Formal Foundations of Dynamic Types for
Software Components *

Ralf H. Reussner
Department of Informatics
Universitat Karlsruhe
Germany
reussner@ira.uka.de

March 30, 2000

!This document appeared as Interner Bericht (Technical Report) 08/2000 at the
Department of Informatics, Universitdt Karlsruhe, Germany

Abstract

In this work we describe a the foundations of a type system for software com-
ponents, which supports (1) error checking during composition, (2) automatic
adaption of a component’s services according to the resources of its surrounding
environment, and (3) controlled extension of components by plug-ins. Since the
type information is described at the interface of a component, this type system
can also be regarded as an new notion for to enhance classical interfaces. This
document gives a specification of a component type and describes algorithms
performing the above actions (1) - (3).

Contents

1 Introduction
1.1 Component-based Software Engineering
1.2 Problems of Current Technology
1.3 Requirements to an Type System
1.4 Overview: Types and their Benefits

2 Types for Software Components
2.1 Enhanced Finite Automata
2.2 The Call-Interface
2.3 The Use-Interface
2.3.1 The F-Automata
2.3.2 The EC-Automaton

3 Algorithms and Typing Rules
3.1 TypeEquality.
3.2 Type Adaption
3.3 TypeExtension
3.4 Subtyping

4 Future Work

Chapter 1

Introduction

Type systems allow static error checking of programs and support the compiler’s
task calculating the memory layout of the compiled program [Sco99]. Whereas
type systems for object-oriented languages are a long lasting concern of research
[PS94][Cas97], type systems for component-based programming are relatively
new. The main questions tackled in this report are:

1. “What is the type of a software component?”

2. “What are the specific requirements to a type system for software compo-
nents?”

As the concept of a type system is currently only applied to programming lan-
guage constructs like variables, functions, or objects, it is clear, that the in-
troduction of the concept type to software components extends the traditional
meaning of a type.

1.1 Component-based Software Engineering

In the following we restrict our research in two ways. Firstly, we concentrate on
components as defined by [Szy98]:

1. A component is a unit of independent deployment.
2. A component is a unit of third-party composition.

3. A component has no persistent state.

The last point emphasizes persistent. This does not mean, that a com-
ponent has no internal state, like a collection of mathematical functions. No
persistent state means, that different copies of a component will have the same
state, when started in a particular environment. So they will behave in the
same way, so usually it will make no sense, to have multiple copies of a com-
ponent in a single environment. As a consequence, the alias-problem does not
arise. The above definition does not conflict with the definition of D’Souza and

2 CHAPTER 1. INTRODUCTION

Wills, that “Reusable parts that can be adapted, but not modified, are called
components”[DW99], in case this definition is restricted to (compiled) code.!

The second restriction of our research is motivated by the goals we want to
support with our type system. According to Nierstrasz, a type should describe
the applicability of the typed entity [Nie93], the type of a component is deter-
mined by its applicability information, i.e., the information necessary to apply a
component. Certainly, a wide range of various issues influence the applicability
of a component. We basically concentrate on information necessary to tackle
some of the current problems of current component technology. This list is, of
course, by no means comprehensive, but shows our focus on protocol-related
problems.

1.2 Problems of Current Technology

As a consequence of Szyperski’s above definition a software component has
to be applicable in various contexts. More concrete, components are deployed
through composition into other systems [Wec97]. So during the development and
deployment of a component we can separate compile-time, composition-time,
and run-time. The link-time, when libraries are linked to the component belongs
to the compile-time (in case libraries are statically linked to the component),
or to the composition time (when libraries belong to the run-time environment
are are linked dynamically), or to both.

Error detection

Errors can occur at all three times. It is well known, that not all errors in
a program can be found automatically (e.g., by a type system) statically, i.e.,
in advance, before run-time. This would be a contradiction to the halting-
problem. But more important to the praxis is, that many errors can be found
statically through a type system during compile time, that is without executing
the program. Generally, type errors occur when a variable or function is used
in an inappropriate context, e.g., a float-variable is used as an index in an
array (assuming that the float will not be casted automatically in a integer).
Unfortunately, todays component technology (such as the Objects Management
Group’s CORBA [OMG], Microsft’s DCOM [DCO], or Sun Microsystem’s EJB
[EJB]) does not include a type system, which finds component specific errors
during compile- or composition-time. Such component specific errors are, for
example, errors due to coupling non-fitting components, errors due to missing
but required resources, et cetera. These errors are not detected, when the user
composes the components and expects the composition errors. Instead, the
errors arise, when actually using the components. This may be long after a
change in the system’s configuration, and the composition step which caused
the errors can be hard to identify.

'Whereas D’Souza and Wills explicitly mention parts of models and designs also as com-
ponents.

1.2. PROBLEMS OF CURRENT TECHNOLOGY 3

We call the problem that errors are not detected before run-time the ’‘early
error detection problem’.

Component deployment

As mentioned above, components are applied by composition with specific envi-
ronments (contexts). This is the reason, why manufacturers of components have
a non-negligible interest in maximizing the number a component is applicable
in. As mentioned elsewhere ([Reu99][RH99]), we identify two basic strategies to
maximize this number of contexts a component is applicable in.

(a) ’Adding functionality strategy’> The more functionality a component
offer, the more users will be satisfied with this component and will reuse it. (b)
"Dynamic enhancement strategy’: In this approach it is not tried to anticipate
during design stage all functionality a component should have in its entire life-
time. Instead of that, certain connectors for further enhancements are defined.
When during employment of a component new functionality is required, the
component can be enhanced at run-time by so-called ’plug-ins’.

Generally, problems with the ’adding functionality strategy’ are: firstly, it is
difficult to formulate all requirements of a component in advance. Even when
this can be done, a second problem arises: Adding new functionality does not in
general improve a software component’s reusability, since the added functions
translate into new requirements to the environment where the component is to
be embedded. Thus, the component becomes less reusable, contrary to the orig-
inal intention. For example, imagine you are designing a printer management
component. If you restrict its functionality to handle only local printers, it will
not be very reusable, because it will not handle network printers. However, if
you design the component for network printers, it will require a network even for
managing the local printer, and that will not make it very popular with users.
The above problem we call the ’functionality-reuse problem’.

Problems with the ’"dynamic enhancement strategy’ are that today type sys-
tems handle this dynamic binding only rudimentarily. Usually a plug-in is a
parameterized extra application. Using it as a plug-in just means that it can be
launched automatically with correct parameters (e.g., viewers in browsers or file
converters in printer controls). Today type systems cannot handle more sophis-
ticated interfaces to plug-ins. Especially, it is not clear how the functionality of
a plug-in-component enhances the functionality of the plug-in using component.
The functionality of the plug-in does not really appear as new functionality of
the plug-in using component at its interface. For example, this would be neces-
sary when a user-interface has to adapt after inserting a plug-in in a component
collaborating with the user interface. This is the ’type-extension problem’.

4 CHAPTER 1. INTRODUCTION

1.3 Requirements to an Type System for Soft-
ware Components

According to the problems specific for component based software engineering
as mentioned above we pose certain requirements specific for types systems for
software components.

Such a type system should support:

Adaption: Elimination of environmental dependencies through adaption of
functionality according to the capabilities of the environment. In general,
adaption can be achieved (a) by the component’s developer, explicitly
programming the (possibly many) cases, when the component has to deal
with missing resources, or (b) by the run-time system, which automati-
cally adapts the component. Here we demonstrate, how a type system can
support this task.

Extension: Defined Interfaces to plug-ins.

Error Detection during composition-time: Detection of composition er-
rors before run-time.

Pre-Compilation: Interface information as replacement for missing contex-
tual information enables pre-compilation.

In this report we focus on the first three requirements. [Heu] and [HR99] shows
the application of component types for the pre-compilation problem.

1.4 Overview: A Type System for Software Com
ponents and its Benefits

Our solution to the three above mentioned problems (’early error detection
problem’, ’functionality-reuse problem’, and ’type-extension problem’) is to add
information to the interface of a component.

Concrete, we regard the type of a component consisting of two interfaces:
(a) the call-interface, describing the protocol of allowed call sequences and (b)
the use-interface, which specifies the required external resources and how these
will be used. These interface and the used notation of enhanced finite automata
is the content of chapter 2.

