
Proof Obligations for Monomorphicity�

Arno Sch�onegge

Institut f�ur Logik, Komplexit�at und Deduktionssysteme

Universit�at Karlsruhe

D-76128 Karlsruhe, Germany

email: schoenegge@ira.uka.de

Abstract

In certain applications of formal methods to development of correct

software one wants the requirement speci�cation to be monomorphic,

i.e. that every two term-generated models of it are isomorphic. Conse-

quently, the question arises how to guarantee monomorphicity (which

is not decidable in general). In this paper we show that the task of

proving monomorphicity of a speci�cation can be reduced to a task

of proving certain properties of procedures (with indeterministic con-

structs). So this task can be directly dealt with in the KIV system

[4] which was originally designed for software veri�cation. We prove

correctness and completeness of our method.

Contents

1 Introduction 2

2 Basic De�nitions 3

3 Monomorphicity Criteria 18

4 Proof Obligations in Dynamic Logic 22

5 Conclusion and Future Work 32

A An Instructive Example 34

�This work was supported under grants no. Me 672/6-2,3 by the Deutsche Forschungs-

gemeinschaft as part of the focus program \Deduktion".

1

1 Introduction

Formal software development starts with making up a formal requirement

speci�cation that describes the features required of the software system to

be developed. Requirement speci�cations may be(come) an essential part

of a contract between a customer, who wants to get bug-free software for

his (safety-critical) application, and the software developer: the customer

assures to accept the software if (and only if) it meets this speci�cation.

In general, the requirement speci�cation must not be monomorphic, i.e.

the speci�cation must not determine one model uniquely (up to isomor-

phism). Quite the reverse holds: in order to provide the software developer

with freedom that may facilitate more e�cient implementations, it may be

desired to specify only the relevant features. However, on the other hand,

non-monomorphicity (i.e. ambiguity) can be very dangerous, especially if one

is unaware of the (whole extent of the) gaps in the speci�cation. In [6] we
illustrate the risk of such ambiguity on an example and argue that (in cer-
tain applications) the customer should insist on a monomorphic requirement

speci�cation.

The question arises how to guarantee that a speci�cation is monomor-

phic. Unfortunately, in general1 monomorphicity is neither easy to see nor
decidable at all. The set of all monomorphic speci�cations is not even ef-
fectively enumerable. However, it is possible to prove monomorphicity of a
given speci�cation, for example by meta-reasoning [3, 5].

In this paper another approach to this problem is presented. We show
that the task of proving monomorphicity of a speci�cation can be reduced
to the task of proving certain properties of potential indeterministic proce-
dures. This allows one to directly employ well-established techniques known

from software veri�cation. In fact, using our method, the task of proving
monomorphicity can be directly dealt with in the KIV system (Karlsruhe In-
teractive Veri�er) [4] which was originally designed for program veri�cation.

We prove correctness and completeness of our method in a great detail,
but leave out examples and motivations. Thus, this is a very technical paper,

made for internal use rather than for external readers.

To keep the paper self-contained we give all the basic de�nitions and

a few elementary facts in the next section. In section 3 a theorem (3.9)
is proved, which states criteria necessary and su�cient for monomorphicity.

These criteria are well suited to be formulated as proof obligations in dynamic
logic, which is established in theorem 4.7 of section 4. Finally, in the last

section we draw conclusions and indicate directions for future work.

1If one restricts oneself to freely generated data types enriched by algorithmic speci�-

cations, the things get much simpler, since in this case, determinism and totality of these

algorithms are su�cient for monomorphicity.

2

2 Basic De�nitions

In this section we provide the basic de�nitions and a few elementary facts.

Some of them are adopted from [2] and [7].

2.1 Sets, Relations, Functions

De�nition 2.1 (notions for sets of tuples)

Given a set A, n 2 IN the set of n-tuples of A is denoted by An. We use

a1 � � � an or (a1; : : : ; an) as notations for tuples; the empty tuple (i.e. n = 0) is

written � or (). set(a1 � � � an) denotes the set fa1; : : : ; ang. The concatenation
a1 � � � anb1 � � � bm of two tuples a = a1 � � � an and b = b1 � � � bm is written ab.

Furthermore, we set:

� A+ :=
S
n2INnf0gA

n

� A� :=
S
n2INA

n

� Ân := f (a1; : : : ; an) j (a1; : : : ; an) 2 An, ai 6= aj for all 0 � i < j � n g

� Â+ :=
S
n2INnf0g Â

n

� Â� :=
S
n2IN Â

n.

For a set of (so-called) indices I and sets Ai, i 2 I the family (or system)
of the sets Ai is denoted by (Ai)i2I . For i1 � � � in 2 In, we use the following

abbreviations:

� Ai1���in := Ai1 � � � � �Ain

� Âi1���in :=
�
(a1; : : : ; an)

���� (a1; : : : ; an) 2 Ai1���in,
ai 6= aj for all 0 � i < j � n

�
.

De�nition 2.2 (relations)

A (binary) relation R between two sets A and B is a subset of the cartesian

product A�B. The set R�1 := f(b; a) j (a; b) 2 Rg is the inverse of R. R is
said to be

� rightunique, if for all a 2 A, b1; b2 2 B holds that (a; b1); (a; b2) 2 R

implies b1 = b2.

� leftunique, if for all a1; a2 2 A, b 2 B holds that (a1; b); (a2; b) 2 R

implies a1 = a2.

� righttotal, if for all b 2 B there is some a 2 A with (a; b) 2 R.

� lefttotal, if for all a 2 A there is some b 2 B with (a; b) 2 R.

3

De�nition 2.3 (functions)

A rightunique relation R � A � B is also called (partial) function from

A into B, which is indicated by the notion R : A ! B. Furthermore, in

this case we use the term injective instead of leftunique, surjective instead

of righttotal, and total instead of lefttotal. A total function is said to be

bijective, if it is injective and surjective.

For a total function f : A! B, and A0 � A we write f(A0) to denote the

set ff(a) j a 2 A0g. For a1 � � � an 2 An the tuple f(a1) � � � f(an) is abreviated
by f(a1 � � � an).

De�nition 2.4 (families of relations/functions)

For a set of (so-called) indices I and relations (functions) Ri, i 2 I we call

R = (Ri)i2I a family of relations (functions). If all Ri are rightunique

(leftunique, righttotal, lefttotal) R itself is called rightunique (leftunique,

righttotal, lefttotal). In the case of functions the corresponding terms
injective, surjective, total and bijective will be used. Furthermore, the

inverse of R is de�ned by R�1 := (R�1
i)i2I .

For two families of relations R1 = (R1i)i2I and R2 = (R2i)i2I with the
same index set I we write R1 � R2 if R1i � R2i for all i 2 I.

Fact 2.5 (totality and uniqueness of relations)

For any family R of (binary) relations holds:

(1) (R�1)�1 = R.

(2) R leftunique i� R�1 rightunique.

(3) R lefttotal i� R�1 righttotal.

2.2 Signatures, Terms, Algebras

De�nition 2.6 (signatures)

A signature SIG = (S;F; P) consists of a �nite set S of sorts, a �nite set F

of function symbols, where F is the disjoint union of sets Fs;s with s 2 S�,

s 2 S, and a �nite set P of predicate symbols, where P is the disjoint

union of sets Ps with s 2 S�. For s = s1 � � � sn is Fs;s the set of all n-ary
function symbols from sorts s1 � � � sn to sort s, and Ps the set of all n-ary

predicate symbols over sorts s1 � � � sn.
For any signature SIG = (S;F; P) we assume a system X = (Xs)s2S

of countable, in�nite, and pairwise disjoint sets Xs of variables for every
sort s 2 S, and a system Pid = (Pids

1
;s
2
)s

1
;s
2
2S� of countable, in�nite, and

pairwise disjoint sets of procedure identi�ers for every s1; s2 2 S
�.

4

De�nition 2.7 (terms)

Given SIG = (S;F; P) and a system X of variables for SIG, the family

TF (X) =
�
TF;s(X)

�
s2S

of terms over SIG and X is de�ned as the least

family of sets such that

� Xs � TF;s(X) for every s 2 S, and

� ft 2 TF;s(X) for every s 2 S�, s 2 S, f 2 Fs;s, t 2 TF;s(X).

The family TF =
�
TF;s

�
s2S

of variable-free terms (so-called ground terms)

over SIG is de�ned as the least family of sets such that

� ft 2 TF;s for every s 2 S�, s 2 S, f 2 Fs;s, t 2 TF;s.

De�nition 2.8 (sensible signatures)

A signature SIG = (S;F; P) is called sensible2 (cf. [7]) i� there is at least
one ground term for any sort, i.e. TF;s 6= ; for all s 2 S.

De�nition 2.9 (algebras, valuations)

For a signature SIG = (S;F; P) a SIG-algebra A is a triple, written A =�
(As)s2S; (fA)f2F ; (pA)p2P

�
, where (As)s2S is a family of non-empty carrier

sets (domain), (fA)f2F is a family of interpretations for the function symbols
in F , and (pA)p2P is a family of interpretations for the predicate symbols in
P . For f 2 Fs;s, with s 2 S�; s 2 S is fA a total function from As into As.
For p 2 Ps, with s 2 S� is pA a subset of As. The set of all SIG-algebras is
denoted by Alg(SIG).

For a system X of variables for SIG and an A 2 Alg(SIG) an A-
valuation v = (vs)s2S is a family of total functions vs : Xs ! As. In
the setting of dynamic logic, valuations are also called states. V al(X;A)
is the set of all such A-valuations. For s 2 S�, x = x1 � � � xn 2 X̂s, and

a = a1 � � � an 2 As, we write v
a
x for the modi�cation of v which assigns ai to

xi and is otherwise the same as v.

