einem
ausgereiften Installations-Programm und einer durchdachten Konfiguration hat
es den Vorteil, das von Red Hat entwickelte RPM-System zu verwenden, wel-
ches ein einfaches Installieren, Updaten und weitgehend riickstandsfreies Entfer-
nen von Software-Paketen ermdglicht. Dies erleichtert dem Systemverwalter das
Leben ungemein. Allerdings gibt es nicht fiir alle Anwendungsprogramme ein fer-
tiges RPM-Paket. Solche Programme miissen nach wie vor von Hand installiert
werden, was Kenntnisse voraussetzt, zumindest aber das griindliche Lesen der
beigefiigten Dokumentation (README-Files usw.).

Die meisten Distributionen sind auch kostenlos iiber das Internet zu bezie-
hen. Viele lassen sich sogar direkt aus dem Netz installieren. Dennoch hat der
Erwerb einer CD-ROM Vorteile: Man benétigt keine Internet-Verbindung (die im
Normalfall bei Privatleuten ohnehin zu langsam fiir die Installation ist) und kann
jederzeit Software-Pakete nachinstallieren. Der Preis, den man fiir eine Distribu-
tion entrichtet, deckt einerseits die Kosten fiir die Herstellung der CD und des
Begleitmaterials, andererseits unterstiitzt er die Hersteller der Distribution, die
bei ihrer Arbeit auf das Geld aus dem CD-Verkauf angewiesen sind. Die Softwa-
re selbst ist frei. Fiir kommerzielle Erweiterungen wie Motif und CDE gilt das
natiirlich nicht.

2.15.3.3 Eigenschaften

Kein anderes Betriebssystem unterstiitzt so viele Dateisysteme und Netzwerkpro-
tokolle wie LINUX. Mittlerweile gibt es Unterstiitzung fiir das MS-DOS Datei-
system (mit langen Dateinamen von Windows 95), OS/2 HPFS, diverse UNIX-
Dateisysteme sowie das CD-ROM Dateisystem nach ISO 9660 mit den Rockridge-
Ergénzungen fiir lange Dateinamen und natiirlich das unter UNIX gebriuchliche
Network File System (NFS). Es gibt sogar einen Kernel-Patch, der es erlaubt,
auf mit dem Mac-Filesystem HFS formatierte Datentréger zuzugreifen. Das sehr
leistungsfihige LINUX-eigene Dateisystem heifit Extended 2 Filesystem (ext2).

LINUX beherrscht die Internet-Protokolle TCP/IP, Novells IPX und das in
der Mac-Welt iibliche AppleTalk. Dariiberhinaus ist ein Treiber fiir das im Packet
Radio Netz der Funkamateure eingesetzte Protokoll AX.25 enthalten. Neben Dae-
monen fuer die UNIX-iiblichen Protokolle ist ein Server fiir das von Microsoft
Windows verwendete Protokoll SMB erhéltlich (Samba) und ein mit Novell Net-
ware kompatibler Datei- und Druckerserver (Mars); sogar fiir die Mac-Welt gibt
es ein Serverpaket.

Und wie sieht es mit der Hardware-Unterstiitzung aus? LINUX arbeitet heu-
te mit einer breiten Palette zusammen. Die meisten gingigen SCSI-Controller
und Netzwerkkarten werden unterstiitzt, dazu einige ISDN- und Soundkarten.
Will man X11 verwenden (und wer will das nicht), sollte man darauf achten, daf
man eine von XFree durch einen besonderen, beschleunigten Server unterstiitzte

202 2 UNIX

Graphik-Karte erwirbt. Es dauert im allgemeinen jedoch einige Zeit, bis Trei-
ber fiir neue Hardware entwickelt sind, und nicht alle Hardware kann unterstiitzt
werden, weil einige Hersteller die technischen Daten nur zu nicht annehmbaren
Konditionen (Non Disclosure Agreements) bekanntgeben. Fafit man die Installa-
tion von LINUX ins Auge, sollte man daher unbedingt schon vor dem Kauf der
Hardware auf Unterstiitzung achten. Das Hardware-HOWTO stellt hierbei eine
niitzliche Hilfe dar.

2.15.3.4 Installation

Die Einrichtung verlduft bei den meisten Distributionen dank ausgereifter In-
stallationsscripts weitgehend einfach. Im allgemeinen miissen zunéchst ein oder
zwei Installations-Disketten erstellt werden, wobei darauf zu achten ist, dafl nur
fehlerfreie, DOS-formatierte Disketten verwendet werden konnen. Anschlieflend
wird von der Boot-Diskette ein einfaches LINUX-System gestartet. Nun erfolgt
die Auswahl des Installationsmediums. Disketten sind beim Umfang der heutigen
Distributionen selten, meist erfolgt die Installation von CD-ROM oder von einem
Verzeichnis auf einer DOS-Partition. Viele Distributionen erlauben aber auch die
Installation von einem NFS-Volume oder einem Anonymous-FTP-Server iiber das
Netz.

Der néchste Schritt besteht im Anlegen von Partitionen fiir LINUX. Viele In-
stallationsscripts greifen hierzu auf das spartanische fdisk-Programm von LINUX
(nicht zu verwechseln mit dem von DOS) zuriick, zum Teil finden aber auch einfach
zu bedienende Partitionierungstools (z. B. Disk Druid) Verwendung. Normaler-
weise legt man eine Partition fiir das Root-Filesystem und eine Swap-Partition an.
Diese stellt zusétzlichen virtuellen Arbeitsspeicher zur Verfiigung, falls der echte
Hauptspeicher einmal nicht ausreichen sollte, ist aber nur eine Notlosung. Wie
grof sie sein sollte, héingt vom beabsichtigten Einsatz des Systems ab, bei norma-
len LINUX-Workstations sind 16-32 MB vollkommen ausreichend. Eventuell will
man neben dem Root-Filesystem weitere Partitionen anlegen, zum Beispiel fiir
die Home-Verzeichnisse der Benutzer. Die meisten Installationsscripts fragen nun,
welche Partitionen wohin gemountet werden sollen; dabei kénnen auch DOS- und
HPFS-Partitionen angegeben werden.

Der Hauptteil der Installation besteht im Auswéihlen der zu installieren-
den Programm-Pakete. Intelligente Scripts fragen zuerst, was installiert werden
soll, und installieren dann die ausgewéhlten Pakete, wihrend weniger ausgereif-
te Scripts vor der Installation jedes Pakets einzeln nachfragen, was wihrend der
gesamten Installationsphase Mitarbeit erfordert. Fiir LINUX-Anfédnger ist es zu-
meist schwierig zu entscheiden, was benétigt wird und was nicht. Dabei sind die
Kurzbeschreibungen der Pakete eine gewisse Hilfestellung. Man kann aber pro-
blemlos nachinstallieren.

Schliefflich fragen die meisten Installationsscripts noch einige Systemeinstellun-
gen ab. Dazu zéhlen die Zeitzone, das Tastaturlayout, der Maustyp sowie die noti-
gen Angaben fiir die TCP/IP-Vernetzung. Diese lassen sich jederzeit nachtriglich
dndern.

Auflerdem bieten die meisten Distributionen an dieser Stelle die Gelegenheit,

2.15 UNIX auf PCs 203

den LINUX-Loader LILO als Boot-Manager einzurichten, sodaff man beim Boo-
ten zwischen LINUX und anderen Betriebssystemen auswéhlen kann. Mit einigen
Tricks lassen sich aber auch die Boot-Manager von IBM OS/2 und Microsoft
Windows NT dazu iiberreden, LINUX zu booten.

Mit etwas Gliick kann man dann sein frischerstelltes LINUX-System starten.
Zu den ersten Schritten sollte das Setzen eines root-Passworts, das Einrichten
von Benutzern und das Kompilieren eines auf die eigenen Bediirfnisse zurechtge-
schnittenen Kernels sein. Der von der Distribution angebotene, universelle Kernel
enthilt meist mehr Funktionen, als man braucht. Das kostet unnotig Arbeitsspei-
cher und kann auch Instabilitdten verursachen.

Um den Kernel neu zu kompilieren, wechselt man zunéchst in das Verzeich-
nis /usr/src/linux, in dem man mit make mrproper erst einmal fiir Ordnung
sorgt. Anschlieflend miissen die benétigten Treiber ausgewihlt werden. Seit einiger
Zeit lassen sich viele Treiber auch als Kernelmodule kompilieren; sie sind dann
nicht fester Bestandteil des Kernels, sondern liegen in einer eigenen Datei vor und
konnen je nach Bedarf mit insmod (1) geladen und rmmod (1) wieder entladen wer-
den. Bei entsprechender Konfiguration kann LINUX dies sogar automatisch tun.
Durch die Modularisierung weniger hiufig benstigter Treiber (z. B. fiir SCSI-
Tapes) spart man wihrend der meisten Zeit Arbeitsspeicher ein. Zur Treiberaus-
wahl gibt es drei Alternativen: Die schlichte Abfrage aller m6glichen Komponenten
mit make config, die meniigestiitzte Abfrage mit make menuconfig und (soweit
man das X Window System und TCL/TK installiert hat) ein komfortables Kon-
figurationsprogramm mit make xconfig. Im néchsten Schritt werden die Kernel-
Sources auf das Kompilieren vorbereitet: make dep und make clean. Jetzt kann
der Kompilationsvorgang mit make zImage gestartet werden. Er dauert, je nach
Systemleistung und ausgewdhlten Komponenten, zwischen fiinf Minuten und {iber
einer Stunde. Hat man bei der Kernel-Konfiguration angegeben, einige Kompo-
nenten als Module zu kompilieren, miissen diese noch mit make modules erzeugt
werden. Der fertige Kernel findet sich im Unterverzeichnis arch/i386/boot als
Datei zimage, die Module werden mit make modules_install in /lib/modules
installiert. Eventuell bereits vorhandene Module sollte man vorher in ein anderes
Verzeichnis verschieben.

Zur Installation des Kernels ist die Datei /etc/lilo.conf zu editieren und
anschliefend durch Aufruf des Programms 1i10(8) der LINUX-Loader neu zu
installieren.

2.15.3.5 GNU und LINUX

Viele der Programme, ohne die LINUX kein vollstindiges UNIX-System wire,
entstanden im Rahmen des GNU-Projekts der Free Software Foundation. Neben
zahllosen kleinen, aber niitzlichen oder sogar systemwichtigen Utilities wie GNU
tar, GNU awk usw. zihlen hierzu:

e gzip, das GNU Kompressions-Utility,
e bash, die Bourne-Again Shell,

e emacs, der grofle Editor,

204 2 UNIX

e gcc, der GNU-C/C++-Compiler, ohne den LINUX nie entstanden wire,
e glibc, die GNU-C-Funktionsbibliothek.

Dariiber hinaus unterliegen viele Programme, die unter LINUX benutzt wer-
den, der GNU Public License (GPL). Hierzu zéhlt auch der LINUX-Kernel selbst.

2.15.3.6 XFree - X11 fiir LINUX

LINUX wiire keine Alternative zu anderen modernen Betriebssystemen ohne ei-
ne grafische Benutzeroberfliche. Diese kommt in Gestalt des auf UNIX-Systemen
tiblichen X Window Systems (X11). Soweit man nicht einen kommerziellen X-
Server vorzieht, was in den meisten Fillen nicht lohnenswert ist und oft sogar
noch zusétzlichen Aufwand bei der Systemverwaltung erfordert, wird man die Im-
plementation von XFree (http://www.xfree86.org/) verwenden. Diese besteht
einerseits aus X-Servern, darunter verschiedene beschleunigte fiir bessere Grafik-
Karten, andererseits aus einigen Utilities.

Produktiv einsetzbar wird X11 erst durch einen guten Window Manager.
Hier bietet LINUX eine Vielzahl von Moglichkeiten. Zu den wichtigeren zdhlen
FVWM (neuerdings im Windows 95-Look), LessTif (ein Motif-Clone, der neben
einem Window-Manager auch leider noch unvollstindige Motif-kompatible Biblio-
theken zur Verfiigung stellt) sowie neuerdings das sehr leistungsfihige K Desktop
Environment (KDE).

Obwohl sich KDE zum Zeitpunkt, zu dem dies geschrieben wird, noch in der
Beta-Phase befindet, also noch einige Fehler und Unvollstindigkeiten aufweist, ist
es bereits gut benutzbar und zeigt, dafl UNIX nicht immer kryptische Konfigu-
rationsdateien und fiir Anféinger schwierig zu benutzende Programme bedeuten
muf. KDE ist auch fiir Einsteiger einfach zu konfigurieren und zu benutzen und
beseitigt damit ein Defizit, das bei nichtkommerziellen UNIX-Systemen ohne CDE
bisher viele Benutzer abschreckte.

Die einfache Bedienung ermdéglicht KDE durch bei anderen Window Managern
nicht immer anzutreffende FEigenschaften wie Cut & Paste, Drag & Drop und
Kontext-Meniis, aber auch durch neue Utilities wie einem sehr leistungsfihigen
File-Manager, der den Dateizugriff auch {iber HT'TP und FTP und innerhalb
von tar-Dateien erlaubt, sowie grafischen Konfigurationsprogrammen, die zum
Beispiel das Verdndern des Bildschirmhintergrunds oder die Einstellung, wieviele
virtuelle Bildschirme man haben mochte, gestatten. Informationen zu KDE gibt
es auf dem WWW-Server des Projekts (http://www.kde.org/).

KDE setzt auf der von der norwegischen Firma Troll Tech entwickelten Qt-
Bibliothek auf. Diese ist fiir freie UNIX-Anwendungen frei verfiighar und enthélt
eine Sammlung von Widgets fiir Entwickler von grafischen Benutzer-Oberflichen
unter X11 und Microsoft Windows NT/95 (http://www.troll.no/).

2.15.3.7 Dokumentation

Als freies Betriebssystem kommt LINUX in den meisten Fillen ohne gedruckte
Dokumentation daher. Viele Distributionen enthalten zwar ein einfaches Hand-
buch, das aber nur die Installation und die einfachsten Verwaltungsaufgaben er-

2.15 UNIX auf PCs 205

klart. Dafiir ist die Online-Dokumentation erheblich besser als die der meisten
kommerziellen Betriebssysteme.

Neben den oft benétigten man-Pages, die man von einem UNIX-System er-
wartet, sind es vor allem die zu vielen verschiedenen Aspekten von LINUX
verfiigbaren, sehr hilfreichen HOWTOs und Mini-HOWTOs, die fiir den System-
Manager, aber auch den Endanwender interessant sind. Sie werden von soge-
nannten Maintainern gepflegt und weisen eine iibersichtliche Gliederung auf.
Vom Umfang her noch geeignet, eine kurze Einfiihrung in ein bestimmtes Ge-
biet zu geben, fassen sie alle wesentlichen Informationen zusammen. Sie sind von
ftp://sunsite.unc.edu/pub/Linux/docs/HOWTO/ zu bekommen, allerdings ist
dieser Host hoch belastet, so dafl man sich einen Mirror in der Néihe suchen soll-
te, siehe http://sunsite.unc.edu/pub/Linux/MIRRORS .html#Europe. Zu den
wichtigeren HOWTOs gehéren:

e das DOS-to-LINUX-HOWTO mit Hinweisen, wie man von DOS zu LINUX
wechselt,

e das German-HOWTO, das Tips fiir deutsche Benutzer gibt,

e das Hardware-HOWTO, das eine (nicht unbedingt aktuelle) Liste der von
LINUX unterstiitzten Hardware enthélt,

e das Kernel-HOWTO bei Fragen zum Kernel, insbesondere zum Kompilieren
des Kernels,

e das NET-2-HOWTO mit Hilfen zur Netzwerkkonfiguration,

e das Distribution-HOWTO mit einer Ubersicht iiber die LINUX-
Distributionen,

insgesamt rund hundert HOWTOs und hundert Mini-HOWTOs. Bei Problemen
sollte man also zuerst einmal einen Blick in /usr/doc/HOWTO werfen. Die Chancen,
daf} ein anderer das Problem schon gel6st hat, stehen nicht schlecht.
Dariiberhinaus entstehen im Rahmen des LINUX Documentation Projects
(LDP) verschiedene umfangreiche Dokumentationen, die einen grofien Bereich
der Systemverwaltung wie die Einrichtung von Netzwerken, das Schreiben von
Kernel-Treibern usw. abdecken. Zu den Veré6ffentlichungen des LDP z&hlen:

e der LINUX Programmer’s Guide,
e der Network Administrator’s Guide,
e der System Administrator’s Guide.

Die meisten Dokumentations-Files sind im Verzeichnis /usr/doc abgelegt. Im
WWW finden sie sich auf http://sunsite.unc.edu/mdw/linux.html. Von dort
gelangt man auch zu FAQs und weiteren Verdffentlichungen. Auf unserer WWW-
Seite http://www.ciw.uni-karlsruhe.de/technik.html ist LINUX natiirlich
auch gut vertreten.

Aktive Unterstiitzung bei Problemen erhélt man im Internet in den LINUX-
Newsgruppen (comp.os.linux.*, linux.*). Bei der Auswahl der richtigen News-
gruppe fiir eine Frage sollte man darauf achten, daf} solche Fragen, die nicht speziell
LINUX betreffen, sondern ein Programm, das auch auf anderen UNIX-Systemen
verfiigbar ist, hiufig nicht in die LINUX-Hierarchien gehoren.

206 2 UNIX

2.15.3.8 Installations-Beispiel

Abschlieflend sei noch als Beispiel der Einsatz eines LINUX-Rechners genannt,
der unser Hausnetz (Domestic Area Network, DAN) mit dem Internet verbindet.
Diese Konfiguration diirfte auf viele kleinere Netze zutreffen, beispielsweise in
Schulen. Der Rechner selbst ist ein PC 486-120 mit 32 MB RAM und 1 GB Fest-
platte, also ein recht geniigsames System. Er verfiigt iiber eine Ethernet-Karte am
hauseigenen DAN und eine ISDN-Karte fiir die Verbindung zum Rechenzentrum
einer Universitit, das den Provider spielt.

Als besonders niitzlich hat sich die Féahigkeit des LINUX-Kernels erwiesen,
ein ganzes Subnetz hinter einer einzigen IP-Adresse zu verstecken (IP Masquer-
ading), was neben der Schonung des knapp werdenden Adressraums auch einen
Sicherheitsvorteil mit sich bringt. Die Masquerading-Funktion von LINUX bietet
mittlerweile sogar Unterstiitzung fiir Protokolle wie FTP, IRC und Quake, die
eine besondere Umsetzung erforden.

Um den Internet-Zugang zu entlasten, laufen auf dem LINUX-Rechner ein
Proxy (squid), der WWW-Seiten zwischenspeichert fiir den Fall, daf§ sie mehr-
mals angefordert werden sollten, sowie ein News- Server, der uns das Lesen einiger
ausgewihlter Newsgruppen ohne Internet-Verbindung (offline) erméglicht. Jede
Nacht werden automatisch wartende Emails sowie neue News-Artikel abgeholt.
Dariiberhinaus dient der LINUX-Rechner auch als Fax-Server, sowohl fiir einge-
hende als auch ausgehende Fax-Nachrichten, und als File- Server, wobei sowohl
NF'S als auch das Windows-Protokoll SMB unterstiitzt werden. Das System l&uft
bei uns seit Mitte 1997 und hat sich auch unter harten Bedingungen (was die
Internet-Nutzung angeht) bewihrt.

Als Clients greifen von den Arbeitsplatzen aus Computer unter LINUX,
FreeBSD, Novell DOS und Microsoft Windows NT 4.0 auf den LINUX-Server
zu. Die beiden UNIX-Systeme verfiigen selbstverstéindlich iiber alle UNIX-iibli-
chen Internet-Programme, fiir DOS gibt es ebenfalls Clients fiir Telnet, FTP und
den Textmode-WWW-Browser Lynx, dariiberhinaus sogar einen X-Server und
einen Telnet-Server. Unter MS Windows werden viele Internet-Programme wie
MS Explorer, Netscape Navigator, FTP-Clients und Real-Audio verwendet.

2.15.4 386BSD, NetBSD, FreeBSD ...

386BSD ist ein UNIX-System von WILLIAM FREDERICK JOLITZ und LYNNE
GREER JOLITZ fiir Prozessoren ab 80386 aufwérts, ebenfalls copyrighted, fiir pri-
vate Zwecke frei nutzbar und darf nicht mit dem kommerziellen Produkt BSD/386
verwechselt werden. Der Original Point of Distribution ist agate.berkeley.edu,
gespiegelt von gatekeeper.dec.com und anderen. 386BSD entwickelt sich langsa-
mer als LINUX und unterstiitzt eine zum Teil andere Hardwareauswahl als dieses.
Néheres in der Zeitschrift IX 1992, Nr. 5, S. 52 und Nr. 6, S. 30.

NetBSD, OpenBSD und FreeBSD sind ebenfalls UNIX-Systeme aus Ber-
keley, die verwandt mit 386BSD sind und darauf aufbauen; genauso fiir nicht-
kommerzielle Zwecke kostenfrei nutzbar. NetBSD ist auf eine grofle Anzahl von
Prozessortypen portiert worden. Worin die Unterschiede liegen, auch zu LINUX,

2.15 UNIX auf PCs 207

wie die Zukunft aussieht und wer wo mitarbeitet, ist schwierig zu ermitteln. Archie
oder das WWW fragen:

e http://www.freebsd.org,
e http://www.netbsd.org,
e http://www.openbsd.org.

The galaxy is a rapidly changing place, meint DOUGLAS ADAMS.

2.15.5 MKS-Tools und andere

Die UNIX-Werkzeuge einschliellich der Shells oder Kommando-Interpreter sind
Programme. Sie lassen sich auf andere Computer und andere Betriebssysteme
umschreiben. Warum sollte es unter MS-DOS oder OS/2 keine Kornshell ksh (1)
und keinen Editor vi(1) geben?

Die MKS-Tools der Firma Mortice Kern Systems stellen auf PCs unter MS-
DOS rund zweihundert UNIX-Werkzeuge bereit. Sie sind kein Betriebssystem und
machen aus MS-DOS kein Mehrbenutzersystem, aber ein UNIX-Fan arbeitet da-
mit auf dem PC in gewohnter Weise, vor allem mit dem vi(1).

Im einfachsten Fall kopiert man die Werkzeuge in ein eigenes Unterverzeich-
nis und fiigt dieses der Befehlspfadvariablen PATH zu, vor oder nach dem DOS-
Verzeichnis, ganz nach gusto.

Man kann es aber auch raffinierter machen. Beim Start von MS-DOS wird im
File config.sys der Kommandointerpreter command.com geladen und gestartet.
Nimmt man stattdessen das MKS-Tool init.exe, so ist dies das erste laufende
Programm und tut das, was man unter UNIX von init (1M) erwartet. Es arbei-
tet die inittab(4) durch und startet einen getty(1M)-Prozess (unter MS-DOS
natiirlich nur einen). Dieser fordert zum login auf, ganz wie auf einem UNIX-
System. Rest wie gewohnt. Die Zugriffsrechte der Dateien sind eine Frage des
File-Systems, also eines Teils des Betriebssystems. Sie bleiben daher MS-DOS-
iiblich. Die Sitzung hingegen ist UNIX-haft, sogar der Schrigstrich zur Trennung
der Dateinamen (der wesentlichste Unterschied zwischen UNIX und MS-DOS)
148t sich umpolen. Der Spafl kostet rund 600 DM.

Falls man mit weniger Werkzeugen zufrieden ist, kann man die Kosten auf et-
was Suchen im Netz verringern. Von vielen hiufig gebrauchten UNIX-Kommandos
gibt es Nachempfindungen fiir MS-DOS auf Anonymous-FTP-Servern, von man-
chen sogar mehrere. Hier eine Auswahl einiger Pakete:

e bb6pack: size, space, touch, wc, when, words
e danix: cat, chmod, cut, cwd, head, ls, man, paste, ptime, tail, touch, wc

e dantools: atob, btoa, cal, cat, chmod, compress, detab, dump, entab, head,
pr, swchar, tail, touch, udate, uudecode, uuencode

e dosix: df, du, head, rm, touch, wc

e dskutl: chmod, cp, du, find, Is, mv, page, rm samt zugehérigen Handbuch-
seiten

208 2 UNIX

e rstlkit: aa, at, bcmp, chmod, df, diff, dr, du, head, lynx, mb, mv, pr, pwd,
rgrep, rm, swap, tee, timex, touch, trim, wc

e uxutl: basename, cat, cmp, cpio, date, df, du, fgrep, find, grep, ls, mkdir,
mv, od, rm, rmdir, sleep, sort, tee, touch, uniq, wc

e ztools: ascdump, cd, copy, del, dir, fa, find, grep, key, move, size, space,
touch

Dariiber hinaus gibt es noch Nachempfindungen einzelner Kommandos wie
make (1), tar(1), awk(1) und more(1). Zum Teil ist der Quellcode verfiigbar,
so daf} einer Portierung oder Ergdnzung nichts im Wege steht.

2.16 Exkurs iiber Informationen

Die im Text verstreuten Exkurse — Abschweifungen vom Thema UNIX, C und
Internet — braucht man nicht sogleich zu lesen. Sie gehéren zum Allgemeinwissen
in der Informatik und runden das Spezialwissen iiber UNIX und C/C++ ab.

Im Abschnitt 1.1 Was macht ein Computer? sprachen wir von Informationen,
Nachrichten oder Daten. Es gibt noch mehr Begriffe in diesem Wortfeld:

e Signal,

Datum, Plural: Daten,

e Nachricht,

e Information,

e Wissen,

e Verstand, Vernunft, Intelligenz, Weisheit . ..

Zur Frage des PILATUS versteigt sich die Informatik nicht, obwohl sie viel von
true und false spricht. Wir lassen auch die Intelligenz natiirlichen oder kiinstlichen
Ursprungs aufler Betracht — das heif3t wir empfehlen das Nachdenken dariiber als
Ubungsaufgabe — und beschrinken uns auf die genauer, wenn auch nicht immer
einheitlich bestimmten Begriffe von Signal bis Wissen.

Ein Signal ist die zeitliche Anderung einer physikalischen GroBe, die von ei-
ner Signalquelle hervorgerufen wird mit dem Zweck, einem Signalempfinger ei-
ne Nachricht zu iibermitteln. Nicht jede zeitliche Anderung einer physikalischen
Grofe ist ein Signal, der Zweck fehlt: ein Steigen der Lufttemperatur infolge
Erwdrmung durch die Sonne ist keines. Auch héngt das Signal vom Empfianger
ab, der Warnruf eines Eichelhéhers ist kein Signal fiir einen Menschen, wohl aber
fiir seine Artgenossen. Die Zeit gehort mit zum Signal, sie ist manchmal wichtiger
(informationstréchtiger) als die sich &ndernde physikalische Grofie, denken Sie an
die Haustiirklingel. In der UNIX-Welt hat der Begriff Signal dariiber hinaus eine
besondere Bedeutung, siehe signal(2).

Nimmt die Signalgréfie nur Werte aus einem endlichen Vorrat deutlich vonein-
ander unterschiedener (diskreter) Werte an, so haben wir ein digitales Signal im
Gegensatz zu einem analogen. Die Signale der Verkehrsampeln sind digital, auch

2.16 Exkurs uber Informationen 209

wenn sie nichts mit Zahlen zu tun haben. Die Zeigerstellung einer herkommlichen
Uhr hingegen ist ein analoges Signal.

Ein Element aus einer zur Darstellung von Informationen zwischen Quelle und
Empfinger vereinbarten Menge digitaler Signale (Zeichenvorrat) ist ein Zeichen
(character). Signale, die aus Zeichen bestehen, werden Daten genannt. Daten ist
die Pluralform zu Datum = lat. das Gegebene. Einige Autoren verstehen unter
Daten anders als obige Definition aus dem Informatik-Duden Nachrichten samt
den ihnen zugeordneten Informationen. So oder so fiillen die Daten den Massen-
speicher immer schneller als erwartet.

Eine bestimmte (konkrete) Nachricht, getragen von einem Signal, {iberbringt
eine von der Nachricht 16sbare (abstrakte) Information. Ein Beispiel: die Infor-
mation vom Untergang eines Féhrschiffes 148t sich durch eine Nachricht in deut-
scher, englischer, franzosischer usw. Sprache iibertragen. Die Information bleibt
dieselbe, die Nachricht lautet jedesmal anders. Dariiber hinaus kann jede dieser
Nachrichten nochmals durch verschiedene Signale dargestellt werden. Der eine
erfahrt sie im Fernsehen, der andere im Radio, der dritte per Email. Inwieweit die
Nachricht die Information beeinflu3t, also nicht von ihr zu l6sen ist, macht Elend
und Glanz der Ubersetzung aus.

Eine Nachricht kann fiir mich belanglos sein (keine Information enthalten),
falls ich sie entweder schon frither einmal empfangen habe oder sie aus ande-
ren Griinden keinen Einflufl auf mein Verhalten hat. Dieselbe Nachricht kann fiir
einen anderen Empfinger duflerst wichtig sein (viel Information enthalten), wenn
beispielsweise auf der havarierten Féihre Angehorige waren.

Verschliisselte Nachrichten ermdoglichen nur dem Besitzer des Schliissels die
Entnahme der Information. Schliellich kommen auch gar nicht selten mehrdeuti-
ge Nachrichten vor. Ein Bauer versteht unter Schonem Wetter je nach dem Wetter
der vergangenen Wochen etwas anderes als ein Tourist. Selbst ein Bergsteiger zieht
auf gewissen Hiittenanstiegen einen leichten Nieselregen einer gnadenlos strahlen-
den Sonne vor. Die kaum zu vermeidende Mehrdeutigkeit von Klausuraufgaben
hat schon Gerichte beschéftigt. In dhnlicher Weise, wie hier zwischen Nachricht
und Information unterschieden wird, trennt die Semantik (Bedeutungslehre, ein
Zweig der Linguistik, die Lehre nicht von den Sprachen, sondern von der Sprache
schlechthin) die Bezeichnung von der Bedeutung.

In einem Handworterbuch von 1854 wird unter Nachricht die miindliche oder
schriftliche Bekanntmachung einer in der Ferne geschehenen Sache verstanden, wo-
mit die Ortsabhéngigkeit des Informationsgehaltes einer Nachricht angesprochen
wird. Ein Blick in das Duden-Herkunftsworterbuch belehrt uns, dafl eine Nach-
richt urspriinglich etwas war, wonach man sich zu richten hatte, eine Anweisung.
Und ein gewisser General CARL VON CLAUSEWITZ bezeichnet mit dem Worte
Nachrichten etwas einseitig die ganze Kenntnis, welche man von dem Feinde und
seinem Lande hat, also die Grundlage aller eigenen Ideen und Handlungen. Wir
stimmen jedoch vollinhaltlich seiner Meinung zu, daf} ein grofler Teil der Nach-
richten widersprechend, ein noch groflerer falsch und bei weitem der grofite einer
ziemlichen Ungewilheit unterworfen sei. Deshalb hat der Mensch eine Fehlertole-
ranz entwickelt, um den ihn die Computer noch lange beneiden.

Im antiken Rom bedeutete informieren jemanden durch Unterweisung bilden

210 2 UNIX

Quelle |—| Kodierer |—| Kanal |—|Dekodierer|—| Senke

f

Storungen

Abb. 2.11: Ubertragung einer Information, Modell nach C. E. Shannon

oder formen, daher informatio = Begriff, Vorstellung, Darlegung, Unterweisung,
Belehrung. Einen genaueren und daher nur begrenzt verwendbaren Begriff der
Information gebraucht CLAUDE ELWOOD SHANNON in der von ihm begriinde-
ten Informationstheorie. Wir betrachten den Weg einer Nachricht von einer
Nachrichtenquelle (source) durch einen Kodierer (coder), einen Ubertragungska-
nal (channel) und einen Dekodierer (decoder) zum Empfénger oder zur Nach-
richtensenke (sink), siehe Abb. 2.11. Die Quelle sind Menschen, Mefgerite oder
ihrerseits zusammengesetzte Systeme. Der Kodierer pafit die Quelle an den Kanal
an, der Dekodierer den Kanal an die Senke. Stellen Sie sich als Quelle einen Nach-
richtensprecher vor, als Kodierer die Technik vom Mikrofon bis zur Sendeantenne,
als Kanal den Weg der elektromagnetischen Wellen, als Dekodierer IThr Radio von
der Antenne bis zum Lautsprecher, und als Senke diirfen Sie selbst auftreten.
Oder Sie sind die Quelle, Thre Tastatur ist der Kodierer, der Speicher ist der Ka-
nal, die Hard- und Software fiir die Ausgabe (Bildschirm) bilden den Dekodierer,
und schliefflich sind Sie oder ein anderer Benutzer die Senke. Die Quelle macht
aus einer Information eine Nachricht und gibt formal betrachtet Zeichen mit einer
zugehorigen Wahrscheinlichkeit von sich. Was die Zeichen bedeuten, interessiert
SHANNON nicht, er kennt nur die trockene Statistik. Der Kodierer setzt mittels
einer Tabelle oder eines Regelwerks die Nachricht in eine fiir den Kanal geeigne-
te Form um, beispielsweise Buchstaben in Folgen von 0 und 1. Der Dekodierer
macht das gleiche in umgekehrter Weise, wobei die Nachricht nicht notwendig die
urspriingliche Form annimmt: Die Ausgabe einer iiber die Tastatur eingegebenen
Nachricht geschieht praktisch nie durch Tastenbewegungen. Der Kanal ist dadurch
gekennzeichnet, dafl er Signale verliert und auch hinzufiigt. Die Senke zieht aus
der Nachricht die Information heraus, moglichst die richtige. Das Ganze 148t sich
zu einer stark mathematisch ausgerichteten Wissenschaft vertiefen, der man die
Verbindung zum Computer nicht mehr ansieht.

Im Kodieren und Dekodieren steckt eine Menge Intelligenz. Eine Nachricht
kann ndmlich zweckmiflig kodiert werden, das heifit so, dafl sie wenig Anspriiche
an den Kanal stellt. Anspriiche sind Zeit bei der Ubertragung und Platzbedarf
beim Speichern. Damit sind wir wieder bei UNIX: es gibt Programme wie gzip (1)
zum Umcodieren von Daten, die ohne Informationsverlust die Anzahl der Bytes
verringern, so daf weniger Speicher und bei der Ubertragung weniger Zeit benotigt
werden. Umgekehrt 18t sich die Sicherheit der Aufbewahrung und Ubertragung
durch eine Vermehrung der Bits oder Bytes verbessern. In vielen PCs wird daher
1 Byte in 9 Bits gespeichert. Bei der Bildverarbeitung wachsen die Datenmengen

2.16 Exkurs uber Informationen 211

so gewaltig, dafl man bei der Kodierung Verluste hinnimmt, die die Senke gerade
noch nicht bemerkt, genau so bei der Musik-CD.

Wissen auf Knopfdruck? Manches, was im Computer gespeichert ist, bezeich-
nen wir als Wissen, sobald es in unserem Kopf gelandet ist. Trotzdem zégern wir,
beim Computer von Wissen zu sprechen (und schon gar nicht von Bewuftsein).
Fragen wir ein Lexikon der Informatik: Wissen (knowledge) ist eine geheimnisvol-
le Mischung aus Intuition, Erfahrung, Informiertheit, Bildung und Urteilskraft.
Ahnlich dunkel sind auch unsere eigenen Vorstellungen; befragen wir ein anderes
Buch: Wissen ist Information, die aufgeteilt, geformt, interpretiert, ausgewdhlt
und umgewandelt wurde. Tatsachen allein sind noch kein Wissen. Damit Infor-
mation zu Wissen wird, missen auch die wechselseitigen ideellen Beziehungen klar
sein. Ende des Zitates, nichts ist klar.

Jemand, der alle Geschichtszahlen aus dem Groflen Ploetz oder aus einer En-
zyklopédie auswendig kann, wird zwar bestaunt, aber nicht als kenntnisreich oder
klug angesehen, eher im Gegenteil. Erst wenn er die Tatsachen zu verkniipfen
und auf neue Situationen anzuwenden weif}, beginnen wir, ihm Wissen zuzubilli-
gen. Andererseits kommt das Denken nicht ohne Tatsachen aus, Geschichtswissen
ohne die Kenntnis einiger Jahreszahlen ist kaum vorstellbar. Die Strukturierung
der Tatsachen in Hierarchien (denken Sie an die Einordnung der Taschenratte
alias Gopher) oder verwickelteren Ordnungen (semantischen Netzen) mit Kreuz-
und-Quer-Beziehungen, das Verbinden von Tatsachen nach Regeln, die ihrerseits
wieder geordnet sind, und die Anwendung des Wissens auf noch nicht Gewuf}tes
scheinen einen wesentlichen Teil des Wissens auszumachen. Das den Computern
beizubringen, ist ein Ziel der Bemiihungen um die Kiinstliche Intelligenz (KI,
englisch AI). Datenbanken, Expertensysteme und Hypermedia sind erste Schritte
auf einem vermutlich langen Weg. Ehe wir uns weiter auf dessen Glatteis begeben,
verweisen wir auf die Literatur.

Wenden wir uns zum Abschlufl wieder den bodennéheren Schichten der Infor-
mation zu. Viele Pannen im Berufs-, Vereins-, Partei- und Familienleben riihren
einfach daher, dafl der Informationsflul nicht richtig lief. Dabei lassen sich solche
Pannen mit relativ wenig Aufwand vermeiden, indem man friihzeitig dem Infor-
mationswesen etwas Aufmerksamkeit widmet. Einige Erfahrungen eines ergrauten
Post- und Webmasters:

e Falsche Informationen sind gefiahrlicher als fehlende.

e Der Zeitpunkt der Ubermittlung einer Information kann wichtiger sein als
der Inhalt.

e Viele Informationen haben aufler ihrem Sachinhalt auch eine emotionelle
Seite, der nicht mit Sachargumenten beizukommen ist. Beispielsweise spielt
oft die Reihenfolge, in der die Empfinger benachrichtigt werden, eine Rolle.

e Guten Informationen mufi man hinterherlaufen, iiberfliissige kommen von
allein.

e Eine Information zusammenstellen, ist eine Sache, sie auf dem laufenden
zu halten, eine andere. Die zweite Aufgabe ist miihsamer, da sie kein En-
de nimmt. Gilt insbesondere fiir die Einrichtung von WWW-Servern und
-Seiten.

212 2 UNIX

Ans Internet, ans teure, schlief dich an,
Das halte fest mit deinem ganzen Herzen,
Hier sind die starken Wurzeln deiner Kraft.
Schiller, Tell

3 Internet

3.1 Grundbegriffe

Netze sind ein komplexes Thema, das liegt in ihrer Natur. Deswegen werden sie
in Grafiken als Wolkchen dargestellt. Wir versuchen, den Nebel zu durchdringen,
ohne uns in Einzelheiten zu verlieren.

Ehe wir uns der Praxis zuwenden, ein Uberblick iiber die rasch verlaufende
Entwicklung. Ein Vorgriff auf einige spéter erklirte Begriffe ist dabei unvermeid-
lich. Wir erkennen vier Stufen in der Entwicklung der Computernetze:

e Am Anfang standen kleine Netze, die der gemeinsamen Nutzung von
Peripherie wie Massenspeicher und Drucker und von Datenbestinden wie
Telefon- und Anschriftenlisten dienten. Netzdienste wie Email waren prak-
tisch nicht vorhanden, die Sicherheitsanforderungen bescheiden. Alle Benut-
zer kannten sich von Angesicht. Typische Vertreter: Novell Personal Netware,
Kirschbaum Link, Microsoft Windows for Workgroups und Windows 95.

e Die kleinen Netze wurden gréfler und untereinander verbunden. Plétzlich
hatte man das weltumspannende Internet. Damit wurden Routing-Fragen
wichtig: wie findet eine Email' zum Empfinger? Betriebs- und Datensicher-
heit riickten ins BewuBtsein der Netzerfinder und -verwalter. Netzdienste
kamen auf: Kommunikation (Email, FTP, Netnews, IRC) und Auskunfts-
dienste (Archie, Gopher, WAIS, WWW). Das Netz wurde damit um we-
sentliche Funktionen bereichert. Das ist der heutige Zustand.

e Die verschiedenen Netzdienste werden unter einer gemeinsamen Ober-
flaiche vereinigt. Der Benutzer wihlt nicht mehr FTP oder Gopher oder
WWW aus, sondern bleibt in einem einzigen Programm, das je nach den
Wiinschen des Benutzers die verschiedenen Dienste anspricht. Die Dienste
werden multimediafdhig, man kann aufler Text auch grafische und akusti-
sche Daten austauschen. Ob auch Geriiche dabei sein werden, ist zur Zeit
noch offen. Dieses Ziel ist heute teilweise erreicht, die WWW-Browser wie
netscape verdecken die unterschiedlichen Protokolle, allerdings gelegentlich
unvollkommen.

e Die Computernetze und die anderen informationsiibertragenden Netze (Te-
lefon, Kabelfernsehen) werden vereinigt zu einem digitalen Datennetz mit

IEs hat einen Grund, weshalb wir Mail sagen und nicht Post: In den Netnews ist ein
Posting die Alternative zu einer Mail.

213

214 3 Internet

einheitlichen Daten-Steckdosen in den Geb#duden. Das digitale Telefonnetz
ISDN ist ein Schritt in diese Richtung, gebremst von politischen und wirt-
schaftlichen Einfliissen. Die Infobahn ist ein fernes Entwicklungsziel.

Prognosen sind gewagt?. Die genannten Entwicklungen sind jedoch im Gange, im
globalen Dorf sind schon einige Straflen befestigt.

Wie wir bereits im Kap. 7?7 Hardware bemerkt haben, verstehen wir unter
einem Computernetz ein Netz aus selbstindigen Computern und nicht ein Ter-
minalnetz oder verteilte Systeme, die sich dem Benutzer wie ein einziger Computer
darbieten. Um die Arbeitsweise eines Netzes besser zu verstehen, sollte man sich
zu Beginn der Arbeit drei Fragen stellen:

e Was will ich machen?
e Welche Hardware ist beteiligt?
e Welche Software ist beteiligt?

Auch wenn man die Fragen nicht in allen Punkten beantworten kann, helfen sie
doch, das Geschehen hinter dem Terminal zu durchschauen. Andernfalls kommt
man nicht iiber das Driicken auswendig gelernter Tasten hinaus.

Der Computer, an dessen Terminal man arbeitet, wird als local bezeichnet,
der unter Umstidnden weit entfernte Computer, in dem man augenblicklich ar-
beitet (Prozesse startet), als remote. Ein entfernter Computer, der eine Reihe
von Diensten leistet, wird Host genannt, zu deutsch Gastgeber. Wenn von zwei
miteinander verbundenen Computern (genauer: Prozessen) einer Dienste anfor-
dert und der andere sie leistet, bezeichnet man den Fordernden als Client, den
Leistenden als Server. Es kommt vor, da} Client und Server gemeinsam in der-
selben Hardware stecken. Der Begriff Server wird auch allgemein fiir Computer
gebraucht, die auf bestimmte Dienstleistungen spezialisiert sind: Fileserver, Mail-
server, Kommunikationsserver, Druckerserver usw.

Wenn zu Beginn der Verbindung eine durchgehende Leitung zwischen den Be-
teiligten aufgebaut und fiir die Dauer der Ubertragung beibehalten wird, spricht
man von einer leitungsvermittelten Verbindung. Das ist im analogen Telefon-
dienst die Regel. Da bei der Ubertragung groBe Pausen (Schweigen) vorkommen,
wéahrend der eine teure Leitung nutzlos belegt ist, geht man mehr und mehr dazu
iiber, die zu iibertragenden Daten in Pakete aufzuteilen, sie mit der Empfinger-
adresse und weiteren Angaben zu beschriften und iiber irgendeine gerade freie
Leitung zu schicken, so wie bei der Briefpost. Dort wird ja auch nicht fiir Ihr
Weihnachtspéckchen an Tante Clara ein Gleis bei der Bundesbahn reserviert. Bei
einer Internet-Verbindung besteht also keine dauernde Leitung zwischen den Part-
nern, es werden Datenpakete (Datagramme) ausgetauscht. Ist eine Leitung unter-
brochen, nehmen die Datagramme einen anderen Weg, eine Umleitung. Bei den
vielen Maschen im Internet ist das kein Problem, anders als in einem zentral
organisierten Netz. Es kommt vor, daf} ein jiingeres Datagramm vor einem <e-
ren beim Empfinger eintrifft. Der Empfinger mufl daher die richtige Reihenfolge
wiederherstellen. Der Benutzer merkt von den Paketen nichts und braucht sich

2Um 1950 herum soll die IBM der Ansicht gewesen sein, daf§ achtzehn Computer den
gesamten Rechenbedarf der USA decken wiirden.

3.2 Schichtenmodell 215

nicht einmal um die Entsorgung der Verpackungen zu kiimmern. Diese Art der
Verbindung heifit paketvermittelt.

Wenn Sie mit einem Computer in Ubersee korrespondieren, kann es sein, daf
einige Threr Bytes iiber Satellit laufen, andere durch ein Seekabel, einige links um
den Globus herum, andere rechts.

3.2 Schichtenmodell

Groflere Netze sind umfangreiche Gebilde aus Hard- und Software. Um etwas Ord-
nung hineinzubringen, hat die ISO (International Organization for Standardizati-
on) ein Modell aus sieben Schichten entwickelt. Dieses Modell wird viel verwendet,
aber auch kritisiert. Ein Vorwurf richtet sich gegen seine starke Bindung an die
Telefontechnik. Telefone und Computer unterscheiden sich, obwohl sie manchmal
dieselben Leitungen verwenden. Die Zahl Sieben stammt aus der babylonischen
Mythologie, nicht aus technischer Notwendigkeit. Das SNA-Netz von IBM gliedert
sich auch in sieben Schichten, die Aufgaben sind jedoch anders verteilt. TCP /IP-
Netze gliedern sich in vier Schichten.

