KfK 5248 B Februar 1994

Untersuchungen der Wirkungen von NO₂ auf Immunfunktionen von Rinderalveolarmakrophagen in einem realitätsnahen in vitro-System

I. Lind Institut für Toxikologie

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Toxikologie

KfK 5248 B

Untersuchungen der Wirkungen von NO₂ auf Immunfunktionen von Rinderalveolarmakrophagen in einem realitätsnahen in vitro-System

Ines Lind

Dissertation genehmigt von der Fakultät für Bio- und Geowissenschaften der Universität Karlsruhe

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

ISSN 0303-4003

.

Untersuchungen der Wirkungen von NO₂ auf Immunfunktionen von Rinderalveolarmakrophagen in einem realitätsnahen in vitro-System

In der vorliegenden Arbeit wurde eine Methode zur Kultur von Zellen direkt in der Gasphase etabliert. Benutzt wurden post-mortal gewonnene Rinderalveolarmakrophagen wie auch differenzierte HL-60 Zellen als Modell für menschliche Zellen.

Mittels dieses Systems wurde die Wirkung der Inhalationsnoxe NO₂ auf Rinderalveolarmakrophagen untersucht.

NO₂ führte dosisabhängig zu einem Vitalitätsverlust der Rinderalveolarmakrophagen, der nach Applikation von 1,5 ppm NO₂ maximal 10% betrug und nach 3 ppm sich zwischen 10 und 20% bewegte. Damit verbunden war eine Sekretion lysosomaler und cytoplasmatischer Enzyme. Bei beiden Konzentrationen kam es zu morphologischen Veränderungen an der Zellmembran (Bildung sogenannter "Blebs").

Das Gas führte per se zu keiner Stimulation der Sekretion an Superoxidanionen oder TNF, zeigte jedoch bezüglich der Sekretion von Superoxidanionen eine dosisabhängige Hemmung sowohl bei Zymosan-stimulierten als auch bei spontan voraktivierten Zellen. In fast allen Fällen führte NO₂ zu einer vollständigen Hemmung der LPS-stimulierten TNF-Sekretion, die also sehr empfindlich auf das Gas reagierte.

Die Kombinationsapplikation von Staub (Quarz und Latex) und Schadgas hatte ebenfalls suppressive Wirkung.

Die gleichzeitige Anwesenheit des Hauptbestandteils des Surfactants, Dipalmitoyllecithin, konnte bei der Messung der Superoxidanionenbildung bei beiden NO₂-Konzentrationen die hemmende Wirkung von NO₂ kompensieren. Die vollständige Hemmung der TNF-Bildung blieb trotz eines solchen Zusatz bestehen.

In der Arbeit wurde geprüft, inwiefern bestimmte Mediatoren, die im Alveolarraum als Reaktion auf eine Noxe auftreten, RAM beeinflussen könnten.

Bei nicht voraktivierten Zellen führte die Anwesenheit von micro- und picomolaren Konzentrationen von PAF zu keiner Stimulation der Superoxidanionenfreisetzung, auch nicht in Kombination mit TNF oder Zymosan. TNF und LTB₄ für sich allein waren ebenfalls ohne Einfluß. Spontan voraktivierte Zellen können durch diese Mediatoren stimuliert werden.

Was die TNF-Sekretion durch RAM betrifft, so waren PAF, LTB_4 und IFN- γ , jeweils alleine appliziert, ohne Effekte. Die gleichzeitige Verabreichung von PAF bzw. LTB_4 zusammen mit LPS bewirkte keine über den bloßen LPS-Effekt hinausgehende TNF-Freisetzung. Wichtige Mediatoren des Entzündungsgeschehens haben also für sich allein oder in Kombination keinen Einfluß auf die Superoxidanionen- bzw. TNF-Freisetzung durch Alveolarmakrophagen. Dexamethason hatte eine Hemmung der LPS-stimulierten TNF-Bildung zur Folge.

Es wurde festgestellt, daß auch zu Makrophagen oder zu Granulocyten differenzierte HL60-Zellen sich für die Gasphasenkultur eignen. Sie setzen nach Stimulation TNF, IL 6 und IL 8 in den Kulturunterstand frei, wie mittels ELISA nachgewiesen werden konnte. Damit steht auch ein Modell mit menschlichen Zellen für bestimmte Fragestellungen zur Verfügung.

Es wurde somit gezeigt, daß unsere Gasphasenkultur ein valides System zur Untersuchung der Wirkungen von Schadgasen darstellt. Für NO_2 wurden mit dieser Methode deutlich immunsuppressive Wirkungen für Konzentrationen nachgewiesen, die zwar erheblich über den umweltüblichen, aber unterhalb des MAK-Wertes liegen.

Investigations to the influence of nitrogen dioxide on immunomodulatory properties of bovine alveolar macrophages in a realistic in vitro-system

A method for culture of cells in gasphase was established. The cells used were post-mortem lavaged bovine alveolar macrophages as well as differentiated HL-60 cells as a model for human cells.

The influence of nitrogen dioxide on bovine alveolar macrophages was investigated by means of this system.

NO₂ induced a dose-related loss of viability that was maximal 10% after the application of 1,5 ppm NO₂ and varied inbetween 10 and 20% after the application of 3 ppm NO₂. Linked to that was the secretion of lysosomal and cytoplasmatic enzymes. Both concentrations induced morphological changes on the outer cell membrane (the formation of so called "blebs"). The gas per se didn't cause any stimulation of the secretion of superoxide anions or TNF, whereas Zymosan-stimulated as well as spontaneously activated cells showed a dose-related inhibition of the secretion of superoxide anions. In nearly all cases NO₂ induced a total inhibition of the LPS-stimulated TNF-secretion, which therefore showed to be very sensitive to the gas.

A combination of dust (quartz and latex) and gas induced as well a suppression of both parameters.

The simultaneous presence of the chief component of the surfactant, the Dipalmitoyllecithin, lead to a compensation of the suppressive influence of NO_2 concerning the secretion of superoxide anions. The total inhibition of the TNF-formation still remained when Dipalmitoyllecithin was added.

It was examined to what extent certain mediators, that appear in the alveolar tract as a reaction to toxic gases, can influence the reaction of the bovine cells.

The presence of micro- and picomolar concentrations of platelet-activating factor didn't lead to any stimulation of the secretion of superoxide anions with cells not spontaneously activated. The same was valid for the combination with TNF or Zymosan. TNF and LTB_4 itselves were without any influence. Spontaneously activated cells can be stimulated through these mediators.

Concerning the TNF secretion by bovine alveolar macrophages, the sole application of PAF, LTB₄ and IFN- γ were without any influence. The simultaneously application of PAF and LTB₄ respectively together with LPS induced a TNF secretion that was similar to the sole LPS effect. Important mediators of the inflammation are therefore without any influence. Dexamethasone lead to an inhibition of the LPS-stimulated TNF-secretion.

It was found out that HL60- cells differentiated to macrophages or granulocytes can be cultured in gas phase. When stimulated the cells release TNF, IL-6 and IL-8 as could be detected by an ELISA. That means there is also a model system available that can be used together with human cells.

It could be demonstrated that our gasphase culture is a valid system for the investigation of the effects of adversary gases. The effects found for NO_2 quantified with that culture method were immunsuppressive namely for concentrations that are considerably above the ones in the environment but are below the MAK-value.

Abkürzungsliste

AA	Arachidonsäure
AM	Alveolarmakrophagen
AMAD	Activity median aerodynamic diameter
BSA	bovine serum albumin
Dex	Dexamethason
DMSO	Dimethylsulfoxid
DPL	L- α Dipalmitoyl Lecithin
EtBr	Ethidiumbromid
FDA	Fluoresceindiacetat
IFN	Interferon
IL	Interleukin
FCS	Fötales Kälberserum
HBSS	Hank's balanced salt solution
Ko	Kontrolle
LBP	Lipopolysaccharide binding protein
LDH	Laktatdehydrogenase
LPS	Lipopolysaccharid
LTB ₄	Leukotrien B ₄
MTT	3-[4,5-Dimethyl-2-thiazolyl]-2,5-diphenyl-2H-Tetrazoliumbromid
NAG	N-Acetyl-B-D-Glucosaminidase
NADPH	Nicotinamidadenindinucleotidphosphat
PAF	Plättchen aktivierender Faktor
PBS	Phosphate buffered saline
РКС	Proteinkinase C
PMN	Polymorphonukleäre neutrophile Granulocyten
RAM	Rinderalveolarmakrophagen
SDS	Sodiumdodecylsulfat
SOD	Superoxiddismutase
rhu-TNF	human rekombinantes TNF
TNF	Tumor Nekrose Faktor
TPA	12-O-tetradecanoylphorbol-13-acetat

Inhaltsverzeichnis

1.	Einleitung	1
1.1.	Stickstoffdioxid als gasförmige Noxe	1
1.2.	Reaktionszellen in der Lunge auf gasförmige Noxen	2
1.3.	Ziele der Arbeit	9
2.	Material und Methoden	10
2.1.	Gewinnung und Kultur der Zellen	10
2.1.1.	Gewinnung von RAM	10
2.1.2.	Kultur von HL60-Zellen	11
2.2.	Kultur und Exposition der Zellen in Gasphase bzw. in Submerskultur	12
2.2.1.	Allgemeines	12
2.2.2.	Kultur der Zellen in Gasphase	14
2.2.2.1.	Gasphasenkultur von RAM	15
2.2.2.2.	Gasphasenkultur von HL60-Zellen	16
2.2.3.	Kultur von RAM in der konventionellen Submerskultur	16
2.3.	Morphologische und biochemische Betrachtungen	17
2.3.1.	Fluoreszenzmikroskopie - Vitalitätstest mit Ethidiumbromid und	
	Fluoresceindiacetat	17
2.3.2.	Lichtmikroskopie - Vitalitätstest mit Trypanblau	18
2.3.3.	Untersuchungen zur Enzymfreisetzung	18
2.3.3.1.	Laktatdehydrogenase (LDH)	18
2.3.3.2.	N-Acetyl-B-D-Glucosaminidase (NAG)	18
2.4.	Assays und Reagenzien	19
2.4.1.	Messungen von Superoxidanionen	19
2.4.1.1.	Allgemeines	19
2.4.1.2.	Reagenzien	20
2.4.1.3.	Messungen von Superoxidanionen in Gasphase	22
2.4.1.4.	Messungen von Superoxidanionen in Submerskultur	22
2.4.2.	TNF-Ouantifizierung	
2.4.2.1.	TNF-Bestimmung bei RAM durch den WEHI-Bioassay	
2.4.2.1.1.	Allgemeines	23
2.4.2.1.2.	Reagenzien	
2.4.2.1.3.	Gewinnung von Kulturüberständen für den TNF-Bioassay.	
2.4.2.1.4	Der TNF-Bioassay	
2.4.2.2.	TNF-Bestimmung bei HL60-Zellen mittels ELISA	
2.4.2.2.1.	Allgemeines	27
2.4.2.2.2.	Reagenzien	
2.4.2.2.3.	Gewinnung TNF-haltiger Kulturunterstände	
2.4.2.2.4.	Durchführung der ELISAs zur TNF-Bestimmung	29
2.4.3.	Ouantifizierung weiterer Cytokine bei HL60-Zellen durch ELISAs: IL-6	
	und IL-8	29
2.4.3.1.	Allgemeines	29
2.4.3.2.	Gewinnung IL-6- und IL-8-haltiger Kulturunterstände	29
2.4.3.3.	Durchführung der ELISAs zur IL-6- und IL-8-Bestimmung	29
2.4.4.	Bestimmung von LTB ₁ bei RAM durch HPLC.	30
2.4.4.1	Allgemeines	
2.4.4.2	Gewinnung von Zelllipiden	
2.4.4.3	Reversed-Phase Chromatographic von LTB ₄ - angewandte Methode	32

