Proof Obligations for Monomorphicity*

Arno Schönegge
Institut für Logik, Komplexität und Deduktionssysteme
Universität Karlsruhe
D-76128 Karlsruhe, Germany
email: schoenegge@ira.uka.de

Abstract

In certain applications of formal methods to development of correct software one wants the requirement specification to be monomorphic, i.e. that every two term-generated models of it are isomorphic. Consequently, the question arises how to guarantee monomorphicity (which is not decidable in general). In this paper we show that the task of proving monomorphicity of a specification can be reduced to a task of proving certain properties of procedures (with indeterministic constructs). So this task can be directly dealt with in the KIV system [4] which was originally designed for software verification. We prove correctness and completeness of our method.

Contents

1 Introduction 2
2 Basic Definitions 3
3 Monomorphicity Criteria 18
4 Proof Obligations in Dynamic Logic 22
5 Conclusion and Future Work 32
A An Instructive Example 34

[^0]
1 Introduction

Formal software development starts with making up a formal requirement specification that describes the features required of the software system to be developed. Requirement specifications may be(come) an essential part of a contract between a customer, who wants to get bug-free software for his (safety-critical) application, and the software developer: the customer assures to accept the software if (and only if) it meets this specification.

In general, the requirement specification must not be monomorphic, i.e. the specification must not determine one model uniquely (up to isomorphism). Quite the reverse holds: in order to provide the software developer with freedom that may facilitate more efficient implementations, it may be desired to specify only the relevant features. However, on the other hand, non-monomorphicity (i.e. ambiguity) can be very dangerous, especially if one is unaware of the (whole extent of the) gaps in the specification. In [6] we illustrate the risk of such ambiguity on an example and argue that (in certain applications) the customer should insist on a monomorphic requirement specification.

The question arises how to guarantee that a specification is monomorphic. Unfortunately, in general ${ }^{1}$ monomorphicity is neither easy to see nor decidable at all. The set of all monomorphic specifications is not even effectively enumerable. However, it is possible to prove monomorphicity of a given specification, for example by meta-reasoning [3,5].

In this paper another approach to this problem is presented. We show that the task of proving monomorphicity of a specification can be reduced to the task of proving certain properties of potential indeterministic procedures. This allows one to directly employ well-established techniques known from software verification. In fact, using our method, the task of proving monomorphicity can be directly dealt with in the KIV system (Karlsruhe Interactive Verifier) [4] which was originally designed for program verification.

We prove correctness and completeness of our method in a great detail, but leave out examples and motivations. Thus, this is a very technical paper, made for internal use rather than for external readers.

To keep the paper self-contained we give all the basic definitions and a few elementary facts in the next section. In section 3 a theorem (3.9) is proved, which states criteria necessary and sufficient for monomorphicity. These criteria are well suited to be formulated as proof obligations in dynamic logic, which is established in theorem 4.7 of section 4. Finally, in the last section we draw conclusions and indicate directions for future work.

[^1]
2 Basic Definitions

In this section we provide the basic definitions and a few elementary facts. Some of them are adopted from [2] and [7].

2.1 Sets, Relations, Functions

Definition 2.1 (notions for sets of tuples)

Given a set $A, n \in \mathbb{N}$ the set of n-tuples of A is denoted by A^{n}. We use $a_{1} \cdots a_{n}$ or (a_{1}, \ldots, a_{n}) as notations for tuples; the empty tuple (i.e. $n=0$) is written λ or ($). \operatorname{set}\left(a_{1} \cdots a_{n}\right)$ denotes the set $\left\{a_{1}, \ldots, a_{n}\right\}$. The concatenation $a_{1} \cdots a_{n} b_{1} \cdots b_{m}$ of two tuples $\underline{a}=a_{1} \cdots a_{n}$ and $\underline{b}=b_{1} \cdots b_{m}$ is written $\underline{a b}$. Furthermore, we set:

- $A^{+}:=\bigcup_{n \in \mathbb{N} \backslash\{0\}} A^{n}$
- $A^{*}:=\bigcup_{n \in \mathbb{N}} A^{n}$
- $\hat{A}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid\left(a_{1}, \ldots, a_{n}\right) \in A^{n}, a_{i} \neq a_{j}\right.$ for all $\left.0 \leq i<j \leq n\right\}$
- $\hat{A}^{+}:=\bigcup_{n \in \mathbb{N} \backslash\{0\}} \hat{A}^{n}$
- $\hat{A}^{*}:=\bigcup_{n \in \mathbb{N}} \hat{A}^{n}$.

For a set of (so-called) indices I and sets $A_{i}, i \in I$ the family (or system) of the sets A_{i} is denoted by $\left(A_{i}\right)_{i \in I}$. For $i_{1} \cdots i_{n} \in I^{n}$, we use the following abbreviations:

- $A_{i_{1} \cdots i_{n}}:=A_{i_{1}} \times \cdots \times A_{i_{n}}$
- $\hat{A}_{i_{1} \cdots i_{n}}:=\left\{\begin{array}{l|l}\left(a_{1}, \ldots, a_{n}\right) \left\lvert\, \begin{array}{l}\left(a_{1}, \ldots, a_{n}\right) \in A_{i_{1} \ldots i_{n}}, \\ a_{i} \neq a_{j} \text { for all } 0 \leq i<j \leq n\end{array}\right.\end{array}\right\}$.

Definition 2.2 (relations)

A (binary) relation R between two sets A and B is a subset of the cartesian product $A \times B$. The set $R^{-1}:=\{(b, a) \mid(a, b) \in R\}$ is the inverse of R. R is said to be

- rightunique, if for all $a \in A, b_{1}, b_{2} \in B$ holds that $\left(a, b_{1}\right),\left(a, b_{2}\right) \in R$ implies $b_{1}=b_{2}$.
- leftunique, if for all $a_{1}, a_{2} \in A, b \in B$ holds that $\left(a_{1}, b\right),\left(a_{2}, b\right) \in R$ implies $a_{1}=a_{2}$.
- righttotal, if for all $b \in B$ there is some $a \in A$ with $(a, b) \in R$.
- lefttotal, if for all $a \in A$ there is some $b \in B$ with $(a, b) \in R$.

Definition 2.3 (functions)

A rightunique relation $R \subseteq A \times B$ is also called (partial) function from A into B, which is indicated by the notion $R: A \rightarrow B$. Furthermore, in this case we use the term injective instead of leftunique, surjective instead of righttotal, and total instead of lefttotal. A total function is said to be bijective, if it is injective and surjective.

For a total function $f: A \rightarrow B$, and $A^{\prime} \subseteq A$ we write $f\left(A^{\prime}\right)$ to denote the set $\left\{f(a) \mid a \in A^{\prime}\right\}$. For $a_{1} \cdots a_{n} \in A^{n}$ the tuple $f\left(a_{1}\right) \cdots f\left(a_{n}\right)$ is abreviated by $f\left(a_{1} \cdots a_{n}\right)$.

Definition 2.4 (families of relations/functions)
For a set of (so-called) indices I and relations (functions) $R_{i}, i \in I$ we call $R=\left(R_{i}\right)_{i \in I}$ a family of relations (functions). If all R_{i} are rightunique (leftunique, righttotal, lefttotal) R itself is called rightunique (leftunique, righttotal, lefttotal). In the case of functions the corresponding terms injective, surjective, total and bijective will be used. Furthermore, the inverse of R is defined by $R^{-1}:=\left(R_{i}^{-1}\right)_{i \in I}$.

For two families of relations $R 1=\left(R 1_{i}\right)_{i \in I}$ and $R 2=\left(R 2_{i}\right)_{i \in I}$ with the same index set I we write $R 1 \subseteq R 2$ if $R 1_{i} \subseteq R 2_{i}$ for all $i \in I$.

Fact 2.5 (totality and uniqueness of relations)

For any family R of (binary) relations holds:
(1) $\left(R^{-1}\right)^{-1}=R$.
(2) R leftunique iff R^{-1} rightunique.
(3) R lefttotal iff R^{-1} righttotal.

2.2 Signatures, Terms, Algebras

Definition 2.6 (signatures)
A signature $S I G=(S, F, P)$ consists of a finite set S of sorts, a finite set F of function symbols, where F is the disjoint union of sets $F_{\underline{s}, s}$ with $\underline{s} \in S^{*}$, $s \in S$, and a finite set P of predicate symbols, where P is the disjoint union of sets $P_{\underline{s}}$ with $\underline{s} \in S^{*}$. For $\underline{s}=s_{1} \cdots s_{n}$ is $F_{\underline{s}, s}$ the set of all n-ary function symbols from sorts $s_{1} \cdots s_{n}$ to sort s, and $P_{\underline{s}}$ the set of all n-ary predicate symbols over sorts $s_{1} \cdots s_{n}$.

For any signature $S I G=(S, F, P)$ we assume a system $X=\left(X_{s}\right)_{s \in S}$ of countable, infinite, and pairwise disjoint sets X_{s} of variables for every sort $s \in S$, and a system Pid $=\left(\operatorname{Pid}_{\underline{s}_{1}, \underline{s}_{2}}\right)_{\underline{s}_{1}, \underline{s}_{2} \in S^{*}}$ of countable, infinite, and pairwise disjoint sets of procedure identifiers for every $\underline{s}_{1}, \underline{s}_{2} \in S^{*}$.

Definition 2.7 (terms)

Given $S I G=(S, F, P)$ and a system X of variables for $S I G$, the family $T_{F}(X)=\left(T_{F, s}(X)\right)_{s \in S}$ of terms over $S I G$ and X is defined as the least family of sets such that

- $X_{s} \subseteq T_{F, s}(X)$ for every $s \in S$, and
- $f \underline{t} \in T_{F, s}(X)$ for every $\underline{s} \in S^{*}, s \in S, f \in F_{\underline{s}, s}, \underline{t} \in T_{F, \underline{s}}(X)$.

The family $T_{F}=\left(T_{F, s}\right)_{s \in S}$ of variable-free terms (so-called ground terms) over $S I G$ is defined as the least family of sets such that

- $f \underline{t} \in T_{F, s}$ for every $\underline{s} \in S^{*}, s \in S, f \in F_{\underline{s}, s}, \underline{t} \in T_{F, \underline{s}}$.

Definition 2.8 (sensible signatures)

A signature $S I G=(S, F, P)$ is called sensible ${ }^{2}$ (cf. [7]) iff there is at least one ground term for any sort, i.e. $T_{F, s} \neq \emptyset$ for all $s \in S$.

Definition 2.9 (algebras, valuations)

For a signature $S I G=(S, F, P)$ a $S I G$-algebra \mathcal{A} is a triple, written $\mathcal{A}=$ $\left(\left(A_{s}\right)_{s \in S},\left(f_{\mathcal{A}}\right)_{f \in F},\left(p_{\mathcal{A}}\right)_{p \in P}\right)$, where $\left(A_{s}\right)_{s \in S}$ is a family of non-empty carrier sets (domain), $\left(f_{\mathcal{A}}\right)_{f \in F}$ is a family of interpretations for the function symbols in F, and $\left(p_{\mathcal{A}}\right)_{p \in P}$ is a family of interpretations for the predicate symbols in P. For $f \in F_{\underline{s}, s}$, with $\underline{s} \in S^{*}, s \in S$ is $f_{\mathcal{A}}$ a total function from $A_{\underline{s}}$ into A_{s}. For $p \in P_{\underline{s}}$, with $\underline{s} \in S^{*}$ is $p_{\mathcal{A}}$ a subset of $A_{\underline{\underline{s}}}$. The set of all SIG-algebras is denoted by $\operatorname{Alg}(S I G)$.

For a system X of variables for $S I G$ and an $\mathcal{A} \in A \lg (S I G)$ an \mathcal{A} valuation $v=\left(v_{s}\right)_{s \in S}$ is a family of total functions $v_{s}: X_{s} \rightarrow A_{s}$. In the setting of dynamic logic, valuations are also called states. $\operatorname{Val}(X, \mathcal{A})$ is the set of all such \mathcal{A}-valuations. For $\underline{s} \in S^{*}, \underline{x}=x_{1} \cdots x_{n} \in \hat{X}_{\underline{s}}$, and $\underline{a}=a_{1} \cdots a_{n} \in A_{\underline{s}}$, we write $v \underline{\underline{a}}$ for the modification of v which assigns a_{i} to x_{i} and is otherwise the same as v.

Definition 2.10 (disjoint signatures, sum of algebras)

Two signatures $S I G=(S, F, P), S I G^{\prime}=\left(S^{\prime}, F^{\prime}, P^{\prime}\right)$ are said to be disjoint, written $S I G \cap S I G^{\prime}=\emptyset$, if $S \cap S^{\prime}=\emptyset, F \cap F^{\prime}=\emptyset$, and $P \cap P^{\prime}=\emptyset$. In this case $S I G \cup S I G^{\prime}:=\left(S \cup S^{\prime}, F \cup F^{\prime}, P \cup P^{\prime}\right)$ is again a signature, and from $\mathcal{A} \in A \lg (S I G), \mathcal{B} \in A \lg \left(S I G^{\prime}\right)$ a $\left(S I G \cup S I G^{\prime}\right)$-algebra

$$
\mathcal{A}+\mathcal{B}:=\left(\left((A+B)_{s}\right)_{s \in S \cup S^{\prime}},\left(f_{\mathcal{A}+\mathcal{B}}\right)_{f \in F \cup F^{\prime}},\left(p_{\mathcal{A}+\mathcal{B}}\right)_{p \in P \cup P^{\prime}}\right)
$$

[^2]can be constructed by (cf. in [1]: amalgamated sum of algebras)
\[

$$
\begin{gathered}
(A+B)_{s}:= \begin{cases}A_{s} & , \text { if } s \in S \\
B_{s} & , \text { if } s \in S^{\prime}\end{cases} \\
f_{(\mathcal{A}+\mathcal{B})}:=\left\{\begin{array}{ll}
f_{\mathcal{A}} & , \text { if } f \in F \\
f_{\mathcal{B}} & , \text { if } f \in F^{\prime}
\end{array} \text { and } p_{(\mathcal{A}+\mathcal{B})}:= \begin{cases}p_{\mathcal{A}} & , \text { if } p \in P \\
p_{\mathcal{B}} & , \text { if } p \in P^{\prime} .\end{cases} \right.
\end{gathered}
$$
\]

For two sets of algebras $\mathcal{M} \subseteq A \lg (S I G)$ and $\mathcal{M}^{\prime} \subseteq A \lg \left(S I G^{\prime}\right)$ we write $\mathcal{M}+\mathcal{M}^{\prime}$ to denote the set $\left\{\mathcal{A}+\mathcal{B} \mid \mathcal{A} \in \mathcal{M}, \mathcal{B} \in \mathcal{M}^{\prime}\right\}$.

Fact 2.11 (disjoint signatures do not mix in terms)

For disjoint signatures $S I G=(S, F, P), S I G^{\prime}=\left(S^{\prime}, F^{\prime}, P^{\prime}\right)$, and all $s \in$ $S \cup S^{\prime}$ holds

$$
T_{F \cup F^{\prime}, s}= \begin{cases}T_{F, s} & , \text { if } s \in S \\ T_{F^{\prime}, s} & , \text { if } s \in S^{\prime}\end{cases}
$$

Proof. Induction on the structure of ground terms.

Definition 2.12 (semantics of terms)

Let $S I G=(S, F, P)$ be a signature with a system X of variables, $\mathcal{A} \in$ $\operatorname{Alg}(S I G), v \in \operatorname{Val}(X, \mathcal{A})$. The value $t_{v, \mathcal{A}}$ of a term $t \in \bigcup_{s \in S} T_{F, s}(X)$ in \mathcal{A} under v is given by:

- $x_{v, \mathcal{A}}:=v_{s}(x)$ for $x \in X_{s}, s \in S$;
- $(f \underline{t})_{v, \mathcal{A}}:=f_{\mathcal{A}}\left(\underline{t}_{v, \mathcal{A}}\right)$ for $\underline{s} \in S^{*}, s \in S, f \in F_{\underline{s}, s}, \underline{t}=t_{1} \cdots t_{n} \in T_{F, \underline{s}}(X)$,
where $\left(t_{1} \cdots t_{n}\right)_{v, \mathcal{A}}:=t_{1 v, \mathcal{A}} \cdots t_{n v, \mathcal{A}}$. If t is a ground term, its value does not depend on v; therefore, we sometimes write $t_{\mathcal{A}}$ instead of $t_{v, \mathcal{A}}$ in this case.