System 1 System 2

Application - Application

Presentation — Presentation

Session — Session

Transport - Transport
Network — Network
Data Link — Data Link
Physical Physical

Abb. 3.1: ISO-Schichtenmodell eines Netzes

Das ISO-Modell stellt zwei Computer dar, die miteinander verbunden sind.
Jede Schicht leistet eine bestimmte Art von Diensten an die Schicht dariiber und
verlangt eine bestimmte Art von Diensten von der Schicht darunter. Oberhalb der
obersten Schicht kann man sich den Benutzer vorstellen. Jede Schicht kommuni-
ziert logisch — nicht physikalisch — mit ihrer Gegenschicht auf derselben Stufe.

216 3 Internet

Eine physikalische Verbindung (Draht, Lichtwellenleiter, Funk) besteht nur in der
untersten Schicht (Abb. 3.1).

In der obersten Schicht laufen die Anwendungen (application), beispielsweise
ein Mailprogramm (elm(1)) oder ein Programm zur Fileiibertragung (ftp(1)).
Die Programme dieser Schicht verkehren nach oben mit dem Benutzer oder An-
wender.

Die Darstellungsschicht (presentation) bringt die Daten auf eine einheitli-
che Form und komprimiert und verschliisselt sie gegebenenfalls. Auch die Frage
EBCDIC- oder ASCII-Zeichensatz wird hier behandelt. Dienstprogramme und
Funktionen des Betriebssystems sind hier angesiedelt.

Die Programme der Sitzungsschicht (session) verwalten die Sitzung (login,
Passwort, Dialog) und synchronisieren die Dateniibertragung, d. h. sie bauen nach
einer Unterbrechung der Verbindung die Sitzung wieder auf. Ein Beispiel sind die
NetBIOS-Funktionen.

In der Transportschicht (transport) werden die Daten ver- und entpackt
sowie die Verbindungswege aufgebaut, die wihrend einer Sitzung wechseln kénnen,
ohne daf} die dariiberliegenden Schichten etwas davon merken. Protokolle wie TCP
oder UDP gehoren zur Transportschicht.

Die Netzwerkschicht (network) betreibt das betroffene Subnetz, sorgt fiir
Protokolliibergénge und fiihrt Buch. Zugehorige Protokolle sind IP oder ICMP.

Die Data-Link-Schicht transportiert Bytes ohne Interesse fiir ihre Bedeu-
tung und verlangt bei Fehlern eine Wiederholung der Sendung. Auch die An-
passung unterschiedlicher Geschwindigkeiten von Sender und Empfénger ist ihre
Aufgabe. Ethernet oder X.25 sind hier zu Hause.

Die unterste, physikalische Schicht (physical) gehort den Elektrikern. Hier
geht es um Kabel und Lichtwellenleiter, um Spannungen, Strome, Widerstinde
und Zeiten. Hier werden Pulse behandelt und Stecker genormt.

3.3 Entstehung

Die Legende berichtet, dafi in den sechziger Jahren unseres Jahrhunderts die ame-
rikanische Firma RAND einen Vorschlag ausbriiten sollte, wie in den USA nach
einem atomaren Schlag die Kommunikation insbesondere der Behorden aufrecht
erhalten werden konnte. Zwei Grundsétze kamen dabei heraus:

e keine zentrale Steuerung,
e kein Verlafl auf das Funktionieren bestimmter Verbindungen.

Verwirklicht wurde gegen Ende 1969 ein Netz aus vier Knoten in der Universitit
von Kalifornien in Los Angeles (UCLA), das nach dem Geldgeber ARPANET
(Advanced Research Projects Agency) genannt wurde. Das Netz bewihrte sich
auch ohne atomaren Schlag.

Das Netz wuchs, die Protokolle wurden ausgearbeitet, andere Netze {ibernah-
men die Protokolle und verbanden sich mit dem ARPANET. Im Jahr 1984 (1000
Knoten) schlof sich die National Science Foundation (NSF) an, die in den USA et-
wa die Rolle spielt wie hierzulande die Deutsche Forschungsgemeinschaft (DFG).

3.4 Protokolle (TCP/IP) 217

Das ARPANET starb 1989 (150 000 Knoten). Seine Aufgabe als Mutter des welt-
weiten Internet war erfiillt.

Heute ist das Internet die Wunderwaffe gegen Dummbheit, Armut, Pestilenz,
Erwerbslosigkeit, Inflation und die Sauregurkenzeit in den Medien. Der RFC (Re-
quest for comment) 1462 alias FYT (For your information) 20 sieht das niichterner.
Das Internet ist ein Zusammenschluf} vieler regionaler Netze, verbunden durch die
TCP /IP-Protokolle, mit {iber 20 Millionen Computern (Juli 98) und 60 Mil-
lionen Benutzern. Néchstes Jahr konnen sich die Zahlen schon verdoppelt haben.
Wenn das so weiter geht, hat das Netz im Jahr 2002 mehr Teilnehmer als es Men-
schen auf der Erde gibt, also sind vermutlich viele Ddmonen und Auflerirdische
darunter. Das Internet, unendliche Weiten ...

3.4 Protokolle (TCP/IP)

Ein Netz-Protokoll ist eine Sammlung von Vorschriften und Regeln, die der
Verstéandigung zwischen den Netzteilnehmern dient, dhnlich wie bestimmte Sitten
und Gebriuche den Umgang unter den Menschen erleichtern. Auch in der hheren
Tierwelt sind instinktive Protokolle verbreitet. Bekannte Netz-Protokolle sind:

e TCP/IP

e [SO-OSI

e IBM-SNA

e Decnet LAT

e IPX-Novell (IEEE 802.3)
e Appletalk

e Banyan Vines

e IBM und Novell NetBIOS

Zwei Netzteilnehmer kénnen nur miteinander reden, wenn sie dasselbe Protokoll
verwenden. Da das nicht immer gegeben ist, braucht man Protokoll-Umsetzer als
Dolmetscher.

TCP/IP heifit Transmission Control Protocol/Internet Protocol und ist
eine Sammlung mehrerer, sich ergéinzender Protokolle aus der Internet Protocol
Suite. TCP und IP sind die bekanntesten, weshalb die ganze Sammlung nach
ihnen benannt wird. Die wichtigsten, in dieser Suite festgelegten Dienste sind:

e File Transfer, geregelt durch das File Transfer Protocol FTP (RFC 959),

Remote Login, geregelt durch das Network Terminal Protocol TELNET
(RFC 854),

Electronic Mail (Email), geregelt durch das Simple Mail Transfer Protocol
SMTP (RFC 821),

Network File Systems,

Remote Printing,

218 3 Internet

e Remote Execution,
e Name Server,
e Terminal Server.

Die einzelnen Protokolle werden in Requests For Comments (RFC) beschrie-
ben, die im Internet frei zugénglich sind. Bisher sind rund 2500 Requests erschie-
nen. Der RFC 1463 beispielsweise ist For Your Information (FYI, also nicht
normativ) und enthilt eine Bibliographie zum Internet, wohingegen der RFC 959
das File Transfer Protokoll beschreibt. Bisher sind rund 30 FYIs erschienen, die
aufler ihrer RFC-Nummer noch eine eigene FYI-Nummer tragen. Etwa 50 RFCs
haben den Status von Internet-Standards erhalten, sind also verbindlich. Die RFCs
werden nicht aktualisiert, sondern bei Bedarf durch neuere mit h6heren Nummern
ersetzt (anders als DIN-Normen). Als Neuling (newbie) sollten Sie vor allem den
RFC 1462 = FYI 20 What is the Internet? lesen, rund zehn Seiten. Die aktuellen
RFCs samt Ubersicht finden Sie beispielsweise bei ftp://ftp.nic.de/pub/doc/rfc.

Die TCP/IP-Protokolle lassen sich in Schichten einordnen, allerdings nicht in
das jlingere ISO-Schichten-Modell. Jede Schicht greift auf die Dienste der darunter
liegenden Schicht zuriick, bis man bei der Hardware landet. TCP/IP kennt vier
Schichten:

e ein Anwendungsprotokoll wie Telnet oder FTP, in etwa den drei obersten
Schichten des ISO-Modells entsprechend (wobei hier die Programme, die das
Protokoll umsetzen, genauso heifien),

e cin Protokoll wie TCP, das Dienste leistet, die von vielen Anwendungen
gleichermaflen bené6tigt werden,

e ein Protokoll wie IP, das Daten in Form von Datagrammen zum Ziel
befordert, wobei TCP und IP zusammen ungefihr den [SO-Schichten Trans-
port und Network entsprechen,

e cin Protokoll, das den Gebrauch des physikalischen Mediums regelt (z. B.
Ethernet), im ISO-Modell die beiden untersten Schichten.

Ein Anwendungsprotokoll definiert die Kommandos, die die Systeme beim
Austausch von Daten verwenden. Uber den Ubertragungsweg werden keine An-
nahmen getroffen. Ein drittes Beispiel nach Telnet und FTP ist das Simple Mail
Transfer Protocol SMTP gemifl RFC 821 vom August 1982 mit zahlreichen
spateren Ergidnzungen, verwirklicht zum Beispiel in dem Programm sendmail (1).
Das Protokoll beschreibt den Dialog zwischen Sender und Empféanger mittels meh-
rerer Kommandos wie MAIL, RCPT (Recipient), DATA, OK und verschiedenen Feh-
lermeldungen. Der Benutzer sieht von diesen Kommandos nichts, sie werden von
den beiden miteinander kommunizierenden sendmail-Prozessen gebraucht.

Das TCP-Protokoll verpackt die Nachrichten in Datagramme, d. h. in
Briefumschlidge eines festgelegten Formats mit einer Zieladresse. Am Ziel 6ffnet
es die Umschldge, setzt die Nachrichten wieder zusammen und iiberpriift sie auf
Transportschiden. Obwohl die RFCs bis auf das Jahr 1969 zuriickreichen, sind
die Urspriinge des TCP-Protokolls nicht in RFCs, sondern in Schriften des US-
amerikanischen Verteidigungsministeriums (DoD) zu finden.

3.5 Adressen und Namen, Name-Server 219

In grofien, weltweiten Netzen ist die Beforderung der Datagramme eine nicht
ganz einfache Aufgabe. Diese wird vom IP-Protokoll geregelt. Da Absender und
Empfinger nur in seltenen Fillen direkt verbunden sind, gehen die Datagramme
iiber Zwischenstationen. Eine geeignete Route herauszufinden und dabei Schleifen
zu vermeiden, ist Sache von IP, dessen Urspriinge ebenfalls im DoD liegen.

Die unterste Schicht der Protokolle regelt den Verkehr auf dem physikalischen
Medium, beispielsweise einem Ethernet. Bei diesem horen alle beteiligten Com-
puter stindig am Bus, der durch ein Koaxkabel verwirklicht ist. Wenn ein Com-
puter eine Nachricht senden will, schickt er sie los. Ist kein zweiter auf Senden,
geht die Sache gut, andernfalls kommt es zu einer Kollision. Diese wird von den
beteiligten Sendern bemerkt, worauf sie fiir eine zufillig lange Zeit den Mund
halten. Dann beginnt das Spiel wieder von vorn. Es leuchtet ein, dal bei starkem
Betrieb viele Kollisionen vorkommen, die die Leistung des Netzes verschlechtern.
Der RFC 894 vom April 1984 beschreibt die Ubertragung von IP-Datagrammen
iiber Ethernet. Die Ethernet-Technik selbst ist im I[EEE-Standard 802.3 festgelegt
und unabhéngig vom Internet.

3.5 Adressen und Namen, Name-Server

Die Teilnetze des Internet sind {iber Gateways verkniipft, das sind Computer,
die mit mindestens zwei regionalen Netzen verbunden sind. Die teilnehmenden
Computer sind durch eine eindeutige Internet-Adresse (IP-Adresse) gekenn-
zeichnet, eine 32-bit-Zahl. Unser System hat beispielsweise die Internet-Adresse
(IP-Adresse) 129.13.118.15. Diese Schreibweise wird auch als Dotted Quad (vier
durch Punkte getrennte Bytes) bezeichnet. Die erste Zahlengruppe entscheidet
iiber die Netzklasse:

e (: reserviert fir 777

1 bis 126: Klasse-A-Netze mit je 2 hoch 24 gleich 16 777 216 Hosts,

127: reserviert fiir 777,
128 bis 191: Klasse-B-Netze mit je 2 hoch 16 gleich 65 534 Hosts,
192 bis 222: Klasse-C-Netze mit je 2 hoch 8 gleich 254 Hosts,

e 255: reserviert fiir 777.

An zweiter und dritter Stelle kann jeder Wert von 0 bis 255 auftauchen, an vierter
Stelle ist die Zahl 255 reserviert, Ndheres siehe 777. Da sich solche Zahlen schlecht
merken lassen und nicht viel aussagen, werden sie auf Name-Servern in frei wihl-
bare Hostnamen umgesetzt, in unserem Fall in mvmhp.ciw.uni-karlsruhe.de.
Es spricht aber nichts dagegen, unserer Internet-Adresse auf einem Name-Server
zusitzlich den Namen kruemel .de zuzuordnen. Name und Nummer miissen welt-
weit eindeutig?® sein, woriiber ein Network Information Center (NIC) in Kalifor-

3Genaugenommen bezieht sich die Nummer auf die Netz-Interface-Karte des Com-
puters. Ein Computer kann mehrere Karten enthalten. Ethernet-Karten haben dariiber
hinaus noch eine hexadezimale, unveréinderliche Hardware-Adresse, die auch weltweit
eindeutig ist.

220 3 Internet

nien und seine nationalen Untergliederungen wachen. Das US-NIC verwaltet die
Top-Level-Domains:

e gov (governmental) amerikanische Behorden,

e mil (military) amerikanisches Militér,

e edu (education) amerikanische Universitéten und Schulen,
e com (commercial) amerikanische Firmen,

e org (organisational) amerikanische Organisationen,

e net (network) amerikanische Gateways und andere Server,
e firm (firms) Firmen,

e store (stores) Handelsfirmen,

e web (World Wide Web) WWW-Einrichtungen,

e arts (arts) kulturelle und unterhaltende Einrichtungen,

e rec (recreation) Einrichtungen der Freizeitgestaltung,

e info (information) Information Provider,

e nom (nomenclature) Einrichtungen mit besonderer Nomenklatur,
e de Deutschland,

e fr Frankreich,

e ch Schweiz (Confoederatio Helvetica),

e at Osterreich (Austria),

e fi Finnland,

e jp Japan usw.

Daneben finden sich noch einige Exoten wie nato, uucp und bitnet.

Eine Domain ist ein Adressbereich?, der in einem Glied der Adresse iiberein-
stimmt. Alle Adressen der Top-Level-Domain de enden auf ebendiese Silbe und
bezeichnen Computer, die physikalisch oder logisch in Deutschland beheimatet
sind.

Die néichste Domain ist Sache der nationalen Netzverwalter. Hierzulande sorgt
das Network Information Center fiir Deutschland (DE-NIC) — das nationale Stan-
desamt — am Rechenzentrum der Universitit Karlsruhe fiir Ordnung und betreibt
den Primary Name Server (ns.nic.de, 193.196.32.1)%. Der Universitit Karlsuhe
ist die Domain uni-karlsruhe.de zugewiesen. Sie wird vom Primary Name Ser-
ver der Universitidt netserv.rz.uni-karlsruhe.de (129.13.64.5) im Rechenzen-
trum verwaltet, bei dem jeder Computer auf dem Campus anzumelden ist, der

4Eine Windows-NT-Domiéine ist etwas vollig anderes, nimlich eine Menge von Com-
putern mit gemeinsamer Benutzerverwaltung, unter UNIX einer NIS-Domain entspre-
chend.

’Dieser kennt nicht etwa alle deutschen Knoten, sondern nur die ihm unmittelbar
unter- und iibergeordneten Name-Server. Es hat also keinen Zweck, ihn als Default-
Name-Server auf dem eigenen Knoten einzutragen.

3.5 Adressen und Namen, Name-Server 221

am Netz teilnimmt. Innerhalb der Universitit Karlsruhe vergibt das Rechenzen-
trum die Nummern und Namen, und zwar im wesentlichen die Namen fakultéits-
weise (ciw = Chemieingenieurwesen) und die Nummern gebdudeweise (118 =
Gebdude 30.70), was mit der Verkabelung zusammenhéingt. Innerhalb der Fa-
kultdten oder Gebédude geben dann subalterne Manager wie wir die Nummern
weiter und erfinden die Namen der einzelnen Computer. In der Regel ist die
numerische Adresse mit der Hardware (Netzkarte) verkniipft, die alphanumeri-
sche Adresse (Name) mit der Funktion eines Netzcomputers. Unsere beiden Hosts
mvmpc2.ciw.uni-karlsruhe.de und ftp.ciw.uni-karlsruhe.de sind beispiels-
weise hardwareméfig identisch, die Namen weisen auf zwei Aufgaben der Kiste
hin. Der Benutzer im Netz bemerkt davon kaum etwas; es ist gleich, ob er FTP
mit ftp oder mvmpc2 macht. Da die Name-Server fiir das Funktionieren des Net-
zes unentbehrlich sind, gibt es aufler dem Primary Name Server immer mehrere
Secondary Name Server, die die Adresslisten spiegeln und notfalls einspringen.
ns.nic.de in Karlsruhe wird von Dresden und Stuttgart unterstiitzt.

Vergibt man Namen, ohne seinen Primary Name Server zu benachrichtigen,
so sind diese Namen im Netz unbekannt, die Hosts sind nur iiber ihre numerische
IP-Adresse erreichbar. Verwendet man IP-Adressen oder Namen innerhalb einer
Domain mehrfach — was moglich ist, der Name-Server aber nicht akzeptiert —
schafft man Arger.

Auf UNIX-Systemen trigt man in das File /etc/resolv.conf die [P-Adressen
(nicht die Namen) der Nameserver ein, die man zur Umsetzung von Namen in IP-
Adressen heranziehen méochte, zweckmiflig Server in der Néhe. Bei uns steht an
erster Stelle ein institutseigener Secondary Name Server, dann der Primary Name
Server unserer Universitdt und an dritter Stelle ein Name Server der Universitét
Heidelberg.

Welchen Weg die Nachrichten im Netz nehmen, bleibt dem Benutzer verbor-
gen, genau wie bei der Briefpost oder beim Telefonieren. Entscheidend ist, dafl
vom Absender zum Empfianger eine liickenlose Kette von Computern besteht, die
mit Hilfe der Name-Server die Empfinger-Adresse so weit interpretieren kénnen,
daBl die Nachricht mit jedem Zwischenglied dem Ziel ein Stiick ndher kommt. Es
braucht also nicht jeder Internet-Computer eine Liste aller Internet-Teilnehmer
zu halten. Das wire gar nicht moglich, weil sich die Liste laufend &ndert. Mit
dem Kommando traceroute(8) und einem Hostnamen oder einer IP-Adresse als
Argument ermittelt man den gegenwértigen Weg zu einem Computer im Internet,
beispielsweise von meiner Linux-Workstation zu einem Host in Freiburg:

/usr/sbin/traceroute ilsebill.biologie.uni-freiburg.de

mvOl-eth7.rz.uni-karlsruhe.de (129.13.118.254)
rz11-fddi3.rz.uni-karlsruhe.de (129.13.75.254)
belw-gw-fddil.rz.uni-karlsruhe.de (129.13.99.254)
Karlsruhel.BelWue.DE (129.143.59.1)
Freiburgl.BelWue.DE (129.143.1.241)
BelWue-GW.Uni-Freiburg.DE (129.143.56.2)
132.230.222.2 (132.230.222.2)

132.230.130.253 (132.230.130.253)

0 ~NO Ok WN -

222 3 Internet

9 1ilsebill.biologie.uni-freiburg.de (132.230.36.11)

Es geht zwar iiber erstaunlich viele Zwischenstationen, aber nicht {iber den Groflen
Teich. Die Nummer 1 steht bei uns im Gebdude, dann geht es auf den Karlsruher
Campus, ins BelWue-Netz und schlieflich auf den Freiburger Campus.

3.6 BelWue

BelWue versteht sich als ein Zusammenschlufl der baden-wiirttembergischen
Hochschulen und Forschungseinrichtungen zur Forderung der nationalen und in-
ternationalen Telekooperation und Nutzung entfernt stehender DV-Einrichtungen
unter Verwendung schneller Datenkommunikationseinrichtungen. BelWue ist ein
organisatorisches Teilnetz im Rahmen des Deutschen Forschungsnetzes. Unbescha-
det der innerorganisatorischen Eigensténdigkeit der neun Universitidtsrechenzen-
tren ist das Kernziel die Darstellung dieser Rechenzentren als eine einheitliche DV-
Versorgungseinheit gegeniiber den wissenschaftlichen Nutzern und Einrichtungen.
Soweit der Minister fiir Wissenschaft und Kunst von Baden-Wiirttemberg.

Das Karlsruher Campusnetz KLICK, an das fast alle Einrichtungen der Uni-
versitit Karlsruhe angeschlossen sind, ist ein BelWue-Subnetz. BelWue ist — wie
oben verkiindet — ein Subnetz des Deutschen Forschungsnetzes DFN. Das DFN
ist ein Subnetz des Internet. Durch das BelWue-Netz sind miteinander verbunden

e die Universitidten Freiburg, Heidelberg, Hohenheim, Kaiserslautern, Karls-
ruhe, Konstanz, Mannheim, Stuttgart, Tiibingen und Ulm,

e die Fachhochschulen Aalen, Biberach, Esslingen, Furtwangen, Heilbronn,
Karlsruhe, Konstanz, Mannheim, Offenburg, Pforzheim, Reutlingen, Stutt-
gart (3), Ulm und Weingarten (Wiirttemberg),

e die Berufsakademien Karlsruhe, Mannheim, Mosbach, Ravensburg und
Stuttgart,

e das Ministerium fiir Wissenschaft und Forschung, Stuttgart.

Einige Netzadressen sind im Anhang ?? Netzadressen zu finden. Weiteres in der
Zeitschrift IX Nr. 5/1993, S. 82 - 92.

3.7 Netzdienste im Uberblick

Ein Netz stellt Dienstleistungen zur Verfiigung. Einige nimmt der Benutzer aus-
driicklich und unmittelbar in Anspruch, andere wirken als Heinzelméinnchen im
Hintergrund. Die wichtigsten sind:

e Terminal-Emulationen (das eigene System wird zum Terminal eines entfern-
ten Systems, man fiihrt einen Dialog) bis hin zu netzorientierten Window-
Systemen (X Window System),

e Remote Execution (zum Ausfithren von Programmen auf einem entfernten
Host, ohne Dialog),

3.8 Terminal-Emulatoren (telnet, rlogin, ssh) 223

e File-Transfer (zum Kopieren von Files zwischen dem eigenen und einem
entfernten System, Dialog eingeschrinkt auf die zum Transfer notwendigen
Kommandos),

e Electronic Mail (zum Senden und Empfangen von Mail zwischen Systemen),
e Netzgeschwiitz (Echtzeit-Dialog mehrerer Benutzer),

e Nachrichtendienste (Neuigkeiten fiir alle),

e Informationshilfen (Wo finde ich was?),

e Navigationshilfen (Wo finde ich jemand?)

e Netzwerk-File-Systeme,

e Name-Server (Ubersetzung von Netz-Adressen),

e Zeit-Server (einheitliche, genaue Zeit im Netz),

e Drucker-Server (Remote Printing, Drucken auf einem entfernten Host),

e Cookie-Server, Backgammon-Server usw. (weniger wichtig).

Das Faszinierende am Netz ist, dal Entfernungen fast keine Rolle spielen. Der
Kollege in Honolulu ist manchmal besser zu erreichen als der eigene Chef eine
Treppe hoher. Die Kosten sind — verglichen mit denen der klassischen Kommu-
nikationsmittel — geringer, und einen Computer braucht man ohnehin. Eine allzu
eingehende Beschiftigung mit dem Netz kann allerdings auch — wie iiberméfiger
Alkoholgenufy — die eigene Leistung gegen Null gehen lassen.

Im Netz hat sich so etwas wie eine eigene Subkultur entwickelt, siehe The
New Hacker’s Dictionary oder das Jargon-File. Die Benutzer des Netzes sehen
sich nicht blof3 als Teilnehmer an einer technischen Errungenschaft, sondern als
Biirger oder Bewohner des Netzes (netizen).

3.8 Terminal-Emulatoren (telnet, rlogin, ssh)

telnet (1) emuliert ein VT100-Terminal gem&f dem telnet-Protokoll in TCP /IP-
Netzen (Internet). tn3270(1) bildet ein VT100-Terminal auf eine IBM-3270-
Emulation ab, so daff man mit einem echten oder emulierten VT 100 mit IBM-
Grofirechnern wie der IBM 3090 einen Dialog fiihren kann.

Mittels Remote Login, Kommando rlogin(1), meldet man sich als Benutzer
auf dem entfernten Computer (Host) an. Hat man dort keine Benutzerberechti-
gung, wird der Zugang verweigert. Darf man, wird eine Sitzung erdffnet, so als ob
man vor Ort sédfle. Ist der lokale Computer ein PC, so muf} dieser ein Terminal
emulieren, das mit dem Host zusammenarbeitet (oft ein VT 100). Der Unterschied
zwischen telnet (1) und rlogin(1) besteht darin, dafl das erstere Kommando ein
Internet-Protokoll realisiert und daher auf vielen Systemen verfiigbar ist, wihrend
die r-Dienstprogramme von Berkeley nur auf UNIX-Systemen laufen.

Das Programmpaar ssh(1) (Secure Shell Client) und sshd (1) (Secure Shell
Daemon) ermoglichen eine Terminalverbindung zu einem entfernten Computer
dhnlich wie telnet (1) oder rlogin(1). Die Daten gehen jedoch verschliisselt iiber

224 3 Internet

die Leitung und kénnen zwar abgehort, aber kaum von Unberechtigten verwendet
werden.

Netzwerkorientierte Window-Systeme ermoglichen es, aufwendige grafische
Ein- und Ausgaben iiber das Netz laufen zu lassen. Ein Beispiel dafiir ist das
X Window System. Niheres sieche Abschnitt 2.6.2 X Window System. Inner-
halb des X Window Systems lassen sich dann wieder Terminal-Emulatoren star-
ten — auch mehrere gleichzeitig — so dafl man auf einem Bildschirm verschiedene
Terminal-Sitzungen mit beliebigen X-Window-Clienten im Netz abhalten kann.

In grofleren Anlagen sind die Terminals nicht mehr unmittelbar mit dem
Computer verbunden, weil auch voriibergehend nicht benutzte Terminals einen
wertvollen Port belegen wiirden. Sie sind vielmehr mit einem Terminal-Server
verbunden, der nur die aktiven Terminals zum Computer durchschaltet. Der
Terminal-Server ist ein kleiner Computer, der nur ein Protokoll wie Telnet fihrt.
Der Terminal-Server kann an mehrere Computer angeschlossen sein, so daf§ jedes
Terminal gleichzeitig mehrere Sitzungen auf verschiedenen Anlagen geéffnet haben
kann. Wenn ein Benutzer dann einen Session Manager zur Verwaltung seiner
offenen Sitzungen braucht, ist er auf der Hohe der Zeit. Terminal in Karlsruhe,
Daten in Stuttgart, Prozesse in Bologna und Druckerausgabe in Fort Laramy, alles
moglich!

3.9 File-Transfer (kermit, ftp, fsp)

Um im vorigen Beispiel zu bleiben, nehmen wir an, dafl unser PC ein Terminal
emuliert und wir eine Sitzung auf dem entfernten Computer (Host) eroffnet haben.
Jetzt mochten wir ein File von dem Host auf unseren PC iibertragen, eine Aufga-
be, die zwischen einem echten Terminal und einem Computer keinen Sinn macht,
weil das echte Terminal keinen Speicher hat, in das ein File kopiert werden koénn-
te. Dasselbe gilt auch fiir die umgekehrte Richtung. Wir brauchen also neben der
Emulation ein Programm fiir die File-Ubertragung. Im einfachsten Fall sind das
Kopierprogramme &hnlich cat (1) oder cp(1), die zum Computerausgang schrei-
ben bzw. vom Computereingang (serielle Schnittstellen) lesen, und zwar muf} auf
dem sendenden und auf dem empfangenden Computer je eines laufen.

Bei der Ubertragung treten Fehler auf, die unangenehmer sind als ein falsches
Zeichen auf dem Bildschirm, auflerdem spielt die Geschwindigkeit eine Rolle. Man
bevorzugt daher gesicherte Ubertragungsprotokolle, die die zu iibertragenden
Daten in Pakete packen und jedes Paket mit einer Priifsumme versehen, so dafl
der Empfinger einen Ubertragungsfehler mit hoher Wahrscheinlichkeit bemerkt
und eine Wiederholung des Paketes verlangt. Beispiele gesicherter Protokolle sind
kermit, xmodem, und zmodem. Sie gehtren nicht zu den Internet-Protokollen. Wir
verwenden oft kermit (1). Es ist zwar angejahrt, aber verbreitet, Original Point
of Distribution kermit.columbia.edu. Das fiir viele Systeme verfiighare kermit-
Programm enthélt auch eine Terminal-Emulation, erledigt also zwei Aufgaben.

Bei einem File Transfer mittels ftp(1) kopiert man ein File von einem Com-
puter zum anderen und arbeitet dann mit seiner lokalen Kopie weiter. FTP geht in
beide Richtungen, senden und empfangen. Es ist ein Internet-Protokoll und wird

3.10 Anonymous-FTP 225

im RFC 959 beschrieben. Unter FTP stehen mehrere Dutzend FTP-Kommandos
zur Verfiigung, die beim File-Transfer gebraucht werden. Man kann also nicht
wie beim Remote Login auf der entfernten Maschine arbeiten, die Eingabe von
UNIX-Kommandos fiihrt zu einem Fehler. Einige FTP-Kommandos haben diesel-
ben Namen wie DOS- oder UNIX-Kommandos, aber nicht alle. Ein Trick, um sich
kleine Textfiles (readme) doch gleichsam on-line anzuschauen:

get readme |more

Das FTP-Kommando get erwartet als zweites Argument den lokalen Filenamen.
Beginnt dieser mit dem senkrechten Strich einer Pipe, unmittelbar gefolgt von
einem UNIX-Kommando, so wird das iibertragene File an das UNIX-Kommando
weitergereicht. Eine andere Moglichkeit ist, das File zu iibertragen, FTP mittels
eines Ausrufezeichens voriibergehend zu verlassen, auf Shellebene mit dem File
zu arbeiten und nach Beenden der Shell FTP fortzusetzen. Beide Verfahren bele-
gen zwar keine Ubertragungswege (da paketvermittelt), aber auf den beteiligten
Computern einen FTP-Port, und deren Anzahl ist begrenzt.

Bei der Ubertragung zwischen ungleichen Systemen (UNIX — MS-DOS — Ma-
cintosh) ist zwischen Textfiles und binédren Files zu unterscheiden. Textfiles un-
terscheiden sich — wir sprachen in Abschnitt 2.7.11 Textfiles aus anderen Wel-
ten dariiber — in der Gestaltung des Zeilenwechsels. Die Ubertragungsprogramme
iibersetzen stillschweigend den Zeilenwechsel in die Zeichenkombination des jewei-
ligen Zielcomputers. Alle anderen Files gelten als bindr und sind zu iibertragen,
ohne auch nur ein Bit zu #ndern. Bei der Ubertragung zwischen zwei UNIX-
Systemen braucht man den Unterschied nicht zu beachten. Auch Postscript-Files
und gepackte Textfiles miissen binir iibertragen werden. Ubertrigt man ein Textfi-
le binér, kann man mit einem einfachen Filter den Zeilenwechsel wieder hinbiegen.
Ist ein Binérfile im Textmodus von F'TP {ibertragen worden, ist es Schrott.

Arbeitet man hinter einer Firewall-Maschine, so kann der FTP-Dialog zwi-
schen Client und Server mifilingen. Normalerweise verlangt nach Beginn des Dia-
logs der Server vom Client die Eréffnung eines Kanals zur Dateniibertragung. Die
Firewall sieht in dem Verlangen einen hereinkommenden Aufruf an einen unbe-
kannten Port, eine verdichtige und daher abzublockende Angelegenheit. Schickt
man nach Herstellung der Verbindung, jedoch vor der Ubertragung von Daten das
FTP-Kommando pasv an den Server, so wird die Datenverbindung vom Client
aus aufgebaut, und die Firewall ist beruhigt. Nicht alle F'TP-Server unterstiitzen
jedoch dieses Vorgehen.

Das File Service Protocol FSP dient dem gleichen Zweck wie FTP, ist
etwas langsamer, aber dafiir unempfindlich gegeniiber Unterbrechungen. Manche
Server bieten sowohl FTP wie auch FSP an.

3.10 Anonymous-FTP

In Universitéten ist es Brauch, den Netzteilnehmern Informationen und Softwa-
re unentgeltlich zur Verfiigung zu stellen. Was mit 6ffentlichen Mitteln finanziert
worden ist, soll auch der Offentlichkeit zugute kommen. Einige Organisationen

226 3 Internet

und Firmen haben sich ebenfalls dem Netzdienst angeschlossen. Zu diesem Zweck
wird auf den Anlagen ein Benutzer namens anonymous (unter vielen Systemen
auch ftp) eingerichtet, der wie gast kein Passwort benotigt. Es ist jedoch iiblich,
seine Email-Anschrift als Passwort mitzuteilen. Nach erfolgreicher Anmeldung auf
einer solchen Anlage kann man sich mit einigen FTP-Kommandos in den o6ffentli-
chen Verzeichnissen (oft /pub) umsehen und Files auf die eigene Anlage kopieren
(download). Eine Anonymous-FTP-Verbindung mit der Universitit Freiburg im
schonen Breisgau verlauft beispielsweise so:

ftp ftp.uni-freiburg.de

anonymous (Login-Name)
ig030mvmhp.ciw.uni-karlsruhe.de (eigener Name als Passwort)
dir (wie UNIX-1s)

ascii (Textmodus)

get README (File README holen)

cd misc

dir

quit

Anschlielend findet man das Freiburger File README in seinem Arbeits-
Verzeichnis. Die Geschwindigkeit der Verbindung liegt bei 600 Bytes/s. Allerdings
ist diese Angabe infolge der geringen Filegrofle ungenau. Auf diese Weise haben
wir uns den Hitchhikers Guide to Internet besorgt.

Die Verbindung funktioniert nicht nur im Léndle®, sondern sogar bis zum an-
deren Ende der Welt. Mit

ftp ftp.cc.monash.edu.au
wulf.alex@ciw.uni-karlsruhe.de
dir

cd pub

dir

quit

schaut man sich im Computer Center der Monash University in Melbourne in
Australien um. Die Geschwindigkeit sinkt auf 40 Bytes/s. Man wird sich also
nicht megabytegrofle Dokumente von dort holen. Grundsétzlich soll man immer
zuerst in der Nachbarschaft suchen. Viele Files werden ndmlich nicht nur auf ih-
rem Ursprungscomputer (original point of distribution, OPD) verfiigbar gehalten,
sondern auch auf weiteren Hosts. Manche FTP-Server kopieren sogar ganze Ver-
zeichnisbdume fremder Server. Eine solche Kopie wird Spiegel (mirror) genannt.
Ein Spiegel senkt die Kosten und erhoht die Geschwindigkeit der Ubertragung.
Weiterhin gebietet der Anstand, fremde Computer nicht zu den dortigen Haupt-
verkehrszeiten zu beléstigen.

Da der Mensch seit altersher mit einem starken Sammeltrieb ausgestattet ist,
stellt Anonymous-FTP fiir den Anfiinger eine Gefahr dar. Zwei Hinweise. Erstens:

6Fiir Nicht-Badener: Das Lindle ist Baden, seine Einwohner heilen Badener und
nicht etwa Badenser. Die Frankfurter nennen sich ja auch nicht Frankfurtser.

3.10 Anonymous-FTP 227

Man lege ein Verzeichnis aftp an (der Name ftp wird meist fiir die FTP-Software
benétigt). In diesem richte man fiir jeden FTP-Server, den man anzapft, ein Un-
terverzeichnis an. In jedem Unterverzeichnis schreibe man ein Shellscript namens
aftp mit folgender Zeile:

ftp ftp-servername

ftp-servername ist der Name, notfalls die numerische Internet-Adresse des jewei-
ligen FTP-Servers. Das Shellscript mache man les- und ausfithrbar (750). Dann
erreicht man in dem augenblicklichen Verzeichnis mit dem Kommando aftp im-
mer den zugehorigen Server und weifl, woher die Files stammen. Weiter lege man
fiir wichtige Programme, deren Herkunft man bald vergessen hat, in dem Ver-
zeichnis aftp einen Link auf das zum FTP-Server gehorige Unterverzeichnis an.
So hat man einen doppelten Zugangsweg: iiber die Herkunft und den Namen. Bei
uns schaut das dann so aus:

emacs -> unimainz
unimainz
aftp

emacs—20.2
emacs-20.2.tar.gz

Sie diirfen sich gern ein anderes Ordnungsschema ausdenken, aber ohne Ordnung
stehen Sie nach vier Wochen Anonymous-FTP im Wald.

Zweitens: Man hole sich nicht mehr Files in seinen Massenspeicher, als man in
néchster Zukunft verarbeiten kann, andernfalls legt man nur eine Datengruft zum
Wohle der Plattenindustrie an. Fiir alle weiteren Schéitze reicht eine Notiz mit
Herkunft, Namen, Datum und Zweck. Files &ndern sich schnell. Mit iiberlagerten
Daten zu arbeiten ist Zeitvergeudung.

Das Gutenberg-Projekt hat sich zur Aufgabe gesetzt, bis zum Jahr 2001
eine Vielzahl englischsprachiger Texte als ASCII-Files zur Verfiigung zu stel-
len. Die Bibel, WiLLIAM SHAKESPEARE’s Gesammelte Werke und die Verfas-
sung der USA gibt es schon. Versuchen Sie FTP mit mrcnext.cso.uiuc.edu in
der University of Illinois. Unser Exemplar der Zahl 7 auf eine Million Stellen
(ftp.ciw: /pub/misc/pi/pimill0.txt) stammt von dort, beeindruckend.

Die kostenfreie GNU-Software kommt von prep.ai.mit.edu in den USA,
kann aber auch von mehreren Servern (mirrors) in Europa abgeholt werden. Inzwi-
schen gibt es auch eine Liste der deutschen Mirrors. Die SIMTEL-Archive werden
von ftp.uni-paderborn.de gespiegelt. Man muf} fragen und suchen, das Internet
kennt keine zentrale Verwaltung.

Die Einrichtung eines eigenen FTP-Servers unter UNIX ist nicht weiter
schwierig, siehe die man-Seite zu ftpd (1M). Man mufl achtgeben, dafl anonyme
Benutzer nicht aus dem ihnen zugewiesenen Bereich im Filesystem herauskonnen,
sofern man iiberhaupt Anonymous FTP zulassen will. Bei uns greifen F'TP-Server
und WWW-Server auf denselben Datenbestand zu, das hat sich als zweckmifig

228 3 Internet

erwiesen. Andersherum: unser FTP-Server kann inzwischen auch WWW, unser
WWW-Server kann FTP, und der Datenbestand des einen ist eine Kopie des an-
deren, ein Backup.

3.11 Electronic Mail (Email)

3.11.1 Grundbegriffe

Electronic Mail, Email oder Computer-Mail ist die Moglichkeit, mit Benutzern
im Netz zeitversetzt Nachrichten auszutauschen, in erster Linie kurze Texte. Die
Nachrichten werden in der Mailbox” des Empfiingers gespeichert, wo sie bei Bedarf
abgeholt werden. Die Mailbox ist ein File oder ein Unterverzeichnis auf dem
Computer des Empféingers.

PCs unter MS-DOS und dhnliche Rechner haben hier eine Schwierigkeit. Sie
sind oftmals ausgeschaltet oder mit anderen Arbeiten beschéftigt, jedenfalls nicht
bereit, Mail entgegenzunehmen. Eine grofiere UNIX-Anlage dagegen ist stindig
in Betrieb und vermag als Multitasking-System Post zu empfangen, wihrend sie
andere Aufgaben bearbeitet. Die Losung ist, die Nachrichten auf zentralen Mail-
servern zu speichern und von dort — moéglichst automatisch — abzuholen, sobald
der eigene Computer bereit ist. Das Zwischenlager wird manchmal als Maildrop
bezeichnet. Hierzu wird das Post Office Protocol (POP) nach RFC 1460 ver-
wendet; der POP-Démon ist in /etc/services und in /etc/inetd.conf einzu-
tragen, ist also ein Knecht des inet-Damons. Auf dem PC oder Mac lduft ein
POP-fahiges Mailprogramm wie Fudora, das bei Aufruf Kontakt zum Mailserver
aufnimmt.

Im Internet wird der Mailverkehr durch das Simple Mail Transfer Pro-
tocol SMTP nach RFC 821 in Verbindung mit RFC 822 geregelt. Eine Alter-
native ist die CCITT-Empfehlung X.400, international genormt als ISO 10021.
Es gibt Ubergiinge zwischen den beiden Protokollwelten, Einzelheiten siehe im
RFC 1327. Im Internet wird Mail sofort beférdert und nicht zwischengelagert wie
in einigen anderen Netzen (UUCP). Die Adresse des Empfingers muff hundert-
prozentig stimmen, sonst kommt die Mail als unzustellbar zuriick. Eine giiltige
Benutzeradresse ist:

wualex1@mvmhp64.ciw.uni-karlsruhe.de

wualex1 ist ein Benutzername, wie er im File /etc/passwd(4) steht. Der Kringel
— das ASCII-Zeichen Nr. 64 — wird im Deutschen auch Klammeraffe (commercial
at, arobace) genannt und trennt den Benutzernamen vom Computernamen. Falls
man Schwierigkeiten beim Eingeben dieses Zeichens hat, kann man es mit \@ oder
control-v @ versuchen. Der Klammeraffe dient gelegentlich als Steuerzeichen und
16scht dann eine Zeile. mvmhp64 ist der Name des Computers, ciw die Subdomain
(Fakultét fiir Chemieingenieurwesen), uni-karlsruhe die Domain und de die

"Das Wort Mailboz wird in anderen Netzen auch als Oberbegriff fiir ein System
aus Postfichern und Anschlagtafeln gebraucht, siehe die Liste der Mailboxen in der
Zeitschrift c’t oder in der Newsgruppe de.etc.lists.

3.11 Electronic Mail (Email) 229

Top-level-domain Deutschland. Andere Netze (Bitnet, UUCP) verwenden andere
Adressformate, was zur Komplexitéit von Mailprogrammen wie sendmail (1M) und
deren Konfiguration beitrigt.

Besagter Benutzer tritt auch noch unter anderen Namen auf anderen Maschi-
nen auf. In den jeweiligen Mailboxen oder Home-Verzeichnissen steht ein forward-
Kommando, das etwaige Mail an obige Adresse weiterschickt. Keine Mailbox zu
haben, ist schlimm, viele zu haben, erleichtert das Leben auch nicht gerade. Da
man auf jedem Computer, der ans Netz angeschlossen ist, grundsétzlich eine Mail-
box (das heifit eine giiltige Mailanschrift) besitzt, hat man selbst fiir das richtige
Forwarding sorgen. Andernfalls kann man jeden Morgen die Menge seiner Mail-
boxen abklappern. Man muf} aber aufpassen, dafl man keine geschlossenen Wege
erzeugt: Von Computer A nach Computer B, von diesem nach C und von C wie-
der nach A. Eine Mail gelangt zwar in diesen Ring hinein, kreist dann aber in der
Schleife, bis ein Postmaster eingreift.

Da Computer kommen und gehen und mit ihnen ihre Namen, ist es unprak-
tisch, bei jedem Umzug aller Welt die Anderung der Mailanschrift mitteilen zu
miissen. Unser Rechenzentrum hat daher generische Anschriften gemifl der
CCITT-Empfehlung X.500 eingefiihrt, die keinen Maschinennamen mehr enthal-
ten:

wulf.alexQciw.uni-karlsruhe.de

Ein Server im Rechenzentrum weifl, dafl Mail an diese Anschrift zur Zeit an
wualex1@mvmhp64 weitergeleitet werden soll. Bei einem Umzug geniigt eine Mit-
teilung ans Rechenzentrum, fiir die Auflenwelt dndert sich nichts. Die Anschriften
mit Maschinennamen bleiben weiterhin bestehen, sollten aber nicht veroffentlicht
werden. Im Prinzip konnte eine einmal angelegte X.500-Anschrift lebenslang giiltig
bleiben, da sie die etwaigen Anderungen der tatsichlichen Email-Anschrift ver-
birgt.

Die CCITT-Empfehlung X.500 hat zunéchst nichts mit Email zu tun, sondern
ist ein weltweites, verteiltes Informationssystem mit Informationen iiber Lénder,
Organisationen, Personen usw. Zu jedem Objekt gehoren bestimmte Attribute,
zu einer Person unter anderem Name, Telefonnummer und Email-Anschriften.
Das sind personenbezogene Daten, die unter die Datenschutzgesetze fallen. Die
Eintragung der Daten bedarf daher der Zustimmung des Betroffenen. Wer sich
nicht eintragen lassen will, ist unter Umstédnden schwierig zu finden.