2.4.4.4.	Quantifizierung von LTB ₄	33
2.5.	Auswertung der Daten	33
3.	Ergebnisse	35
3.1.	Morphologische und biochemische Untersuchungen	35
3.1.1.	Fluoreszenzmikroskopie von Rinderalveolarmakrophagen (RAM)	35
3.1.2.	Lichtmikroskopie von RAM	35
3.1.3.	Fluoreszenzmikroskopie von HL60-Zellen	35
3.1.4.	Lichtmikroskopie von HL60-Zellen	36
3.1.5.	Quantifizierung der Lactatdehydrogenase (LDH) und der N-Acetyl-ß-D-	
	Glucosaminidase (NAG) bei RAM	36
3.2.	Superoxidanionenmessungen	36
3.2.1.	Messung der Sekretion von Superoxidanionendurch RAM	36
3.2.1.1.	Einfluß von Cytokinen auf O2 ⁻ -Messungen	36
3.2.1.2.	Einfluß von NO2 und DPL auf die Superoxidanionenfreisetzung durch RAM	39
3.2.2.	Messung der Sekretion von Superoxidanionen durch HL60-Zellen	41
3.2.2.1	Einfluß von Cytokinen auf O2 ⁻ -Messungen	41
3.3	TNF-Messungen	42
331	Messung der Sekretion von Tumor Nekrose Faktor durch RAM	42
3311	Finfluß von Mediatoren auf TNF-Messungen	42
3312	Einfluß von NOo und DPL auf die spontane und LPS-induzierte	•
J.J.1.2.	TNE-Freisetzung durch RAM	43
34	TNF- II -6_{-} und II -8_{-} Messungen bei HI 60_{-} Zellen	46
3.5	I TB 4-Bestimmung bei RAM ner HPI C	48
5.5.	ETB4-Bestimmung der KAW per Th Le	10
4	Diskussion	49
4 1	Fignung der Kulturmethode zum Nachweis von Effekten gasförmiger Noxen	49
4 2	Fignung von HI 60 Makronhagen und HI 60 Granulocyten für die	
1.24.	Gasnhasenkultur	50
43	Bildung von Superovidanionen und Tumor Nekrose Faktor durch	50
1.5.	verschiedene Mediatoren	51
431	Finflüsse von Cytokinen und Linidmediatoren	51
432	Finflüsse von TPA Ca2+ Jonophor JPS und Devemethason	54
4.3.2. 4 4	Wirkung von NOo auf die Vitalität Enzymfreisetzung und Mornhologie von	54
т.т.	Rinderalveolarmakronhagen	57
15	Rildung von Superovidenienen und Tumer Nekrose Fakter hei Binder	57
4.5.	alveelermekronhegen unter dem Einfluß von NOe	58
16	Finfluß von Dinalmitoullogithin auf die Wirkung von NOs hei Binderalvoolar	50
4.0.	malinantia von Diparinitoynecinin auf die wirkung von NO2 dei Kinderarveolai-	60
47	The maximum of the second of t	60 60
4.7.	Zuammenfassende Diskussion	62
5.	Zusammenfassung	63
6.	Literaturverzeichnis	65
7.	Abbildungen	••••

1. Einleitung

1.1. Stickstoffdioxid als gasförmige Noxe

Die Auswirkungen von Luftschadstoffen auf die Gesundheit sind immer höher zu bewerten. Daß Luftschadstoffe einen gesundheitsschädigenden Einfluß haben können, weiß man seit den großen Umweltkatastrophen dieses Jahrhunderts, 1930 in Maastal/Belgien, 1948 in Donnora/Pennsylvania und 1952 in London. Bei vielen an der Luftverschmutzung beteiligten Stoffen ist davon auszugehen, daß es sich um anthropogen verursachte Substanzen handelt. Industrie und Verkehr tragen in vielfacher Weise dazu bei, die unterschiedlichsten Stoffe in die Atmosphäre zu emittieren. Eine der Hauptkomponenten der Luftverschmutzung stellt das Stickstoffdioxid (NO_2) dar. NO_2 wird hauptsächlich bei Verbrennungspozessen produziert und erreicht in Städten und Industriegebieten die höchsten Konzentrationen.

Im Gegensatz zum Schwefeldioxid ist ein abnehmender Trend der Emission in den letzten 10 Jahren bei den Stickoxiden nicht zu beobachten, obwohl inzwischen durch die Immissionsschutzgesetzgebung wie der Großfeuerungsanlagen-Verordnung der Anteil der industriebedingten Emissionen deutlich gesunken ist. Stickstoffdioxid-Konzentrationen erreichen in den Ballungsgebieten -insbesondere durch das hohe Verkehrsaufkommen bedingt-Werte zwischen 60 und 70 μ g/m³ (0,03 und 0,035 ppm) pro Jahr mit Spitzenwerten bis zu 400 μ g/m³ (0,04 ppm). Die in der TA-Luft festgelegten Jahresmittelgrenzwerte liegen mit 80 μ g/m³ (0,04 ppm) nur wenig über dem tatsächlich vorkommenden Jahresmittelwert. Der MAK (maximale Arbeitsplatzkonzentration) -Wert beträgt 5 ppm.

Neben einer direkten Wirkung des NO_2 auf biologische Systeme, auf die später genauer eingegangen werden soll, kann diese Verbindung als Reaktionskomponente am photochemischen Oxidationsprozeß teilnehmen. Der hohe Sauerstoffanteil in der Atmosphäre stellt ein großes Oxidationspotential dar, das unter dem Einfluß von Sonnenlicht in Verbindung mit den in der Luftschicht angesammelten Schadstoffen reagiert. In der Troposphäre stehen als Radikalvorläufer nur O₃ und NO₂ zur Verfügung. In verschmutzter, durch Verbrennung fossiler Brennstoffe belasteter Atmosphäre gilt das NO₂ als Vorläufer für Ozon. Beide Spurengase absorbieren das Sonnenlicht im Spektralbereich unterhalb 400 nm und unterliegen der photochemischen Zersetzung:

03	$+ h \cdot v (< 315 nm)$	$\rightarrow O_2 + O$
NO ₂	+ $h \cdot v$ (< 400 nm)	\rightarrow NO +O
0	+ O ₂	$\rightarrow O_3$

Wenn Stickoxide, Kohlenmonoxid und Kohlenwasserstoffe intensiver Sonneneinstrahlung ausgesetzt sind, entsteht photochemischer Smog. So können mehrere Tonnen Ozon bis etwa am frühen Nachmittag gebildet werden, z.B. besonders über Ballungsgebieten.

Durch die hohe Stickstoffanreicherung in der Atmosphäre kommt es auch zu einer Deposition im Boden. Die Speicherkapazität des Bodens stößt aber zunehmend auf Grenzen (Houdijk et al., 1993). Der Stickstoff wird einerseits als Nitrat über das Sickerwasser ausgewaschen, andererseits findet durch mikrobielle Umbauprozesse die Bildung von Lachgas (N₂O) statt, das an die Atmosphäre abgegeben wird. Da N₂O eine geringe chemischen Reaktivität besitzt, kann es als Spurengas in die Stratosphäre diffundieren und wird dort einer kurzwelligen UV-Strahlung ausgesetzt. Es kommt zur Photolyse und Bildung von NO aus N₂O. Das entstehende Stickstoffmonoxid katalysiert seinerseits dann den Abbau des stratosphärischen Ozons. NO₂ führt durch photolytische Prozesse zur bodennahen Ozonbildung, andererseits kann es über den Umweg des Bodens zum NO-katalysierten Ozonabbau in der Stratosphäre beitragen. Stickstoffdioxidemissionen sind damit auf mehrfache Weise an schädigenden Einflüssen auf biologische Systeme beteiligt.

Weiterhin hat das oxidative Gas NO₂ eine direkte Wirkung auf den Respirationstrakt von Lebewesen. Die Oxide des Stickstoffs sind hochreaktive Komponenten und spielen ebenso eine Rolle als Luftschadstoffe in Innenräumen und am Arbeitsplatz. Inhalationsunfälle am Arbeitsplatz mit hohen NO₂-Konzentrationen waren die ersten Hinweise auf die gesundheitsschädigende Wirkung von NO₂ auf den Atemtrakt. Darüberhinaus tritt NO₂ auch im Zigarettenrauch bis zu einer Konzentration von 250 ppm auf (Norman und Keith, 1965). Epidemiologische Untersuchungen ergaben Hinweise auf eine Assoziation zwischen einer Innenraum- und einer Außenluftexposition und der Häufigkeit oder der Dauer der Atemwegserkrankung und Verschlechterung der Lungenfunktion. Eine Interpretation epidemiologischer Untersuchungen bezüglich kausaler Ursachen wirft viele Fragestellungen auf, so z.B. die Frage nach den verwendeten Variablen oder die Komplexität des Luftschadstoffgemisches.

Im Mittelpunkt der Arbeit steht deshalb die Frage nach der toxischen Wirkung von NO_2 auf seine Zielzellen in der Lunge. Mit Hilfe eines in vitro-Modells soll dieser Zusammenhang untersucht werden.

1.2. Reaktionszellen in der Lunge auf gasförmige Noxen

Stickstoffdioxid besitzt eine nur sehr geringe Löslichkeit in wäßrigen Medien. Dies bedingt eine große Eindringtiefe in den unteren Bereich des Respirationstraktes, während vergleichsweise leichter wasserlösliche Gase wie Schwefeldioxid oder Chlorwasserstoff bereits im oberen Teil des Respirationstraktes weitgehend absorbiert werden. In Untersuchungen von Postlethwait et. al. (1991) mit isolierten Lungen konnte gezeigt werden, daß das Stickstoffdioxid sehr schnell aufgenommen wird und dabei zu Nitrit reagiert. Es zeigte sich, daß die Rate der NO₂-Aufnahme durch chemische Reaktionen mit der biologischen Materie und nicht durch die physikalische Löslichkeit begrenzt war. Nicht reagiertes NO₂ trat erst nach reaktiver Absorption in das Epithel ein. Aus diesen in vitro-Untersuchungen kann gefolgert werden, daß die Cytotoxizität des NO₂ nicht auf das eigentliche NO₂ als vielmehr auf seine Reaktionsprodukte, die in die Zellen aufgenommen werden, zurückzuführen ist.