The use-interface combined with the call-interface, allows us to detect errors,
when a components A wants to use another component B despite of non-fitting
protocols. In this case the use-interface of component A will not fit to the call-
interface of component B. When additionally combining these two interface of
one component, component A can adapt its offered services (as described in
its call-interface) according to the services its use-interface actually gets from
component B. (This algorithm is explained in detail in section 3.2.) So we tackle

1.4. OVERVIEW: TYPES AND THEIR BENEFITS 5

the 'functionality-reuse problem’, since the reuse components with a large func-
tionality is not hindered anymore by missing external components. Component
A simply restricts its functionality in a way it can work in an environment with
less than the maximum of expected resources. This restriction of functionality
may not always lead to a still usable component, but in general the attempt to
adapt a component is more useful than just throwing an error.

The ’type-extension problem’ is gone on with restrictions a component A
imposes a plug-in component B. B can only be plugged in component A, when
it fulfills these restrictions. This is described as type extension in section 3.3.

Generally this document focuses an a detailed description of our type con-
cept, and the algorithms using this type concept. Pointers to related work are
given in [RH99][HR99] and our project’s web-site [Reu].

Chapter 2

Types for Software
Components

This chapter describes in detail our notion of the type of a component. To do
so, first we specify our model of a software component.

Services: All services of a component are function calls. These may be local
or remote (e.g., like Javas Remote Method Invocation mechanism [JAV]).

Timing: The execution times of function calls may be different. Is a service
called during the execution of another, the service call is queued until the
execution of the other call finished.

Ordering: The above queuing of function calls should preserve the order of
incoming calls. The order of starting the execution of a function is the
order of incoming function calls.

Inheritance: We do not regard any kind of inheritance between components.

Identity: Each component should have a unique identity. (This is the conse-
quence of Szyperskis definition of a component as quoted above in section
1.1. If there exist multiple copies of the same component, these are dis-
tinguishable.

So, without looking at the type of a component, a component K is described
by Sk, where Sk is the set of services (=function calls) the component offers:
Sk := {n|n Name of a public function of K}.

2.1 Enhanced Finite Automata

As explained in section 1.4 we model the usage of a component by the protocol
of allowed call sequences. Finite automata has proved useful to model proto-
cols [Hol91]. Finite automata were often deployed to model call sequences for

2.1. ENHANCED FINITE AUTOMATA 7

software units' [Nie93][YS97]. Note that the definitions of this document are
tailored to our purposes and may differ from definitions of text books.

Definition 1 (Deterministic Finite Acceptor with error)

A Deterministic Finite Acceptor (DFA) D is a tuple D = (I,S,F,E,so,0). I
the input alphabet, S the set of states, F' C S is the set of accepting (final)
states. E C S\F is the set of error states, so € S is a designated start-state.
0:1xS8 — Sis a total function. When an error-state is reached, it can never
be left: Ve € E.Vi € 1.6(i,e) = e. Note that the same condition is not true for
accepting states. A state a € F' may exist with 3¢ € I.6(a,i) ¢ A.

Definition 2 (Transition Graph of a DFA)

Given a DFA D = (I, S, F, E, sg,0), we can form a directed graph G := (E,N).
The set of nodes N is the set of states S. (ej,e2) € Fiff 3 € I. € S.6(i,e1) = es.
That is, an edge (e1,es) exits iff an transition from state e; to state e exists.
According to the graph’s offspring of an automata, we also denote edge (e, e2) as
0(i,e1) with ¢ € I appropriate.

Definition 3 (Iterated Tr.'ilnsitions)
As a shorthand we introduce § : [* x S — S:

~

0(w, s) := 0(wp, 6(wp—1,---6(w1,8)--+)), (2.1)
with w = wy - - - w,,.

Definition 4 (Accepted Language)
The language L(D) of words accepted by D is defined (as usual), as the set of
words over the input alphabet, which bring D (starting in the start-state s¢) in an

accepting state: L(D) := {w e I*|6(w, s) € A}. In case the starting state sg is
an accepting state, the empty word € is also in L(D): s € A & € € L(D).

Note that words of the complement of L(D) (i.e., L(D)¢ = I*\L(D) bring
D in an error-state: Yw € I*\L(D).d(w,s) € E

In the latter we often need a certain construction of sets, which we want to
define with a shorthand.

Definition 5 (Cross-Union)
Let A and B be sets, than

C=AU(AxB) (2.2)
Then we call C the cross-union of A and B, in symbols: C' = A® B.

These definitions serve as a base for our following definitions of the call-
interface (section 2.2), with its C-Automaton, and the use-interface (section
2.3), with its F-Automata and EC-Automata.

1We use the term wunit as a placeholder for module, object, or component.

8 CHAPTER 2. TYPES FOR SOFTWARE COMPONENTS

2.2 The Call-Interface

The call-interface models the services a component offers. The interface consists
of:

a classical interface: Todays programming languages model interfaces (for
objects) as a set of function-types. We consider a JAVA interface as a
classical interface [AG98]. Functions are modeled by the types of their
parameters, their return type, and the exceptions they may throw.

additional protocol information: This information specifies the allowed call
sequences and is modeled in the Call-Automaton (C-Automaton, C-Aut).

In the following we give a basic definition of the C-Automaton, which is
enhanced step-by-step, to refine our model of services offered by a component.

The C-Automaton

A straightforward way to model the allowed call sequences of a Component
K is to use the K’s service names as the input alphabet of its C-Automaton
Ic_ aut, = Sk. State-transitions correspond to service calls.

Definition 6 (allowed call sequence)
A word w € L(C-Autg) is an allowed (valid) call sequence.

Definition 7 (invalid call sequence)
A word w' € I*\L(C-Autg) is called an invalid call sequence.

Definition 8 (valid and invalid prefixes)

A prefix p = wy - --w; of a word w = wy -+ - wiwiy1 - Wy, t < nis called a valid
prefix when there exits a word v with pv € L(D). That is, when D is fed with p,
D can be fed with a word v, so that D reaches an accepting state. If no such v
exists, p is an invalid prefix.

Definition 9 (Component-Automaton (C-Automaton, C-Aut))
The C-Aut of a Component K is a DFA C-Autk := (I, S, F, E, s9,0), with

e the input alphabet I are the names of K's services: I := Sk,
e the set of states S chosen appropriate,

e a state a is in the set of accepting (final) states A, iff a sequences of service
calls leaves K in a valid state, where no further services calls are necessary to
bring K in a valid state,

e is a call f performed which is not a allowed in a given state ¢, than the result
of (f,t) must be an error-state: 6(f,t) € E. For this purpose one error state
is sufficient. The need for a set of error states is justified when dealing with
exceptions.

2.2. THE CALL-INTERFACE 9

e the start-state sp models a start of all allowed call sequences,

e and the transition function § models calls to K’s services. Each call corre-
sponds to a transition. The first call f; in a call sequence f = f1--- fi_1f;
which let f become an invalid call sequence and f1--- f;—1 is a valid prefix,
must bring §(f;,t) in an error-state. Whereas 0(f1 -+ fi—1,s) € S\E. All
valid call sequences must bring D in an accepting state.

Figure 2.1 shows an example. A VideoMail-component offers various services,
such as: play, stop, pause, etc. Transitions leading to an error state are
omitted.

C-Aut__, . volume up, volume down, brightness up,
VideoMail | — — -
brightness down, contrast up, contrast down,
speed_up, speed_down

brightness_up, brightness_down, contrast_up, contrast_down,
speed_up, speed down, save_to_ file

Figure 2.1: Example: C-Aut of a VideoMail component.

The C' — Auty/igeoMail SPecifies for example play pause volume up play
stop as a valid call sequence, whereas pause stop is an invalid sequence. A
valid prefix is play speed_down, since a call to stop could bring the C-Aut in
an accepting state.

Opposed to common dynamic modeling of objects with state machines (e.g.,
Statecharts[Har87], SDL[T.84], UML[RJB99]), where the behavior of objects
is specified, we use state machines to describe the availability of services. That
means that states of the C-Aut do not necessarily correspond with internal states
of the component. More precisely: several internal states can be subsumed in
one state of the C-Aut.

Counters

One problem of the above model is, that there is no possibility to model any
relations between calls. A simple but practically important relation between
two calls is, that they are called equal times. Or imagine a stack. pop must not
be called more often than push has been called.