Kennt man den Benutzernamen nicht, aber wenigstens den vollstindi-
gen Computernnamen, kann man die Mail mit der Bitte um Weitergabe an
postmaster@computername schicken. Die Postmaster sind Kummer gewohnt. Je-
der Mailserver soll einen haben.

Die Mailprogramme fiigen der Mail eine Anzahl von Kopfzeilen (Header)
hinzu, die folgendes bedeuten (RFC 822, RFC 2045):

Message-ID: weltweit eindeutige, maschinenlesbare Bezeichnung der Mail

Date: Zeitpunkt des Absendens

From: logischer Absender

Sender: tatsichlicher Absender

230

3 Internet

Return-Path: Riickweg zum Absender

Reply-to: Anschrift fiir Antworten

Organization: Organisation des Absenders, z. B. Universitéit Karlsruhe
To: Empfianger

Ce: Zweiter Empfianger (Carbon copy)

Received: Eintrige der Hosts, {iber die Mail ging

Subject: Thema der Mail

Keywords: Schlagworter zum Inhalt der Mail

Lines: Anzahl der Zeilen ohne Header

Precedence: Dringlichkeit wie urgent, normal, bulk

Priority: Dringlichkeit wie urgent, normal, bulk

Status: z. B. bereits gelesen, wird vom MDA (elm(1)) eingesetzt
In-Reply-To: Bezug auf eine Mail (Message-ID) des Empfingers
References: Beziige auf andere Mails (Message-IDs)

Resent: weitergleitet

Expires: Haltbarkeitsdatum der Mail (best before ...)

Errors-To: Anschrift fiir Probleme

Comments: Kommentar

MIME-Version: MIME-Version, nach der sich die Mail richtet
Content-Transfer-Encoding: MIME-Codierungsverfahren, Default 7bit
Content-ID: MIME ID der Mail, weltweit eindeutig
Content-Description: MIME Beschreibung des Inhalts der Mail

Content-Type: MIME text, image, audio, video, application usw. Default-
wert text/plain; charset=us-ascii

Content-Length: MIME Anzahl der Zeichen, ohne Header
X400-Originator u. a.: Felder nach CCITT-Empfehlung X.400/ISO 10021
X-Sender: (user defined field)

X-Mailer: (user defined field)

X-Gateway: (user defined field)

X-Priority: (user defined field)

X-Envelope-To: (user defined field)

X-UIDL: (user defined field)

3.11 Electronic Mail (Email) 231

Die meisten Mails weisen nur einen Teil dieser Header-Zeilen auf, abhéngig vom
jeweiligen Mailprogramm. Einige der Header-Zeilen wie Subject lassen sich editie-
ren.

Zum Feld Content-Transfer-Encoding nach RFC 2045 noch eine Erldute-
rung. Das Simple Mail Transfer Protocol 148t nur 7-bit-Zeichen und Zeilen mit
weniger als 1000 Zeichen zu. Texte mit Sonderzeichen oder bindre Daten miissen
daher umcodiert werden, um diesen Forderungen zu geniigen. Das Feld weist das
die Mail an den Empfianger ausliefernde Programm darauf hin, mit welchem Zei-
chensatz bzw. welcher Codierung (nicht: Verschliisselung) die Daten wiederzuge-
ben sind. Ubliche Eintragungen sind:

e 7bit (Default, 7-bit-Zeichensatz, keine Codierung),
e 8bit (8-bit-Zeichensatz, keine Codierung),
e binary (binédre Daten, keine Codierung),

e quoted-printable (Oktetts werden in die Form =Hexpérchen codiert, druck-
bare 7-bit-US-ASCII-Zeichen diirfen beibehalten werden),

e base64 (jeweils 3 Zeichen = 3 Bytes = 24 Bits werden codiert in 4 Zeichen
des 7-bit-US-ASCII-Zeichensatzes, dargestellt durch 4 Bytes mit hochstwer-
tigem Bit gleich null),

e ietf-token (Sonderzeichen der IETF/IANA),

x-token (user defined).

Dieses Feld sagt nichts dariiber aus, ob die Daten Text, Bilder, Audio oder Video
sind. Das gehdrt in das Feld Content-Type. Beispiel:

Content-Type: text/plain; charset=IS0-8859-1
Content-transfer-endocding: base64

kennzeichnet eine Mail als einen Text, urpsriinglich geschrieben mit dem Zeichen-
satz ISO 8859-1 (Latin-1) und codiert geméf base64 in Daten, die nur Zeichen des
7-bit-US-ASCII-Zeichensatzes enthalten. Nach Riickcodierung hat man den Text
und kann ihn mit einem Ausgabegerit, das den Latin-1-Zeichensatz beherrscht,
in voller Pracht geniefen.

Nun die entscheidende Frage: Wie kommt eine Mail aus meinem Rechner an
einen Empfinger irgendwo in den unendlichen Weiten? Im Grunde ist es &hnlich
wie bei der Briefpost. Alle Post, die ich nicht in meinem Heimatdorf selbst austra-
ge, werfe ich in meinen Default-Briefkasten ein. Der Rest ist Sache der Deutschen
Post AG. Vermutlich landet mein Brief zuerst in Karlsruhe auf einem Postamt.
Da er nach Fatmomakke in Schweden adressiert ist, dieser Ort jedoch in Karlsruhe
ziemlich ausldndisch klingt, gelangt der Brief zu einer fiir das Ausland zustédndigen
zentralen Stelle in Frankfurt (Main) oder Hamburg. Dort ist zumindest Schweden
ein Begriff, der Brief fliegt weiter nach Stockholm. Die stockholmer Postbedien-
steten wollen mit Fatmomakke auch nichts zu tun haben und sagen blofl Ab damit
nach Ostersund. Dort weif ein Busfahrer, daB Fatmomakke iiber Vilhelmina zu
erreichen ist und nimmt den Brief mit. Schlielich fiihlt sich der Landbrieftréger
in Vilhelmina zustindig und héndigt den Brief aus. Der Brief wandert also durch

232 3 Internet

eine Kette von Stationen, die jeweils nur ihre Nachbarn kennen, im wesentlichen
in die richtige Richtung.

Genau so lauft die elektronische Post. Schauen wir uns ein Beispiel an. Die
fiktive Anschrift sei xy@access.owl.de, der Rechner ist echt, jedoch kein Kno-
ten (Host) im Internet. Das Kommando nslookup(1l) sagt No Address. Mit
host -a access.owl.de (unter LINUX verfiigbar) erfahren wir etwas mehr,
ndmlich (gekiirzt):

access.owl.de 86400 IN MX (pri=20) by pax.gt.owl.de
access.owl.de 86400 IN MX (pri=50) by jengate.thur.de
access.owl.de 86400 IN MX (pri=100) by kil.chemie.fu-berlin.de
access.owl.de 86400 IN MX (pri=10) by golden-gate.owl.de

For authoritative answers, see:

owl.de 86400 IN NS golden-gate.owl.de

Additional information:

golden-gate.owl.de 86400 IN A 131.234.134.30
golden-gate.owl.de 86400 IN A 193.174.12.241

Der Rechner access.owl.de hat keine Internet-Adresse, es gibt aber vier
Internet-Rechner (MX = Mail Exchange), die Mail fiir access.owl.de anneh-
men. Der beste (pri=10) ist golden-gate.owl.de. Dessen IP-Adresse erfihrt
man mit nslookup(1l) oder host(1), sofern von Interesse. Wie die Mail
von Karlsruhe nach golden-gate.owl.de gelangt, ermittelt das Kommando
traceroute golden-gate.owl.de:

1 mvOl-eth7.rz.uni-karlsruhe.de (129.13.118.254) 1.230 ms
2 rzl11-fddi3.rz.uni-karlsruhe.de (129.13.75.254) 2.238 ms
3 belw-gw-fddil.rz.uni-karlsruhe.de (129.13.99.254) 4.397 ms
4 Karlsruhel.BelWue.DE (129.143.59.1) 2.821 ms

5 Uni-Karlsruhel.WiN-IP.DFN.DE (188.1.5.29) 2.682 ms

6 ZR-Karlsruhel.WiN-IP.DFN.DE (188.1.5.25) 3.967 ms

7 ZR-Frankfurtl.WiN-IP.DFN.DE (188.1.144.37) 14.330 ms

8 ZR-Koelnl.WiN-IP.DFN.DE (188.1.144.33) 19.910 ms

9 ZR-Hannover1l.WiN-IP.DFN.DE (188.1.144.25) 24.667 ms

10 Uni-Paderbornl.WiN-IP.DFN.DE (188.1.4.18) 26.569 ms

11 cisco.Uni-Paderborn.DE (188.1.4.22) 25.23 ms 26.126 ms
12 fb10sjl-fb.uni-paderborn.de (131.234.250.37) 28.262 ms
13 golden-gate.uni-paderborn.de (131.234.134.30) 29.128 ms

Station 1 ist das Gateway, das unser Gebdudenetz mit dem Campusnetz verbin-
det. Mit der Station 5 erreichen wir das deutsche Wissenschaftsnetz, betrieben
vom Verein zur Forderung eines Deutschen Forschungsnetzes (DFN-Verein). Die-
se noch zur Universitidt Karlsruhe gehorende Station schickt alles, was sie nicht
selbst zustellen kann, an ein Default-Gateway in Karlsruhe (Nr. 6). Von dort geht
es iiber Frankfurt, K6ln und Hannover (wo der Router offenbar einmal etwas von
Paderborn und owl.de gehort hat) in die Universitét Paderborn, der Heimat des
Rechners golden-gate.owl.de. Dieser Weg braucht weder physikalisch noch lo-
gisch der schnellste zu sein, Hauptsache, er fiihrt mit Sicherheit zum Ziel.

3.11 Electronic Mail (Email) 233

Die Software zum netzweiten Mailen auf einem UNIX-Rechner setzt sich aus
zwei Programmen zusammen: einem Internet-Dadmon (Mail Transport Agent), oft
sendmail (1M), und einem benutzerseitigen Werkzeug (Mail Delivery Agent) wie
elm(1). Der Benutzer kann zwar auch mit sendmail (1M) unmittelbar verkehren,
aber das ist abschreckend und nur zur Analyse von Storfillen sinnvoll. Das Werk-
zeug elm(1) arbeitet mit einfachen Menus und 148t sich den Benutzerwiinschen
anpassen. Es ist komfortabler als mail(1) und textorientiert (ohne MUFF).

Will man zwecks Storungssuche auf der eigenen Maschine unmittelbar mit
sendmail (1) eine Mail verschicken, geht man so vor:

sendmail -v empfaengeradressen
Dies ist eine Testmail.
Gruss vom Mostpaster.

Der einzelne Punkt beendet die Mail samt Kommando. Auf eine entfernte Ma-
schine greift man per telnet (1) zu. Auf Port 25 liegt der Mailddmon:

telnet entfernte_maschine 25
help

mail from: Mostpaster

rcpt to: empfaengeradressel
rcpt to: empfaengeradresse2
data

Dies ist eine Testmail.
Gruss vom Mostpaster

quit

Im Logfile von sendmail (1M) erzeugt jedes from und jedes to eine Eintragung.
Zusammengehorige Ein- und Auslieferungen haben diesselbe Nummer. Mit den
iiblichen Werkzeugen zur Textverarbeitung 14t sich das Logfile auswerten. Diese
Wege sind — wie gesagt — nicht fiir die Alltagspost gedacht.

Die Electronic Mail im Internet ist zum Versenden von Nachrichten gedacht,
nicht zum weltweiten Ausstreuen unerbetener Werbung. Diese wird als Spam
bezeichnet, was auf eine Geschichte zuriickgeht, in der Spiced Ham eine Rolle
spielt. Die Spam-Flut ist momentan ein Problem, da Technik und Gesetzgeber
nicht auf diesen Mifibrauch des Netzes vorbereitet sind. Es tut sich aber schon
etwas.

Mail dient in erster Linie zum Verschicken von Texten, die — sofern man si-
cher gehen will — nur die Zeichen des 7-Bit-US-ASCII-Zeichensatzes enthalten
diirfen. Will man beliebige binére Files per Mail verschicken (FTP wére der bes-
sere Weg), mufl man die binédren Files umcodieren und beim Empfinger wieder
decodieren. Damit lassen sich beliebige Sonderzeichen, Grafiken oder ausfiihrbare
Programme mailen. Ein altes Programmpaar fiir diesen Zweck ist uuencode (1)
und uudecode (1). Neueren Datums sind mpack (1) und munpack(1), die von den
Multipurpose Internet Mail Extensions (MIME) Gebrauch machen.

234 3 Internet

Die Mailbenutzer haben einen eigenen Jargon entwickelt. Einige Kiirzel finden
Sie im Anhang H Slang im Netz und im Netz in Files namens jargon.* oder
dhnlich. Daneben gibt es noch die Grinslinge oder Smileys, die aus ASCII-
Zeichen bestehen und das iiber das Netz nicht iibertragbare Mienenspiel bei einem
Gesprich ersetzen sollen. Die meisten sind von der Seite her zu lesen:

o) Grinsen, Lachen, bitte nicht ernst nehmen

o Ablehnung, Unlust, Trauer

o Jo*ta@:-(Kopfweh, Kater

o X Schweigen, Kuf}

® 0 Erstaunen

o +|+-) schlafend, langweilig

o Q(8-{)## Mann mit Doktorhut, Glatze, Brille, Nase, Bart, Mund,

Fortsetzung des Bartes (die Ahnlichkeit mit einem der
Verfasser ist verbliiffend)

3.11.2 Mailing-Listen

Wozu lassen sich Mailing-Listen (Verteilerlisten) gebrauchen? Zwei Beispiele. In
der Humboldt-Universitit zu Berlin wird eine Mailing-Liste www-schulen gefiihrt.
Schiiler P. hat diese Liste abonniert (subskribiert), weil er sich fiir das Medium
WWW interessiert und wissen mochte, was sich auf diesem Gebiet in den Schulen
so tut. Er hat eine Frage zur Teilbarkeit von Zahlen und schickt sie per Email an
die Liste, das heiflit an die ihm weitgehend unbekannte Menge der Abonnenten.
Die Liste pafit von ihrer Ausrichtung her zwar nicht optimal, ist aber auch nicht
géanzlich verfehlt, immerhin haben Zahlen und Schule etwas gemeinsam. Seine Mail
wird an alle Mitglieder oder Abonnenten der Liste verteilt. Der ehemalige Schiiler
T. hat aus beruflichen Griinden die Liste ebenfalls abonniert und noch nicht alles
vergessen, was er einst gelernt. Er liest die Mail in der Liste und antwortet an
die Liste. Familienvater W. nimmt auch an der Liste teil, findet die Antwort gut,
druckt sie aus und legt sie daheim in ein Buch iiber Zahlentheorie. Schiiler P. ist
geholfen, Familienvater W. hat etwas gelernt, und der Ehemalige T. freut sich,
ein gutes Werk getan zu haben. Aufwand vernachléssigbar, auf herkommlichen
Wegen untunlich.

Zweites Beispiel. Wenn man friiher eine Frage zu einer Vorlesung hatte, konn-
te man den Dozenten gleich nach der Vorlesung oder in seiner Sprechstunde
l6chern, sofern man Gliick hatte. Die Fragen tauchen jedoch meist nachts im
stillen Kdmmerlein auf, auflerdem ist nicht immer der Dozent der geeignetste
Ansprechpartner. Heute richtet man zu einer Vorlesung eine lokale Mailing-Liste
ein, jeder kann jederzeit schreiben, und der Kreis der potentiellen Beantworter
ist weitaus grofler. So gibt es zu den beiden Vorlesungen, aus denen dieses Buch
entstanden ist, die Liste wualex-1Qrz.uni-karlsruhe.de, die einzige Moglich-
keit, den aus mehreren Fakultdten stammenden Horerkreis schnell zu erreichen.
Umgekehrt erhalten auch die Horer Antwort, sowie ihr Anliegen bearbeitet ist

3.11 Electronic Mail (Email) 235

und nicht erst in der néichsten Vorlesung. Das Ganze funktioniert natiirlich auch
in der vorlesungsfreien Zeit, den sogenannten Semesterferien.

Eine Mailing-Liste ist also ein Verteiler, der eine einkommende Mail an alle
Mitglieder verteilt, die wiederum die Mo6glichkeit haben, an die Liste oder indivi-
duell zu antworten. Von der Aufgabe her besteht eine leichte Uberschneidung mit
den Netnews, allerdings sind die Zielgruppen kleiner, und der ganze Verkehr ist
besser zu steuern. Beim Arbeiten mit Mailing-Listen sind das Listenverwaltungs-
programm und die Liste selbst zu unterscheiden. Wiinsche betreffs Subskribieren,
Kiindigen und Auskiinften ber die Liste gehen per Email an das Verwaltungs-
programm, Mitteilungen, Fragen und Antworten an die Liste. Wollen Sie unsere
Liste subskribieren, schicken Sie eine Email mit der Zeile:

subscribe wualex-1 Otto Normaluser

und weiter nichts im Text (body) an listserv@rz.uni-karlsruhe.de und set-
zen anstelle von Otto Normaluser Ihren biirgerlichen Namen ein. Der List-
server schickt Thnen dann eine Bestédtigung. AnschlieBend konnen Sie Ihre er-
ste Mail an die Liste schicken. Sie schreiben an die Liste, den virtuellen Be-
nutzer wualex-1@rz.uni-karlsruhe.de und fragen, ob UNIX oder Windows-
NT das bessere Betriebssystem sei. Bekannte Listenverwaltungsprogramme sind
listserv, listproc und fiir kleinere Anlagen (lokale Listen) majordomo; sie un-
terscheiden sich fiir den Benutzer geringfiigig in ihrer Syntax.

Die Listenverwaltung majordomo stammt aus der UNIX-Welt und ist frei. Sie
besteht aus einer Reihe von per1-Skripts, einigen Alias-Zeilen fiir den Mail-Didmon
sendmail und mehreren Files mit der Konfiguration und den Email-Anschriften
der Abonnenten. Das Einrichten von majordomo samt erster Liste hat uns etwa
einen Tag gekostet — die Beschreibung war dlter als das Programm — das Einrichten
weiterer Listen je eine knappe Stunde. In unserem Institut setzen wir die Listen
fiir Rundschreiben ein.

Es gibt offene Listen, die jedermann subskribieren kann, und geschlossene,
deren Zugang iiber einen Listen-Manager (List-Owner) fiihrt. Ferner konnen Li-
sten moderiert sein, so daf} jede Einsendung vor ihrem Weiterversand iiber den
Bildschirm des Moderators geht. Im Netz finden sich Verzeichnisse von Mailing-
Listen und Suchprogramme, siche Anhang. Sie konnen es auch mit einer Mail
lists global (und weiter nichts) an listserv@rz.uni-karlsruhe.de versu-
chen. Oder erstmal mit folgenden Zeilen:

help
lists
end

an major@domo.rrz.uni-hamburg.de. Die Anzahl der Listen weltweit wird auf
einige Zehntausend geschétzt.

3.11.3 Privat und authentisch (PGP, PEM)

Warum sollte man das Programmpaket Pretty Good Privacy (PGP) oder das
Protokoll Privacy Enhanced Mail (PEM) verwenden? Zum einen besteht in

236 3 Internet

vielen Fillen die Notwendigkeit einer Authentisierung des Urhebers einer Nach-
richt, zum Beispiel bei Bestellungen. Zum anderen sollte man sich dariiber im
klaren sein, dafl eine unverschliisselte E-Mail mit einer Postkarte vergleichbar ist:
Nicht nur die Postmaster der am Versand beteiligten Systeme konnen den Inhalt
der Nachricht einsehen, sondern auch Boésewichte, die die Nachricht auf ihrem
Weg durchs Netz kopieren. Auch Verfilschungen sind machbar, und schliefilich
konnte der Urheber einer Mail bei bestimmten Anléissen seine Urheberschaft im
nachhinein verleugnen wollen. Es geht insgesamt um vier Punkte:

e Vertraulichkeit (disclosure protection, data confidentiality),

e Authentisierung des Absenders (origin authentication),

e Datenintegritit (data integrity),

e Nicht-Verleugnung des Absenders (non-repudiation of origin).

Mit PGP oder PEM verschliisselte E-Mails bieten sogar mehr Sicherheit als ein
eigenhéndig unterzeichneter Brief in einem Umschlag. Aulerdem wiére es ange-
bracht, wenn alle E-Mails im Internet standardméflig verschliisselt wiirden. So-
lange dies nur bei wenigen Nachrichten geschieht, fallen diese besonders auf und
erregen Mifitrauen. PGP und PEM sind Verfahren oder Protokolle, die in meh-
reren freien oder kommerziellen Programmpaketen realisiert werden. Der Mail-
versand erfolgt unverédndert mittels der gewohnten Programme wie elm(1) und
sendmail (1).

PGP verschliisselt den Klartext zunéchst nach dem symmetrischen TDEA-
Verfahren mit einem jedesmal neu erzeugten, nur einmal verwendeten, zufélli-
gen Schliissel. Dieser IDEA-Schliissel wird anschliefend nach einem Public-Key-
Verfahren (RSA bei der PGP-Version 2.6.3) mit dem o6ffentlichen Schliissel des
Empfiangers chiffriert. Neben einem deutlichen Geschwindigkeitsvorteil erlaubt
diese Vorgehensweise auch, eine Nachricht relativ einfach an mehrere Empfinger
zu verschicken. Hierzu braucht nur der IDEA-Schliissel, nicht die gesamte Nach-
richt, fiir jeden Empfinger einzeln chiffriert zu werden.

Um die Integritit einer Nachricht sicherzustellen und den Empfinger zu
authentisieren, versieht PGP eine Nachricht mit einer nach der Einweg-Hash-
Funktion MD5 (Message Digest 5, RFC 1321) ermittelten Priifzahl. Diese wird
mit dem privaten Schliissel des Absenders chiffriert. Der Empfinger ermittelt
nach der gleichen Einweg-Hash-Funktion die Priifzahl fiir den empfangenen Text.
Anschlieflend decodiert er die mitgeschickte, chiffrierte Priifzahl mit dem offent-
lichen Schliissel des Absenders. Stimmen die beiden Priifzahlen iiberein, ist die
Nachricht withrend der Ubertragung nicht verdindert worden. Hierbei wird die
Tatsache ausgenutzt, dal es praktisch unmdéglich ist, eine andere Nachricht mit
gleicher Priifzahl zu erzeugen.

Da die Priifzahl nach der Decodierung mit dem 6ffentlichen Schliissel des Ab-
senders nur dann mit der errechneten Priifzahl iibereinstimmt, wenn sie zuvor mit
dem dazugehorigen privaten Schliissel chiffriert wurde, besteht auch Gewiflheit
tiber die Identitdt des Absenders. Somit kann eine digitale Unterschrift (Signatur)
erstellt werden.

Der Haken bei diesem Verfahren besteht darin, daf ein Bésewicht ein Schliissel-
paar erzeugen konnte, das behauptet, von jemand anderem zu stammen. Daher

3.12 Neuigkeiten (Usenet, Netnews) 237

muf ein 6ffentlicher Schliissel durch eine zentrale vertrauenswiirdige Instanz (Cer-
tification Authority, CA) oder durch die digitalen Unterschriften von anderen, ver-
trauenswiirdigen Personen bestétigt werden, bevor er als echt angesehen werden
kann. Im Gegensatz zu PEM bietet PGP beide Moglichkeiten.

Bevor eine Nachricht fiir einen bestimmten Empfinger verschliisselt werden
kann, muf} dessen offentlicher Schliissel bekannt sein. Mit etwas Gliick kann dieser
von einem sogenannten Key Server im Internet bezogen werden. Dabei ist zu
beachten, dafl die Aufgabe der Key Server nur in der Verbreitung, nicht in der
Beglaubigung von o6ffentlichen Schliisseln besteht.

Zur Beglaubigung von Schliisseln entstehen in letzter Zeit immer mehr Cer-
tification Authorities. Diese zertifizieren einen Schliissel im allgemeinen nur bei
personlichem Kontakt und nach Vorlage eines Identitéitsausweises. Derartige CAs
werden u. a. von der Computer-Zeitschrift ¢’t, dem Individual Network und dem
Deutschen Forschungsnetz DEFN betrieben.

Eine Behinderung bei der Vebreitung von PGP sind die strengen Export-
Gesetze der USA, die Verschliisselungs-Software mit Kriegswaffen gleichsetzen
und den Export stark einschrinken. Daher gibt es eine US- und eine interna-
tionale Version von PGP.

Seit einigen Monaten ist auch auflerhalb der Vereinigten Staaten die neue
PGP-Version 5.0 erhéltlich. Diese verwendet zum Teil andere, mindestens ebenso
sichere Algorithmen und kommt unter Microsoft Windows mit einer komfortablen
Oberfldche daher, hat sich aber noch nicht iiberall durchgesetzt. Informationen zu
PGP, internationale Fassung, findet man auf http://www.pgpi.com/.

Alternativ zu PGP 148t sich PEM einsetzen, ein Internet-Protokoll, beschrie-
ben in den RFCs 1421 bis 1424. Eine Implementation ist RIORDAN’s Internet
Privacy Enhanced Mail (RIPEM) von MARK RIORDAN. RIPEM verwen-
det zur symmetrischen Verschliisselung den Triple-DES-Algorithmus, zur unsym-
metrischen wie PGP den RSA-Algorithmus. Fiir die Verbreitung und Sicherung
der oOffentlichen Schliissel sieht RIPEM mehrere Wege vor. PGP und PEM kon-
kurrieren in einigen Punkten miteinander, in anderen setzen sie unterschiedliche
Gewichte. PEM ist ein Internet-Protokoll, PGP weiter verbreitet.

Ahnliche Aufgaben wie bei Email stellen sich auch bei der Versffentlichung von
WWW-Dokumenten. Ohne besondere Maflnahmen kénnte ein Bosewicht unter
meinem Namen schwachsinnige oder bedenkliche HTML-Seiten ins Netz stellen,
oder auch verfilschte Kopien meiner echten Seiten.

3.12 Neuigkeiten (Usenet, Netnews)

Das Usenet ist kein Computernetz, keine Organisation, keine bestimmte Person
oder Personengruppe, keine Software, keine Hardware, sondern die Menge aller
Computer, die die Netnews vorritig halten. Genauer noch: die Menge der Per-
sonen, die mit Hilfe ihrer Computer die Netnews schreiben und verteilen. Diese
Menge deckt sich nicht mit der Menge aller Knoten oder Benutzer des Internet.
Nicht alle Internet-Hosts speichern die Netnews, umgekehrt gibt es auch auflerhalb
des Internets (im Bitnet/EARN beispielsweise) Hosts, die die Netnews speichern.

238 3 Internet

Netnews klingt nach Zeitung im Netz. Diese Zeitung

wird im Internet und anderen Netzen verbreitet,

besteht nur aus Leserbriefen,

erscheint nicht periodisch, sondern stetig,

hat keine Redaktion,

behandelt alle Themen des menschlichen Hier- und Daseins.

Das funktioniert und kann so reizvoll werden, dafl der davon befallene Leser zu-
mindest voriibergehend zum Fortschritt der Menschheit nichts mehr beitriagt, son-
dern nur noch liest (No Netnews before lunch, dann ist wenigstens der Vormittag
gerettet.). Zwei Dinge braucht der Leser (aufler Zeit und Sprachkenntnissen):

e cin Programm zum Lesen und Schreiben, einen Newsreader wie tin(1) oder
trn(1),

e Verbindung zu einem News-Server (bei uns news.rz.uni-karlsruhe.de).

Als Newsreader setzen wir tin(1) fiir alphanumerische Terminals und xn(1)
fiir X-Window-Systeme ein. Pager wie more(1) oder Editoren wie vi(1) sind
zur Teilnahme an den Netnews ungeeignet, weil die Newsreader iiber das Le-
sen und Schreiben hinaus organisatorische Aufgaben erfiillen. Der Newsreader
wird auf dem lokalen Computer aufgerufen und stellt eine Verbindung zu sei-
nem Default-News-Server her. Ublicherweise arbeitet man immer mit demselben
News-Server zusammen, man kann jedoch voriibergehend die Umgebungsvaria-
ble NNTPSERVER auf den Namen eines anderen Servers setzen. tin(1) spricht
dann diesen an. Da tin(1) Buch dariiber fiihrt, welche Artikel man gelesen hat
und sich diese Angaben auf den Default-Server beziehen, der andere aber eine
abweichende Auswahl von Artikeln fiihrt, kommt es leicht zu einem Durcheinan-
der. Auflerdem verweigern fremde News-Server meist den Zugang, ausprobiert mit
news.univ-lyonl.fr und news.uwasa.fi. Schade. Offentlich zuginglich sollen
unter anderen news.belwue.de, news.fu-berlin.de, news.uni-stuttgart.de
und newsserver.rrzn.uni-hannover.de sein, teilweise nur zum Lesen, nicht
zum Posten.

Woher bezieht der News-Server seine Nachrichten? Wie kommt mein Leserbrief
nach Australien? Eine zentrale Redaktion oder Sammelstelle gibt es ja nicht. Von
dem lokalen Computer, auf dem der Newsreader oder -client lduft, wandert der
Leserbrief zunéchst zum zugehorigen News-Server. Dort kann er von weiteren
Kunden dieses Servers sofort abgeholt werden. Von Zeit zu Zeit nimmt der News-
Server Verbindung mit einigen benachbarten News-Servern auf und tauscht neue
Artikel in beiden Richtungen aus. Da jeder News-Server Verbindungen zu wieder
anderen hat, verbreitet sich ein Artikel innerhalb weniger Tage im ganzen Usenet.
Das Verfahren wird dadurch beschleunigt, dal es doch so etwas wie iibergeordnete
Server gibt, die viele Server versorgen. Hat ein Artikel einen solchen iibergordneten
Server erreicht, verseucht er mit einem Schlag ein grofles Gebiet. Das Zuriickholen
von Artikeln ist nur beschrankt moglich und vollzieht sich auf demselben Weg,
indem man einen Artikel auf die Reise schickt, der eine Anweisung zum Loschen

3.12 Neuigkeiten (Usenet, Netnews) 239

des ersten enthilt. Wieviele Leser den verungliickten Artikel schon gelesen haben
(und entsprechend antworten), ist unergriindlich. Also erst denken, dann posten.
Die Netnews sind umfangreich, sie sind daher wie eine herkémmliche Zeitung in
Rubriken untergliedert, die Newsgruppen heiflen. Bezeichnungen wie Area, Are-
na, Board, Brett, Echo, Forum, Konferenz, Round Table, Special Interest Group
meinen zwar etwas Ahnliches wie die Newsgruppen, gehdren aber nicht ins Inter-
net. Der News-Server der Universitit Karlsruhe hélt eine Auswahl von rund 10000
(zehntausend) Gruppen bereit. Die Gruppen sind hierarchisch aufgeteilt:

mainstream-Gruppen (die Big Eight), sollten iiberall vorrétig sein)

— comp. Computer Science, Informatik fiir Beruf und Hobby
— humanities. Humanities, Geisteswissenschaften

— misc. Miscellaneous, Vermischtes

— news. Themen zu den Netnews selbst

— rec. Recreation, Erholung, Freizeit, Hobbies

— sci. Science, Naturwissenschaften

— soc. Society, Politik, Soziologie

— talk. Diskussionen, manchmal end- und fruchtlos

alternative Gruppen (nicht alle werden iiberall gehalten)
deutschsprachige Gruppen (nur im deutschen Sprachraum)

lokale (z. B. Karlsruher) Gruppen

Mit Hilfe des Newsreaders abonniert oder subskribiert man einige der Gruppen;
alle zu verfolgen, ist unmoglich. Ein Dutzend Gruppen schafft man vielleicht. Fiir
den Anfang empfehlen wir:

news.announce.newusers
comp.unix.questions
comp.lang.c
de.newusers
de.newusers.questions
de.comm.internet
de.comp.os.unix
de.comp.lang.c

de.sci.misc

und je nach personlichen Interessen noch

ka.uni.studium
soc.culture.nordic

de.rec.fahrrad

240 3 Internet

e rec.music.beatles
e rec.arts.startrek®

Die Auswahl 148t sich jederzeit &ndern, in tin(1) mit den Kommandos y, s und u.
Viele Beitridge sind Fragen nebst Antworten. Sokratische Denkwiirdigkeiten sind
im Netz so selten wie im wirklichen Leben, das meiste ist Alltag — Dummbheit,
Arroganz oder boser Wille kommen auch vor. Das Netz sind nicht die Computer,
sondern ihre Benutzer.

Nach Aufruf von tin(1) erscheint ein Menii der subskribierten Gruppen, man
wahlt eine aus und sieht dann in einem weiteren Menii die noch nicht gelesenen,
neuen Artikel. Die interessierenden Artikel liest man und kann dann verschieden
darauf reagieren:

e Man geht zum néchsten Artikel weiter. Der zuriickliegende Artikel wird als
gelesen markiert und erscheint nicht mehr im Menii. Man kann allerdings
alte Artikel, soweit auf dem Server noch vorrétig (Verweilzeit zwei Tage bis
vier Wochen), wieder hervorholen.

e Mit s (save) wird der Artikel in ein File gespeichert.
e Mit o (output) geht der Artikel zum Drucker.

e Man antwortet. Dafiir gibt es zwei Wege. Ein Follow-up wird an den Ar-
tikel bzw. die bereits vorhandenen Antworten angehéingt und wird damit
verOffentlicht. Man tritt so vor ein ziemlich grofles Publikum, unter Nennung
seines Namens. Artikel plus Antworten bilden einen Thread. Ein Reply ist
eine Antwort per Email nur an den urspriinglichen Verfasser des Artikels.

Fortgeschrittene (threaded) Newsreader folgen einem Thread und sogar seinen
Verzweigungen, einfache unterscheiden nicht zwischen Artikel und Antwort. Bei
einem Follow-up ist zu beachten, ob der urspriingliche Schreiber sein Posting in
mehreren Newsgruppen verdffentlicht hat. Die eigene Antwort gehort meist nur
in eine. Uberhaupt ist das gleichzeitige Posten in mehr als drei Newsgruppen eine
Unsitte. Will man selbst einen Artikel schreiben (posten), wihlt man in tin(1)
das Kommando w wie write. Man sollte aber erst einmal einige Wochen lesen
und die Gebriduche — die Netiquette — kennenlernen, ehe man das Netz und
seine Leser beansprucht. Fiir Testzwecke stehen test-Newsgruppen bereit, die
entweder keine oder eine automatische Antwort liefern und niemand beléstigen.

Manche Fragen wiederholen sich, die Antworten zwangsldufig auch. Diese Fre-
quently Asked Questions (FAQs; Fragen, Antworten, Quellen der Erleuch-
tung) werden daher mit den Antworten gruppenweise gesammelt und periodisch
in den Netnews vertffentlicht. Auflerdem stehen sie auf rtfm.mit.edu per FTP
zur Verfiigung, in Deutschland gespiegelt von ftp.uni-paderborn.de. Als er-
stes wire FAQs about FAQs zu lesen, monatlich vertffentlicht in der Newsgruppe
news.answers und unter http://www.faqgs.org/faqs/faqs/about-faqgs. Eini-
ge FAQs haben wir auch auf ftp.ciw.uni-karlsruhe.de kopiert, Sie brauchen
also nicht lange zu suchen. Thr Studium ist dringend anzuraten, man lernt einiges
dabei, spart Zeit und schont das Netz.

8Erwihnt auf besonderen Wunsch eines Nachwuchs-Informatikers.

3.13 Netzgeschwiitz (irc) 241

3.13 Netzgeschwitz (irc)

Friiher trieben die Leute, die Mufle hatten, Konversation. Heute treiben die Leute,
die einen Internet-Anschlufl haben, Kommunikation. Eine Form davon, die der
Konversation nahe steht, ist das Netzgeschwitz oder der globale Dorftratsch
mittels irc(1) (Internet Relay Chat). Man braucht:

e cinen IRC-Server im Internet (bei uns irc.rz.uni-karlsruhe.de),
e cinen IRC-Client auf dem eigenen System (bei uns /usr/local/bin/irc).

Nach Aufruf des Kommandos irc(1) erscheint ein Bildschirm, in dessen unter-
ster Zeile man [RC-Kommandos &hnlich wie bei FTP eingeben kann, beispiels-
weise /1ist. Auf dem Schirm werden dann rund 1000 Gespriichskreise, sogenann-
te Channels, aufgelistet. Mittels /join channel-name schlieffit man sich einem
Kreis an und je nachdem, ob die Teilnehmer ruhen oder munter sind, scrollt die
die Diskussion langsamer oder schneller iiber den Schirm. Die IRC-Kommandos
beginnen mit einem Schrigstrich, alle sonstigen Eingaben werden als Beitrag zur
Runde verarbeitet. Hat man genug, tippt man /quit. Man mufl das mal erlebt
haben.

Unsere personliche Haltung zum Netzgeschwétz ist noch unentschieden. Im In-
ternet geht zwar die Sonne nicht unter, aber der Tag hat auch nur vierundzwanzig
Stunden. Da unsere Zeit kaum reicht, Email und Netnews zu bewiltigen, halten
wir uns zuriick. Aber vielleicht einmal als riistige Rentner?

3.14 Suchhilfen: Archie, Gopher, WAIS

Im Netz liegt so viel an Information herum, dal man zum Finden der gewiinsch-
ten Information bereits wieder einen Netzdienst beanspruchen muf}. Sucht man ein
bestimmtes File, dessen Namen man kennt, helfen die Archies. Das sind Server
im Internet, die die Fileverzeichnisse einer grolen Anzahl von FTP-Servern halten
und Suchwerkzeuge zur Verfiigung stellen. Nach Schlag- oder Stichwértern kann
zunéchst nicht gesucht werden. Der dlteste Archie ist archie.mcgill.ca in Ka-
nada. Inzwischen gibt es weitere, auch in Deutschland (Darmstadt), siche Anhang
?? Netzadressen. Auf dem eigenen Computer mufl ein Archie-Client eingerichtet
sein. Auf die Eingabe

archie
erhilt man Hinweise zum Gebrauch (usage). Der Aufruf:
archie -s suchstring

fithrt zu einer Ausgabe aller Filenamen, auf die der Suchstring zutrifft, samt ihrer
Standorte nach stdout, Umlenkung in ein File empfehlenswert. Die Option -s
bewirkt die Suche nach einem Substring. Der Archie-Client wendet sich an sei-
nen Default-Archie-Server, falls nicht ein bestimmter Server verlangt wird. Ruft
man den Archie-Client interaktiv auf, stehen einige Archie-Kommandos bereit,
darunter whatis zur Textsuche in Programmbeschreibungen, was einer Suche

242 3 Internet

nach Schlagwortern nahe kommt. Archies sind niitzlich, aber nicht allwissend:
ihre Auskunft ist oft unvollstindig, aber man hat meistens eine erste Féihrte zu
dem gefragten File.

Merke: Archies sagen, wo ein File liegt. Zum Beschaffen des Files braucht man
ein anderes Programm (ftp(1)).

Nun zu den Gophern, der néichsten Stufe der Intelligenz und Bequemlichkeit.
Ein Gopher ist mancherlei:

e cine Nadelbaumart, aus deren Holz Noah seine Arche gebaut hat (Genesis
6,14), vielleicht eine Zypresse,

e cin Vertreter des Tierreichs, Unterrreich Metazoa, Unterabteilung Bilate-
ria, Reihe Deuterostomia, Stamm Chordata, Unterstamm Vertebrata, Klas-
se Mammalia, Unterklasse Placentalia, Ordnung Rodentia, Unterordnung
Sciuromorpha, Uberfamilie Geomyoidea, Familie Geomyidae, Gattung Geo-
mys, zu deutsch eine Taschenratte®, kleiner als unser Hamster, in Nord- und
Mittelamerika verbreitet. Friit Wurzeln (System-Manager Vorsicht!),

e cin menschlicher Einwohner des Staates Minnesota (Gopher State),

e cin Informationsdienst im Internet, der an der Universitdt von Minnesota
entwickelt wurde.

Ein Gopher-Server im Internet hilft bei der Suche nach beliebigen Informationen.
Auf dem eigenen Computer lduft ein Gopher-Client-Prozess, der sich mit seinem
Gopher-Server verstéindigt. Der Benutzer wird iiber Meniis gefiihrt. Die Gopher-
Server sind intelligent; weify einer nicht weiter, fragt er seinen Nachbarn — wie in
der Schule. Der Benutzer merkt davon nichts. Hat man die gesuchte Information
gefunden, beschafft der Gopher auch noch die Files, ohne dafl der Benutzer sich
mit Kermit, Mail oder FTP auseinanderzusetzen braucht. So wiinscht man sich’s.
Hier die ersten beiden Bildschirme einer Gopher-Sitzung:

Internet Gopher Information Client 2.0 pl7
Rechenzentrum Uni Karlsruhe - Gopher

Willkommen

. Anleitung/

. Universitaetsverwaltung/
Zentrale Einrichtungen/
. Fakultaeten/

g W N

9. Sonstiges/
10. Mensaplan/

Wihlen wir Punkt 9. Sonstiges aus, gelangen wir in folgendes Menii:

Internet Gopher Information Client 2.0 pl7

keine Beutelratte (Didelphida). Diese Familie gehort zur Ordnung Marsupialia und
ist in Siidamerika verbreitet.

3.14 Suchhilfen: Archie, Gopher, WAIS 243

Sonstiges

. Wissenschaftsfoerderung (Gopher-Giessen)/

. Deutsche Kfz.-Kennzeichen (Gopher-Aachen).

. Deutsche Bankleitzahlen (Gopher-ZIB, Berlin)<7>
. Deutsche Postleitzahlen (Gopher-Muenchen)/

. Postgebuehren (Gopher-ZIB, Berlin).

. Telefonvorwahlnummern (Gopher-Aachen)<?>

. Weather Images/Meteosat (Gopher-Hohenheim)/

~NOoO O WN -

Wie man sieht, holt sich der Karlsruher Gopher die Postleitzahlen von seinem
Kollegen in Miinchen, ohne dafl der Benutzer davon etwas zu wissen braucht.

Gopher-Clients fiir alle gingigen Computertypen liegen frei im Netz herum.
Wir haben unseren Client fiir HP-UX bei gopher.Germany .EU.net geholt, UNIX-
iiblich als Quelle mit Makefile. Der Aufruf:

gopher gopher.ask.uni-karlsruhe.de

verbindet mit einem Gopher-Server der Universitdt Karlsruhe; gibt man keinen
Namen an, erreicht man seinen Default-Gopher. Der Rest sind Meniis, die sich
nach Art der verfiigbaren Information unterscheiden. Ende mit q fiir quit. Der
Gopher-Dienst ist inzwischen vom WWW stark zuriickgedréngt worden.

Veronica ist ein Zusatz zum Gopher-Dienst, der Suchbegriffe auswertet. Eine
Veronica-Suche erstreckt sich iiber eine Vielzahl von Gopher-Servern und liefert
bei Erfolg Gopher-Eintriage (Meniipunkte), die wie gewohnt angesprochen werden.
Der Vorteil liegt darin, dafl man sich nicht von Hand durch die Meniis zu arbeiten
braucht. Der Veronica-Dienst wird von einigen Gopher-Servern angeboten, erfor-
dert also keinen lokalen Veronica-Client oder ein Veronica-Kommando. Probieren
Sie die folgende Gopher-Sitzung aus:

e mittels gopher gopher.rrz.uni-koeln.de mit dem Gopher-Server der
Universitdt Koln verbinden,

Punkt 2. Informationssuche mit ... Veronica ... / wihlen,

Punkt 2. Weltweite Titelsuche (mit Veronica) <7?> wihlen,

Suchbegriff veronica eingeben,

Ergebnis: 12 Seiten zu je 18 Eintrégen (Files) zum Thema Veronica,
o Kaffee aufsetzen, anfangen zu lesen.

Jughead ist ein Dienst &hnlich Veronica, aber beschrénkt auf eine Untermenge
aller Gopher-Server, zum Beispiel auf eine Universitidt. Das hat je nach Aufgabe
Vorteile. Jughead wird wie Veronica als Punkt eines Gopher-Meniis angesprochen.

WAIS (Wide Area Information Servers) ist ein Informationssystem zur
Volltextsuche. Man braucht wieder — wie bei Gopher — einen lokalen WAIS-Client
und eine Verbindung zu einem WAIS-Server, anfangs meist zu quake.think.com,
der ein directory-of-servers anbietet, aus dem man sich eine lokale Li-
ste von WAIS-Sources zusammenstellt. Als lokale Clienten kommen swais(1),

244 3 Internet

waissearch(1) oder xwais (1) fiir das X Window System in Frage, erhéltlich per
Anonymous-FTP und mit den iiblichen kleinen Anpassungen zu compilieren.

Nehmen wir an, unser in solchen Dingen nicht ungeiibter System-Manager ha-
be alles eingerichtet. Dann rufen wir swais (1) oder ein darum herumgewickeltes
Shellscript wais auf. Es erscheint ein Bildschirm Source Selection, aus dem
wir eine Informationsquelle auswiihlen, beispielsweise das uns nahestehende ASK-
SISY. Dieses Wissen mufl man mitbringen, dhnlich wie bei FTP. Man darf auch
mehrere Quellen auswihlen. Dann gibt man einige Suchworter (keywords) ein,
beispielsweise wais. Nach einiger Zeit kommt das Ergebnis (Search Results).
An oberster Stelle steht die Quelle, die sich durch die meisten Treffer auszeichnet,
was nicht viel iiber ihren Wert aussagt. Wir bleiben ASK-SISY treu, auch wenn
es erst an dritter Stelle auftaucht. Nach nochmals einiger Zeit wird ein Doku-
ment angezeigt (Document Display), nach Art und Weise von more(1). Dieses
konnen wir am Bildschirm lesen, in ein File abspeichern oder als Mail versenden.
Hier beschreibt das Dokument ein Programm namens wais, das bei ASK-SAM
per F'TP erhiltlich ist. Genausogut kénnen Sie sich {iber die geografischen Fakten
von Deutschland aufkliren lassen, wozu als Quelle das World-Factbook des CIA
auszuwiahlen wire.