De�nition 2.10 (disjoint signatures, sum of algebras)

Two signatures SIG = (S;F; P), SIG0 = (S0; F 0; P 0) are said to be disjoint,

written SIG \ SIG0 = ;, if S \ S0 = ;, F \ F 0 = ;, and P \ P 0 = ;. In this
case SIG [SIG0 := (S [S0; F [F 0; P [P 0) is again a signature, and from

A 2 Alg(SIG), B 2 Alg(SIG0) a (SIG [SIG0)-algebra

A+ B :=

��
(A+B)s

�
s2S[S0

;
�
fA+B

�
f2F[F 0

;
�
pA+B

�
p2P[P 0

�

2In fact, the restriction to sensible signatures is sensible in practice.

5

can be constructed by (cf. in [1]: amalgamated sum of algebras)

(A+B)s :=

(
As , if s 2 S
Bs , if s 2 S0

f(A+B) :=

(
fA , if f 2 F
fB , if f 2 F 0 and p(A+B) :=

(
pA , if p 2 P
pB , if p 2 P 0.

For two sets of algebras M � Alg(SIG) and M0 � Alg(SIG0) we write

M+M0 to denote the set fA+ B jA 2 M;B 2 M0g.

Fact 2.11 (disjoint signatures do not mix in terms)

For disjoint signatures SIG = (S;F; P), SIG0 = (S0; F 0; P 0), and all s 2
S [S0 holds

TF[F 0;s =

(
TF;s , if s 2 S
TF 0;s , if s 2 S0.

Proof. Induction on the structure of ground terms.

De�nition 2.12 (semantics of terms)

Let SIG = (S;F; P) be a signature with a system X of variables, A 2
Alg(SIG), v 2 V al(X;A). The value tv;A of a term t 2

S
s2S TF;s(X) in A

under v is given by:

� xv;A := vs(x) for x 2 Xs, s 2 S;

� (ft)v;A := fA(tv;A) for s 2 S
�, s 2 S, f 2 Fs;s, t = t1 � � � tn 2 TF;s(X),

where (t1 � � � tn)v;A := t1v;A � � � tnv;A. If t is a ground term, its value does not
depend on v; therefore, we sometimes write tA instead of tv;A in this case.

De�nition 2.13 (generatedness)

An algebra A 2 Alg(SIG), SIG = (S;F; P) is called term-generated or
generated, if for any s 2 S and any a 2 As exists a ground term t 2 TF;s
with tA = a. The set of all generated SIG-algebras (which are also called

SIG-computation structures [7]) is denoted by Gen(SIG).3

Fact 2.14 (disjoint sum of generated algebras)

For disjoint signatures SIG, SIG0 is

Gen(SIG [SIG0) = Gen(SIG) +Gen(SIG0):

Proof. Let SIG = (S;F; P), SIG0 = (S0; F 0; P 0) be disjoint signatures. It
is quite obvious that the sum A +A0 of two algebras A 2 Gen(SIG), A0 2
Gen(SIG0) is in Gen(SIG [SIG0). For the reverse inclusion of the above

set equation, let B 2 Gen(SIG [SIG0). De�ne A to be the so-called SIG-

reduct of B, i.e. A :=
�
(Bs)s2S; (fB)f2F ; (pB)p2P

�
. Accordingly, de�ne A0 to

be the SIG0-reduct of B. Then holds A 2 Alg(SIG) and A0 2 Alg(SIG0)
with A+A0 = B. To see, that A and A0 are even generated use fact 2.11.

3Notice that Gen(SIG) is empty if SIG is not sensible.

6

2.3 Homomorphisms, Isomorphisms

De�nition 2.15 (homomorphisms, isomorphisms)

Let SIG = (S;F; P), A;B 2 Alg(SIG), and R = (Rs)s2S a family of rela-

tions Rs � As �Bs. R is said to be

� closed against F wrt4 A and B, if for all s = s1 � � � sn 2 S�,

s 2 S, f 2 Fs;s holds that (a1; b1) 2 Rs1 ; : : : ; (an; bn) 2 Rsn implies�
fA(a1; : : : ; an); fB(b1; : : : ; bn)

�
2 Rs.

� monotonic in P wrt A and B, if for all s = s1 � � � sn 2 S�, p 2 Ps,

(a1; b1) 2 Rs1 ; : : : ; (an; bn) 2 Rsn holds that (a1; : : : ; an) 2 pA implies

(b1; : : : ; bn) 2 pB.

A weak (SIG-)homomorphism h from A to B is a family h = (hs)s2S of

total functions hs : As ! Bs which is closed against F wrt A and B and

monotonic in P wrt A and B. If even h�1 is monotonic in P wrt B and A,
then h is called a (SIG-)homomorphism. An isomorphism is a bijective
homomorphism. Two algebras A;B 2 Gen(SIG) are called isomorphic if
there exists an isomorphism h : A ! B from A to B.

The following fact says that these de�nitions of weak homomorphisms,
homomorphisms and isomorphicity are equivalent to the usual ones, e.g. given

in [2].

Fact 2.16 (homomorphisms are de�ned as usual)

Given SIG = (S;F; P), A;B 2 Alg(SIG) and a family h = (hs)s2S of total

functions hs : As ! Bs.

(1) h is closed against F wrt A and B i� for all s = s1 � � � sn 2 S�, s 2 S,
f 2 Fs;s, a1 � � � an 2 As holds that

hs(fA(a1; : : : ; an)) = fB(hs1(a1); : : : ; hsn(an)):

(2) h is monotonic in P wrt A and B i� for all s = s1 � � � sn 2 S�, p 2 Ps,

a1 � � � an 2 As holds that

(a1; : : : ; an) 2 pA implies (hs1(a1); : : : ; hsn(an)) 2 pB:

Proof. The fact is quite obvious. To see this, remember that in the case
that h is a total function the notion (a; b) 2 h can be replaced by the (equiv-

alent) notion h(a) = b.

4wrt = with respect to

7

Fact 2.17 (inverse of isomorphisms)

Let SIG = (S;F; P) and A;B 2 Alg(SIG):

(1) A family R = (Rs)s2S of relations Rs � As � Bs is closed against F

wrt A and B i� R�1 is closed against F wrt B and A.

(2) The inverse h�1 of an isomorphism h from A to B is an isomorphism

from B to A.

Proof. To prove (1) assume R to be closed against F wrt A and B, and
f 2 Fs;s for some s = s1 � � � sn 2 S�, s 2 S. Then for any (b1; a1) 2
R�1

s1
; : : : ; (bn; an) 2 R�1

sn
holds that (a1; b1) 2 Rs1 ; : : : ; (an; bn) 2 Rsn , and

therefore, by the assumption that
�
fA(a1; : : : ; an); fB(b1; : : : ; bn)

�
2 Rs, i.e.�

fB(b1; : : : ; bn); fA(a1; : : : ; an)
�
2 R�1

s . Thus R�1 is closed against F wrt B

and A. The other direction follows from this one together with fact 2.5(1).

Now we turn to the proof of (2). Due to the bijectivity of h is h�1 a
family of total, bijective functions, and from (1) follows that h�1 is closed
against F wrt B and A. So, it remains to show that h�1 is monotonic in
P wrt B and A and (h�1)�1 = h is monotonic in P wrt A and B, which is

guaranteed by assumption.

2.4 First-order Logic, Dynamic Logic

De�nition 2.18 (atomic formulas)

Let SIG = (S;F; P) and X be a system of variables for SIG. The set
AT (SIG;X) of atomic formulas over SIG and X is the least set satisfying:

� true; false 2 AT (SIG;X),

� for s 2 S, t1; t2 2 TF;s(X) is (t1 = t2) 2 AT (SIG;X),

� for s 2 S�, p 2 Ps , t 2 TF;s(X) is pt 2 AT (SIG;X).

De�nition 2.19 (boolean expressions)

Let SIG = (S;F; P) and X be a system of variables for SIG. The set

BXP (SIG;X) of boolean expressions over SIG and X is the least set

satisfying:

� AT (SIG;X) � BXP (SIG;X),

� for '; 2 BXP (SIG;X) is
:' ; (' ^) ; (' _) ; ('!) ; ('$) 2 BXP (SIG;X).

De�nition 2.20 (�rst-order formulas)

Let SIG = (S;F; P) and X be a system of variables for SIG. The set
FO(SIG;X) of �rst-order formulas over SIG and X is the least set sat-

isfying:

8

� AT (SIG;X) � FO(SIG;X),

� for '; 2 FO(SIG;X) is

:' ; (' ^) ; (' _) ; ('!) ; ('$) 2 FO(SIG;X),

� for ' 2 FO(SIG;X), s 2 S+ and x 2 X̂s is

8x:' ; 9x:' 2 FO(SIG;X).

De�nition 2.21 (extension by counters)

For the counter signature CSIG = (fctrg; F();ctr [Fctr;ctr; Pctr;ctr) with

F();ctr := fczerog, Fctr;ctr := fcsuccg, and Pctr;ctr := f<ctrg we �x a standard

algebra Actr with the carrier Actr = IN, and which gives czero, csucc and

<ctr their usual meanings, i.e. zero, successor-function and less-predicate on

natural numbers.

We assume all signatures SIG considered in the following to be disjoint

from CSIG. So the standard extension SIG+ := SIG[CSIG of SIG is
well-de�ned. Correspondingly, we �x a countable, in�nite setXctr of variables
for sort ctr, and assume all other sets of variables considered in the following,
to be disjoint from Xctr. So we can de�ne the standard extension X+ :=

(Xs)s2S[fctrg of a system X = (Xs)s2S of variables for SIG. The standard
extension of an A 2 Alg(SIG) is the SIG+-algebra A+ := A+Actr.

De�nition 2.22 (commands)

Given SIG = (S;F; P), X a system of variables for SIG, and Pid a system

of procedure identi�ers for SIG. The set CMD(SIG;X;P id) of commands

over SIG, X and Pid is the least set satisfying:

� (skip, abort)
skip;abort 2 CMD(SIG;X;P id),

� (assignment, random assignment)
for s 2 S, x 2 Xs, and t 2 TF;s(X) is
(x := t) ; (x :=?) 2 CMD(SIG;X;P id),

� (nondeterministic choice)

for � 2 CMD(SIG;X;P id)� isS
� 2 CMD(SIG;X;P id),

� (composition, conditional)
for �; � 2 CMD(SIG;X;P id) and � 2 BXP (SIG;X) is
(�;�) ; if � then � else � 2 CMD(SIG;X;P id),

� (local (random) variable declaration)
for � 2 CMD(SIG;X;P id), s 2 S+, x 2 X̂s and t 2 TF;s(X) is

var x = t in � ; var x =? in � 2 CMD(SIG;X;P id),

9

� (procedure call)

for s1; s2 2 S
�, q 2 Pids

1
;s
2
, t 2 TF;s

1
(X), and z 2 X̂s

2
is

q(t; z) 2 CMD(SIG;X;P id).