Im Experiment wird der Lungenschaden durch toxische Gase allgemein so eingeschätzt, daß histopathologische Abnormitäten, Veränderungen bei dem Zellproliferationsmuster und

biochemische Veränderungen im Lungengewebe auftreten (Bils und Christie, 1980; Mustafa und Tierney, 1978, Wagner et al., 1992).

Im Tierversuch kann NO2 eine Vielzahl zellulärer Reaktionen modifizieren. Aus der Literatur ist zu ersehen, daß NO₂ zu folgenden physiologischen Lungenfunktionsveränderungen führen kann: es übt vermutlich seine biologische Wirkung zum Teil durch Initiation einer Lipidperoxidation der Zellmembran (Menzel, 1976) und/oder durch Oxidation von reduzierenden Verbindungen und Proteinen mit niedrigem Molekulargewicht aus, was nachfolgend zum Zellschaden oder Zelltod führt (Sagai und Ichinose, 1987). Die dabei auftretende Bildung reaktiver Intermediate (Rietjens et al., 1986) führt nach längerer NO₂-Exposition zu einem verminderten antioxidativen Schutz - damit steigt die Bildung cytotoxischer Lipidperoxide, die die Membranfluidität beeinflussen können (Sagai et al., 1984; Rietjens et al., 1987). Die Inhalation von NO₂ verursacht einen Zellschaden bei Alveolar-Typ-I-Zellen, führt zur Proliferation von Typ-II-Zellen, zur Ablösung des Endothels und zu einer interstitiellen fibrotischen Reaktion (Crapo et al., 1984; Evans et al. 1976), ebenso wie zu einem centrilobulären Emphysem (Glasgow et al., 1987). Weiterhin kann ein Anstieg der Atemwegsreaktivität verzeichnet werden (Kobayashi und Shinozaki, 1992). Eine bronchoalveoläre Lavage (BAL) NO2-exponierter Tiere resultiert in einer veränderten Zusammensetzung der Zellpopulation im Vergleich zu Luft-exponierten Tieren (Richters und Damji, 1988), und die Zahl der lavagierten Zellen erhöht sich nach Schadgasexposition (Mochitate et al., 1986). Eine Hemmung der Phagocytoserate (Gardner et al., 1969) kann genauso wie eine Immunsuppression durch NO2 induziert werden: es kommt zu einer verminderten Infektabwehr (Goldstein et al., 1973, Kosmider et al., 1973; Acton und Myrvik, 1972).

Untersuchungen, bei denen menschliche Probanden mit NO₂ exponiert wurden, scheinen im Hinblick auf ihre Auswirkungen des Stickstoffdioxids teilweise widersprüchlich: Pinkston et. al. (1988) konnten in ihrer Untersuchung keine direkt toxische Wirkung von NO₂ feststellen. Dies gilt auch für die Ergebnisse von Kim et. al. (1991), die NO₂-induzierte Veränderungen im niedrigen Konzentrationsbereich quantifizierten. Andererseits gibt es Autoren, die bei 0,6 ppm NO₂ (Frampton et. al., 1991) und bei 0,2 ppm (Bart et. al., 1988) induktive Effekte von NO₂ verzeichnen konnten. Die Problematik solcher Untersuchungen wird durch die folgende Publikation deutlich: Mohsenin (1988) exponierte Nichtraucher bei 2 ppm NO₂. Die Probanden entwickelten im Laufe der Exposition eine erhöhte Reaktivität der Atemwege, die allerdings nicht mit Veränderungen der Lungenvolumina, Atemflußraten oder Atemsymptomen assoziiert war.

Die Vielfältigkeit der variablen Parameter erschwert eine allgemeine Bewertung solcher Untersuchungen. Weiterhin zeigen die obengenannten Ergebnisse, daß NO₂ nur bestimmte Funktionen in der Lunge zu beeinträchtigen scheint.

Ein weiterer, nicht unbedeutender Aspekt, der bei Expositionsstudien zur Quantifizierung schadgas-induzierter Noxen eine Rolle spielt, ist die Tatsache, daß NO_2 immer in Zusammenhang mit anderen Luftschadstoffen in der Außenluft auftritt, und daher eine genaue Zuordnung der aufgetretenen Effekte schwierig erscheint. Ein schwerwiegender Nachteil, den

alle epidemiologischen Untersuchungen mit sich bringen. Laboruntersuchungen mit Menschen sind aus ethischen und praktischen Gründen mit Nachteilen behaftet, denn es können nur relativ geringe physiologische Veränderungen gemessen werden, und Fragen über chronische Krankheiten oder Infektresistenz bleiben unzulänglich beantwortet.

Wie oben schon erwähnt, beeinflußt NO_2 vor allem die unteren Atemwege (Stephens et. al., 1972, Parkinson und Stephens, 1973). Geringe Konzentrationen scheinen bei einer Dauerexposition zu Lungenfibrosen und zu Beeinträchtigung der Abwehrmechnismen der Lunge zu führen (Frampton et. al., 1991; Acton und Myrvik, 1972). Als Kompartiment sind die Alveoli und die Alveolargänge besonders betroffen (Stephens et al., 1972). Toxische Effekte der verschiedensten Art sind an Alveolarmakrophagen (Mochitate et. al., 1986; Kleinermann et. al., 1982) und Epithelzellen (Alink und Rietjens, 1988) beobachtet worden.

Vor diesem Hintergrund erscheint für diese Arbeit die Verwendung der beiden folgenden Zelltypen sinnvoll:

- Rinderalveolarmakrophagen und

- zu Makrophagen differenzierte HL60-Zellen.

Alveolarmakrophagen, in diesem Fall aus der Rinderlunge isoliert, repräsentieren eine der Zielzellen für die anthropogene Inhalationsnoxe NO₂ und stellen eine sehr stark an den natürlichen Zustand angelehnte Situation dar. Anderseits ermöglicht die Verwendung von zu Makrophagen differenzierten HL60-Zellen gegebenenfalls eine konstantere Reproduktion von Daten als auch die Verwendung spezifischer ELISA-Verfahren für diverse Cytokine. Daraus resultiert auch eine der Zielsetzungen dieser Arbeit, nämlich die Klärung der Frage, ob eine Gasphasenkultur von HL60-Zellen überhaupt möglich ist.

Biochemische Analysen, die mit in vivo befindlichen Zellen durchgeführt werden, zeigen Veränderungen, die durch den Einfluß der verschiedenen Zelltypen hervorgerufen werden. Kombinierte biochemische und morphologische Untersuchungen waren teilweise hilfreich bei der Bemessung von Lungenschäden, jedoch können solche Untersuchungen kompliziert und teuer sein. Diese Probleme können dadurch überwunden werden, indem definierte Populationen an Lungenzellen in Zellkulturen verwendet werden.

In der vorliegenden Arbeit wird ein in vitro-Modell für Alveolarmakrophagen entwickelt, um die Toxizität eines Schadgases auf Zellen des Atemtraktes zu untersuchen. Diese Gasphasenkultur von Zellen beinhaltet wichtige Aspekte der Alveoli, besonders den Einfluß von Mediatoren anderer Zellen des Alveolartraktes, die Exposition von Zellen in einer gasförmigen und einer flüssigen Phase, und die Versorgung der Zellen durch basal befindliches Medium. Im Zusammenhang mit biochemischen Messungen werden in dieser Arbeit vollständig neue Fragestellungen über die Wirkung von NO2 aufgegriffen, die sich von den bis dato gemachten Untersuchungsmethoden und -parametern unterscheiden: wie moduliert NO2 die Cytokinsekretion (in diesem Fall die des Tumor Nekrose Faktors) nach einer Gasphasenexposition Alveolarmakrophagen? von Und welche Rolle kommt dem Stickstoffdioxid bei einer Kombinationsexposition zusammen mit Staub zu? Außerdem wird untersucht, welche Auswirkungen NO2 auf die lokalen Abwehrvorgänge (Bildung von Superoxidanionenradikalen) in der Lunge hat. Entsprechend der üblichen Nomenklatur wird im folgenden das Superoxidanionenradikal kurz als Superoxidanion bezeichnet.

Die Phagocytose spielt bei Alveolarmakrophagen eine entscheidende Rolle bei der Reinigung des Atemtraktes. Werden diese Zellen in vitro untersucht, scheint ihre Reaktion auf der Natur des Partikels zu beruhen. Asbest, Quarz (SiO₂), und z.B. Zigarettenrauch zeigen ihre cytotoxische Wirkung durch eine gehemmte Mobilität der Makrophagen. Quarz darüberhinaus führt zur Hemmung ihrer Vitalität.

Gasförmige Umweltnoxen, denen Menschen exponiert sind, können Kombinationen aus aerosolisierten Partikeln (SiO₂) und oxidativen Gasen (NO₂) darstellen. Ursachen für die kombinierte Exposition können vom photochemischen Smog herrühren, ihren Ursprung in der individuellen Lebensweise haben (Rauchen) oder beruflich bedingt sein (Bergbau).

NO₂ und SiO₂ scheinen bei der Induktion einer veränderten Lungenfunktion sowohl gleiche als auch unterschiedliche Mechanismen zu besitzen. Nach einer SiO2-Exposition findet eine Partikeldeposition in den Verzweigungen des Alveolartraktes und eine Phagocytose statt (Brody et al., 1982), und es kommt zu einem raschen Einstrom von neutrophilen Granulocyten und Monocyten in die Alveoli (Adamson und Bowden, 1984). Während des Zelltodes oder der Phagocytose setzen Entzündungszellen lysosomale Enzyme frei und synthetisieren freie Radikale, die einen punktförmigen Schaden bei Epithelzellen hervorrufen (Snider, 1983). Darüberhinaus kann Quarz seine Toxizität für die Lunge direkt über die Bildung freier Sauerstoffradikale ausüben (Shi et al., 1988; Vallyathan et al., 1988). Trotz fehlender Hinweise auf eine anders geartete Lungenschädigung nach einer Kombinationsexposition von SiO2 und NO2, wurden Untersuchungen mit Tieren in Hinblick auf gemeinsame Exposition mit O3 und SiO₂ bzw. Asbest durchgeführt. Shiotsuka et al. (1986) konnten keine Veränderungen nach einer Quarz-induzierten Fibrose bei Ratten feststellen, die nach der SiO₂-Applikation mit 0,8 ppm O₃ exponiert wurden. Pinkerton et al. (1990) exponierten Ratten mit 0,06-0,25 ppm O₃ und dann mit aerosolisierten Asbestfasern. Beide Autorengruppen konnten keine potenzierende Wirkung nach dieser Kombinationsexposition feststellen. Andererseits führte die Untersuchung von Vetrano et al. (1992) zu der Erkenntnis, daß eine NO₂-Exposition die Quarz-induzierte Entzündung und Fibrose beeinflussen kann, und zwar durch die Abnahme des Quarzinduzierten Influx von neutrophilen Granulocyten in den Alveolen und des Collagengehaltes in der Lunge. Weiterhin konnten die Autoren feststellen, daß der Zeitpunkt der Schadgasapplikation nach der Partikelgabe eine Rolle spielt. Naturgemäß spielt eine kombinierte Einwirkung von speziell Quarz und NO₂ auf den Menschen kaum eine Rolle. Im Rahmen dieser Untersuchung werden bewußt Quarzpartikel als Modell für ein toxisches Teilchen benutzt. Latex dient dagegen als sogenannter Inertstaub.