3.15 WWW - das World Wide Web

3.15.1 Hypertext

Hypertext oder, falls auch stehende oder bewegte Bilder sowie akustische Infor-
mationen eingeschlossen sind, Hypermedia sind Informationen, die bei den we-
sentlichen Stichwortern Verweise (Links) auf weitere Informationen enthalten, die
elektronisch auswertbar sind, so dal man ohne Suchen und Blittern weitergefiihrt
wird. Auf Papier dienen Fufinoten, Literatursammlungen, Register, Querverwei-
se und Konkordanzen diesem Zweck. Im ersten Kapitel war von WALLENSTEIN
die Rede. Von diesem Stichwort konnten Verweise auf das Schauspiel von FRIED-
RICH SCHILLER, den Roman von ALFRED DOBLIN oder die Biografie von GOLO
MANN fiihren, die die jeweiligen Texte auf den Bildschirm bringen, in SCHILLERS
Fall sogar mit einem Film. In den jeweiligen Werken wiren wieder Verweise ent-
halten, die auf Essays zur Reichsidee oder zur Rolle Bohmens in Europa lenken.
Leseratten wiirden vielleicht auf dem Alexanderplatz in Berlin landen oder bei
einem anderen Vertreter der schreibfreudigen Familie MANN. Von dort kdnnte
es nach Frankreich, Indien, Agypten, in die USA oder die Schweiz weitergehen.
Vielleicht findet man auch Bemerkungen zum Verhéltnis zwischen Literatur und
Politik. Beim Nachschlagen in Enzyklopéddien gerdt man manchmal ins ziellose
Schmokern. Mit Hypertext ist das noch viel schlimmer. So ist jede Information

eingebettet in ein Gespinst oder Netz von Beziehungen zu anderen Informationen,
und wir kommen zum World Wide Web.

3.15 WWW - das World Wide Web 245

3.15.2 Hypertext Markup Language (HTML)

Zum Schreiben von Hypertext-Dokumenten ist die Hypertext Markup Lan-
guage (HTML) entworfen worden worden, gegenwirtig in der Version 4 im Netz.
Zum Lesen von Hypertexten braucht man HTML-Browser wie netscape, mosaic
oder den Internet-Explorer von Microsoft. Leider halten sich nicht alle Browser
an den giiltigen HTML-Standard. Sie erkennen nicht alle HTML-Konstrukte und
bringen eigene (proprietire) Dinge mit.

Ein einfache HTML-Dokument, das nicht alle Mo6glichkeiten von HTML 4.0
ausreizt, ist schnell geschrieben:

<HTML>

<HEAD>
<KTITLE>Institut fuer Hoeheres WWW-Wesen</TITLE>
</HEAD>

<BODY BGCOLOR="#ffffff">

<H3>
Fakultät für Internetingenieurwesen
</H3>

<HR>

Gebä ;ude 30.70

Telefon +49 721 608 2404

<H4>

Leiter der Verwaltung
</H4>

Dipl.-Ing. Schorsch Meier

<H4>
Werkstattleiter
</H4>

Hubert Auriol

<HR>
Zur Universität
<HR>

http://www.ciw.uni-karlsruhe.de/hwwww/index.html

Jü ;ngste Änderung 10. Jan. 1998
 webmaster@ciw.uni-karlsruhe.de

246 3 Internet

</BODY>

</HTML>

Das ganze Dokument wird durch <HTML> und </HTML> eingerahmt. In seinem Inne-
ren finden sich die beiden Teile <HEAD> und <BODY>. Die Formatanweisungen <H3>
usw. markieren Uberschriften (Header). Sonderzeichen werden entweder durch
eine Umschreibung (ä) oder durch die Nummer im Latin-1-Zeichensatz
(ä) dargestellt.
 ist ein erzwungener Zeilenumbruch (break), <HR> eine
waagrechte Linie (horizontal ruler). Am Ende sollte jedes Dokument seinen Uni-
form Resource Locator (URL) enthalten, damit man es wiederfindet, sowie
das Datum der jiingsten Anderung und die Email-Anschrift des Verantwortlichen.
Im Netz sind mehrere Kurzanleitungen und die ausfiihrliche Referenz zu HTML
verfiigbar.

3.15.3 Das Web

Das World Wide Web, W3 oder WWW, entwickelt von TiM BERNERS-LEE
am CERN in Genf, ist ein Informationssystem, das Dokumente nach dem Client-
Server-Schema beschafft und verwertet. Mit dem Kommando www (1) landet man
in seiner Startseite, dem Ausgangspunkt fiir alles weitere. Der lokale Client wird
auch Browser genannt, ein Programm zum Betrachten von WWW-Dokumenten,
etwas intelligenter als more (1). Wenn der vorliegende Text fiir das WWW aufbe-
reitet wire (was mit viel Handarbeit verbunden ist), konnten Sie jetzt das Stich-
wort WWW auswéhlen und wiirden zu einer ausfiihrlicheren Information geleitet,
die sicher irgendwo im Netz herumliegt. So weit sind wir noch nicht.

Auf unserem System arbeiteten wir anfangs mit einer rustikalen zeilenorien-
tierten Ausfiihrung von www(1). Die Startseite enthilt einen allgemeinen Uber-
blick iiber das Web und bietet unter anderem die Mdoglichkeit, ein Thema, einen
Server oder einen Dienst per Ziffer auszuwédhlen. Wir entscheiden uns fiir die
Suche per Thema und landen in der WWW Virtual Library, die heute
achtundachtzig Themen im Angebot hat, darunter Verweise auf weitere Virtu-
al Libraries. Wir entscheiden uns fiir Punkt 18: Climate Research und werden
mit der Home Page des Deutschen Klimarechenzentrums verbunden. Dort weckt
der Punkt 3: Klimaforschung unsere Neugier und unter diesem der Punkt 4:
The Climate of the Next Century, das wir zu erleben hoffen. Punkt 4 gibt
kurze Hinweise und bietet ein File von 1,6 MB Grofle an. Wir nehmen das An-
gebot an und finden nach einigen Sekunden ein File mit der Kennung .mpeg in
unserem lokalen Filesystem. Hier enden unsere technischen Moglichkeiten, denn
dieses File ist ein digitaler Film, zu dessen Wiedergabe unser damaliges serielles,
monochromes, alphanumerisches Terminal denkbar ungeeignet war.

WWW-Informationen werden gemifl dem Hypertext Transfer Protocol
HTTP iibertragen, beschrieben im RFC 2068 vom Januar 1997. Die Informatio-
nen selbst werden durch einen Uniform Resource Locator URL gekennzeich-
net, im wesentlichen Protokoll-Host-Filename &dhnlich wie eine Email-Anschrift:

3.16 Navigationshilfen (nslookup, whois, finger) 247

http://hoohoo.ncsa.uiuc.edu:80/docs/0Overview.html

Zuerst wird das Protokoll genannt, dann der Name des Hosts. Nach dem Dop-
pelpunkt folgt die Portnummer, die samt Doppelpunkt entfallen kann, wenn der
Defaultwert (80) zutrifft. Als letztes Glied kommt der Pfad des gewiinschten Files
oder Verzeichnisses. Die Browser gestatten das direkte Ansprechen von Informatio-
nen, sofern man deren URL kennt. Unter dem X Window System ist der Browser
mosaic (1) oder xmosaic (1) des NCSA verbreitet, der eine Motif-dhnliche Ober-
fliche mit viel Komfort bietet. Mit mosaic (1) hétten wir uns den digitalen Film
ansehen und -héren kénnen. Inzwischen haben sich netscape (1) und der Internet
Explorer von Microsoft verbreitet. Es gibt aber noch mehr Browser, darunter auch
sehr einfache wie 1ynx (1) fiir Textterminals.

Die genannten Netzdienste sind allesamt Versuche, die in elektronischer Form
vorliegenden Informationen — das sind heute schon viele, wenngleich nicht so vie-
le wie auf Papier in einer Universititsbibliothek — netzweit leicht zuginglich zu
machen. Leicht heifit vor allem, unter einer einheitlichen Benutzer-Oberfliche, so
daf3 der Benutzer sich nicht mit verschiedenen Such- und Beschaffungsverfahren
(Protokollen) herumzuschlagen braucht. Die Versuche sind erst wenige Jahre alt
und daher noch im Flu8.

3.16 Navigationshilfen (nslookup, whois, finger)

In den unendlichen Weiten des Netzes kann man sich leicht verirren. Sucht man
zu einer numerischen IP-Anschrift den Namen oder umgekehrt, so hilft das Kom-
mando nslookup(1) mit dem Namen oder der Anschrift als Argument. Es wendet
sich an den néichsten Name-Server, dieser unter Umstédnden an seinen Nachbarn
usw. Eine Auskunft sieht so aus:

Name Server: netserv.rz.uni-karlsruhe.de
Address: 129.13.64.5

Name: mvmpc2.ciw.uni-karlsruhe.de
Address: 129.13.118.2
Aliases: ftp.ciw.uni-karlsruhe.de

Der Computer mit der IP-Anschrift 129.13.118.2 hat also zwei Namen:
mvmpc2.ciw.uni-karlsruhe.de und ftp.ciw.uni-karlsruhe.de.

Das Kommando whois (1) verschafft ndhere Auskiinfte zu einem als Argu-
ment mitgegebenen Hostnamen, sofern der angesprochene Host — beispielsweise
whois.internic.net oder whois.nic.de — diesen kennt:

whois -h whois.internic.net gatekeeper.dec.com
liefert nach wenigen Sekunden:

Digital Equipment Corporation (GATEKEEPER)

Hostname: GATEKEEPER.DEC.COM

248 3 Internet

Address: 16.1.0.2
System: VAX running ULTRIX

Coordinator:
Reid, Brian K. (BKR) reid@PA.DEC.COM
(415) 688-1307

domain server
Record last updated on 06-Apr-92.

To see this host record with registered users, repeat the command
with a star (’*’) before the name; or, use ’%’ to show JUST the
registered users.

The InterNIC Registration Services Host ONLY contains Internet
Information (Networks, ASN’s, Domains, and POC’s).
Please use the whois server at nic.ddn.mil for MILNET Information.

Der Gatekeeper (Torwéchter) ist ein gutsortierter FTP-Server von Digital Corpo-
rate Research (DEC) und nicht nur fir DEC-Freunde von Reiz.

Geht es um Personen, hilft das Kommando finger(1), das die Files
/etc/passwd(4), $HOME/ .project und $HOME/.plan abfragt. Die beiden Dotfi-
les kann jeder Benutzer in seinem Home-Verzeichnis mittels eines Editors anlegen.
.project enthélt in seiner ersten Zeile (mehr werden nicht beachtet) die Projekte,
an denen man arbeitet, .plan einen beliebigen Text, iiblicherweise Sprechstunden,
Urlaubspline, Mitteilungen und dergleichen. Nicht alle Hosts anworten jedoch auf
finger-Anfragen. Andere hinwiederum schicken ganze Textfiles zuriick. Befingern
Sie den Autor des LINUX-Betriebssystems:

finger torvalds@kruuna.helsinki.fi
so erhalten Sie eine Auskunft iiber den Stand des Projektes (gekiirzt):

[kruuna.helsinki.fi]

Login: tkol_gril Name: Linus B Torvalds

Directory: /home/kruuna3/tkol/tkol_grl Shell: /usr/local/bin/expired
last login on klaava Wed Dec 1 15:00:17 1993 on ttyqf from hydra
New mail received Thu Dec 2 21:34:52 1993;

unread since Wed Dec 1 15:00:35 1993

No Plan.
Login: torvalds Name: Linus Torvalds
Directory: /home/hydra/torvalds Shell: /bin/tcsh

last login on klaava Fri Mar 18 18:53:52 1994 on ttyq2 from klaava
No unread mail

Plan:

Free UN*X for the 386

3.17 Die Zeit im Netz (ntp) 249

LINUX 1.0 HAS BEEN RELEASED! Get it from:
ftp.funet.fi pub/0S/Linux

and other sites. You’d better get the documentation from there too:
no sense in having it in this plan.

Ruft man finger(1) nur mit dem Namen einer Maschine als Argument auf,
erfihrt man Niheres iiber den Postmaster. Wird ein Klammeraffe (ASCII-Zeichen
Nr. 64) vor den Maschinennamen gesetzt, werden die gerade angemeldeten Benut-
zer aufgelistet:

[mvmhp.ciw.uni-karlsruhe.de]

Login Name TTY Idle When Bldg. Phone
wualexl W. Alex con Fri 08:05 30.70.003 2404
gebernl G. Bernoer 1p0 1:15 Fri 08:52 30.70.107 2413

Das Werkzeug netfind (1) hilft, die genaue Email-Anschrift eines Benutzers
zu finden, von dem man nur ungenaue Angaben kennt. netfind(1) vereinigt
mehrere Suchwerkzeuge und -verfahren, darunter finger(1). Seine Tétigkeit ist
einer Telefonauskunft vergleichbar.

3.17 Die Zeit im Netz (ntp)

3.17.1 Aufgabe

Computer — insbesondere im Netz — brauchen fiir manche Aufgaben die genaue
Zeit. Dazu zdhlen Anwendungen wie make (1), die die Zeitstempel der Files aus-
werten, Email, Datenbanken, einige Sicherheitsmechanismen wie Kerberos und
natiirlich Echtzeit-Aufgaben. Abgesehen von diesen Erfordernissen ist es listig,
wenn die Systemuhr zu sehr von der biirgerlichen Zeit abweicht. Die Systemuhr
wird zwar vom Systemtakt und damit von einem Quarz gesteuert, dieser ist jedoch
nicht auf die Belange einer Uhr hin ausgesucht. Mit anderen Worten: die System-
uhren miissen regelméfig mit genaueren Uhren synchronisiert werden, fragt sich,
mit welchen und wie.

Eine vollig andere Aufgabe ist die Messung von Zeitspannen, beispielsweise zur
Geschwindigkeitsoptimierung von Programmen oder auch bei Echtzeit-Aufgaben.
Hier kommt es auf eine hohe Auflésung an, aber nicht so sehr auf die Uberein-
stimmung mit anderen Zeitmessern weltweit. Auflerdem bendétigt man nur eine
Mafeinheit wie die Sekunde und keinen Nullpunkt wie Christi Geburt.

3.17.2 UTC — Universal Time Coordinated

Die Universal Time Coordinated (UTC) ist die Nachfolgerin der Green-
wich Mean Time (GMT), heute UT1 genannt, der mittleren Sonnenzeit auf dem
Liangengrad null, der durch die Sternwarte von Greenwich bei London verlduft.

250 3 Internet

Beide Zeiten unterscheiden sich durch ihre Definition und gelegentlich um Bruch-
teile von Sekunden. Als Weltzeit gilt seit 1972 die UTC. Computer-Systemuhren
sollten UTC haben. Daraus wird durch Addition von 1 h die in Deutschland giilti-
ge Mitteleuropéische Zeit (MEZ) abgeleitet, auch Middle oder Central European
Time genannt.

Wie kommt man zur UTC? Die besten Uhren (Césium- oder Atom-Uhren)
laufen so gleichméfig, dafl sie fiir den Alltag schon nicht mehr zu gebrauchen
sind, wie wir sehen werden. Ihre Zeit wird als Temps Atomique International
(TAI) bezeichnet. In Deutschland stehen einige solcher Uhren in der Physikalisch-
Technischen Bundesanstalt (PTB) in Braunschweig. Weltweit verfiigen etwa 60
Zeitinstitute {iber Atom-Uhren. Aus den Daten dieser Uhren errechnet das Bureau
International des Poids et Mesures (BIPM) in Paris einen Mittelwert, addiert eine
vereinbarte Anzahl von Schaltsekunden hinzu und erhélt so die internationale
UTC oder UTC(BIPM). Dann teilt das Bureau den nationalen Zeitinstituten die
Abweichung der nationalen UTC(*) von der internationalen UTC mit, bei uns also
die Differenz UTC' —UTC(PT B). Sie soll unter einer Mikrosekunde liegen und tut
das bei der PTB auch deutlich. Die UTC ist also eine nachtriglich errechnete Zeit.
Was die Zeitinstitute iiber Radiosender wie DCF77 verbreiten, kann immer nur die
nationale UTC(*) sein, in Deutschland UTC(PTB). Mit den paar Nanosekunden
Unsicherheit miissen wir leben.

Warum nun die Schaltsekunden? Fiir den Alltag ist die Erddrehung wichtiger
als die Schwingung von Césiumatomen. Die Drehung wird allméhlich langsamer
— ein heutiger Tag ist bereits drei Stunden ldnger als vor 600 Millionen Jahren —
und weist auch Unregelméfigkeiten auf. Die UTC wird aus der TAI abgeleitet,
indem nach Bedarf Schaltsekunden hinzugefiigt werden, sodafl Mittag und Mit-
ternacht, Sommer und Winter dort bleiben, wohin sie gehoren. UTC und UT1
unterscheiden sich héchstens um 0,9 Sekunden, UTC und TAI durch eine ganze
Anzahl von Sekunden, gegenwirtig (Ende 1997) um 31. Nicht jede Minute der
jiingeren Vergangenheit war also 60 Sekunden lang. Erlaubt sind auch negative
Schaltsekunden, jedoch noch nicht vorgekommen.

In den einzelnen Lindern sind nationale Behorden fiir die Darstellung der Zeit
verantwortlich:

Deutschland: Physikalisch-Technische Bundesanstalt, Braunschweig

Frankreich:

Schweiz:

Osterreich:

England: National Physical Laboratory,
e USA: U. S. Naval Observatory

Aufler der Zeit bekommt man von diesen Instituten oft auch Informationen iiber
die Zeit und ihre Messung. In Deutschland wird die Zeit vor allem iiber den Sender
DCF77 bei Frankfurt (Main) auf 77,5 kHz verteilt. Funkuhren, die dessen Signale
verarbeiten, sind mittlerweile so preiswert geworden, dafl sie kein Zeichen von
Exklusivitdt mehr sind. Auch funkgesteuerte Computeruhren sind erschwinglich,
so lange man keine hohen Anspriiche stellt.

3.17 Die Zeit im Netz (ntp) 251

3.17.3 Einrichtung

Man konnte jeden Computer mit einer eigenen Funkuhr ausriisten, aber das wére
doch etwas aufwendig, zumal das Netz billigere und zuverlissigere Moglichkeiten
bietet. Auflerdem steht nicht jeder Computer an einem Platz mit ungestértem
Empfang der Radiosignale. Das Network Time Protocol nach RFC 1305
(Postscript-Ausgabe 120 Seiten) vom Mérz 1992 zeigt den Weg.

Im Netz gibt es eine Hierarchie von Zeitservern. Das Fundament bilden die
Stratum-1-Server. Das sind Computer, die eine genaue Hardware-Uhr haben, bei-
spielsweise eine Funkuhr. Diese Server sprechen sich untereinander ab, sodafl der
voriibergehende Ausfall einer Funkverbindung praktisch keine Auswirkungen hat.
Von den Stratum-1-Servern holt sich die néchste Schicht die Zeit, die Stratum-2-
Server. Als kleiner Netzmanager soll man fremde Stratum-1-Server nicht belasti-
gen. Oft erlauben die Rechenzentren den direkten Zugriff auch nicht.

Stratum-2-Server versorgen grofle Netze wie ein Campus- oder Firmennetz mit
der Zeit. Auch sie sprechen sich untereinander ab und holen sich auflerdem die Zeit
von mehreren Stratum-1-Servern. So geht es weiter bis zum Stratum 16, das aber
praktisch nicht vorkommt, weil in Instituten oder Gebduden die Zeit einfacher
per Broadcast von einem Stratum-2- oder Stratum-3-Server verteilt wird. Die
Mehrheit der Computer ist als Broadcast-Client konfiguriert.

Man braucht einen Ddmon wie xntp(1M) samt ein paar Hilfsfiles. Die Kon-
figuration steht iiblicherweise in /etc/ntp.conf. Dieses enthilt Zeilen folgender
Art:

server ntp.rz.uni-karlsruhe.de
server servus05.rus.uni-stuttgart.de
server 127.127.1.1

peer mvmah90.ciw.uni-karlsruhe.de
peer mvmpcl00.ciw.uni-karlsruhe.de

broadcast 129.13.118.255

driftfile /etc/ntp.drift

Server sind Maschinen, von denen die Zeit geholt wird, Peers Maschinen, mit
denen die Zeit ausgetauscht wird. Der Server 127.127.1.1 ist die Maschine
selbst fiir den Fall, dafl sdmtliche Netzverbindungen unterbrochen sind. Da
ntp.rz.uni-karlsruhe.de ein Stratum-1-Server ist, lduft die Maschine mit obi-
ger Konfiguration als Stratum-2-Server. Sie sendet Broadcast-Signale in das Sub-
netz 129.13.118. Auflerdem spricht sie sich mit ihren Kollegen mvmah90 und
mvmpc100 ab, die zweckméBigerweise ihre Zeit von einer anderen Auswahl an Zeits-
ervern beziehen. Der Ausfall einer Zeitquelle hat so praktisch keine Auswirkungen.
In /etc/ntp.drift wird die lokale Drift gespeichert, sodafl die Systemuhr auch
ohne Verbindung zum Netz etwas genauer arbeitet. Weitere Computer im Subnetz
129.13.118 sind mit broadcastclient yes konfiguriert.

Da die Synchronisation nur bis zu einer gewissen Abweichung arbeitet, ist
es angebracht, beim Booten mittels des Kommandos ntpdate (1M) die Zeit zu

252 3 Internet

setzen. Mit dem Kommando ntpq(1M) erfragt man aktuelle Daten zum Stand der
Synchronisation.

... aber die Daten fehlen, um den ganzen
Nonsens richtig zu iiberblicken —
Benn, Drei alte Manner

A Zahlensysteme

Aufler dem Dezimalsystem sind das Dual-, das Oktal- und das Hexade-
zimalsystem gebréduchlich. Ferner spielt das Binér codierte Dezimalsystem
(BCD) bei manchen Anwendungen eine Rolle. Bei diesem sind die einzelnen De-
zimalstellen fiir sich dual dargestellt. Die folgende Tabelle enthélt die Werte von 0
bis dezimal 127. Bequemlichkeitshalber sind auch die zugeordneten ASCII-Zeichen
aufgefiihrt.

dezimal dual oktal hex BCD ASCII
0 0 0 0 0 nul
1 1 1 1 1 soh
2 10 2 2 10 stx
3 11 3 3 11 etx
4 100 4 4 100 eot
) 101)) 101 enq
6 110 6 6 110 ack
7 111 7 7 111 bel
8 1000 10 8 1000 bs
9 1001 11 9 1001 ht
10 1010 12 a 1.0 If
11 101 13 b 1.1 vt
12 1100 14 c 1.10 il
13 1101 15 d 1.11 cr
14 1110 16 e 1.100 SO
15 1111 17 f 1.101 si
16 10000 20 10 1.110 dle
17 10001 21 11 1.111 dcl
18 10010 22 12 1.1000 dc2
19 10011 23 13 1.1001 dc3
20 10100 24 14 10.0 dcd
21 10101 25 15 10.1 nak
22 10110 26 16 10.10 syn
23 10111 27 17 10.11 etb
24 11000 30 18 10.100 can
25 11001 31 19 10.101 em
26 11010 32 la 10.110 sub
27 11011 33 1b 10.111 esc
28 11100 34 1lc 10.1000 fs
29 11101 35 1d 10.1001 gs
30 11110 36 le 11.0 IS
31 11111 37 1f 11.1 us

253

254 A Zahlensysteme

32 100000 40 20 11.10 space
33 100001 41 21 11.11 !
34 100010 42 22 11.100 7
35 100011 43 23 11.101 #
36 100100 44 24 11.110 $
37 100101 45 25 11.111 %
38 100110 46 26 11.1000

39 100111 47 27 11.1001 ’
40 101000 50 28 100.0 (
41 101001 51 29 100.1)
42 101010 52 2a 100.10 *
43 101011 93 2b 100.11 +
44 101100 o4 2c 100.100 ;
45 101101 95 2d 100.101 -
46 101110 56 2e 100.110 .
47 101111 o7 2f 100.111 /
48 110000 60 30 100.1000 0
49 110001 61 31 100.1001 1
50 110010 62 32 101.0 2
o1 110011 63 33 101.1 3
52 110100 64 34 101.10 4
53 110101 65 35 101.11)
54 110110 66 36 101.100 6
95 110111 67 37 101.101 7
56 111000 70 38 101.110 8
o7 111001 71 39 101.111 9
o8 111010 72 3a 101.1000 :
99 111011 73 3b 101.1001 ;
60 111100 74 3c 110.0 <
61 111101 75 3d 110.1 =
62 111110 76 3e 110.10 >
63 111111 7 3f 110.11 ?
64 1000000 100 40 110.100 @
65 1000001 101 41 110.101 A
66 1000010 102 42 110.110 B
67 1000011 103 43 110.111 C
68 1000100 104 44 110.1000 D
69 1000101 105 45 110.1001 E
70 1000110 106 46 111.0 F
71 1000111 107 47 111.1 G
72 1001000 110 48 111.10 H
73 1001001 111 49 111.11 I
74 1001010 112 4a, 111.100 J
75 1001011 113 4b 111.101 K
76 1001100 114 4c 111.110 L
7 1001101 115 4d 111.111 M
78 1001110 116 de 111.1000 N
79 1001111 117 4f 111.1001 O
80 1010000 120 50 1000.0 P

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111
1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

51
52
53
54
55
56
Y
58
59
oa
5b
oC
5d
oe
5f
60
61
62
63
64
65
66
67
68
69
6a
6b
6c
6d
6e
6f
70
71
72
73
74
75
76
7
78
79
7a
b
7c
7d
Te
f

1000.1
1000.10
1000.11

1000.100
1000.101
1000.110
1000.111
1000.1000
1000.1001

1001.0

1001.1
1001.10
1001.11

1001.100
1001.101
1001.110
1001.111
1001.1000
1001.1001
1.0.0
1.0.1
1.0.10
1.0.11
1.0.100
1.0.101
1.0.110
1.0.111
1.0.1000
1.0.1001
1.1.0
1.1.1

1.1.10

1.1.11
1.1.100
1.1.101
1.1.110
1.1.111

1.1.1000
1.1.1001

1.10.0

1.10.1
1.10.10
1.10.11

1.10.100
1.10.101
1.10.110
1.10.111

255

e NHK ML EO

i — N X S 9 R T O0BEE —Fe B0 0 o T

del

B Zeichensatze

B.1 EBCDIC, ASCII, Roman8, IBM-PC

Die Zeichensiitze sind in den Ein- und Ausgabegeréiten (Terminal, Drucker) ge-
speicherte Tabellen, die die Zeichen in Zahlen und zuriick umsetzen.

dezimal oktal EBCDIC ASCII-7 Roman8 IBM-PC
0 0 nul nul nul nul
1 1 soh soh soh Grafik
2 2 stx stx stx Grafik
3 3 etx etx etx Grafik
4 4 pf eot eot Grafik
5 5 ht enq enq Grafik
6 6 lc ack ack Grafik
7 7 del bel bel bel
8 10 bs bs Grafik
9 11 rlf ht ht ht
10 12 smm If If If
11 13 vt vt vt home
12 14 ff ff ff ff
13 15 cr cr cr cr
14 16 SO SO SO Grafik
15 17 si si si Grafik
16 20 dle dle dle Grafik
17 21 dcl dcl dcl Grafik
18 22 dc2 dc2 dc2 Grafik
19 23 dc3 dc3 dc3 Grafik
20 24 res dc4 dc4 Grafik
21 25 nl nak nak Grafik
22 26 bs syn syn Grafik
23 27 il etb etb Grafik
24 30 can can can Grafik
25 31 em em em Grafik
26 32 cc sub sub Grafik
27 33 esc esc Grafik
28 34 ifs fs fs cur right
29 35 igs gs gs cur left
30 36 irs s s cur up
31 37 ius us us cur down
32 40 ds space space space
33 41 S0S ! ! !
34 42 fs 7 7 ”
35 43 # # #

256

B.1 EBCDIC, ASCII, Roman8, IBM-PC

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
54
95
o6
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

44
45
46
47
50
51
92
93
o4
95
o6
o7
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124

byp
If
etb
escC

sm

enq
ack
bel

syn
pn
s

uc
eot

dc4
nak

sub

jo2]
o
I
o
@

— B Qo o o o

N A

@ @D: D> O~ go

*\//-\\.??oﬁ%

_l.

O© 00~ O Ui W N~ O>~.

Hn TOHOZEREHER uwIImEHIQEE® oV I AL ..

*\//-\\.??oﬁ%

_l.

O© 00~ O Ui W N~ O>~.

Hn TOHOZEREHER uwIImEHIQEE® oV I AL ..

257

¥ — - & Nen

l’

© 00~ DT W~ O

Hn TOJIOZERu~Tmooaw®® oV I AL ..

258

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177
200
201
202
203
204

) e ~— K L ED s e

— Z0Q) P s B |

X

PPN o5 e s El e s Bl e s NESY ~ Vv 1

e NH M S 2o

—_— R e e TR O O A0 T

QHH—FHN%N5<;H-UJ’1@'UOSE

del

e N XS <o

—_— R e e TR O O A0 T

QHH—FHN%N545HUJ'-S>Q'UOSE

del

B Zeichensitze

N XS 2

awa—,-HN%:xi€<Cnmr-s,.Q’UOBE.—-W‘u-.-.U'OQ»,CDQ-OO‘N

B.1 EBCDIC, ASCII, Roman8, IBM-PC

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264

[SUP e 0 (<] = @

<
>

Bow .00 o B — &

&

=

2

N X S < 2 oo

-

s

Yen

o s T I e

e

(¢]

259

COw oo EHEB EPE e o n @ @ v Do

e

Yen

o~ 0 2B B O e m\\:g

Grafik
Grafik
1/2
1/4

<

>
Grafik
Grafik
Grafik
Grafik
Grafik

260

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340
341
342
343
344
345

LoD

~ D QEOEIOQF P>~

TOYOZECE R u—oi oo 08 O

R N =1

< a3 wm

=TEZANN

-

fqp)

Yen

—~y O

o O L O L, PR e e B L, Bre O B O O D B B O D

=i

B Zeichensitze

Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik
Grafik

«

=

Q My~

B.2 German-ASCII 261

230 346 A I m
231 347 X o) T
232 350 Y 0 P
233 351 7 O 0
234 352 o Q
235 353 0 S)
236 354 0 § 00
237 355 0 U %)
238 356 0 Y €
239 357 0 y N
240 360 0 thorn =
241 361 1 Thorn +
242 362 2 >
243 363 3 <
244 364 4 Haken
245 365 5 Haken
246 366 6 - =
247 367 7 1/4 ~
248 370 8 1/2 o
249 371 9 a .
250 372 0 -
251 373 U < Vv
252 374 U U n
253 375 U > 2
254 376 U + L
255 377 (FF)

B.2 German-ASCII

Falls das Ein- oder Ausgabegerit einen deutschen 7-Bit-ASCII-Zeichensatz
enthélt, sind folgende Ersetzungen der amerikanischen Zeichen durch deutsche
Sonderzeichen iiblich:

Nr. US-Zeichen US-ASCII German ASCII
91 linke eckige Klammer [A
92 Backslash \ 0
93 rechte eckige Klammer] U

123 linke geschweifte Klammer { a

124 senkrechter Strich | 0

125 rechte geschweifte Klammer } i

126 Tilde ~ B

Achtung: Der IBM-PC und Ausgabegerite von Hewlett-Packard verwenden keinen
7-Bit-ASCII-Zeichensatz, sondern eigene 8-Bit-Zeichensétze, die die Sonderzeichen
unter Nummern hoher 127 enthalten, siehe vorhergehende Tabelle.

262

B.3 ASCII-Steuerzeichen

B Zeichensitze

Die Steuerzeichen der Zeichensitze dienen der Ubermittlung von Befehlen und
Informationen an das empfangende Gerét und nicht der Ausgabe eines sicht- oder
druckbaren Zeichens. Die Ausgabegeréte kennen in der Regel jedoch einen Modus
(transparent, Monitor, Display Functions), in der die Steuerzeichen nicht aus-
gefiihrt, sondern angezeigt werden. Die meisten Steuerzeichen belegen keine eige-
ne Taste auf der Tastatur, sondern werden als Kombination aus der control-Taste
und einer Zeichentaste eingegeben.

dezimal

© 00 S Ui W N~ O

O I I T I T N T R N N N e S G O S G g g gt
mF S © X TN R WN — D ©O0~TO U W — O

127

ASCII

nul
soh
stx
etx
eot
enq
ack
bel
bs
ht
If

vt

cr
SO
si
dle
dcl
dc2
dc3
dc4
nak
syn
etb
can
em
sub
esc
fs
gs
rs
us
del

Bedeutung

ASCII-Null

Start of heading
Start of text

End of text

End of transmission
Enquiry

Acknowledge

Bell

Backspace

Horizontal tab

Line feed

Vertical tab

Form feed

Carriage return

Shift out

Shift in

Data link escape
Device control 1, xon
Device control 2, tape
Device control 3, xoff
Device control 4, tape
Negative acknowledge
Synchronous idle
End of transmission block
Cancel

End of medium
Substitute

Escape

File separator

Group separator
Record separator
Unit separator

Delete

Tasten

control @
control a
control b
control ¢
control d
control e
control
control g
control h, BS
control i, TAB
control j, LF
control k
control 1
control m, RETURN
control n
control o
control p
control g
control r
control s
control t
control u
control v
control w
control x
control y
control z
control [, ESC
control \
control]
control ~
control _

DEL, RUBOUT

B.4 Latin-1 (ISO 8859-1) 263

B.4 Latin-1 (ISO 8859-1)

Die internationale Norm ISO 8859 beschreibt gegenwirtig zehn Zeichensétze, die
jedes Zeichen durch jeweils ein Byte darstellen. Jeder Zeichensatz umfafit also
maximal 256 druckbare Zeichen und Steuerzeichen. Der erste — Latin-1 genannt
— ist fiir west- und mitteleuropéische Sprachen — darunter Deutsch — vorgesehen.
Latin-2 deckt Mittel- und Osteuropa ab, soweit das lateinische Alphabet verwen-
det wird. Wer einen polnisch-deutschen Text schreiben will, braucht Latin 2. Die
deutschen Sonderzeichen liegen in Latin 1 bis 6 an denselben Stellen. Weiteres sie-
he in der ISO-Norm und im RFC 1345 Character Mnemonics and Character Sets
vom Juni 1992. Auch http://wwwwbs.cs.tu-berlin.de/~czyborra/charsets/
hilft weiter.

Die erste Hélfte (0 — 127) aller Latin-Zeichensétze stimmt mit US-ASCII iibe-
rein, die zweite mit keinem der anderen Zeichensétze. Zu jedem Zeichen gehort
eine standardisierte verbale Bezeichnung. Einige Zeichen wie das isldndische Thorn
oder das Cent-Zeichen konnten hier mit LaTeX nicht dargestellt werden.

dezimal oktal hex Zeichen Bezeichnung
000 000 00 nu Null (nul)
001 001 01 sh Start of heading (soh)
002 002 02 sx Start of text (stx)
003 003 03 ex End of text (etx)
004 004 04 et End of transmission (eot)
005 005 05 eq Enquiry (enq)
006 006 06 ak Acknowledge (ack)
007 007 07 bl Bell (bel)
008 010 08 bs Backspace (bs)
009 011 09 ht Character tabulation (ht)
010 012 Oa If Line feed (If)
011 013 0b vt Line tabulation (vt)
012 014 Oc ff Form feed (ff)
013 015 0d cr Carriage return (cr)
014 016 Oe SO Shift out (so)
015 017 of si Shift in (si)
016 020 10 dl Datalink escape (dle)
017 021 11 d1 Device control one (dcl)
018 022 12 d2 Device control two (dc2)
019 023 13 d3 Device control three (dc3)
020 024 14 d4 Device control four (dc4)
021 025 15 nk Negative acknowledge (nak)
022 026 16 sy Synchronous idle (syn)
023 027 17 eb End of transmission block (etb)
024 030 18 cn Cancel (can)
025 031 19 em End of medium (em)
026 032 la sb Substitute (sub)
027 033 1b ec Escape (esc)
028 034 lc fs File separator (is4)

029 035 1d gs Group separator (is3)

264

030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078

036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116

le

1f
20
21
22
23
24
25
26
27
28
29
2a,
2b
2c
2d
2e
2f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3f
40
41
42
43
44
45
46
47
48
49
4a
4b
4c¢
4d
4e

© 0 S Ok W~ O .

ZECOCR I EHOQEEO® oV I AL ..

Record separator (is2)
Unit separator (isl)
Space

Exclamation mark
Quotation mark
Number sign

Dollar sign

Percent sign
Ampersand
Apostrophe

Left parenthesis
Right parenthesis
Asterisk

Plus sign

Comma
Hyphen-Minus

Full stop

Solidus

Digit zero

Digit one

Digit two

Digit three

Digit four

Digit five

Digit six

Digit seven

Digit eight

Digit nine

Colon

Semicolon

Less-than sign
Equals sign
Greater-than sign
Question mark
Commercial at

Latin capital letter a
Latin capital letter b
Latin capital letter ¢
Latin capital letter d
Latin capital letter e
Latin capital letter f
Latin capital letter g
Latin capital letter h
Latin capital letter i
Latin capital letter j
Latin capital letter k
Latin capital letter 1
Latin capital letter m
Latin capital letter n

B Zeichensitze

B.4 Latin-1 (ISO 8859-1)

079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

4f
50
51
52
53
54
55
56
o7
58
59
oa,
5b
oC
5d
oe
5f
60
61
62
63
64
65
66
67
68
69
6a
6b
6c
6d
6e
6f
70
71
72
73
74
75
76
77
78
79
7a,
7b
7c
7d
Te
7t

e L NHK KRS <3 PO DO

—_— N e e R O O A0 T

;w—f—/—HN%N5<:ﬁmﬂ@’UOEE

(o
-+

Latin capital letter o
Latin capital letter p
Latin capital letter g
Latin capital letter r
Latin capital letter s
Latin capital letter t
Latin capital letter u
Latin capital letter v
Latin capital letter w
Latin capital letter x
Latin capital letter y
Latin capital letter z
Left square bracket
Reverse solidus
Right square bracket
Circumflex accent
Low line

Grave accent

Latin small letter a
Latin small letter b
Latin small letter c
Latin small letter d
Latin small letter e
Latin small letter f
Latin small letter g
Latin small letter h
Latin small letter i
Latin small letter j
Latin small letter k
Latin small letter 1
Latin small letter m
Latin small letter n
Latin small letter o
Latin small letter p
Latin small letter q
Latin small letter r
Latin small letter s
Latin small letter t
Latin small letter u
Latin small letter v
Latin small letter w
Latin small letter x
Latin small letter y
Latin small letter z
Left curly bracket
Vertical line

Right curly bracket
Tilde

Delete (del)

265

266

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260

80
81
82
83
84
85
86
87
88
89
8a,
8b
8c
8d
8e
8f
90
91
92
93
94
95
96
97
98
99
9a
9b
9c
9d
9e
9f
a0
al
a2
a3
a4
ad
ab
a7
a8
a9
aa,
ab
ac
ad
ae
af
b0

pa
ho
bh
nh
in
nl
sa,
es
hs

VS
pd
pu
ri
s2
s3
dc
pl
p2
ts
cc

5g
eg
Ss
gc
SC
ci
st
ocC
pm
ac
ns

=@

<

B Zeichensitze

Padding character (pad)

High octet preset (hop)

Break permitted here (bph)

No break here (nbh)

Index (ind)

Next line (nel)

Start of selected area (ssa)

End of selected area (esa)
Character tabulation set (hts)
Character tabulation with justification (htj)
Line tabulation set (vts)

Partial line forward (pld)

Partial line backward (plu)
Reverse line feed (ri)

Single-shift two (ss2)

Single-shift three (ss3)

Device control string (dcs)
Private use one (pul)

Private use two (pu2)

Set transmit state (sts)

Cancel character (cch)

Message waiting (mw)

Start of guarded area (spa)

End of guarded area (epa)

Start of string (sos)

Single graphic character introducer (sgci)
Single character introducer (sci)
Control sequence introducer (csi)
String terminator (st)

Operating system command (osc)
Privacy message (pm)
Application program command (apc)
No-break space

Inverted exclamation mark

Cent sign

Pound sign

Currency sign

Yen sign

Broken bar

Section sign

Diaresis

Copyright sign

Feminine ordinal indicator
Left-pointing double angle quotation mark
Not sign

Soft hyphen

Registered sign

Overline

Degree sign

B.4 Latin-1 (ISO 8859-1)

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340

bl
b2
b3
b4
bb
b6
b7
b8
b9
ba
bb
bc
bd
be
bf
c0
cl
c2
c3
c4
cd
cb
c7
c8
c9
ca
cb
cc
cd
ce

cf
do
d1
d2
d3
d4
d5
d6
d7
d8
d9
da
db
dc
dd
de
df
el

. AT, w oM

v

—_

o

v

Lo =
i e e T T B Y B e B 2 B B e EBE

Kb ahad QX OO0t O OO 2

(=]

9”

Plus-minus sign
Superscript two
Superscript three

Acute accent

Micro sign

Pilcrow sign

Middle dot

Cedilla

Superscript one

Masculine ordinal indicator

267

Right-pointing double angle quotation mark

Vulgar fraction one quarter

Vulgar fraction one half

Vulgar fraction three quarters
Inverted question mark

Latin capital letter a with grave
Latin capital letter a with acute
Latin capital letter a with circumflex
Latin capital letter a with tilde
Latin capital letter a with diaresis
Latin capital letter a with ring above
Latin capital letter ae

Latin capital letter ¢ with cedilla
Latin capital letter e with grave
Latin capital letter e with acute
Latin capital letter e with circumflex
Latin capital letter e with diaresis
Latin capital letter i with grave
Latin capital letter i with acute
Latin capital letter i with circumflex
Latin capital letter i with diaresis
Latin capital letter eth (Icelandic)
Latin capital letter n with tilde
Latin capital letter o with grave
Latin capital letter o with acute
Latin capital letter o with circumflex
Latin capital letter o with tilde
Latin capital letter o with diaresis
Multiplication sign

Latin capital letter o with stroke
Latin capital letter u with grave
Latin capital letter u with acute
Latin capital letter u with circumflex
Latin capital letter u with diaresis
Latin capital letter y with acute
Latin capital letter thorn (Icelandic)
Latin small letter sharp s (German)
Latin small letter a with grave

268 B Zeichensitze

225 341 el
226 342 e2
227 343 ed
228 344 ed
229 345 eb
230 346 eb
231 347 e7
232 350 e8
233 351 e9
234 352 ea
235 353 eb
236 354 ec
237 355 ed

Latin small letter a with acute
Latin small letter a with circumflex
Latin small letter a with tilde
Latin small letter a with diaresis
Latin small letter a with ring above
Latin small letter ae

Latin small letter ¢ with cedilla
Latin small letter e with grave
Latin small letter e with acute
Latin small letter e with circumflex
Latin small letter e with diaresis
Latin small letter i with grave
Latin small letter i with acute

238 356 ee Latin small letter i with circumflex
239 357 ef Latin small letter i with diaresis
240 360 f0 Latin small letter eth (Icelandic)

o e s DE D D D B e o o o

241 361 f1 n Latin small letter n with tilde

242 362 2 0 Latin small letter o with grave

243 363 3 o Latin small letter o with acute

244 364 4 0 Latin small letter o with circumflex
245 365 5 0 Latin small letter o with tilde

246 366 6 0 Latin small letter o with diaresis

247 367 f7 = Division sign

248 370 8] Latin small letter o with stroke

249 371 9 u Latin small letter u with grave

250 372 fa u Latin small letter u with acute

251 373 fb i Latin small letter u with circumflex
252 374 fc i Latin small letter u with diaresis
253 375 fd y Latin small letter y with acute

254 376 fe Latin small letter thorn (Icelandic)
255 377 ff y Latin small letter y with diaresis

B.5 Latin-2 (ISO 8859-2)

Der Zeichensatz Latin-2 deckt folgende Sprachen ab: Albanisch, Bosnisch,
Deutsch, Englisch, Finnisch, Irisch, Kroatisch, Polnisch, Ruménisch, Serbisch
(in lateinischer Transskription), Serbokroatisch, Slowakisch, Slowenisch, Sor-
bisch, Tschechisch und Ungarisch. Samisch wird in Latin-9 beriicksichtigt. Auf
http://sizif .mf .uni-1j.si/linux/cee/is08859-2.html finden sich Einzel-
heiten und weitere URLs. Hier nur die Zeichen, die von Latin-1 abweichen:

dezimal oktal hex Zeichen Bezeichnung
161 241 al Latin capital letter a with ogonek
162 242 a2 Breve
163 243 ad Latin capital letter 1 with stroke
165 245 ab Latin capital letter 1 with caron

166 246 ab Latin capital letter s with acute

B.5 Latin-2 (ISO 8859-2)

169
170
171
172
174
175
177
178
179
181
182
183
185
186
187
188
189
190
191
192
195
197
198
200
202
204
207
208
209
210
213
216
217
219
222
224
227
229
230
232
234
236
239
240
241
242
245
248
249