In general, we want to model the allocation, the release, and the creation
of resources. Each service of a component may allocate, release, or create arbi-

10 CHAPTER 2. TYPES FOR SOFTWARE COMPONENTS

trary resources. Resources can be, for example, blocks of memory, file handles,
sockets, etc. We would like to check the following conditions:

1. All allocated units of a resource must be released.
2. Not more units of a resource must be allocated than created.

3. Not more units of a resource must be released than allocated. (In this
case, it is all right, when a component persistently keeps some units of a
resource allocated.)

4. Not more units of a resource must be allocated than released, but the
release operation even works for not allocated resources.

To model these conditions we enhance the C-Automaton with counters. We
allow three kinds of counters.

Error non-negative counters are integer counters which never store nega-
tive integer value. The set Cr_n, comprises all error non-negative coun-
ters. Decreasing a counter ¢ € Cg_n, which holds the value zero leads to
an error-state.

Idempotent non-negative counters are integer counters which never store
a negative value. The set C'r_n, comprises all error non-negative counters.
Decreasing a counter ¢ € C'j_n, which holds the value zero has simply no
effect.

Integer-counters: These counters represent integer values and are elements
of the set Cyz.

The set of counters C' is defined as: C' := Cg_n, UCr_n, U Cz.

Each function is associated with a set of counters. Those can be either
increasing or decreasing. More formally we allow the association of counters to
symbols of the input alphabet. We define two total functions. The first, I'ps
(I'-Manipulate), maps an element of the input alphabet to a set of increasing
or decreasing counters.

Cy:I—=P(Cx{++,——}) (2.3)

The symbols ++ denote an increasing counter, that is we add one to this counter
each time the automaton performs this transition. Is no counter manipulated
for a € I then I'jps(a) := (. Counters are initialized to zero before their first
usage. The —— denotes a decreasing counter, i.e., one is subtracted each time
the automaton perfumes this transition and the counter is greater than zero.
Note that ['j; need not necessarily be injective. That is several symbols of I
may manipulate the same counter.

An symbol a associated with an increasing counter ¢ we write as a(i + +),
analogously for decreasing counter i we write a(i — —).

2.2. THE CALL-INTERFACE 11

I'ps is used to partition the input alphabet:
Iopusy =Ip:={i € Il (i) =0} U I, := {i € [T (s) # 0} (2.4)

We define the set of increasing counters C (i) associated with a symbol
i € I; and the set of decreasing counters C'_ (i) associated with a symbol i € I}.

Ci(@i) = {celClc++eTnu(i)} (2.5)
C_(7) {c€Cle——€Tu(i)} (2.6)

As stated below, we require C (i) N C_(¢) = 0. That is, we do not want to
increase and decrease the same counter in one step.
Now we define our second total function I'r (I'-Test).

I'p:C — {>0,=0} (2.7)

That is, we associate to each counter either the symbol > 0 or the symbol = 0.
So we can define the sets

FT720 = {C S C|FT (C) :IZ 0’} (28)
Ir—o = {celC|lr(c)='=0"} (2.9)

This means the automaton accepts iff it is in a final state s and
Veel'r—g.c=0AVcel'T>0.c>0 (2.10)

is true.

A counter automaton is a DFA with a set of counters C' and the functions
I'ar and I'r. We now can state our above conditions 1 — 4 in terms of our model.
The condition 1, that all allocated units of a resource must be released can be
modeled by a counter, which is increased for each allocation and decreased for
each release. All the time this counter must be greater of equal zero. At the end
this counter must be zero. The condition 2 states that never more units of a
resource are allocated than are created before. That is for a creation we increase
a counter, for an allocation we decrease this counter. This counter must never
be negative (but may be positive at the end). The condition 3 says, that never
more units of a resource may be released than allocated. Here we increase a
counter for each allocation and decrease it for each release. Again, this counter
must never be negative. In condition 4, (never more units of a resource allocated
than released), we increase a counter for each allocation and decrease it for each
release. This counter is an idempotent non negative, i.e., a release operation
can also be called, when actually nothing is to release.

Figure 2.2 shows the application of counters when modeling a stack, what
corresponds to condition 2.

We want to characterize the languages recognized by counter-automata by
enhancing regular expressions. According to the analogy that regular expres-
sions exactly describe the languages finite state machines recognize, we want

12 CHAPTER 2. TYPES FOR SOFTWARE COMPONENTS

C_Autstack

push (n++)
[n>=0]

pop (n--)

Figure 2.2: C-Automaton of a stack, using counters

to describe the languages recognized by counter automata by an enhancement
of regular expression, we call counter-regular expressions. Our proceeding is
analogous to the theorem of Kleene, that the languages described by regular
expressions are exactly the languages recognized by finite state machines.

In the following we pose the following to restrictions to counter automata,
to limit their power and ease the task to describe the languages recognized by
them.

Same-State Condition (SSC):
VYa € IVc € C.c € fst(I'p(a)). (Iss, 52 € S.6(a,s1) = s2) = (2.11)
Jw € a*3s € S.6(w,s2) =sAb(a,s) =5

Figures (2.4 (a) and (b)) describe allowed state transitions according to
the SSC, (c) describes not allowed state transitions according to SSC.

Counter-Manipulation Condition (CMC): if a counter ¢ is decreased(e.g.,
0(a(i — =), s2) = s2), then this counter must be increased (that is §(a(i +
+),s1 = s1) before (that is on all paths from the start state to the state
s). We do not allow increasing and decreasing the same counter in a
transition, that is it exists no a € I.Cy (a) N C_(a) # 0.

The same must hold for the reverse: when a counter is increased (i.e.,
d(a(i++),s1) = s1 then from all paths from s, to an end state there must
exist an state sy € S where i is decreased in a loop (§(a(i — —), s2) = s2).
Formally:

Va € I;.(3s1 € S.6(a,s1) = s1) = (2.12)
(1) Ve € C4(a)V pathes p from s; to a final state f.
i €1.6(i,s2) =s2Asa EpAce C_(i)
(2) Ve € C_(a)V pathes p from the start state to s;.
e 1.(i,s2) =saAszEphce CL(i)

The CMC is necessary to exclude 'unnecessary’ counter manipulations, which
would complicate our test on equivalence (section 3.1). The SSC restricts the

2.2. THE CALL-INTERFACE 13

a(i++) a(i++)
: a(i++)
$1=8,° 8 54 s,=s
(a) (b)
a(i++)
a(i++) b
S s s

Figure 2.3: Counter application in compliance with (a,b)) and not in compliance
with (c) the Same-state Condition.

counter to count only occurrences of one symbol. Without the SSC patterns of
symbols could also be counted. (What makes the description of the language
more complicated.)

a(i++) b(i--)

a(i++)

(a) (b)

Figure 2.4: Counter application not in compliance with the Counter Manipula-
tion Condition ((a) contrary to eq. 2.12(1), (b) contrary to eq. 2.12(2))

The language recognized by a counter-regular automaton can be character-
ized by a regular language L, which satisfies one or more conditions (predi-
cates) regarding the number of occurrences of symbols of the input alphabet.
These conditions define a language L := w € L,|P;(w) A --- P,(w), where P;
are predicates as defined below. We associate to each symbol z € I a function

14 CHAPTER 2. TYPES FOR SOFTWARE COMPONENTS

z : I" — N. Function & counts the number of occurrences of symbol z in an ar-
bitrary string over the input alphabet. For each predicate we have to define two
index sets Jj, J, C {1---]I|}. Then we define two functions: lhs,rhs: I* = N,

ths(w) := 3 ¢, zj(w) and rhs(w) := 37, ; zj(w).

B
A

>
lhs(w){é}rhs(w) A Vp € prefixes(w).lhs(p)] is not related to prhs(p) (2.13)
- is idempotent to

The letters A and B denote the possibilities for alternatives. The last al-
ternative of B earns an explanation: idempotent occurrences of a symbol x or
(a set of symbols X) in respect to occurrences of another symbol y (or set of
symbols Y) means, that in a word w € I*, read from left to right, an occur-
rence of x (or any € X) is not counted by function z(w), if z(w) > y(w)
(or > o,ex z(w) > X0, cx y(w)). For example, in w = yzzy is z(w) = L if x is
idempotent to y.

The following table shows how to map above predicates to counter automata,
more concrete, how to map to definitions of I'j;, I'r and select the right kind of
counter (Z, E-N, I-N). An entry is a number 2 22, denoting the z;th alternative
taken in possibility A and the zsth alternative chosen in possibility B.