Aufgrund der Heterogenität in der Form der Exposition mit vielfach nicht exakt definierten Versuchsbedingungen konnten bis dato zwar Aussagen darüber getroffen werden, daß NO₂ eine cytotoxische Wirkung ausübt, eine genaue Bestimmung der Veränderungen immunologischer Funktionen konnte aber nicht getroffen werden. Das Hauptanliegen der Arbeit ist die genaue Zuordnung immunologischer Abläufe von NO₂-Wirkungen im niedrigen Konzentrationsbereich und ihre Quantifizierung.

Dabei wird mit einem Zellsystem gearbeitet, das eine annähernd ähnliche Reaktivität wie menschliche Alveolarmakrophagen zeigt, nicht aber die Nachteile mit sich führt, die das Arbeiten mit humanem Zellmaterial besitzt. Diese Nachteile bestehen unter anderem darin, daß mit einer bronchoalveolären Lavage nur geringe Zellausbeuten erzielt werden, und die Zellen eine unterschiedliche Voraktivierung aufweisen können, da sie meistens von Klinikpatienten gewonnen werden.

Bei der Arbeit wird in Betracht gezogen, daß bei diesem in vitro-Modell folgende Nachteile gegenüber der in vivo-Situation auftreten können:

Das System berücksichtigt möglicherweise immunmodulierende Einflüsse nicht, die andere Zellarten auf die Alveolarmakrophagen ausüben können. Weiterhin ist in vivo die Oberfläche einer jeden Alveole mit Surfactant ausgekleidet. Surfactant ist ein den Alveolarraum stabilisierender Lipoproteinfilm mit oberflächenaktiven Eigenschaften. Sein Fehlen sollte in diesem in vitro-System durch das "Coaten" der Zellen mit dem Hauptbestandteil des Surfactant, dem Phospholipid Dipalmitoyllecithin (DPL), kompensiert werden.

Isolierte Surfactant-Aufbereitungen haben einen Proteinanteil, der unter 20% liegt, und beim Lipidanteil ist DPL mit 70-80% der Hauptbestandteil des Gesamtlipidgehaltes (Harwood, 1987). Insofern repräsentiert das bei den Gasphasenkulturen durchgeführte "Coaten" der Zellen damit eine relativ naturgetreue Wiedergabe des natürlichen Surfactant.

Ein weiterer Grund für die Verwendung von DPL besteht auch darin, daß sein Verhalten im in vitro-Modell dem von Alveofact entspricht (Mosbach 1993, unveröffentlicht). Alveofact ist ein Surfactant-Präparat aus Rinderlungen, das seine klinische Anwendung bei Kindern findet, die mit einem akuten Atemnotsyndrom geboren werden.

In dem bei dieser Arbeit verwendeten in vitro-Modell werden oben genannte nicht quantifizierbare Einflüsse auf das Meßsystem weitgehend ausgeschlossen. Diese Eingrenzungen von Untersuchungsparametern ermöglichen definierte und damit kontrollierte Expositionsstudien.

Alveolarmakrophagen werden durch exogene Mediatoren in ihrem Sekretionsverhalten beeinflußt, eine Tatsache, die in diesem in vitro-Modell Berücksichtigung findet.

Einer der untersuchten Parameter, der durch exogene Mediatoren modifiziert werden kann, ist das Superoxidanion O_2^- . O_2^- ist ein Nebenprodukt des zellulären Metabolismus (Chance et. al., 1979), der intrazelluläre Ursprung sind die Mitochondrien, das Endoplasmatische Retikulum, Elektonentransportprozesse an der Kernmembran und lösliche Proteine wie Hämoglobin, Aldehydoxidase und die Xanthinoxidase (Freeman und Crapo, 1982). Die Produktion an Superoxid kann durch pathologische Prozesse wie Entzündungen (Weiss und LoBuglio, 1982) gesteigert werden. Wird es im Überschuß produziert, können Zellschäden auftreten (Fridovich, 1983).

 O_2^- ist als toxische Spezies an der durch freie Radikale induzierten Cytotoxizität beteiligt, wobei die Superoxiddismutase (SOD) den Zellschaden begrenzt. Beispielsweise limitiert eine Erhöhung der intrazellulären SOD den Sauerstoff-induzierten Schaden bei Endothelzellen (Freeman et. al., 1983)

Stimuliert man Makrophagen durch Partikel wie Zymosan, einem Zellwandbestandteil von Saccaromyces cerevisiae, weisen sie eine erhöhte Atmungsaktivität auf (Goodglick und Kane,

Einleitung

1986). Die Phagocytose von Zymosan oder Bakterien führt zu einer verstärkten Produktion an reaktiven Sauerstoffspezies wie dem Superoxidanion O_2^- (Lohmann-Matthes, 1981).

Der Plättchen-aktivierende Faktor (PAF) wurde zuerst als Wirkstoff beschrieben, der durch einen IgE-abhängigen immunologischen Prozeß aus basophilen Leukocyten freigesetzt wird. Der Name der Substanz leitet sich ursprünglich von seiner plättchenaktivierenden Wirkung ab. PAF ist ein biologisch aktives Phospholipid, das von einer Vielzahl von Zellen freigesetzt wird, die an der Pathogenese von allergischen und entzündlichen Prozessen beteiligt sind. Es führt im Atemtrakt zu biologischen Effekten wie Bronchokonstriktion, Chemotaxis und Erhöhung der Gefäßpermeabilität. Folglich liegt die Vermutung nahe, daß es als Mediator bei Erkrankungen des Respirationstraktes eine Rolle spielt. Auf zellulärer Ebene besteht die Wirkung von Phospholipiden darin, daß sie wichtige Zwischenprodukte bei der Signalvermittlung durch die Membran sind. PAF kann zur Bildung von Interleukinen, zum Anstieg des intrazellulären Ca²⁺-Gehaltes und zur Phosphorilierung durch die Proteinkinase C führen. PAF könnte zu einer Entzündung der Atemwege beitragen, indem es auf direktem Weg die Sekretion von Superoxidanionen induziert. Daß PAF in vivo eine solche Wirkung besitzt, zeigten Kato et al. (1993) für Alveolarmakrophagen des Meerschweinchens.

Zymosan ist bei Alveolarmakrophagen von Meerschweinchen ein guter Stimulus der Produktion des Plättchen-aktivierenden Faktors (PAF) (Tapia et al., 1989).

Steward und Phillips (1989) fanden, daß adhärente Makrophagen beim Meerschweinchen zellassoziiertes PAF enthalten, das nach Stimulation freigesetzt wird. In der Arbeit wird bei beiden Kultursystemen Zymosan als Standardstimulans für Rinderalveolarmakropagen (RAM) verwendet. Damit steht die Frage offen, ob von den Zellen sezerniertes PAF auch durch einen indirekten Mechanismus zu einer verstärkten Sekretion an reaktiven Sauerstoffspezies führt. Diese PAF-Produktion kann in vivo auch durch die Anwesenheit anderer Zellarten erfolgen, so z.B. durch Epithelzellen vom Typ I oder II oder durch neutrophile Granulocyten, die bei entzündlichen Reaktionen die Lunge infiltrieren. Eine veränderte Sekretion von Superoxidanionen nach Applikation von PAF konnten Zoratti et al. (1991) bei menschlichen eosinophilen und neutrophilen Granulocyten feststellen.

Werden neutrophile Granulocyten stimuliert, so kommt es zur PAF-Sekretion (Lynch und Henson, 1986; Satouchi et al., 1983), die über eine Mobilisierung der Arachidonsäure (AA) die Bildung freier Radikale induzieren kann (Steward und Philipps, 1989; Henerson, 1987). Die Beeinflussung von Makrophagen wird durch die exogene Applikation dreier verschiedener PAF-Konzentrationen überprüft. Dabei wird eine biphasische Wirkungsweise von PAF in Betracht gezogen: Rola-Pleszczynski und Stankova (1992) fanden, daß PAF im pico- und im mikromolaren Konzentrationsbereich das eine Mal stimulierend, das andere Mal inhibierend wirken kann.

Der Tumor Nekrose Faktor (TNF) wird durch aktivierte Makrophagen produziert und wurde anfänglich als tumorizides Protein beschrieben (Carswell et al., 1975). TNF spielt eine zentrale Rolle bei der Regulation von Entzündungs- und Immunreaktionen. Seine Sekretion wurde zuerst bei aktivierten Makrophagen beobachtet und kann nach Exposition mit Endotoxin induziert werden (Tabor et al., 1988). Die Injektion von TNF führt zum Septischen Schock, verursacht Lungenödeme und eine erhöhte Permeabilität, die mit einer Anreicherung von neutrophilen Granulocyten in der Lunge verknüpft ist (Tracey et al., 1986). Bei dem durch Endotoxine ausgelösten Septischen Schock kann es zu einem Organversagen kommen und als erstes ist davon die Lunge betroffen. Bei diesem Lungenschaden sind Entzündungszellen beteiligt, u.a. neutrophile Granulocyten und Makrophagen, die Mediatoren wie Sauerstoffradikale und Cytokine freisetzen.

Während der letzten Jahre konnte gezeigt werden, daß TNF viele Wirkungen über die der Cytotoxizität auf Tumorzellen hinaus besitzt. Zu den Wirkungen, die TNF bei Zielzellen verursacht, gehören u.a. Veränderungen beim Arachidonsäure-Metabolismus (Bachwich et al., 1986) und oxidative Schäden wie Lipidperoxidation (Zimmerman et al., 1989). Die Cytotoxizität von TNF kann durch Inhibitoren der Cyclooxygenase (Reid et al., 1989), Glucocorticoide (Tsujimoto et al., 1988; Reid et al., 1989) und Antioxidanzien (Yamauchi et al., 1989) reduziert oder verhindert werden. Diese Erkenntnisse lassen vermuten, daß die Bildung von Superoxidradikalen und anderer reaktiver Sauerstoffspezies zur Schädigung zellulärer Bestandteile führt (Freeman und Crapo, 1982), und die Freisetzung bestimmter Enzyme induziert, die an der durch TNF initiierten Cytotoxizität beteiligt sein könnten (Smolen, 1984). Eine in vivo-Applikation von TNF hat bei Ratten sogar einen direkten Einfluß auf die Produktion des Superoxidradikals: die TPA-stimulierte O_2^- -Sekretion Alveolarmakrophagen wird durch TNF erhöht (Mayer et al., 1993). Dem entgegen stehen Untersuchungen, bei denen TNF zur vermehrten Bildung antioxidativer Enzyme in der Lunge führt, wie z.B. der SOD, Katalase oder Glutathionperoxidase, die dann einen Schutz vor einer Sauerstofftoxizität vermitteln (Tsan et al., 1990; Visner et al., 1992)

Eine Modifikation der Radikalbildung durch Cytokine fanden Das und Mitarbeiter (1990) auch bei menschlichen Leukocyten, die nach Stimulation mit TNF eine verstärkte Arachidonsäure-Freisetzung zeigten. Arachidonsäure wiederum induziert die Bildung freier Radikale wie O_2^- und H_2O_2 .