De�nition 2.23 (free variables)

Let SIG = (S;F; P), X a system of variables for SIG, and Pid a system of

procedure identi�ers for SIG. The function

freevars : CMD(SIG;X;P id)!
[
s2S

Xs

is de�ned by:

� freevars(skip) := ;,
freevars(abort) := ;,

� freevars(x := t) := fxg [vars(t),
freevars(x :=?) := fxg,

� freevars(
S
�) :=

S
�2� freevars(�),

� freevars(�;�) := freevars(�) [freevars(�),
freevars(if � then � else �) := vars(�)[freevars(�)[freevars(�),

� freevars(var x = t in �) :=
�
freevars(�) n set(x)

�
[
S
t2set(t) vars(t),

freevars(var x =? in �) := freevars(�) n set(x),

� freevars(q(t; z)) :=
S
t2set(t) vars(t) [set(z).

Here, vars yields the set of variables occurring in a term or in a boolean
expression.

De�nition 2.24 (procedure declarations)

Given SIG = (S;F; P), X a system of variables for SIG and Pid a system
of procedure identi�ers for SIG. The set PD(SIG;X;P id) of procedure
declarations over SIG, X and Pid is de�ned by:

PD(SIG;X;P id) :=�
q(x;var y):�

���� s1; s2 2 S�; q 2 Pids
1
;s
2
; x 2 Xs

1
; y 2 Xs

2
; xy 2 X̂s

1
s
2

� 2 CMD(SIG;X;P id); freevars(�) � set(xy)

�
:

De�nition 2.25 (look-up of declarations)

Given SIG a signature, X a system of variables for SIG, and Pid a system

of procedure identi�ers for SIG. For

� =
�
q1(x1;var y1):�1; : : : ; qn(xn;var yn):�n

�
2 PD(SIG;X;P id)�

we set dom(�) := fq1; : : : ; qng and for a q 2 dom(�) we declare the declara-

tion of q in � by �q := qi(xi;var yi):�i, where i is the least number with

qi = q.

10

De�nition 2.26 (programs)

Let SIG = (S;F; P), X a system of variables for SIG, and Pid a system of

procedure identi�ers for SIG. Let further SIG+ = (S+; F+; P+) the standard

extension of SIG by counters. The set PROG(SIG;X;P id) of programs

over SIG, X and Pid is the least set satisfying:

� CMD(SIG;X;P id) � PROG(SIG;X;P id),

� for � 2 PD(SIG;X;P id)� and � 2 CMD(SIG;X;P id) is

proc � in � 2 PROG(SIG;X;P id),

� for � 2 PD(SIG;X;P id)�, � 2 TF+;ctr(Xctr),

and � 2 CMD(SIG;X;P id) is

proc � times � in � 2 PROG(SIG;X;P id).

De�nition 2.27 (dynamic logic formulas)

Let SIG = (S;F; P), X a system of variables for SIG, Pid a system of

procedure identi�ers for SIG, SIG+ = (S+; F+; P+) the standard extension
of SIG, and X+ the standard extension of X. The set DL(SIG;X;P id) of
dynamic logic formulas over SIG, X and Pid is the least set satisfying:

� AT (SIG+;X+) � DL(SIG;X;P id),

� for '; 2 DL(SIG;X;P id) is
:' ; (' ^) ; (' _) ; ('!) ; ('$) 2 DL(SIG;X;P id),

� for ' 2 DL(SIG;X;P id), s 2 S+
+ , and x 2 X̂s is

8x:' ; 9x:' 2 DL(SIG;X;P id),

� for � 2 PROG(SIG;X;P id) and ' 2 DL(SIG;X;P id) is
h�i' ; [�]' 2 DL(SIG;X;P id).

Remark. Notice that:

� BXP (SIG;X) � FO(SIG;X) � DL(SIG;X;P id).

� There are no counters involved in commands.

� We have restricted ourselves to programs without while-loops, local
procedure declarations, and global variables. This allows to simplify

the de�nition of semantics (in comparison with the one given in [2]).
Especially, we get by without replacement of variables in programs and

without the (so-called) environment construct.

11

De�nition 2.28 (semantics of programs and formulas)

Let SIG = (S;F; P) a signature with a system X of variables and a sys-

tem Pid of procedure identi�ers, and A 2 Alg(SIG). Let further SIG+ =

(S+; F+; P+), X+ and A+ the standard extensions of SIG, X and A and

v; v0 2 V al(X+;A+). For ' 2 DL(SIG;X;P id) we write A; v j= ' if ' is

true in A under v, and A; v 6j= ' otherwise. For � 2 PROG(SIG;X;P id)
we write v [[�]]A v

0 if v0 is a state that can be reached from state v by executing

� interpreted under A. The relation [[�]]A � V al(X+;A+) � V al(X+;A+)

describes the input-output behavior of � under A. These notions are de�ned
simultaneously5 as follows:

� A; v j= true , A; v 6j= false

� A; v j= t1 = t2 i� t1v;A+
= t2v;A+

� A; v j= pt i� tv;A+
2 pA+

� A; v j= :' i� A; v 6j= '

A; v j= ' ^ i� (A; v j= ' and A; v j=)
A; v j= ' _ i� (A; v j= ' or A; v j=)
A; v j= '! i� (A; v j= ' implies A; v j=)
A; v j= '$ i� (A; v j= ' i� A; v j=)

� A; v j= 8x:' (where x 2 X̂s for some s 2 S�) i� for all a 2 As holds
A; vax j= '

A; v j= 9x:' (where x 2 X̂s for some s 2 S�) i� there is an a 2 As such
that A; vax j= '

� A; v j= h�i' i� there is a v0 2 V al(X+;A+) with v[[�]]Av
0 and A; v0 j= '

A; v j= [�]' i� for all v0 2 V al(X+;A+) with v [[�]]A v
0 holds A; v0 j= '

� v [[�]]A v
0 i� v [[proc ()6 in �]]A v

0 for � 2 CMD(SIG;X;P id)
v [[proc � in �]]A v

0 i� there is some ground term � 2 TF+;ctr with

v [[proc � times � in �]]A v
0

� v [[proc � times � in skip]]A v
0 i� v = v0

v [[proc � times � in abort]]A v
0 for no v; v0 2 V al(X+;A+)

� v [[proc � times � in x := t]]A v
0 i� v0 = v

tv;A+
x

v [[proc � times � in x :=?]]A v
0 (where x 2 Xs for some s 2 S) i�

there is some a 2 As such that v0 = vax

5Since the semantics of programs and formulas depend on each other, we have to de�ne

it simultaneously.
6Here () is the empty procedure declaration.

12

� v [[proc � times � in
S
�]]A v

0 i�

v [[proc � times � in �]]A v
0 for some � 2 set(�)

� v [[proc � times � in (�;�)]]A v
0 i�

there is a v00 2 V al(X+;A+) such that v [[proc � times � in �]]A v
00

and v00 [[proc � times � in �]]A v
0

v [[proc � times � in if � then � else �]]A v
0 i�

either A; v j= � and v [[proc � times � in �]]A v
0

or else A; v 6j= � and v [[proc � times � in �]]A v
0

� v [[proc � times � in var x = t in �]]A v
0 i�

there is a v002V al(X+;A+) such that v
tv;A+
x [[proc � times � in �]]A v

00

and7 v0 = v00
v(x)
x

v [[proc � times � in var x =? in �]]A v
0 (where x 2 Xs for some

s 2 S�) i� there is an a 2 As and a v00 2 V al(X+;A+) such that

vax [[proc � times � in �]]A v
00 and v0 = v00

v(x)
x

� v [[proc � times � in q(t; z)]]A v
0 i�8 q 2 dom(�), �q = q(x;var y):�,

�v;A+
6= 0, and there is a v00 2 V al(X+;A+) such that v0 = v

v00(y)
z and�

v
tv;A+
x

�v(z)
y

[[proc � times �0 in �]]A v
00 where �0 2 TF+;ctr is the ground

term with �0A+
= �v;A+

� 1.

A formula ' is said to be true in A, written A j= ', if for all v 2
V al(X+;A+) holds A; v j= '. Furthermore, for a set of formulas � �
DL(SIG;X;P id) an algebra A 2 Alg(SIG) is called a model of �, written
A j= �, if A j= ' for all ' 2 �.

Fact 2.29 (formulas of disjoint signatures)

Let SIG, SIG0 be disjoint signatures (with X \ X 0 = Pid \ Pid0 = ;),
A 2 Alg(SIG) and B 2 Alg(SIG0). Then holds:

A+ B j= ' , A j= ' , for all ' 2 DL(SIG;X;P id)

A+ B j= , B j= , for all 2 DL(SIG0;X 0; P id0):

Proof. The proof works similar to the one of fact 2.33, i.e. by generalization

(which introduces valuations) and induction on the syntactical structure of
' (and , respectively).

7Notice that x is bound to the value it had before execution of the var construct.
8Notice, that there may be calls in a program that are not declared. Execution of such

a call is de�ned to behave just as non-termination.