Definition 2.13 (generatedness)

An algebra $\mathcal{A} \in A \lg (S I G), S I G=(S, F, P)$ is called term-generated or generated, if for any $s \in S$ and any $a \in A_{s}$ exists a ground term $t \in T_{F, s}$ with $t_{\mathcal{A}}=a$. The set of all generated $S I G$-algebras (which are also called $S I G$-computation structures [7]) is denoted by $\operatorname{Gen}(S I G) .{ }^{3}$
Fact 2.14 (disjoint sum of generated algebras)
For disjoint signatures SIG, SIG is

$$
G e n\left(S I G \cup S I G^{\prime}\right)=\operatorname{Gen}(S I G)+\operatorname{Gen}\left(S I G^{\prime}\right)
$$

Proof. Let $S I G=(S, F, P), S I G^{\prime}=\left(S^{\prime}, F^{\prime}, P^{\prime}\right)$ be disjoint signatures. It is quite obvious that the sum $\mathcal{A}+\mathcal{A}^{\prime}$ of two algebras $\mathcal{A} \in \operatorname{Gen}(S I G), \mathcal{A}^{\prime} \in$ $G e n\left(S I G^{\prime}\right)$ is in $\operatorname{Gen}\left(S I G \cup S I G^{\prime}\right)$. For the reverse inclusion of the above set equation, let $\mathcal{B} \in \operatorname{Gen}\left(S I G \cup S I G^{\prime}\right)$. Define \mathcal{A} to be the so-called $S I G^{-}$ reduct of \mathcal{B}, i.e. $\mathcal{A}:=\left(\left(B_{s}\right)_{s \in S},\left(f_{\mathcal{B}}\right)_{f \in F},\left(p_{\mathcal{B}}\right)_{p \in P}\right)$. Accordingly, define \mathcal{A}^{\prime} to be the $S I G^{\prime}$-reduct of \mathcal{B}. Then holds $\mathcal{A} \in A \lg (S I G)$ and $\mathcal{A}^{\prime} \in A \lg \left(S I G^{\prime}\right)$ with $\mathcal{A}+\mathcal{A}^{\prime}=\mathcal{B}$. To see, that \mathcal{A} and \mathcal{A}^{\prime} are even generated use fact 2.11.

[^3]
2.3 Homomorphisms, Isomorphisms

Definition 2.15 (homomorphisms, isomorphisms)

Let $S I G=(S, F, P), \mathcal{A}, \mathcal{B} \in \operatorname{Alg}(S I G)$, and $R=\left(R_{s}\right)_{s \in S}$ a family of relations $R_{s} \subseteq A_{s} \times B_{s} . R$ is said to be

- closed against $F \operatorname{wrt}^{4} \mathcal{A}$ and \mathcal{B}, if for all $\underline{s}=s_{1} \cdots s_{n} \in S^{*}$, $s \in S, f \in F_{\underline{s}, s}$ holds that $\left(a_{1}, b_{1}\right) \in R_{s_{1}}, \ldots,\left(a_{n}, b_{n}\right) \in R_{s_{n}}$ implies $\left(f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right), f_{\mathcal{B}}\left(b_{1}, \ldots, b_{n}\right)\right) \in R_{s}$.
- monotonic in P wrt \mathcal{A} and \mathcal{B}, if for all $\underline{s}=s_{1} \cdots s_{n} \in S^{*}, p \in P_{\underline{s}}$, $\left(a_{1}, b_{1}\right) \in R_{s_{1}}, \ldots,\left(a_{n}, b_{n}\right) \in R_{s_{n}}$ holds that $\left(a_{1}, \ldots, a_{n}\right) \in p_{\mathcal{A}}$ implies $\left(b_{1}, \ldots, b_{n}\right) \in p_{\mathcal{B}}$.

A weak (SIG-)homomorphism h from \mathcal{A} to \mathcal{B} is a family $h=\left(h_{s}\right)_{s \in S}$ of total functions $h_{s}: A_{s} \rightarrow B_{s}$ which is closed against F wrt \mathcal{A} and \mathcal{B} and monotonic in P wrt \mathcal{A} and \mathcal{B}. If even h^{-1} is monotonic in P wrt \mathcal{B} and \mathcal{A}, then h is called a (SIG-)homomorphism. An isomorphism is a bijective homomorphism. Two algebras $\mathcal{A}, \mathcal{B} \in \operatorname{Gen}(S I G)$ are called isomorphic if there exists an isomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ from \mathcal{A} to \mathcal{B}.

The following fact says that these definitions of weak homomorphisms, homomorphisms and isomorphicity are equivalent to the usual ones, e.g. given in [2].

Fact 2.16 (homomorphisms are defined as usual)
Given $S I G=(S, F, P), \mathcal{A}, \mathcal{B} \in \operatorname{Alg}(S I G)$ and a family $h=\left(h_{s}\right)_{s \in S}$ of total functions $h_{s}: A_{s} \rightarrow B_{s}$.
(1) h is closed against F wrt \mathcal{A} and \mathcal{B} iff for all $\underline{s}=s_{1} \cdots s_{n} \in S^{*}, s \in S$, $f \in F_{\underline{s}, s}, a_{1} \cdots a_{n} \in A_{\underline{s}}$ holds that

$$
h_{s}\left(f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{\mathcal{B}}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right) .
$$

(2) h is monotonic in P wrt \mathcal{A} and \mathcal{B} iff for all $\underline{s}=s_{1} \cdots s_{n} \in S^{*}, p \in P_{\underline{s}}$, $a_{1} \cdots a_{n} \in A_{\underline{s}}$ holds that

$$
\left(a_{1}, \ldots, a_{n}\right) \in p_{\mathcal{A}} \quad \text { implies } \quad\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right) \in p_{\mathcal{B}} .
$$

Proof. The fact is quite obvious. To see this, remember that in the case that h is a total function the notion $(a, b) \in h$ can be replaced by the (equivalent) notion $h(a)=b$.

[^4]
Fact 2.17 (inverse of isomorphisms)

Let $S I G=(S, F, P)$ and $\mathcal{A}, \mathcal{B} \in \operatorname{Alg}(S I G)$.
(1) A family $R=\left(R_{s}\right)_{s \in S}$ of relations $R_{s} \subseteq A_{s} \times B_{s}$ is closed against F wrt \mathcal{A} and \mathcal{B} iff R^{-1} is closed against F wrt \mathcal{B} and \mathcal{A}.
(2) The inverse h^{-1} of an isomorphism h from \mathcal{A} to \mathcal{B} is an isomorphism from \mathcal{B} to \mathcal{A}.

Proof. To prove (1) assume R to be closed against F wrt \mathcal{A} and \mathcal{B}, and $f \in F_{\underline{s}, s}$ for some $\underline{s}=s_{1} \cdots s_{n} \in S^{*}, s \in S$. Then for any $\left(b_{1}, a_{1}\right) \in$ $R_{s_{1}}^{-1}, \ldots,\left(b_{n}, a_{n}\right) \in R_{s_{n}}^{-1}$ holds that $\left(a_{1}, b_{1}\right) \in R_{s_{1}}, \ldots,\left(a_{n}, b_{n}\right) \in R_{s_{n}}$, and therefore, by the assumption that $\left(f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right), f_{\mathcal{B}}\left(b_{1}, \ldots, b_{n}\right)\right) \in R_{s}$, i.e. $\left(f_{\mathcal{B}}\left(b_{1}, \ldots, b_{n}\right), f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right) \in R_{s}^{-1}$. Thus R^{-1} is closed against F wrt \mathcal{B} and \mathcal{A}. The other direction follows from this one together with fact 2.5(1).

Now we turn to the proof of (2). Due to the bijectivity of h is h^{-1} a family of total, bijective functions, and from (1) follows that h^{-1} is closed against F wrt \mathcal{B} and \mathcal{A}. So, it remains to show that h^{-1} is monotonic in P wrt \mathcal{B} and \mathcal{A} and $\left(h^{-1}\right)^{-1}=h$ is monotonic in P wrt \mathcal{A} and \mathcal{B}, which is guaranteed by assumption.

2.4 First-order Logic, Dynamic Logic

Definition 2.18 (atomic formulas)

Let $S I G=(S, F, P)$ and X be a system of variables for $S I G$. The set $A T(S I G, X)$ of atomic formulas over $S I G$ and X is the least set satisfying:

- true, false $\in A T(S I G, X)$,
- for $s \in S, t_{1}, t_{2} \in T_{F, s}(X)$ is $\left(t_{1}=t_{2}\right) \in A T(S I G, X)$,
- for $\underline{s} \in S^{*}, p \in P_{\underline{s}}, \underline{t} \in T_{F, \underline{s}}(X)$ is $p \underline{t} \in A T(S I G, X)$.

Definition 2.19 (boolean expressions)

Let $S I G=(S, F, P)$ and X be a system of variables for $S I G$. The set $B X P(S I G, X)$ of boolean expressions over $S I G$ and X is the least set satisfying:

- $A T(S I G, X) \subseteq B X P(S I G, X)$,
- for $\varphi, \psi \in B X P(S I G, X)$ is
$\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \leftrightarrow \psi) \in B X P(S I G, X)$.

Definition 2.20 (first-order formulas)

Let $S I G=(S, F, P)$ and X be a system of variables for $S I G$. The set $F O(S I G, X)$ of first-order formulas over $S I G$ and X is the least set satisfying:

- $A T(S I G, X) \subseteq F O(S I G, X)$,
- for $\varphi, \psi \in F O(S I G, X)$ is

$$
\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \leftrightarrow \psi) \in F O(S I G, X),
$$

- for $\varphi \in F O(S I G, X), \underline{s} \in S^{+}$and $\underline{x} \in \hat{X}_{\underline{s}}$ is $\forall \underline{x} . \varphi, \exists \underline{x} \cdot \varphi \in F O(S I G, X)$.

Definition 2.21 (extension by counters)

For the counter signature $C S I G=\left(\{c t r\}, F_{(), c t r} \cup F_{c t r, c t r}, P_{c t r, c t r}\right)$ with $F_{(), c t r}:=\{c z e r o\}, F_{c t r, c t r}:=\{c s u c c\}$, and $P_{c t r, c t r}:=\left\{<_{c t r}\right\}$ we fix a standard algebra $\mathcal{A}_{\text {ctr }}$ with the carrier $A_{\text {ctr }}=\mathrm{N}$, and which gives czero, csucc and $<_{c t r}$ their usual meanings, i.e. zero, successor-function and less-predicate on natural numbers.

We assume all signatures $S I G$ considered in the following to be disjoint from CSIG. So the standard extension $S I G_{+}:=S I G \cup C S I G$ of $S I G$ is well-defined. Correspondingly, we fix a countable, infinite set $X_{\text {ctr }}$ of variables for sort ctr, and assume all other sets of variables considered in the following, to be disjoint from $X_{c t r}$. So we can define the standard extension $X_{+}:=$ $\left(X_{s}\right)_{s \in S \cup\{c t r\}}$ of a system $X=\left(X_{s}\right)_{s \in S}$ of variables for $S I G$. The standard extension of an $\mathcal{A} \in A \lg (S I G)$ is the $S I G_{+}$algebra $\mathcal{A}_{+}:=\mathcal{A}+\mathcal{A}_{\text {ctr }}$.

Definition 2.22 (commands)

Given $S I G=(S, F, P), X$ a system of variables for $S I G$, and Pid a system of procedure identifiers for $S I G$. The set $C M D(S I G, X, P i d)$ of commands over $S I G, X$ and Pid is the least set satisfying:

- (skip, abort)
skip, abort $\in C M D(S I G, X$, Pid $)$,
- (assignment, random assignment)
for $s \in S, x \in X_{s}$, and $t \in T_{F, s}(X)$ is
$(x:=t),(x:=?) \in C M D(S I G, X, P i d)$,
- (nondeterministic choice)
for $\underline{\alpha} \in C M D(S I G, X, P i d)^{*}$ is
$\bigcup \underline{\alpha} \in C M D(S I G, X, P i d)$,
- (composition, conditional)
for $\alpha, \beta \in C M D(S I G, X$, Pid $)$ and $\epsilon \in B X P(S I G, X)$ is
$(\alpha ; \beta)$, if ϵ then α else $\beta \in C M D(S I G, X$, Pid $)$,
- (local (random) variable declaration)
for $\alpha \in \operatorname{CMD}(S I G, X, P i d), \underline{s} \in S^{+}, \underline{x} \in \hat{X}_{\underline{s}}$ and $\underline{t} \in T_{F, \underline{s}}(X)$ is $\operatorname{var} \underline{x}=\underline{t}$ in α, var $\underline{x}=$? in $\alpha \in C M D(S I G, X$, Pid $)$,
- (procedure call)
for $\underline{s}_{1}, \underline{s}_{2} \in S^{*}, q \in \operatorname{Pid}_{\underline{s}_{1}, \underline{s}_{2}}, \underline{t} \in T_{F, \underline{\underline{s}}_{1}}(X)$, and $\underline{z} \in \hat{X}_{\underline{s}_{2}}$ is $q(\underline{t} ; \underline{z}) \in C M D(S I G, X, P i d)$.

Definition 2.23 (free variables)
Let $S I G=(S, F, P), X$ a system of variables for $S I G$, and Pid a system of procedure identifiers for $S I G$. The function

$$
\text { freevars : } C M D(S I G, X, P i d) \rightarrow \bigcup_{s \in S} X_{s}
$$

is defined by:

- freevars(skip) $:=\emptyset$, freevars(abort) $:=\emptyset$,
- $\operatorname{freevars}(x:=t):=\{x\} \cup \operatorname{vars}(t)$, freevars $(x:=?):=\{x\}$,
- freevars $(\bigcup \underline{\alpha}):=\bigcup_{\alpha \in \underline{\alpha}}$ freevars (α),
- freevars $(\alpha ; \beta):=$ freevars $(\alpha) \cup$ freevars (β), freevars $($ if ϵ then α else $\beta):=\operatorname{vars}(\epsilon) \cup$ freevars $(\alpha) \cup$ freevars (β),
- $\operatorname{freevars}(\operatorname{var} \underline{x}=\underline{t}$ in $\alpha):=(\operatorname{freevars}(\alpha) \backslash \operatorname{set}(\underline{x})) \cup \bigcup_{t \in \operatorname{set}(\underline{t})} \operatorname{vars}(t)$, freevars $(\operatorname{var} \underline{x}=?$ in $\alpha):=$ freevars $(\alpha) \backslash \operatorname{set}(\underline{x})$,
- freevars $(q(\underline{t} ; \underline{z})):=\bigcup_{t \in \operatorname{set}(\underline{t})} \operatorname{vars}(t) \cup \operatorname{set}(\underline{z})$.

Here, vars yields the set of variables occurring in a term or in a boolean expression.

Definition 2.24 (procedure declarations)

Given $S I G=(S, F, P), X$ a system of variables for $S I G$ and Pid a system of procedure identifiers for $S I G$. The set $\operatorname{PD}(S I G, X, P i d)$ of procedure declarations over SIG, X and Pid is defined by:

$$
\begin{aligned}
& P D(S I G, X, \text { Pid }):= \\
& \qquad\left\{\begin{array}{l|l}
q(\underline{x} ; \operatorname{var} \underline{y}) \cdot \alpha \left\lvert\, \begin{array}{l}
\underline{s}_{1}, \underline{s}_{2} \in S^{*}, q \in \operatorname{Pid}_{\underline{s}_{1}, \mathfrak{s}_{2}}, \underline{x} \in X_{\underline{s}_{1}}, \underline{y} \in X_{\underline{s}_{2}}, \underline{x} \underline{y} \in \hat{X}_{\underline{s}_{1}} \\
\alpha \in C M D(S I G, X, \operatorname{Pid}), \text { freevars }(\alpha) \subseteq \\
\operatorname{set}(\underline{x} \underline{y})
\end{array}\right.
\end{array}\right\} .
\end{aligned}
$$

Definition 2.25 (look-up of declarations)

Given $S I G$ a signature, X a system of variables for $S I G$, and Pid a system of procedure identifiers for $S I G$. For

$$
\delta=\left(q_{1}\left(\underline{x}_{1} ; \operatorname{var} \underline{y}_{1}\right) \cdot \alpha_{1}, \ldots, q_{n}\left(\underline{x}_{n} ; \operatorname{var} \underline{y}_{n}\right) \cdot \alpha_{n}\right) \in P D(S I G, X, P i d)^{*}
$$

we set $\operatorname{dom}(\delta):=\left\{q_{1}, \ldots, q_{n}\right\}$ and for a $q \in \operatorname{dom}(\delta)$ we declare the declaration of q in δ by $\delta_{q}:=q_{i}\left(\underline{x}_{i} ;\right.$ var $\left.\underline{y}_{i}\right) . \alpha_{i}$, where i is the least number with $q_{i}=q$.