Leukotrien B_4 gehört zu den Eicosanoiden und ist ein Metabolit der Arachidonsäure. Es wird bei entzündlichen Prozessen vermehrt gebildet und führt zur Aktivierung von Leukocyten.

Es verstärken sich die Hinweise darauf, daß die Endotoxinwirkung durch Lipidmediatoren wie PAF und Metaboliten der Arachidonsäure modifiziert werden könnte. In vitro-Untersuchungen zeigten, daß PAF und Leukotrien B₄ (LTB₄) potente Stimuli für die Produktion des TNF darstellen (Dinarello et al., 1984; Dubois et al., 1989). Weiterhin können Cytokine wie Interferon- γ ein wichtiges Signal zur TNF-Freisetzung darstellen (Ruggiero et al., 1986).

Ein aussagekräftiges in vitro-Modell muß mögliche Einflüsse dieser bzw. anderer Faktoren auf die Reaktion von Alveolarmakrophagen auf exogene Mediatoren mit berücksichtigen. Untersuchungen hierzu wurden sowohl in der konventionellen Submerskultur als auch in dem in vitro-Modell der Gasphasenkultur durchgeführt.

1.3. Ziele der Arbeit

Aufbauend auf diesen Erkenntnissen ergeben sich für die Arbeit folgende Ziele:

- Vergleichende Untersuchungen des Einflusses von Mediatoren und anderen Stimuli auf die Superoxidanionen- und TNF-Freisetzung von Rinderalveolarmakrophagen in Gasphasen- und Submerskultur.
- Analyse der Effekte von NO₂ auf Rinderalveolarmakrophagen im Hinblick auf die Vitalität, die Freisetzung von Enzymen, die Bildung von Superoxidanionen sowie der Sekretion von Tumor Nekrose Faktor mittels eines Kultursystems zur <u>direkten</u> Exposition von Zellen an Schadgasen.
- Prüfung der modifizierenden Wirkung von Partikeln und Surfactantbestandteilen auf die Effekte von NO₂.
- Versuche zur Eignung von differenzierten HL60-Zellen als Modellzellen für Begasungsexperimente, Einflüsse verschiedener Stimulanzien auf die Bildung von Interleukinen und Tumor Nekrose Faktor.

2. Material und Methoden

2.1. Gewinnung und Kultur der Zellen

Für die Versuche und die Kultur wurden zwei verschiedene Zelltypen verwendet: dies waren einerseits Rinderalveolarmakrophagen (RAM), die aus frisch geschlachteten Rindern gewonnen wurden und andererseits HL60-Zellen, eine akute promyelotische Leukämiezellinie.

2.1.1. Gewinnung von RAM

Die Alveolarmakrophagen (AM) wurden aus den Lungen frisch geschlachteter Rinder oder Färsen gewonnen. Dafür wurden 3 mal je 3 1 0,9% NaCl durch die Trachea in die Lunge eingefüllt und diese Lavageflüssigkeit nach leichtem Massieren der Lunge wieder abgezogen. Bei diesem Vorgang lösen sich die AM von der Lungenoberfläche ab und können durch nachfolgende Aufarbeitungsschritte der Lavageflüssigkeit angereichert werden. Dafür wurde die Lösung durch Mull und Gaze filtriert (Maschenweite 100 µm, Seidengazefabrik Eckert, Waldkirch), um eventuell in der Lunge befindliche Großpartikel zurückzuhalten. Anschließend wurde die Suspension bei 4° C und 250 g 10 Minuten lang zentrifugiert (Zentrifuge der Fa. Hettich, Rotixa, RP). Die erhaltenen Zellpellets wurden vereinigt und mit eiskalter physiologischer Kochsalzlösung gewaschen und zentrifugiert. Eine eventuell vorhandene Kontamination des Pellets mit Erythrocyten konnte durch Abspülen dieser Zellen beseitigt werden. Für die weitere Reinigung der AM wurde eine Dichtegradientenzentrifugation durchgeführt: jeweils 20 ml eiskalte Zellsuspension wurde mit 15 ml Ficoll-Paque (Fa. Pharmacia) unterschichtet und für 20 Minuten bei 250 g und 4° C zentrifugiert. Die Alveolarmakrophagen reicherten sich dabei in der Trennschicht zwischen Ficoll-Paque und Kochsalzlösung an. Sie wurden mit einer Pipette abgezogen und wiederholt in 0,9% NaCl gewaschen und dann für die Kultur in RPMI 1640 (Fa. Sigma) resuspendiert. Die Zellzahl und Vitalität wurde in einem Neubauer-Hämocytometer mit der Trypanblauausschlußmethode bestimmt. Es konnten bis zu 10⁹ Zellen erhalten werden, deren Vitalität jeweils über 90% lag. Kultur der RAM:

Die Zellzahl der AM wurde mit RPMI 1640 auf 3 x 10^6 Zellen/ml eingestellt, wobei je nach Versuchstyp jeweils 1 oder 2 ml ausplattiert wurden. Bei den Versuchen in Gasphase wurde jeweils 1 ml Zellsuspension in Membrankulturschälchen (Fa. Costar, Transwell; Durchmesser 2,5 cm, s. 2.2.2) ausplattiert. Für die Messung von Superoxidanionen in Submerskultur wurden 3 x 10^6 Zellen in 2 ml ausplattiert, bei allen anderen Versuchsansätze in Submerskultur wurden jeweils 2 ml Zellsuspension/Kulturschale ausgesät. Die hier verwendeten Plastik-Kulturschalen hatten einen Durchmesser von 3,5 cm (Fa. Greiner).

Medienzusammensetzung für die Messung von Superoxidanionen:

- 450 ml RPMI-1640(Fa. Sigma) ohne Phenolrot
 - 5 ml P/S (Penicillin/Streptomycin der Fa. Gibco; Life Technology)
 - entsprechend 100 U Penicillin (Endkonzentation) 100 μg/ml Streptomycin (Endkonzentration)

bzw.

- 2,5 µg/ml Ampicillin (Endkonzentration, Fa. Böhringer)
- 10 µg/ml Tetracyclinhydrochlorid (Endkonzentration)

Medienzusammensetzung für die übrigen Messungen:

- 450 ml RPMI-1640 (Fa. Sigma)
 - 5 ml P/S (Fa. Gibco)

Die Kulturschalen wurden zum Adhärieren der Zellen 2 Stunden lang bei 37°C, 5% CO₂ im Brutschrank inkubiert. Anschließend wurden die nicht adhärenten Zellen abgesaugt und Medium für die Über-Nacht-Kultur entsprechend dem jeweiligen Versuchsansatz auf bzw. unter die Zellen gegeben.

2.1.2 Kultur von HL60-Zellen

HL60-Zellen stammen ursprünglich von einer Patientin mit einer akuten promyelotischen Leukämie (Collins et al., 1977) und wurden 1977 von Collins in Kultur gebracht. Die Zellen sind primär undifferenziert und werden in Suspension kultiviert. Diese primär undifferenzierten HL60-Zellen können durch Zugabe bestimmter Substanzen in Richtung Granulocyten (durch Applikation von 1,3% DMSO für 4 oder 5 Tage, Collins et al. 1977; Collins et al. 1978; Newburger et al., 1979) oder Makrophagen (durch Applikation von Calcitriol 10⁻⁶ M für 4 Tage, Rossi et al., 1987) differenziert werden. Die in dieser Arbeit verwendeten HL60-Zellen stammen von der Fa. ATCC (American Type Culture Collection, USA).

Diese kontinuierliche Kultur erfordert ein regelmäßiges Passagieren der Zellen, denn undifferenzierte HL60-Zellen teilen sich permanent mit einer Verdopplungszeit von 24 Stunden (differenzierte Zellen stellen ihre Teilungsaktivität ein, Collins et al., 1978). Die laufende Kultur wurde jeweils alle drei bis vier Tage passagiert: 5 x 10^6 Zellen wurden der vorhergehenden Kulturflasche (75 cm² Wachstumsfläche, Fa. Greiner) entnommen, in eine neue gegeben und mit neuem Kulturmedium auf 20 ml ergänzt.

Zusammensetzung des Kulturmediums:

- 450 ml RPMI 1640 (Fa. Sigma), je nach Kulturansatz mit oder ohne Phenolrot
 - 75 ml FCS (fötales Kälberserum) für 30 Minuten bei 56°C hitzeinaktiviert (Fa. Gibco)
 - 7,5 ml L-Glutamin (Fa. Sigma), 200 mM
 - 5 ml Natriumpyruvat (Fa. Sigma), 100 mM
 - 5 ml MEM 100 x (non essential amino acids, Fa. Gibco)
 - 5 ml P/S (Fa. Gibco)

Für die Differenzierung der HL60-Zellen in Richtung Makrophagen wurden die Zellen mit 10^{-6} M Calcitriol (1 α , 25-dihydroxy-Vitamin D₃, Fa. Hoffman La Roche, Basel) im Kulturmedium auf die Membranen der Gasphasenkulturschälchen ausgesät (Transwell, Fa. Costar, s.2.2.2). 1 ml der Zellsuspension wurden für eine Differenzierungszeit von 3 Tagen (Versuchsdurchführung am 3. Tag) je Membran ausgesät. Diese Zelldichte gewährleistet, daß sich am Versuchstag die Zellen auf eine Zellzahl von ca. 3 x 10⁶ Zellen vermehrt hatten.

Um die HL60-Zellen zu neutrophilen Granulocyten zu differenzieren, wurden die Kulturflaschen mit den undifferenzierten Zellen mit 1,3% DMSO (Fa. Serva) versetzt und am 5. oder 6. Differenzierungstag für den Versuch verwendet. Dafür wurden pro Gasphasenkulturschale 3 x 10^6 Zellen in 1 ml Medium ausplattiert. Durch das Absaugen des Mediums unterhalb der Membran, lief die auf der Membran befindliche Flüssigkeit durch die Membran hindurch, so daß sich ca. 1 ml davon unterhalb der Zellen befand, und diese in Gasphase saßen.