13

2.5 Signature Morphisms

De�nition 2.30 (signature morphisms, �-reducts)

For two signatures SIG = (S;F; P) and SIG0 = (S0; F 0; P 0) a signature

morphism � : SIG! SIG0 from SIG into SIG0 is a triple of total functions

� = (�S : S ! S0 ; �F : F ! F 0 ; �P : P ! P 0), such that for any s 2 S�,

s 2 S, f 2 Fs;s, p 2 Ps holds �F (f) 2 F�S(s);�S(s) and �P (p) 2 P�S(s), i.e.

the types are preserved. We write �(s) for �S(s), �(f) for �F (f), and �(p)

for �P (p). A signature morphism � is said to be injective (surjective,

bijective) if �S, �F and �P are injective (surjective, bijective). In the case

that � is bijective, ��1 := (��1S : S0 ! S ; ��1F : F 0 ! F ; ��1P : P 0 ! P) is a

signature morphism from SIG0 into SIG.

The �-reduct A0j� of a given SIG0-algebra A0 2 Alg(SIG0) is the SIG-

algebra

A0j� :=
�
(A0

�(s))s2S; (�(f)A0)f2F ; (�(p)A0)p2P
�
:

The function �j� : Alg(SIG0)! Alg(SIG) is called the forgetful operation
de�ned by � (cf. [2]). The obvious extension of � on terms and �rst-order
formulas will also be denoted by �. Especially, � maps variables in an in-
jective manner. For an A0-valuation v0 we write v0j� for the A0j�-valuation
de�ned by9 v0j� := v0 � �.

Fact 2.31 (reduct preserves valuation of terms)

Let SIG = (S;F; P) a signature, X a system of variables for SIG, � :
SIG ! SIG0 a signature morphism, A0 2 Alg(SIG0) a SIG0-algebra, v0 an

A0-valuation, and t a term in TF (X). Then holds:

�(t)v0;A0 = tv0j�;A0j�:

Proof. Simple induction on the structure of the term t.

Fact 2.32 (surjective reduct preserves generatedness)

For a surjective signature morphism � : SIG ! SIG0 is the reduct A0j�
of a generated SIG0-algebra A0 2 Gen(SIG0) again generated, i.e. A0j� 2
Gen(SIG). In short:

Gen(�(SIG))j� � Gen(SIG):

Proof. Let SIG = (S;F; P), A0 =
�
(A0

s0)s02�(S); (f
0
A0)f 02�(F); (p

0
A0)p02�(P)

�
a generated �(SIG)-algebra, s 2 S, and a 2 As where As denotes the domain

of A0j� for s. Due to de�nition 2.30 holds As = A0
�(s), i.e. a 2 A0

�(s). From

9For total functions f : A ! B, g : C ! D with f(A) � C is g � f : A ! D the total

function de�ned by (g � f)(x) := g(f(x)).

14

generatedness of A0 follows that there is a ground term t0 2 T�(F);�(s) such

that t0A0 = a. Because � is surjective there is a ground term t 2 TF;s with

�(t) = t0. Using fact 2.31 we get a = t0A0 = �(t)A0 = tA0j�. Thus, for every

s 2 S and a 2 As exists a ground term t 2 TF;s with tA0j� = a, i.e. A0j� is

generated.

Fact 2.33 (reduct preserves validity)

For a signature morphism � : SIG! SIG0, a system of variables X for SIG,

a �rst-order formula ' 2 FO(SIG;X), and a SIG0-algebra A0 2 Alg(SIG0)

holds:

A0 j= �(') i� A0j� j= ':

Proof. We prove the following slightly generalized lemma: For all SIG0-

algebras A0 2 Alg(SIG0) and all A0-valuations v0 holds

A0; v0 j= �(') i� A0j�; v
0j� j= ':

This lemma is su�cient to prove the above fact, since for any A0j�-valuation
v exists an A0-valuations v0 with v0j� = v, which follows from the assumption
that � maps variables in an injective manner.

The proof of the lemma works by structural induction on the formula '
(let SIG = (S;F; P)):

� ' 2 ftrue; falseg:
obvious.

� ' � t1 = t2 (where t1; t2 2 TF (X)):

follows immediately from fact 2.31.

� ' � pt (where p 2 Ps;s, t 2 TF;s(X)):
from fact 2.31 and �(p)A0 = pA0j� follows that:

�(t)v0;A0 2 �(p)A0 i� tv0j�;A0j� 2 pA0j� :

� ' � :'1, ' � '1 ^ '2, ' � '1 _ '2, ' � '1 ! '2, ' � '1 $ '2:

simple application of the induction hypothesis.

� ' � 8x:'1:
Let x 2 Xs, A

0 denote the domain of A0, and A denote the domain
of A0j�. By unfolding the semantic de�nition, applying the induction

hypothesis, and using that for any a 2 As holds
�
v0

a

�(x)

����
�
=
�
v0j�

�a
x
,

15

we get:

A0; v0 j= �(8x:'1)

, A0; v0 j= 8�(x):�('1)

, for all a 2 A0
�(s) holds A

0; v0
a

�(x) j= �('1)

, for all a 2 A0
�(s) holds A

0j�;
�
v0

a

�(x)

����
�
j= '1

, for all a 2 As holds A0j�;
�
v0j�

�a
x
j= '1

, A0j�; v
0j� j= 8x:'1

� ' � 9x:'1:

follows from the above.

Fact 2.34 (reduct by a bijective signature morphism)

For a bijective signature morphism � : SIG! SIG0 holds (�j�)�1 = �j��1.

Proof. Let SIG = (S;F; P), SIG0 = (S0; F 0; P 0), � : SIG! SIG0 a bijec-
tive signature morphism, and A 2 Alg(SIG). By unfolding the de�nitions
we get:

(Aj��1)j� =
�
(A��1(s0))s02S0; (�

�1(f 0)A)f 02F 0; (��1(p0)A)p02P 0

����
�

=
�
(A��1(�(s)))s2S; (�

�1(�(f))A)f2F ; (�
�1(�(p))A)p2P

�
=

�
(As)s2S ; (fA)f2F ; (pA)p2P

�
= A:

2.6 Algebraic Speci�cations

De�nition 2.35 (algebraic speci�cations)

A speci�cation SPEC = (SIG;X;Ax) consists of a signature SIG =
(S;F; P), a system X = (Xs)s2S of countable, in�nite sets Xs of variables

for any sort s 2 S, and a �nite set of �rst-order formulas (so-called axioms)
Ax � FO(SIG;X). By sig(SPEC) := SIG we denote the signature of

SPEC.

The semantics10 SEM(SPEC) of SPEC is the set of all generated
models of the axioms, i.e. SEM(SPEC) := fA jA 2 Gen(SIG), A j= Axg.
SPEC is said to be monomorphic if any two algebras in SEM(SPEC)
are isomorphic.11 For a set of formulas � � DL(SIG;X;P id) we write

SPEC j= � to denote that A j= � for all A 2 SEM(SPEC).

10so-called loose semantics.
11Thus any inconsistent speci�cation is a monomorphic one. In this point our de�nition

di�ers from the one given in [7].

16

De�nition 2.36 (renaming of speci�cations)

Given a speci�cation SPEC = (SIG;X;Ax) and a signature morphism � :

SIG ! SIG0, the renaming of SPEC via �, written �(SPEC), is the

speci�cation �(SPEC) = (SIG0; �(X); �(Ax)).

Fact 2.37 (semantics of renamed speci�cations)

For a speci�cation SPEC = (SIG;X;Ax) and a signature morphism � :

SIG! SIG0 holds:

(1) if � is surjective, then SEM(�(SPEC))j� � SEM(SPEC).

(2) if � is bijective, even SEM(�(SPEC))j� = SEM(SPEC).

Proof. To prove (1) we consider any A0 2 SEM(�(SPEC)). Then, by

de�nition it holds A0 2 Gen(�(SIG)) and A0 j= �(Ax). Using fact 2.32 and

fact 2.33 we get A0j� 2 Gen(SIG) and A0j� j= Ax, i.e. A0j� 2 SEM(SPEC).

For the proof of (2) we assume � to be bijective. Then, because ��1 is a
surjective signature morphism too, we get

SEM(��1(�(SPEC)))j��1 � SEM(�(SPEC))

from (1), and so by fact 2.34

SEM(SPEC) = SEM(��1(�(SPEC)))j��1j�

� SEM(�(SPEC))j�:

De�nition 2.38 (disjoint union of speci�cations)

The union SPEC + SPEC 0 of two speci�cations SPEC = (SIG;X;Ax)
and SPEC 0 = (SIG0;X 0; Ax0) with disjoint signatures, i.e. SIG\SIG0 = ;,
is the speci�cation SPEC + SPEC 0 := (SIG [SIG0;X [X 0; Ax [Ax0).

Fact 2.39 (semantics of union speci�cations)

For two speci�cations SPEC, SPEC 0 with disjoint signatures holds

SEM(SPEC + SPEC 0) = SEM(SPEC) + SEM(SPEC 0):

Proof. Let SPEC = (SIG;X;Ax) and SPEC 0 = (SIG0;X 0; Ax0) two
speci�cations with SIG \ SIG0 = ;. Then holds:

SEM(SPEC + SPEC 0)

=
n
A
��� A 2 Gen(SIG [SIG0);A j= Ax [Ax0

o
=

n
B + B0

��� B 2 Gen(SIG);B0 2 Gen(SIG0);B + B0 j= Ax [Ax0
o

=
n
B + B0

��� B 2 Gen(SIG);B0 2 Gen(SIG0);B j= Ax;B0 j= Ax0
o

=
n
B + B0

��� B 2 SEM(SPEC);B0 2 SEM(SPEC 0)
o

= SEM(SPEC) + SEM(SPEC 0):

The second equation is due to fact 2.14, the third equation to fact 2.29.

17

3 Monomorphicity Criteria

In this section we present some criteria for a speci�cation to be monomorphic

(theorem 3.9). We prove that these criteria are both necessary and su�cient

for monomorphicity.

De�nition 3.1 (ground term relation)

Let SIG = (S;F; P) and A;B 2 Alg(SIG). The ground term relation

GTA;B between A and B is the family GTA;B = (GTs)s2S of relations GTs �
As �Bs with GTs := f(tA; tB) j t 2 TF;sg.

Fact 3.2 (properties of the ground term relation)

Let SIG = (S;F; P) a signature and A;B 2 Alg(SIG). Then holds:

(1) GT�1
A;B = GTB;A.