Definition 2.26 (programs)

Let $S I G=(S, F, P), X$ a system of variables for $S I G$, and Pid a system of procedure identifiers for $S I G$. Let further $S I G_{+}=\left(S_{+}, F_{+}, P_{+}\right)$the standard extension of $S I G$ by counters. The set $\operatorname{PROG}(S I G, X$, Pid $)$ of programs over $S I G, X$ and Pid is the least set satisfying:

- $C M D(S I G, X, P i d) \subseteq P R O G(S I G, X, P i d)$,
- for $\delta \in \operatorname{PD}(S I G, X, \text { Pid })^{*}$ and $\alpha \in C M D(S I G, X$, Pid $)$ is $\operatorname{proc} \delta$ in $\alpha \in \operatorname{PROG}(S I G, X, P i d)$,
- for $\delta \in P D(S I G, X, P i d)^{*}, \kappa \in T_{F_{+}, c t r}\left(X_{c t r}\right)$, and $\alpha \in C M D(S I G, X, P i d)$ is proc δ times κ in $\alpha \in \operatorname{PROG}(S I G, X$, Pid $)$.

Definition 2.27 (dynamic logic formulas)

Let $S I G=(S, F, P), X$ a system of variables for $S I G$, Pid a system of procedure identifiers for $S I G, S I G_{+}=\left(S_{+}, F_{+}, P_{+}\right)$the standard extension of SIG, and X_{+}the standard extension of X. The set $D L(S I G, X, P i d)$ of dynamic logic formulas over $S I G, X$ and Pid is the least set satisfying:

- $A T\left(S I G_{+}, X_{+}\right) \subseteq D L(S I G, X, P i d)$,
- for $\varphi, \psi \in D L(S I G, X, P i d)$ is $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \leftrightarrow \psi) \in D L(S I G, X$, Pid $)$,
- for $\varphi \in D L(S I G, X, P i d), \underline{s} \in S_{+}^{+}$, and $\underline{x} \in \hat{X}_{\underline{s}}$ is
$\forall \underline{x} . \varphi, \exists \underline{x} \cdot \varphi \in D L(S I G, X, P i d)$,
- for $\alpha \in \operatorname{PROG}(S I G, X$, Pid $)$ and $\varphi \in D L(S I G, X$, Pid $)$ is $\langle\alpha\rangle \varphi,[\alpha] \varphi \in D L(S I G, X, P i d)$.

Remark. Notice that:

- $B X P(S I G, X) \subset F O(S I G, X) \subset D L(S I G, X, P i d)$.
- There are no counters involved in commands.
- We have restricted ourselves to programs without while-loops, local procedure declarations, and global variables. This allows to simplify the definition of semantics (in comparison with the one given in [2]). Especially, we get by without replacement of variables in programs and without the (so-called) environment construct.

Definition 2.28 (semantics of programs and formulas)

Let $S I G=(S, F, P)$ a signature with a system X of variables and a system Pid of procedure identifiers, and $\mathcal{A} \in \operatorname{Alg}(S I G)$. Let further $S I G_{+}=$ $\left(S_{+}, F_{+}, P_{+}\right), X_{+}$and \mathcal{A}_{+}the standard extensions of $S I G, X$ and \mathcal{A} and $v, v^{\prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$. For $\varphi \in \operatorname{DL}(S I G, X$, Pid $)$ we write $\mathcal{A}, v \vDash \varphi$ if φ is true in \mathcal{A} under v, and $\mathcal{A}, v \not \vDash \varphi$ otherwise. For $\alpha \in \operatorname{PROG}(S I G, X$, Pid $)$ we write $v \llbracket \alpha \rrbracket_{\mathcal{A}} v^{\prime}$ if v^{\prime} is a state that can be reached from state v by executing α interpreted under \mathcal{A}. The relation $\llbracket \alpha \rrbracket_{\mathcal{A}} \subseteq \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right) \times \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$ describes the input-output behavior of α under \mathcal{A}. These notions are defined simultaneously ${ }^{5}$ as follows:

- $\mathcal{A}, v \models$ true $, \mathcal{A}, v \not \vDash$ false
- $\mathcal{A}, v \models t_{1}=t_{2}$ iff $t_{1 v, \mathcal{A}_{+}}=t_{2 v, \mathcal{A}_{+}}$
- $\mathcal{A}, v \vDash p \underline{t}$ iff $\underline{t}_{v, \mathcal{A}_{+}} \in p_{\mathcal{A}_{+}}$
- $\mathcal{A}, v \models \neg \varphi$ iff $\mathcal{A}, v \not \vDash \varphi$
$\mathcal{A}, v \vDash \varphi \wedge \psi$ iff $(\mathcal{A}, v \vDash \varphi$ and $\mathcal{A}, v \vDash \psi)$
$\mathcal{A}, v \equiv \varphi \vee \psi$ iff $(\mathcal{A}, v \models \varphi$ or $\mathcal{A}, v \models \psi)$
$\mathcal{A}, v \models \varphi \rightarrow \psi \operatorname{iff}(\mathcal{A}, v \models \varphi \operatorname{implies} \mathcal{A}, v \models \psi)$
$\mathcal{A}, v \models \varphi \leftrightarrow \psi \operatorname{iff}(\mathcal{A}, v \models \varphi$ iff $\mathcal{A}, v \models \psi)$
- $\mathcal{A}, v \vDash \forall \underline{x} \cdot \varphi$ (where $\underline{x} \in \hat{X}_{\underline{s}}$ for some $\underline{s} \in S^{*}$) iff for all $\underline{a} \in A_{\underline{s}}$ holds $\mathcal{A}, v \underline{\underline{a}} \models \varphi$
$\mathcal{A}, v \neq \exists \underline{x} . \varphi$ (where $\underline{x} \in \hat{X}_{\underline{s}}$ for some $\underline{s} \in S^{*}$) iff there is an $\underline{a} \in A_{\underline{s}}$ such that $\mathcal{A}, v \underline{\underline{a}}=\varphi$
- $\mathcal{A}, v \models\langle\alpha\rangle \varphi$ iff there is a $v^{\prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$with $v \llbracket \alpha \rrbracket_{\mathcal{A}} v^{\prime}$ and $\mathcal{A}, v^{\prime}=\varphi$ $\mathcal{A}, v \models[\alpha] \varphi$ iff for all $v^{\prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$with $\left.v \llbracket \alpha\right]_{\mathcal{A}} v^{\prime}$ holds $\mathcal{A}, v^{\prime} \models \varphi$
- $v \llbracket \alpha \rrbracket_{\mathcal{A}} v^{\prime}$ iff $v \llbracket \operatorname{proc}()^{6}$ in $\alpha \rrbracket_{\mathcal{A}} v^{\prime}$ for $\alpha \in \operatorname{CMD}(S I G, X$, Pid $)$
$v \llbracket \operatorname{proc} \delta$ in $\alpha]_{\mathcal{A}} v^{\prime}$ iff there is some ground term $\kappa \in T_{F_{+}, c t r}$ with $v \llbracket \operatorname{proc} \delta$ times κ in $\alpha \rrbracket_{\mathcal{A}} v^{\prime}$
- $v \llbracket \operatorname{proc} \delta$ times κ in skip $\rrbracket_{\mathcal{A}} v^{\prime}$ iff $v=v^{\prime}$
$v \llbracket \operatorname{proc} \delta$ times κ in abort $\rrbracket_{\mathcal{A}} v^{\prime}$ for no $v, v^{\prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$
- $v \llbracket$ proc δ times κ in $x:=t \rrbracket_{\mathcal{A}} v^{\prime}$ iff $v^{\prime}=v_{x}^{t_{v, \mathcal{A}}}$
$v \llbracket \operatorname{proc} \delta$ times κ in $x:=? \rrbracket_{\mathcal{A}} v^{\prime}$ (where $x \in X_{s}$ for some $s \in S$) iff there is some $a \in A_{s}$ such that $v^{\prime}=v_{x}^{a}$

[^5]- $v \llbracket \operatorname{proc} \delta$ times κ in $\bigcup \underline{\alpha} \rrbracket_{\mathcal{A}} v^{\prime}$ iff
$v \llbracket \operatorname{proc} \delta$ times κ in $\alpha \rrbracket_{\mathcal{A}} v^{\prime}$ for some $\alpha \in \operatorname{set}(\underline{\alpha})$
- $v \llbracket \operatorname{proc} \delta$ times κ in $(\alpha ; \beta) \rrbracket_{\mathcal{A}} v^{\prime}$ iff
there is a $v^{\prime \prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$such that $v \llbracket \operatorname{proc} \delta$ times κ in $\alpha \rrbracket_{\mathcal{A}} v^{\prime \prime}$ and $v^{\prime \prime} \llbracket \operatorname{proc} \delta$ times κ in $\beta \rrbracket_{\mathcal{A}} v^{\prime}$
$v \llbracket \operatorname{proc} \delta$ times κ in if ϵ then α else $\beta \rrbracket_{\mathcal{A}} v^{\prime}$ iff
either $\mathcal{A}, v \neq \epsilon$ and $v \llbracket \operatorname{proc} \delta$ times κ in $\alpha \rrbracket_{\mathcal{A}} v^{\prime}$
or else $\mathcal{A}, v \not \vDash \epsilon$ and $v \llbracket \operatorname{proc} \delta$ times κ in $\beta \rrbracket_{\mathcal{A}} v^{\prime}$
- $v \llbracket \operatorname{proc} \delta$ times κ in var $\underline{x}=\underline{t}$ in $\alpha \rrbracket_{\mathcal{A}} v^{\prime}$ iff
there is a $v^{\prime \prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$such that $v_{\underline{v_{x}, \mathcal{A}}} \llbracket \operatorname{proc} \delta$ times κ in $\left.\alpha\right]_{\mathcal{A}} v^{\prime \prime}$ $\operatorname{and}^{7} v^{\prime}=v_{\underline{x}}^{\prime \prime \prime(\underline{x})}$
$v \llbracket \operatorname{proc} \delta$ times κ in var $\underline{x}=$? in $\alpha \rrbracket_{\mathcal{A}} v^{\prime}$ (where $\underline{x} \in X_{\underline{s}}$ for some $\left.\underline{s} \in S^{*}\right)$ iff there is an $\underline{a} \in A_{\underline{s}}$ and a $v^{\prime \prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)^{-}$such that $v \frac{\underline{a}}{\underline{x}} \llbracket \operatorname{proc} \delta$ times κ in $\left.\alpha\right]_{\mathcal{A}} v^{\prime \prime}$ and $v^{\prime}=v_{\underline{x}}^{\prime \prime \prime(\underline{x})}$
- $v \llbracket \operatorname{proc} \delta$ times κ in $q(\underline{t} ; \underline{z}) \rrbracket_{\mathcal{A}} v^{\prime}$ iff $^{8} q \in \operatorname{dom}(\delta), \delta_{q}=q(\underline{x} ; \operatorname{var} \underline{y}) \cdot \alpha$, $\kappa_{v, \mathcal{A}_{+}} \neq 0$, and there is a $v^{\prime \prime} \in \operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$such that $v^{\prime}=v_{\underline{z}}^{v^{\prime \prime}(\underline{y})^{-}}$and $\left(v_{\underline{\underline{t}}}^{\underline{t_{v}} \mathcal{A}_{+}}\right)_{\underline{y}}^{v(\underline{z})} \llbracket \operatorname{proc} \delta$ times κ^{\prime} in $\left.\alpha\right]_{\mathcal{A}} v^{\prime \prime}$ where $\kappa^{\prime} \in T_{F_{+}, c t r}$ is the ground term with $\kappa_{\mathcal{A}_{+}}^{\prime}=\kappa_{v, \mathcal{A}_{+}} \Leftrightarrow 1$.

A formula φ is said to be true in \mathcal{A}, written $\mathcal{A} \vDash \varphi$, if for all $v \in$ $\operatorname{Val}\left(X_{+}, \mathcal{A}_{+}\right)$holds $\mathcal{A}, v \models \varphi$. Furthermore, for a set of formulas $\Phi \subseteq$ $D L(S I G, X, P i d)$ an algebra $\mathcal{A} \in \operatorname{Alg}(S I G)$ is called a model of Φ, written $\mathcal{A} \models \Phi$, if $\mathcal{A} \models \varphi$ for all $\varphi \in \Phi$.

Fact 2.29 (formulas of disjoint signatures)
Let $S I G, S I G^{\prime}$ be disjoint signatures (with $X \cap X^{\prime}=$ Pid \cap Pid $^{\prime}=\emptyset$), $\mathcal{A} \in \operatorname{Alg}(S I G)$ and $\mathcal{B} \in \operatorname{Alg}\left(S I G^{\prime}\right)$. Then holds:

$$
\begin{aligned}
& \mathcal{A}+\mathcal{B} \models \varphi \Leftrightarrow \mathcal{A} \models \varphi, \text { for all } \varphi \in D L(S I G, X, \text { Pid }) \\
& \mathcal{A}+\mathcal{B} \models \psi \Leftrightarrow \mathcal{B} \models \psi, \text { for all } \psi \in D L\left(S I G^{\prime}, X^{\prime}, \text { Pid }\right) .
\end{aligned}
$$

Proof. The proof works similar to the one of fact 2.33, i.e. by generalization (which introduces valuations) and induction on the syntactical structure of φ (and ψ, respectively).

[^6]
2.5 Signature Morphisms

Definition 2.30 (signature morphisms, σ-reducts)

For two signatures $S I G=(S, F, P)$ and $S I G^{\prime}=\left(S^{\prime}, F^{\prime}, P^{\prime}\right)$ a signature morphism $\sigma: S I G \rightarrow S I G^{\prime}$ from $S I G$ into $S I G^{\prime}$ is a triple of total functions $\sigma=\left(\sigma_{S}: S \rightarrow S^{\prime}, \sigma_{F}: F \rightarrow F^{\prime}, \sigma_{P}: P \rightarrow P^{\prime}\right)$, such that for any $\underline{s} \in S^{*}$, $s \in S, f \in F_{\underline{s}, s}, p \in P_{\underline{s}}$ holds $\sigma_{F}(f) \in F_{\sigma_{S}(\underline{s}), \sigma_{\mathcal{S}}(s)}$ and $\sigma_{P}(p) \in P_{\sigma_{S}(\underline{s})}$, i.e. the types are preserved. We write $\sigma(s)$ for $\sigma_{S}(s), \sigma(f)$ for $\sigma_{F}(f)$, and $\sigma(p)$ for $\sigma_{P}(p)$. A signature morphism σ is said to be injective (surjective, bijective) if σ_{S}, σ_{F} and σ_{P} are injective (surjective, bijective). In the case that σ is bijective, $\sigma^{-1}:=\left(\sigma_{S}^{-1}: S^{\prime} \rightarrow S, \sigma_{F}^{-1}: F^{\prime} \rightarrow F, \sigma_{P}^{-1}: P^{\prime} \rightarrow P\right)$ is a signature morphism from $S I G^{\prime}$ into $S I G$.

The σ-reduct $\left.\mathcal{A}^{\prime}\right|_{\sigma}$ of a given $S I G^{\prime}$-algebra $\mathcal{A}^{\prime} \in \operatorname{Alg}\left(S I G^{\prime}\right)$ is the $S I G$ algebra

$$
\left.\mathcal{A}^{\prime}\right|_{\sigma}:=\left(\left(A_{\sigma(s)}^{\prime}\right)_{s \in S},\left(\sigma(f)_{\mathcal{A}^{\prime}}\right)_{f \in F},\left(\sigma(p)_{\mathcal{A}^{\prime}}\right)_{p \in P}\right) .
$$

The function $\left.\cdot\right|_{\sigma}: A \lg \left(S I G^{\prime}\right) \rightarrow A \lg (S I G)$ is called the forgetful operation defined by σ (cf. [2]). The obvious extension of σ on terms and first-order formulas will also be denoted by σ. Especially, σ maps variables in an injective manner. For an \mathcal{A}^{\prime}-valuation v^{\prime} we write $\left.v^{\prime}\right|_{\sigma}$ for the $\left.\mathcal{A}^{\prime}\right|_{\sigma}$-valuation defined by $\left.{ }^{9} v^{\prime}\right|_{\sigma}:=v^{\prime} \circ \sigma$.

Fact 2.31 (reduct preserves valuation of terms)

Let $S I G=(S, F, P)$ a signature, X a system of variables for $S I G, \sigma$: $S I G \rightarrow S I G^{\prime}$ a signature morphism, $\mathcal{A}^{\prime} \in A \lg \left(S I G^{\prime}\right)$ a $S I G^{\prime}$-algebra, v^{\prime} an \mathcal{A}^{\prime}-valuation, and t a term in $T_{F}(X)$. Then holds:

$$
\sigma(t)_{v^{\prime}, \mathcal{A}^{\prime}}=\left.\left.t_{v^{\prime}}\right|_{\sigma, \mathcal{A}^{\prime}}\right|_{\sigma} .
$$

Proof. Simple induction on the structure of the term t.