>0 =0
EN || 11 | 21
Z 12 | 22
IN || 13 | 23

Possibility A decides which end condition for a counter we pose (i.e., I'r), pos-
sibility B decides which kind of counter we use for this predicate. This allows
us to construct the counter automaton out of a set of predicates and L.. L,
defines a DFA D. For each predicate we introduce a new counter variable j.
Possibility B determines whether i € Cg_n, or ¢ € Cz, or i € Cy_N. For all
z € Ip we add j + + to I'js(2), iff z € J;, and we add j — — to I'ps(z), iff
x € J,.. This construction shows, that we can associate to each set of predicates
a counter automata. (Note that some combinations of possibilities and cyclic
dependencies may lead to a not satisfiable conjunction of predicates, like the
condition, e.g., 1 > x5 > z; in a word w € L, and in all prefixes. This is
unsatisfiable even when L, = I*. So L =0.)

The reverse construction (to associate to a counter automaton a set of pred-
icates) requires the CMC and SSC. L, is determined by ¢. For each counter
¢ € C we define a new predicate P. Possibility A in P is determined whether
for c is tested to = 0 in a final state f, or to > 0. The kind of ¢ is deter-
mined by possibility B. J; is defined as J; := {i € I|c € C4+(%)}. Analogously

2.3. THE USE-INTERFACE 15

Jr = {i € Ilc € C_(i)}. Because of the CMC we have for each increasing
counter ¢ at least one symbol z, which decreases c. (And for each decreased
counter ¢ at least one symbol z, which increases c.) So we can be sure that
neither J; or J, is empty. Due to the SSC it suffices to look at single symbols
and not to strings, since the SSC ensures that only symbols can be counted, not
strings.

2.3 The Use-Interface

The use-interface models the external services a components requires and the
all possible call sequences to these external services. For each function a com-
ponent has, a so-called Function-Automaton (F-Aut, section 2.3.1) describes
this function’s calls to other services. Inserting all F-Automata in the C-Aut of
a component results in the so-called enhanced component automata (EC-Aut,
section 2.3.2) of this component, which describes the component’s calls to other
services.

We will see, that the EC-Automaton is constructed in a way, that, given
only an EC-Automaton, we can subtract all F-Automata from it, yielding the
C-Automaton and all F-Automata. In pseudo-formal notion:

C-Autg + {F-Auts|f € Sk} S EC-Autk (2.14)

2.3.1 The F-Automata

As mentioned, a F-Automaton describes a function’s calls to external services.
Therefore a closure must be created: if function a() calls the internal function
b(), then F-Aut, has to include the external calls of function b(), that is the
F-Auty. Of course, the same is valid when constructing F-Aut;.

Definition 10 (Function-Automaton(F-Automaton, F-Aut))
A F-Automaton of a function a is a DFA F-Aut, := (I, S, F, E, s9, 0), with

e the input alphabet I is the transitive closure of a’s calls to external services:

I := externalservices(a) := {g|f calls g A g extern} (2.15)

U U externalservices(g)

f calls gA
g intern

e the set of states S chosen appropriate,

e a state a is in the set of accepting states A, iff a the function may return in
this state,

e the set of error-states is empty. We define it when we are talking about
exceptions.

16 CHAPTER 2. TYPES FOR SOFTWARE COMPONENTS

e the start-state sp models the entry point of the function,

e and the transition function § models calls to external services. Each call
corresponds to a transition. All valid call sequences must bring D in an
accepting state.

Figure 2.5 shows as an example of the F-Automaton of a the above Video-
Mail’s function play.

F_pﬂn—\iideoMail ::play

\‘V'deoPlayer: :play SoundPlayer: :play

Figure 2.5: F-Automaton of a Function, showing two calls to external function.
First calling VideoPlayer: :play and then SoundPlayer: :play.

The Or-Semantics Problem

When using a finite automata based notion to model traces, one problem occurs
[All97]: what are the semantics of constructions like the one shown in figure
2.6(a). Function f may call external function a or external function b. It is
clear, that one of these external functions is necessary, to bring f in a final state.
But it is not clear, what happens to f in the case one of the external functions
is missing. Two interpretations are possible: (1) both external function are
necessary. If one is missing, function f cannot work. (2) if one external function
is missing, £ will not bother, since there is still one path to a final state. To
decide, which interpretation is valid for this specification, more information
must be supplied. We solve this, in assuming for the construction shown in
2.6(a) the interpretation (1) — both external functions are necessary. The other
interpretation is chosen, when a condition is associated to a transition, like
shown in figure 2.6(b). In this example, b is necessary, but unavailability of a
does not hinder function £.

Actually, this solution is an enhancement of the input alphabet defined in
definition 10, formula 2.15. Here we add conditions like the one shown in figure
2.6(b) to the input alphabet.

I := externalservices(a) ® {[ifavail]} (2.16)

Modeling Exceptions

Exceptions can be thrown (or raised) in Function-Automata and can be handled
in (possibly other) Function-Automata or in the C-Aut. We are only interested
in modeling exceptions, which

2.3. THE USE-INTERFACE 17

F-Aut ¢ F-Aut g

[ifavailla

(a) (b)

Figure 2.6: Unclear semantic of construction (a). Clarified semantic of con-
struction (b).

e change the availability of services, and so have to be modeled statically in
the C-Aut. Besides, we look at exceptions, which

e change the sequences of called external services. An exceptions which
only locally affects the control-flow in a F-Aut, and does not effect the
availability of services can be modeled in the F-Automaton, where it may
be thrown.

So, in the latter, we are only interested in exceptions which effect the availability
of services. Since they are raised in a F-Automaton and effect the availability
of services, we need a mechanism to transfer information from a F-Aut to the
C-Aut. This can be done in the following way:

In the C-Aut a function call is modeled as one transition, but as several
transitions: one transition to an ’intermediate state’ modeling the call of a
function, and several transitions from this intermediate state to other states,
modeling the different possible outcomes of this called function: (1) normal
outcome, no error, (2) ... (n) exceptions which require different handling in the
C-Automaton. An example is shown in figure 2.7.

The F-Automaton has to indicate whether it just returns or an exception
was thrown. We use different error-states for exceptions in the F-Aut, which
have to be handled appropriate in the C-Automaton (as shown in figures 2.8 and
2.7). Note that several different exceptions of the F-Automaton may be handled
identically in the C-Automaton, and so can be all lead to the same error-state in
the F-Automaton. Figure 2.8 shows an example of an F-Automaton modeling
several exceptions.

The formal notation of an C-Automaton’s input alphabet changes. Let
SEg C Sk denote services of K which may throw exceptions. For each ele-
ment f € SE we define a set EX¢ as the set of exceptions f may throw.

18 CHAPTER 2. TYPES FOR SOFTWARE COMPONENTS

Figure 2.7: Modeling exceptions in the C-Aut.

Figure 2.8: F-Aut with several exceptions.

2.3. THE USE-INTERFACE 19

Io-aue = (Sk\SEx)U | |J (call} x {f} x (EX; U {exit})) | (2.17)
fESEK

First we add the symbol exit to each set SE, modeling the exit of a function
without an exception thrown.

We need not change the definition of a F-Automaton, except that we now
allow several error-states, as described above.

The connection between the F-Automata and the C-Automaton is general-
ized in the next section.

2.3.2 The EC-Automaton

As described in equation 2.14 the Enhanced Component Automata is build
out of the C-Automaton and the F-Automata of a component. Note that the
following construction serves as a model, that means, an implementation need
not necessarily use this construction explicitly.