(2) GTA;B is lefttotal i� A 2 Gen(SIG).

(3) GTA;B is righttotal i� B 2 Gen(SIG).

(4) GTA;B is closed against F wrt A and B.

Proof. (1), (2), and (3) are obvious. (4) is proved as follows. Let f 2 Fs;s

for some s = s1 � � � sn 2 S�, s 2 S, and (a1; b1) 2 GTs1 ; : : : ; (an; bn) 2 GTsn .
Then by de�nition 3.1 there are ground terms t1 2 TF;s1; : : : ; tn 2 TF;sn with
t1A = a1; : : : ; tnA = an and t1B = b1; : : : ; tnB = bn. Consequently, we get�

fA(a1; : : : ; an); fB(b1; : : : ; bn)
�

=
�
fA(t1A; : : : ; tnA); fB(t1B; : : : ; tnB)

�
=

�
f(t1; : : : ; tn)A; f(t1; : : : ; tn)B

�
2 GTs:

Lemma 3.3 (conclusion from closure against F)

Let SIG = (S;F; P) and A;B 2 Alg(SIG). If a family R = (Rs)s2S of

relations Rs � As � Bs is closed against F wrt A and B, then holds R �
GTA;B.

Proof. We have to prove that for all s 2 S and all ground terms t 2 TF;s
holds (tA; tB) 2 Rs. This is done by induction on the structure of ground

terms, and simultaneous on tuples of ground terms. The base case says that
f(tA; tB) j t 2 set(())g is a subset of R, which is trivial since set(()) = ;.
For the step case we consider any ground term f(t1; : : : ; tn) with f 2 Fs;s,

s = s1 � � � sn 2 S�, s 2 S, and t1 2 TF;s1 ; : : : ; tn 2 TF;sn . By induction
hypothesis is (t1A; t1B) 2 Rs1 ; : : : ; (tnA; tnB) 2 Rsn , and thus, by assumption�
f(t1; : : : ; tn)A; f(t1; : : : ; tn)B

�
2 Rs.

18

Lemma 3.4 (characterization of closure against F)12

Let SIG = (S;F; P), A 2 Gen(SIG), B 2 Alg(SIG), and h = (hs)s2S a

family of total functions hs : As ! Bs. Then are equivalent:

(a) h is closed against F wrt A and B.

(b) h � GTA;B.

(c) h = GTA;B.

Proof. Since (a)) (b) is a special case of lemma 3.3 and (c)) (a) is

already shown in fact 3.2(4), it remains to prove (b)) (c). We assume

h � GTA;B and show that hs � GTs for any s 2 S. Let (a; b) 2 hs. Then,

by generatedness of A there is a ground term t 2 TF;s with tA = a. Thus,

(a; tB) = (tA; tB) 2 GTs, and because of h � GTA;B we get (a; tB) 2 hs. Since
hs is rightunique, it follows b = tB, and therefore, (a; b) 2 GTs.

Corollary 3.5 (uniqueness of homomorphisms)

Let SIG = (S;F; P) a signature, A 2 Gen(SIG), and B 2 Alg(SIG). Then

holds:

(1) There exists at most one family h = (hs)s2S of total functions hs :
As ! Bs which is closed against F wrt A and B.

(2) There exists at most one weak homomorphism from A to B.

(3) There exists at most one homomorphism from A to B.

Proof. (1) is a consequence of lemma 3.4. (2) and (3) follow from (1).

Corollary 3.6 (ground term relation captures homomorphisms)

Let SIG a signature and A;B 2 Gen(SIG). Then holds:

(1) For any weak homomorphism h from A to B holds h = GTA;B.

(2) For any homomorphism h from A to B holds h = GTA;B.

(3) For any weak homomorphism h from B to A holds h = GT�1
A;B.

(4) For any homomorphism h from B to A holds h = GT�1
A;B.

Proof. (1) and (2) are consequences of lemma 3.4. (3) and (4) follow from
(1) and (2), together with fact 3.2(1).

12This and the following results are in some sense similar to ([7], Fact 2.2.6).

19

Remark. Corollary 3.6 says that the homomorphism from a generated al-

gebra A to an algebra B| if existing at all | can be constructed by building

the ground term relation GTA;B = (GTs)s2S with GTs := f(tA; tB) j t 2 TF;sg.

Lemma 3.7 (isomorphicity and homomorphisms)

Let SIG a signature and A;B 2 Gen(SIG). Then are equivalent:

(a) A and B are isomorphic.

(b) there is a homomorphism g from A to B and a homomorphism h from

B to A.

(c) there is a weak homomorphism g from A to B and a weak homomor-

phism h from B to A.

Proof. Since (a)) (b) follows from fact 2.17(2) and (b)) (c) is obvious,

it remains to prove (c)) (a). Let g a weak homomorphism from A to B
and h a weak homomorphism from B to A. We show that g (as well as h) is
even a isomorphism, which is divided up in two assertions:

(i) g is bijective:
Because of corollary 3.6 it holds for any s 2 S, t 2 TF;s that:

hs(gs(tA)) = hs(tB) = tA:

Due to the generatedness of A this is su�cient for13 hs � gs = idAs.
Similarly it can be shown that gs � hs = idBs. So

14, gs is bijective with
g�1s = hs.

(ii) g�1 is monotonic in P wrt B and A:
This follows from (i), i.e. from g�1s = hs together with the assumption

that h is a weak homomorphism from B to A.

Lemma 3.8 (monomorphicity and weak homomorphisms)

A speci�cation SPEC is monomorphic if and only if for any two algebras

A;B 2 SEM(SPEC) exists a weak homomorphism from A to B.

Proof. If SPEC is monomorphic, then, by de�nition, there exists a homo-
morphism h from A to B for any two algebras A;B 2 SEM(SPEC). To

prove the other implication, let A;B 2 SEM(SPEC) be any two models of

SPEC. From assumption we get the existence of a weak homomorphism g

from A to B, but | using a symmetry argument | also the existence of a

weak homomorphism h from B to A. Due to lemma 3.7 this is su�cient for
A and B to be isomorphic.

13For a set A the identity function idA : A! A is de�ned by idA(x) := x.
14See any textbook on analysis.

20

Theorem 3.9 (monomorphicity criteria)

Let SIG = (S;F; P), SPEC a speci�cation with sig(SPEC) = SIG. Then

the following statements are equivalent:

(a) SPEC is monomorphic.

(b) for any two algebras A;B 2 SEM(SPEC) exists a family R = (Rs)s2S
of relations Rs � As �Bs such that:

{ R is rightunique,

{ R is closed against F wrt A and B,

{ R is monotonic in P wrt A and B.

(c) for any two algebras A;B 2 SEM(SPEC) exists a family R = (Rs)s2S
of relations Rs � As �Bs such that:

{ R is rightunique,

{ R � GTA;B,

{ R is monotonic in P wrt A and B.

(d) for any two algebras A;B 2 SEM(SPEC) holds

{ GTA;B is rightunique,

{ GTA;B is monotonic in P wrt A and B.

(e) for any two algebras A;B 2 SEM(SPEC) holds

{ GTA;B is leftunique,

{ GTB;A is monotonic in P wrt B and A.

Proof. The equivalence of (a) { (e) follows from the following implications,

which we prove separately.

(a)) (b): Let SPEC be a monomorphic speci�cation. Then for any A;B 2
SEM(SPEC) exists a weak homomorphism h fromA to B. By choos-
ing R := h we get a family of relations with all the properties required

in (b).

(b)) (c): Follows directly from lemma 3.3.

(c)) (d): We assume the existence of a family R of relations, which ful�lls
the conditions in (c) and prove R = GTA;B as follows: Due to the

assumption R � GTA;B and fact 3.2(3) is R righttotal, and therefore a
family of total functions. Using lemma 3.4 yields R = GTA;B.

21

(d)) (e): By assumption, for any two algebras A;B 2 SEM(SPEC) is

GTB;A rightunique and monotonic in P wrt B and A. Using fact 3.2(1)
and fact 2.5(2) we get that GTA;B is leftunique.

(e)) (a): By assumption, for any two algebras A;B 2 SEM(SPEC) is

GTB;A leftunique and GTA;B monotonic in P wrt A and B. Using fact
3.2(1) and fact 2.5(2) we get that GTA;B is rightunique. Due to fact

3.2(3), is GTA;B a family (hs)s2S of total functions hs : As ! Bs which

is monotonic in P wrt A and B. Together with fact 3.2(4) follows that

GTA;B is a weak homomorphism from A to B. Due to lemma 3.8 this

is su�cient for SPEC to be monomorphic.

4 Proof Obligations in Dynamic Logic

This section aims to reformulate the monomorphicity criteria presented in
theorem 3.9 as proof obligations in dynamic logic (theorem 4.7). The refor-
mulation is based on the following techniques:

� copying the speci�cation:15

The phrase \for any two algebras A;B 2 SEM(SPEC)" in theorem
3.9 needs special treatment since formulas (over sig(SPEC)) express
properties of a single model and not relations between two algebras.

We tackle this problem by using a renamed copy SPEC 0 := �(SPEC)
of SPEC. If this signature morphism � is bijective, then the above
phrase is equivalent to \for any A 2 SEM(SPEC) and any A0 2
SEM(SPEC 0)" (where B has to be replaced by A0j�). Provided the
signatures sig(SPEC) and sig(SPEC 0) to be disjoint, this phrase is

equivalent to (cf. fact 2.39) \for any A00 2 SEM(SPEC + SPEC 0)"
(where A is replaced by the sig(SPEC)-reduct of A00 and A0 is re-
placed by sig(SPEC 0)-reduct of A00). To summarize, in order to prove
monomorphicity of SPEC, we reason on the union of SPEC and a

bijective renaming of it.

� proving existence constructively:

For proving the criteria (b) or (c) of theorem 3.9 the existence of \a

familyR = (Rs)s2S of relations : : :" has to be shown. This can be done

constructively by explicitly giving a family of (possibly indeterministic)
procedures (one procedure for each sort s 2 S) and proving that the

input-output relations they compute satisfy the required properties.
Because of the copying of the speci�cation (as mentioned just above)

15The idea of using this technique is due to a hint of Wolfgang Reif.