2.2. Kultur und Exposition der Zellen in Gasphase bzw. in Submerskultur

2.2.1. Allgemeines

Zur besseren Annäherung an physiologische Bedingungen wurden die Zellen in Gasphase in speziellen Luftkulturschälchen (s. Schemazeichnung) kultiviert. Diese Kultivierungsmethode ermöglicht einen direkten Kontakt der Zellen mit dem Expositionsgas ohne Vitalitätsverlust. Die Exposition der Zellen im jeweiligen Gas wurde in Anlehnung an eine Methode von Voisin

et al. (1977) in 2 speziell angefertigten Expositionskammern (Fa. Maton, Lille, Frankreich) durchgeführt.

Diese Expositionskammern ermöglichten das Aussetzen von Zellen gegenüber Gasen: eine Luftkammer, in der die Zellen mit synthetischer Luft mit 5% CO_2 inkubiert wurden und eine NO₂-Kammer, in der die Zellen mit unterschiedlichen Konzentrationen an NO₂ und 5% CO_2 ausgesetzt werden konnten. Zur Beschickung dieser Kammern mit den entsprechenden Gasgemischen wurde durch die Fa. Messer Griesheim, Karlsruhe, eine Gasanlage installiert, die sich aus folgenden Komponenten zusammensetzte:

Ein Sicherheitsschrank, in dem drei 40 Liter Gasflaschen für die Entnahme bereitstanden, ein Leitungssystem, das den Sicherheitsschrank mit den Entnahmestellen im Labor verband und 3 Entnahmestellen, an die folgende Druckluftflaschen angeschlossen waren:

- 1. synthetische Luft mit 5% CO_2
- 5 bzw. 3 ppm NO₂ (NO₂ wurde als Gasgemisch bezogen: 5 bzw. 3 VPM Stickstoffdioxid, Rest: synthetische Luft, 150 bar Fülldruck)
- 3. CO₂

Das Gas nach Punkt 1 diente der Beschickung der Expositionskammer 1, die Gase nach Punkt 2 und 3 mußten vor Beschickung der Expositionskammer 2 im richtigen Verhältnis (NO₂ zu CO₂) mit Hilfe einer Gasmischglaskugel (Fa. Maton, Lille, Frankreich) vollständig durchmischt werden. Dies war aus technischen Gründen notwendig, da eine Gasflasche, die eine bestimmte Konzentration an NO₂ enthielt, nicht noch gleichzeitig mit 5% CO₂ beschickt werden konnte. Die Entnahmestellen selbst bestanden pro Einheit aus einem Druckminderer, der den schwankenden Vordruck des Leitungssystems auf 1 bar konstant hielt und einem Durchflußmengenmesser, der einen Gasfluß von 0,5 l/min. gewährleistete, denn bei höheren Gasdurchflußraten bestand die Gefahr einer Austrocknung der Zellen. Ein Silikon- bzw.

Material und Methoden

Teflonschlauch (für aggressive Gase wie NO₂) verband die Entnahmestelle mit der Expositionskammer 1 oder 2 (siehe nachfolgende schematische Darstellung).

Die Expositionskammer bestand aus einer Außenkammer, die mit Wasser gefüllt war, das auf 37°C geheizt werden konnte. In diese Außenkammer war eine zweite Kammer eingesenkt, in der die eigentliche Exposition der Zellen in Gasphase erfolgte, und in die das jeweilige Expositionsgas ein- und ausströmte. Diese Innenkammer besaß einen fest anschraubbaren Deckel, der zur Beschickung der Kammern mit Zellkulturschalen vor Versuchsbeginn geöffnet und nach Beschickung wieder fest verschlossen werden konnte. Dies war für die anschließende Inkubation von Bedeutung, für die die gesamte Innenkammer in das Wasser der Außenkammer abgesenkt und fixiert wurde, so daß die Innenkammer mit Wasser umspült wurde. Auf der Oberseite der Innenkammer befanden sich auch noch die Ein- und Austrittsstutzen für das Gas, das durch das Seitenteil eines Lochblecheinsatzes in den eigentlichen Expositionsraum ein- und auf der gegenüberliegenden Seite wieder austrat. Der Boden des Einsatzes diente als Standfläche für die Gasphasenkulturschalen. Der Zwischenraum zwischen Boden der

Innenkammer und Boden des Einsatzes wurde mit Wasser beschickt, um eine genügend hohe Luftfeuchtigkeit für die Zellkultur zu gewährleisten.

Die Abführung des Gases erfolgte durch einen Silikon- oder Teflonschlauch in die Außenluft. Die folgende Abbildung zeigt einen schematischen Querschnitt durch die beiden Inkubationskammern:

Begasungskammer nach Voisin

Da ein solches Gasleitungssystem Leckagen besitzt, die nicht vollständig zu eliminieren sind, wurde die Messung der NO₂-Konzentration, die in der Kammer herrschte, nach dem Austreten des Gases aus der Expositionskammer vorgenommen. Die Messungen erfolgten mit einem portablen NO₂- und SO₂-Meßgerät ECS 102-1 der Fa. MPS Sensor Systems. Der NO₂-Meßbereich dieses Gerätes liegt zwischen 0 und 200 ppm, und die Meßgenauigkeit beträgt 1% vom Endwert, wobei die Detektion des Meßgases mit Hilfe elektrochemischer Zellen durchgeführt wird. NO₂-Messungen ergaben beim Anschluß einer Flasche mit 5 ppm NO₂ bei Austritt des Gases aus der Kammer eine Konzentration von 3 ppm NO₂, und bei einer Flasche mit 3 ppm NO₂ eine Konzentration von 1,5 ppm NO₂.

Ferner sollte angemerkt werden, daß NO_2 eine relativ schlechte Löslichkeit in Wasser besitzt, somit also keine Wechselwirkung mit einem angesäuerten Wasserdampf in der Kammer und den Zellen zu befürchten war.

2.2.2. Kultur der Zellen in Gasphase

Zur Kultivierung der Zellen in Gasphase wurden die Membrankulturschälchen "Transwell" der Fa. Costar verwendet. Eine Einheit bestand aus 6 Vertiefungen, wobei über jede Vertiefung ein Einsatz aufgesetzt wurde. Dieser Einsatz trug an seiner Basis eine Polycarbonatmembran, die mit 0,4 μ m großen Poren regelmäßig durchsetzt war. Der Boden des Einsatzes, also die Membran, hat ca. 3 mm Abstand zur eigentlichen Vertiefung. Sollten Zellen in Gasphase kultiviert werden, so wurden sie mit Medium auf die Membran ausplattiert und absitzen

gelassen. Während dieses Adhärierungsvorganges streckten die Zellen zahlreiche Pseudopodien durch die Poren der Membran hindurch. Zum Mediumwechsel wurde das Medium über den Zellen abgesaugt und je Einsatz 1 ml neues Medium in den Zwischenraum zwischen Vertiefung und Membranboden gegeben (eine dort befindliche Flüssigkeit wird nachfolgend als "Zellunterstand" oder "Unterstand unter der Membran" bezeichnet). Die Zellen waren nun direkt dem sie umgebenden Gas exponiert und konnten sich gleichzeitig mit Hilfe ihrer Pseudopodien ernähren und vollständig vital bleiben (siehe nachfolgende Abbildung).

Petrischale zur Gasphasenkultur

2.2.2.1. Gasphasenkultur von RAM

Für die Versuche mit RAM wurden die Zellen direkt nach ihrer Isolierung, also am Tag vor Versuchsbeginn, in einer Konzentration von 3×10^6 Zellen pro ml pro Gasphasenkulturschälchen ausplattiert.

Da sich aus Vorversuchen ergab, daß ein Mediumwechsel direkt vor Versuchsbeginn voraktivierend auf die Zellen wirken kann, wurden RAM bereits über Nacht in Gasphase kultiviert und dann unverändert zur Inkubation in die Kammern gestellt. Die Inkubationsdauer betrug sowohl in der Luft- als auch in der NO₂-Kammer 2 Stunden.

Bei den Untersuchungen über die Schadgaswirkung von NO₂ wurde ein Ansatz in der NO₂-Kammer (3,0 oder 1,5 ppm NO₂ mit jeweils 5% CO₂) durchgeführt und mit dem Luftkammeransatz (synthetische Luft mit 5% CO₂) verglichen. Bei den Versuchen, denen lediglich eine Gasphasenkultur in Luft zugrunde lag, entfiel der NO₂-Ansatz.

2.2.2.2. Gasphasenkultur von HL60-Zellen

Undifferenzierte HL60-Zellen wurden für die Gasphasenkultur entweder in Kulturflaschen oder direkt in den Luftkulturschälchen differenziert.

Die Messung der Superoxidanionenfreisetzung durch differenzierte HL60-Zellen in Gasphase wurde sowohl mit HL60 Granulocyten als auch mit HL60 Makrophagen durchgeführt. HL60 Granulocyten:

Um HL60 Granulocyten zu erhalten, wurden $4,3 \ge 10^7$ undifferenzierte HL60-Zellen in 43 ml RPMI 1640 mit 1,3% DMSO in Kulturflaschen (Gesamtvolumen 250 ml, Fa. Greiner) für 5 oder 6 Tage differenziert. Am Versuchstag wurden die Zellen abzentrifugiert (250 g für 10 Minuten) und mit HL60-Medium ohne Phenolrot und ohne FCS auf eine Zellzahl von 3 x 10⁶ Zellen /ml eingestellt. Phenolrot stört die spektralphotometrischen Messungen bei 550 nm und das Weglassen von FCS war deshalb notwendig, weil es als Radikalfänger wirken kann und dadurch Superoxidanionen hätte wegfangen können. Jeweils 1 ml der Zellsuspension wurde dann auf ein Luftkulturschälchen gegeben und die Zellen in Gasphase überführt. Hierzu wurde 1 ml Medium unter die Membran gegeben, um durch Benetzung der Membran zu ermöglichen, daß das Medium oberhalb der Membran nach unten durchläuft, und die Zellen an der Luft exponiert sitzen. Es wurde dann gerade soviel Medium unterhalb der Membran abgezogen, daß sie an ihrer Basis vollständig befeuchtet war.

HL60 Makrophagen:

Die HL60 Makrophagen wurden mit einer Zelldichte von 1,0 x 10^6 Zellen pro ml zur Differenzierung in HL60-Medium mit 10^{-6} M Calcitriol (ohne Phenolrot) angesetzt und 1,5 ml dieser Zellsuspension pro Luftkulturschale ausgesät. Diese Zellzahl gewährleistete, daß sich am 3. Tag der Differenzierung, also am Versuchstag, ungefähr 3 x 10^6 Zellen auf der Membran befanden. Unter die Membran wurden 2,5 ml HL60-Medium mit Calcitriol gegeben, um einen allseitigen Kontakt der Zellen mit Calcitriol zu gewährleisten, denn die Differenzierung selbst wurde nicht in Gasphase, sondern in Submerskultur durchgeführt. Am 3. Differenzierungstag wurden die Zellen zuerst in Gasphase gebracht. Dazu wurde das Medium unterhalb der Membran entfernt, was das Durchlaufen des Mediums oberhalb der Membran nach unten zur Folge hatte, und die Zellen noch mehrmals mit FCS-freiem HL60-Medium ohne Phenolrot gewaschen.