Fact 2.32 (surjective reduct preserves generatedness)

For a surjective signature morphism $\sigma: S I G \rightarrow$ SIG ${ }^{\prime}$ is the reduct $\left.\mathcal{A}^{\prime}\right|_{\sigma}$ of a generated SIG'-algebra $\mathcal{A}^{\prime} \in \operatorname{Gen}\left(S I G^{\prime}\right)$ again generated, i.e. $\left.\mathcal{A}^{\prime}\right|_{\sigma} \in$ $\operatorname{Gen}(S I G)$. In short:

$$
\left.\operatorname{Gen}(\sigma(S I G))\right|_{\sigma} \subseteq \operatorname{Gen}(S I G)
$$

Proof. Let $S I G=(S, F, P), \mathcal{A}^{\prime}=\left(\left(A_{s^{\prime}}^{\prime}\right)_{s^{\prime} \in \sigma(S)},\left(f_{\mathcal{A}^{\prime}}^{\prime}\right)_{f^{\prime} \in \sigma(F)},\left(p^{\prime}{ }_{\mathcal{A}^{\prime}}\right)_{p^{\prime} \in \sigma(P)}\right)$ a generated $\sigma(S I G)$-algebra, $s \in S$, and $a \in A_{s}$ where A_{s} denotes the domain of $\left.\mathcal{A}^{\prime}\right|_{\sigma}$ for s. Due to definition 2.30 holds $A_{s}=A_{\sigma(s)}^{\prime}$, i.e. $a \in A_{\sigma(s)}^{\prime}$. From

[^7]generatedness of \mathcal{A}^{\prime} follows that there is a ground term $t^{\prime} \in T_{\sigma(F), \sigma(s)}$ such that $t^{\prime}{ }_{\mathcal{A}^{\prime}}=a$. Because σ is surjective there is a ground term $t \in T_{F, s}$ with $\sigma(t)=t^{\prime}$. Using fact 2.31 we get $a=t_{\mathcal{A}^{\prime}}^{\prime}=\sigma(t)_{\mathcal{A}^{\prime}}=t_{\mathcal{A}^{\prime} \mid \sigma}$. Thus, for every $s \in S$ and $a \in A_{s}$ exists a ground term $t \in T_{F, s}$ with $t_{\left.\mathcal{A}^{\prime}\right|_{\sigma}}=a$, i.e. $\left.\mathcal{A}^{\prime}\right|_{\sigma}$ is generated.

Fact 2.33 (reduct preserves validity)

For a signature morphism $\sigma: S I G \rightarrow S I G^{\prime}$, a system of variables X for $S I G$, a first-order formula $\varphi \in F O(S I G, X)$, and a $S I G^{\prime}$-algebra $\mathcal{A}^{\prime} \in A \lg \left(S I G^{\prime}\right)$ holds:

$$
\mathcal{A}^{\prime} \models \sigma(\varphi) \quad \text { iff }\left.\quad \mathcal{A}^{\prime}\right|_{\sigma} \models \varphi .
$$

Proof. We prove the following slightly generalized lemma: For all $S I G^{\prime}-$ algebras $\mathcal{A}^{\prime} \in A \lg \left(S I G^{\prime}\right)$ and all \mathcal{A}^{\prime}-valuations v^{\prime} holds

$$
\mathcal{A}^{\prime}, v^{\prime} \models \sigma(\varphi) \quad \text { iff }\left.\quad \mathcal{A}^{\prime}\right|_{\sigma},\left.v^{\prime}\right|_{\sigma} \models \varphi .
$$

This lemma is sufficient to prove the above fact, since for any $\left.\mathcal{A}^{\prime}\right|_{\sigma}$-valuation v exists an \mathcal{A}^{\prime}-valuations v^{\prime} with $\left.v^{\prime}\right|_{\sigma}=v$, which follows from the assumption that σ maps variables in an injective manner.

The proof of the lemma works by structural induction on the formula φ $(\operatorname{let} S I G=(S, F, P))$:

- $\varphi \in\{$ true, false $\}$: obvious.
- $\varphi \equiv t_{1}=t_{2}$ (where $\left.t_{1}, t_{2} \in T_{F}(X)\right)$:
follows immediately from fact 2.31.
- $\varphi \equiv p \underline{t}$ (where $p \in P_{\underline{s}, s}, \underline{t} \in T_{F, \underline{s}}(X)$):
from fact 2.31 and $\sigma(p)_{\mathcal{A}^{\prime}}=p_{\mathcal{A}^{\prime} \mid \sigma}$ follows that:

$$
\sigma(\underline{t})_{v^{\prime}, \mathcal{A}^{\prime}} \in \sigma(p)_{\mathcal{A}^{\prime}} \quad \text { iff } \quad \underline{t}_{\left.\left.v^{\prime}\right|_{\sigma, \mathcal{A}^{\prime}}\right|_{\sigma} \in p_{\left.\mathcal{A}^{\prime}\right|_{\sigma}} .} .
$$

- $\varphi \equiv \neg \varphi_{1}, \varphi \equiv \varphi_{1} \wedge \varphi_{2}, \varphi \equiv \varphi_{1} \vee \varphi_{2}, \varphi \equiv \varphi_{1} \rightarrow \varphi_{2}, \varphi \equiv \varphi_{1} \leftrightarrow \varphi_{2}$: simple application of the induction hypothesis.
- $\varphi \equiv \forall \underline{x} \cdot \varphi_{1}$:

Let $\underline{x} \in X_{\underline{s}}, A^{\prime}$ denote the domain of \mathcal{A}^{\prime}, and A denote the domain of $\left.\mathcal{A}^{\prime}\right|_{\sigma}$. By unfolding the semantic definition, applying the induction hypothesis, and using that for any $\underline{a} \in A_{\underline{s}}$ holds $\left.\left(v^{\underline{\underline{a}}} \sigma \underline{\underline{x})}\right)\right|_{\sigma}=\left(\left.v^{\prime}\right|_{\sigma}\right)_{\underline{\underline{x}}}^{\underline{\underline{a}}}$,
we get:

$$
\begin{aligned}
& \mathcal{A}^{\prime}, v^{\prime} \models \sigma\left(\forall \underline{x} \cdot \varphi_{1}\right) \\
& \Leftrightarrow \mathcal{A}^{\prime}, v^{\prime} \models \forall \sigma(\underline{x}) \cdot \sigma\left(\varphi_{1}\right) \\
& \Leftrightarrow \text { for all } \underline{a} \in A_{\sigma(\underline{s})}^{\prime} \text { holds } \mathcal{A}^{\prime}, v^{\prime} \frac{\underline{x}}{\sigma(\underline{x})} \models \sigma\left(\varphi_{1}\right) \\
& \Leftrightarrow \text { for all } \underline{a} \in A_{\sigma(\underline{s})}^{\prime} \text { holds }\left.\mathcal{A}^{\prime}\right|_{\sigma},\left(v^{\prime} \underline{\underline{a}} \sigma(\underline{x})\right. \\
& \left.\right|_{\sigma}
\end{aligned}=\varphi_{1} .
$$

- $\varphi \equiv \exists \underline{x} \cdot \varphi_{1}$:
follows from the above.

Fact 2.34 (reduct by a bijective signature morphism)

For a bijective signature morphism $\sigma: S I G \rightarrow S I G^{\prime}$ holds $\left(\left.\cdot\right|_{\sigma}\right)^{-1}=\left.\cdot\right|_{\sigma^{-1}}$.
Proof. Let $S I G=(S, F, P), S I G^{\prime}=\left(S^{\prime}, F^{\prime}, P^{\prime}\right), \sigma: S I G \rightarrow S I G^{\prime}$ a bijective signature morphism, and $\mathcal{A} \in A l g(S I G)$. By unfolding the definitions we get:

$$
\begin{aligned}
\left.\left(\left.\mathcal{A}\right|_{\sigma^{-1}}\right)\right|_{\sigma} & =\left.\left(\left(A_{\sigma^{-1}\left(s^{\prime}\right)}\right)_{s^{\prime} \in S^{\prime}},\left(\sigma^{-1}\left(f^{\prime}\right)_{\mathcal{A}}\right)_{f^{\prime} \in F^{\prime}},\left(\sigma^{-1}\left(p^{\prime}\right)_{\mathcal{A}}\right)_{p^{\prime} \in P^{\prime}}\right)\right|_{\sigma} \\
& =\left(\left(A_{\left.\sigma^{-1}(\sigma(s))\right)}\right)_{s \in S},\left(\sigma^{-1}(\sigma(f))_{\mathcal{A}}\right)_{f \in F},\left(\sigma^{-1}(\sigma(p))_{\mathcal{A}}\right)_{p \in P}\right) \\
& =\left(\left(A_{s}\right)_{s \in S},\left(f_{\mathcal{A}}\right)_{f \in F},\left(p_{\mathcal{A}}\right)_{p \in P}\right) \\
& =\mathcal{A} .
\end{aligned}
$$

2.6 Algebraic Specifications

Definition 2.35 (algebraic specifications)

A specification $S P E C=(S I G, X, A x)$ consists of a signature $S I G=$ (S, F, P), a system $X=\left(X_{s}\right)_{s \in S}$ of countable, infinite sets X_{s} of variables for any sort $s \in S$, and a finite set of first-order formulas (so-called axioms) $A x \subset F O(S I G, X)$. By $\operatorname{sig}(S P E C):=S I G$ we denote the signature of SPEC.

The semantics ${ }^{10}$ SEM $(S P E C)$ of SPEC is the set of all generated models of the axioms, i.e. $S E M(S P E C):=\{\mathcal{A} \mid \mathcal{A} \in \operatorname{Gen}(S I G), \mathcal{A} \vDash A x\}$. $S P E C$ is said to be monomorphic if any two algebras in $S E M(S P E C)$ are isomorphic. ${ }^{11}$ For a set of formulas $\Phi \subseteq D L(S I G, X, P i d)$ we write $S P E C \models \Phi$ to denote that $\mathcal{A} \models \Phi$ for all $\mathcal{A} \in S E M(S P E C)$.

[^8]
Definition 2.36 (renaming of specifications)

Given a specification $S P E C=(S I G, X, A x)$ and a signature morphism σ : $S I G \rightarrow S I G^{\prime}$, the renaming of SPEC via σ, written $\sigma(S P E C)$, is the specification $\sigma(S P E C)=\left(S I G^{\prime}, \sigma(X), \sigma(A x)\right)$.

Fact 2.37 (semantics of renamed specifications)

For a specification SPEC $=(S I G, X, A x)$ and a signature morphism σ : SIG \rightarrow SIG holds:
(1) if σ is surjective, then $\left.S E M(\sigma(S P E C))\right|_{\sigma} \subseteq S E M(S P E C)$.
(2) if σ is bijective, even $\left.S E M(\sigma(S P E C))\right|_{\sigma}=S E M(S P E C)$.

Proof. To prove (1) we consider any $\mathcal{A}^{\prime} \in S E M(\sigma(S P E C))$. Then, by definition it holds $\mathcal{A}^{\prime} \in \operatorname{Gen}(\sigma(S I G))$ and $\mathcal{A}^{\prime} \models \sigma(A x)$. Using fact 2.32 and fact 2.33 we get $\left.\mathcal{A}^{\prime}\right|_{\sigma} \in \operatorname{Gen}(S I G)$ and $\left.\mathcal{A}^{\prime}\right|_{\sigma}=A x$, i.e. $\left.\mathcal{A}^{\prime}\right|_{\sigma} \in S E M(S P E C)$.

For the proof of (2) we assume σ to be bijective. Then, because σ^{-1} is a surjective signature morphism too, we get

$$
\left.S E M\left(\sigma^{-1}(\sigma(S P E C))\right)\right|_{\sigma^{-1}} \subseteq S E M(\sigma(S P E C))
$$

from (1), and so by fact 2.34

$$
\begin{aligned}
S E M(S P E C) & =\left.\left.S E M\left(\sigma^{-1}(\sigma(S P E C))\right)\right|_{\sigma^{-1}}\right|_{\sigma} \\
& \left.\subseteq S E M(\sigma(S P E C))\right|_{\sigma} .
\end{aligned}
$$

Definition 2.38 (disjoint union of specifications)

The union SPEC $+S P E C^{\prime}$ of two specifications SPEC $=(S I G, X, A x)$ and $S P E C^{\prime}=\left(S I G^{\prime}, X^{\prime}, A x^{\prime}\right)$ with disjoint signatures, i.e. $S I G \cap S I G^{\prime}=\emptyset$, is the specification $S P E C+S P E C^{\prime}:=\left(S I G \cup S I G^{\prime}, X \cup X^{\prime}, A x \cup A x^{\prime}\right)$.

Fact 2.39 (semantics of union specifications)

For two specifications SPEC, SPEC with disjoint signatures holds

$$
S E M\left(S P E C+S P E C^{\prime}\right)=S E M(S P E C)+S E M\left(S P E C^{\prime}\right)
$$

Proof. Let $S P E C=(S I G, X, A x)$ and $S P E C^{\prime}=\left(S I G^{\prime}, X^{\prime}, A x^{\prime}\right)$ two specifications with $S I G \cap S I G^{\prime}=\emptyset$. Then holds:

$$
\begin{aligned}
& S E M\left(S P E C+S P E C^{\prime}\right) \\
& =\left\{\mathcal{A} \mid \mathcal{A} \in \operatorname{Gen}\left(S I G \cup S I G^{\prime}\right), \mathcal{A} \models A x \cup A x^{\prime}\right\} \\
& =\left\{\mathcal{B}+\mathcal{B}^{\prime} \mid \mathcal{B} \in \operatorname{Gen}(S I G), \mathcal{B}^{\prime} \in \operatorname{Gen}\left(S I G^{\prime}\right), \mathcal{B}+\mathcal{B}^{\prime} \models A x \cup A x^{\prime}\right\} \\
& =\left\{\mathcal{B}+\mathcal{B}^{\prime} \mid \mathcal{B} \in \operatorname{Gen}(S I G), \mathcal{B}^{\prime} \in \operatorname{Gen}\left(S I G^{\prime}\right), \mathcal{B} \models A x, \mathcal{B}^{\prime} \models A x^{\prime}\right\} \\
& =\left\{\mathcal{B}+\mathcal{B}^{\prime} \mid \mathcal{B} \in S E M(S P E C), \mathcal{B}^{\prime} \in S E M\left(S P E C^{\prime}\right)\right\} \\
& =\operatorname{SEM}(S P E C)+S E M\left(S P E C^{\prime}\right) .
\end{aligned}
$$

The second equation is due to fact 2.14, the third equation to fact 2.29.

3 Monomorphicity Criteria

In this section we present some criteria for a specification to be monomorphic (theorem 3.9). We prove that these criteria are both necessary and sufficient for monomorphicity.

Definition 3.1 (ground term relation)

Let $S I G=(S, F, P)$ and $\mathcal{A}, \mathcal{B} \in A l g(S I G)$. The ground term relation $G T_{\mathcal{A}, \mathcal{B}}$ between \mathcal{A} and \mathcal{B} is the family $G T_{\mathcal{A}, \mathcal{B}}=\left(G T_{s}\right)_{s \in S}$ of relations $G T_{s} \subseteq$ $A_{s} \times B_{s}$ with $G T_{s}:=\left\{\left(t_{\mathcal{A}}, t_{\mathcal{B}}\right) \mid t \in T_{F, s}\right\}$.

Fact 3.2 (properties of the ground term relation)
Let $S I G=(S, F, P)$ a signature and $\mathcal{A}, \mathcal{B} \in \operatorname{Alg}(S I G)$. Then holds:
(1) $G T_{\mathcal{A}, \mathcal{B}}^{-1}=G T_{\mathcal{B}, \mathcal{A}}$.
(2) $G T_{\mathcal{A}, \mathcal{B}}$ is lefttotal iff $\mathcal{A} \in \operatorname{Gen}(S I G)$.
(3) $G T_{\mathcal{A}, \mathcal{B}}$ is righttotal iff $\mathcal{B} \in \operatorname{Gen}(S I G)$.
(4) $G T_{\mathcal{A}, \mathcal{B}}$ is closed against F wrt \mathcal{A} and \mathcal{B}.