Definition 11 (Enhanced Component-Automaton)

(EC-Automaton, EC-Aut)

Given a component C C-Autg and its F-Automata the EC-Autg is given by a DFA
EC-Autk := (I, S, F, E, s9,9), with

e the input alphabet I:

Iecaue = |J (eall} x {f} x (EX U {exit})) (2.18)

FEIcauy

e the set of states S and the transition function § chosen according to the
construction algorithm shown below.

e a state a is in the set of accepting (final) states A, iff a sequences of service
calls leaves K in a valid state, where no further services calls are necessary to
bring K in a valid state,

e is a call f performed which is not a allowed in a given state ¢, than the result
of 6(f,t) must be an error-state: 6(f,t) € E. For this purpose one error state
is sufficient.

o the start-state SOec Aty corresponds to S0 Auty -

Construction of the EC-Automaton

Input: C-Autg, {F-Auts|f € Sk}
Output: EC-Autg

20 CHAPTER 2. TYPES FOR SOFTWARE COMPONENTS

beginning from the start-state
traverse each edge of the C-Aut
for each edge dc.aut(f,s) do
add to SEC S, SF—Autf ’ 50 (fv 8)7
(inserting the F-Aut)
5EC—Aut(fcalla 5) <_50F,Autf)
for each s € Sp.aut, do
for each a € Ip_pu,\EX; do
0BC-Aut (a, 5) <_5F—Autf (aa 5);
od
(connecting exceptions)
for each e € EX; U f-exit do
OBC-Aut (€, 5) <0c-Aut (e, 5);
od
od
od

Figure 2.9 shows a part of the EC-AutvigeoMail constructed according the above

algorithm using the C-Autvigeomai (figure 2.1) and the F-Automaton shown is
figure 2.5.

C-RUE yi deoMail

EC-AUt yjdeoMail

VideoPlayer::play

play_start

play exit VideoPlayer: :stop

stop_start

stop_exit

SoundPlayer: :play

SoundPlayer: :stop

Figure 2.9: EC-Aut of VideoMail.

Reconstruction of the C-Automaton

Input: EC-Autg
Output: C-Autg

beginning from the start-state
traverse the EC-Aut
for each edge dgc-aut(feall,s) do
create set EX of all transitions 0gc-Aut (fexception; $j);
find transition dgc_aut (fexit, Se);
(all states and transitions between belong to F-Auty)
(s is $0p.4u, GNd S its final-state

2.3. THE USE-INTERFACE 21

states in EXy its error-states.)
if EXp !=0 then
(introduce intermediate state, call to it and exceptions
from it and exit from it.)
add fintermediate—<fcoumer> to Sc;
5C(fcalla 5) —0EC-Aut (fcalla finte[‘mediate—<fcounter>);
for each transition 0(fexception;, ;) do

add Sj to SC; oc (.fexceptioni) fintermediate7<fcoumer>) —IOEC-Aut (.fexceptioni y 3]’)3
add s, to S¢;

5C(fexit» fintermediate<fcoumer>) <_5EC—Aut (fexitv Se);

od
feounter++; (this counter is used to make
intermediate states unique for each call of function f
(note f is a variable for a function).)

else
5C(f7 S) <_(sl'E)(]—AU.t (fexita Se);

fi

od

Chapter 3

Algorithms and Typing
Rules

This section presents several algorithms utilizing the type information we de-
fined in chapter 2 to tackle the problems we mentioned in section 1.2. To each
algorithm we show typing rules, describing formally the algorithms actions.

3.1 Type Equality

A basic algorithm for each type system is the check of type equivalence. In our
case we use the unique minimal for for finite automata, to test for equivalence
of two EC-Automata. We have equal types off the minimized automata are
isomorph. The time complexity of this minimization is O(|S|? - |I|). Thus we
additionally need a test for isomorphism. Fortunately, in our case, this test can
be done efficiently, linear in the number of transitions (O(|Egc-aut|)). Since
we can limit the number of transitions by O(|S|? - |I]), altogether we have this
complexity.

Minimization

The minimization algorithm for DFA’s can be found in textbooks on theoretical
computer science or compiler construction, e.g., [ASU86]. The notion presented
here is adopted from [Hol90]. The idea is that states are equivalent, when

they behave equally, i.e., for each symbol of the input alphabet they perform a
transition to the same state.

s1 ~ 891 Vi € 1.6(1,81) = (i, s2) (3.1)

The original algorithm starts with a partition of S = (F, (S\F)), that is the first
set in the partition are the accepting states, the other set the non-accepting
states. The algorithm refines the initial partition further until a fix-point is
reached.

22

3.1. TYPE EQUALITY 23

Input: an Enhanced DFA: EC-Aut
Output: an equivalent minimized unique Enhanced DFA: EC-Aut’

for each partition p € P do
new <J;
first «+first state in partition p;
next <next state in partition p or false iff there is none;
for each state s € p— first do
(separate non equivalent states)
for each symbol i € Igc.aut do
if (7, s) is in another partition as delta(i,first) then
add s to new;
fi
od
od
add new to P;
od

This algorithm separates all non equivalent states. Afterwards each partition
contains only equivalent states. So the minimized automaton has the partitions
as states (and transitions between states of different partitions as transitions).

To test the equivalence of two states we need O(|I]) steps, that we have to
do for all states, so the complexity for checking all states is O(|S| - |I]). This
we call one pass through all states. Unfortunately we have to repeat this test
for all states again, when our partition changes. In the worst case, we have no
equivalent states, that is we need O(|S|) new partitions, and we find only one
a new partition in a pass. As a result the time-complexity of this algorithm is
O(SI* - 1))

Informally, this algorithm works, because we do not change either the regular
language nor the predicates describing this language. A formal prove follows.

Note that in the above algorithm we do not make use of I'j;. That is we
do not look at counter manipulations at all. Since the set of counters is not
changed during minimization, we associate the 't of the original automaton
also to the minimized version.

Let Ar,, rr (0) := L(A) with A = (I, S, F,E, s9,0,['ps,T'7). That is, hry T
denotes the language described by a counter-automata, with the input alphabet
I, the set of states S, final states F', and error states F are fixed.

Let hy(0) := L(A) with A = (I, S, F,E, s9,6). So hy denotes the languages
accepted by a finite automata A = (I, S, F, E, s¢,).

Let §' denotes the output of the minimalization algorithm for input 6. Like-
wise, S’ denotes the set of states of the minimized version of A = (I, S, F, E, sg, 6).
Note, that due to the construction of S’ from the last partitioning of S, we can
regard S’ as a subset of S, since each state s’ € S’ can be seen as the represen-
tative of a set of the last partitioning, so s' € S. Thus, S’ C S.

The correctness of the minimization algorithm for ’ordinary’ deterministic

24 CHAPTER 3. ALGORITHMS AND TYPING RULES

finite state machines can be stated now as follows:
hy(6) = hy(6") (3.2)
For the following we need the definition of a function ~:

Definition 12

vr:F = P(Cx{>0,=0} (3.3)

— {Ucec (cg Tr(c)) ifseF

7r(s) otherwise

Let hr,; r(6) denote the set of words w € L(A), where the counters, manipu-
lated according I'js, satisfy all conditions in 77 (s), where s = §(w, sp). Due to
the construction of vr it is

hFM,FT (5) = hFMy’YT (5)

To prove the correctness and the uniqueness of the minimization we need
the following

Definition 13 (yr-Condition)

Vw € By, (01) 713 (01 (W, 80)) = 715 (82 (W, 50)) (3-4)

Fortunately, this holds when d; = 6]. That is when J> is the minimized tran-
sition function of the automaton A = (I, S, F, E, s,). Analogously, we need
Sy = S’ and

Y2 = TS (3.5)

To prove this, lets assume

30 € hoar g, (61)-71 (81 (w, 80)) # 72 (02 (w, 80)) (3.6)

Since Sy C 51 (because each element of S2 can be identified with one element of
S1), the function vy, is defined on S; and Sz, and according to its definition (3.5)
V1y|s, = V1o~ From that and (3.6) we conclude, yr, (61 (w, 50)) # 71, (82(w, 50))-

This means that the states 6; (w, so) and [(w, s¢)] are not ['r-equivalent. (Oth-
erwise 7z, (62(w, s0)) = 71, (62(w, s0)) should equal yr, (81 (w, s0)).) That is a
contradiction to the construction of d; out of d1, since the (1) last partition of Sy
(namely S3) is a refinement of S;/ ~,,, and (2) Vw € I*.81(w, s0) € [62(w, 50)]-

The basis for the above algorithm was the definition of equivalent states
(equation 3.1). Equivalence for counter automata means: two states s; and sz
are equivalent, when (a) for all symbols of the input alphabet all transition lead

3.1. TYPE EQUALITY 25

b (n++)

Figure 3.1: From equivalent white states, we can conclude that the shaded states
are also equivalent.

to an equivalent state (Vi € 1.5(3, s1) € [6(4, s2)]), and (b) the same counters are
manipulated in the same way. Figure 3.1 shows two equivalent states.