251
252
253
254
256
257
261
262
263
265
266
267
271
272
273
274
275
276
277
300
303
305
306
310
312
314
317
320
321
322
325
330
331
333
336
340
343
345
346
350
352
354
357
360
361
362
365
370
371

a9
aa,
ab
ac
ae
af
bl
b2
b3
bb
b6
b7
b9
ba
bb
bc
bd
be
bf
c0
c3
cH
c6
c8
ca
ce
cf
do
dl
d2
d5
d8
d9
db
de
el
ed
eb
eb
e8
ea
ec
ef
o
f1
2
5
8
9

269

Latin capital letter s with caron
Latin capital letter s with cedilla
Latin capital letter t with caron
Latin capital letter z with acute
Latin capital letter z with caron
Latin capital letter z with dot above
Latin small letter a with ogonek
Ogonek

Latin small letter 1 with stroke
Latin small letter 1 with caron

Latin small letter s with acute
Caron

Latin small letter s with caron
Latin small letter s with cedilla
Latin small letter t with caron
Latin small letter z with acute
Double acute accent

Latin small letter z with caron
Latin small letter z with dot above
Latin capital letter r with acute
Latin capital letter a with breve
Latin capital letter 1 with acute
Latin capital letter ¢ with acute
Latin capital letter ¢ with caron
Latin capital letter e with ogonek
Latin capital letter e with caron
Latin capital letter d with caron
Latin capital letter d with stroke
Latin capital letter n with acute
Latin capital letter n with caron
Latin capital letter o with double acute
Latin capital letter r with caron
Latin capital letter u with ring above
Latin capital letter u with double acute
Latin capital letter t with cedilla
Latin small letter r with acute
Latin small letter a with breve
Latin small letter 1 with acute

Latin small letter ¢ with acute
Latin small letter ¢ with caron
Latin small letter e with ogonek
Latin small letter e with caron
Latin small letter d with caron
Latin small letter d with stroke
Latin small letter n with acute
Latin small letter n with caron
Latin small letter o with double acute
Latin small letter r with caron
Latin small letter u with ring above

270 B Zeichensitze

251 373 fb Latin small letter u with double acute
254 376 fe Latin small letter t with cedilla
255 377 i Dot above

C Die wichtigsten UNIX-Kommandos

Einzelheiten siehe Referenz-Handbiicher — vor allem on-line. Das wichtigste Kom-
mando zuerst, die iibrigen nach Sachgebiet und dann alphabetisch geordnet:

man man

Allgemeines

alias

at

bdf, df, du

calendar

crontab
date

echo, print
exit

kill

leave
lock
newgrp
nice
nohup

passwd

Beschreibung zum Kommando man(1) ausgeben

Alias in der Shell einrichten
alias r="fc -e -’
Programm zu einem beliebigen Zeitpunkt starten
at 0815 Jan 24
myprograml
EOF (meist control-d)
Plattenbelegung ermitteln
df
Terminverwaltung (Reminder Service)
(File $HOME/calendar muf} existieren)
calendar
Tabelle fiir cron erzeugen
crontab crontabfile
Datum und Zeit anzeigen
date
Argument auf stdout schreiben
echo ’Hallo, wie gehts?’
Shell beenden
exit
Signal an Prozess senden
kill myprocess_id
kill -s SIGHUP myprocess_id
an Feierabend erinnern
leave 2215
Terminal sperren
lock
Benutzergruppe wechseln
newgrp student
Prioritét eines Programmes herabsetzen
nice myprogram
Programm von Sitzung abkoppeln
nohup myprogram &
Passwort dndern
passwd

271

272

ps
script

set

sh, ksh, bash
stty

su

tset, reset
tty

who

whoami, id

xargs

C Die wichtigsten UNIX-Kommandos

laufende Prozesse anzeigen
ps -ef
Sitzung mitschreiben
script (beenden mit exit)
Umgebung anzeigen
set
Shells (Bourne, Korn, Bash)
bash
Terminal-Schnittstelle anzeigen
stty
Usernamen wechseln (substituieren)
su bjalexl
Terminal initialisieren
tset vt100
Terminalnamen (/dev/tty*) anzeigen
tty
eingeloggte Benutzer auflisten
who -H
meinen Namen anzeigen
id
Argumentliste aufbauen und Kommando ausfiihren
1s | xargs -i -t mv {} subdir/{}

Files, Verzeichnisse

cd

chgrp
chmod
chown
cmp, diff

compress

cp
file
find, whereis

gzip

Arbeitsverzeichnis wechseln

cd

cd /usr/local/bin
Gruppe eines Files wechseln

chgrp students myfile
Zugriffsrechte eines Files d&ndern

chmod 755 myfile
Besitzer eines Files wechseln

chown aralexl myfile
zwei Files vergleichen

cmp myfilel myfile2
File komprimieren

compress myfile

uncompress myfile.Z
File kopieren

cp original kopie
Filetyp ermitteln

file myfile
Files suchen

find . —name myfile -print
File komprimieren (GNU)

In

1s
mkdir
mv

od
pwd

rm, rmdir

tar

touch

273

gzip myfile
gunzip myfile.gz
File linken
In myfile hardlinkname
In -s myfile softlinkname
Verzeichnisse auflisten
1s -al
Verzeichnis anlegen
mkdir newdir
File umbenennen
mv oldfilename newfilename
(oktalen) Dump eines Files ausgeben
od -c myfile
Arbeitsverzeichnis anzeigen
pwd
File oder leeres Verzeichnis 16schen
rm myfile
rm -r mydir
rmdir mydir
File-Archiv schreiben oder lesen
tar -cf /dev/st0 ./mydir &
leeres File erzeugen, Zeitstempel &ndern
touch myfile

Kommunikation, Netz

archie
finger
ftp
hostname
irc
kermit

mail, elm

netscape
news

nslookup

nach File suchen
archie -s mysubstring > mysubstring.archie &
Auskunft iiber Benutzer
finger wualex1@mvmpcl00.ciw.uni-karlsruhe.de
File Transfer
ftp ftp.ciw.uni-karlsruhe.de
Hostnamen anzeigen
hostname
Netzgeschwiitz
irc (beenden mit /quit)
File iibertragen, auch von/zu Nicht-UNIX-Anlagen
kermit (beenden mit exit)
Mail lesen und versenden
mail wulf.alex@ciw.uni-karlsruhe.de < myfile
elm
WWW-Browser (einer unter vielen)
netscape &
Neuigkeiten anzeigen
news -a
Auskunft {iber Host

274 C Die wichtigsten UNIX-Kommandos

nslookup mvmpcl00.ciw.uni-kalrsuhe.de
nslookup 129.13.118.100

ping Verbindung priifen
ping 129.13.118.100
ssh verschliisselte Verbindung zu Host im Netz
ssh mvmpcl100.ciw.uni-karlsruhe.de
rlogin Dialog mit UNIX-Host im Netz (unverschliisselt)
rlogin mvmpc100
telnet Dialog mit Host im Netz (unverschliisselt)
telent mvmpc100
tin, xn Newsreader
rtin
uucp Programmpaket mit UNIX-Netzdiensten
whois Auskunft iiber Netzknoten
whois -h whois.internic.net gatekeeper.dec.com
write, talk Dialog mit eingeloggtem Benutzer

talk wualex1@mvmpc100

Programmieren
ar Gruppe von files archivieren

ar -r myarchiv.a myfilel myfile2
cb C-Beautifier, Quelle verschonern

cb myprog.c > myprog.b
cc C-Compiler mit Linker

CC -0 mMyprog myprog.c

lint C-Syntax-Priifer

lint myprog.c
make Compileraufruf vereinfachen

make (Makefile erforderlich)
sdb, xdb symbolischer Debugger

xdb (einige Files erforderlich)
Textverarbeitung
adjust Text formatieren (einfachst)

adjust -j -m60 mytextfile
awk Listengenerator

awk -f myawkscript mytextfile (awk-Script erforderlich)
cancel Druckauftrag 16schen

cancel 1p-4711
cat von stdin lesen, nach stdout schreiben

cat mytextfile
cat myfilel myfile2 > myfile.all
cat mytextfile

cut Spalten aus Tabellen auswéhlen

ed
emacs

expand

grep, fgrep

head, tail
1p
lpstat, 1lpq

more, less, pg

nroff

recode

sed
sort
spell
tee
tr
uniq
vi
view
vis

wC

275

cut -f1 mytablefile > newfile
Zeileneditor, mit diff (1) niitzlich
ed mytextfile
Editor, alternativ zum vi(1) (GNU)
emacs mytextfile
Tabs ins Spaces umwandeln
expand mytextfile > newfile
Muster in Files suchen
grep -1 Unix mytextfile
fgrep UNIX mytextfile
Anfang bzw. Ende eines Textfiles anzeigen
head mytextfile
File iiber Spooler ausdrucken
lp -d1p2 mytextfile
Spoolerstatus anzeigen
lpstat -t
Textfile schirmweise anzeigen
more mytextfile
1s -1 | more
Textformatierer
nroff mynrofffile | 1lp
Filter zur Umwandlung von Zeichensitzen (GNU)
recode --help
recode -1
recode -v ascii-bs:EBCDIC-IBM textfile
filternder Editor
sed ’s/[A-Z]1/[a-z]/g’ mytextfile > newfile
Textfile zeilenweise sortieren
sort myliste | uniq > newfile
Rechtschreibung priifen
spell myspelling textfile+
stdout zugleich in ein File schreiben
who | tee whofile
Zeichen in Textfile ersetzen
tr -d "\015" < mytextfilel > mytextfile2
sortiertes Textfile nach doppelten Zeilen durchsuchen
sort myliste | uniq > newfile
Bildschirm-Editor, alternativ zum emacs (1)
vi mytextfile
vi(1) nur zum Lesen aufrufen
view mytextfile
Files mit Steuersequenzen anzeigen
vis mytextfile
Zeichen, Worter und Zeilen zédhlen
wc mytextfile

276 C Die wichtigsten UNIX-Kommandos

Verwaltung (hier reichen Beispiele nicht, nachlesen!)

acctsh Accounting System einrichten
backup, restore Shellscript fiir Backups

fsck File System Check

lpadmin, 1lpc Drucker-Spooler einrichten

mkfs Filesystem einrichten

mknod Geriétefile einrichten

mount weiteres File-System anschlieflen
mvdir Verzeichnis verschieben

stty Terminal-Schnittstelle konfigurieren
tic, untic terminfo-Eintrag iibersetzen

shutdown System zum Abschalten vorbereiten

D Besondere UNIX-Kommandos
D.1 printf(3), scanf(3)

printf (3) und scanf (3) sind die beiden Standardfunktionen zum Ein- und Aus-
geben von Daten. Wichtiger Unterschied: printf (3) erwartet Variable, scanf (3)
Pointer. Die Formatbezeichner stimmen weitgehend iiberein:

Bezeichner Typ

%oc char

%os char *

%d int

%o int

%ou unsigned
%ld long

%ot double

%oe double

%g double

%o unsigned octal
%ox unsigned hex
%op void *

%% -

Beispiel
a

Bedeutung
Zeichen

Karlsruhe String

-1234
-1234
1234
1234
12.34

dezimale Ganzzahl mit Vorzeichen
dezimale Ganzzahl mit Vorzeichen
dezimale Ganzzahl ohne Vorzeichen
dezimal Ganzzahl doppelter Linge
Gleitkommazahl mit Vorzeichen

1.234 E1 Gleitkommazahl, Exponentialdarstellung

12.34
2322
4d2
681f32e4
%

kiirzere Darstellung von %e oder %f
oktale Ganzzahl ohne Vorzeichen
hexadezimale Ganzzahl o. Vorzeichen
Pointer

Prozentzeichen

Weiteres im Referenz-Handbuch unter printf (3) oder scanf (3). Lénge, Biindig-
keit, Unterdriickung fiihrender Nullen, Vorzeichenangabe konnen festgelegt wer-

den.

D.2 vi(1)

escape

5 o~ r

=4 QA

schaltet in Kommando-Modus um
Cursor nach links

Cursor nach unten

Cursor nach oben

Cursor nach rechts

Cursor an Zeilenanfang

Cursor an Zeilenende

Cursor in Zeile Nr. n

Cursor in letzte Zeile des Textes
Cursor n Zeilen vorwarts
Cursor n Zeilen riickwérts

277

278

:;read file
W

q

Wq

D Besondere UNIX-Kommandos

schreibe anschlieflend an Cursor

schreibe vor Cursor

offne neue Zeile unterhalb Cursor

offne neue Zeile oberhalb Cursor

ersetze das Zeichen auf Cursor

ersetze Text ab Cursor

16sche das Zeichen auf Cursor

16sche Cursorzeile

16sche n Zeilen ab und samt Cursorzeile
iibernimm n Zeilen in Zwischenspeicher
schreibe Zwischenpuffer unterhalb Cursorzeile
schreibe Zwischenpuffer oberhalb Cursorzeile
hidnge néchste Zeile an laufende an

suche String abc nach Cursor

suche String abc vor Cursor

wiederhole Stringsuche

mache letztes Kommando ungiiltig (undo)
suche Gegenklammer (in Programmen)
lies file ein

schreibe Text zuriick (write, save)
verlasse Editor ohne write (quit)

write und quit

Weitere vi-Kommandos im Referenz-Handbuch unter vi(1) oder in dem Buch

von MORRIS I. BOLSKY.

D.3 emacs(1)
D.4 joe(1)
D.5 ftp(1)

Wenn man eine ftp-Verbindung zu einem Computer im Netz unterhilt, ste-
hen nur Kommandos fiir die Fileiibertragung zur Verfiigung, die mit den UNIX-
Kommandos nichts zu tun haben. Die wichtigsten von etwa 70 sind:

Kommando

ftp
open
user
pwd
cd
led

Wirkung

Beginn der FTP-Sitzung

Verbinden mit angegebener Adresse
Eingabe Benutzernamen

print working directory, wie UNIX
change directory, wie UNIX

change local directory

D.5 ftp(1)

dir

Is

ascii
binary
get

get README |more
put
mget
mput
passive
prompt
rhelp
rstatus
status
close
bye
quit
help

? cmd

279

Verzeichnis auflisten (geht immer)
Verzeichnis auflisten, wie UNIX (geht meist)
in ASCII-Modus schalten (fiir ASCII-Texte)
in bindren Modus schalten (fiir alle iibrigen Files)
File vom Host holen

kurzes Textfile README on-line lesen

File zum Host schicken

multi-get, mehrere Files auf einmal holen
multi-put, mehrere Files auf einmal schicken
auf passives FTP umschalten (Firewall)
Abfragen bei mget und mput unterdriicken
Kommandos der Ubertragung anzeigen
Status der Verbindung anzeigen

Status des Hosts anzeigen

Verbindung (nicht Sitzung) beenden
Sitzung beenden

Sitzung beenden

lokale Hilfe zu Kommandos anzeigen

Hilfe zum Kommando cmd anzeigen

Eine FTP-Verbindung &8t sich teilweise automatisieren, siche das Dot-File
.netrc. Ferner kann man die Kommandos in ein Batchfile packen, das in Ab-
wesenheit des Benutzers ausgefiihrt wird, was fiir regelméfig wiederkehrende Ver-
bindungen (cron(1)) zweckméBig ist.

E UNIX-Systemaufrufe

Systemaufrufe werden vom Anwendungsprogramm wie eigene oder fremde Funk-
tionen angesehen. IThrem Ursprung nach sind es auch C-Funktionen. Sie sind jedoch
nicht Bestandteil einer Funktionsbibliothek, sondern gehoren zum Betriebssystem

und sind nicht durch andere Funktionen erweiterbar.

Die Systemaufrufe — als Bestandteil des Betriebssystems — sind fiir alle
Programmiersprachen dieselben, wihrend die Funktionsbibliotheken zur jewei-
ligen Programmiersprache gehoren. Folgende Systemaufrufe sind unter UNIX

verfiigbar:

access
acct

alarm
atexit

brk

chdir

chmod

chown
chroot
close

creat

dup

errno

exec

exit

fcntl

fork

fsctl

fsync
getaccess
getacl
getcontext
getdirentries
getgroups
gethostname
getitimer
getpid
gettimeofday
getuid
ioctl

kill

link

priift Zugriff auf File

startet und stoppt Prozess Accounting
setzt Weckeruhr fiir Prozess
Funktion fiir Programmende

dndert Speicherzuweisung

wechselt Arbeitsverzeichnis

andert Zugriffsrechte eines Files
dandert Besitzer eines Files

andert Root-Verzeichnis

schlieft einen File-Deskriptor

offnet File, ordnet Deskriptor zu
dupliziert File-Deskriptor
Fehlervariable der Systemaufrufe
fithrt ein Programm aus

beendet einen Prozess

Filesteuerung

erzeugt einen neuen Prozess

liest Information aus File-System
schreibt File aus Arbeitsspeicher auf Platte
ermittelt Zugriffsrechte

ermittelt Zugriffsrechte

ermittelt Kontext eines Prozesses
ermittelt Verzeichnis-Eintrige
ermittelt Gruppenrechte eines Prozesses
ermittelt Namen des Systems

setzt oder liest Intervall-Uhr

liest Prozess-1D

ermittelt Zeit

liest User-ID des aufrufenden Prozesses
I/O-Steuerung

schickt Signal an einen Prozess

linkt ein File

280

lockf
lseek
mkdir
mknod
mount
msgctl
nice
open
pause
pipe
prealloc
profil
read
readlink
rename
rmdir
rtprio
semctl
setgrp
setuid
signal
stat
statfs
symlink
sync
szsconf
time
times
truncate
umask
unlink
ustat
utime
wait
write

281

setzt Semaphore und Record-Sperren
bewegt Schreiblesezeiger in einem File
erzeugt Verzeichnis

erzeugt File

mountet File-System
Interprozess-Kommunikation

dandert die Prioritét eines Prozesses

Offnet File zum Lesen oder Schreiben
suspendiert Prozess bis zum Empfang eines Signals
erzeugt eine Pipe

reserviert Arbeitsspeicher

ermittelt Zeiten bei der Ausfiithrung eines Programmes
liest aus einem File

liest symbolisches Link

andert Filenamen

16scht Verzeichnis

dandert Echtzeit-Prioritét

Semaphore

setzt Gruppen-Zugriffsrechte eines Prozesses
setzt User-ID eines Prozesses

legt fest, was auf ein Signal hin zu tun ist
liest die Inode eines Files

liest Werte des File-Systems

erzeugt symbolischen Link

schreibt Puffer auf Platte

ermittelt Systemwerte

ermittelt die Systemzeit

ermittelt Zeitverbrauch eines Prozesses
schneidet File ab

setzt oder ermittelt Filezugriffsmaske
16scht File

liest Werte des File-Systems

setzt Zeitstempel eines Files

wartet auf Ende eines Kindprozesses
schreibt in ein File

Die Aufzdhlung kann durch weitere Systemaufrufe des jeweiligen Lieferanten des
Betriebssystems (z. B. Hewlett-Packard) ergénzt werden. Diese erleichtern das
Programmieren, verschlechtern aber die Portabilitit. Zu den meisten Systemauf-
rufen mit get. .. gibt es ein Gegenstiick set. . ., das in einigen Fillen dem Super-
user vorbehalten ist.

F UNIX-Signale

Die Default-Reaktion eines Prozesses auf die meisten Signale ist seine Beendigung;;
sie kénnen aber abgefangen und umdefiniert werden. Die Signale 09, 24 und 26
kénnen nicht abgefangen werden. Die Bezeichnungen sind nicht ganz einheitlich.
Weiteres unter signal(2), signal(5) oder signal(7).

Name

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGABRT
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSR1
SIGSTKFLT
SIGUSR2
SIGCHLD
SIGCLD
SIGPWR
SIGINFO
SIGVTALRM
SIGPROF
SIGIO
SIGPOLL
SIGWINDOW
SIGSTOP
SIGTSTP
SIGCONT
SIGTTIN
SIGTTOU
SIGURG

Nummer

01
02
03
04
05
06
06
07
08
09
10
11
12
13
14
15
16
16
17
18
18
19
19
20
21
22
22
23
24
25
26
27
28
29

Bedeutung

hangup

interrupt (meist Break-Taste)

quit

illegal instruction

trace trap

software generated abort

software generated signal

software generated signal

floating point exception

kill (sofortiger Selbstmord)

bus error

segmentation violation

bad argument to system call

write on a pipe with no one to read it
alarm clock

software termination (bitte Schlufl machen)
user defined signal 1

stack fault on coprocessor

user defined signal 2

death of a child

= SIGCHLD

power fail

= SIGPWR

virtual timer alarm

profiling timer alarm

asynchronous 1/0O signal

= SIGIO

window change or mouse signal

stop

stop signal generated from keyboard
continue after stop

background read attempted from control terminal
background write attempted from control terminal
urgent data arrived on an I/O channel

282

283

SIGLOST 30 NFS file lock lost
SIGXCPU 30 CPU time limit exceeded
SIGXFSZ 31 file size limit exceeded

G File-Kennungen

Unter UNIX ist es nicht gebriduchlich, den Typ eines Files durch ein Anh#ngsel
(Kennung, Erweiterung, Extension) an seinen Namen zu kennzeichnen, aber es ist
erlaubt. Die Linge der Kennung ist beliebig. Folgende Kennungen (a = ASCII-
Text, b = binéres File, 7 = wechselnd oder unbekannt) sind verbreitet:

$$%
a
adf
adi
adn
afm
ani
ans
app
arc
arj
asc
asm
au
aux
avi
avs
bak
bas
bat
bbl
bfx
bgi
bib
bif
bin
bit
bk
bld
bmp
bnd

bsc
bsv
btm
bw

oY VO OTOTUT® T OTNOTUOTe®® o oo NOR® oY No oY YO YooY

Temporires File

UNIX-Archiv, mit ar(1) erzeugt
Adapter Description File (IBM)
AutoCAD DXF

Add In Utility (Lotus)

Adobe Font Metrics (Adobe)
Atari ST Graphics Format
ANSI-Grafik

Application (RBase, NeXT)
Archiv, mit arc oder pkpak komprimiert
Archiv, mit 77?7 komprimiert
ASCII-Textfile

Assembler-Quelle

Sound-File (Sun, NeXT)

TeX Hilfsfile, mit Beziigen
Microsoft RIFF

Intel DVI

Backup-File

BASIC-File

Batchfile unter MS-DOS, entsprechend Shellscript
BIBTeX Literaturverzeichnis
Bitfax-File

Borland Graphic Interface
Bibliographie

Binary Image File

binires File

TeX Ausgabe des Druckertreibers
Backup-File (WordPerfect)
BASIC Bload Graphics

Microsoft Bitmap Graphics (Windows, OS/2)
Microsoft RIFF

Lumena Paint

Boyan Script-File

BASIC Bsave Graphics

Batchfile unter 4DOS

SGI Image File Format

C-Quelle

284

cal
cap
cat
cbl
cc
cco
cdf
cdr
cdx
cfg
cgm
chk
cht
clp
cmd
cmi
cne
cnf
cob
cod
com
cpi
cpp
cpt
crd
crf
cSV
ctx
cut
cvf
CXX
dat
db
dbf
dcf
dct
dcx
dd
def
dem
des
dhp
dib
dic
dif
dir
dll
doc

O T NN T T ND VW VD VWY NN OO0 T VYYD VDY VY T N VD YYD VDY Y Y ot

285

C++-Quelle

CAL Raster

Capture-File (Telix)

Catalogue, Verzeichnis

COBOL-Quelle

C++-Quelle

Btx-Grafik

Comma delimited format

Corel Draw Vektorgrafik

Compund index (FoxPro)
Konfigurations-File

Computer Graphics Metafile (Harvard Graphics, Lotus)
von chkdsk erzeugtes File (MS-DOS)
Harvard Graphics

Clipboard (Windows), Clip Art, GRASP
Command, Skript, Batchfile unter OS/2
Intel DVI

CNC-Programme

Konfigurations-File

COBOL-Quelle

Codeliste

Kommando-File (MS-DOS), ausfithrbares Programm
Code Page Information (MS-DOS)
C++-Quelle

Compact Pro (Kompressor Macintosh)
Cardfile

Cross Reference File

Comma Separated Values

Signaturfile (PGP)

Dr. Halo Bitmap

Compressed Volume File

C++-Quelle

Daten

Datenbank (Paradox)

Datenbank (dBase)

Driver Configuration file

Dictionary

Fax-File

Disk Doubler

Definitionen, Defaultwerte
Demonstration

Description

Dr. Halo PIC

Microsoft Windows Bitmap, OS/2 Bitmap
Dictionary

Lotus Data Interchange Format
Directory, Verzeichnis

Dynamically Linked Library (OS/2, Windows)
Dokument, Textfile

286

dok
drs
drv
drw
dta
dv
dvi
dvr
dxb
dxf
ega
el
elc
eml
enc
eps
err
etx
exe

fax
fif
fli
fnt
for
fxs
gem
gfb
gif
glo
gz

hex
hdf
hpp
hqgx
htm
html

idx
iff
img
inf
ini

jif

jpeg
jpg

® TTT T T VY TITO® NPT NT ST TN OO NOY oYY OO oY oTOTOTOTO®® TOTOT®

G File-Kennungen

Dokument, Textfile

Driver Resource (WordPerfect)

Device Driver

Drawing

Daten

Desqview Scriptfile

Metafile von TeX, geréiteunabhingig
Device Driver

Drawing Interchange Binary (AutoCAD)
Data Exchange Format (Autocad)
EGA-Grafik

Emacs Lisp

Emacs Lisp compiled

Electronic Mail

encoded

Encapsulated Postscript

Error, Fehlerprotokoll

Setext File

executable, ausfithrbares Programm (MS-DOS)
FORTRAN-Quelle

Fax-File

Fractal Image Format

EmTeX Fontlibrary

Fontfile

FORTRAN-Quelle

Fax-File (Winfax)

GEM Metadateien

Gifblast compressed GIF image
Graphics Interchange File

TeX Glossar

mit GNU gzip(1) komprimiert
Header-File , include-File

Hexdump

Hierarchical Data Format

Header-File C++

Macintosh BinHex encoded
Hypertext-Markup-Language-File (DOS-Welt)
Hypertext-Markup-Language-File (UNIX-Welt)
C-Quelle nach Préiprozessor-Durchlauf
Index

Interchange File Format (Amiga, Autodesk Animator)
GEM Paint, Rastergrafik/Bitmap
Information

Konfigurationsfile (Initialisierung)
JPEG File Interchange Format

JPEG Interchange Format

JPEG File

JPEG File

lex(1)-Quelle

lib
lof
log
lot
Ist
Izh
m4
mac
map
mak
mdf
mid
mif
mod
mpeg
msp

nff

obj
old
ovl
ovr

pak
pax
pcd
pct
pex
pic
pif
pit
pix
pov
prn
prt
ps
psf
qfx
qtm

ras
rdi
rff
rla
rlb
rpm
rtf

sdf

NP VN T T T U CTCTOCOY COCCT T OCTTOR T NSO NTTTOTOT NS T TN DR Y O

287

Library, Bibliothek

TeX Bildverzeichnis (list of figures)
Protokollfile, TeX Meldungen wihrend der Ubersetzung
TeX Tabellenverzeichnis (list of tables)
Liste

Archiv, mit 1ha komprimiert

m4 (1)-Praprozessor-File

Macintosh Paint

Map-Files (Quick C)

Make-File

Menu Definition File

Midi Sound Ffile

Maker Interchange Format (FrameMaker)
MODULA-Quelle, Amiga-Modul (Sound)
Motion Pictures Expert Group (Filme)
Microsoft Windows Paint

Neutral File Format

Objekt-Code

Objekt-Code

Kopie eines Files vor Uberschreiben
Overlay-File

Overlay-File

PASCAL-Quelle

Archiv, mit pkpak komprimiert

Portable Archive Exchange

Kodak Photo Compact Disc

Macintosh PICT

Paintbrush, Rastergrafik

Lotus Picture File

Program Information File

Packlt file (Kompressor Macintosh)

Inset PIX, Lumena Paint

Persistance of Vision

Druckerfile

Parallel Ray Trace

Postscript-File

Permanent Swap File

Fax-File (Quicklink)

QuickTime

Rational-FORTRAN-Quelle

SUN/CALS Raster Grafik

Microsoft RIFF

Dore Raster File Format

Wavefront Run Length Encoded Version A
Wavefront Run Length Encoded Version B
Red Hat Package Manager

Rich Text Format

Assembler-Quelle

Space Delimited File

288 G File-Kennungen

sea ? Self Extracting Archive (Macintosh)

sgi b SGI Image File Format

sh a Bourne-Shell-Script

shar a Bourne-Shell-Archiv

shr a Shell-Archiv

sit b Macintosh Stufflt Archive

src a Program Source Code

stf ? Structured File

Sys b Treiber unter MS-DOS

tar b tar (1)-Archiv

tdf ? Trace/Typeface Definition File

tex a TeX- oder LaTeX-Quelltext

tfm b TeX-Font-Metrics

tga b TARGA-Bildfile

tgz b .tar.gz, tar-Archiv, GNUzip komprimiert
tif b Tag Image File Format (Scanner)

tmp ? temporéres File

toc a Hilfsfile von TeX (table of contents)

tpu b Turbo Pascal Unit

ttf b TrueType Font

txt a Textfile, lesbar

tz b tar.Z, tar-Archiv, compress (1)-komprimiert
uu a uuencoded File, ASCII, aber nicht lesbar
uud a uuencoded File, ASCII, aber nicht lesbar
uue a uuencoded File, ASCII, aber nicht lesbar
vef b Visiting Card File

voc b Creative Labs Sound File

wav b Microsoft Windows Sound File (RIFF)
web a WEB-Quelle

wix b Fax-File (Winfax)

wmf b Windows Metafile Format

wpg a WordPerfect Graphics Metafile

wri a Windows Textfile

wpSs a MS Works Textfile

X b SuperDisk self-extracting archive

xwd b X Window Dump

y a yacc (1)-Quelle

Z b mit compress (1) (UNIX) komprimiert

7 b mit GNU gzip komprimiert (veraltet, besser gz)
zip b mit pkzip komprimiert

700 b mit zoo komprimiert

Postscript-Files bestehen zwar aus ASCII-Zeichen und lassen sich auch editie-
ren, sofern man die Sprache kennt, diirfen aber nur im bindren Modus von FTP
iibertragen werden, um keine Zeichen zu verdndern.

H Slang im Netz

Diese Sammlung von im Netz vorkommenden Slang-Abkiirzungen ist ein Aus-
zug aus der Abklex-Liste (http://www.ciw.uni-karlsruhe.de/abklex.html)
mit rund 6000 Abkiirzungen aus Informatik und Telekommunikation.

AAMOF
AEG
AFATAA
AFAIC
AFAIK
AFJ
AFK
AIMB
AISI
AIUI
AKA
ANFSCD
APOL
ASAP
ATFSM
ATM
ATST
ATT
AWA
AWB
AYOR
B4N
BBL
BBR
BCNU
BFBI
BFI
BFMI
BFN
BNF
BNFSCD
BOF
BOT
BRB
BTAIM
BTC
BTHOM
BTIC
BTK

As A Matter Of Fact (Slang)

Auspacken, Einschalten, Geht (nicht) (Slang)

As Far As I Am Aware (Slang)

As Far As I am Concerned (Slang)

As Far As I Know (Slang)

April Fool’s Joke (Slang)

Away From Keyboard (Slang)

As I Mentioned Before (Slang)

As T See It (Slang)

As I Understand It (Slang)

Also Known As (Slang)

And Now For Something Completely Different (Slang)
Alternate Person On Line (Slang)

As Soon As Possible (Slang),

Ask The Friendly System Manager (Slang)

At The Moment (Slang)

At The Same Time (Slang)

At This Time (Slang)

A While Ago (Slang)

A While Back (Slang)

At Your Own Risc (Slang)

Bye For Now (Slang)

Be Back Later (Slang)

Backbone Ring, Burnt Beyond Recognition (Slang)
Be Seeing You (Slang)

Brute Force and Bloody Ignorance (Slang)

Brute Force and Ignorance (Slang)

Brute Force and Massive Ignorance (Slang)

British Forces Network, Bye For Now (Slang)
Backus-Naur Form, Big Name Fan (Slang)

But Now For Something Completely Different (Slang)
Board of Fellows, Birds Of a Feather (Slang)

Begin Of Tape/Table/Transaction, Back On Topic (Slang)
Be Right Back (Slang)

Be That As It May (Slang)

Bit Test and Complement, Biting The Carpet (Slang)
Beats The Hell Outta Me (Slang)

But Then, "am Crazy (Slang)

Back To Keyboard (Slang)

289

290

BTSOOM
BTW
CU

CUL
DAU
DHRVVF
DIY
DSH
DWIM
EMFBI
ETOL
F2F
FAFWOA
FB

FHS
FIAWOL
FISH
FITB
FITNR
FOAF
FTASB
FTL
FUBAR
FUBB
FUBS
FUD
FWIW
FYA
GAFIA
GAL
GIGO
GIWIST
GR+D
HAK
HHOK
HHOS
HTH
IAC

TAE
TANAL
IBTD

IC
ICOCBW
IIRC
ITWM
ILLAB
IMAO
IMCO
IME

H Slang im Netz

Beats The Shit Out Of Me (Slang)
By The Way (Slang)

See You (Slang)

See You Later (Slang)

Diimmster Anzunehmender User (Slang), Digital Announcement Unit

Ducking, Hiding and Running Very Very Fast (Slang)
Do It Yourself (Slang)

Desparately Seeking Help (Slang)

Do What I Mean (Slang)

Excuse Me For Butting In (Slang)

Evil Twin On Line (Slang)

Face to Face (Slang)

For A Friend Without Access (Slang)

Fine Business (Slang)

For Heaven’s Sake (Slang)

Fandom Is A Way Of Life (Slang)

First In, Still Here (Slang)

Fill In The Blank (Slang)

Fixed In The Next Release (Slang)

Friend Of A Friend (Slang)

Faster Than A Speeding Bullet (Slang)

Faster Than Light (Slang)

Fouled Up Beyond All Repair/Recognition (Slang)
Fouled Up Beyond Belief (Slang)

Fido Used Book Squad (Slang)

(spreading) Fear, Uncertainty, and Disinformation (Slang),
For What It’s Worth (Slang)

For Your Amusement (Slang)

Get Away From It All (Slang)

Gate/Generic Array Logic, Get A Life (Slang)
Garbage In, Garbage/Gospel Out (Slang)

Gee I Wish I’d Said That (Slang)

Grinning, Running + Ducking (Slang)

Hugs and Kisses (Slang)

Ha Ha Only Kidding (Slang)

Ha Ha Only Serious (Slang)

Hope This/That Helps (Slang)

In Any Case (Slang), Interapplication Communication (Apple)
ISDN Anschalteinheit/Anschlusseinheit, In Any Event (Slang)
I Am Not A Lawyer (Slang)

I Beg To Differ (Slang)

I see (Slang), Incoming Call, Input/Integrated Circuit,
I Could, Of Course, Be Wrong (Slang)

If I Remember Correctly (Slang)

If It Were Me/Mine (Slang)

Ich liege lachend am Boden (Slang, vgl. ROTFL)

In My Arrogant Opinion (Slang)

In My Considered Opinion (Slang)

In My Experience (Slang)

IMHO
IMNSCO
IMNSHO
IMO
IMOBO
INPO
IOW
IRL
ISTM
ISTR
TWBNI
TYSWIM
ISWYM
JSNM
KIBO
LLTA
LOL
LOL
MHOTY
MNRE
MOTAS
MTFBWY
MYOB
NCNCNC
NFI
NIMBY
NLA
NRN
NTTAWWT
OATUS
OAUS
OBTW
OBO
0IC
ONNA
ONNTA
OOP
OOTB
00TC
OT
OTOH
OTTH
PDQ
PFM
PITA
PMFJIB
POV
PTO
RAEBNC

291

In My Humble Opinion (Slang)

In My Not So Considered Opinion (Slang)

In My Not So Humble Opinion (Slang)

In My Opinion (Slang)

In My Own Biased Opinion (Slang)

In No Particular Order (Slang)

In Other Words (Slang)

Inter Repeater Link, In Real Life (Slang)

It Seems To Me (Slang)

I Seem To Remember (Slang)

It Would Be Nice If (Slang)

If You See What I Mean (Slang)

I See What You Mean (Slang)

Just Stark Naked Magic (Slang)

Knowledge In, Bullshit Out (Slang)

Lots and Lots of Thundering Applause (Slang)
Laughing Out Loud (Slang)

Lots Of Luck (Slang)

My Hat’s Off To You (Slang)

Manual Not Read Error (Slang)

Member Of The Appropriate Sex (Slang)

May The Force Be With You (Slang)

Mind Your Own Business (Slang)

No Coffee, No Chocolate, No Computer (Slang)

No Frigging Idea (Slang)

Not In My Backyard (Slang)

Not Long Ago (Slang)

Netware Remote Node, No Reply Necessary (Slang)
Not That There’s Anything Wrong With That (Slang)
On A Totally Unrelated Subject (Slang)

On An Unrelated Subject (Slang)

Oh, By The Way (Slang)

Or Best Offer (Slang)

Oh, T See (Slang)

Oh No, Not Again (Slang)

Oh No, Not This Again (Slang)

Object Oriented Pleasure/Programming, Out Of Print (Slang)
Out Of The Box (Slang)

Obligatory On-topic Comment (Slang)

Object Technology, Open Transport, Off Topic (Slang)
On The Other Hand (Slang)

On The Third Hand (Slang)

Pretty Darned Quick (Slang)

Postscript Font Metric, Pure Fantastic Magic (Slang)
Pine In The Ass (Slang)

Pardon Me For Jumping In But (Slang)

Point Of View (Slang), Persistence Of Vision

Public Telecommunication Network Operator, Please Turn Over (Slang)
Read And Enjoyed, But No Comment (Slang)

292

RL
ROFL
ROFLBTC
ROFLMAO
ROTFL
RSN
RTFAQ
RTFB
RTFF
RTFM
RTFS
RTM
SCNR
SEP
SFMJI
SIASL
SIMCA
SITD
SNAFU
TAFN
TANJ
TANSTAAFL
TBH
TGAL
THWLAIAS
TIA

TIC
TINAR
TINWIS
TNX
TPTB
TRDMC
TTBOMK
TTFN
TTYL
TYCLO
TYVM

UL

UTSL

VL
WAMKSAM
WDYMBT
WOMBAT
WRT

WT
WTTM
YMMV

H Slang im Netz

Remote Loopback, Real Life (Slang)

Rolling On the Floor Laughing (Slang)
Rolling On the Floot Biting The Carpet (Slang)
Rolling On The Floor Laughing My Ass Off (Slang)
Roll/Rolling On The Floor Laughing (Slang)
Real Soon Now (Slang)

Read The FAQ list (Slang)

Read The Funny Binary (Slang)

Read The Fantastic FAQ (Slang)

Read The Fine/Fantastic/Funny ... Manual (Slang)
Read The Funny Source (Slang)

Read The Manual (Slang)

Sorry, Could Not Resist (Slang)

Separation, Somebody else’s problem (Slang)
Sorry For My Jumping In (Slang)

Stranger In A Strange Land (Slang)

Sitting In My Chair Amused (Slang)

Still In The Dark (Slang)

Situation Normal All Fed/Fucked Up (Slang)
That’s All For Now (Slang)

There Ain’t No Justice (Slang)

There Ain’t No Such Things As A Free Lunch (Slang)
To Be Honest (Slang)

Think Globally, Act Locally (Slang)

The hour was late, and I am senile (Slang)
Thanks In Advance (Slang)

Tongue In Cheek (Slang)

This Is Not A Review (Slang)

That Is Not What I Said (Slang)

Thanks (Slang)

The Powers That Be (Slang)

Tears Running Down My Cheers (Slang)

To The Best Of My Knowledge (Slang)

Ta Ta For Now (Slang)

Type/Talk To You Later (Slang)

Turn Your Caps Lock Off (Slang)

Thank You Very Much (Slang)

Urban Legend (Slang)

Use The Source, Luke (Slang)

Virtual Life (Slang)

Why Are My Kids Staring At Me? (Slang)
What Do You Mean By That (Slang)

Waste Of Money, Brains, And Time (Slang)
With Respect To (Slang)

Write Through, Without Thinking (Slang)
Without Thinking Too Much (Slang)

Your Mileage May Vary (Slang)

I Formelbeispiele LaTeX

I.1 Gelatexte Formeln
c=1Va?+ b?

\3/1+x%1+§ fir z <1

m£+c$+kx:Zchostt
&

d*p dy -
S kD= |D
O tE gy T e =Dl

Arbeit = Al}iIEOZEAri

j>0 \k>0 n>0 hg,k1...>0

ko+ky+---=0

T — Tg
f: Y—1Ys
Z— Zg

293

H (Z ajkzk) = Z 2" Z Aok, A1k - - -

(L.10)

(L11)

(L12)

294

I Formelbeispiele LaTeX

(L.13)!
iJ
Rz 1l
N 1.14
dEw:Vmw e T -dw (I.14)
. O [~ -
Ed*:——/BdA L1
5 g (I.15)
P T 0 fiir £<0
1 's B iir
o7 / e fls) ds = { F(t) fir t>0 (1.16)
T—jo0
n+1\ (n n n (L.17)
k \k E—1 '
Ve € R 22 >0 (1.18)
Vr,y,z € M : (xRy NxzRz) =y =z (I.19)
A-B=A+B (1.20)
_ 07 op 0 07; ——
. Ty - — — - 1.21
P Uk 8xk 8.’L‘j + 8.’L‘k (Maxk pvk,UJ ()
, v vh
o o
o, . 00y
ur = pl? |=—| =— 1.23
Tour = P |ax2 s (L.23)
. 1) -
R = E(VT — R)+ R®
. 1 . .1
b = [V, — R®) - 2R¥] (1.24)
3} 1 .
7= —(Vy—2
\II(VZ)

IFette Griechen gibt es nur als Grofibuchstaben. Die Erzeugung dieser Fufinote war

iibrigens nicht einfach.

I.1 Gelatexte Formeln

<2 n(n —1) u (Bi — Ei)® 2
= E > .

=1

. Ar ! YimY,)
Vi(r,d,0) =Y S g
c20+1 * rit+l

= =—I

qo,0
qi,1
q1,0
q1,—1
q2,2
q2,1
42,0
q2,—1
q2,—2

<y
I

00 o Yi’ (9)
q;’,m’ - Z Z To,p Gop (v)l”ro,mbp;o,P +O’Zl’+po(—|—1m 2

0=0p=—o0

l(e; — €)
= — ! R2l+1 ? a
@, Um l(ea +€) + €

S »
010 = ¢'10+ Indz1 ¢'5

i Y
721 =¢q 90+ Indi2q

X dm Vi (¥,)
vﬂg%%+1£;l%m_7ﬁr_

m=—1

123
—N—
at+b+---+y+z

afy

Lange Formeln mufl man selbst in Zeilen auflésen:

wWH+T+yY+z=
a+bt+ct+d+e+ f+
g+h+i+tj+k+I

00 47T l ~)/l 1,m:l:1(197 90)
= Z Z (V:tl)l,m qi,m #

295

(1.25)

(.26)

(L.27)

(1.28)

(I.29)

(1.30)

(1.31)

(1.32)

(1.33)

296 I Formelbeispiele LaTeX

0 0 0 0 0 0 0
(Vidoo O 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 (Vi O 0 0 0 0
0 0 (Vi O 0 0 0
0 0 0 (Vi) O 0 0
N 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0
0 0 0 0 (Vi)s O 0
0 0 0 0 0 (Vi) O
0 0 0 0 0 0 (Vi)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1.2 Formeln im Quelltext

\begin{equation}
c = \sqrt{a~{2} + b~{2}}
\end{equation}

\begin{equation}

\sqrt[3]{1 + x} \approx 1 + \frac{x}{3}
\qquad \mbox{f"ur} \quad x \11 1
\end{equation}

\begin{equation}
r = \root 3 \of {\frac{3}{4\pi} V}
\end{equation}

\begin{equation}
\lim_{x \to 0} \frac{\sin xHx} =1
\end{equation}

\begin{equation}

a = \frac{F_O0}{k}\:\frac{1}{\sqrt{(1 - \frac{\Omega~2}
{\omega_0"2})"2 + (\frac{\Omega_c}{k})"2}}
\end{equation}

S O O O oo O O oo oo

—~
<k

+

N

~N
|
—

o O O

SO OO DO DODDDO OO oo oo

—
<Qr
ool
v[\')
|
[N}

[.2 Formeln im Quelltext

\begin{equation}
m\ddot x + c\dot x + kx = \sum_k F_k \cos \Omega_k t
\end{equation}

\begin{equation}

\Theta \frac{d"2 \varphi}{dt~2} + k~\ast \frac{d \varphil}{dt}
+ D~\ast \varphi = | \vec D |

\end{equation}

\begin{equation}

\bar{Y} \approx f(\bar x) + \frac{1}{2}\, \frac{N - 1}{N}
\,f?’ (\bar{x})\,s_x"2
\end{equation}

\begin{equation}

\vec{F_\Gamma} = - \frac{\Gamma m M}{r"2} \vec{e_r} =
- \frac{\Gamma m M}{r~3} \vec{r}

\end{equation}

\begin{eqnarray}

\mbox{Arbeit} & = & \lim_{\Delta r_i \to 0} \sum
{\vec F_i \Delta \vec r_i}\nonumber \\

& = & \int\limits_{\vec r_0}"{\vec r(t)}

{\vec F(\vec r\,)\:d\vec r}

\end{eqnarray}

\begin{equation}

\prod_{j\geO}\left (\sum_{k\ge0} a_{jk}z"k \right) =
\sum_{n \ge0} z"n \left(\sum_{h_0,k_1\1ldots\ge0
\atop k_0+k_1+\cdots=0}

a_{0k_o} a_{1k_1}\1ldots \right)

\end{equation}

\begin{equation}

\vec x =

\left (\begin{array}t{c}
x - x_s \\

y = y_s \\

z - z_s \\

\end{array} \right)
\end{equation}

\begin{minipage}{120mm}
\begin{displaymath}
{\bf\Psi} = \left(\begin{array}{cc}

297

298 I Formelbeispiele LaTeX

\displaystyle{ab \choose cd}

& \displaystyle \frac{e+f}{g-h} \\

\Re z & \displaystyle \left| {ij \atop k1} \right|
\end{array} \right)

\end{displaymath}

\end{minipage}

\stepcounter{equation}

\hspace*{\fill} (\theequation)\makebox[Opt][1]{\footnotemark}
\footnotetext{Fette Griechen gibt es nur als Gro\3buchstaben.
Die Erzeugung dieser Fu\3note war "ubrigens nicht einfach.}
\vspace{1mm}

\begin{equation}

dE_\omega = V \frac{\hbar}{\pi~“2 c~3}\omega~3 \cdot
e “{-\frac{\hbar \omega} {T}} \cdot d\omega
\end{equation}

\begin{equation}

\oint \vec E\:d\vec s = - \frac {\,\partial}{\partial t}
\int \vec B \:d\vec A

\end{equation}

\begin{equation}

\frac{1}{2 \pi j} \int\limits_{x-j\infty}~{x+j\infty}
e“{ts} \:f(s)\:ds =

\left\{\begin{array}{re{\quad \mbox{f"ur} \quad}1l}

0 & t < 0\\

F(t) &t >0

\end{array} \right.