Proof. (1), (2), and (3) are obvious. (4) is proved as follows. Let $f \in F_{\underline{s}, s}$ for some $\underline{s}=s_{1} \cdots s_{n} \in S^{*}, s \in S$, and $\left(a_{1}, b_{1}\right) \in G T_{s_{1}}, \ldots,\left(a_{n}, b_{n}\right) \in G T_{s_{n}}$. Then by definition 3.1 there are ground terms $t_{1} \in T_{F, s_{1}}, \ldots, t_{n} \in T_{F, s_{n}}$ with $t_{1 \mathcal{A}}=a_{1}, \ldots, t_{n_{\mathcal{A}}}=a_{n}$ and $t_{1 \mathcal{B}}=b_{1}, \ldots, t_{n \mathcal{B}}=b_{n}$. Consequently, we get

$$
\begin{aligned}
& \left(f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right), f_{\mathcal{B}}\left(b_{1}, \ldots, b_{n}\right)\right) \\
& \quad=\left(f_{\mathcal{A}}\left(t_{1 \mathcal{A}}, \ldots, t_{n \mathcal{A}}\right), f_{\mathcal{B}}\left(t_{1 \mathcal{B}}, \ldots, t_{n \mathcal{B}}\right)\right) \\
& \quad=\left(f\left(t_{1}, \ldots, t_{n}\right)_{\mathcal{A}}, f\left(t_{1}, \ldots, t_{n}\right)_{\mathcal{B}}\right) \\
& \in G T_{s} .
\end{aligned}
$$

Lemma 3.3 (conclusion from closure against \mathbf{F})

Let $S I G=(S, F, P)$ and $\mathcal{A}, \mathcal{B} \in \operatorname{Alg}(S I G)$. If a family $R=\left(R_{s}\right)_{s \in S}$ of relations $R_{s} \subseteq A_{s} \times B_{s}$ is closed against F wrt \mathcal{A} and \mathcal{B}, then holds $R \supseteq$ $G T_{\mathcal{A}, \mathcal{B}}$.

Proof. We have to prove that for all $s \in S$ and all ground terms $t \in T_{F, s}$ holds $\left(t_{\mathcal{A}}, t_{\mathcal{B}}\right) \in R_{s}$. This is done by induction on the structure of ground terms, and simultaneous on tuples of ground terms. The base case says that $\left\{\left(t_{\mathcal{A}}, t_{\mathcal{B}}\right) \mid t \in \operatorname{set}(())\right\}$ is a subset of R, which is trivial since $\operatorname{set}(())=\emptyset$. For the step case we consider any ground term $f\left(t_{1}, \ldots, t_{n}\right)$ with $f \in F_{s, s}$, $\underline{s}=s_{1} \cdots s_{n} \in S^{*}, s \in S$, and $t_{1} \in T_{F, s_{1}}, \ldots, t_{n} \in T_{F, s_{n}}$. By induction hypothesis is $\left(t_{1 \mathcal{A}}, t_{1 \mathcal{B}}\right) \in R_{s_{1}}, \ldots,\left(t_{n_{\mathcal{A}}}, t_{n \mathcal{B}}\right) \in R_{s_{n}}$, and thus, by assumption $\left(f\left(t_{1}, \ldots, t_{n}\right)_{\mathcal{A}}, f\left(t_{1}, \ldots, t_{n}\right)_{\mathcal{B}}\right) \in R_{s}$.

Lemma 3.4 (characterization of closure against $F)^{12}$
Let $S I G=(S, F, P), \mathcal{A} \in G e n(S I G), \mathcal{B} \in A l g(S I G)$, and $h=\left(h_{s}\right)_{s \in S}$ a family of total functions $h_{s}: A_{s} \rightarrow B_{s}$. Then are equivalent:
(a) h is closed against F wrt \mathcal{A} and \mathcal{B}.
(b) $h \supseteq G T_{\mathcal{A}, \mathcal{B}}$.
(c) $h=G T_{\mathcal{A}, \mathcal{B}}$.

Proof. Since $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is a special case of lemma 3.3 and $(\mathrm{c}) \Rightarrow(\mathrm{a})$ is already shown in fact $3.2(4)$, it remains to prove $(\mathrm{b}) \Rightarrow(\mathrm{c})$. We assume $h \supseteq G T_{\mathcal{A}, \mathcal{B}}$ and show that $h_{s} \subseteq G T_{s}$ for any $s \in S$. Let $(a, b) \in h_{s}$. Then, by generatedness of \mathcal{A} there is a ground term $t \in T_{F, s}$ with $t_{\mathcal{A}}=a$. Thus, $\left(a, t_{\mathcal{B}}\right)=\left(t_{\mathcal{A}}, t_{\mathcal{B}}\right) \in G T_{s}$, and because of $h \supseteq G T_{\mathcal{A}, \mathcal{B}}$ we get $\left(a, t_{\mathcal{B}}\right) \in h_{s}$. Since h_{s} is rightunique, it follows $b=t_{\mathcal{B}}$, and therefore, $(a, b) \in G T_{s}$.

Corollary 3.5 (uniqueness of homomorphisms)

Let $S I G=(S, F, P)$ a signature, $\mathcal{A} \in \operatorname{Gen}(S I G)$, and $\mathcal{B} \in A l g(S I G)$. Then holds:
(1) There exists at most one family $h=\left(h_{s}\right)_{s \in S}$ of total functions h_{s} : $A_{s} \rightarrow B_{s}$ which is closed against F wrt \mathcal{A} and \mathcal{B}.
(2) There exists at most one weak homomorphism from \mathcal{A} to \mathcal{B}.
(3) There exists at most one homomorphism from \mathcal{A} to \mathcal{B}.

Proof. (1) is a consequence of lemma 3.4. (2) and (3) follow from (1).
Corollary 3.6 (ground term relation captures homomorphisms) Let SIG a signature and $\mathcal{A}, \mathcal{B} \in \operatorname{Gen}(S I G)$. Then holds:
(1) For any weak homomorphism h from \mathcal{A} to \mathcal{B} holds $h=G T_{\mathcal{A}, \mathcal{B}}$.
(2) For any homomorphism h from \mathcal{A} to \mathcal{B} holds $h=G T_{\mathcal{A}, \mathcal{B}}$.
(3) For any weak homomorphism h from \mathcal{B} to \mathcal{A} holds $h=G T_{\mathcal{A}, \mathcal{B}}^{-1}$.
(4) For any homomorphism h from \mathcal{B} to \mathcal{A} holds $h=G T_{\mathcal{A}, \mathcal{B}}^{-1}$.

Proof. (1) and (2) are consequences of lemma 3.4. (3) and (4) follow from (1) and (2), together with fact 3.2(1).

[^9]Remark. Corollary 3.6 says that the homomorphism from a generated algebra \mathcal{A} to an algebra \mathcal{B} - if existing at all - can be constructed by building the ground term relation $G T_{\mathcal{A}, \mathcal{B}}=\left(G T_{s}\right)_{s \in S}$ with $G T_{s}:=\left\{\left(t_{\mathcal{A}}, t_{\mathcal{B}}\right) \mid t \in T_{F, s}\right\}$.

Lemma 3.7 (isomorphicity and homomorphisms)

Let $S I G$ a signature and $\mathcal{A}, \mathcal{B} \in \operatorname{Gen}(S I G)$. Then are equivalent:
(a) \mathcal{A} and \mathcal{B} are isomorphic.
(b) there is a homomorphism g from \mathcal{A} to \mathcal{B} and a homomorphism h from \mathcal{B} to \mathcal{A}.
(c) there is a weak homomorphism g from \mathcal{A} to \mathcal{B} and a weak homomorphism h from \mathcal{B} to \mathcal{A}.

Proof. Since $(\mathrm{a}) \Rightarrow(\mathrm{b})$ follows from fact $2.17(2)$ and $(\mathrm{b}) \Rightarrow(\mathrm{c})$ is obvious, it remains to prove $(\mathrm{c}) \Rightarrow(\mathrm{a})$. Let g a weak homomorphism from \mathcal{A} to \mathcal{B} and h a weak homomorphism from \mathcal{B} to \mathcal{A}. We show that g (as well as h) is even a isomorphism, which is divided up in two assertions:
(i) g is bijective:

Because of corollary 3.6 it holds for any $s \in S, t \in T_{F, s}$ that:

$$
h_{s}\left(g_{s}\left(t_{\mathcal{A}}\right)\right)=h_{s}\left(t_{\mathcal{B}}\right)=t_{\mathcal{A}} .
$$

Due to the generatedness of \mathcal{A} this is sufficient for ${ }^{13} h_{s} \circ g_{s}=i d_{A_{s}}$. Similarly it can be shown that $g_{s} \circ h_{s}=i d_{B_{s}}$. So ${ }^{14}, g_{s}$ is bijective with $g_{s}^{-1}=h_{s}$.
(ii) g^{-1} is monotonic in P wrt \mathcal{B} and \mathcal{A} :

This follows from (i), i.e. from $g_{s}^{-1}=h_{s}$ together with the assumption that h is a weak homomorphism from \mathcal{B} to \mathcal{A}.

Lemma 3.8 (monomorphicity and weak homomorphisms)

A specification SPEC is monomorphic if and only if for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ exists a weak homomorphism from \mathcal{A} to \mathcal{B}.

Proof. If SPEC is monomorphic, then, by definition, there exists a homomorphism h from \mathcal{A} to \mathcal{B} for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$. To prove the other implication, let $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ be any two models of $S P E C$. From assumption we get the existence of a weak homomorphism g from \mathcal{A} to \mathcal{B}, but - using a symmetry argument - also the existence of a weak homomorphism h from \mathcal{B} to \mathcal{A}. Due to lemma 3.7 this is sufficient for \mathcal{A} and \mathcal{B} to be isomorphic.

[^10]
Theorem 3.9 (monomorphicity criteria)

Let $S I G=(S, F, P), S P E C$ a specification with $\operatorname{sig}(S P E C)=S I G$. Then the following statements are equivalent:
(a) SPEC is monomorphic.
(b) for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ exists a family $R=\left(R_{s}\right)_{s \in S}$ of relations $R_{s} \subseteq A_{s} \times B_{s}$ such that:
$-R$ is rightunique,
$-R$ is closed against F wrt \mathcal{A} and \mathcal{B},
$-R$ is monotonic in P wrt \mathcal{A} and \mathcal{B}.
(c) for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ exists a family $R=\left(R_{s}\right)_{s \in S}$ of relations $R_{s} \subseteq A_{s} \times B_{s}$ such that:
$-R$ is rightunique,
$-R \supseteq G T_{\mathcal{A}, \mathcal{B}}$,
$-R$ is monotonic in P wrt \mathcal{A} and \mathcal{B}.
(d) for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ holds

- $G T_{\mathcal{A}, \mathcal{B}}$ is rightunique,
- $G T_{\mathcal{A}, \mathcal{B}}$ is monotonic in P wrt \mathcal{A} and \mathcal{B}.
(e) for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ holds
- $G T_{\mathcal{A}, \mathcal{B}}$ is leftunique,
- $G T_{\mathcal{B}, \mathcal{A}}$ is monotonic in P wrt \mathcal{B} and \mathcal{A}.

Proof. The equivalence of (a) - (e) follows from the following implications, which we prove separately.
(a) $\Rightarrow(\mathrm{b})$: Let $S P E C$ be a monomorphic specification. Then for any $\mathcal{A}, \mathcal{B} \in$ $S E M(S P E C)$ exists a weak homomorphism h from \mathcal{A} to \mathcal{B}. By choosing $R:=h$ we get a family of relations with all the properties required in (b).
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: Follows directly from lemma 3.3.
$(c) \Rightarrow(d)$: We assume the existence of a family R of relations, which fulfills the conditions in (c) and prove $R=G T_{\mathcal{A}, \mathcal{B}}$ as follows: Due to the assumption $R \supseteq G T_{\mathcal{A}, \mathcal{B}}$ and fact $3.2(3)$ is R righttotal, and therefore a family of total functions. Using lemma 3.4 yields $R=G T_{\mathcal{A}, \mathcal{B}}$.
$(\mathrm{d}) \Rightarrow(\mathrm{e}):$ By assumption, for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ is $G T_{\mathcal{B}, \mathcal{A}}$ rightunique and monotonic in P wrt \mathcal{B} and \mathcal{A}. Using fact 3.2(1) and fact $2.5(2)$ we get that $G T_{\mathcal{A}, \mathcal{B}}$ is leftunique.
$(\mathrm{e}) \Rightarrow(\mathrm{a}):$ By assumption, for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ is $G T_{\mathcal{B}, \mathcal{A}}$ leftunique and $G T_{\mathcal{A}, \mathcal{B}}$ monotonic in P wrt \mathcal{A} and \mathcal{B}. Using fact $3.2(1)$ and fact $2.5(2)$ we get that $G T_{\mathcal{A}, \mathcal{B}}$ is rightunique. Due to fact $3.2(3)$, is $G T_{\mathcal{A}, \mathcal{B}}$ a family $\left(h_{s}\right)_{s \in S}$ of total functions $h_{s}: A_{s} \rightarrow B_{s}$ which is monotonic in P wrt \mathcal{A} and \mathcal{B}. Together with fact 3.2(4) follows that $G T_{\mathcal{A}, \mathcal{B}}$ is a weak homomorphism from \mathcal{A} to \mathcal{B}. Due to lemma 3.8 this is sufficient for SPEC to be monomorphic.

4 Proof Obligations in Dynamic Logic

This section aims to reformulate the monomorphicity criteria presented in theorem 3.9 as proof obligations in dynamic logic (theorem 4.7). The reformulation is based on the following techniques:

- copying the specification: ${ }^{15}$

The phrase "for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ " in theorem 3.9 needs special treatment since formulas (over $\operatorname{sig}(S P E C)$) express properties of a single model and not relations between two algebras. We tackle this problem by using a renamed copy $S P E C^{\prime}:=\sigma(S P E C)$ of $S P E C$. If this signature morphism σ is bijective, then the above phrase is equivalent to "for any $\mathcal{A} \in S E M(S P E C)$ and any $\mathcal{A}^{\prime} \in$ $S E M\left(S P E C^{\prime}\right)$ " (where \mathcal{B} has to be replaced by $\left.\mathcal{A}^{\prime}\right|_{\sigma}$). Provided the signatures $\operatorname{sig}(S P E C)$ and $\operatorname{sig}\left(S P E C^{\prime}\right)$ to be disjoint, this phrase is equivalent to (cf. fact 2.39) "for any $\mathcal{A}^{\prime \prime} \in S E M\left(S P E C+S P E C^{\prime}\right.$)" (where \mathcal{A} is replaced by the $\operatorname{sig}(S P E C)$-reduct of $\mathcal{A}^{\prime \prime}$ and \mathcal{A}^{\prime} is replaced by $\operatorname{sig}\left(S P E C^{\prime}\right)$-reduct of $\left.\mathcal{A}^{\prime \prime}\right)$. To summarize, in order to prove monomorphicity of SPEC, we reason on the union of SPEC and a bijective renaming of it.

- proving existence constructively:

For proving the criteria (b) or (c) of theorem 3.9 the existence of "a family $R=\left(R_{s}\right)_{s \in S}$ of relations ..." has to be shown. This can be done constructively by explicitly giving a family of (possibly indeterministic) procedures (one procedure for each sort $s \in S$) and proving that the input-output relations they compute satisfy the required properties. Because of the copying of the specification (as mentioned just above)

[^11]this procedures map from $\operatorname{sig}(S P E C)$ to $\operatorname{sig}(\sigma(S P E C))$, i.e. the procedure for $s \in S$ maps from s to $\sigma(s)$. We will call such a family of procedures a mapping program.

- representing $G T$ by a uniform mapping program:

The ground term relation $G T_{\mathcal{A}, \mathcal{B}}$ is a specific family $R=\left(R_{s}\right)_{s \in S}$ of relations $R_{s} \subseteq A_{s} \times B_{s}$. Therefore, it can be represented as the inputoutput relations of a mapping program. In fact, such a mapping program can be constructed automatically; we will call it the uniform mapping program.

Definition 4.1 (mapping program)

Let $S I G=(S, F, P)$ a signature, $\sigma: S I G \rightarrow S I G^{\prime}$ a signature morphism with ${ }^{16} S I G \cap S I G^{\prime}=\emptyset . X$ a system of variables for $S I G \cup S I G^{\prime}$, and Pid a system of procedure identifiers for $S I G \cup S I G^{\prime}$. A mapping program $M P$ for σ is a pair ($m p, \delta$) where $m p: S \rightarrow$ Pid assigns a procedure identifier $m p(s) \in P i d_{s, \sigma(s)}$ to any sort $s \in S$, and $\delta \in P D\left(S I G \cup S I G^{\prime}, X, P i d\right)^{*}$ is a tuple of procedure declarations. ${ }^{17}$ Given $s \in S, t \in T_{F, s}(X), y \in X_{\sigma(s)}$, and $\kappa \in T_{F_{+}, c t r}$, we abbreviate proc δ in begin $m p(s)(t ; y)$ end by $M P(s)(t ; y)$ and proc δ times κ in begin $m p(s)(t ; y)$ end by $\kappa \# M P(s)(t ; y)$.