The adoption of this algorithm for our model of extended finite state ma-
chines concerns the conditions for a final state to accept, as defined by yr. Two
states s1,s2 € S are considered as yr-equivalent, iff their image under yr is the
same.

81 ~oyp 82 1= Yr(51) = y7(82) (3.7)

So «yr induces the an equivalence relation, which we use to build the factor
set S/ ~,,. The initial partition of the minimization algorithm is exactly this
factor set.

The following equivalence is a consequence of the yr-Condition.

h§(01) = hf(02) & hry 7 (61) = hry, rr(62) (3.8)

Proof =-:
We assume that L(hf(61)) = L(hf(d2)). Let w be an arbitrary word of hr,, r, (61).
Since always

L(hs(6)) 2 hry,ro(9) (3.9)
and due to our premise we have
we L(hs(81)) = Ly (62)) (3.10)

From (3.10) we know

~

01(w,s0) € FAVc €T >0.c > 0AVcE T —g.c=0 (3.11)

We conclude from (3.10) that &> (w,so) € F. So from (3.11) and the fact, that
the word w generates the same sequence of counter manipulations under é; and
6> we also know that

Ve e FT720.C >0AVce FT7:0.C =0 (312)

26 CHAPTER 3. ALGORITHMS AND TYPING RULES

But this means that w € hAr,, v, (02).
Proof «:
Here we know that hr,, r,(01) = hr,,,rr(02) and we assume that

L(hg(61)) # L(hs(52))
The latter implies that (possibly with switching the indices)

Jw € L(hs(61)).—w € L(hs(55)) (3.13)

a b

Because of (3.9) we know from (3.13b) and our premise that

W € ATy qp, (62) = hryp oy, (01) (3.14)
From (3.13a) we get
61 (w, s0) € F (3.15)
But since (3.14)
A condition posed in yr, (81 (w, s0)) is false (3.16)
Especially
1y (81 (w, 50)) # 0 (3.17)
From (3.13b) we get
62(w,s0) € E (3.18)

~

and, as a consequence, yr, (62(w, s9)) = 0, which is with (3.18) a contradiction
to yr-C.

To prove the uniqueness of the minimalization algorithm for counter au-
tomata, we assume that two counter automata A;, Ay exist, with Iy, =
FMAz = FM and FTA1 = FTAZ = FT, and

hrarz (01) = Ay rz(62) (3.19)

but 6] # 65. From (3.19) we follow, using (3.8), that ht(d1) = hy(d2). Using
that and the assumption §] # 05 we have a contradiction to the uniqueness of
the result of the minimization algorithm.

The correctness of the minimization for counter automata can also be proven
by contradiction. Let us assume, that two counter automata A;, A5 exist, with
FMAl = FMAZ := ')y and FTAl = FTAZ = I'p, 1 = 55 but hl"M,l"T((Sl) #
hr,.,r (62). Due to (3.8) it follows hy(d1) # hy(02). Using (3.2) we get hf(07) #
h¢(05). This is a contradiction to our assumption &7 = 6.

3.2. TYPE ADAPTION 27

Test for Isomorphism

For the test of isomorphism we have to construct a mapping between the states.
(We can exploit the fact, that the automata’s input alphabets are identical.)
If and only if we are able to construct a bijective mapping, the automata are
isomorph. Fortunately, this can be done by traversing the transitions of one
automata, and constructing the mapping step-by-step when visiting an unvisited
state. When visiting a visited state, we check check the mapping for bijectiveness
in constant time.

Input: two minimized Enhanced DFA’s: EC-Auty, EC-Autp

Output: yes iff both automata are isomorph, and in case of yes, a permutation

T SEC-Auty — SEC-Autg

W(SUA) S0p5
beginning from the start-state of EC-Aut 4
traverse each state s € SteztEC— Aut,
for each transitions dgc.aut, (f, s) originating from s do
if dc.Auty (f,7(s)) is undefined then
return false;
fi
if dgc-auts (f,7(s)) is already visited then
if 6EC—Aut5 (.f7 W(S))' = (5EC—AutA (.f7 3)) then
return false;
fi
else
m(deltagc-aut, (f,8)) <0gc-Auts (f,7(s));
mark dgc-autg (f, 7(s)) as visited;
fi
od
if not all transitions from 7(s) used then
return false;
fi

3.2 Type Adaption

As motivated by the ’functionality-reuse’ problem in section 1.2, type adaption
is a mechanism to enhance the reusability of a component through reducing
its dependencies to the environment. It is based on the observation that users
actually only use a subset of a component’s functionality. So a restricted func-
tionality is often sufficient for the user. More important than a full functionality
is that the user has not to provide many other infra-structural resources (e.g.,
libraries, other components, but also system updates, etc.) which a only neces-
sary to support the part of a component’s functionality, the user actually does
not need.

In terms of our types, when component A adapts to component B (the
latter representing the infrastructure), then the C-Automaton of a component

28 CHAPTER 3. ALGORITHMS AND TYPING RULES

A restricts its functionality to its services which are supported by B. In case
B supports all functionality no restriction happens. The like, when A does
not need B. In praxis the most interesting and most common case is, when A
needs B and C-Autp does not offer all functionality A (in form of its EC-Aut)
requires.

Our algorithm for computing the new C-Automaton of A (adapted to B),
that is C-Aut 4« g, is computed as follows:

1. Compute EC-Aut out of C-Aut4 and {F-Auts|f € Sa}. For this we use
the algorithm for the construction of an EC-Aut given in section 2.3.2.

2. Compute the cross product EC-Autsxp out of EC-Auts and C-Autg.
That is the intersection L(EC-Auts) N L(C-Auta). The algorithm for
doing that deviates a little from the common algorithm of cross product
construction (e.g., the one given in section 3.4), since we have different
kind of input alphabets for EC-Automata and C-Automata. A suitable
algorithm is given below.

3. Compute C-Autayp out of EC-Aut 4 g using the {F-Auts|f € S4}. This
algorithm is also shown below.

Algorithm for computing the EC-Autp

Input: EC-Auty and C-Autpg.
Output: EC-Auts«p.

S04xB %(SOA,SOB);
add so,, t0SaxB;

for each unvisited state (s,,sp) € Saxp do
mark (s,, sp) as visited;
for each transition d4(fean,, So) do
if not state (64(f, sa),9B(f,5p)) € Saxp then
for each f., € (follow(da(fcan,sqs)) do
add unvisited state (fe,.,d5(f,s)) to SazB;
6axB(f;(5a,5)) < (fe.,,6B(f,50));
od
fi
od
od
(identify error-states if possible)
for each state (s,,s») € Saxp do
if s, € E4 or s, € Ep then
add e to Eaxp (possibly already in)
for each transition d4xg(f,s) = (sq4,5p)) do
Saxp(f,8) < &
od

3.2. TYPE ADAPTION 29

fi
od

The function follow: state s — set of states searches for a transi-
tion f_calln all states §(f_exy,, s;) and (f_exit, s;) (where s; is the state from
which this transition originates). We use this function follow also in the next
algorithm.

Algorithm for computing the C-Aut . p

Input: EC-Autayxp and {F-Autf|f € Sa}.
Output: C-Autsxp.

beginning from the start-state
traverse the EC-Aut
for each edge dgc.aut(fean, s) do
create set EX¢ of all transitions dgc-aut (fexception; $5);
find transition dgc-aut (fexit, Se);
if (check(F-Auty, fcan)) then
(all states and transitions between belong to F-Auty)
(s is S0p.au, 0N Se its final-state,
states in EXy its error-states.)
if EXp! =0 then
(introduce intermediate state,
call to it and exceptions from it
and exit from it.)
add fintermediate—<fmumer> to Sc;

0c (fealls 8) <—0EC-Aut (fealls fintermediate< feounter>)3
for each transition 0(fexception;, ;) do

add s; to Sc;
5C(fexceptioni , fintermediate—<fcoumer>) —0BC-Aut (fexceptioni , Sj);
add s. to Sg¢;
dc-Aut (fexita fintermediate—<fcoumer>) —0EC-Aut (fexita 58);
od
feounter++; (this counter is used to make
intermediate states unique for each call of function f
(note f is a variable for a function).)
else
dc-Aut(f, 8) <Orc-Aut (fexit, Se);
fi
fi
od

Function check F:F-Aut x s:S — boolean checks, whether the F-Aut F is
isomorph to the part of the EC-Aut 'between’ s and follow(s). In this test
the transitions denoted with ifavail in F are not regarded.