22

this procedures map from sig(SPEC) to sig(�(SPEC)), i.e. the pro-

cedure for s 2 S maps from s to �(s). We will call such a family of

procedures a mapping program.

� representing GT by a uniform mapping program:
The ground term relation GTA;B is a speci�c family R = (Rs)s2S of

relations Rs � As �Bs. Therefore, it can be represented as the input-

output relations of a mapping program. In fact, such a mapping pro-

gram can be constructed automatically; we will call it the uniform

mapping program.

De�nition 4.1 (mapping program)

Let SIG = (S;F; P) a signature, � : SIG ! SIG0 a signature morphism

with16 SIG\ SIG0 = ;. X a system of variables for SIG[SIG0, and Pid a

system of procedure identi�ers for SIG[SIG0. A mapping programMP

for � is a pair (mp; �) where mp : S ! Pid assigns a procedure identi�er
mp(s) 2 Pids;�(s) to any sort s 2 S, and � 2 PD(SIG [SIG0;X; P id)� is a

tuple of procedure declarations.17 Given s 2 S, t 2 TF;s(X), y 2 X�(s), and
� 2 TF+;ctr, we abbreviate proc � in begin mp(s)(t; y) end by MP (s)(t; y)
and proc � times � in begin mp(s)(t; y) end by �#MP (s)(t; y).

For A 2 Alg(SIG), A0 2 Alg(SIG0), and s 2 S, we set

MP (s)A+A0 :=

�
(v(x); v0(y))

���� v; v0 2 V al(X;A+A0), x 2 Xs, y 2 X�(s)

v [[MP (s)(x; y)]]A+A0 v0

�

and MPA+A0 :=
�
MP (s)A+A0

�
s2S

.

De�nition 4.2 (uniform mapping program MP u)

Let SIG = (S;F; P) a signature, � : SIG ! SIG0 a signature morphism
with SIG \ SIG0 = ;, X a system of variables for SIG [SIG0, and Pid

a system of procedure identi�ers for SIG [SIG0. The uniform mapping

program MP u := (mpu; �u) for � is de�ned as follows. mpu : S ! Pid is
any total function with mpu(s) 2 Pids;�(s) for all s 2 S. For each s 2 S we
�x a xs 2 Xs, and a ys 2 X�(s). Then we set18

�u :=
n
(mpu(s))(xs;var ys):

[
FRAGS(s; xs; ys)

��� s 2 S o
16This is required to guarantee the sum A+ A0 of A 2 Alg(SIG) and A0 2 Alg(SIG0)

to be well-de�ned.
17Because we allow � to contain (auxiliary) procedures not in the range ofmp a mapping

program cannot be described as a family of procedures indexed with S.
18The indeterminism of the uniform mapping program introduced by the

S
-command

is inherent in the problem of computing the ground term relation, i.e. in general there is

no e�ective way to �nd an ordering ff1; : : : ; fng of the function symbols in Fs;s such that

frag(fi+1; xs; ys) has only to be executed if execution of frag(fi ; xs; ys) gets in the else

branch. An example illustrating this point is given in appendix A.

23

where19

FRAGS(s; xs; ys) :=
n
frag(f; xs; ys)

��� f 2 Fs;s ; s 2 S
�
o

with the fragments frag(f; xs; ys) for f 2 Fs;s, s = s1 � � � sn 2 S� de�ned as

follows. Choose new (and di�erent) variables x1 � � �xn 2 Xs, y1 � � � yn 2 X�(s).

Then de�ne

frag(f; xs; ys) :� var x1 =?; : : : ; xn =? in

if xs = f(x1; : : : ; xn)

then var y1 =?; : : : ; yn =? in�
mpu(s1)(x1; y1); : : : ;mp

u(sn)(xn; yn);

ys := �(f)(y1; : : : ; yn)
�

else abort.

Remark. The values assigned to y1; : : : ; yn in the random variable declara-

tion var y1 =?; : : : ; yn =? in are not used. Therefore, instead of it we can use
any deterministic variable declaration var y1 = t1; : : : ; yn = tn in : : : , where
the ti are arbitrary ground terms of sort �(si), i.e. ti 2 T�(F);�(si). This is de-
ductively more tractable, since there are less existential quantors (due to the
indeterministic assignments) involved. Notice, that these ti actually exist, if

one restricts oneself to sensible signatures. Furthermore, such ground terms
ti can be e�ectively computed, for instance like in the algorithm \kanonische
Auswahl" presented in ([2], page 173).

Lemma 4.3 (properties of MP u)

Let SIG = (S;F; P) a signature, � : SIG ! SIG0 a signature morphism

with SIG \ SIG0 = ;, X a system of variables for SIG [SIG0, MP u the

uniform mapping program for �, A 2 Alg(SIG), A0 2 Alg(SIG0), and s 2 S.

(1) For all f 2 Fs1���sn;s (s1 � � � sn 2 S�) and ti 2 TF;si (i = 1; : : : ; n) with

(tiA; �(ti)A0) 2MP u(si)A+A0 holds
�
f(t1; : : : ; tn)A; �(f(t1; : : : ; tn))A0

�
2

MP u(s)A+A0 .

(2) For all x 2 Xs, y 2 X�(s), v; v
0 2 V al(X;A+A0), and � 2 TF+;ctr with

v [[�#MP u(s)(x; y)]]A+A0 v0 holds (v(x); v0(y)) 2
n
(tA; �(t)A0)

���t 2 TF;so.
(3) MP u(s)A+A0

�
n
(tA; �(t)A0)

���t 2 TF;so:
19More accurately �u and FRAGS(s; xs; ys) (cf. de�nition 2.22) should be tuples rather

than �nite sets. However, since semantically the ordering in these tuples turns out to be

irrelevant, we simplify the presentation by abstracting from a potential ordering.

24

Proof. The proofs of (1) and (2) are quite technical. They mainly work

by unfolding the de�nitions, especially de�nition 2.28. We tacitly make use

of the fact that for all � 2 PD(SIG [SIG0;X; P id)� and all commands

� 2 CMD(SIG [SIG0;X; P id) holds

[[proc � in �]] =
[

�2TF+;ctr

[[proc � times � in �]]:

Since �u is the only procedure declaration occurring in this proof, we sim-

ply write � as abbreviation for proc �u in �, and �#� as abbreviation for

proc �u times � in �.

For the proof of (1) let s = s1 � � � sn 2 S�, s 2 S, f 2 Fs1���sn;s, and

ti 2 TF;si (i = 1; : : : ; n) with (tiA; �(ti)A0) 2 MP u(si)A+A0 . Furthermore, let

x 2 Xs, y 2 X�(s), x1 � � � xn 2 Xs, y1 � � � yn 2 X�(s) be di�erent variables.

From the assumption (tiA; �(ti)A0) 2 MP u(si)A+A0 follows that (for i =

1; : : : ; n) there are vi; v
0
i 2 V al(X;A+A0) with vi(xi) = tiA, v

0
i(yi) = �(ti)A0,

and vi [[MP u(si)(xi; yi)]]A+A0 v0i. AsMP u contains side-e�ect free procedures

only, it is vi [[MP u(si)(xi; yi)]]A+A0 vi
�(ti)

A
0

yi even for all vi 2 V al(X;A +A0)
with vi(xi) = tiA. Since all variables x1; : : : ; xn; y1; : : : ; yn are di�erent from
each other, we get

v [[mpu(s1)(x1; y1); : : : ;mp
u(sn)(xn; yn)]] v

�(t1)
A
0����(tn)

A
0

y1���yn

for all v 2 V al(X;A + A0) with v(xi) = tiA (for i = 1; : : : ; n). Thus, for
all v 2 V al(X;A +A0) with v(xi) = tiA exists a v02V al(X;A+A0) with
v [[mpu(s1)(x1; y1); : : : ;mp

u(sn)(xn; yn); y := �(f)(y1; : : : ; yn)]] v
0 and

v0(y) = �(f)A0(�(t1)A0; : : : ; �(tn)A0) = �(f(t1; : : : ; tn))A0:

So, for all v 2 V al(X;A + A0) with v(xi) = tiA (for i = 1; : : : ; n) and
v(x) = f(x1; : : : ; xn)v;A+A0 = f(t1; : : : ; tn)A there is some v0 2 V al(X;A+A0)
with

v [[if x = f(x1; : : : ; xn)

then var y1 =?; : : : ; yn =? in�
mpu(s1)(x1; y1); : : : ;mp

u(sn)(xn; yn);

y := �(f)(y1; : : : ; yn)
�

else abort]] v0

and v0(y) = �(f(t1; : : : ; tn))A0. Consequently, for all v 2 V al(X;A + A0)

with v(x) = f(t1; : : : ; tn)A there is some v0 2 V al(X;A +A0) with v0(y) =

�(f(t1; : : : ; tn))A0 and v [[frag(f; x; y)]] v0, i.e. v [[MP (s)(x; y)]] v0. Since there
is of course a v 2 V al(X;A + A0) with v(x) = f(t1; : : : ; tn)A, it follows�
f(t1; : : : ; tn)A; �(f(t1; : : : ; tn))A0

�
2MP u(s)A+A0 .

25

For the proof of (2) let v; v0 2 V al(X;A + A0), s 2 S, x 2 Xs, and

y 2 X�(s). We have to show that for all ground terms � 2 TF+;ctr holds that
v [[�#MP u(s)(x; y)]]A+A0 v0 implies (v(x); v0(y)) 2 f(tA; �(t)A0)jt 2 TF;sg.
This is done by structural induction on counter terms �. In the base case,

where � � czero, v [[�#MP u(s)(x; y)]]A+A0 v0 does not hold, and so the im-

plication is true by triviality. In the step case is � � csucc(�0) for some

�0 2 TF+;ctr. Assuming v [[�#MP u(s)(x; y)]]A+A0 v0 we get from de�nition

2.28 that v [[�0#frag(f; x; y)]]A+A0 v0 for some f 2 Fs;s (s = s1 � � � sn 2 S�).