\end{equation}

\begin{equation}
{n+1 \choose k} = {n \choose k} + {n \choose k-1}
\end{equation}

\begin{equation}

\mbox{
\fbox{\parbox{60mm}{\begin{displaymath}
\forall x \in {\rm R}: \qquad x"2 \geq 0
\end{displaymath}}}}

\end{equation}

\vspace{1mm}

\begin{equation}
\forall x,y,z \in {\rm M}: \qquad (xRy \wedge xRz)
\Rightarrow y = z

[.2 Formeln im Quelltext 299

\end{equation}

\begin{equation}
A \cdot B = \overline{\bar A + \bar B}
\end{equation}

\begin{equation}

\rho \cdot \bar{v}_k \cdot \frac{\partial \bar{v}_j}
{\partial{x}_k} = - \frac{\partial \bar{p}}
{\partial x_j} + \frac{\partial}{\partial x_k}
\left(\mu \frac{\partial \bar{v}_j}{\partial x_k}

- \rho\:\overline{v’_k v’_j} \right)

\end{equation}

\begin{equation}

r’ = \frac{\overline{v’_1 v’_2}}{\sqrt{\bar{v’~2_1}}
\: \sqrt{\bar{v’~2_2}}}

\end{equation}

\begin{equation}

\tau_{tur} = \rho 172 \; | \frac{\partial \bar{v_1}}
{\partial x_2} | \; \frac{\partial \bar{v_1}}{\partial x_2}
\end{equation}

\begin{eqnarray}

\ddot R & = & \frac{1}{\Psi} (V_r - \dot R)

+ R {\dot \Phi}"2 \nonumber\\

\ddot \Phi & = & \big\lbrack \frac{1}{\Psi}
(V_\varphi - R \dot \Phi)

- 2 \dot R \dot \Phi \big\rbrack \frac{1}{R} \\
\ddot Z & = & \frac{1}{\Psi}(V_Z-\dot Z) \nonumber\\
\nonumber

\end{eqnarray}

\begin{equation}

{\hat\chi}"2 = \frac{n(n-1)}B(n-B)} \sum_{i=1}"k
\frac{(B_i - E_i)"2}{n_i} > \chi_{k-1;\alpha}"2
\end{equation}

\begin{equation}

V(r,\vartheta,\varphi)=\sum\limits_{1=0}"\infty \frac{4\pi}{21+1}
\sum\limits_{m=-1}"1 \, q_{1,m} \frac{Y_{1,m}

\vartheta, \varphi) H{r {1+1}}

\end{equation}

\begin{eqnarray}

300 I Formelbeispiele LaTeX

\vec{q}= \left (\begin{arrayl}{c}

q_{0,03\\

q_{1,11\\q_{1,01\\q_{1,-1}X\\
q-12,2X\\q_12,13\\q_{2,0:\\q_{2,-1}\\q_{2,-2}\\
\end{array} \right)

\end{eqgnarray}

\begin{equation}
q’_{1’,m’}=\sum\limits_{0=0}"\infty\sum\limits_{p=-0}"o
n_{o,p} \; q_{o,p} \; (\nabla)_{1’+o,m’-p;o0,p} \,
\frac{Y_{1’+o,m’-p}(\vartheta_a,\varphi_a)}{a"{1’+0+1}}
\end{equation}

\begin{equation}

q_{1,m}= -q’_{1,m} R°{21+1} \,
\frac{l1(\epsilon_i-\epsilon_a)}{1(\epsilon_a+\epsilon_i)+\epsilon_a}
\end{equation}

\begin{eqnarray}

\vec{q’}_{1,1}=\vec{q’}_{1,0}+Ind_{2,1} \; \vec{q’}_{2,0} \\[0.3cm]
\vec{q’}_{2,1}=\vec{q’}_{2,0}+Ind_{1,2} \; \vec{q’}_{1,0}
\end{eqnarray}

\begin{eqnarray}

\lefteqn{\nabla_{\pm 1} \sum\limits_{1=0}"{\infty}
\frac{4\pi}{21+1} \,

\sum\limits_{m=-1}"{1} \: q_{1,m} \: \frac{Y_{1,m}
(\vartheta,\varphi) }{r~{1+1}}}

\nonumber \\[0.3cm]
g&=\sum\limits_{1=0}"{\infty}\frac{4\pi}{21+1} \,
\sum\limits_{m=-1}"{1} \: (\tilde{\nabla_{\pm 1}})_{1,m}
\, g_{1,m} \:

\frac{Y_{1+1,m \pm 1}(\vartheta,\varphi) }{r~{1+2}}
\end{eqnarray?

\[\underbrace{a + \overbrace{b + \cdots + y}~{123}
+ z}_{\alpha\beta\gamma} \]

Lange Formeln mu\3 man selbst in Zeilen aufl'osen:
\begin{eqnarray}
\lefteqn{w + x + y + z = } \hspace{lcm} \nonumber\\
& &a+b+c+d+e+f+\\
& g +h+1i+ j +k+ 1 \nonumber
\end{eqnarray?

\begin{eqnarrayx}

[.2 Formeln im Quelltext 301

N_{+1}=\1eft (\begin{array{*{8}{c@{\;}}c}
0&0&0&0&0&0&0&O0&O0\\
(\tilde{\nabla} {+})_{0,0} € 0 & 0 & 0 & 0 & O & 0 & 0 & O \\

0&0&0&0&0&0&O0&O0&O0 \\
0&0&0&0&0&0&0&O0&O0\\

0 & (\tilde{\nabla}_{+}) {1,1} € 0 & 0 & 0 & 0 & O & O & O \\
0 & 0 & (\tilde{\nabla}_{+})_{1,0} & 0 & 0 & O & O & O & O \\
0&0& 0 & (\tilde{\nabla} {+})_{1,-1} & 0 & 0 & 0 & 0 & 0 \\
0&0&0&0&0&0&0&O0&O0 \\
0&0&0&0&0&0&0&O0&O0 \\

0& 0 & 0 & 0 & (\tilde{\nabla}_{+})_{2,2} & 0 & 0 & 0 & 0O \\
0&0&0&0&O0 & (\tilde{\nabla}_{+})_{2,1} & 0 & 0 & 0 \\
0&0&0&0&O0&O0 & (\tilde{\nabla}_{+})_{2,0} & 0 & 0 \\
0&0&0&0&0&O0 &0 & (\tilde{\nabla}_{+})_{2,-1} & 0 \\
0O&0&0&0&0&0¢&O0&O0 & (\tilde{\nabla}_{+})_{2,-2} \\
0&0&0&0&0&0&0&O0&O0\\
0&0&0&0&0&0&0&O0&O0\\

\end{array}\right)

\end{eqnarray=*}

J 1ISO 3166 Landercodes

Bei den Namen von Computern im Internet ist es auflerhalb der USA
iiblich, als letzten Teil den Léndercode nach ISO 3166 anzugeben. Dies
ist jedoch nicht zwingend, es gibt auch Bezeichnungen, die kein Land
sondern eine Organisation oder dergleichen angeben und daher nicht von
ISO 3166 festgelegt werden. Die vollstindige Tabelle findet sich unter
ftp://ftp.ripe.net/iso3166-countrycodes.

Land A2 A3 Nummer
ALBANIA AL ALB 008
ALGERIA DZ DZA 012
ANDORRA AD AND 020
ANTARCTICA AQ ATA 010
ARGENTINA AR ARG 032
AUSTRALIA AU AUS 036
AUSTRIA AT AUT 040
BELARUS BY BLR 112
BELGIUM BE BEL 056
BOSNIA AND HERZEGOWINA BA BIH 070
BRAZIL BR BRA 076
BULGARIA BG BGR 100
CANADA CA CAN 124
CHILE CL CHL 152
CHINA CN CHN 156
CROATIA HR HRV 191
CYPRUS CYy CYP 196
CZECH REPUBLIC CZ CZE 203
DENMARK DK DNK 208
EGYPT EG EGY 818
ESTONIA EE EST 233
FAROE ISLANDS FO FRO 234
FINLAND FI FIN 246
FRANCE FR FRA 250
GEORGIA GE GEO 268
GERMANY DE DEU 276
GIBRALTAR GI GIB 292
GREECE GR GRC 300
GREENLAND GL GRL 304
HUNGARY HU HUN 348
ICELAND IS ISL 352
INDIA IN IND 356
INDONESIA ID IDN 360
IRELAND IE IRL 372

302

ISRAEL

ITALY

JAPAN

KOREA, REPUBLIC OF
LATVIA

LEBANON
LIECHTENSTEIN
LITHUANIA
LUXEMBOURG
MACEDONIA, REPUBLIC OF
MALAYSIA

MALTA

MEXICO

MONACO

MOROCCO
NETHERLANDS

NEW ZEALAND
NORWAY

PAKISTAN

POLAND

PORTUGAL

ROMANIA

RUSSIAN FEDERATION
SAN MARINO

SAUDI ARABIA
SINGAPORE
SLOVAKIA

SLOVENIA

SOUTH AFRICA

SPAIN

SVALBARD AND JAN MAYEN

SWEDEN
SWITZERLAND
TAIWAN

TUNISIA

TURKEY

UKRAINE

UNITED KINGDOM
UNITED STATES
VATICAN
YUGOSLAVIA

IL
IT
JP
KR
LV
LB
LI
LT
LU
MK
MY
MT
MX
MC
MA
NL
NZ
NO
PK
PL
PT
RO
RU
SM
SA
SG
SK
SI
ZA
ES
SJ
SE
CH
™
TN
TR
UA
GB
US
VA
YU

ISR
ITA
JPN
KOR
LVA
LBN
LIE
LTU
LUX
MKD
MYS
MLT
MEX
MCO
MAR
NLD
NZL
NOR
PAK
POL
PRT
ROM
RUS
SMR
SAU
SGP
SVK
SVN
ZAF
ESP
SJM
SWE
CHE
TWN
TUN
TUR
UKR
GBR
USA
VAT
YUG

376
380
392
410
428
422
438
440
442
807
458
470
484
492
504
528
554
078
586
616
620
642
643
674
682
702
703
705
710
724
744
752
756
158
788
792
804
826
840
336
891

303

K Requests For Comment (RFCs)

Das Internet wird nicht durch Normen, sondern durch RFCs (Request For Com-
ment) beschrieben, gegenwirtig etwa 2500 an der Zahl. Wird ein RFC durch
einen neueren abgeldst, bekommt dieser auch eine neue, h6here Nummer. Es gibt
also keine Versionen oder Ausgaben wie bei den DIN-Normen. Sucht man ei-
ne Information, besorgt man sich einen aktuellen Index der RFCs und startet
in den Titeln, bei der hochsten Nummer beginnend, eine Stichwortsuche. Eini-
ge RFCs sind zugleich FYTIs (For Your Information) mit eigener Zdhlung. Diese
enthalten einfiihrende Informationen. Andere RFCs haben den Rang von offizi-
ellen Internet-Protokoll-Standards mit zusétzlicher, eigener Numerierung, siehe
RFC 2200 Internet Official Protocol Standards vom Juni 1997, wobei ein Stan-
dard mehrere RFCs umfassen kann. Schliefilich sind einige RFCs zugleich BCPs
(Best Current Practice), siche RFC 1818, oder RTRs (RARE Technical Report).
Eine vollstdndige Sammlung findet sich auf ftp.nic.de/pub/doc/rfc/. Die Files
mit den Ubersichten sind:

e Request For Comment: rfc-index.txt, 300 kbyte,
e For Your Information: fyi-index.txt, 10 kbyte,
e Internet Standard: std-index.txt, 10 kbyte.

Hier folgt eine Auswahl, nach der Nummer sortiert.

K.1 Ausgewihlte RFCs, ohne FYIs

0001 Host Software (1969)

0681 Network Unix (1975)

0814 Name, Addresses, Ports, and Routes (1982)

0821 Simple Mail Transfer Protocol (1982)

0822 Standard for the Format of ARPA Internet Text Messages (1982)
0902 ARPA-Internet Protocol policy (1984)

0959 File Transfer Protocol (1985)

1000 The Request For Comments Reference Guide (1987)

1034 Domain names — concepts and facilities (1987)

1087 Ethics and the Internet (1989)

1094 NFS: Network File System Protocol specification (1989)

1118 Hitchhiker’s Guide to the Internet (1989)

1173 Responsibilities of Host and Network Managers (1991)

1180 TCP/IP Tutorial (1991)

1208 Glossary of Networking Terms (1991)

1281 Guidelines for the secure operations of the Internet (1991)

1295 User bill of rights for entries and listing in the public directory (1992)
1296 Tnternet Growth (1981 — 1991) (1992)

304

K.1 Ausgewihlte RFCs, ohne FYIs 305

1310
1327
1331
1336
1345
1361
1378
1432
1436
1441

1459
1460
1466
1475
1501
1506
1510
1511
1591
1601
1603
1607
1618
1661
1684
1690

1700
1704
1738
1750
1752
1775
1789
1808
1825
1835
1871
1881
1882
1898
1912
1913
1918
1924
1925
1928
1935

Internet standards process (1992)

Mapping between X.400(1988)/ISO 10021 and RFC 822 (1992)

Point-to-Point Protocol (PPP) (1992)

Who’s who in the Internet (1992)

Character Mnemonics and Character Sets (1992)

Simple Network Time Protocol (1992)

PPP AppleTalk Control Protocol (1992)

Recent Internet books (1993)

Internet Gopher Protocol (1993)

SMTP Introduction to version 2 of the Internet-standard
Network Management Framework (1993)

Internet Relay Chat Protocol 91993)

Post Office Protocol - Version 3 (1993)

Guidelines for Management of TP Address Space (1993)

TP/IX: The Next Internet (1993)

0OS/2 User Group (1993)

A Tutorial on Gatewaying between X.400 and Internet Mail (1993)

The Kerberos Network Authentication Service (1993)

Common Authentication Technology Overview (1993)

Domain Name System Structure and Delegation (1994)

Charter of the Internet Architecture Board (IAB) (1994)

IETF Working Group Guidelines and Procedures (1994)

A VIEW FROM THE 21ST CENTURY (1994)

PPP over ISDN (1994)

The Point-to-Point Protocol (PPP) (1994)

Introduction to White Pages Services based on X.500 (1994)

Introducing the Internet Engineering and Planning Group
(IEPG) (1994)

ASSIGNED NUMBERS (1994)

On Internet Authentication (1994)

Uniform Resource Locators (URL) (1994)

Randomness Recommendations for Security (1994)

The Recommendation for the IP Next Generation Protocol (1995)

To Be On the Internet (1995)

INETPhone: Telephone Services and Servers on Internet (1995)

Relative Uniform Resource Locators (1995)

Security Architecture for the Internet Protocol (1995)

Architecture of the WHOIS++ service (1995)

Addendum to RFC 1602 — Variance Procedure (1995)

IPv6 Address Allocation Management (1995)

The 12-Days of Technology Before Christmas (1995)

CyberCash Credit Card Protocol Version 0.8. (1996)

Common DNS Operational and Configuration Errors (1996)

Architecture of the Whois++ Index Service (1996)

Address Allocation for Private Internets (1996)

A Compact Representation of IPv6 Addresses (1996)

The Twelve Networking Truths (1996)

SOCKS Protocol Version 5. (1996)

What is the Internet, Anyway? (1996)

306 K Requests For Comment (RFCs)

1938 A One-Time Password System (1996)

1939 Post Office Protocol - Version 3. (1996)

1945 Hypertext Transfer Protocol - HTTP/1.0. (1996)

1952 GZIP file format specification version 4.3. (1996)

1955 New Scheme for Internet Routing and Addressing (ENCAPS)
for IPNG (1996)

1957 Some Observations on Implementations of the Post Office Protocol
(POP3) (1996)

1958 Architectural Principles of the Internet (1996)

1963 PPP Serial Data Transport Protocol (SDTP) (1996)

1968 The PPP Encryption Control Protocol (ECP) (1996)

1972 A Method for the Transmission of IPv6 Packets over Ethernet
Networks (1996)

1984 TAB and IESG Statement on Cryptographic Technology and the
Internet (1996)

2014 IRTF Research Group Guidelines and Procedures (1996)

2015 MIME Security with Pretty Good Privacy (PGP) (1996)

2026 The Internet Standards Process — Revision 3. (1996)

2030 Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and
OSI (1996)

2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies (1996)

2046 Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types (1996)

2047 MIME (Multipurpose Internet Mail Extensions) Part Three: Message
Header Extensions for Non-ASCII Text (1996)

2048 Multipurpose Internet Mail Extension (MIME) Part Four:
Registration Procedures (1996)

2049 Multipurpose Internet Mail Extensions (MIME) Part Five:
Conformance Criteria and Examples (1996)

2068 Hypertext Transfer Protocol - HTTP/1.1. (1997)

2070 Internationalization of the Hypertext Markup Language (1997)

2083 PNG (Portable Network Graphics) Specification (1997)

2084 Considerations for Web Transaction Security (1997)

2100 The Naming of Hosts (1997)

2110 MIME E-mail Encapsulation of Aggregate Documents, such as HTML
(MHTML) (1997)

2111 Content-ID and Message-ID Uniform Resource Locators (1997)

2112 The MIME Multipart/Related Content-type (1997)

2133 Basic Socket Interface Extensions for IPv6 (1997)

2134 Articles of Incorporation of Internet Society (1997)

2135 Internet Society By-Laws (1997)

2145 Use and Interpretation of HTTP Version Numbers (1997)

2146 U.S. Government Internet Domain Names (1997)

2147 TCP and UDP over IPv6 Jumbograms (1997)

2153 PPP Vendor Extensions (1997)

2167 Referral Whois (RWhois) Protocol V1.5. (1997)

2168 Resolution of Uniform Resource Identifiers using the Domain Name

System (1997)

K.2 Alle FYIs 307

2180 IMAP4 Multi-Accessed Mailbox Practice (1997)

2182 Selection and Operation of Secondary DNS Servers (1997)

2185 Routing Aspects of IPv6 Transition (1997)

2186 Internet Cache Protocol (ICP), version 2 (1997)

2187 Application of Internet Cache Protocol (ICP) (1997)

2192 IMAP URL Scheme (1997)

2200 INTERNET OFFICIAL PROTOCOL STANDARDS (1997)

2202 Test Cases for HMAC-MD5 and HMAC-SHA-1 (1997)

2212 Specification of Guaranteed Quality of Service (1997)

2222 Simple Authentication and Security Layer (SASL) (1997)

2223 Instructions to RFC Authors (1997)

2228 FTP Security Extensions (1997)

2231 MIME Parameter Value and Encoded Word Extensions: Character Sets,
Languages, and Continuations (1997)

2237 Japanese Character Encoding for Internet Messages (1997)

2245 Anonymous SASL Mechanism (1997)

K.2 Alle FYIs

1150 FYT on FYT: Introduction to the FYT notes (FYI 1) (1990)
1470 FYI on a Network Management Tool Catalog: Tools for monitoring

and debugging TCP/IP internets and interconnected
devices (FYI 2) (1993)

1175 FYI on Where to Start: A bibliography of internetworking
information (FYT 3) (1991)

1594 FYT on Questions and Answers - Answers to Commonly asked New
Internet User Questions (1994) (FYI 4)

1178 Choosing a name for your computer (FYT 5) (1991)

1198 FYT on the X window system (FYTI 6) (1991)

1207 FYT on Questions and Answers: Answers to commonly asked
experienced Internet user questions (FYI 7) (1991)

2196 Site Security Handbook (1997) (FYI 8)

1336 Who’s Who in the Internet: Biographies of TAB, IESG and
IRSG Members (1992) (FYI 9)

1402 There is Gold in them thar Networks! or Searching for Treasure
in all the Wrong Places (FYI 10) (1993)

2116 X.500 Implementations Catalog-96 (1997) (FYT 11)

1302 Building a Network Information Services Infrastructure
(1992) (FYT 12)

1308 Executive Introduction to Directory Services Using the
X.500 Protocol (1992) (FYT 13)

1309 Technical Overview of Directory Services Using the
X.500 Protocol (1992) (FYI 14)

1355 Privacy and Accuracy Issues in Network Information Center
Databases (1992) (FYI 15)

1359 Connecting to the Internet — What Connecting Institutions

Should Anticipate (1992) (FYT 16)

308 K Requests For Comment (RFCs)

1718 The Tao of IETF - A Guide for New Attendees of the Internet
Engineering Task Force (1994) (FYI 17)

1983 Internet Users’ Glossary (1996) (FYT 18)

1463 FYTI on Introducing the Internet — A Short Bibliography of
Introductory Internetworking Readings (FYT 19) (1993)

1462 FYT on What is the Internet (FYT 20) (1993)

1491 A Survey of Advanced Usages of X.500 (FYI 21) (1993)

1941 Frequently Asked Questions for Schools (1996) (FYT 22)

1580 Guide to Network Resource Tool (1994) (FYI 23)

1635 How to Use Anonymous FTP (1994) (FYT 24)

1689 A Status Report on Networked Information Retrieval:
Tools and Groups (1994) (FYT 25)

1709 K-12 Internetworking Guidelines (1994) (FYI 26)

1713 Tools for DNS debugging (1994) (FYT 27)

1855 Netiquette Guidelines (1995) (FYT 28)

2007 Catalogue of Network Training Materials (1996) (FYT 29)

2151 A Primer On Internet and TCP/IP Tools and Utilities (1997) (FYTI 30)

2150 Humanities and Arts: Sharing Center Stage on the Internet

(1997) (FYT 31)
2235 Hobbes’ Internet Timeline (1997) (FYI 32)

L Frequently Asked Questions (FAQs)

In vielen Newsgruppen tauchen immer wieder dieselben Fragen auf. Irgendwann
erbarmt sich ein Leser und sammelt sie samt den zugehorigen Antworten unter der
Uberschrift Frequently Asked Questions, abgekiirzt FAQ. Diese FAQs (man beach-
te: der Plural eines Plurals) sind eine wertvolle Informationsquelle. Die Spektren
der Themen und der Qualitéit sind so breit wie das Netz. Innerhalb der Netnews
enthalten die FAQs naturgeméfl nur Text, manche werden jedoch auch parallel
dazu im WWW angeboten und kénnen dort Grafik verwenden. Sie sind zu finden:

e in der jeweiligen Newsgruppe,
e in der Newsgruppe news.answers bzw. de.answers,

e auf rtfm.mit.edu in den Verzeichnissen /pub/usenet-by-group/ bzw.
/pub/usenet-by-hierarchie/

Um einen Uberblick zu gewinnen, hole man sich per FTP von dort das File
Index-byname.gz. Nachfolgend sind einige FAQs aufgefiihrt:

e Unix - Frequently Asked Questions. Siebenteilig, von TED TIMAR. In
news.answers und comp.unix.questions, seit 1989, daher ausgereift.

309

M Karlsruher Test

Nicht jedermann eignet sich fiir so schwierige Dinge wie die elektronische Da-
tenverarbeitung. Um Ihnen die Entscheidung zu erleichtern, ob Sie in die EDV
einsteigen oder sich angenehmeren Dingen widmen sollten, haben wir ganz beson-
ders fiir Sie einen Test entwickelt. Woran denken Sie bei:

Bit Bier aus der Eifel (1 Punkt)
Hundefutter (0 Punkte)
kleinste Dateneinheit (2 Punkte)

Festplatte Was zum Essen, vom Partyservice (1)
Schallplatte (0)
Massenspeicher (2)

Menu Was zum Essen (1)
Dialogtechnik (2)
mittelalterlicher Tanz (0)

CPU politische Partei (0)
Zentralprozessor (2)
Carnevalsverein (0)

Linker Linkshénder (0)
Anhénger einer Linkspartei (1)
Programm zum Binden von Modulen (2)

IBM Ich Bin Miide (1)
International Business Machines (2)
International Brotherhood of Magicians (1)

Schnittstelle Verletzung (1)

Verbindungsstelle zweier EDV-Geriite (2)
Werkstatt eines Bartscherers (0)

310

Slot

Fortran

Mainframe

PC

Puffer

Software

Port

Strichcode

Chip

Pointer

Page

Steckerleiste im Computer (2)
einarmiger Bandit (1)
niederdeutsch fiir Kamin (0)

starker Lebertran (0)
amerikanisches Fort (0)
Programmiersprache (2)

Frachtkahn auf dem Main (0)
Schiff, mit dem FRIDTJOF NANSEN zum Nordpol wollte (0)
grofler Computer (2)

Plumpsklo (Gravitationstoilette) (1)
Personal Computer (2)
Power Computing Language (0)

Was zum Essen (1)
Was am Eisenbahnwagen (1)
Zwischenspeicher (2)

Rohstoff fiir Softice (0)
Programme, Daten und so Zeugs (2)
was zum Trinken (0)

was zum Trinken (1)
Hafen (1)
Steckdose fiir Peripheriegerite (2)

maschinell lesbarer Code (2)
Geheimsprache im Rotlichtviertel (0)
Urliste in der Statistik (0)

was zum Essen (1)
was zum Spielen (1)
Halbleiterbaustein (2)

Hund (1)
starker Whisky (0)
Zeiger auf Daten, Adresse (2)

Hotelboy (1)
englisch, Seite in einem Buch (1)
Untergliederung eines Speichers (2)

311

312

Character

Betriebssystem

Traktor

Treiber

Animator

Hackbrett

emulieren

Font

Server

Yabbawhap

Terminal

was manchen Politikern fehlt (1)
Schriftzeichen (2)
Wasserfall (0)

Konzern (0)
betriebsinternes Telefonsystem (0)
wichtigstes Programm im Computer (2)

Papiereinzugsvorrichtung (2)
landwirtschaftliches Fahrzeug (1)
Zahl beim Multiplizieren (0)

Hilfsperson bei der Jagd (1)
Programm zum Ansprechen der Peripherie (2)
Vorarbeiter (0)

was zum Trinken (1)
Unterhalter (1)
Programm fiir bewegte Grafik (2)

Musikinstrument (1)
Werkzeug im Hackbau (0)
Tastatur (2)

nachahmen (2)
Ol in Wasser verteilen (0)
entpflichten (0)

Menge von Schriftzeichen (2)
Soflengrundlage (1)
Hintergrund, Geldmenge (0)

Brettsegler (0)
Kellner (0)
Computer fiir Dienstleistungen (2)

Datenkompressionsprogramm (2)
Kriegsruf der Siidstadt-Indianer (0)
was zum Essen (0)

Schnittstelle Mensch - Computer (2)
Bahnhof oder Hafen (1)
Zubehor zu Drahttauwerk (1)

M Karlsruher Test

Ampersand

Alias

Buscontroller

Algol

Rom

Dram

Diskette

Directory

Dekrement

Sprungbefehl

Oktalzahl

313

Sand aus der Amper (1)
et-Zeichen (2)
Untiefe im Wattenmeer (0)

altgriechisches Epos (0)
alttestamentarischer Prophet (0)
Zweitname eines Kommandos (2)

Busfahrer (0)
Busschaffner (0)
Programm zur Steuerung eines Datenbusses (2)

was zum Trinken (0)
Doppelstern (1)
Programmiersprache (2)

Stadt in Italien (1)
schwedisch fiir Rum (1)
Read only memory (2)

Dynamic random access memory (2)
dénisch fiir Schnaps (1)
Straflenbahn (0)

Maédchen, das oft in Discos geht (0)
weiblicher Diskjockey (0)
Massenspeicher (2)

oberste Etage einer Firma (0)
Inhaltsverzeichnis (2)
Kunststil zur Zeit der Franz. Revolution (0)

was die Verdauung iibrig 148t (0)
Anordnung von oben (0)
Wert, um den ein Z&hler verringert wird (2)

Vorkommnis wéihrend Thres Wehrdienstes (0)
Kommando im Pferdesport (0)
Anweisung in einem Programm (2)

Ma# fiir die Klopffestigkeit (0)
Zahl zur Basis 8 (2)
Anzahl der Oktaven einer Orgel (0)

314

Subroutine

virtuell

Klammeraffe

ESC

Monitor

Unix

Joystick

Maus

Icon

Pascal

Kleidungsstiick eines Priesters (0)
was im Unterbewufiten (0)
Unterprogramm (2)

Vitamin (1)
Programmiersprache (2)
Korperteil (0)

tugendhaft (0)
die Augen betreffend (0)
nicht wirklich vorhanden, scheinbar (2)

ASCII-Zeichen (2)
Biirogerit (1)
Affenart in Siidamerika (0)

Eisenbahner-Spar- und Creditverein (0)
Eishockeyclub (0)
escape, Fluchtsymbol (2)

Karlsruher Brauerei (0)
Fernsehsendung (1)
Bildschirmgerit, Uberwachungsprogramm (2)

Tiitensuppe (0)
Freund von Asterix und Obelix (0)
hervorragendes Betriebssystem (2)

Computerzubehor (2)
ménnlicher Korperteil (0)
Hebel am Spielautomat (0)

kleines Sdugetier (1)
Computerzubehor (2)
junge Dame (1)

russisches Heiligenbild (0)
Sinnbild (2)
Kamerafabrik (0)

franzosischer Mathematiker (1)
Mafleinheit fiir Druck (1)
Programmiersprache (2)

M Karlsruher Test

IEC-Bus

Wysiwig

Register

Record

HP

Kermit

Ethernet

Algorithmus

File

Bug

Router

315

Schnittstelle (2)
Intercity-Bus (0)
Internationale Bus-Gesellschaft (0)

englisch fiir Wolpertinger (0)
franzosisch fiir Elmentritschen (0)
what you see is what you get (2)

was in Flensburg (1)
was an der Orgel (1)
Speicher (2)

was im Sport (1)
englisch fiir Blockflote (0)
Datensatz (2)

High Price (0)
Hewlett-Packard (2)
Horse Power (1)

Klebstoff (0)
Frosch aus der Muppet-Show (1)
Fileiibertragungs-Protokoll (2)

Baustoff (Asbestzement) (0)
Local Area Network (2)
Student der ETH Ziirich (0)

UberméBiger Genuf§ geistiger Getriinke (0)
Krankheit (0)
Rechenvorschrift (2)

Was zum Essen (0)
Menge von Daten (2)
Durchtriebener Kerl (0)

Vorderteil eines Schiffes (1)
Fehler im Programm (2)
englisch fiir Wanze (1)

jemand mit Routine (0)
franzosischer LKW-Fahrer (0)
Verbindungsglied zweier Netze (2)

316

Zylinder

FTP

Datex

Bridge

Email

Baum

Internet

Split

Mini

Cut

2B112B

Kopfbedeckung (1)
Teil einer Kolbenmaschine (1)
Unterteilung eines Plattenspeichers (2)

kleine, aber liberale Partei (0)
File Transfer Protocol (2)
Floating Point Processor (0)

Klebstoff (0)
Datendienst der Post (2)
Kommando zum Léschen von Daten (0)

Kartenspiel (1)
internationales Computernetz (0)
Verbindung zweier Computernetze (2)

Glasur (1)
elektronische Post (2)
Sultanspalast (0)

was im Wald (Wurzel unten) (1)
was auf einem Schiff (keine Wurzel) (1)
was aus der Informatik (Wurzel oben) (2)

Schule mit Schlafgelegenheit (0)
Zwischenraum (0)
Weltweites Computernetz (2)

UNIX-Kommando (2)
kantige Steinchen (0)
Stadt in Dalmatien (1)

Damenoberbekleidung (1)
kleiner Computer (2)
Frau von Mickey Mouse (0)

Herrenoberbekleidung (1)
Colonia Ulpia Traiana (1)
UNIX-Kommando (2)

Parallelprozessor (0)
Assembler-Befehl (0)
ein Wort Hamlets (2)

M Karlsruher Test

Shell

Slip

Diéresis

Space Bar

Popper

Rohling

Schleife

Alex

Altair

Eure Prioritat

317

Filmschauspielerin (Maria S.) (0)
Kommando-Interpreter (2)
Mineral6l-Gesellschaft (1)

Unterbekleidung (1)
Schlupfschuh (0)
Internet-Protokoll (2)

Durchfall (0)
Diakritisches Zeichen (Umlaute) (2)
Erndhrungslehre (0)

Kneipe im Weltraum (www.spacebar.com) (0)
Mafleinheit fiir den Druck im Weltraum (0)
Grofite Taste auf der Tastatur (2)

Popcorn-Réster (0)
Mail-Programm (2)
Philosoph aus Wien (1)

Wiister Kerl (1)
Noch zu beschreibende CD (2)
Rohkost-Liebhaber (0)

Kleidungsstiick (1)
Schlitterbahn (1)
Kontrollstruktur eines Programmes (2)

Altlasten-Expertensystem (1)
Automatic Login Executor (1)
Globales Filesystem (1)

Stern (Alpha Aquilae) (1)
Gebirge in Zentralasien (0)
frither Personal Computer (2)

Anrede des Priors in einem Kloster (0)
Anrede des Ersten Sekretérs im Vatikan (0)
Anrede des System-Managers (6)

Zéahlen Sie Thre Punkte zusammen. Die Auswertung ergibt Folgendes:

e iiber 169 Punkte: Uberlassen Sie das Rechnen kiinftig dem Computer.

84 bis 169 Punkte: Mit etwas Fleifl wird aus Ihnen ein EDV-Experte.
17 bis 83 Punkte: Machen Sie eine moglichst steile Karriere auflerhalb der

EDV und suchen Sie sich fihige Mitarbeiter.

unter 17 Punkten: Vielleicht hatten Sie schlechte Lehrer?

N Zeittafel

Diese Ubersicht ist auf Karlsruher Verhiltnisse zugeschnitten. Ausfiihrlichere An-
gaben sind den im Anhang O Literatur in Abschnitt Geschichte aufgefiihrten
Werken zu entnehmen. Die meisten Errungenschaften entstanden nicht zu einem
Zeitpunkt, sondern entwickelten sich iiber manchmal lange Zeitspannen, so dafl
vor viele Jahreszahlen um etwa zu setzen ist. Das Deutsche Museum in Miinchen
zeigt in den Abteilungen Informatik und Telekommunikation einige der hier ge-
nannten Maschinen.

ca. 10® v. Chr.

Der beliebte Tyrannosaurus hatte zwei Finger an jeder Hand
und rechnete vermutlich im Dualsystem, wenn iiberhaupt.

ca. 2000 v. Chr. Die Babylonier verwenden fiir besondere Aufgaben ein

ca. 400 v. Chr.
ca. 20

600

1200

1550

1617
1623

1642

1674

1801

1821

1840

1847

gemischtes Stellenwertsystem zur Basis 60.

In China werden Z#hlstdbchen zum Rechnen verwendet.

In der Bergpredigt wird das Binédrsystem erwidhnt (Matth. 5, 37).
Die Romer schieben Rechensteinchen (calculi).

Die Inder entwickeln das heute iibliche reine Stellenwertsystem,
die Null ist jedoch <er. Etwa gleichzeitig entwicklen die Mayas
in Mittelamerika ein Stellenwertsystem zur Basis 20.
LEONARDO VON PisA, genannt FIBONACCI, setzt sich fiir die
Einfiihrung des indisch-arabischen Systems im Abendland ein.
Die européischen Rechenmeister verwenden sowohl die rémische
wie die indisch-arabische Schreibweise.

JOHN NAPIER erfindet die Rechenknochen (Napier’s Bones).
Erste mechanische Rechenmaschine mit Zehneriibertragung
und Multiplikation, von WILHELM SCHICKARD, Tiibingen.
Rechenmaschine von BLAISE PASCAL, Paris fiir kaufménnische
Rechnungen seines Vaters.

GOTTFRIED WILHELM LEIBNIZ baut eine mechanische
Rechenmaschine fiir die vier Grundrechenarten und befaf}t sich
mit der dualen Darstellung von Zahlen. In der Folgezeit
technische Verbesserungen an vielen Stellen in Europa.

JOSEPH MARIE JACQUARD erfindet die Lochkarte und

steuert Webstiihle damit.

CHARLES BABBAGE stellt der Royal Astronomical Society

eine programmierbare mechanische Rechenmaschine vor, die
jedoch keinen wirtschaftlichen Erfolg hat. Er denkt auch an
das Spielen von Schach oder Tic-tac-toe auf Maschinen.
SAMUEL MORSE entwickelt einen aus zwei Zeichen plus Pausen
bestehenden Telegrafencode, der die Buchstaben entsprechend
ihrer Haufigkeit codiert.

GEORGE BOOLE entwickelt die symbolische Logik.

318

1890

1894

1896
1910

1924

1937

1938

1939

1941

1942

1944

1945

1946

1948

1949
1952

319

HERMAN HOLLERITH erfindet die Lochkartenmaschine und
setzt sie bei einer Volkszidhlung in den USA ein. Das ist der
Anfang von IBM.

OT1TO LUEGERS Lexikon der gesamten Technik fiihrt

unter dem Stichwort FElektrizitit als Halbleiter Aether,

Alkohol, Holz und Papier auf.

Griindung der Tabulating Machine Company, der spiteren IBM.
Griindung der Deutschen Hollerith Maschinen GmbH, Berlin,
der Vorlduferin der IBM Deutschland.

Aus der Tabulating Machine Company von Herman Hollerith,
spiter in Computing-Tabulating-Recording Company umbenannt,
wird die International Business Machines (IBM).

EUGEN NESPER schreibt in seinem Buch Der Radio-Amateur,
jeder schlechte Kontakt habe gleichrichtende

Eigenschaften, ein Golddraht auf einem Siliziumkristall sei aber
besonders gut als Kristalldetektor geeignet; eine heifle Spur.
ALAN TURING verdffentlicht sein Gedankenmodell eines
Computers.

KONRAD ZUSE baut den programmgesteuerten Rechner 7 1.
Sein wichtigstes Werkzeug dabei ist die Laubsége.

Griindung der Firma Hewlett-Packard, Palo Alto, Kalifornien
durch WiLLiaAM HEWLETT und DAVID PACKARD. Ihr erstes
Produkt ist ein Oszillator fiir Tonfrequenzen.

KONRAD ZUSE baut die Z3.

Die Purdue University beginnt mit der Halbleiterforschung und
untersucht Germaniumbkristalle.

Die Zuse Z4 wird fertig (2200 Relais, mechanischer Speicher).
Sie arbeitet von 1950 bis 1960 in der Schweiz.

KONRAD ZUSE entwickelt den Plankalkiil, die erste héhere
Programmiersprache. WILLIAM BRADFORD SHOCKLEY startet
ein Forschungsprojekt zur Halbleiterphysik in den Bell-Labs.
JOHN VON NEUMANN verdffentlicht sein Computerkonzept.

J. PRESPER ECKERT und JOHN W. MAUCHLY bauen in

den USA die ENIAC (Electronic Numerical Integrator and
Calculator), die erste elektronische Rechenmaschine. Die ENIAC
arbeitet dezimal, enthélt 18000 Vakuumrohren, wiegt 30 t,

ist 5,5 m hoch und 24 m lang, braucht fiir eine Addition 0,2 ms,
ist an der Entwicklung der Wasserstoffbombe beteiligt und
arbeitet bis 1955. Sie ist der Urahne der UNIVAC.

CLAUDE E. SHANNON begriindet die Informationstheorie.
JOHN BARDEEN, WALTER HOUSER BRATTAIN und

WILLIAM BRADFORD SHOCKLEY entwickeln in den Bell-Labs
den Transistor, der 10 Jahre spéiter die Vakuumréhre ablost.
Erster Schachcomputer: Manchester MADM.

IBM bringt ihre erste elektronische Datenverarbeitungs-
anlage, die IBM 701, heraus. Vorschlége fiir integrierte Schalt-

320

1954

1955

1956

1957

1958

1959

1960

1961

1962

N Zeittafel

kreise, nicht verwirklicht.

Remington-Rand bringt die erste UNIVAC heraus, IBM die 650.
Silizium beginnt, das Germanium zu verdréngen.

IBM entwickelt die erste hthere Programmiersprache:
FORTRAN (Formula Translator) und verwendet Transistoren.
KONRAD ZUSE baut die Z22. Sie kommt 1958 auf den

Markt. Bis 1961 werden 50 Stiick verkauft.

BARDEEN, BRATTAIN und SHOCKLEY erhalten den Nobelpreis
fiir Physik.

IBM stellt die erste Festplatte vor, 5 MByte, grof3 wie ein Schrank.
Die IBM 709 braucht fiir eine Multiplikation 0,12 ms.

Weltweit arbeiten rund 1300 Computer.

Seminar von Prof. JOHANNES WEISSINGER iiber Programm-
gesteuerte Rechenmaschinen im SS 1957 der TH Karlsruhe.
KARL STEINBUCH prégt den Begriff Informatik.

Erster Satellit (Sputnik, Sowjetunion) kreist um die Erde.

Die TH Karlsruhe erhélt eine Zuse Z22. Die Maschine

verwendet 400 Vakuumrohren und wiegt 1 t. Der Arbeits-
speicher fafit 16 Worter zu 38 Bits, d. h. 76 Byte. Der Massen-
speicher, eine Magnettrommel, fafit rund 40 KByte. Eine Gleit-
kommaoperation dauert 70 ms. Das System versteht nur
Maschinensprache (Freiburger Code). Es lduft bis 1972.

Im SS 1958 hilt Priv.-Doz. KARL NICKEL (Institut fiir Angew.
Mathematik) eine Vorlesung Programmieren mathematischer und
technischer Probleme fir die elektronische Rechenmaschine Z22.
Die Programmiersprache ALGOL 58 kommt heraus.

Bei Texas Instuments baut JACK ST. CLAIR KILBY den ersten IC.
Im SS 1959 hélt Priv.-Doz. KARL NICKEL erstmals die
Vorlesung Programmieren I, im WS 1959/60 die Vorlesung
Programmieren II. Erstes Werk von Hewlett-Packard in
Deutschland. Siemens baut die Siemens 2002.

Programmieren steht noch in keinem Studienplan, sondern

ist freiwillig. Die Karlsruher 722 1duft Tag und Nacht. Die
Programmiersprache COBOL wird veroffentlicht. Ein Computer-
spiel namens Spacewar lauft auf einer PDP-1 im MIT.

Digital Equipment (DEC) bring die PDP 1 heraus.

AL SHUGART etnwickelt ein Verfahren zur Aufzeichnung von
Daten auf einer magnetisch beschichteten Scheibe.

Die TH Karlsruhe erhilt eine Zuse Z23, die mit

2400 Transistoren arbeitet. Thr Hauptspeicher fat 240 Worter
zu 40 Bits. Eine Gleitkommaoperation dauert 15 ms. Aufler
Maschinensprache versteht sie ALGOL. Weltweit arbeiten etwa
7300 Computer.

Die TH Karlsruhe erhélt eine SEL ER 56, die bis 1968 lauft.

An der Purdue University wird die erste Fakultét fiir Informatik
(Department of Computer Science) gegriindet. Texas Instruments

321

und Fairchild nehmen die Serienproduktion von ICs (Chips) auf.