30 CHAPTER 3. ALGORITHMS AND TYPING RULES

3.3 Type Extension

As mentioned in section 1.2 often the functionality of a component cannot be
anticipated completely in advance. So, while in the type adaption mechanism a
component exactly describes which functionality it requires from other compo-
nents to deliver its functionality, in the type extension mechanism a component
can be enhanced by the not completely specified functionality of a plug-in com-
ponent.

Although we cannot (and are not willing to) specify the functionality of
the plug-in component in advance, we usually do not want to use any plug-in
component. Two conditions, when to accept (or reject) a plug-in component
are:

Minimal functionality is required. For example in the mail-system example
we cannot deploy mails without a function play.

Unwanted functionality should be excluded. E.g., we do not want any mail
having access to the local file system due to security reasons. (Of course,
to employ this types to guard systems against harmful applets, etc. we
have to make sure that a component’s type really describes the compo-
nent’s functionality and used services. To ensure this relation well-known
techniques of cryptography can be deployed, like signing the type of a
component, hash-functions, etc.[Sch96])

Of course, we want to check these conditions when the user inserts a plug-in
component, not later, when the user deploys the functionality of the plug-in.
Therefore, both conditions must be expressed and checked in our type-system.

In the following let A be a component, which makes use of a plug-in compo-
nent P. The minimal functionality condition can be described by set inclusion.
We add a set of minimal functionality mfs to the type of A. Actually this
set is given by an enhanced finite automaton MF-Aut 4, describing a language
(L(MF-Aut4 = mfy). Then we require that

mfs C C-Autp (3.20)

As described in section 3.4, equation 3.24, the set inclusion can be checked
efficiently.

Similarly, the unwanted functionality condition can be stated, by defining a
set uf4 (and a relating enhanced automaton UF-Aut 4 with L(UF-Aut4 = ufa).
Then we reject every component P which not has

ufy ¢ EC-Autp (3.21)

Note that when A makes use of several plug-in components P; --- P, the
sets mfy and ufs must be indexed additionally by the plug-in component they
are relating to: mfs p, and ufy p,. The same is valid for the corresponding
automata MF-Aut 4 and UF-Aut 4.

3.3. TYPE EXTENSION 31

The basic idea of type extension is, that the C-Autp is inserted into the
C-Aut 4, which relates to the extension of A’s functionality by P’s functionality.
To do so, we have do define three items:

start4 € S, is the state of C-Auta, to which s, is connected to.
Final, : Fp — S4 maps each final states of C-Autp to a state of C-Aut .

Exception, : (Usese, EXf) = Sa maps each state of C-Aut p which is reached
only by an exception® to a state in C-Aut4, where this specific exception
is handled by.

The state start4 and the states in dom (Finals) U dom (Exceptiony) are also
called connecting states, since they are used to connect the automata.

The algorithm to create the extended type C-Autasip can be stated with
this definitions.

Algorithm for computing the C-Aut,, p

Input: C-Auts and C-Autp.
Output: C-Auty,p.

Sc-Autarpr <SC-Aut, USCAutp;
identify so, with start4;
for each state s € dom(Finals) do
identify s with Finaly(s);
od
for each state s € dom(Exceptiona) do
identify s with Exceptiong4 (s);
od
for each state s € S44+p do
if s € S4 then
for each transition §4(f,s) do
6A+P(.f7 3) <_5A(f7 8)7
od
fi
if s € Sp then
for each transition dp(f,s) do
6A+P(.f7 3) <_5P(.f7 3);
od
fi
od

Here we give an example, where the MailUserAgent (as shown in figure 3.2)
is extended by VideoMail x VideoPlayer. The extended C-Aut is shown in
figure 3.3. In our example startmaiiuseragens iS the gray shaded state. Since
dom (ExceptionmaiiuserAgent) = 0, Exceptionmaiiuseragent is not defined. Let sy

INote that no other state can be reached by exception than dom (Exception 4).

32 CHAPTER 3. ALGORITHMS AND TYPING RULES

C-Aut .
" MailUserAgent

reread inbox

select mail

Figure 3.2: The MailUserAgent before extension

brightness_up,
brightness_down,
speed_up,
C-Aug speed_down,
contrast_up,
reread inbox contrast_down

MailUserAgent + (VideoMail x VideoPlayer)

select mail

stop play

Figure 3.3: Type extended MailUserAgent

denote the only state in FyideoMail x VideoPlayer- We define FinalMailUserAgent (Sf) =

startMailUseragent = SOvideonail x VideoPlayer

3.4 Subtyping

Like in most type systems, we relate subtyping with substitutability [CW85].
If Component B is a subtype of Component A, B < A, then all occurrences of
A can be replaced type safely with B. In the context of our type system that
is, (i) B offers at least the services A offers, and (ii) B does not require more
external services than A does. We can express conditions (i) and (ii) in terms
of languages accepted by our enhanced DFA’s, that is, our component type:

L(C-Autp) D L(C-Auty) A (3.22)
L(EC-Autz) C L(EC-Auty) (3.23)

Fortunately these subset relations are checkable efficiently (O(]S|? - |I])). Note
that for arbitrary sets A, B:

ACB& ANB=A (3.24)

This equation gives us an algorithm to test inclusion using the cross-product
automata construction (shown below) and isomorphism test algorithm (section
3.1).

As mentioned in section 3.2 the cross-product automaton describes the in-
tersection of two regular languages. The algorithm, given in 3.2 intersects an
EC-Aut and a C-Aut, and has to cover special cases due to the different kinds of

3.4. SUBTYPING 33

input alphabets of these automata (see definition 9, resp. section 2.3.2). In our
case here, we have to build the cross-product of two automata, with the kind of
input alphabet (namely two EC-Automata).

General Cross Product Construction

This algorithm for cross product construction of DFA’s can also be applied to
enhanced DFA’s, since we regard counters and other extensions as extra sym-
bols of the input alphabet, so that en enhanced DFA can be described by an
DFA, not interpreting the counter, etc..

Input: two enhanced DFA A and B.
Output: one enhanced DFA C with L(C) = L(A) N L(B).

Soc %(80A7SOB);
add so, to Sc;

for each unvisited state (sq,sp) € S¢ do
mark (sq, sp) as visited;
for each transition d4(f,s,) do
if not state (64(f,s4),08(f,sp)) € Sc then
add unvisited state (04(f, sa),deltap(f, sp)) to Sc;
fi
¢ (f, (sas b)) «(deltaa(f, sa),deltas(f,sb));
od
od
(identify error-states if possible)
for each state (s4,sp) € S¢ do
if s, € E4 or s, € Ep then
add e to E¢ (possibly already in)
for each transition dc(f,s) == (s4, sp)) do
6C(.f7 8) <€
od
fi
od

The last part eliminates redundant error states (which could in an imple-
mentation done during the construction phase and need not require an extra
pass). Since we use total transition functions, transitions not representing an
valid input lead to an error-state. Sine it is possible that one of the input au-
tomata (say A) does fall in an error state (which cannot be left by definition),
but B does not fall in an error state, the cross-product contains several states
like (e, s;), where e € E4 but all s; are not in Ep. All these states (e, s;) are
error-states of C, and thus can be identified to a single error state e € E¢. This
is done by the last part of the algorithm.

The time-complexity of this algorithm mainly depends on the number of
transitions to traverse (€ O(|S|? - |I])) and the size of S¢, which is the product

34 CHAPTER 3. ALGORITHMS AND TYPING RULES

|Sal-|SB|- In case |Sa| ~ |Sg|, both can be bounded by O(|S|? - |I|).

Typing Rules for Subtyping

The following rules describe subtyping for adapted and extended types. Please
note, that component A is subtype of component B (A <B) means that A offers
at least the services B offers, (as described in equation 3.22). This is equivalent
to B> A what means that B has less or equal services compared to A, although
B is the supertype of A.