Waren die Zellen in Gasphase gebracht worden, so wurden die Kulturschälchen für 2 Stunden in die Luftkammer gestellt und nachfolgend für Messungen verwendet.

2.2.3. Kultur von RAM in der konventionellen Submerskultur

Die AM wurden für die Messung von Superoxidanionen in einer Konzentration von 3×10^6 Zellen/ 2 ml Kulturmedium in Plastikkulturschalen (Makroplatte mit 6 Vertiefungen, Fa. Greiner) ausgesät. Das hierfür verwendete Zellkulturmedium war RPMI 1640 ohne Phenolrot. Zur Quantifizierung der TNF-Sekretion von AM in Submerskultur wurden pro Plastikkulturschale 6 x 10⁶ Zellen in 2 ml RPMI 1640 ausplattiert. Die nachfolgende Abbildung zeigt einen Vergleich zwischen der Kultur in Gasphase und der konventionellen Submerskultur:

Kultur in Gasphase

Submerskultur

2.3. Morphologische und biochemische Betrachtungen

2.3.1. Fluoreszenzmikroskopie - Vitalitätstest mit Ethidiumbromid und Fluoresceindiacetat

Die Vitalitätsbestimmung bei den Gasphasenkulturen erfolgte mit einer Farblösung, die aus Ethidiumbromid (EtBr) und Fluoresceindiacetat (FDA) besteht. Eine Bestimmung mit Trypanblau war nicht möglich, da der Farbstoff zwar die toten Zellen blau färbt, die lebenden aber auf der Membran nicht sichtbar sind.

Der hier verwendete Vitalitätstest wurde nach einer Methode von Dankberg und Persidsky (1976) durchgeführt. Vitale Zellen mit intakter Zellmembran fluoreszieren grün, da Fluoresceindiacetat als unpolarer, fluoreszierender Ester in die Zelle eindringt und im Zellinneren durch Esterasen gespalten wird. Dadurch kommt es zur Freisetzung von Fluorescein. Fluorescein wiederum ist ein polares Molekül und kann die intakte Zelle nicht verlassen. Es reichert sich rasch in der Zelle an und führt zu einer grünen Fluoreszenz unter UV-Anregung. Bei Zellen mit geschädigten Membranen dagegen tritt das Fluorescein so schnell aus wie das Fluoresceindiacetat in die Zelle eindringt, und es kommt zu keiner Fluoreszenz. Tote Zellen mit zerstörten Membranen haben demgegenüber einen rot fluoreszierenden Zellkern, da Ethidiumbromid ungehindert in die Zelle eindringen und mit der Kern-DNA einen rot fluoreszierenden Komplex bilden kann.

Der Vitalitätstest wurde folgendermaßen durchgeführt:

Zu Beginn wurden Stammlösungen von Ethidiumbromid (Fa. Serva, 200 μ g/ml in HBSS) und Fluoresceindiacetat (Fa. Sigma, 5 mg/ml in Aceton) hergestellt und bei -20° C aufbewahrt.

Im Versuch selbst wurde jeweils eine frische Fluoresceindiacetat/Ethidiumbromidlösung hergestellt. Dazu wurden 100 μ l der Ethidiumbromidstammlösung und 2 μ l der Fluoresceindiacetatstammlösung mit 4,9 ml HBSS vermischt. Die Membran wurde mit einem Skalpell aus ihrer Halterung herausgeschnitten, in eine Petrischale gelegt und für 10 Minuten mit 2 ml der frisch hergestellten Lösung bei Raumtemperatur inkubiert. Danach wurde die Membran auf einen mit 0,9% NaCl-Lösung befeuchteten Objektträger überführt, mit einem Deckglas bedeckt und im Fluoreszenzmikroskop (Fa. Leitz Diaplan, Filter I2, Anregungswellenlänge 450-490 nm) betrachtet und die grünen, lebenden Zellen von den roten Kernen der toten bzw. beschädigten Zellen unterschieden.

Die Vitalität lag vor Versuchsbeginn in jedem Fall über 90%.

2.3.2. Lichtmikroskopie - Vitalitätstest mit Trypanblau

Bei den Versuchen in Submerskultur wurde mit den am Boden der Petrischale befindlichen Zellen ein Vitalitätstest durchgeführt.

Dafür wurde 1 ml einer Trypanblaulösung (Fa. Sigma, 0,5% in NaCl) mit 1 ml NaCl (0,9%) gemischt und für 2 Minuten auf die Zellen gegeben. Die Farblösung wurde anschließend abgenommen und die Zellen zweimal vorsichtig mit 0,9 % NaCl-Lösung gewaschen. An vier verschiedenen, zufällig gewählten Stellen wurden mit dem Okularmikrometer (Fa. Leitz Periplan GF 10 x 18 M) die toten, durch Trypanblau angefärbten Zellen und die lebenden, nicht angefärbten Zellen ausgezählt und die Vitalität berechnet.

Zellen, die nicht adhärent auf dem Boden der Petrischale waren (HL60 Makrophagen und HL60 Granulocyten), wurden mit einer Transferpipette abgezogen und in einem Eppendorfgefäß abzentrifugiert (250 g, 10 min.). Anschließend wurden die Zellen in der mit NaCl gemischten Trypanblaulösung aufgenommen und auf ihre Vitalität hin überprüft.

Die Vitalität lag bei RAM vor Versuchsbeginn in jedem Fall über 90 % und bei HL60-Zellen über 80%.

2.3.3. Untersuchungen zur Enzymfreisetzung

2.3.3.1. Laktatdehydrogenase (LDH)

Messungen zur Freisetzung der cytoplasmatischen Laktatdehydrogenase in den Zellunterstand bei Gasphasenkulturen von RAM wurden mit kommerziell erhältlichen Tests durchgeführt (Fa. Sigma).

Dem Test liegt folgendes Reaktionsprinzip zugrunde:

[LDH]Pyruvat + NADH + H⁺ -----> Laktat + NAD⁺

Die Extinktion wurde bei 340 nm im Beckmann DU-65 Spektrophotometer gemessen. Die LDH-Aktivität (gemessen in Units/l) errechnete sich aus der Extinktionsabnahme pro Minute, die gesamte Meßdauer erstreckte sich über 3 Minuten, mit je einer Messung pro 30 Sekunden. Als interner Standard und auch bei der Überprüfung einer eventuellen Zerstörung der LDH durch Begasung von Zellunterständen mit NO₂ diente das Kontrollserum Precinorm E (Fa. Boehringer, Mannheim).

2.3.3.2. N-Acetyl-B-D-Glucosaminidase (NAG)

Messungen zur Freisetzung der lysosomalen NAG in den Zellunterstand bei Gasphasenkulturen von RAM erfolgten nach der Methode von Andersen et al. (1982). Bei dieser fluoreszenzphotometrischen Meßmethode wird die Aktivität des Enzyms anhand der Menge des gebildeten 4-Methylumbelliferon (Fa. Sigma) bestimmt.

Bei diesem Ansatz läuft folgende Reaktion ab:

4-Methylumbelliferyl-N-Acetyl- β -D-Glucosamid + H₂O -------

-----> 4-Methylumbelliferon + N-Acetyl-β-D-Glucosamin

Dafür wurden folgende Reagenzien benötigt:

Substrat (Fa. Sigma): 4-Methylumbelliferyl-N-Acetyl-B-D-Glucosamid, 1 mM in Laktatpuffer

Laktatpuffer: 40 mM Na-Laktat, mit Milchsäure auf pH 3,7 eingestellt

Carbonat-Bicarbonat-Puffer (Fa. Merck): Lösung A: 0,2 M Na₂CO₃ Lösung B: 0,2 M NaHCO₃ Lösung A wurde mit Lösung B auf pH 10,5 eingestellt.

Durchführung:

10 μ l Triton X-100 (10%, Fa. Serva) wurden mit 100 μ l Probe und 100 μ l Substrat gemischt und für 30 Minuten bei 37°C im Wasserbad inkubiert. Das Stoppen der Reaktion erfolgte mit 1 ml des Carbonat-Bicarbonat-Puffers, und die Proben wurden im Anschluß daran an einem Lumineszenzphotometer (Fa. Perkin Elmer, LS 5B) bei einer Anregungswellenlänge von 371 nm und einer Emissionswellenlänge von 450 nm mit einem 1% Filter gemessen (Messung der Zunahme an 4-Methylumbelliferon).

2.4. Assays und Reagenzien

2.4.1. Messung von Superoxidanionen

2.4.1.1. Allgemeines

Die Messung von Superoxidanionen erfolgte nach der Methode von Johnston (1981). Es wird nochmals darauf hingewiesen, daß in Übereinstimmung mit der allgemein üblichen Nomenklatur das Superoxidanionenradikal kurz als Superoxidanion bezeichnet wird. Das Prinzip der Messung beruht auf der reversiblen Reduktion von Cytochrom c. Cytochrom c besitzt ein zentrales Fe-Atom, das sowohl im reduzierten wie auch im oxidierten Zustand vorliegen kann. Das reduzierte Cytochrom c besitzt eine alpha- und eine beta-Bande. Das Absorptionsmaximum der alpha-Bande liegt bei einer Wellenlänge von 550 nm und ist spektralphotometrisch genau quantifizierbar. Diese Bande verschwindet, wenn Cytochrom c in oxidiertem Zustand vorliegt. In der Reaktionslösung liegt das Cytochrom c im oxidierten Zustand vor. Werden in die Reaktionslösung Radikale durch Zellen abgegeben, die das Cytochrom c reduzieren können, so kann die Menge der sezernierten Radikale bei 550 nm quantitativ erfaßt werden. Um eine unspezifische Reduktion von Cytochrom c auszuschließen, wird parallel zu den eigentlichen Messung jeweils ein Ansatz gemacht, der mindestens zusätzlich zum Cytochrom c noch Superoxiddismutase (SOD) enthält. Die SOD ist ein zelluläres Enzym, das durch seinen chemischen Aufbau in der Lage ist, spezifisch Superoxidanionen abzufangen. In der Zelle hat es die Aufgabe, die sezernierten Superoxidanionen abzufangen und so die Zelle vor einer Reduktion ihrer Komponenten zu schützen. In diesem hier verwandten in vitro-System erfüllt sie die gleiche Aufgabe, nämlich O_2^- Ionen zu O_2 und H_2O_2 umzuwandeln. Subtrahiert man die Meßwerte der Ansätze mit SOD von denen ohne SOD, so erhält man als Differenz genau den Betrag, der an O_2^- Ionen durch das System produziert wurde. Dieses Meßprinzip ändert sich nicht, wenn den Reaktionslösungen Stimuli hinzugefügt werden, deren Einflüsse getestet werden sollen. Dabei ist zu beachten, daß die Stimuli auch jeweils bei den Ansätzen mit SOD hinzugegeben werden müssen, denn es kann nicht ohne weiteres eine Interaktion zwischen Stimulus und Cyt. c ausgeschlossen werden. Die Inkubationszeit mit der Reaktionslösung betrug 90 Minuten, dies war in Vorversuchen zur Zeitabhängigkeit der Reaktion als optimal ermittelt worden (Lind, 1989).