For $\mathcal{A} \in A \lg (S I G), \mathcal{A}^{\prime} \in A \lg \left(S I G^{\prime}\right)$, and $s \in S$, we set
$M P(s)_{\mathcal{A}+\mathcal{A}^{\prime}}:=\left\{\begin{array}{l|l}\left(v(x), v^{\prime}(y)\right) & \begin{array}{l}v, v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right), x \in X_{s}, y \in X_{\sigma(s)} \\ v \llbracket M P(s)(x ; y) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime}\end{array}\end{array}\right\}$
and $M P_{\mathcal{A}+\mathcal{A}^{\prime}}:=\left(M P(s)_{\mathcal{A}+\mathcal{A}^{\prime}}\right)_{s \in S^{\prime}}$.

Definition 4.2 (uniform mapping program $M P^{u}$)

Let $S I G=(S, F, P)$ a signature, $\sigma: S I G \rightarrow S I G^{\prime}$ a signature morphism with $S I G \cap S I G^{\prime}=\emptyset, X$ a system of variables for $S I G \cup S I G^{\prime}$, and Pid a system of procedure identifiers for $S I G \cup S I G^{\prime}$. The uniform mapping program $M P^{u}:=\left(m p^{u}, \delta^{u}\right)$ for σ is defined as follows. $m p^{u}: S \rightarrow$ Pid is any total function with $m p^{u}(s) \in \operatorname{Pid}_{s, \sigma(s)}$ for all $s \in S$. For each $s \in S$ we fix a $x_{s} \in X_{s}$, and a $y_{s} \in X_{\sigma(s)}$. Then we set ${ }^{18}$

$$
\delta^{u}:=\left\{\left(m p^{u}(s)\right)\left(x_{s} ; \operatorname{var} y_{s}\right) . \bigcup F R A G S\left(s, x_{s}, y_{s}\right) \mid s \in S\right\}
$$

[^12]where ${ }^{19}$
$$
\operatorname{FRAGS}\left(s, x_{s}, y_{s}\right):=\left\{\operatorname{frag}\left(f, x_{s}, y_{s}\right) \mid f \in F_{\underline{s}, s}, \underline{s} \in S^{*}\right\}
$$
with the fragments $\operatorname{frag}\left(f, x_{s}, y_{s}\right)$ for $f \in F_{\underline{s}, s}, \underline{s}=s_{1} \cdots s_{n} \in S^{*}$ defined as follows. Choose new (and different) variables $x_{1} \cdots x_{n} \in X_{\underline{s}}, y_{1} \cdots y_{n} \in X_{\sigma(\underline{s})}$. Then define
\[

$$
\begin{aligned}
& f r a g \\
& f\left.f, x_{s}, y_{s}\right): \equiv \\
& \text { var } x_{1}=?, \ldots, x_{n}=? \text { in } \\
& \text { if } x_{s}=f\left(x_{1}, \ldots, x_{n}\right) \\
& \text { then var } y_{1}=?, \ldots, y_{n}=\text { ? in } \\
&\left(m p^{u}\left(s_{1}\right)\left(x_{1} ; y_{1}\right) ; \ldots ; m p^{u}\left(s_{n}\right)\left(x_{n} ; y_{n}\right) ;\right. \\
&\left.y_{s}:=\sigma(f)\left(y_{1}, \ldots, y_{n}\right)\right)
\end{aligned}
$$
\]

else abort.

Remark. The values assigned to y_{1}, \ldots, y_{n} in the random variable declaration var $y_{1}=?, \ldots, y_{n}=$? in are not used. Therefore, instead of it we can use any deterministic variable declaration var $y_{1}=t_{1}, \ldots, y_{n}=t_{n}$ in \ldots, where the t_{i} are arbitrary ground terms of sort $\sigma\left(s_{i}\right)$, i.e. $t_{i} \in T_{\sigma(F), \sigma\left(s_{i}\right)}$. This is deductively more tractable, since there are less existential quantors (due to the indeterministic assignments) involved. Notice, that these t_{i} actually exist, if one restricts oneself to sensible signatures. Furthermore, such ground terms t_{i} can be effectively computed, for instance like in the algorithm "kanonische Auswahl" presented in ([2], page 173).

Lemma 4.3 (properties of $M P^{u}$)

Let $S I G=(S, F, P)$ a signature, $\sigma: S I G \rightarrow S I G^{\prime}$ a signature morphism with $S I G \cap S I G^{\prime}=\emptyset, X$ a system of variables for $S I G \cup S I G^{\prime}, M P^{u}$ the uniform mapping program for $\sigma, \mathcal{A} \in A \lg (S I G), \mathcal{A}^{\prime} \in A l g\left(S I G^{\prime}\right)$, and $s \in S$.
(1) For all $f \in F_{s_{1} \cdots s_{n}, s}\left(s_{1} \cdots s_{n} \in S^{*}\right)$ and $t_{i} \in T_{F, s_{i}}(i=1, \ldots, n)$ with $\left(t_{i_{\mathcal{A}}}, \sigma\left(t_{i}\right)_{\mathcal{A}^{\prime}}\right) \in M P^{u}\left(s_{i}\right)_{\mathcal{A}+\mathcal{A}^{\prime}}$ holds $\left(f\left(t_{1}, \ldots, t_{n}\right)_{\mathcal{A}}, \sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{\mathcal{A}^{\prime}}\right) \in$ $M P^{u}(s)_{\mathcal{A}+\mathcal{A}^{\prime}}$.
(2) For all $x \in X_{s}, y \in X_{\sigma(s)}, v, v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$, and $\kappa \in T_{F_{+}, c t r}$ with $v \llbracket \kappa \# M P^{u}(s)(x ; y) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime}$ holds $\left(v(x), v^{\prime}(y)\right) \in\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s}\right\}$.
(3) $M P^{u}(s)_{\mathcal{A}+\mathcal{A}^{\prime}} \supseteq\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s}\right\}$.

[^13]Proof. The proofs of (1) and (2) are quite technical. They mainly work by unfolding the definitions, especially definition 2.28 . We tacitly make use of the fact that for all $\delta \in P D\left(S I G \cup S I G^{\prime}, X, P i d\right)^{*}$ and all commands $\alpha \in C M D\left(S I G \cup S I G^{\prime}, X, P i d\right)$ holds

$$
\llbracket \operatorname{proc} \delta \text { in } \alpha \rrbracket=\bigcup_{\kappa \in T_{F_{+}, c t r}} \llbracket \operatorname{proc} \delta \text { times } \kappa \text { in } \alpha \rrbracket .
$$

Since δ^{u} is the only procedure declaration occurring in this proof, we simply write α as abbreviation for proc δ^{u} in α, and $\kappa \# \alpha$ as abbreviation for proc δ^{u} times κ in α.

For the proof of (1) let $\underline{s}=s_{1} \cdots s_{n} \in S^{*}, s \in S, f \in F_{s_{1} \cdots s_{n}, s}$, and $t_{i} \in T_{F, s_{i}}(i=1, \ldots, n)$ with $\left(t_{i \mathcal{A}}, \sigma\left(t_{i}\right)_{\mathcal{A}^{\prime}}\right) \in M P^{u}\left(s_{i}\right)_{\mathcal{A}+\mathcal{A}^{\prime}}$. Furthermore, let $x \in X_{s}, y \in X_{\sigma(s)}, x_{1} \cdots x_{n} \in X_{\underline{s}}, y_{1} \cdots y_{n} \in X_{\sigma(\underline{s})}$ be different variables. From the assumption $\left(t_{i \mathcal{A}}, \sigma\left(t_{i}\right)_{\mathcal{A}^{\prime}}\right) \in M P^{u}\left(s_{i}\right)_{\mathcal{A}+\mathcal{A}^{\prime}}$ follows that (for $i=$ $1, \ldots, n)$ there are $v_{i}, v_{i}^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with $v_{i}\left(x_{i}\right)=t_{i \mathcal{A}}, v_{i}^{\prime}\left(y_{i}\right)=\sigma\left(t_{i}\right)_{\mathcal{A}^{\prime}}$, and $v_{i} \llbracket M P^{u}\left(s_{i}\right)\left(x_{i} ; y_{i}\right) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v_{i}^{\prime}$. As $M P^{u}$ contains side-effect free procedures only, it is $v_{i} \llbracket M P^{u}\left(s_{i}\right)\left(x_{i} ; y_{i}\right) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v_{i y_{i}}^{\sigma\left(t_{i}\right)_{\mathcal{A}^{\prime}}}$ even for all $v_{i} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with $v_{i}\left(x_{i}\right)=t_{i \mathcal{A}}$. Since all variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ are different from each other, we get

$$
v \llbracket m p^{u}\left(s_{1}\right)\left(x_{1} ; y_{1}\right) ; \ldots ; m p^{u}\left(s_{n}\right)\left(x_{n} ; y_{n}\right) \rrbracket v_{y_{1} \cdots y_{n}}^{\sigma\left(t_{1}\right)_{A_{n}} \cdots \sigma\left(t_{n}\right)_{\mathcal{A}^{\prime}}}
$$

for all $v \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with $v\left(x_{i}\right)=t_{i \mathcal{A}}$ (for $\left.i=1, \ldots, n\right)$. Thus, for all $v \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with $v\left(x_{i}\right)=t_{i \mathcal{A}}$ exists a $v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with $v \llbracket m p^{u}\left(s_{1}\right)\left(x_{1} ; y_{1}\right) ; \ldots ; m p^{u}\left(s_{n}\right)\left(x_{n} ; y_{n}\right) ; y:=\sigma(f)\left(y_{1}, \ldots, y_{n}\right) \rrbracket v^{\prime}$ and

$$
v^{\prime}(y)=\sigma(f)_{\mathcal{A}^{\prime}}\left(\sigma\left(t_{1}\right)_{\mathcal{A}^{\prime}}, \ldots, \sigma\left(t_{n}\right)_{\mathcal{A}^{\prime}}\right)=\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{\mathcal{A}^{\prime}} .
$$

So, for all $v \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with $v\left(x_{i}\right)=t_{i \mathcal{A}}($ for $i=1, \ldots, n)$ and $v(x)=f\left(x_{1}, \ldots, x_{n}\right)_{v, \mathcal{A}+\mathcal{A}^{\prime}}=f\left(t_{1}, \ldots, t_{n}\right)_{\mathcal{A}}$ there is some $v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with

$$
\begin{aligned}
& v \llbracket \text { if } x=f\left(x_{1}, \ldots, x_{n}\right) \\
& \text { then } \operatorname{var} y_{1}=?, \ldots, y_{n}=? \text { in } \\
& \quad\left(m p^{u}\left(s_{1}\right)\left(x_{1} ; y_{1}\right) ; \ldots ; m p^{u}\left(s_{n}\right)\left(x_{n} ; y_{n}\right) ;\right. \\
& \left.y:=\sigma(f)\left(y_{1}, \ldots, y_{n}\right)\right)
\end{aligned}
$$

else abort $\rrbracket v^{\prime}$
and $v^{\prime}(y)=\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{\mathcal{A}^{\prime}}$. Consequently, for all $v \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with $v(x)=f\left(t_{1}, \ldots, t_{n}\right)_{\mathcal{A}}$ there is some $v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with $v^{\prime}(y)=$ $\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{\mathcal{A}^{\prime}}$ and $v \llbracket f r a g(f, x, y) \rrbracket v^{\prime}$, i.e. $v \llbracket M P(s)(x ; y) \rrbracket v^{\prime}$. Since there is of course a $v \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with $v(x)=f\left(t_{1}, \ldots, t_{n}\right)_{\mathcal{A}}$, it follows $\left(f\left(t_{1}, \ldots, t_{n}\right)_{\mathcal{A}}, \sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{\mathcal{A}^{\prime}}\right) \in M P^{u}(s)_{\mathcal{A}+\mathcal{A}^{\prime}}$.

For the proof of (2) let $v, v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right), s \in S, x \in X_{s}$, and $y \in X_{\sigma(s)}$. We have to show that for all ground terms $\kappa \in T_{F_{+}, c t r}$ holds that $v \llbracket \kappa \# M P^{u}(s)(x ; y) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime}$ implies $\left(v(x), v^{\prime}(y)\right) \in\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s}\right\}$. This is done by structural induction on counter terms κ. In the base case, where $\kappa \equiv$ czero, $v \llbracket \kappa \# M P^{u}(s)(x ; y) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime}$ does not hold, and so the implication is true by triviality. In the step case is $\kappa \equiv \operatorname{csucc}\left(\kappa^{\prime}\right)$ for some $\kappa^{\prime} \in T_{F_{+}, c t r}$. Assuming $v \llbracket \kappa \# M P^{u}(s)(x ; y) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime}$ we get from definition 2.28 that $v \llbracket \kappa^{\prime} \# f r a g(f, x, y) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime}$ for some $f \in F_{\underline{s}, s}\left(\underline{s}=s_{1} \cdots s_{n} \in S^{*}\right)$. Consequently, there are some $a_{1} \cdots a_{n} \in A_{\underline{s}}$ and a $v^{\prime \prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ such that $\left(x_{1} \cdots x_{n} \in X_{\underline{s}}, y_{1} \cdots y_{n} \in X_{\sigma(\underline{s})}\right.$ are new and different variables)

$$
\begin{aligned}
& v_{x_{1} \cdots x_{n}}^{a_{1} \cdots a_{n}} \llbracket \kappa^{\prime} \# \text { if } x=f\left(x_{1}, \ldots, x_{n}\right) \\
& \text { then } \operatorname{var} y_{1}=?, \ldots, y_{n}=? \text { in } \\
& \left(m p^{u}\left(s_{1}\right)\left(x_{1} ; y_{1}\right) ; \ldots ; m p^{u}\left(s_{n}\right)\left(x_{n} ; y_{n}\right) ;\right. \\
& \left.y:=\sigma(f)\left(y_{1}, \ldots, y_{n}\right)\right) \\
& \text { else abort } \rrbracket v^{\prime \prime}
\end{aligned}
$$

and $v^{\prime \prime}(y)=v^{\prime}(y)$. Since the else branch aborts the condition of the if construct must be evaluated to true in $\mathcal{A}+\mathcal{A}^{\prime}$ under $v_{x_{1} \ldots x_{n}}^{a_{1} \cdots a_{n}}$. That is, it holds $v(x)=v_{x_{1} \cdots x_{n}}^{a_{1} \cdots a_{n}}(x)=f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)$. By unfolding the semantics of var $y_{1}=?, \ldots, y_{n}=$? in \ldots we get that there are $b_{1} \cdots b_{n} \in A_{\sigma(\underline{s})}$ and a $v^{\prime \prime \prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ with (we abbreviate $\left.v_{0}:=v_{x_{1} \cdots x_{n}, y_{1} \cdots y_{n}}^{a_{1} \cdots a_{n}, b_{1} \cdots b_{n}}\right)$

$$
\begin{gathered}
v_{0} \llbracket \kappa^{\prime} \# m p^{u}\left(s_{1}\right)\left(x_{1} ; y_{1}\right) ; \ldots ; m p^{u}\left(s_{n}\right)\left(x_{n} ; y_{n}\right) \\
y:=\sigma(f)\left(y_{1}, \ldots, y_{n}\right) \rrbracket v^{\prime \prime \prime}
\end{gathered}
$$

and $v^{\prime \prime \prime}(y)=v^{\prime \prime}(y)$. Let $v_{1}, \ldots, v_{n} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ be valuations with $v_{i-1} \llbracket \kappa^{\prime} \# m p^{u}\left(s_{i}\right)\left(x_{i} ; y_{i}\right) \rrbracket v_{i}$ for $i=1, \ldots, n$, and $v_{n} \llbracket y:=\sigma(f)\left(y_{1}, \ldots, y_{n}\right) \rrbracket v^{\prime \prime \prime}$, i.e. $v^{\prime \prime \prime}(y)=\sigma(f)_{\mathcal{A}^{\prime}}\left(v_{n}\left(y_{1}\right), \ldots, v\left(y_{n}\right)\right)$. Then, by induction hypothesis, it holds $\left(v_{i-1}\left(x_{i}\right), v_{i}\left(y_{i}\right)\right) \in\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s_{i}}\right\}$ for $i=1, \ldots, n$. As $M P^{u}$ contains side-effect free procedures only and all the variables are different from each other, it follows that $\left(v_{0}\left(x_{i}\right), v_{n}\left(y_{i}\right)\right) \in\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s_{i}}\right\}$ for $i=1, \ldots, n$. So we get

$$
\left(f_{\mathcal{A}}\left(v_{0}\left(x_{1}\right), \ldots, v_{0}\left(x_{n}\right)\right), \sigma(f)_{\mathcal{A}^{\prime}}\left(v_{n}\left(y_{1}\right), \ldots, v\left(y_{n}\right)\right)\right) \in\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s_{i}}\right\} .
$$

It remains to summarize the above. We have already shown that

$$
\begin{aligned}
& v(x)=f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=f_{\mathcal{A}}\left(v_{0}\left(x_{1}\right), \ldots, v_{0}\left(x_{n}\right)\right) \\
& v^{\prime}(y)=v^{\prime \prime}(y)=v^{\prime \prime \prime}(y)=\sigma(f)_{\mathcal{A}^{\prime}}\left(v_{n}\left(y_{1}\right), \ldots, v\left(y_{n}\right)\right),
\end{aligned}
$$

thus $\left(v(x), v^{\prime}(y)\right) \in\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s_{i}}\right\}$.
The proof of (3) works by structural induction on ground terms and is quite similar to the one of lemma 3.3. The induction step is already proven in (1) of the current lemma.