Type Adaption If a: A is already adapted to b : B, and be is replaced by a
component ¢ : C' and C offers possibly less services than b (that is C is a
supertype of B), than the newly adapted component a adapts_to c may
also offer less services than a adapts_to b.

a adapts_tob: A X B c:C>B

.2
a adaptstoc: AxC>AxB (3.25)

Note that in the above equation we used >. Using > would make this
equation invalid, because it is not true that from a adapts_to b: A x B A
c: C > B follows a adapts_to c: A x C > A x B. This is because, when
a makes no use of the functionality b offers and ¢ does not offer, than
a adaptstoc: A xC =A x B.

As a consequence, we cannot predict what happens in the case, when
a adaptstob : A x BAc:C < B (that is ¢ : C has more functionality
than b). Two cases are possible:

1. a adapts_to ¢: A x C <A x B: This happens when b offers not all the
functionality a expects, and c offers some (or all) of this functionality
expected by a and not realized by b.

2. a adaptstoc : A x C = A x B: Here, component ¢ offers only
functionality not expected (and so not used) by a. In the case b
offers all functionality a expects, than no ¢ : C' < b : B exists with
a adaptstoc: Ax C <A x B.

An extreme case of equation 3.25 is, that no b : B or ¢ : C exists, where a
can adapt to. In the special case, when an unadapted a : A which has to
adapt to an other component b : B, still offers a meaningful functionality,
we know that

a:A>aadaptstob: Ax B (3.26)

In general, we cannot assume that unadapted components offer useful
functionality. This clearly depends on the context of application. So
generally it makes no sense to talk about a : A > A x B, since it is not
clear whether type A denotes something meaningful.

3.4. SUBTYPING 35

Type Extension The following rule for type extension is similar to the above
rule 3.25.

a extends_with b: A+ B c:C<4B
a extends withc: A+ C <A+ B

(3.27)

As a difference also the stronger version with < instead of < is also valid:

a extends_with b: A + B c:C<aB
a extends_withc: A+ C <A+ B

(3.28)

This is because, when extending component a extends_with b : A with a
component ¢ : C which is more powerful than component b : B, than also
a extends_with ¢ : A+ C offers more functionality than a extends_with b :
A+ B (thatis A+ C < A+ B).

A difference of between the adaption-rule 3.25 and the extension-rules
(3.27 and 3.28) is that we adapted a component of type A x B with a
component ¢ : C' having less functionality than b : B has. This was
because adaption usually means restriction of functionality, and, as we
have seen, the other case is more complicated. Opposed to this, in rules
3.27 and 3.28 we handle the case of extending a component of type A+ B
with a component ¢ : C' having more functionality than b : B. This models
the case that type extension exactly means extension of functionality.

But we also can give a rule for restricting functionality, when replacing
b: B with ¢: C in a extends_with b : A+ B and c having less functionality

than b.
a extends_with b: A + B c:C>B (3.29)
a extends_with c: A+ C> A+ B '
Analogously, the strong version also holds:
a extends_with b: A+ B c:C>B (3.30)

a extends.withc: A+C> A+ B

Since unextended types must always define a certain basic functionality,
we can state always:

a: A aextends_withb: A+ B (3.31)

Covariant Subtypes In the above equations we handled changes in the second
argument. The changes in the first argument can be stated in the following

rule:
A <A,
_—— 3.32
A]_ x B ﬂ A2 x B ()
where % := x|+. That is that when we replace a component of type A.

with a component by one of its subtypes A;, than also a component of the

36

CHAPTER 3. ALGORITHMS AND TYPING RULES

type A; adapted to or extended with a component of any other type B at
least the functionality of As adapted to or extended with a component of
type B.

The following rule includes the above cases. So we have a subtype-relation
covariant in both arguments:
A J A B, 4By
A]_ * Bl S‘ A2 * Bz

(3.33)

According to the discussion of rule 3.25, the strong version with < is not
valid, when x = x.

Chapter 4

Future Work

The approach to a type system for components is certainly only a starting
point to a new and enhanced understanding of types and extended interface
description languages (IDL’s). Many points are still unclear or untackled, like:

e The hierarchical (de)composition of components: a natural property of
components is, that an assembly of components can be seen itself also
as a component. Conversely we should support the decomposition of a
component into several other components. Possibly Statecharts[Har87]
which allow a hierarchical composition of finite state machines are a good
point to start research.

e Synchronization of components: Several components are often using an-
other component simultaneously. Which type information is necessary to
derive required points of synchronization?

e Do we want a inheritance of component? Or mere generally, are there
more associations between components, than delegation which is typed
here?

37

Bibliography

[AGYS8]

[A1197]

[ASUS6]

[Cas97]

[CW85]

[DCO]

[DW99]

[EJB]

[Har87]

[Heu]

[Hol90]

Ken Arnold and James Gosling. The Java Programming Language.
Addison-Wesley, Reading, MA, USA, second edition, 1998.

Robert J. Allen. A Formal Approach to Software Architecture. Ph.D.
thesis, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, May 1997.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers & Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading, MA, 1986.

Giuseppe Castagna. Object-Oriented Programming: A Unified Foun-
dation. Progress in Theoretical Computer Science. Birkhauser, Boston,
1997.

Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and polymorphism. ACM Computing Surveys, 17(4):471-
521, December 1985.

Microsoft Corp., The DCOM homepage.
http://www.microsoft.com/com/tech/DCOM.asp.

D. F. D’Souza and A. C. Wills. Objects, Components, and Frameworks
with UML: The Catalysis Approach. Addison-Wesley, Reading, MA.,
1999.

Sun Microsystems Corp., The Enterprise Java Beans homepage.
http://java.sun.com/products/ejb/.

D. Harel. Statecharts: a visuel approach to complex systems. Science
of Computer Programming, 8(3):231-274, 1987.

Dirk Heuzeroth. Eine Software-Architektur fiir flexible Ubersetzer
fiir Sprachen mit modernen Programmierparadigmen. PhD thesis in
preparation.

Allen 1. Holub. Compiler Design in C. Prentice-Hall, Upper Saddle
River, NJ 07458, USA, 1990. Prentice-Hall Software Series, Editor:
Brian W. Kernighan.

38

BIBLIOGRAPHY 39

[Hol91]

[HR99)]

[JAV]

[Nie93]

[OMG]

[PS94]

[Reu]

[Reu99]

[RH99]

[RIBYY]

[Sch96]

[Sco99]

[Szy98]

[T.84]

Gerald J. Holzmann. Design and Validation of Computer Protocols.
Prentice Hall, Englewood Cliffs, NJ, 1991.

Dirk Heuzeroth and Ralf Reussner. Dynamic Coupling of Binary Com-
ponents and its Technical Support. In First Workshop on Gener-
ative and Component based Software Engineering (GCSE) — Young
Researchers Workshop, September 27-30 1999.

Sun Microsystems Corp., The JAVA homepage. http://java.sun.com/.

Oscar Nierstrasz. Regular types for active objects. In Proceedings
OOPSLA 93, ACM SIGPLAN Notices 28(10), pages 1-15, October
1993.

Object Management Group (OMG), The CORBA homepage.
http://www.corba.org.

Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Sys-
tems. John Wiley & Sons, Chichester, 1994.

Ralf H. Reussner. The DCTS project homepage.
http://www.ira.uka.de/reussner/dcts/dcts.html.

Ralf H. Reussner. Dynamic types for software components. In Com-
panion of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’99), November 5-10 1999.
extended abstract.

Ralf H. Reussner and Dirk Heuzeroth. A Meta-Protocol and Type
system for the Dynamic Coupling of Binary Components. In Proceed-
ings of the OOPSLA’99 Workshop on Object Oriented Reflection and
Software Engineering, November 5 1999.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley, Reading, MA,
1 edition, 1999.

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc, 1996.

Michael Scott. Programming Language Pragmatics. Morgan Kauf-
mann Publishers, San Mateo, CA, 1999.

Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, Reading, MA, 1998.

C. C. I. T. T. Functional Specifications and Description Language
(SDL). Rec. z.100-z.104, Geneva, 1984.

40

BIBLIOGRAPHY

[Wec97] Wolfgang Weck. Inheritance using contracts and object composi-

[YS97]

tion. In Wolfgang Weck, Jan Bosch, and Clemens Szyperski, editors,
Proceedings of the Second International Workshop on Component-
Oriented Programming (WCOP’97), pages 105-12. Turku Centre for
Computer Science, September 1997.

D. Yellin and R. Strom. Protocol Specifications and Component Adap-
tors. ACM Transactions on Programming Languages and Systems,
19(2):292-333, 1997.