1963 Weltweit arbeiten etwa 16.500 Computer.
Erster geostationirer Satellit (Syncom).
1964 Die Programmiersprache BASIC erscheint. In den USA wird der

Begrift Computer Science geprigt.
IBM legt das Byte zu 8 Bits fest (IBM 360).
Ein Chip enthilt auf 0,5 cm? 10 Transistoren.
1966 Die TH Karlsruhe erhélt eine Electrologica X 8, die bis
1973 betrieben wird. Griindung des Karlsruher Rechenzentrums.
Hewlett-Packard steigt in die Computerei ein (HP 2116 A).
1967 Erster elektronischer Taschenrechner (Texas Instruments).
Beim Bundesministerium fiir wissenschaftliche Forschung wird
ein Fachbeirat fiir Datenverarbeitung gebildet.
1968 Die Programmiersprache PASCAL kommt heraus.
Die Firma Intel wird gegriindet.
Hewlett-Packard baut den ersten wissenschaftlichen programmierbaren
Tischrechner (HP 9100 A).
1969 In Karlsruhe wird das Institut fiir Informatik gegriindet,
erster Direktor KARL NICKEL. Im WS 1969/70 beginnt in
Karlsruhe die Informatik als Vollstudium mit 91 Erstsemestern.
Griindung der Gesellschaft fiir Informatik (GI) in Bonn.
In den Bell Labs UNIX in Assembler auf einer DEC PDP 7.
Beginn des ARPANET-Projektes und der TCP /IP-Protokolle,
erste Teilnehmer U. of California at Los Angeles, Stanford Research
Institute, U. of California at Santa Barbara und U. of Utah.
RFC 0001: Host Software, von Steve Crocker.
1970 Die Universitiat Karlsruhe erhélt eine UNIVAC 1108,
die bis 1987 lauft und damit den Rekord an Betriebsjahren
hélt. Die Karlsruher Fakultét fiir Informatik wird gegriindet.
1971 UNIX auf C umgeschrieben, erster Mikroprozessor (Intel 4004).
1972 IBM entwickelt das Konzept des virtuellen Speichers und
stellt die 8-Zoll-Floppy-Disk vor. Xerox (BOB METCALFE),
DEC und Intel entwickeln den Ethernet-Standard.
Das ARPANET wird der Offentlichkeit vorgestellt.
Ein Student namens STEPHAN G. WOzNIAK l6tet sich einen
Computer zusammen, der den Smoke-Test nicht iibersteht.
In der Bundesrepublik arbeiten rund 8.200 Computer.
Hewlett-Packard baut den ersten wissenschaftlichen Taschenrechner (HP 35).

1973 Erste internationale Teilnehmer am ARPANET: U. College of
London und Royal Radar Establishment, Norwegen.

1974 Der erste programmierbare Taschenrechner kommt auf den
Markt (Hewlett-Packard 65), Preis 2500 DM.

1975 UNIX wird verdffentlicht, Beginn der BSD-Entwicklung.

Die Zeitschrift Byte wird gegriindet.
Erste, méBig erfolgreiche Personal Computer (Altair).
1976 STEVEN P. JOBS und STEPHAN G. WOZNIAK griinden

322 N Zeittafel

die Firma Apple und bauen den Apple 1. Er kostet 666,66 Dollar.
AL SHUGART stellt die 5,25-Zoll-Diskette vor.
Konigin Elizabeth II. von England verschickt eine E-Mail.

1978 In der Bundesrepublik arbeiten rund 170.000 Computer.
Der Commodore PET — ein Vorldufer des C64 — kommt heraus.
1979 Faxdienst in Deutschland eingefiihrt.

Die Zusammenarbeit von Apple mit Rank Xerox fiihrt zur Apple
Lisa, ein Miflerfolg, aber der Wegbereiter fiir den Macintosh.
1980 Erster Jugendprogrammier-Wettbewerb der GI.
Sony fiihrt die 3,5-Zoll-Diskette ein. In den Folgejahren entwickeln
andere Firmen auch Disketten mit Durchmessern von 3 bis 4 Zoll.
1981 Die Universitidt Karlsruhe erhilt eine Siemens 7881 als
zentralen Rechner. IBM bringt in den USA den IBM-PC heraus
mit MS-DOS (PC-DOS 1.0) als wichtigstem Betriebssystem.

1982 Die Firma SUN wird gegriindet, entscheidet sich fiir UNIX
und baut die ersten Workstations.
1983 Die Universitat Karlsruhe erhélt einen Vektorrechner Cyber 205

und eine Siemens 7865. Die Cyber leistet 400 Mio. Gleitkomma-
operationen pro Sekunde.
IBM bringt den PC auf den deutschen Markt.
UNIX kommt als System V von AT&T in den Handel,
Griindung der X/Open-Gruppe.
MS-DOS 2.0 (PC-DOS 2.0) und Novell Netware kommen heraus.
1984 Der erste Macintosh kommt auf den Markt.
Der IBM PC/AT mit Prozessor Intel 80 286 und MS-DOS 3.0
kommen heraus. Siemens steigt in UNIX ein.
Entwicklung des X Window Systems am MIT.
1985 MS-Windows 1.0, IBM 3090 und IBM Token Ring Netz.
X-Link an der Uni Karlsruhe stellt als erstes deutsches Netz
eine Verbindung zum nordamerikanischen ARPA-Net her.
Hewlett-Packard bringt den ersten Laserjet-Drucker heraus.
1986 Weltweit etwa eine halbe Million UNIX-Systeme und
3000 offentliche Datenbanken.
Mit dem Computer-Investitionsprogramm des Bundes und der
Lander (CIP) kommen mehrere HP 9000/550 unter UNIX an
die Universitidt Karlsruhe.
1987 Microsoft XENIX fiir den IBM PC/AT
IBM bringt die PS/2-Reihe unter MS-OS/2 heraus.
Weltweit mehr als 5 Millionen Apple Computer und etwa
100 Millionen PCs nach Vorbild von IBM.
Das MIT veroffentlicht das X Window System Version 11 (X11).
In Berkeley wird die RAID-Technologie entwickelt.
1988 Eine Siemens (Fujitsu) VP 400 ersetzt die Cyber 205.
Das Campusnetz KARLA wird durch das Glasfasernetz KLICK
ausgetauscht. Das BELWUE-Netz nimmt den Betrieb auf.
Griindung der Open Software Foundation und der UNIX

323

International Inc. MS-DOS 4.0 fiir PCs.

Der Internet-Wurm namens Morris geht auf die Reise, darauf

hin Griindung des Computer Emergency Response Teams (CERT).
Erstes landmobiles Satellitensystem fiir Datenfunk (Inmarsat-C).

1989 Im Rechenzentrum Karlsruhe 16st die IBM 3090 die
Siemens 7881 ab. ISDN in Deutschland eingefiihrt.
1990 Zunehmende Vernetzung, Anschlufl an weltweite Netze.

Computer-Kommunikation mittels E-Mail, Btx und Fax vom
Arbeitsplatz aus. Optische Speichermedien (CD-ROM, WORM).
UNIX System V Version 4. Die mittlere Computerdichte in technisch
orientierten Instituten und Familien erreicht 1 pro Mitglied.
1991 Das UNIX-System OSF/1 mit dem Mach-Kernel der Carnegie-
Mellon-Universitdt kommt heraus.
Anfinge von LINUX, einem freien UNIX aus Finnland.
Der Vektorrechner im RZ Karlsruhe wird erweitert auf den Typ S600/20.
MS-DOS 5.0 fiir PCs. Anféinge von Microsoft Windows NT.
IBM, Apple und Motorola kooperieren mit dem Ziel, einen
Power PC zu entwickeln.
TiM BERNERS-LEE entwickelt am CERN das World Wide Web.
1992 Die Universitéit Karlsruhe nimmt den massiv parallelen
Computer MasPar 1216A mit 16000 Prozessoren in Betrieb.
Novell iibernimmt von AT&T die UNIX-Aktivitéten (USL).
Eine Million Knoten im Internet.
1993 MS-DOS Version 6.0. Microsoft kiindigt Windows-NT an.
DEC stellt PC mit Alpha-Prozessor vor, 150 MHz, 14.000 DM.
UNIX-Workstations konkurrieren preislich mit hochwertigen PCs.
Novell tritt das Warenzeichen UNIX an die X/Open-Gruppe ab.
Das DE-NIC kommt ans RZ der Universitit Karlsruhe.
1994 Weltweit 10 Mio. installierte UNIX-Systeme prognostiziert.
Das Internet umfafit etwa 4 Mio. Knoten und 20 Mio. Benutzer.
Erste Spam-Mail (Canter + Siegel).
1995 Die Universitdt Karlsruhe ermdéglicht in Zusammenarbeit
mit dem Oberschulamt nordbadischen Schulen den Zugang zum
Internet. Ahnliche Projekte werden auch an einigen anderen
Hoch- und Fachhochschulen durchgefiihrt.
Die mittlere Computerdichte in technisch orientierten Instituten
und Familien erreicht 2 pro Mitglied.
1996 Die Massen erobern das Internet.
1997 100-Ethernet ist erschwinglich geworden, {iber das Gigabit-Ethernet
wird geredet. In Deutschland gibt es rund 20 Mio. PCs und
1 Mio. Internetanschliisse (Quelle: Fachverband Informationstechnik).
1998 Compaq iibernimmt die Digital Equipment Corporation (DEC). Einer der
Griinde fiir den Niedergang von DEC ist die zu spédte und halbherzige
Unterstiitzung von UNIX. Der Trend zum Drittcomputer hilt an.

O Literatur

Die Auswahl ist subjektiv und enthélt Texte, die wir noch lesen wollen, schon
haben oder sogar schon gelesen haben. Die hier angefiihrte Electronic Information
ist auf ftp.ciw.uni-karlsruhe.de, www.ciw.uni-karlsruhe.de und anderen
verfiigbar.

1. Sammlung von URLs (Bookmarks)

W. Alex, B. Alex, A. Alex UNIX, C/C++, Internet usw.
http://www.ciw.uni-karlsruhe.de/technik.html
Zu jedem Thema des Buches finden sich dort weiterfiihrende
WWW-Seiten. Mit dieser Sammlung arbeiten wir selbst.

2. Literaturlisten

— Newsgruppen:
de.etc.lists (wechselnde Listen aus dem deutschsprachigen Raum)
news.lists (internationale Listen)
alt.books.technical
misc.books.technical

— RFC 1175 (FYI 3): FYI on Where to Start —
A Bibliography of Internetworking Information
ftp://ftp.nic.de/pub/doc/rfe/rfc-1100-1199/rfc1175.txt
1990, 45 S., ASCII
Empfehlungen und kurze Kommentare, Erkldrungen

— X Technical Bibliography, presented by The X Journal
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/xws/xbiblio.ps.gz
1994, 22 S., Postscript
Kurze Inhaltsangaben, teilweise kommentiert

J. December Information Sources: The Internet and Computer-
Mediated Communication
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /cme.gz
1994, 33 S., ASCII

Hinweise, wo welche Informationen im Netz zu finden sind.

S. Ko A Concise Guide to UNIX Books
Netnews: misc.books.technical oder comp.unix.questions
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/unix /unix-books
1993, 22 S., ASCII
Empfehlungen und kurze Kommentare

D. A. Lamb Software Engineering Readings
Netnews: comp.software-eng

324

325

ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/misc/sw-engng-reading
1994, 10 S., ASCII Teilweise kommentiert

R. E. Maas MaasInfo.DocIndex
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /maasinfo-idx
1994, 20 S., ASCII
Bibliografie von rund 100 On-line-Texten zum Internet

J. Quarterman RFC 1432: Recent Internet Books
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /rfc/rfc1432.txt
1993, 15 S., ASCII
Empfehlungen und kurze Kommentare

C. Spurgeon Network Reading List: TCP/IP, Unix and Ethernet
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /reading-
list.ps.gz
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /reading-
list.txt.gz
1993, ca. 50 S., Postscript und ASCII
Ausfiihrliche Kommentare und Hinweise

M. Wright Yet Another book List (YABL)
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/misc/yabl.gz
1993, ca. 100 S., ASCII
Tabellarisch, kurze Kommentare

3. Lexika, Glossare, Worterbiicher

— Newsgruppen:
news.answers
de.etc.lists
news.lists

RFC 1392 (FYT 18): Internet Users’ Glossary
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /rfc/rfc1392.txt
1993, 53 S.

Duden Informatik
Dudenverlag, Mannheim, 1993, 800 S., 42 DM
Nachschlagewerk, sorgfiltig gemacht, theorielastig,
Begriffe wie Ethernet, LAN, SQL, Internet fehlen.

Fachausdriicke der Informationsverarbeitung Englisch — Deutsch,
Deutsch — Englisch
IBM Deutschland, Form-Nr. Q12-1044, 1698 S., 113 DM
Worterbuch und Glossar

W. Alex Abkiirzungs-Liste ABKLEX (Informatik, Telekommunikation)
ftp://ftp.ciw-karlsruhe.de/pub/misc/abklex.txt
http://www.ciw-karlsruhe.de/abklex.html

V. Anastasio Worterbuch der Informatik Deutsch — Englisch —
Franzosisch — Italienisch — Spanisch
VDI-Verlag, Diisseldorf, 1990, 400 S., 128 DM

326

O Literatur

A. E. Cawkell Encyclopedic Dictionary of Information Technology
and Systems
Saur, Miinchen, 1993, 350 S., 190 DM

F. Kriickeberg, O. Spaniol Lexikon Informatik und Kommunikations-
technik
VDI-Verlag, Diisseldorf, 1990, 693 S., 168 DM

A. Ralston, E. D. Reilly Encyclopedia of Computer Science
Chapman + Hall, London, 1993, 1558 S., 60 £
Ausfiihrliche Erlduterungen

E. S. Raymond The New Hacker’s Dictionary
The MIT Press, Cambridge, 1996, 547 S., 41 DM
Siehe auch http://www.ciw.uni-karlsruhe.de/kopien/jargon/
Begriffe aus dem Netz, die nicht im Duden stehen

H.-J. Schneider Lexikon der Informatik und Datenverarbeitung
Oldenbourg, Miinchen, 1991, 989 S., 128 DM
Ethernet, SQL stehen darin, Internet nicht.

. Informatik

— Newsgruppen:
comp.*® (alles, was mit Computer Science zu tun hat, mehrere
hundert Untergruppen)
de.comp.* (dito, deutschsprachig)
alt.comp.*

F. L. Bauer, G. Goos Informatik 1. + 2. Teil
Springer, Berlin, 1991/92, 1. Teil 393 S., 42 DM
2. Teil 345 S., 42 DM
Umfassende Einfiihrung, auch fiir Nicht-Informatiker

W. Coy Aufbau und Arbeitsweise von Rechenanlagen
Vieweg, Braunschweig, 1992, 367 S., 50 DM
Digitale Schaltungen, Rechnerarchitektur, Betriebssysteme am
Beispiel von UNIX

L. Goldschlager, A. Lister Informatik
Hanser und Prentice-Hall, Miinchen, 1990, 366 S., 40 DM
Einfiihrung, dhnlich wie Bauer + Goos

G. Goos Vorlesungen iiber Informatik
Springer, Berlin, 1995, Band 1 393 S., 7? DM

D. E. Knuth The Art of Computer Programming, 3 Bénde
Addison-Wesley, zusammen 330 DM
Klassiker, stellenweise mathematisch, 7 Binde geplant

W. Schiffmann, R. Schmitz Technische Informatik
Springer, Berlin, 1993/94, 1. Teil Grundlagen der digitalen
Elektronik, 282 S., 38 DM; 2. Teil Grundlagen der Computer-
technik, 283 S., 42 DM

327

U. Schoning Theoretische Informatik kurz gefafit
BI-Wissenschaftsverlag, Mannheim, 1992, 188 S., 20 DM
Automaten, Formale Sprachen, Berechenbarkeit, Komplexitét

K. W. Wagner Einfiihrung in die Theoretische Informatik
Springer, Berlin, 1994, 238 S.,
Grundlagen, Berechenbarkeit, Komplexitéit, BoOLEsche Funktionen,
Autoamten, Grammatiken, Formale Sprachen

H. Waldschmidt Informatik fiir Ingenieure
Oldenbourg, Miinchen, 1987, 258 S., 40 DM
Algorithmen und Programme, Programmierfehler, Ergéinzung
zu einem Programmierkurs

. Algorithmen, Numerische Mathematik

— Newsgruppen:
sci.math.*
zer.z-netz.wissenschaft.mathematik

G. Engeln-Miillges, F. Reutter Formelsammlung zur
Numerischen Mathematik mit C-Programmen
BI-Wissenschaftsverlag, Mannheim, 1990, 744 S., 88 DM
Algorithmen und Formeln der Numerischen Mathematik samt
C-Programmen. Auch fiir FORTRAN, PASCAL, BASIC und
MODULA erhiltlich

E. Horowitz, S. Sahni Algorithmen
Springer, Berlin, 1981, 770 S., 116 DM

D. E. Knuth (siehe unter Informatik)

T. Ottmann, P. Widmayer Algorithmen und Datenstrukturen
BI-Wissenschafts-Verlag, Mannheim, 1993, 755 S., 74 DM

W. H. Press u. a. Numerical Recipes in C
Cambridge University Press, 1993, 994 S., 98 DM
mit Diskette, auch fiir FORTRAN und PASCAL erhaltlich

H. R. Schwarz Numerische Mathematik
Teubner, Stuttgart, 1993, 575 S., 48 DM

R. Sedgewick Algorithmen in C
Addison-Wesley, Bonn, 1992, 742 S., 90 DM
Erklarung gebriduchlicher Algorithmen und Umsetzung in C.
Auch in Englisch und fiir PASCAL

R. Sedgewick Algorithmen in C++
Addison-Wesley, Bonn, 1992, 742 S., 90 DM
Wie vorstehend.

J. Stoer, R. Bulirsch Numerische Mathematik
Springer, Berlin, 1. Teil 1993, 314 S., 32 DM,
2. Teil 1990, 341 S., 32 DM

328 O Literatur

F. Stummel, K. Hainer Praktische Mathematik
Teubner, Stuttgart, 1982, 367 S., 40 DM

N. Wirth Algorithmen und Datenstrukturen
Teubner, Stuttgart, 1983, 320 S., 42 DM
Viel zu Datenstrukturen, weniger zu Algorithmen

6. Betriebssysteme

— Newsgruppen:
comp.os.*
de.comp.os.*

— Microsoft MS-DOS-Handbiicher
— Microsoft MS-Windows-NT-Handbiicher

— 0OS/2 Version 2.0 Technical Compendium (Red Books)
IBM, Boca Raton, 1992, 5 Bénde, 1158 S., 100 DM
OPD software.watson.ibm.com im Verzeichnis /pub/os2/misc
auch auf ftp://ftp.uni-stuttgart.de/pub/soft/os2/info/redbooks

L. Bic, A. C. Shaw Betriebssysteme
Hanser, Miinchen, 1990, 420 S., 58 DM
Allgemeiner als Tanenbaum 1

H. M. Deitel, M. S. Kogan The Design of OS/2
Addison-Wesley, Reading, 1992, 389 S., 95 DM

A. S. Tanenbaum Operating Systems, Design and Implementation
Prentice-Hall, London, 1987, 719 S., 79 DM
Einfiihrung in Betriebssysteme am Beispiel von UNIX

A. S. Tanenbaum Modern Operating Systems
Prentice-Hall, London, 1992, 728 S., 100 DM
Allgemeiner und moderner als vorstehendes Buch; MS-DOS, UNIX,
MACH und Amoeba

H. Wettstein Systemarchitektur
Hanser, Miinchen, 1993, 514 S., 68 DM
Grundlagen, kein bestimmtes Betriebssystem

7. UNIX allgemein

— Newsgruppen:
comp.unix.*
comp.sources.unix
comp.std.unix
de.comp.os.unix
fr.comp.os.unix
alt.unix.wizards
cern.unix

M. J. Bach Design of the UNIX Operating System

Prentice-Hall, London, 1987, 512 S., 52 US-$
Filesystem und Prozesse, wenig zur Shell

329

S. R. Bourne Das UNIX System V (The UNIX V Environment)
Addison-Wesley, Bonn, 1988, 464 S., 62 DM
Einfiihrung in UNIX und die Bourne-Shell

D. Gilly u. a. UNIX in a Nutshell
O’Reilly, Sebastopol, 1992, ca. 250 S., 22 DM
Nachschlagewerk zu den meisten UNIX-Kommandos

J. Gulbins, K. Obermayr UNIX
Springer, Berlin, 4. Aufl. 1995, 838 S., 77 DM
Benutzung von UNIX, ausfiihrlich, geht in die Einzelheiten

H. Hahn A Student’s Guide to UNIX
McGraw-Hill, New York, 1993, 633 S., 66 DM
Einfiihrendes Lehrbuch, ohne C, mit Internet-Diensten

J. A. Illik (siehe unter Programmieren in C)

B. W. Kernighan, P. J. Plauger Software Tools
Addison-Wesley, Reading, 1976, 338 S., 38 US-$
Grundgedanken einiger UNIX-Werkzeuge, Programmierstil

B. W. Kernighan, R. Pike Der UNIX-Werkzeugkasten
Hanser, Miinchen, 1986, 402 S., 76 DM
Gebrauch der UNIX-Kommandos, fast nichts zum vi (1)

D. G. Korn, M. 1. Bolsky The Kornshell, Command and
Programming Language
auf deutsch: Die KornShell, Hanser, Miinchen, 1991, 98 DM
Einfiihrung in UNIX und die Korn-Shell

M. Loukides UNIX for FORTRAN Programmers
O’Reilly, Sebastopol, 1990, 244 S., 55 DM
Kurze, allgemeine Einfiihrung in UNIX| ausfiihrliche Behandlung
der Programmer’s Workbench im Hinblick auf FORTRAN

J. Peek u. a. UNIX Power Tools
O’Reilly, Sebastopol, 1993, 1119 S., 119 DM
Viele niitzliche Hinweise fiir den Anwender, mit CD

M. J. Rochkind Advanced UNIX Programming
Prentice-Hall, London, 1986, 224 S., 47 US-$
Beschreibung aller UNIX System Calls

A. T. Schreiner Professor Schreiners UNIX-Sprechstunde
Hanser, Miinchen, 1987, 316 S., 64 DM
Shellscripts und kurze C-Programme fiir verschiedene Zwecke

R. M. Stallman The GNU Manifesto
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/misc/manifest-gnu
1985, 8 S., ASCII
Ziele des GNU-Projekts

W. R. Stevens Advanced Programming in the UNIX Environment
Addison-Wesley, Reading, 1992, 744 S., 110 DM
Ahnlich wie Rochkind

330 O Literatur

S. Strobel, T. Uhl LINUX - vom PC zur Workstation
Springer, Berlin, 1994, 238 S., 38 DM

L. Wirzenius, M. Welsh LINUX Information Sheet
Netnews: comp.os.linux
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/unix/linux-info
1993, 6. S., ASCII
Anfangsinformation zu LINUX, was und woher.

8. UNIX Einzelthemen

— Newsgruppen:
comp.unix.*

A. V. Aho, B. W. Kernighan, P. J. Weinberger The AWK
Programming Language
Addison-Wesley, Reading, 1988, 210 S., 58 DM
Standardwerk zum AWK

B. Anderson u. a. UNIX Communications
Sams, North College, 1991, 736 S., 73 DM
Unix-Mail, Usenet, uucp und weiteres

M. I. Bolsky The vi User’s Handbook
Prentice-Hall, Englewood Cliffs, 1985, 66 S., 59 DM (!)
Alle vi-Kommandos iibersichtlich, aber keine Interna

D. Cameron, B. Rosenblatt Learning GNU Emacs
O’Reilly, Sebastopol, 1991, 442 S., 21 £

F. da Cruz, C. Gianone C-Kermit
Heise, Hannover, 1994, 650 S., 90 DM
Kermit-Terminalemulation und -Fileiibertragung

I. F. Darwin Checking C Programs with lint
O’Reilly, Sebastopol, 1988, 82 S., 10 £

B. Goodheart UNIX Curses Explained
Prentice-Hall, Englewood-Cliffs, 1991, 287 S., ca. 80 DM
Einzelheiten zu curses(3) und terminfo (4)

L. Lamb Learning the vi Editor
O’Reilly, Sebastopol, 1990, 192 S., 17 £

E. Nemeth, G. Snyder, S. Seebass UNIX System Administration
Handbook
Prentice-Hall, Englewood-Cliffs, 1990, 624 S., 47 US-$
Empfehlung eines Stuttgarter Kollegen

A. Oram, S. Talbott Managing Projects with make
O’Reilly, Sebastopol, 1993, 149 S., 35 DM

W. R. Stevens UNIX Network Programming
Prentice Hall, Englewood Cliffs, 1990, 772 S., 60 US-$
C-Programme fiir Clients und Server der Netzdienste

331

J. Strang u. a. termcap & terminfo
O’Reilly, Sebastopol, 1988, 270 S., 17 £

I. A. Taylor Taylor UUCP
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/unix/uucp.ps.gz
1993, 93 S., Postscript

L. Wall, R. Schwartz Programming Perl
O’Reilly, Sebastopol, 1991, 482 S., 22 £

9. Grafik

— Newsgruppen:
comp.graphics.*
alt.graphics.*

— American National Standard for Information Systems
Computer Graphics — Graphical Kernel System (GKS)
Functional Description. ANSI X3.124-1985
GKS-Referenz

J. Bechlars, R. Buhtz GKS in der Praxis
Springer, Berlin, 1994, 500 S., 98 DM
GKS fiir FORTRAN-Programmierer

J. D. Foley Computer Graphics — Principles and Practice
Addison-Wesley, Reading, 1992, 1200 S., 83 US-$
Standardwerk zur Computer-Grafik

T. Gaskins The PHIGS Programming Manual
O’Reilly, Sebastopol, 1992, 908 S., 102 DM
Lehrbuch und Nachschlagewerk, auch unter X11

I. Grieger Graphische Datenverarbeitung
mit einer Einfiihrung in PHIGS und PHIGS-PLUS
Springer, Berlin, 1992, 389 S., 48— DM

H. Kopp Graphische Datenverarbeitung
Hanser, Miinchen, 1989, 211 S., 40 DM
mathematische Methoden, Algorithmen, GKS

10. Netze (TCP/IP, OSI, Internet)

— Newsgruppen:
comp.infosystems.*
comp.internet.*
comp.protocols.*
alt.best.of.internet
alt.bbs.internet
alt.internet.™
de.comm.internet
de.comp.infosystems
fr.comp.infosystemes

332 O Literatur

— Internet Resources Guide
NSF Network Service Center, Cambridge, 1993
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /resource-guide-
help
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /resource-
guide.ps.tar.gz
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /resource-
guide.txt.tar.gz
Beschreibung der Informationsquellen im Internet

S. Carl-Mitchell, J. S. Quarterman Practical Internetworking
with TCP/IP and UNIX
Addison-Wesley, Reading, 1993, 432 S., 52 US-$

D. E. Comer Internetworking with TCP/IP (4 Bénde)
Prentice-Hall, Englewood Cliffs, [. Band 1991, 550 S., 90 DM;
IT. Band 1991, 530 S., 88 DM, I1Ta. Band (BSD) 1993, 500 S., 86 DM;
I[IIb. Band (AT&T) 1994, 510 S., 90 DM
Prinzipien, Protokolle und Architektur des Internet

EARN Guide to Network Resource Tools
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /nettools.ps.gz
1993, 70 S., Postscript
Ubersicht iiber Netzdienste wie Gopher, WWW, WAIS, ARCHIE,
NETSERV, NetNews und Listserv

A. Gaffin, J. Heitkotter Big Dummy’s Guide to the Internet
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /bdgtti2.ps.gz
1993, 220 S., Postscript, andere Formate im Netz
Einfiihrung in die Dienste des Internet

H. Hahn, R. Stout The Internet Complete Reference
Osborne MacGraw-Hill, Berkeley, 1994, 818 S., 60 DM
Das Netz und seine Dienste von Mail bis WWW; Lehrbuch und
Nachschlagewerk fiir Benutzer des Internet, Standardwerk

Ch. Hedrick Introduction to the Internet Protocols
ftp://ftp.ciw.uni-karlsruhe.e/pub/docs/net/general /tcp-ip-intro.ps.gz
ftp://ftp.ciw.uni-karlsruhe.e/pub/docs/net/general /tcp-ip-
intro.doc.gz
1988, 20 S., ASCII und Postscript

Ch. Hedrick Introduction to Administration of an Internet-based
Local Network
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /tcp-ip-
admin.ps.gz
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general /tcp-ip-
admin.doc.gz
1988, 39 S., ASCII und Postscript
Adressen, Routing, Netztopologie im Internet

333

K. Hughes Entering the World-Wide Web: A Guide to Cyberspace
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /www/hughes-guide.ps.gz
1993, 20 S., Postscript
Erkldarungen, Entstehung, Glossar

B. P. Kehoe Zen and the Art of the Internet
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net/general /zen.ps.gz
1992, 100 S., Postscript
Einfiihrung in die Dienste des Internet

E. Krol The Hitchhikers Guide to the Internet
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /general /hitchhg.txt
1987, 16 S., ASCII
Erklarung einiger Begriffe aus dem Internet

E. Krol The Whole Internet
O'Reilly, Sebastopol, 1992, 376 S., 25 US-$

T. L. LaQuey User’s Directory of Computer Networks
Digital Press, Bedford, 1990, 653 S.,
Ins einzelne gehende Informationen iiber zahlreiche Netze

J. S. Quarterman The Matrix: Computer Networks and
Conferencing Systems Worldwide
Digital Press, Bedford, 1990, 746 S., 80 DM
Praxisnahe Einfiihrung, Netzliste nicht mehr aktuell

M. T. Rose The Open Book
Prentice-Hall, Englewood Cliffs, 1990, 682 S., 64 US-$
OSI-Protokolle, Vergleich mit TCP/IP

M. Scheller u. a. Internet: Werkzeuge und Dienste
Springer, Berlin, 1994, 280 S., 49 DM
http://www.ask.uni-karlsruhe.de/books/inetwd.html

A. S. Tanenbaum Computer Networks
Prentice-Hall, London, 1988, 658 S., 88 DM
Einfiihrung in Netze mit Schwerpunkt auf dem OSI-Modell

11. X-Window-System, Motif

— Newsgruppen:
comp.windows.x.*
fr.comp.windows.x11

— OSF/Motif Users’s Guide
OSF /Motif Programmer’s Guide
OSF /Motif Programmer’s Reference
Prentice-Hall, Englewood Cliffs, 1990
Beschreibung der OSF /Motif Benutzeroberfléiche

F. Culwin An X/Motif Programmer’s Primer
Prentice-Hall, New York, 1994, 344 S., 80 DM

334 O Literatur

K. Gottheil u. a. X und Motif
Springer, Berlin, 1992, 694 S., 98 DM

A. Nye XLib Programming Manual
O’Reilly, Sebastopol, 1990, 635 S., 90 DM
Einfiihrung in das XWS und den Gebrauch der XLib

V. Quercia, T. O’Reilly X Window System Users Guide
O’Reilly, Sebastopol, 1990, 749 S., 90 DM
Einfiihrung in X11 fiir Benutzer

R. J. Rost X and Motif Quick Reference Guide
Digital Press, Bedford, 1993, 400 S., 22 £
Zusammenfassung aus den Referenz-Handbiichern

12. Programmieren allgemein

— Newsgruppen:
comp.programming
comp.unix.programmer
comp.lang.*
comp.software.*
comp.software-eng
comp.compilers
de.comp.lang.*

A. V. Aho u. a. Compilers, Principles, Techniques and Tools
Addison-Wesley, Reading, 1986, 796 S., 78 DM

Zum tieferen Verstdndnis von Programmiersprachen

B. Beizer Software Testing Techniques
Van Nostrand-Reinhold, 1990, 503 S., 43 US-$

F. P. Brooks jr. The Mythical Man-Month
Addison-Wesley, Reading, 1995, 322 S., 44 DM
Organisation grofler Software-Projekte

N. Ford Programmer’s Guide
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/misc/pguide.txt
1989, 31 S., ASCII

allgemeine Programmierhinweise, Shareware-Konzept

T. Grams Denkfallen und Programmierfehler
Springer, Berlin, 1990, 159 S., 58 DM
PASCAL-Beispiele, gelten aber auch fiir C-Programme

D. Gries The Science of Programming
Springer, Berlin, 1981, 366 S., 48 DM
Grundsétzliches zu Programmen und ihrer Priifung,
mit praktischer Bedeutung.

E. Horowitz Fundamentals of Programming Languages
Springer, Berlin, 1984, 446 S., 777 DM

335

Uberblick iiber Gemeinsamkeiten und Konzepte von
Programmiersprachen von FORTRAN bis Smalltalk,
kein Programmierkurs, sondern eine Ergénzung dazu

M. Marcotty, H. Ledgard The World of Programming Languages
Springer, Berlin, 1987, 360 S., 90 DM

S. Pfleeger Software Engineering: The Production of Quality
Software
Macmillan, 1991, 480 S., 22 £(Studentenausgabe)
Empfehlung aus dem Netz

R. W. Sebesta Concepts of Programming Languages
Benjamin/Cummings, Redwood City, 1993, 560 S., 65 US-$
dhnlich wie Horowitz

I. Sommerville Software Engineering
Addison-Wesley, Reading, 1992, 688 S., 52 US-$
Wie man ein Programmierprojekt organisiert;
Werkzeuge, Methoden; sprachenunabhéingig

N. Wirth Systematisches Programmieren
Teubner, Stuttgart, 1993, 160 S., 27 DM
Allgemeine Einfiihrung ins Programmieren, PASCAL-nahe

13. Programmieren in C/C++/Objective C

— Newsgruppen:
comp.lang.c
comp.std.c
comp.lang.object
comp.lang.c++
comp.lang.objective-c
comp.std.c+-+
de.comp.lang.c
de.comp.lang.c++

— Microsoft Quick-C-, C-6.0- und Visual-C-Handbiicher
mehrere Binde bzw. Ordner

G. Booch Object-Oriented Analysis and Design with Applications
Benjamin + Cummings, Redwood City, 1994, 590 S., 112 DM

U. Claussen Objektorientiertes Programmieren
Springer, Berlin, 1993, 246 S., 48 DM
Konzept und Methodik von OOP, Beispiele und Ubungen in C++,
aber kein Lehrbuch fiir C++

B. J. Cox, A. J. Novobilski Object-Oriented Programming
Addison-Wesley, Reading, 1991, 270 S., 76 DM
Objective C

H. M. Deitel, P. J. Deitel C How to Program
Prentice Hall, Englewood Cliffs, 1994, 926 S., 74 DM
Enthélt auch C++. Ausgeprigtes Lehrbuch.

336 O Literatur

A. R. Feuer Das C-Puzzle-Buch
Hanser Verlag, Miinchen, 1991, 196 S., 38 DM
Kleine, feine Aufgaben zu C-Themen

O. Hartwig C Referenz-Handbuch
Sybex, Diisseldorf, 1987, 432 S., 54 DM (vergriffen?)
Nachschlagewerk fiir K&R-C und ANSI-C

R. House Beginning with C
An Introduction to Professional Programming
International Thomson Publishing, Australien, 1994, 568 S., 64 DM
Ausgepriigter Lehrbuch-Charakter, ANSI-C, vorbereitend auf C++

J. A. Illik Programmieren in C unter UNIX
Sybex, Diisseldorf, 1992, 750 S., 89 DM
Lehrbuch, C und UNIX mit Schwerpunkt Programmieren

R. Jones, I. Steart The Art of C Programming
Springer, Berlin, 1987, 186 S., 52 DM

B. W. Kernighan, D. M. Ritchie The C Programming Language
Deutsche Ubersetzung: Programmieren in C
Zweite Ausgabe, ANSI C
Hanser Verlag, Miinchen, 1990, 283 S., 56 DM
Standardwerk zur Programmiersprache C, Lehrbuch

R. Klatte u. a. C-XSC
Springer, Berlin, 1993, 269 S., 74 DM
auch auf englisch erhiltlich
C++-Klassenbibliothek fiir wissenschaftliches Rechnen

S. Lippman, J. Lajoie C++ Primer
Addison-Wesley, Reading, 3. Aufl. 1998, 1072 S., 7?7 DM
Verbreitetes Lehrbuch fiir Anféinger

P. J. Plauger, J. Brodie Referenzhandbuch Standard C
Vieweg, Braunschweig, 1990, 236 S., 64 DM

P. J. Plauger The Standard C Library
Prentice-Hall, Englewood Cliffs, 1991, 498 S., 73 DM
Die Funktionen der Standardbibliothek nach ANSI

H. Schildt ANSI C made easy
Osborne McGraw-Hill, Berkeley, 1989, 452 S., 50 DM
Leichtverstdndliche Einfiihrung in ANSI-C

B. Stroustrup The C++ Programming Language
bzw. Die C++ Programmiersprache
Addison-Wesley, Reading/Bonn, 3. Aufl. 1997, 976 S., 100 DM
Lehrbuch fiir Fortgeschrittene, der Klassiker fiir C+-+

R. Ward Debugging C
Addison-Wesley, Bonn, 1988, 322 S., 68 DM
Systematische Fehlersuche, hauptséichlich in C-Programmen

337

14. Anwendungen

15.

— Newsgruppen:
comp.theory.info-retrieval
comp.databases.*

— Guide to Commands
STN International c¢/o FIZ Karlsruhe, 1991, 314 S.
Beschreibung der Retrieval-Sprache Messenger

M. Gossens u. a. The LaTeX-Companion
Addison-Wesley, Reading, 1994, 530 S., 40 US-$

H. Kopka LaTeX - eine Einfiihrung
Addison-Wesley, Bonn, 1990, 340 S., 68 DM
Ausfiihrliche Anleitung zu LaTeX, viele Beispiele

H. Kopka LaTeX - Erweiterungsmoglichkeiten
Addison-Wesley, Bonn, 1990, 479 S., 80 DM
Erweiterungen, AMS-TeX, Grafik, Metafont, WEB

L. Lamport LaTeX User’s Guide and Reference Manual
Addison-Wesley, Reading, 1986, 242 S., 78 DM
Standardwerk zu LaTeX

H. Partl u. a. LaTeX-Kurzbeschreibung
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/latex/lkurz.ps.gz
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/latex/lkurz.tar.gz
1990, 46 S., Postscript und LaTeX-Quellen
Einfithrung, mit deutschsprachigen Besonderheiten (Umlaute)

E. D. Stiebner Handbuch der Drucktechnik
Bruckmann, Miinchen, 1992, 362 S., 98 DM

F. W. Weitershaus Duden Satz- und Korrekturanweisungen
Dudenverlag, Mannheim, 1980, 268 S., 17 DM (vergriffen?)
Hilfe beim Herstellen von Druckvorlagen

Sicherheit

— Newsgruppen:
comp.security.*
comp.virus
sci.crypt
alt.security.*
alt.comp.virus
de.comp.security

— RFC 1244 (FYI 8): Site Security Handbook
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /rfc/rfc1244.txt
1991, 101 S., ASCII
Sicherheits-Ratgeber fiir Internet-Benutzer

338 O Literatur

— Department of Defense Trusted Computer Systems
Evaluation Criteria (Orange Book)
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /secur /orange-book.gz
1985, 120 S., ASCII. Abgelost durch:
Federal Criteria for Information Technology Security
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /secur/fevoll.ps.gz
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /secur /fcvol2.ps.gz
1992, 2 Bénde mit zusammen 500 S., Postscript
Die amtlichen amerikanischen Sicherheitsvorschriften

F. L. Bauer Kryptologie
Springer, Berlin, 1994, 369 S., 48 DM

R. L. Brand Coping with the Threat of Computer Security Incidents
A Primer from Prevention through Recovery
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /secur /primer.ps.gz
1990, 44 S., Postscript

D. A. Curry Improving the Security of Your UNIX System
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/net /secur/secdoc.ps.gz
1990, 50 S., Postscript
Hilfe fiir UNIX-System-Manager, mit Checkliste

D. Ferbrache A Pathology of Computer Viruses
Springer, Berlin, 1992, 299 S., 74 DM
Geschichte, Wirkungsweise, Gegenmafinahmen, Reaktionen
der Offentlichkeit; auch UNIX- und Internet-Viren

B. Schneier Angewandte Kryptographie
Addison-Wesley, Bonn, 1996, 844 S., 120 DM

16. Geschichte der Informatik

— Newsgruppen:
comp.society.folklore
alt.folklore.computers
de.alt.folklore.computer

— Kleine Chronik der IBM Deutschland
1910 — 1979, Form-Nr. D12-0017, 138 S.
1980 — 1991, Form-Nr. D12-0046, 82 S.
Reihe: Uber das Unternehmen, IBM Deutschland

— Die Geschichte der maschinellen Datenverarbeitung Band 1
Reihe: Enzyklopéddie der Informationsverarbeitung
IBM Deutschland, 228 S., Form-Nr. D12-0028

— 100 Jahre Datenverarbeitung Band 2
Reihe: Uber die Informationsverarbeitung
IBM Deutschland, 262 S., Form-Nr. D12-0040

F. L. Bauer, G. Goos Informatik 2. Teil
(siehe unter Informatik)

339

O. A. W. Dilke Mathematik, Mafle und Gewichte in
der Antike (Universalbibliothek Nr. 8687 [2])
Reclam, Stuttgart, 1991, 135 S., 6 DM

A. Hodges Alan Turing, Enigma
Kammerer & Unverzagt, Berlin, 1989, 680 S., 58 DM

S. Levy Hackers — Heroes of the Computer Revolution
Penguin Books, London, 1994, 455 S., 33 DM

R. Oberliesen Information, Daten und Signale
Deutsches Museum, rororo Sachbuch Nr. 7709 (vergriffen)

B. Sterling A short history of the Internet
ftp://ftp.ciw.uni-karlsruhe.de/pub/docs/history /origins
1993, 6 S., ASCII

K. Zuse Der Computer - Mein Lebenswerk
Springer, Berlin, 3. Aufl. 1993, 220 S., 58 DM
Autobiografie Konrad Zuses

17. Computerrecht

— Newsgruppen:
comp.society.privacy
comp.privacy
comp.patents
alt.privacy
de.soc.recht

— Computerrecht (Beck-Texte)
Beck, Miinchen, 1994, 13 DM

U. Dammann, S. Simitis Bundesdatenschutzgesetz
Nomos Verlag, Baden-Baden, 1993, 606 S., 38 DM
BDSG mit Landesdatenschutzgesetzen und Internationalen
Vorschriften; Texte, kein Kommentar

G. v. Gravenreuth Computerrecht von A — 7 (Beck Rechtsberater)
Beck, Miinchen, 1992, 17 DM

H. Hubmann, M. Rehbinder Urheber- und Verlagsrecht
Beck, Miinchen, 1991, 319 S., 40 DM

A. Junker Computerrecht. Gewerblicher Rechtsschutz,
Méngelhaftung, Arbeitsrecht. Reihe Recht und Praxis
Nomos Verlag, Baden-Baden, 1988, 267 S., 45 DM

18. Philosophische Feigenblitter

— Newsgruppen:
comp.ai.philosophy
sci.philosophy.tech
alt.fan.hofstadter

340 O Literatur

D. R. Hofstadter Gdodel, Escher, Bach - ein Endloses
Geflochtenes Band
dtv/Klett-Cotta, Miinchen, 1992, 844 S., 30 DM

J. Ladd Computer, Informationen und Verantwortung
in: Wissenschaft und Ethik, herausgegeben von H. Lenk
Reclam-Band 8698, Ph. Reclam, Stuttgart, 15 DM

H. Lenk Chancen und Probleme der Mikroelektronik
und: Kénnen Informationssysteme moralisch verantwortlich sein?
in: Hans Lenk, Macht und Machbarkeit der Technik
Reclam-Band 8989, Ph. Reclam, Stuttgart, 1994, 152 S., 6 DM

P. Schefe u. a. Informatik und Philosophie
BI Wissenschaftsverlag, Mannheim, 1993, 326 S., 38 DM
Sammlung von 18 Aufsidtzen verschiedener Themen und Meinungen

K. Steinbuch Die desinformierte Gesellschaft
Busse + Seewald, Herford, 1989, 269 S. (vergriffen?)

J. Weizenbaum Die Macht der Computer und die Ohnmacht
der Vernunft (Computer Power and Human Reason.
From Judgement to Calculation)
Suhrkamp Taschenbuch Wissenschaft 274, Frankfurt (Main),
1990, 369 S., 20 DM

H. Zemanek Das geistige Umfeld der Informationstechnik
Springer, Berlin, 1992, 303 S., 39 DM
Zehn Vorlesungen iiber Technik, Geschichte und Philosophie
des Computers, von einem der Pioniere

19. Zeitschriften

- IX
Verlag Heinz Heise, Hannover, monatlich, ca. 130 S.
fiir Anwender von Multi-User-Systemen, technisch
http://www.ix.de/

— Offene Systeme
GUUG/Springer, Berlin, viermal im Jahr,
offizielle Zeitschrift der German UNIX User Group

— The C/C++ Users Journal
Miller Freeman Inc., USA, monatlich, ca. 150 S.
http://www.cuj.com/

— Dr. Dobb’s Journal
Miller Freeman Inc., USA, monatlich, ca. 180 S.
Software Tools for the Professional Programmer; viel C und C++

— unix/mail
Hanser Verlag, Miinchen, sechsmal im Jahr, ca. 70 S.
fiir Entwickler und Benutzer

— UNIX Open
Aktuelles Wissen Verlagsgesellchaft mbH, Trostberg
monatlich, ca. 100 S.

— Unix Welt
IDG Communications Verlag, Miinchen, monatlich, ca. 110 S.

— Unix World
MacGraw-Hill, USA, monatlich, ca. 200 S.
das Neueste aus dem Ursprungsland von UNIX

Hier noch einige Verlage:

Addison-Wesley, Bonn, http://www.addison-wesley.de/

Carl Hanser Verlag, Miinchen, http://www.hanser.de/

Verlag Heinz Heise, Hannover, http://www.ix.de\

R. Oldenbourg Verlag, Miinchen, http://www.oldenbourg.de/
O’Reilly, Deutschland, http://www.ora.de/

O’Reilly, USA, http://www.ora.com/

Osborne McGraw-Hill, USA, http://www.osborne.com/
Prentice-Hall, USA, http://www.prenhall.com/

Sams Publishing (Macmillan Computer Publishing), USA,
http://www.mcp.com/

Springer-Verlag, Berlin, Heidelberg usw., http://www.springer.de/

Und iiber allem, mein Sohn, lal dich warnen;

denn des vielen Biichermachens ist kein Ende,

und viel Studieren macht den Leib miide.
Prediger 12, 12

341

342 O Literatur

Sach- und Namensverzeichnis

Einige Begriffe sind unter ihren Oberbegriffen zu finden, beispielsweise Gerétefile
unter File oder Bourne-Shell unter Shell. Verweise (s. ...) zeigen entweder auf ein
bevorzugtes Synonym, auf einen Oberbegriff oder auf die deutsche Ubersetzung
eines englischen oder franzdsischen Fachwortes.