Consequently, there are some a1 � � � an 2 As and a v00 2 V al(X;A+A0) such

that (x1 � � �xn 2 Xs, y1 � � � yn 2 X�(s) are new and di�erent variables)

va1���anx1���xn
[[�0# if x = f(x1; : : : ; xn)

then var y1 =?; : : : ; yn =? in�
mpu(s1)(x1; y1); : : : ;mp

u(sn)(xn; yn);

y := �(f)(y1; : : : ; yn)
�

else abort]] v00

and v00(y) = v0(y). Since the else branch aborts the condition of the if

construct must be evaluated to true in A + A0 under va1���anx1���xn
. That is, it

holds v(x) = va1���anx1���xn
(x) = fA(a1; : : : ; an). By unfolding the semantics of

var y1 =?; : : : ; yn =? in : : : we get that there are b1 � � � bn 2 A�(s) and a
v000 2 V al(X;A+A0) with (we abbreviate v0 := va1���an;b1���bnx1���xn;y1���yn

)

v0 [[�
0# mpu(s1)(x1; y1); : : : ;mp

u(sn)(xn; yn);

y := �(f)(y1; : : : ; yn)]] v
000

and v000(y) = v00(y). Let v1; : : : ; vn 2 V al(X;A + A0) be valuations with
vi�1 [[�

0#mpu(si)(xi; yi)]] vi for i = 1; : : : ; n, and vn [[y := �(f)(y1; : : : ; yn)]] v
000,

i.e. v000(y) = �(f)A0(vn(y1); : : : ; v(yn)). Then, by induction hypothesis, it

holds (vi�1(xi); vi(yi)) 2 f(tA; �(t)A0)jt 2 TF;sig for i = 1; : : : ; n. As MP u

contains side-e�ect free procedures only and all the variables are di�erent
from each other, it follows that (v0(xi); vn(yi)) 2 f(tA; �(t)A0)jt 2 TF;sig for
i = 1; : : : ; n. So we get�
fA(v0(x1); : : : ; v0(xn)); �(f)A0(vn(y1); : : : ; v(yn))

�
2 f(tA; �(t)A0)jt 2 TF;sig:

It remains to summarize the above. We have already shown that

v(x) = fA(a1; : : : ; an) = fA(v0(x1); : : : ; v0(xn))

v0(y) = v00(y) = v000(y) = �(f)A0(vn(y1); : : : ; v(yn));

thus (v(x); v0(y)) 2 f(tA; �(t)A0)jt 2 TF;sig.
The proof of (3) works by structural induction on ground terms and is

quite similar to the one of lemma 3.3. The induction step is already proven

in (1) of the current lemma.

26

Theorem 4.4 (MP u computes the ground term relation)

Let � : SIG ! SIG0 a signature morphism with SIG \ SIG0 = ;, A 2
Alg(SIG), A0 2 Alg(SIG0), and MP u the uniform mapping program for �.

Then holds:

MP u
A+A0 = GTA;A0j� :

Proof. Let SIG := (S;F; P),A 2 Alg(SIG), and A0 2 Alg(SIG0). We

have to prove that MP u(s)A+A0
= f(tA; tA0j�)jt 2 TF;sg for all s 2 S. Since

tA0j� = �(t)A0 for all t 2 TF (see fact 2.31), it remains to show that for all

s 2 S holds:

MP u(s)A+A0
=

n
(tA; �(t)A0)

��� t 2 TF;s o :
The inclusion � is already proved in lemma 4.3(3). For the other inclusion

we argue as follows (X is a system of variables for SIG [SIG0):

MP u(s)A+A0

=

(
(v(x); v0(y))

����� v; v0 2 V al(X;A+A0); x 2 Xs; y 2 X�(s)

v [[MP u(s)(x; y)]]A+A0 v0

)

=

(
(v(x); v0(y))

����� v; v0 2 V al(X;A+A0), x 2 Xs, y 2 X�(s)

� 2 TF+;ctr, v [[�#MP u(s)(x; y)]]A+A0 v0

)

�

(
(v(x); v0(y))

����� v; v0 2 V al(X;A+A0), x 2 Xs, y 2 X�(s)

(v(x); v0(y)) 2 f(tA; �(t)A0)jt 2 TF;sg

)

=
n
(tA; �(t)A0)

��� t 2 TF;s o :
In the inclusion � we have made use of lemma 4.3(2).

We now work out, how the primitives of the criteria given in theorem 3.9
can be expressed in terms of formulas from dynamic logic.

De�nition 4.5 (proof obligations)

Let SIG = (S;F; P) a signature, � : SIG ! SIG0 a signature morphism
with SIG \ SIG0 = ;, X a system of variables for SIG [SIG0, and MP a
mapping program for �. For any s 2 S, xs 2 Xs, ys 2 X�(s) we abbreviate:

MPs(xs; ys) :� hMP (s)(xs; zs)i zs = ys

where zs is any variable from X�(s) n fysg. For each s 2 S we denote the

variables in Xs by xs; x1s; x2s and the variables in X�(s) by ys; y1s; y2s. In
all the formulas below we assume all variables with di�erent names not to

be equal.

27

� V Cleftunique(MP;�) :=[
s2S

n
MPs(x1s; ys) ^ MPs(x2s; ys) ! x1s = x2s

o

� V Crightunique(MP;�) :=[
s2S

n
MPs(xs; y1s) ^ MPs(xs; y2s) ! y1s = y2s

o

� V Cclosed against F(MP;�) :=[
s1;:::;sn;s2S

[
f2Fs1���sn;s

n
MPs1(xs1 ; ys1) ^ � � � ^ MPsn(xsn ; ysn) !

MPs(f(xs1 ; : : : ; xsn); (�(f))(ys1; : : : ; ysn))
o

� V Csupset of GT(MP;�) :=[
s2S

n
MP u

s (xs; ys) ! MPs(xs; ys)
o

� V Cmonotonic in P(MP;�) :=[
s1;:::;sn2S

[
p2Ps1���sn

n
MPs1(xs1 ; ys1) ^ � � � ^ MPsn(xsn ; ysn) ^

p(xs1 ; : : : ; xsn) ! (�(p))(ys1 ; : : : ; ysn)
o

� V Cinv monotonic in P(MP;�) :=[
s1;:::;sn2S

[
p2Ps1���sn

n
MPs1(xs1 ; ys1) ^ � � � ^ MPsn(xsn ; ysn) ^

(�(p))(ys1; : : : ; ysn) ! p(xs1 ; : : : ; xsn)
o

Lemma 4.6 (semantics of proof obligations)

Let SIG = (S;F; P) a signature, � : SIG! SIG0 a signature morphism with

SIG \ SIG0 = ;, A 2 Gen(SIG), A0 2 Gen(SIG0), and MP a mapping

program for �. Then holds:

(1) MPA+A0 is leftunique i� A+A0 j= V Cleftunique(MP;�).

(2) MPA+A0 is rightunique i� A+A0 j= V Crightunique(MP;�).

(3) MPA+A0 is closed against F wrt A and A0j� i�

A+A0 j= V Cclosed against F(MP;�).

(4) MPA+A0 � GTA;A0j� i� A+A0 j= V Csupset of GT(MP;�).

(5) MPA+A0 is monotonic in P wrt A and A0j� i�

A+A0 j= V Cmonotonic in P(MP;�).

(6) MP�1
A+A0 is monotonic in P wrt A0j� and A i�

A+A0 j= V Cinv monotonic in P(MP;�).

28

Proof. We make use of the fact that for all s 2 S, xs 2 Xs, ys 2 X�(s), and

v 2 V al(X;A+A0) holds

A+A0; v j=MPs(xs; ys) , (v(xs); v(ys)) 2MP (s)A+A0

which can be proven as follows (zs 2 X�(s) n fysg):

A+A0; v j=MPs(xs; ys)

, A+A0; v j= hMP (s)(xs; zs)i zs = ys

, there is a v0 2 V al(X;A+A0) with

v [[MP (s)(xs; zs)]]A+A0 v0 and A+A0; v0 j= zs = ys

, there is a v0 2 V al(X;A+A0) with

v [[MP (s)(xs; zs)]]A+A0 v0 and v0(zs) = v0(ys)

, there is a v0 2 V al(X;A+A0) with

v [[MP (s)(xs; zs)]]A+A0 v0 and v0(zs) = v(ys)

, (v(xs); v(ys)) 2MP (s)A+A0

With this in hand the proofs of (1) { (6) are straightforward.

Theorem 4.7 (monomorphicity obligations)

Let SPEC = (SIG;X;Ax) a speci�cation, � : SIG ! SIG0 a bijective

signature morphism with SIG \ SIG0 = ;, and MP u the uniform mapping

program for �. Then are equivalent:

(a) SPEC is monomorphic.

(b) there is a mapping program MP for � such that:

{ SPEC + �(SPEC) j= V Crightunique(MP;�)

{ SPEC + �(SPEC) j= V Cclosed against F(MP;�)

{ SPEC + �(SPEC) j= V Cmonotonic in P(MP;�).

(c) there is a mapping program MP for � such that:

{ SPEC + �(SPEC) j= V Crightunique(MP;�)

{ SPEC + �(SPEC) j= V Csupset of GT(MP;�)

{ SPEC + �(SPEC) j= V Cmonotonic in P(MP;�).

(d) it holds:

{ SPEC + �(SPEC) j= V Crightunique(MP u; �)

{ SPEC + �(SPEC) j= V Cmonotonic in P(MP u; �).

29

(e) it holds:

{ SPEC + �(SPEC) j= V Cleftunique(MP u; �)

{ SPEC + �(SPEC) j= V Cinv monotonic in P(MP u; �).