Theorem 4.4 ($M P^{u}$ computes the ground term relation)

Let $\sigma: S I G \rightarrow S I G^{\prime \prime}$ a signature morphism with $S I G \cap S I G^{\prime}=\emptyset, \mathcal{A} \in$ $A \lg (S I G), \mathcal{A}^{\prime} \in A \lg \left(S I G^{\prime}\right)$, and $M P^{u}$ the uniform mapping program for σ. Then holds:

$$
M P_{\mathcal{A}+\mathcal{A}^{\prime}}^{u}=G T_{\mathcal{A},\left.\mathcal{A}^{\prime}\right|_{\sigma}} .
$$

Proof. Let $S I G:=(S, F, P), \mathcal{A} \in \operatorname{Alg}(S I G)$, and $\mathcal{A}^{\prime} \in \operatorname{Alg}\left(S I G^{\prime}\right)$. We have to prove that $M P^{u}(s)_{\mathcal{A}+\mathcal{A}^{\prime}}=\left\{\left(t_{\mathcal{A}}, t_{\mathcal{A}^{\prime} \mid \sigma}\right) \mid t \in T_{F, s}\right\}$ for all $s \in S$. Since $t_{\left.\mathcal{A}^{\prime}\right|_{\sigma}}=\sigma(t)_{\mathcal{A}^{\prime}}$ for all $t \in T_{F}$ (see fact 2.31), it remains to show that for all $s \in S$ holds:

$$
M P^{u}(s)_{\mathcal{A}+\mathcal{A}^{\prime}}=\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s}\right\}
$$

The inclusion \supseteq is already proved in lemma $4.3(3)$. For the other inclusion we argue as follows (X is a system of variables for $S I G \cup S I G^{\prime}$):

$$
\begin{aligned}
& M P^{u}(s)_{\mathcal{A}+\mathcal{A}^{\prime}} \\
& =\left\{\begin{array}{l|l}
\left(v(x), v^{\prime}(y)\right) \left\lvert\, \begin{array}{l}
v, v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right), x \in X_{s}, y \in X_{\sigma(s)} \\
v \llbracket M P^{u}(s)(x ; y) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime}
\end{array}\right.
\end{array}\right\} \\
& =\left\{\begin{array}{l|l}
\left(v(x), v^{\prime}(y)\right) \left\lvert\, \begin{array}{l}
v, v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right), x \in X_{s}, y \in X_{\sigma(s)} \\
\kappa \in T_{F_{+}, c t r}, v \llbracket \kappa \# M P^{u}(s)(x ; y) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime}
\end{array}\right.
\end{array}\right\} \\
& \subseteq\left\{\begin{array}{l|l}
\left(v(x), v^{\prime}(y)\right) \left\lvert\, \begin{array}{l}
v, v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right), x \in X_{s}, y \in X_{\sigma(s)} \\
\left(v(x), v^{\prime}(y)\right) \in\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s}\right\}
\end{array}\right.
\end{array}\right\} \\
& =\left\{\left(t_{\mathcal{A}}, \sigma(t)_{\mathcal{A}^{\prime}}\right) \mid t \in T_{F, s}\right\} .
\end{aligned}
$$

In the inclusion \subseteq we have made use of lemma 4.3(2).
We now work out, how the primitives of the criteria given in theorem 3.9 can be expressed in terms of formulas from dynamic logic.

Definition 4.5 (proof obligations)

Let $S I G=(S, F, P)$ a signature, $\sigma: S I G \rightarrow S I G^{\prime}$ a signature morphism with $S I G \cap S I G^{\prime}=\emptyset, X$ a system of variables for $S I G \cup S I G^{\prime}$, and $M P$ a mapping program for σ. For any $s \in S, x_{s} \in X_{s}, y_{s} \in X_{\sigma(s)}$ we abbreviate:

$$
M P_{s}\left(x_{s}, y_{s}\right): \equiv\left\langle M P(s)\left(x_{s} ; z_{s}\right)\right\rangle z_{s}=y_{s}
$$

where z_{s} is any variable from $X_{\sigma(s)} \backslash\left\{y_{s}\right\}$. For each $s \in S$ we denote the variables in X_{s} by $x_{s}, x 1_{s}, x 2_{s}$ and the variables in $X_{\sigma(s)}$ by $y_{s}, y 1_{s}, y 2_{s}$. In all the formulas below we assume all variables with different names not to be equal.

- $V C_{\text {leftunique }}(M P, \sigma):=$

$$
\bigcup_{s \in S}\left\{M P_{s}\left(x 1_{s}, y_{s}\right) \wedge M P_{s}\left(x 2_{s}, y_{s}\right) \rightarrow x 1_{s}=x 2_{s}\right\}
$$

- $V C_{\text {rightunique }}(M P, \sigma):=$

$$
\bigcup_{s \in S}\left\{M P_{s}\left(x_{s}, y 1_{s}\right) \wedge M P_{s}\left(x_{s}, y 2_{s}\right) \rightarrow y 1_{s}=y 2_{s}\right\}
$$

- $V C_{\text {closed against }} \mathrm{F}(M P, \sigma):=$

$$
\begin{aligned}
\bigcup_{s_{1}, \ldots, s_{n}, s \in S} \bigcup_{f \in F_{s_{1} \cdots s_{n}, s}}\{ & M P_{s_{1}}\left(x_{s_{1}}, y_{s_{1}}\right) \wedge \cdots \wedge M P_{s_{n}}\left(x_{s_{n}}, y_{s_{n}}\right) \rightarrow \\
& \left.M P_{s}\left(f\left(x_{s_{1}}, \ldots, x_{s_{n}}\right),(\sigma(f))\left(y_{s_{1}}, \ldots, y_{s_{n}}\right)\right)\right\}
\end{aligned}
$$

- $V C_{\text {supset of } \mathrm{GT}}(M P, \sigma):=$

$$
\bigcup_{s \in S}\left\{M P_{s}^{u}\left(x_{s}, y_{s}\right) \rightarrow M P_{s}\left(x_{s}, y_{s}\right)\right\}
$$

- $V C_{\text {monotonic in } \mathrm{P}}(M P, \sigma):=$

$$
\begin{aligned}
\bigcup_{s_{1}, \ldots, s_{n} \in S} \bigcup_{p \in P_{s_{1} \cdots s_{n}}}\left\{M P_{s_{1}}\left(x_{s_{1}}, y_{s_{1}}\right) \wedge \cdots \wedge M P_{s_{n}}\left(x_{s_{n}}, y_{s_{n}}\right) \wedge\right. \\
\left.p\left(x_{s_{1}}, \ldots, x_{s_{n}}\right) \rightarrow(\sigma(p))\left(y_{s_{1}}, \ldots, y_{s_{n}}\right)\right\}
\end{aligned}
$$

- $V C_{\text {inv monotonic in } \mathrm{P}}(M P, \sigma):=$

$$
\begin{aligned}
& \bigcup_{s_{1}, \ldots, s_{n} \in S} \bigcup_{p \in P_{s_{1}, \ldots s_{n}}}\left\{M P_{s_{1}}\left(x_{s_{1}}, y_{s_{1}}\right) \wedge \cdots \wedge M P_{s_{n}}\left(x_{s_{n}}, y_{s_{n}}\right) \wedge\right. \\
& \left.(\sigma(p))\left(y_{s_{1}}, \ldots, y_{s_{n}}\right) \rightarrow p\left(x_{s_{1}}, \ldots, x_{s_{n}}\right)\right\}
\end{aligned}
$$

Lemma 4.6 (semantics of proof obligations)

Let $S I G=(S, F, P)$ a signature, $\sigma: S I G \rightarrow S I G^{\prime}$ a signature morphism with $S I G \cap S I G^{\prime}=\emptyset, \mathcal{A} \in \operatorname{Gen}(S I G), \mathcal{A}^{\prime} \in \operatorname{Gen}\left(S I G^{\prime}\right)$, and MP a mapping program for σ. Then holds:
(1) $M P_{\mathcal{A}+\mathcal{A}^{\prime}}$ is leftunique iff $\mathcal{A}+\mathcal{A}^{\prime} \models V C_{\text {leftumique }}(M P, \sigma)$.
(2) $M P_{\mathcal{A}+\mathcal{A}^{\prime}}$ is rightunique iff $\mathcal{A}+\mathcal{A}^{\prime} \models V C_{\text {rightunique }}(M P, \sigma)$.
(3) $M P_{\mathcal{A}+\mathcal{A}^{\prime}}$ is closed against F wrt \mathcal{A} and $\left.\mathcal{A}^{\prime}\right|_{\sigma}$ iff $\mathcal{A}+\mathcal{A}^{\prime} \models V C_{\text {closed against }} \mathrm{F}(M P, \sigma)$.
(4) $M P_{\mathcal{A}+\mathcal{A}^{\prime}} \supseteq G T_{\mathcal{A},\left.\mathcal{A}^{\prime}\right|_{\sigma}}$ iff $\mathcal{A}+\mathcal{A}^{\prime} \models V C_{\text {supset of } \mathrm{GT}}(M P, \sigma)$.
(5) $M P_{\mathcal{A}+\mathcal{A}^{\prime}}$ is monotonic in P wrt \mathcal{A} and $\left.\mathcal{A}^{\prime}\right|_{\sigma}$ iff $\mathcal{A}+\mathcal{A}^{\prime} \models V C_{\text {monotonic in }} \mathrm{P}(M P, \sigma)$.
(6) $M P_{\mathcal{A}+\mathcal{A}^{\prime}}^{-1}$ is monotonic in P wrt $\left.\mathcal{A}^{\prime}\right|_{\sigma}$ and \mathcal{A} iff $\mathcal{A}+\mathcal{A}^{\prime} \models V C_{\text {inv monotonic in } \mathrm{P}(M P, \sigma) . ~}^{\text {. }}$

Proof. We make use of the fact that for all $s \in S, x_{s} \in X_{s}, y_{s} \in X_{\sigma(s)}$, and $v \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right)$ holds

$$
\mathcal{A}+\mathcal{A}^{\prime}, v \models M P_{s}\left(x_{s}, y_{s}\right) \Leftrightarrow\left(v\left(x_{s}\right), v\left(y_{s}\right)\right) \in M P(s)_{\mathcal{A}+\mathcal{A}^{\prime}}
$$

which can be proven as follows $\left(z_{s} \in X_{\sigma(s)} \backslash\left\{y_{s}\right\}\right)$:

$$
\begin{aligned}
\mathcal{A}+ & \mathcal{A}^{\prime}, v \models M P_{s}\left(x_{s}, y_{s}\right) \\
\Leftrightarrow & \mathcal{A}+\mathcal{A}^{\prime}, v \models\left\langle M P(s)\left(x_{s} ; z_{s}\right)\right\rangle z_{s}=y_{s} \\
\Leftrightarrow & \text { there is a } v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right) \text { with } \\
& v \llbracket M P(s)\left(x_{s} ; z_{s}\right) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime} \text { and } \mathcal{A}+\mathcal{A}^{\prime}, v^{\prime} \models z_{s}=y_{s} \\
\Leftrightarrow & \text { there is a } v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right) \text { with } \\
& v \llbracket M P(s)\left(x_{s} ; z_{s}\right) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime} \text { and } v^{\prime}\left(z_{s}\right)=v^{\prime}\left(y_{s}\right) \\
\Leftrightarrow & \text { there is a } v^{\prime} \in \operatorname{Val}\left(X, \mathcal{A}+\mathcal{A}^{\prime}\right) \text { with } \\
& v \llbracket M P(s)\left(x_{s} ; z_{s}\right) \rrbracket_{\mathcal{A}+\mathcal{A}^{\prime}} v^{\prime} \text { and } v^{\prime}\left(z_{s}\right)=v\left(y_{s}\right) \\
\Leftrightarrow & \left(v\left(x_{s}\right), v\left(y_{s}\right)\right) \in M P(s)_{\mathcal{A}+\mathcal{A}^{\prime}}
\end{aligned}
$$

With this in hand the proofs of (1) - (6) are straightforward.

Theorem 4.7 (monomorphicity obligations)

Let SPEC $=(S I G, X, A x)$ a specification, $\sigma: S I G \rightarrow S I G^{\prime}$ a bijective signature morphism with $S I G \cap S I G^{\prime}=\emptyset$, and $M P^{u}$ the uniform mapping program for σ. Then are equivalent:
(a) SPEC is monomorphic.
(b) there is a mapping program MP for σ such that:

$$
\begin{aligned}
& -S P E C+\sigma(S P E C) \models V C_{\text {rightumique }}(M P, \sigma) \\
& -S P E C+\sigma(S P E C) \models V C_{\text {closed against } \mathrm{F}}(M P, \sigma) \\
& -S P E C+\sigma(S P E C) \models V C_{\text {monotonic in } \mathrm{P}}(M P, \sigma) .
\end{aligned}
$$

(c) there is a mapping program MP for σ such that:

$$
\begin{aligned}
& -S P E C+\sigma(S P E C) \models V C_{\text {rightumique }}(M P, \sigma) \\
& -S P E C+\sigma(S P E C) \models V C_{\text {supset of } \mathrm{GT}}(M P, \sigma) \\
& -S P E C+\sigma(S P E C) \models V C_{\text {monotonic in } \mathrm{P}}(M P, \sigma) .
\end{aligned}
$$

(d) it holds:

$$
\begin{aligned}
& -S P E C+\sigma(S P E C) \models V C_{\text {rightunique }}\left(M P^{u}, \sigma\right) \\
& -S P E C+\sigma(S P E C) \models V C_{\text {monotonic in } \mathrm{P}}\left(M P^{u}, \sigma\right) .
\end{aligned}
$$

(e) it holds:

$$
\begin{aligned}
& -S P E C+\sigma(S P E C) \models V C_{\text {leftunique }}\left(M P^{u}, \sigma\right) \\
& -S P E C+\sigma(S P E C) \models V C_{\text {inv monotonic in } \mathrm{P}}\left(M P^{u}, \sigma\right) .
\end{aligned}
$$

Proof. We start with a few preliminaries. Due to fact 2.34 and fact 2.37 is

$$
S E M(\sigma(S P E C))=\left.\left(\left.S E M(\sigma(S P E C))\right|_{\sigma}\right)\right|_{\sigma^{-1}}=\left.S E M(S P E C)\right|_{\sigma^{-1}}
$$

and so, using fact 2.39, we get:

$$
\begin{align*}
& S E M(S P E C+\sigma(S P E C)) \\
& \quad=S E M(S P E C)+S E M(\sigma(S P E C)) \tag{*}\\
& \quad=S E M(S P E C)+\left.S E M(S P E C)\right|_{\sigma^{-1}}
\end{align*}
$$

In the following we show that the single items of theorem 4.7 are equivalent to the single items in theorem 3.9:

$4.7(\mathrm{a}) \Leftrightarrow 3.9(\mathrm{a}):$ trivial.
$4.7(\mathrm{~b}) \Rightarrow 3.9(\mathrm{~b}):$ Let \mathcal{A} and \mathcal{B} any two algebras from $S E M(S P E C)$, and set $\mathcal{A}^{\prime}:=\left.\mathcal{B}\right|_{\sigma^{-1}}$. Then is $\left(\operatorname{see}\left({ }^{*}\right)\right) \mathcal{A}+\mathcal{A}^{\prime} \in S E M(S P E C+\sigma(S P E C))$. From assumption, together with lemma 4.6, follows that $M P_{\mathcal{A}+\mathcal{A}^{\prime}}$ is rightunique, closed against F wrt \mathcal{A} and $\left.\mathcal{A}^{\prime}\right|_{\sigma}$, and monotonic in P wrt \mathcal{A} and $\left.\mathcal{A}^{\prime}\right|_{\sigma}$. By choosing $R:=M P_{\mathcal{A}+\mathcal{A}^{\prime}}$ we get a rightunique family $R=\left(R_{s}\right)_{s \in S}$ of relations $R_{s} \subseteq A_{s} \times B_{s}$, which is closed against F wrt \mathcal{A} and \mathcal{B} and monotonic in P wrt \mathcal{A} and \mathcal{B}. (The identity $\left.\mathcal{A}^{\prime}\right|_{\sigma}=\mathcal{B}$ is due to fact 2.34.)
$4.7(c) \Rightarrow 4.7(b):$ From assumption, together with lemma 4.6, follows for all $\mathcal{A} \in S E M(S P E C), \mathcal{A}^{\prime} \in S E M(\sigma(S P E C))$ that $M P_{\mathcal{A}+\mathcal{A}^{\prime}}$ is rightunique and $M P_{\mathcal{A}+\mathcal{A}^{\prime}} \supseteq G T_{\mathcal{A},\left.\mathcal{A}^{\prime}\right|_{\sigma}}$. So (fact 3.2(2)) $M P_{\mathcal{A}+\mathcal{A}^{\prime}}$ is a total function, and thus, due to lemma 3.4 closed against F wrt \mathcal{A} and $\left.\mathcal{A}^{\prime}\right|_{\sigma}$. Applying lemma 4.6 again, leads to $\mathcal{A}+\mathcal{A}^{\prime} \models V C_{\text {closed against } \mathrm{F}}(M P, \sigma)$. Because of $\left({ }^{*}\right)$ we get $S P E C+\sigma(S P E C) \vDash V C_{\text {closed against }}(M P, \sigma)$.
$4.7(\mathrm{~d}) \Rightarrow 4.7(\mathrm{c}):$ We choose as mapping program $M P:=M P^{u}$. Then, the proof obligations in $V C_{\text {supset of }}(M P, \sigma)$ degenerate to tautologies. The other conditions of 4.7 (c) are just parts of the assumption.
$3.9(\mathrm{~d}) \Rightarrow 4.7(\mathrm{~d}):$ Let us assume that $3.9(\mathrm{~d})$ holds. Together with the above preliminaries follows that for any two algebras $\mathcal{A} \in S E M(S P E C)$, $\mathcal{A}^{\prime} \in S E M(\sigma(S P E C))$ is $G T_{\mathcal{A},\left.\mathcal{A}^{\prime}\right|_{\sigma}}$ rightunique and monotonic in P wrt \mathcal{A} and $\left.\mathcal{A}^{\prime}\right|_{\sigma}$. From theorem 4.4 and lemma 4.6 we get that $\mathcal{A}+\mathcal{A}^{\prime} \models$ $V C_{\text {rightunique }}\left(M P^{u}, \sigma\right)$ and $\mathcal{A}+\mathcal{A}^{\prime} \models V C_{\text {monotonic in } \mathrm{P}}\left(M P^{u}, \sigma\right)$. By $\left(^{*}\right)$ this is sufficient for $S P E C+\sigma(S P E C) \models V C_{\text {rightunique }}\left(M P^{u}, \sigma\right)$ and $S P E C+\sigma(S P E C) \vDash V C_{\text {monotonic in } \mathrm{P}}\left(M P^{u}, \sigma\right)$.
$4.7(\mathrm{e}) \Leftrightarrow 3.9(\mathrm{e}):$ The implication $3.9(\mathrm{e}) \Rightarrow 4.7(\mathrm{e})$ can be proven just as $3.9(\mathrm{~d})$ $\Rightarrow 4.7(\mathrm{~d})$. On the other hand, from 4.7(e) follows (by $\left.\left({ }^{*}\right)\right)$ that for any two algebras $\mathcal{A}, \mathcal{B} \in S E M(S P E C)$ holds (we abbreviate $\left.\mathcal{B}\right|_{\sigma^{-1}}$ by \mathcal{A}^{\prime}) $\mathcal{A}+\mathcal{A}^{\prime} \vDash V C_{\text {leftunique }}\left(M P^{u}, \sigma\right) \cup V C_{\text {inv monotonic in } \mathrm{P}}\left(M P^{u}, \sigma\right)$. Due to lemma 4.6 we get that $M P_{\mathcal{A}+\mathcal{A}^{\prime}}^{u}$ is leftunique and that $M P_{\mathcal{A}+\mathcal{A}^{\prime}}^{u-1}$ is monotonic in P wrt $\left.\mathcal{A}^{\prime}\right|_{\sigma}$ and \mathcal{A}. Since $M P_{\mathcal{A}+\mathcal{A}^{\prime}}^{u}=G T_{\mathcal{A},\left.\mathcal{A}^{\prime}\right|_{\sigma}}$ (theorem 4.4), $M P_{\mathcal{A}+\mathcal{A}^{\prime}}^{u-1}=G T_{\left.\mathcal{A}^{\prime}\right|_{\sigma, \mathcal{A}}}($ fact $3.2(1))$, and $\left.\mathcal{A}^{\prime}\right|_{\sigma}=\mathcal{B}$ (fact 2.34) this is exactly what 3.9(e) states.

This finishes the proof (cf. diagram above).
The criteria (b) - (e) of the above theorem suggest four approaches to the verification of monomorphicity of a specification. All the proof obligations are accessible to deduction, especially they can be dealt with in the KIV system. It remains the question which of the criteria (b) - (e) is the best with respect to tractability. To apply criterion (b) or (c) the existence of a mapping program has to be proved. This is done constructively by explicitly providing a program, checking that it is a mapping program (which can be done automatically) and proving the obligations. In (d) and (e) no program has to be made up, and the proof obligations can be generated completely automatically. So one might prefer the latter two criteria. However, on the other hand, providing a program in (b) or (c) adds further information to the proof task, which may be valuable while doing the proof. In some sense the same information must be "generated" during a proof of criterion (d) (provided the program is chosen appropriately). We believe that programming is easier than proving. ${ }^{20}$ Thus, for reasons of tractability, we give preference to (b) and (c) (and not to (d) or (e)). Fortunately, in doing so, we do not lose anything, since we get (d) as a special case of (b) or (c) by choosing $M P:=M P^{u}$. (We suspect that (d) and (e) are of equal tractability since they are in a sense symmetric.)

Comparing (b) and (c), the difference in $V C_{\text {closed against }}(M P, \sigma)$ and $V C_{\text {supset of } \mathrm{GT}}(M P, \sigma)$ can be seen in their granularity. In the former there

[^14]is a formula for every function symbol of the signature, in the latter there is a formula for every sort symbol of the signature, where in some sense the formula for sort s captures all the formulas for function symbols with target sort s. On the first sight, following a divide and conquer principle, one might prefer (b) over (c). Unfortunately, in general some of the proof obligations in $V C_{\text {closed against }}(M P, \sigma)$ mutually depend on each other, i.e. they have to be proven simultaneously (by induction). In this case the greater granularity in (b) is more of a hindrance than a help. However, if there are sorts mutually depending on each other, even some of the proof obligations in $V C_{\text {supset of }}$ GT $(M P, \sigma)$ may have to be proven simultaneously. Thus it seems to be the best to syntactically analyze the sort dependencies in order to generate a set proof obligations without any mutually dependencies, but with optimal granularity. Essentially this will be a mixture of (conjunctions of) formulas from $V C_{\text {supset of } \operatorname{GT}}(M P, \sigma)$ and $V C_{\text {closed against }}(M P, \sigma)$. In addition, if there is information provided about which function symbols are constructors or not, it can be exploited to further optimize the definition of the uniform mapping program and the proof obligations.

5 Conclusion and Future Work

We have presented proof obligations, which are sufficient and necessary for the monomorphicity of a given specification. These proof obligations express certain properties of potential indeterministic procedures and are formulated in dynamic logic. So the task of proving monomorphicity can be directly dealt with in the KIV system [4] which was originally designed for program verification.

Currently, we investigate the question about the tractability of such proofs. We have reasons to hope that proving monomorphicity using the approach presented here, i.e. by (well-established) program verification methods, is much easier than using the meta-reasoning approach, which we have pursued formerly [5]. In the next future we will work on generalizing our results to parameterized specifications.

Acknowledgments

I am indebted to Thomas Fuchß, Wolfgang Reif, Gerhard Schellhorn, and Kurt Stenzel for valuable discussions during the course of this research. Especially, the idea of copying signatures in order to reason about relations between algebras is due to Wolfgang Reif. Finally, I would like to thank Ralph Groß for carrying out some of the more technical proofs, and Thomas Fuchß for proof-reading an earlier draft of this paper.

References

[1] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, Equations and Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer Verlag, 1985.
[2] W. Reif. Korrektheit von Spezifikationen und generischen Moduln. PhD thesis, Universität Karlsruhe, Fakultät für Informatik, 1991.
[3] W. Reif. Correctness of full first-order specifications. In 4th Conference on Software Engineering and Knowledge Engineering. Capri, Italy, IEEE Press, 1992.
[4] W. Reif. The KIV-system: Systematic construction of verified software. In Proceedings of the 11th International Conference on Automated Deduction, volume 607 of Lecture Notes in Computer Science. Springer Verlag, 1992.
[5] W. Reif and A. Schönegge. Meta-level reasoning: Proving monomorphicity of specifications. In Deduktionstreffen 1994. Technical report. Technische Hochschule Darmstadt, Fachbereich Informatik, October 1994.
[6] A. Schönegge. Would you ever risk a non-monomorphic specification? Technical Report 33/95, Universität Karlsruhe, Fakultät für Informatik, 1995.
[7] M. Wirsing. Algebraic Specification, volume B of Handbook of Theoretical Computer Science, chapter 13, pages 675-788. Elsevier Science Publishers B. V., 1990.

A An Instructive Example

In the process of finding and proving the theorems in this paper we had formulated the following (faulty) lemma.
(Faulty) Lemma A. 1
Let $S I G=(S, F, P), \mathcal{A}, \mathcal{B} \in \operatorname{Gen}(S I G)$, and $R=\left(R_{s}\right)_{s \in S}$ a family of relations $R_{s} \subseteq A_{s} \times B_{s}$. If R is lefttotal, righttotal and $R \subseteq G T_{\mathcal{A}, \mathcal{B}}$, then is R closed against F wrt \mathcal{A} and \mathcal{B}.

This faulty lemma says that every lefttotal and righttotal subset of $G T_{\mathcal{A}, \mathcal{B}}$ is $G T_{\mathcal{A}, \mathcal{B}}$ itself (cf. lemma 3.3). To see that this does not hold, look at a simple example specification:

$$
\begin{array}{ll}
\hline \text { sorts } & s \\
\text { functions } & a, b, c: s \\
\text { axioms } & a=b \wedge a \neq c \vee a \neq b \wedge a=c
\end{array}
$$

This specification has exactly two generated models (up to isomorphicity), namely one, which we denote by \mathcal{A}, with $a_{\mathcal{A}}=b_{\mathcal{A}}$ and $a_{\mathcal{A}} \neq c_{\mathcal{A}}$, and the other, which we denote by \mathcal{B}, with $a_{\mathcal{B}} \neq b_{\mathcal{B}}$ and $a_{\mathcal{B}}=c_{\mathcal{B}}$. The relation

$$
R:=\left\{\left(b_{\mathcal{A}}, b_{\mathcal{B}}\right),\left(c_{\mathcal{A}}, c_{\mathcal{B}}\right)\right\}
$$

is a lefttotal and righttotal (leftunique and rightunique) homomorphic relation between \mathcal{A} and \mathcal{B}. However, since $\left(a_{\mathcal{A}}, a_{\mathcal{B}}\right) \notin R$, it is not closed against $\{a, b, c\}$ wrt \mathcal{A} and \mathcal{B}.

Looking at the proof obligations, this result suggests that in general in the involved uniform mapping programs (cf. definition 4.2) the program fragments for the single function symbols cannot be combined in a fixed order with if-then-else constructs instead of nondeterministic choice $(\mathrm{U}$) (which is the case for uniform restrictions for modules [2]). For example, the inputoutput relation (under $\mathcal{A}+\mathcal{A}^{\prime}$) of

$$
\begin{aligned}
\operatorname{map}(x ; \operatorname{var} y) . & \text { if } x=b \text { then } y:=b^{\prime} \\
& \text { else if } x=c \text { then } y:=c^{\prime} \\
& \text { else if } x=a \text { then } y:=a^{\prime} \\
& \text { else abort }
\end{aligned}
$$

(where $a^{\prime}=\sigma(a), b^{\prime}=\sigma(b), c^{\prime}=\sigma(c)$) is only a proper subset of, but not equal to $G T_{\mathcal{A},\left.\mathcal{A}^{\prime}\right|_{\sigma}}$ (cf. theorem 4.4). If one would take this procedure as uniform mapping program, the proof obligations listed in theorem 4.7(d) could be shown (though the specification is not monomorphic).

[^0]: * This work was supported under grants no. Me 672/6-2,3 by the Deutsche Forschungsgemeinschaft as part of the focus program"Deduktion".

[^1]: ${ }^{1}$ If one restricts oneself to freely generated data types enriched by algorithmic specifications, the things get much simpler, since in this case, determinism and totality of these algorithms are sufficient for monomorphicity.

[^2]: ${ }^{2}$ In fact, the restriction to sensible signatures is sensible in practice.

[^3]: ${ }^{3}$ Notice that $G e n(S I G)$ is empty if $S I G$ is not sensible.

[^4]: ${ }^{4}$ wrt $=$ with respect to

[^5]: ${ }^{5}$ Since the semantics of programs and formulas depend on each other, we have to define it simultaneously.
 ${ }^{6}$ Here () is the empty procedure declaration.

[^6]: ${ }^{7}$ Notice that x is bound to the value it had before execution of the var construct.
 ${ }^{8}$ Notice, that there may be calls in a program that are not declared. Execution of such a call is defined to behave just as non-termination.

[^7]: ${ }^{9}$ For total functions $f: A \rightarrow B, g: C \rightarrow D$ with $f(A) \subseteq C$ is $g \circ f: A \rightarrow D$ the total function defined by $(g \circ f)(x):=g(f(x))$.

[^8]: ${ }^{10}$ so-called loose semantics.
 ${ }^{11}$ Thus any inconsistent specification is a monomorphic one. In this point our definition differs from the one given in [7].

[^9]: ${ }^{12}$ This and the following results are in some sense similar to ([7], Fact 2.2.6).

[^10]: ${ }^{13}$ For a set A the identity function $i d_{A}: A \rightarrow A$ is defined by $i d_{A}(x):=x$.
 ${ }^{14}$ See any textbook on analysis.

[^11]: ${ }^{15}$ The idea of using this technique is due to a hint of Wolfgang Reif.

[^12]: ${ }^{16}$ This is required to guarantee the sum $\mathcal{A}+\mathcal{A}^{\prime}$ of $\mathcal{A} \in \operatorname{Alg}(S I G)$ and $\mathcal{A}^{\prime} \in \operatorname{Alg}\left(S I G^{\prime}\right)$ to be well-defined.
 ${ }^{17}$ Because we allow δ to contain (auxiliary) procedures not in the range of $m p$ a mapping program cannot be described as a family of procedures indexed with S.
 ${ }^{18}$ The indeterminism of the uniform mapping program introduced by the \bigcup-command is inherent in the problem of computing the ground term relation, i.e. in general there is no effective way to find an ordering $\left\{f_{1}, \ldots, f_{n}\right\}$ of the function symbols in $F_{\underline{s}, s}$ such that frag $\left(f_{i+1}, x_{s}, y_{s}\right)$ has only to be executed if execution of $\operatorname{frag}\left(f_{i}, x_{s}, y_{s}\right)$ gets in the else branch. An example illustrating this point is given in appendix A.

[^13]: ${ }^{19}$ More accurately δ^{u} and $F R A G S\left(s, x_{s}, y_{s}\right)$ (cf. definition 2.22) should be tuples rather than finite sets. However, since semantically the ordering in these tuples turns out to be irrelevant, we simplify the presentation by abstracting from a potential ordering.

[^14]: ${ }^{20}$ This argument is also a criticism of some approaches to program synthesis. We believe that it is (in general) more tractable to explicitly provide a program and then verify it, instead of (implicitly) constructing the program while doing the proof.