.autox 83
.elm/elmrc 160
.exrc 106

Jlogdat 83
.news_time 160
.plan 248

.profile 71, 81, 83
.project 248
.sh_history 67

/bin 42

Jdev 41, 42, 44, 178
/dev/console 44
/dev/dsk 44
/dev/lp 44
/dev/mt 44
/dev/null 44
/dev/rdsk 44
/dev/tty 31, 44
Jetc 42
/etc/checklist(4) 182

/etc/gettydefs(4) 176

/etc/group(4) 176

/etc/inittab(4) 175, 176, 181

/etc/lpfix 129
/etc/motd 81, 161

/etc/passwd(4) 176, 194, 248

/etc/printcap 128
/etc/profile 81
/etc/profile(4) 176
/etc/re 175
/etc/resolv.conf 221
/etc/termcap 105
/homes 42

[lib 42
/lost+found 42
/mnt 42

/sbin 42

/tmp 42

Juser 42

343

/users 42

/usr 42

/usr/adm 43
/usr/adm/pacct 184
/usr/bin 43

/usr/contrib 43

/usr/lib 43
/usr/lib/terminfo(4) 105, 178
/usr/local 43

/usr/mail 43

/usr/man 43

/usr/news 43

/usr/spool 43
/usr/spool/lp/SCHEDLOCK 130
/usr/spool/lp/interface 130
/usr/spool/lp/model 130
/usr/tmp 43

/var 42

/var/spool/news 160

$* 74

$0 74

$# 74

386BSD 206

8-bit-clean 99

a.out(4) 134, 152

A/UX 22

Abhéingigkeit 14

Abwickler 73

accept(1M) 131

Access Control List 49
access(2) 168

Account 177

Accounting System 175, 184
acct(1M) 184

acct(4) 184

acctcom(1M) 184
acctsh(1M) 184

ACL s. Access Control List

344

adb(1) 138
adjust(1) 117, 132
ADLEMAN, L. 114
adm (Benutzer) 184
admin(1) 149
ATX 22
Akronym s. Abkiirzung
Aktion (awk) 110
alex.sty 119
Alias 55
alias (Shell) 67, 83
Alternate Boot Path 174
American Mathematical Society 118
analog 208
Anfithrungszeichen (Shell) 66
Anmeldung 9
anonymous (Benutzer) 225
Anonymous-FTP 7
Anweisung
ALTAS-A. 166
Compiler-A. 166
LaTeX-A. 119
Shell-A. s. Kommando
Anwendungsprogramm 5, 6, 15, 26
Anwendungsschicht 216
Appel systeme s. Systemaufruf
Application s. Anwendungsprogramm
ar(1) 141
ar(4) 141
Archie 241
Archiv 141
argc 167
Argument (Kommando) 10, 65
argv 167
Arobace s. Klammeraffe
Arobase s. Klammeraffe
ARPANET 216
Array
A. mit Inhaltindizierung 112
assoziatives A. 85, 112
awk-Array 112
Typ (C) s. Typ
Zeiger s. Index
ASCII
German-ASCIT 99, 261
Steuerzeichen 98, 262
Zeichensatz 98, 253
at(1) 33
AT&T 21

Sach- und Namensverzeichnis

Athena 92
attisches System 21
Ausdruck

reguldrer A. 101, 109
Ausfithren (Zugriffsrecht) 47
Ausgangswert s. Defaultwert
Auslagerungsdatei s. File
Auswahl (Shell) 77
Automat 2
Autorensystem 8
awk(1) 110, 133
awk-Script 111

BABBAGE, C. 2, 318
Babel s. Babbilard électronique
Babillard électronique s. Bulletin Board
Back Quotes (Shell) 67
Backgammon-Server 222
Background s. Prozess
Backslash (Shell) 66
Backspace-Taste 39
Backup
inkrementelles B. 192
vollstédndiges B. 192
backup(1M) 193
banner(1) 87
BARDEEN, J. 318
basename(1) 45
bash(1) s. Shell
BASIC 6
Batch-Betrieb 183
Batch-System 18
Batchfile s. Shellscript
BCD-System 253
bdf(1M) 182, 194
Beautifier 135
Bedingung (Shell) 77
Befehl s. Anweisung
Befehl (Shell) s. Kommando
BelWue 222
Benutzer 173, 176
Benutzerdaten-Segment 28
Bereit-Zeichen s. Prompt
Berkeley 22
Betriebssystem 5, 6, 15
Bezugszahl s. Flag
bfs(1) 126
Bibliothek 141
Big Blue s. IBM

Sach- und Namensverzeichnis

Big Eight 239
Bildpunkt s. Pixel
Bildschirm 4

Diagonale 90

Screen saver s. Schoner
Bindrdarstellung 3
Binary 41
Binder s. Linker
Binette s. Grinsling
Bit 3
bit (Mafeinheit) 3
Bitmap 154
Blechbregen 1
blockorientiert 44
Bookmark s. Lesezeichen
BooLg, G. 318
Boot-Block 41
Boot-Manager 202
Boot-ROM 175
Boot-Sektor 175
Booten 20
booten 9
BOURNE, STEPHEN R. 64
BrATTAIN, W. H. 318
break (Shell) 78
Break-Taste 37, 283
Briefkasten s. Mailbox
Browser (WWW) 246
Brute Force Attack 115
BSD s. Berkeley Software Distribution,

22

Bubblesort 144
Biicherei s. Bibliothek
Buffer s. Pufferspeicher
Bug s. Fehler
Bulletin Board 7
bye 10
Byte 3

Cé6
Entstehung 21
Cache s. Speicher
Cadre s. Frame
Cabhier de charge s. Pflichtenheft
cal(1) 39
Caldera 200
calendar(1) 33
Call by reference s. Adressiibergabe
Call by value s. Wertiibergabe

345

cancel(1) 128
Carnegie-Mellon-Universitit 23, 318
Carriage return s. Zeilenwechsel
CASE s. Computer Aided Software En-
gineering, 149
case — esac (Shell) 77
cat(1) 55, 56, 62, 72, 75, 104, 162
cb(1) 135, 153
ce(l) 134
cd(1) 45, 62, 64, 81, 194
CDPATH 69, 81
Centronics s. Schnittstelle
CERT s. Computer Emergency Respon-
se Team, 191
Certification Authority 236
cflow(1) 143, 153
Channel (IRC) 241
Character set s. Zeichensatz
chgrp(1) 47
chmod(1) 48, 162
chmod(2) 172
chown(1) 47
CIAC s. Computer Incident Advisory
Capability, 191
ckpacct(1M) 184
clear(1) 77, 81, 87
Client 214
Client (Prozess) 92
Client-Server-Modell 92
close(2) 168
clri(1M) 60
cmp(1) 125, 132
COBOL 6
Code-Segment 28, 29
col(1) 126
comm(1) 126
command.com 64
Common Desktop Environment 94
comp.society.folklore 10
comp.unix.questions 59
Compiler 134
Controler s. Treiber
compress(1) 57
Computador 1
Computer
Aufgaben 1
Herkunft des Wortes 1
Home C. s. Heim-C.
PC s. Personal C.

346

Personal C. 198
Computer Science 2
configure (make) 137
continue (Shell) 78
Contra vermes 139
Cookie-Server 222
Copyleft 196
core(4) 152
Courrier électronique s. Email
cp(1) 49, 54, 62
cpio(1) 47, 192
CPU s. Prozessor
Cracking 115
creat(2) 172
cron(1M) 33, 175, 181
crontab(1) 33, 184
csh(1) s. Shell
ctime(3) 165
cu(1) 161
curses(3) 89, 99
cut(1) 75, 81, 126, 133
cxref(1) 143, 153
Cyberflic s. Net cop
Cybernaute s. Netizen

Damon 32, 180
Darstellungsschicht 216
Data code s. Zeichensatz
Data Encryption Standard 113
Data Glove s. Steuerhandschuh
Data-Link-Schicht 216
Datagramm 214, 218
date(1) 39, 177
Datei s. File, 41
Daten 1, 209
Daten-Block 42
Datensicherung s. Backup
Datentabelle s. Array
Dator 1
dead.letter 159
Debian LINUX 200
Debit s. Ubertragungsgeschwindigkeit
Debugger
absoluter D. 138
Hochsprachen-D. s. symbolischer D.
symbolischer D. 138
Defaultwert 36
Definitonsdatei s. File
delog(1M) 181

Sach- und Namensverzeichnis

delta(1) 149
DES s. Data Encryption Standard
Desktop Publishing 117
df(1M) 182, 194
DFN s. Deutsches Forschungsnetz
DFN-CERT 191
Dialog 8, 63, 158, 183
Dialog-System 19
Dienstprogramm 25, 26
diff(1) 125
diff3(1) 126
digital 208
diplom(1) 127
Directive s. Anweisung
Directory s. Verzeichnis
dirname(1) 45
disable(1) 131
Diskette 4
DISPLAY 94
Display s. Bildschirm
Distribution (LINUX) 200
DNS s. Domain Name Service
dodisk(1M) 184
Dollarzeichen 74
Domain (DNS) 219
Dorftratsch 241
Dotted Quad 219
Drive s. Laufwerk
Droit d’acces s. Zugriffsrecht
Druckauftrag 128
Drucker 5

logischer D. 130

physikalischer D. 130
Drucker-Server 222
du(1) 81, 183, 194
Dualsystem 3, 253
Dump 56
dvips(1) 119

Echappement s. Escape
echo (Shell) 67
Echtzeit-System 19, 195
EckERT, J. P. 318
Ecran s. Bildschirm
ed(1) 125
EDITOR 69, 83
Editor
Aufgabe 104
Bildschirm-E. 105

Sach- und Namensverzeichnis

ed(1) 104

emacs 107

ex(1) 104

microemacs 107

sed(1) 75, 109

Stream-E. 109

vi(1) 56, 62, 105, 133

view(1) 56

Zeilen-E. 104
egrep(1) 125
Eigentiimer s. File
Einarbeitung 13
Eingabeaufforderung s. Prompt
einloggen s. Anmeldung
Einprozessor-System 19
Einzelverarbeitung s. Single-Tasking
Electronic Information 6, 7
Electronic Mail 7, 159, 222, 228
Elektronengehirn 1
Elektrotechnik 2
ErLcamAaL, T. 115
elle 108
elm(1) 34, 81, 160, 162, 232
else s. if
elvis(1) 107
emacs(1) 278
Email s. Electronic Mail, 228
En-téte s. Header
enable(1) 131
end 10
Engin de recherche s. Suchmaschine
Enter-Taste s. Return-Taste
entwerten s. quoten
Environment s. Umgebung
Environnement s. Umgebung
envp 167
EOF s. File
EOL s. Zeilenwechsel
Ersatzzeichen s. Jokerzeichen
esac s. case
Escargot s. Klammeraffe, Snail-Mail
Esperluéte s. Et-Zeichen
Ethernet 219
Eudora 228
exec (Shell) 39
EXINIT 69
exit 10
exit (Shell) 10, 39, 78
expand(1) 75, 126

export (Shell) 71, 81, 83

Expression réguliere s. regulirer Aus-

druck

f77(1) 134

f90(1) 134

factor(1) 97

Falltiir 190

Fallunterscheidung s. case, switch

false(1) 78

FAQ s. Frequently Asked Questions

Fassung s. Programm

fbd(1M) 181

fc (Shell) 67

FCEDIT 67, 69, 83

fentl.h 168

Fehler
Denkfehler 138
Fehlermeldung 88, 138
Grammatik-F. 138
Laufzeit-F. 138
logischer F. 138
Modell-F. 138
semantischer F. 138
Syntax-F. 138

Feld
Feld (awk) 110
Feld (Typ) s. Typ

Feldgruppe s. Array

Fenétre s. Fenster

Fenster 89, 90
Button 95
F. aktivieren 95
Kopfleiste 95
Rahmen 95
Schaltfliche s. Button
Title bar s. Kopfleiste

Festplatte 4

fgrep(1) 125

Fichier s. File

FIFO 35

File 41
absoluter Name 45
Auslagerungsdatei s. Swap-F.
Besitzer 47
binéres F. 41
Definitonsdatei s. Include-F.
Deskriptor 55, 72
Dotfile 46

348 Sach- und Namensverzeichnis

Eigentiimer s. Besitzer Foire Aux Questions s. FAQ
Ende 68, 128 fold(1) 126, 132
EOF s. File-Ende Folder s. Verzeichnis
Fileset 175 Follow-up (News) 240
Geritefile 41 Fonction systeme s. Systemaufruf
gewOhnliches F. 41 Font 101
Gruppe 47 For Your Information 217, 304
Handle s. Deskriptor for-Schleife (Shell) 77
Headerfile s. Include-F. Foreground s. Prozess
Hierarchie 42 Format
Interface-F. 130 Adressformat 228
Kennung 46, 284 Hochformat 101
Konfigurations-F. 25 Landscape s. Querformat
16schen 58 Portrait s. Hochformat
leeres F. 55 Querformat 101
lesbares F. 41 formatieren (Datentriger) 47
lock-F. 34 FORTRAN 6
Mode 172 Forum s. Newsgruppe
Modell-F. 130 Forwarding 159
Name 45, 59 Forwarding (Mail) 229
normales F. 41 fprintf(3) 172
Owner s. Besitzer Fragen 8
Pfad s. absoluter Name, 45 Free Software Foundation 23, 196
Pointer 55 FreeBSD 23, 206
regulires F. s. gewthnliches F. Frequently Asked Questions 7, 240, 309
relativer Name 45 Frequenzworterliste 73
Rest der Welt 47 fsck(1M) 182
Swap-F. 17 FSP s. File Service Protocol
System 18, 27, 41, 42, 182 FTP s. File Transfer Protocol
Transfer 222, 224 ftp(1) 278
verborgenes F. 46 FTP-Server 227
Zeitstempel 51 ftp.ciw.uni-karlsruhe.de 324
Zugriffsrecht 47 ftpd(1M) 227
File Service Protocol 225 Funktion (C)
File Transfer Protocol Standardfunktion 163
Anonymous-FTP 225 Funktion (Shell) 68, 79
ftp (Benutzer) 225 Fureteur s. Browser
ftp(1) 224, 225 fvwm 204
Kommando 224 FYT s. For Your Information
Modus 225
file(1) 62 Garde-barriere s. Firewall
Filter 55, 110 Gast-Konto 9
find(1) 59, 60, 125, 182, 183, 192, 194 gatekeeper.dec.com 247
finger(1) 177, 248 Gateway 219
FI1TZGERALD, E. 91 gawk 112
Flag (Option) 10 GECOS-Feld 177
Flicken (Programm) s. Patch Gegenschrigstrich s. Zeichen
Fliefband s. Pipe General Public License (GNU) 196

Floppy Disk s. Diskette get(1) 149

Sach- und Namensverzeichnis

getprivgrp(1) 195
getty (1M) 176
getut(3) 173
Gigabyte 3

GKS s. Graphical Kernel System, 157

Globbing s. Metazeichen, 66
gmtime(3) 12, 164
GNU-Projekt 23, 107, 137, 196
gnuplot 155

Good Times 191

Gopher 242

gprof(1) 139

Grafik 154

Graphical Kernel System 157
Gratuiciel s. Freeware
grep(1) 75, 125, 132
grget(1) 194

Grimace s. Grinsling
Grinsling 233

Groupe s. Gruppe

Gruppe 47

gtar(1) 56

guest s. Gast-Konto
gunzip(1) 57
Gutenberg-Projekt 227
gzip(1) 57, 210

Hote s. Host

Hackbrett s. Tastatur
Handheld s. Laptop
Handle s. File

Hanoi, Tiirme von H. (Shell) 79
Hard Link s. Link
Harddisk s. Festplatte
Hardware 5, 26
Hardware-Adresse (Ethernet) 219
HAWKING, S. 91

HAX 23, 96

head(1) 56, 62
Heinzelménnchen s. Ddmon
HEwWLETT, W. 318
Hexadezimalsystem 3, 253
Hexpérchen 3

Hintergrund s. Prozess
History 67

Hoax 191

Hochkomma (Shell) 66
HoLLERITH, H. 318
HOME 69, 81, 87

349

Home Computer s. Computer
Home Page (WWW) 246

Host 214

HOWTO (LINUX) 205

HP SoftBench 149

HP-UX 22

HP-VUE 94

HPGL 154

hpux(1M) 175

HTML s. Hypertext Markup Language
HTML-Browser 245

Hurd 23

Hypermedia 244

Hypertext 8, 244

Hypertext Markup Language 245
Hypertext Transfer Protocol 246
hyphen(1) 126

Icon 96
id(1) 39, 62
IDEA 113, 236
Identifier s. Name
IEEE s. Institute of Electrical and Elec-
tronics Engineers
IEEE (Institut) 23
if - then - elif - ... (Shell) 77
if - then - else - fi (Shell) 77
IFS 69
Index (Array) s. Array
Index Node s. Inode
inetd 181
inetd(1M) 34
Infobahn 213
Informatik
Angewandte 1. 2
Herkunft 2
Lotkolben-1. 2
Technische 1. 2
Theoretische 1. 2
Information 1, 208, 209
Informationshilfe 222
Informationsmenge 3
Informationstheorie 209
Informatique 2
Inhaltsverzeichnis s. Verzeichnis
init(1M) 175, 181
Initial System Loader 174
Inode 168
I.-Liste 41, 52

350

I.-Nummer 52
insmod(1) 203
Instruktion s. Anweisung
Integer s. Zahl
interaktiv 8
Intercode 100
Interface s. Schnittstelle
Drucker-1. 130
Interface-File 130
Interface (Sprachen) 167
Internaute s. Netizen
Internet 213
Internet Explorer 245
Internet Relay Chat 241
Internet-Adresse 219
Internet-Démon 34
Interprozess-Kommunikation 34
Invite s. Prompt
IP s. Internet Protocol
IP-Adresse 219
IP-Protokoll 218
IPC s. Interprozess-Kommunikation
ipcs(1) 38
irc 241
ISDN s. Integrated Services Digital Net-
work, 213
ISO s. International Standardizing Or-
ganisation, 215
ISO 10021 228
ISO 3166 302

JACQUARD, J. M. 318

JoBs, S. P. 318

joe(1) 108, 278

Jokerzeichen 45, 66

Joritz, W. F. unDp L. G. 206
Joy, BILL 64

Jughead 243

Jukebox s. Plattenwechsler

Kiinstliche Intelligenz 211
Kaltstart 20

Karlsruher Test 310
Katalog s. Verzeichnis
KBS 27

KDE 204

Keller 35

kermit(1) 224

Kern s. UNIX
Kernelmodul 203

Sach- und Namensverzeichnis

KERNIGHAN, B. 21
Kernschnittstellenfunktion s. System-
aufruf
Key Server 237
Keyboard s. Tastatur
kill(1) 36, 39
Kilobyte 3
Klammeraffe 228
klicken (Maus) 94
KnuTtH, D. E. 118
Kommando
externes Shell-K. 64
FTP-Kommando 225
internes Shell-K. 64
Shell-K. 65
UNIX-K. 10, 65
Kommandointerpreter 26, 63
Kommandomodus (vi) 105
Kommandoprozedur s. Shellscript
Kommandozeile 74, 88
Kommentar
Kommentar (awk) 111
Kommentar (LaTeX) 122
Kommentar (Shell) 73
Kommunikation 158
Konfiguration 18, 183
Konsole 174, 190
Konto s. Account
kopieren 48
KornN, DAvID G. 64
Kreuzreferenz 143
Kryptanalyse 112, 115
Kryptologie 112
ksh(1) s. Shell
Kurs 6

Liandercode 302
LAamPoORT, L. 118
LAN s. Local Area Network
Landscape s. Format
Langage de programmation s. Program-
miersprache
last(1) 182
LaTeX 116, 118
Editor 119
Formelbeispiel 293
L.-Anweisung 119
L.-Compiler 119
Laufvariable s. Schleifenzéhler

Sach- und Namensverzeichnis

Laufwerk 5

1d(1) 134

leave(1) 34, 39

Leerzeichen s. Space
Lehrbuch 6, 324

LemBNIZ, G. W. 2, 318
Leistung 183

Lernprogramm 6, 8
Lesbarkeit 127

Lesen (Zugriffsrecht) 47
LessTif 204

Library s. Bibliothek

Lien s. Link, Verbindung
Ligne s. Zeile

LILO 202

Line feed s. Zeilenwechsel
Line Printer Scheduler 34, 175
Line Printer Spooler 128
Line spacing s. Zeilenabstand
Linguistik 2

Link
Hard L. s. harter L.
harter L. 53

Soft L. s. weicher L.
symbolischer L. s. weicher L.
weicher L. 54
Link (Hypertext) 244
link(1M) 53
linken (Files) 53
linken (Programme) 134
Linkz&hler 53
lint(1) 135, 151
LINUX 23, 27, 200
LINUX Documentation Project 205
List-Owner 235
Liste
Benutzer-L. 75
Liste (awk) 110
Mailing-L. 234
Prozess-L. 28
Verteiler-L. 234
Liste de diffusion s. Mailing-Liste
Listengenerator 110
Listproc 235
Listserv 235
Literal s. Konstante
Lizenz s. Nutzungsrecht
11(1) 45
In(1) 53, 62, 81

351

Loader s. Linker
local 214
Lock-File 34
Lockfile 130
16schen
logisch 1. 58
physikalisch 1. 58
Verzeichnis 1. 58
Logiciel 2
login(1) 176
Logische Bombe 190
LOGNAME 69, 81
logoff 10
logout 10
look + feel 88
Ip(1) 62, 128, 131
Ipadmin(1M) 130
Ipc(8) 130
Ipq(1) 128
Ipr(1) 128
Iprm(1) 128
Ipsched(1M) 34, 131, 181
Ipshut(1M) 130
Ipstat(1) 128, 131
Is(1) 39, 45, 48, 51, 52, 62, 64, 153
Iseek(2) 168
Istat(2) 54
Lucas, E. A. L. 79
lynx(1) 246

Mémoire centrale s. Arbeitsspeicher
Mémoire secondaire s. Massenspeicher
Maitre outbe s. Webmaster

Maitre poste s. Postmaster

Mach 23

Magic Number 168

magic(4) 168

magic.h 168

MAIL 69

Mail Delivery Agent 34, 232

Mail Transfer Agent 34

Mail Transport Agent 232

mail(1) 62, 159, 162

Mailbox 69, 228

MAILCHECK 69, 159

Maildrop 228

Mailing-Liste 234

Mailserver 228

mailx(1) 160

352

main() 167
main.tex 119
Majordomo 235
make(1) 135, 152
Makefile 135
makefile 135
Makro (make) 135
Makro (Shell) s. Shellscript
Makro (vi) 106
man(1) 12, 39
Mapper s. Linker
Marke (C) s. Label
Marke (Fenster) s. Cursor
Maschinenwort 3
maskieren s. quoten
Masquerading 206
Matériel s. Hardware
Mathematik 2
MAvucHLY, J. W. 318
Maus 90, 94
Maximize-Button 96
mediainit(1) 47
Medium s. Speicher
Megabyte 3
Mehrprozessor-System 19
Memory s. Speicher
Memory Management 27
Menii 88
Menii (Shellscript) 76
Menii-Button 96
mesg(1) 81, 158
Message Digest 5 236
Message of the Day 161
Message queue 37
Metazeichen 66
Mikro-Kern 15
milesisches System 21
MIME 233
Minimize-Button 96
MINIX 23, 27, 199
Miroir s. Mirror
MIT s. Massachusetts Institute of Tech-
nology, 92
mkdir(1) 46, 62
mkfs(1M) 47
mknod(1M) 35, 178
mknod(2) 172
MKS-Tools 207
mksf(1M) 178

Sach- und Namensverzeichnis

Modul 134
monacct(1M) 184
Monitor s. Bildschirm
monitor(3) 140
more(1) 12, 56, 62
Morris 190
MORSE, S. 318
mosaic(1) 245, 246
Mot de passe s. Passwort
Motif 92, 94
mount(1M) 46
mounten 46
Mounting Point 42, 46
mpack(1) 233
MS-DOS 19
MS-Xenix 198
Multi-Tasking 19
kooperatives M. 17
pridemptives M. 17
Multi-User-Modus 176
Multi-User-System 19
MULTICS 22
multimedia-fihig 213
Multipurpose Internet Mail Extensions
233
munpack(1) 233
Muster (awk) 110
Mustererkennung 101
mv(1) 12, 58, 62
mvdir(1M) 58

Nachricht 1, 209
Nachrichten s. News
Nachrichtendienst 222
Nachrichtenschlange 37
Nachschlagewerk 7
Name
Benutzer-N. 9, 177
File-N. 45
Geréte-N. 44
Hostname 219
Name-Server 219, 222
Named Pipe 35
NAPIER, J. 318
Native Language Support 99
Navigateur s. Browser
NELSoON, T. 8
NetBSD 23, 206
netfind(1) 249

Sach- und Namensverzeichnis

Netiquette 240

netlogstart 181

Netnews 7, 8, 237

netscape(1) 245

Network s. Netz

Network Time Protocol 251

Netz 213
Betriebssystem 19
Computernetz 5, 214
Entwicklung 213
Netzddmon 175
Netzdienst 213, 222
Protokoll 217

Netzwerk-File-System 222

Netzwerkschicht 216

NEUMANN, J. VON 318

newfs(1M) 47

newline s. Zeilenwechsel

News 160

news(1) 62, 81, 160, 162

Newsgruppe 239

NEXTSTEP 22

NeXTstep 23

NF (awk) 111

NIC s. Network Information Center, 219

nice(1) 32, 39

NickEL, K. 318

nl(1) 126

nm(1) 153

Noeud s. Knoten

nohup(1) 31

nohup.out 31

Nouvelles s. News

Novell 22

Novell NetWare 19

NR (awk) 111

nroff(1) 116, 117, 132

nslookup(1) 247

Numériser s. Scannen

Numero IP s. IP-Adresse

Oberflache
Benutzer-O. 25, 88
grafische O. 90
multimediale O. 91

od(1) 56, 62

Oktalsystem 3, 253

Oktett 3

OLDPWD 69

On-line-Manual s. man(1)

353

Open Software Foundation 23, 94

open(2) 168
OpenBSD 206

Operating System s. Betriebssystem

Operator (Person) 173
Option 10, 65
Ordenador 1
Ordinateur 1

Ordner s. Verzeichnis
Orientierung 101

Original Point of Distribution 226

ORS (awk) 111
0S/2 19, 27
OSF/1 23
Outil s. Werkzeug
Owner
File-O. s. File
List-O. s. Liste

PACKARD, D. 318
Page d’accueil s. Homepage
pagedaemon 181
Pager 12
Paging 18
Parameter
benannter P. 74
P. (Option) 10
Positions-P. 74
Schliisselwort-P. 74
Partagiciel s. Shareware
Partitionierung 175
PASCAL 6
PascaL, B. 318
Passage de parametres
teriibergabe
Passerelle s. Gateway
Passive FTP 225
passwd(1) 50
passwd(4) 176
password aging 187
Passwort 9, 177, 186
paste(1) 126
pasv (FTP) 225
PATH 69, 81, 83
Pattern s. Muster
PC s. Computer
pc(l) 134
Peripherie 5

S.

Parame-

354

Perl 73
perl 84, 112
Pfad s. File, 45
Pfeiltaste s. Cursor
pg(1) 56, 62, 87
physikalische Schicht 216
Physiologie 2
Piar, E. 91
PikE, R. 23
Pile s. Stapel
Pipe 35
pipe(2) 35
Pirate s. Hacker
Pitch s. Schrift
Plan9 23
Plattform s. System
plock(2) 196
Point size s. Schrift
Pointer (Fenster) s. Cursor
Portierbarkeit 25, 86
Portrait s. Format
POSIX 23
Post Office Protocol 228
posten (News) 240
Postmaster 160, 229
PPID 69
prep.ai.mit.edu 196
Pretty Good Privacy 235
Primary Boot Path 174
primes(1) 97
Primzahl 84
print (Shell) 77, 78, 81, 87
printf(3) 277
Privacy Enhanced Mail 235
Privileged User 49
Pro nescia 139
Processus s. Prozess
prof(1) 140
Profiler 139
Programm 2
Fassung s. Version
Programmiersprache 6
Prompt 9, 69, 84
Propriétaire s. Besitzer
Proxy 206
Prozess 28
asynchroner P. 31
Background s. Hintergrund
Besitzer 29, 31

Sach- und Namensverzeichnis

Client-P. 92, 214
Dauer 29
Elternprozess 29
Foreground s. Vordergrund
getty-P. 30
Gruppenleiter 29
Hintergrund-P. 31
init-P. 30
Kindprozess 29
login-P. 30
Parent-P.-ID 29, 69
Prioritit 32
Prozess-ID 28, 29
Prozessgruppe 29
Prozesstabelle 31
Server-P. 92, 214
Startzeit 29
synchroner P. 31
Vererbung 29
Vordergrund-P. 31

Prozessor
CPU s. Zentralprozessor
Prozessorzeit 17
Scheduling 17
Zentralprozessor 4

Prozessrechner 195

Priifsumme 191

ps(1) 28, 31, 32, 39

PS1 39, 69, 81, 83

Pseudo-Virus 191

pstat(2) 183

ptx(1) 126

ptydaemon 181

Puffer s. Speicher

Pull-down-Menii 96

Punktscript 83

PWD 69

pwd(1) 39, 45, 62, 64, 87

pwget(1) 194

Qt-Bibliothek 204
Qualifier s. Typ
Qualititsgewinn 13
Quantor s. Jokerzeichen
quit 10

quot(1M) 61

quota(l) 66, 183
quota(5) 183

quoten 66

Sach- und Namensverzeichnis

r-Dienstprogramm 223

Répertoire s. Verzeichnis

Répertoire courant s. Arbeitsverzeichnis

Répertoire de travail s. Arbeitsverzeich-
nis

Réseau s. Netz

Réseau local s. LAN

Riickschritt s. Backspace

Racine s. Root

RAID s. Redundant Array of Indepen-
dent Disks

RAM s. Speicher

RANDOM 69

Random Access s. Zugriff, wahlfreier

Random Access Memory s. Speicher

ranlib(1) 141

Rastergrafik 154

RCS s. Revision Control System, 144

read (Shell) 77

read(2) 168

readlink(2) 54

Realtime-System s. Echtzeit-S.

Rechenanlage s. Computer

recode(1) 100

Record (Datenbank) s. Satz

Red Hat LINUX 200

Redirektion s. Umlenkung

Referenz s. Bezug

Referenz-Handbuch 7, 11

Register s. Speicher

reguldrer Ausdruck s. Ausdruck

reguléres File s. File

reject(1M) 130, 131

Rekursion 79

Reminder Service 33

remote 214

Remote Execution 222

Reply (News) 240

Request s. Druckauftrag

Request For Comment 217, 304

reset(1) 195

Rest der Welt s. Menge der sonstigen
Benutzer, 47

restore(1M) 193

return (Shell) 78

Return-Taste 9, 39

Returnwert s. Riickgabewert

rev(1l) 126

Revision Control System 144

355

RFC s. Request For Comment
RFC 1421 - 1424 237

RFC 821 218
Rienne-Vaplus, Héhle von R. 138
RI10ORDAN, M. 237
RIPEM 237

RiTcHIE, D. 21

RivesT, R. 114

rlb(1M) 181
rlbdaemon(1M) 181
rlogin(1) 223

rm(1) 58, 66, 186

rmdir(1) 46, 58

rmmod(1) 203

rmnl(1) 126

RMS s. STALLMAN, R. M.
rmtb(1) 126

Rollkugel s. Trackball
ROM s. Speicher

root (Benutzer) 186

root (Verzeichnis) 42, 175
ROT13 113

Rotif 96

Routine s. Unterprogramm
Routing 213
RSA-Verfahren 114
rtprio(1) 196

Run Level 176
runacct(1M) 184
ruptime(1M) 181

rwho(1) 181

rwhod(1M) 181

Sachregister 111

Sachverzeichnis 122

Satz (awk) 110

scanf(3) 277

SCCS s. Source Code Control System,
149

Schalter (Option) 10

Schaltvariable s. Flag

Schichtenmodell 15, 215

SCHICKARD, W. 318

Schliisselwort 163

Schlappscheibe s. Diskette

Schnittstelle 5

Centronics-S. s. parallele S.
Schreiben (Zugriffsrecht) 47
Schreibmodus (vi) 105

356

Schrift
Art 101
Grad 101
Pitch s. Weite
Point size s. Grad
Proportionalschrift 101
Schnitt 101
Treatment s. Schnitt
Typeface s. Art
Weite 101
SCO-UNIX 198
Scope s. Geltungsbereich
Screen s. Bildschirm
script(1) 67
SCSI s. Small Computer Systems Inter-
face
sdb(1) 138
SECONDS 69
sed(1) 100, 132
sed-Script 109
Seiteneffekt s. Nebenwirkung
Seitenflattern 18
Seitenwechsel s. Paging
Sektion 11
Semaphor 37
sendmail(1) 218
sendmail(1M) 34, 181, 232, 233
Separator s. Trennzeichen
Server (Computer) 214
Server (Prozess) 92, 214
Serveur s. Server
Session s. Sitzung
Session Manager 224
set (Shell) 39, 68, 71, 87
Set-Group-ID-Bit 50
Set-User-ID-Bit 50
setprivgrp(1M) 195
sh(1) s. Shell, 39
SHAMIR, A. 114
SHANNON, C. E. 3, 209, 318
Shared Library 134
Shared Memory 38
SHELL 69
Shell 26
bash 64
Bourne-Shell 64
bsh(1) 64
C-Shell 64
csh(1) 64

Sach- und Namensverzeichnis

Funktion 68
Korn-Shell 64
ksh(1) 64
rc 64
Secure Shell 223
sh(1) 64
Sitzungsshell 30, 63, 68
ssh(1) 223
Subshell 73
tcsh 64
Windowing-Korn-Shell 64
wksh(1) 64
z-Shell 64
Shellscript 73
shift (Shell) 74
SHOCKLEY, W. B. 318
shutacct(1M) 184
shutdown(1M) 176, 184
Sicherheit
Betriebssicherheit 185
Datenschutz 185
Datensicherheit 185, 186
Sicherungskopie s. Backup
Sieb des Erathostenes 21
SIGHUP 31
SIGKILL 36
Signal 29, 36, 208, 282
signal(2) 36
Signatur 160
SIGTERM 36
Simple Mail Transfer Protocol 218, 228
Single-Tasking 19
Single-User-Modus 176
Single-User-System 19
SINIX 22
Sinnbild s. Icon
Sitzung 8
Sitzungsschicht 216
size(1) 153
skalierbar 23
Slackware LINUX 200
Slang 289
sleep(1) 81
SMALLTALK 90
Smiley 233
Smoke Test 91
SMTP s. Simple Mail Transfer Protocol,
218
Snail 159

Sach- und Namensverzeichnis

Socket 38
sockregd 181
Soft Link s. Link
Software 5
Solaris 22
Solidus s. Schrégstrich
Sonderzeichen (Shell) s. Metazeichen
Sonderzeichen (vi) 105
sort(1) 75, 126, 133
Source Code Control System 149
source-Umgebung (LaTeX) 119
Sourcecode s. Quellcode
Souriard s. Grinsling
Souris s. Maus
Spam 233
Spanning 41
Speicher
Arbeitsspeicher 4
Datentriger 4
Diskette s. dort
Festplatte s. dort
gemeinsamer S. 38
Hauptspeicher s. Arbeitsspeicher
Keller 35
Massenspeicher 4
Medium s. Datentrager
Memory s. Arbeitsspeicher
MO-Disk s. dort
RAM s. Random Access Memory
ROM s. Read Only Memory
Speichermodell 134
Stack 35
Stapel 35
WORM s. dort
Zwischenspeicher s. Cache
spell(1) 126, 132
sperren s. quoten
Spiegel 226
split(1) 126
squid 206
ssp(1) 126
Stack s. Stapel, 35
STALLMAN, R. M. 23, 196
Stapel 35
Stapeldatei s. Shellscript
Stapelverarbeitung s. Batch-Betrieb
startup(1M) 184
stat(2) 168
statdaemon 181

357

stderr 55
stdin 55
stdout 16, 55
STEINBUCH, K. 2
Stellenwertsystem 21
Steuersprache (Bildschirm) 154
Steuersprache (Drucker) 154
Steuersprache (Plotter) 154
Sticky Bit 49
stop 10
Stream 38
string(3) 168
String-Deskriptor 166
strings(1) 153
strip(1) 153
strncmp(3) 168
Struktur s. Programmstruktur
Struktur (C) s. Typ
stty(1) 81, 130, 195
style(1) 127
Subroutine 11, 163
subskribieren 235, 239
Suchen (Zugriffsrecht) 47
Suchpfad 69
Sumpf 74
SunOS 22
Super-Block 41
Superuser 49, 173, 178
Superutilisateur s. Superuser
SuSE LINUX 200
swais(1) 243
swap-Area 175
Swapper 175
swapper 181
Swapping 17
Symbol (Fenster) s. Icon
Symbol (Wort) s. Schliisselwort
symbolischer Debugger s. Debugger
symbolischer Link

seeLink 1
sync(2) 181
Synopsis 12
Syntax-Priifer 135
sys/stat.h 168
syslogd(1M) 181
Systéeme d’exploitation s. Betriebssys-

tem

System 6
System call s. Systemaufruf

358

System primitive s. Systemaufruf
System V 22

System, dyadisches s. Dualsystem
System-Entwickler 173
System-Manager 9, 173
System-Start 175

System-Stop 176

System-Update 173
System-Upgrade 173
Systemanfrage s. Prompt
Systemaufruf 163, 280
Systemdaten-Segment 28
Systemgenerierung 173

Tableau s. Array

tail(1) 56

talk(1) 158

Tampon s. Pufferspeicher

tar(1) 47, 56, 192

Target (make) 135

Task s. Prozess

Tastatur 4

Tastatur-Anpassung (vi) 106

tcio(1) 192

TCP s. Transport Control Protocol

TCP-Protokoll 218

TCP/IP 217

tesh(1) s. Shell

tee(1) 55

telnet(1) 223, 233

TERM 69, 81

Term s. Ausdruck

Terminal 4
Initialisierung 176
Kontroll-T. 29, 31
T.-Beschreibung 105, 178
T.-Emulation 161, 222, 223
T.-Server 224
Terminaltyp 69
virtuelles T. 90

Terminkalender 33

termio(4) 180

termio(7) 130

test(1) 64

TeX 118

TeXCAD 118

THoMPSON, K. 21, 23

Thread (Netnews) 237

Thread (Prozess) 28

Sach- und Namensverzeichnis

tic(1M) 178
Ticuy, W. F. 144
Tietokone 1
time(1) 139, 153
time(2) 164
Timeout 69, 81
times(2) 140
tin 237
TMOUT 69, 81, 83
tn3270(1) 223
Tool s. Werkzeug
top(1) 183
Top-Level-Domain 219
ToRrvVALDS, L. B. 200
touch(1) 55
tr(1) 100, 126, 128, 132
Transportschicht 216
trap (Shell) 36, 81, 87
traverse 61
Treatment s. Schrift
tree 61
Treiber
Compilertreiber 134
Treiberprogramm 25, 26, 44, 175
Trennzeichen (awk) 111
Trennzeichen (Shell) 69
Triple-DES 113
trn 237
troff(1) 117
Trojanisches Pferd 188
Trombine s. Grinsling
true(1) 78
tset(1) 81, 195
TTY 69, 81
tty(1) 39, 62
Tube s. Pipe
Tiirme von Hanoi (Shell) 79
TuURING, A. 318
Typ
Feld s. Array
leerer T. s. void
Qualifier s. Attribut
Record s. Struktur
skalarer T. s. einfacher T.
starker T. s. System-Manager
strukturierter T. s. zusammenge-
setzter T.
Variante s. Union
Vektor) s. Array

Sach- und Namensverzeichnis

Verbund s. Struktur
Vereinigung s. Union

Zeichentyp s. alphanumerischer T.

Zeiger s. Pointer
type(1) 60
Typeface s. Schrift
types.h 168
typeset (Shell) 77
Tyrannosaurus 318
TZ 69, 81

Ubersetzer s. Compiler
iibertragen s. portieren
Uhr 33, 164, 196
ULTRIX 22
umask(1) 49, 81
Umgebung 68, 176
Umlaut 99
Umlenkung 72
umount(1M) 46
unalias (Shell) 67
uncompress(1) 57
unexpand(1) 126
Unicode 100
Uniform Resource Locator 246
Union s. Typ
uniq(1) 110, 126, 133
Universal Time Coordinated 249
UNIX 19
Aufbau 26
Editor s. vi(1)
Entstehung 21
Kern 26, 27, 196
Kommando 10, 271
Konfiguration 25
Name 22
praunicische Zeit 21
System V Interface Definition 26
Uhr 196
Vor- und Nachteile 24
unset (Shell) 81
Unterprogramm 163
untic(1M) 178
usage 88
Usenet s. Netnews
USER 69
User s. Benutzer
users(1) 62
Utilisateur s. Benutzer

359

Utilitaire s. Dienstprogramm
Utility s. Dienstprogramm
utime(2) 172

utmp(4) 173

UUCP 161

uudecode(1) 233
uuencode(1) 161, 233

Valeur par defaut s. Defaultwert

Value s. Wert

Variable
awk-Variable 111
Shell-V. 69
Umgebungs-V. 69

Variante) s. Typ

vedit(1) 107

Vektor (Typ) s. Typ

Vektorgrafik 154

Verantwortung 13

Verbindung
leitungsvermittelte V. 214
paketvermittelte V. 214

Vereinigung s. Typ

Verfiigbarkeit 186

Veronica 243

verschieblich s. relozierbar

Verschliisselung 112
ROT13 113
RSA-Verfahren 114
Symmetrische V. 113
Unsymmetrische V. 114

Version 125

Verteilerliste s. Liste

Verzeichnis 41
iibergeordnetes V. 46
Arbeits-V. 45, 46
Gerite-V. 41, 44
Haus-V. s. Home-V.
Heimat-V. s. Home-V.
Home-V. 45, 176
16schen 58

Verzweigung (Shell) 77

vi(l) 87, 99, 132, 277

Videoband 6

view(1) 107

vim(1) 107

Viren-Scanner 191

Virtual Library (WWW) 246

Virus 190

360

vis(1) 56, 126

Visual User Environment 90
Vordergrund s. Prozess
Vorlesung 6

VUE 90

WAIS 243

waissearch(1) 243
WALLER, F. 91

WAN 5. Wide Area Network
Warmstart 20

we(l) 126, 132

Wecker 34

WEISSINGER, J. 318
Weiterbildung 13
Werkzeug 25, 55

whatis (Archie) 241
whence(1) 60

whereis(1) 60, 62
which(1) 60
while-Schleife (Shell) 77, 78
who(1) 39, 62, 97, 173, 177
whoami(1) 39

whois(1) 247

Wildcard s. Jokerzeichen
Willensfreiheit 13
Window-Manager 92, 204
Wissen 211

Wizard 8

Workaround s. Umgehung
World Wide Web 246
WozNIAK, S. G. 318
write(1) 158, 162

Wurm 190

Waurzel s. root

WWW 246

www(1) 246

WYSIWYG 117

X Version 11 92

X Window System 24, 92, 224
X.400 228

X.500-Anschriften 229

X11 s. X Window System, 92
xargs(1) 58, 60, 125
xclock(1) 98

xdb(1) 138, 152

XENIX 22

Xerox 90

XFree 204

Sach- und Namensverzeichnis

xhost(1) 94
xmodem 224
xmosaic(1) 246

xrn 237

xterm(1) 98
xwais(1) 243

Zahl

Integer s. ganze Z.
Zufallszahl 69
Zahlensystem 21, 253
Zeichen 209
Gegenschrigstrich s. Backslash
Steuerzeichen 98
Umlaut 99
Zeichenkette s. String
zeichenorientiert 44
Zeichensatz 98
ASCII 98, 256
EBCDIC 99, 256
IBM-PC 99, 256
Intercode 100
ISO 8859-1 99
Latin-1 99, 263
Latin-2 268
ROMANS 99, 256
Unicode 100
Zeichenstrom 41
zeigen (Maus) 94
Zeiger (Array) s. Array
Zeiger (Marke) s. Cursor
Zeiger (Typ) s. Typ
Zeilenabstand 101
Zeilenende s. Zeilenwechsel
Zeilenwechsel 128
Zeit-Server 222
Zeitiiberschreitungsfehler s. Timeout
Zeitersparnis 12
Zeitscheibe 17
Zeitschrift 6, 340
Zeitstempel s. File
Zeitzone 69, 81
ZEMANEK, H. 12
Zentraleinheit s. Prozessor, 4
ziehen (Maus) 94
Ziel (make) 135
zitieren s. quoten
zmodem 224

Zombie 37

Sach- und Namensverzeichnis 361

Zugriff

Zugriffsrecht s. File
Zuse, K. 318
Zweiersystem s. Dualsystem
Zwischenraum s. Space