Proof. We start with a few preliminaries. Due to fact 2.34 and fact 2.37 is

SEM(�(SPEC)) = (SEM(�(SPEC))j�)j��1 = SEM(SPEC)j��1

and so, using fact 2.39, we get:

SEM(SPEC + �(SPEC))

= SEM(SPEC) + SEM(�(SPEC)) (*)

= SEM(SPEC) + SEM(SPEC)j��1 :

In the following we show that the single items of theorem 4.7 are equivalent
to the single items in theorem 3.9:

theorem 4.7 (a) (b) ((c) ((d) (e)

m + * m
theorem 3.9 (a) , (b) , (c) , (d) , (e)

4.7(a) , 3.9(a): trivial.

4.7(b)) 3.9(b): Let A and B any two algebras from SEM(SPEC), and set
A0 := Bj��1. Then is (see (*)) A + A0 2 SEM(SPEC + �(SPEC)).
From assumption, together with lemma 4.6, follows that MPA+A0 is
rightunique, closed against F wrt A and A0j�, and monotonic in P wrt
A and A0j�. By choosing R := MPA+A0 we get a rightunique family

R = (Rs)s2S of relations Rs � As �Bs, which is closed against F wrt
A and B and monotonic in P wrt A and B. (The identity A0j� = B is
due to fact 2.34.)

4.7(c)) 4.7(b): From assumption, together with lemma 4.6, follows for all

A 2 SEM(SPEC), A0 2 SEM(�(SPEC)) that MPA+A0 is right-

unique and MPA+A0 � GTA;A0j�. So (fact 3.2(2)) MPA+A0 is a total

function, and thus, due to lemma 3.4 closed against F wrt A and A0j�.
Applying lemma 4.6 again, leads to A+A0 j= V Cclosed against F(MP;�).
Because of (*) we get SPEC + �(SPEC) j= V Cclosed against F(MP;�).

4.7(d)) 4.7(c): We choose as mapping program MP := MP u. Then, the
proof obligations in V Csupset of GT(MP;�) degenerate to tautologies.

The other conditions of 4.7(c) are just parts of the assumption.

30

3.9(d)) 4.7(d): Let us assume that 3.9(d) holds. Together with the above

preliminaries follows that for any two algebras A 2 SEM(SPEC),

A0 2 SEM(�(SPEC)) is GTA;A0j� rightunique and monotonic in P wrt

A and A0j�. From theorem 4.4 and lemma 4.6 we get that A +A0 j=
V Crightunique(MP u; �) and A +A0 j= V Cmonotonic in P(MP u; �). By (*)

this is su�cient for SPEC + �(SPEC) j= V Crightunique(MP u; �) and

SPEC + �(SPEC) j= V Cmonotonic in P(MP u; �).

4.7(e) , 3.9(e): The implication 3.9(e)) 4.7(e) can be proven just as 3.9(d)

) 4.7(d). On the other hand, from 4.7(e) follows (by (*)) that for any

two algebras A;B 2 SEM(SPEC) holds (we abbreviate Bj��1 by A
0)

A + A0 j= V Cleftunique(MP u; �) [V Cinv monotonic in P(MP u; �). Due to

lemma 4.6 we get that MP u
A+A0 is leftunique and that MP u�1

A+A0 is

monotonic in P wrt A0j� and A. Since MP u
A+A0 = GTA;A0j� (theorem

4.4), MP u�1
A+A0 = GTA0j�;A (fact 3.2(1)), and A0j� = B (fact 2.34) this

is exactly what 3.9(e) states.

This �nishes the proof (cf. diagram above).

The criteria (b) { (e) of the above theorem suggest four approaches to the
veri�cation of monomorphicity of a speci�cation. All the proof obligations
are accessible to deduction, especially they can be dealt with in the KIV
system. It remains the question which of the criteria (b) { (e) is the best
with respect to tractability. To apply criterion (b) or (c) the existence of a
mapping program has to be proved. This is done constructively by explicitly

providing a program, checking that it is a mapping program (which can be
done automatically) and proving the obligations. In (d) and (e) no program
has to be made up, and the proof obligations can be generated completely
automatically. So one might prefer the latter two criteria. However, on the
other hand, providing a program in (b) or (c) adds further information to the

proof task, which may be valuable while doing the proof. In some sense the

same information must be \generated" during a proof of criterion (d) (pro-
vided the program is chosen appropriately). We believe that programming
is easier than proving.20 Thus, for reasons of tractability, we give preference

to (b) and (c) (and not to (d) or (e)). Fortunately, in doing so, we do not

lose anything, since we get (d) as a special case of (b) or (c) by choosing
MP := MP u. (We suspect that (d) and (e) are of equal tractability since
they are in a sense symmetric.)

Comparing (b) and (c), the di�erence in V Cclosed against F(MP;�) and
V Csupset of GT(MP;�) can be seen in their granularity. In the former there

20This argument is also a criticism of some approaches to program synthesis. We believe

that it is (in general) more tractable to explicitly provide a program and then verify it,

instead of (implicitly) constructing the program while doing the proof.

31

is a formula for every function symbol of the signature, in the latter there

is a formula for every sort symbol of the signature, where in some sense the

formula for sort s captures all the formulas for function symbols with tar-

get sort s. On the �rst sight, following a divide and conquer principle, one

might prefer (b) over (c). Unfortunately, in general some of the proof obli-

gations in V Cclosed against F(MP;�) mutually depend on each other, i.e. they

have to be proven simultaneously (by induction). In this case the greater

granularity in (b) is more of a hindrance than a help. However, if there

are sorts mutually depending on each other, even some of the proof obliga-

tions in V Csupset of GT(MP;�) may have to be proven simultaneously. Thus it

seems to be the best to syntactically analyze the sort dependencies in order

to generate a set proof obligations without any mutually dependencies, but

with optimal granularity. Essentially this will be a mixture of (conjunctions

of) formulas from V Csupset of GT(MP;�) and V Cclosed against F(MP;�). In ad-

dition, if there is information provided about which function symbols are
constructors or not, it can be exploited to further optimize the de�nition of
the uniform mapping program and the proof obligations.

5 Conclusion and Future Work

We have presented proof obligations, which are su�cient and necessary for
the monomorphicity of a given speci�cation. These proof obligations express
certain properties of potential indeterministic procedures and are formulated

in dynamic logic. So the task of proving monomorphicity can be directly
dealt with in the KIV system [4] which was originally designed for program
veri�cation.

Currently, we investigate the question about the tractability of such
proofs. We have reasons to hope that proving monomorphicity using the
approach presented here, i.e. by (well-established) program veri�cation meth-

ods, is much easier than using the meta-reasoning approach, which we have

pursued formerly [5]. In the next future we will work on generalizing our
results to parameterized speci�cations.

Acknowledgments

I am indebted to Thomas Fuch�, Wolfgang Reif, Gerhard Schellhorn, and

Kurt Stenzel for valuable discussions during the course of this research. Es-
pecially, the idea of copying signatures in order to reason about relations

between algebras is due to Wolfgang Reif. Finally, I would like to thank
Ralph Gro� for carrying out some of the more technical proofs, and Thomas

Fuch� for proof-reading an earlier draft of this paper.

32

References

[1] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1, Equations

and Initial Semantics, volume 6 of EATCS Monographs on Theoretical Com-

puter Science. Springer Verlag, 1985.

[2] W. Reif. Korrektheit von Spezi�kationen und generischen Moduln. PhD thesis,

Universit�at Karlsruhe, Fakult�at f�ur Informatik, 1991.

[3] W. Reif. Correctness of full �rst-order speci�cations. In 4th Conference on

Software Engineering and Knowledge Engineering. Capri, Italy, IEEE Press,

1992.

[4] W. Reif. The KIV-system: Systematic construction of veri�ed software. In Pro-

ceedings of the 11th International Conference on Automated Deduction, volume

607 of Lecture Notes in Computer Science. Springer Verlag, 1992.

[5] W. Reif and A. Sch�onegge. Meta-level reasoning: Proving monomorphic-

ity of speci�cations. In Deduktionstre�en 1994. Technical report. Technische

Hochschule Darmstadt, Fachbereich Informatik, October 1994.

[6] A. Sch�onegge. Would you ever risk a non-monomorphic speci�cation? Tech-

nical Report 33/95, Universit�at Karlsruhe, Fakult�at f�ur Informatik, 1995.

[7] M. Wirsing. Algebraic Speci�cation, volume B ofHandbook of Theoretical Com-

puter Science, chapter 13, pages 675{788. Elsevier Science Publishers B. V.,

1990.

33

A An Instructive Example

In the process of �nding and proving the theorems in this paper we had

formulated the following (faulty) lemma.

(Faulty) Lemma A.1

Let SIG = (S;F; P), A;B 2 Gen(SIG), and R = (Rs)s2S a family of

relations Rs � As � Bs. If R is lefttotal, righttotal and R � GTA;B, then is

R closed against F wrt A and B.

This faulty lemma says that every lefttotal and righttotal subset of GTA;B

is GTA;B itself (cf. lemma 3.3). To see that this does not hold, look at a simple

example speci�cation:

sorts s

functions a; b; c : s
axioms a = b ^ a 6= c _ a 6= b ^ a = c

This speci�cation has exactly two generated models (up to isomorphicity),

namely one, which we denote by A, with aA = bA and aA 6= cA, and the
other, which we denote by B, with aB 6= bB and aB = cB. The relation

R := f(bA; bB); (cA; cB)g

is a lefttotal and righttotal (leftunique and rightunique) homomorphic rela-
tion between A and B. However, since (aA; aB) 62 R, it is not closed against
fa; b; cg wrt A and B.

Looking at the proof obligations, this result suggests that in general in

the involved uniform mapping programs (cf. de�nition 4.2) the program frag-
ments for the single function symbols cannot be combined in a �xed order
with if-then-else constructs instead of nondeterministic choice (

S
) (which

is the case for uniform restrictions for modules [2]). For example, the input-
output relation (under A+A0) of

map(x;var y). if x = b then y := b0

else if x = c then y := c0

else if x = a then y := a0

else abort

(where a0 = �(a), b0 = �(b), c0 = �(c)) is only a proper subset of, but

not equal to GTA;A0j� (cf. theorem 4.4). If one would take this procedure

as uniform mapping program, the proof obligations listed in theorem 4.7(d)
could be shown (though the speci�cation is not monomorphic).

34