2.4.1.2. Reagenzien

Hank's balanced salt solution (HBSS) ohne Phenolrot und ohne Natriumbicarbonat (Fa. Sigma) wurde als Grundlage für die Herstellung der Reaktionslösungen verwendet. Pro Liter HBSS wurden 0,35 g Natriumbicarbonat zugesetzt. Um nach der anschließenden Sterilfiltration (Millipore Schlauchpumpe, Millipore Sterivex GV-Filtereinheit mit Füllglocke) einen pH von 7,4 zu erhalten, wurde der pH vor der Sterilfiltration mit 1 M NaOH oder 1 M HCl 0,2 bis 0,3 Einheiten unter dem gewünschten pH eingestellt.

Cytochrom c (aus Pferdeherzen, Typ VI, mindestens 90% liegen in der oxidierten Form vor, Fa. Sigma)

Konzentration in der Stammlösung

Vor Versuchsbeginn wurde eine 1,2 mM Stammlösung hergestellt. Dafür wurde die für den jeweiligen Versuch benötigte Menge Cytochrom c (MG 12.384) in HBSS gelöst und anschließend sterilfiltriert (Sterilfilter der Fa. Schleicher und Schüll, Porendurchmesser 0,45 μ m).

Konzentration in der Reaktionslösung

Die Cytochrom c Konzentration betrug 80 µM in 1,5 ml Reaktionslösung

Superoxiddismutase (SOD, aus Rindererythrocyten, Fa. Sigma).

Konzentration in der Stammlösung

Zur Herstellung einer Stammlösung mit der Konzentration von 30.000 U wurde die SOD in destilliertem Wasser aufgelöst und dann sterilfiltriert (Sterilfilter der Fa. Schleicher und Schüll, Porendurchmesser 0,45 µm). Die Stammlösung wurde bei -20°C tiefgefroren und nach Bedarf aufgetaut.

Konzentration in der Reaktionslösung

Die Konzentration an SOD in der Reaktionslösung betrug 120 U/ml.

Zymosan (von Saccaromyces cerevisiae, Fa. Sigma)

Da Makrophagen u.U. opsoniertes Zymosan schneller phagocytieren, wurde das Zymosan vor Versuchsbeginn in allen Fällen opsoniert.

Die Opsonierung wurde nach folgenden Schritten durchgeführt:

Ausgangsmenge: 1g

1 g Zymosan wurde in ca. 100 ml 0,9% NaCl suspendiert. Die Suspension wurde im Wasserbad für 1 Stunde unter ständigem Rühren gekocht. Danach erfolgte eine Zentrifugation für 15 Minuten bei 2000 g. Anschließend wurde das Sediment einmal mit physiologischer Kochsalzlösung gewaschen und anschließend in 20 ml 0,9% NaCl resuspendiert, so daß eine Konzentration von 50 mg/ml eingestellt wurde. Die Opsonierung erfolgte, indem ein Teil Zymosan mit drei Teilen FCS (20 ml Zymosan und 60 ml fötales Kälberserum) für 20 Minuten bei 37°C unter mehrmaligem Rühren inkubiert wurde. Dann wurde bei 2000 g für 15 Minuten zentrifugiert, einmal mit 0,9% iger NaCl gewaschen, erneut zentrifugiert und in 100 ml physiologischer Kochsalzlösung resuspendiert, so daß eine Konzentration von 10 mg Zymosan/ml eingestellt wurde. Opsoniertes Zymosan kann bei -20°C für längere Zeit gelagert werden. Da sich das Zymosan in der Suspension sehr leicht absetzte, mußte vor dem Einfrieren darauf geachtet werden, daß das Zymosan unter ständigem Rühren entnommen wurde, um die gleiche Zymosankonzentration in allen eingefrorenen Aliquots zu gewährleisten.

Konzentration in der Reaktionslösung

Die Zymosankonzentration in der Reaktionslösung war 1 mg/ml.

TNF (Tumor Nekrose Faktor, Fa. Boehringer, Mannheim)

Der humane, rekombinante Tumor Necrose Factor- α wird aus E.coli gewonnen. Die Primärstruktur ist mit der des natürlichen, humanen TNF- α identisch. TNF- α lag mit einer Konzentration von 10 µg/ml in PBS gelöst vor und war mit 1 mg/ml BSA stabilisiert. Die Verdünnung erfolgte mit Kulturmedium (RPMI 1640), das 1 mg/ml BSA enthielt.

PAF (Plättchen aktivierender Faktor, Fa. Serva)

Das pulverförminge C₁₆-PAF wurde in Methanol gelöst, Stammlösungen verschiedener Konzentrationen hergestellt und diese in gasdichte Röhrchen zur Aufbewahrung abgefüllt. Die zur Superoxidanionenmessung verwendeten Konzentrationen waren: 10^{-14} M, 10^{-12} M und 10^{-6} M. Die PAF-Stammlösungen wurden nach jeder Entnahme mit N₂ überschichtet, um eine Oxidation von Doppelbindungen im Molekül durch Luftsauerstoff zu verhindern.

LTB₄ (Leukotrien B₄, Fa. Paesel)

Stammlösungen von LTB₄ wurden in verschiedenen Konzentrationen mit Methanol hergestellt. Im Versuch wurde LTB₄ 10 nM, 20 nM und mit einer Konzentration von 800 nM verwandt. Die LTB₄-Stammlösungen wurden ebenfalls nach jeder Entnahme mit N₂ überschichtet.

TPA (12-O-tetradecanoylphorbol-13-acetat, Fa. Sigma)

Der Phorbolester wurde in Dimethylsulfoxid (DMSO, Fa. Serva) gelöst und bei -20° C gelagert. Im Versuch wurde TPA in einer Konzentration von 10 und 20 ng/ml verwandt.

A 23187 (Fa. Sigma)

Das Ca²⁺-Ionophor wurde in einer 2 μ M- und 200 μ M-Stammlösung in DMSO aufbewahrt und kam im Versuch in einer Konzentration von 10 nM, 100 nM und 1 μ M zur Anwendung.

LPS (Lipopolysaccharid, Fa. Sigma)

In den Versuchen wurde Lipopolysaccarid von Salmonella abortus equi verwandt. Die Konzentration der Stammlösung war 1 mg/ml in PBS und die der Reaktionslösung 10 μ g/ml. Aliquots der Stammlösung wurden bei -20° C gelagert.

DPL (L-α Phosphatidylcholin Dipalmitoyl, Fa. Sigma)

DPL wurde in einer Konzentration von 100 μ g pro ml RPMI 1640 (ohne Phenolrot) für 3 Minuten mit Ultraschall emulgiert (Branson Sonifier B 15, Einstellung 50%).

Vor Inkubation der Gasphasenkulturen in den Kammern wurde je Membran 1 ml DPL-Lösung auf die in Gasphase befindlichen Zellen ausplattiert. Das Medium unterhalb der Membran wurde solange entfernt, bis es vollständig nach unten durchgelaufen war und sich die Zellen wieder in Gasphase befanden. Somit waren die Zellen zu Versuchsbeginn mit DPL "bedeckt".

2.4.1.3. Messungen von Superoxidanionen in Gasphase

Die Vorgehensweise war hier für die HL60 - und RAM-Ansätze dieselbe.

Die Zellen wurden nach Inkubation in den Expositionskammern für zwei Stunden für die nachfolgende O_2^- -Messung folgendermaßen weiterbehandelt: Die Membran eines jeden Ansatzes mit den anhaftenden Zellen wurde mit dem Skalpell vollständig aus der Plastik-Halterung herausgeschnitten und mit den Zellen obenauf in eine neue Kulturschale hineingelegt. Daraufhin wurden sofort 1,5 ml der jeweiligen Reaktionslösung in die Vertiefung pipettiert. Bei den Ansätzen, die Zymosan enthielten, wurde die gesamte Reaktionslösung gründlich geschüttelt, um ein Absetzen des Zymosans zu verhindern. Die Kulturschälchen wurden dann für die 90minütige Inkubationszeit in den Brutschrank gestellt. Danach wurden die Zellüberstände abgenommen, in 2 ml Eppendorfgefäße pipettiert und für zehn Minuten bei 250 g (4°C) abzentrifugiert, um Partikel aus der zu quantifizierenden Lösung zu entfernen. Nach der Zentrifugation wurden die Überstände in 1 ml Plastikküvetten pipettiert und bei 550 nm gemessen.

2.4.1.4. Messungen von Superoxidanionen in Submerskultur

Die Überstände in den Kulturschälchen wurden nach der Übernacht-Inkubation im Brutschrank abgezogen und pro Vertiefung 1,5 ml Reaktionslösung auf die Zellen gegeben. Diese Ansätze

wurden ebenfalls für neunzig Minuten im Brutschrank bei 37°C und 5% CO₂ inkubiert. Danach wurden die Überstände wie unter 2.4.1.3. beschrieben weiterbehandelt. Pro Reaktionslösung wurden jeweils drei Parallelansätze hergestellt.

2.4.2. TNF-Quantifizierung

2.4.2.1. TNF-Bestimmung bei RAM durch den WEHI-Bioassay

2.4.2.1.1. Allgemeines

Dieser Bioassay basiert auf der cytotoxischen Wirkung von TNF auf WEHI-Zellen.

WEHI-Zellen sind eine TNF-sensitive Fibroblastenzellinie der Maus, die auf ihre Sensitivität gegenüber TNF selektiert wurde. Dieser Assay unter Verwendung des WEHI-Subklons 164/13 wurde in unserem Labor durch Matejka (1992) nach der Methode von Espevik und Nissen-Meyer (1986) eingeführt. Die Zellen wurden uns freundlicherweise von der Arbeitsgruppe Prof. Wendel, Institut für Biochemie und Pharmakologie der Universität Konstanz, zur Verfügung gestellt.

Eine Inkubation TNF-haltiger Lösungen mit WEHI-Zellen führte konzentrationsabhängig zum Vitalitätsverlust der Zellen. Nach einer bestimmten Inkubationsdauer mit der zu untersuchenden Probe wurde (3-[4,5-Dimethyl-2-thiazolyl]-2,5-diphenyl-2H-MTT Tetrazoliumbromid) auf Zellen und Probe appliziert. MTT wird von noch lebenden Zellen in ihren Mitochondrien durch eine succinatabhängige Dehydrogenase zu einem Farbstoff, dem blauen Formazan, umgewandelt. Dies ist ebenfalls ein konzentrationsabhängiger Vorgang - die Menge des gebildeten Farbstoffs ist ein Maß für die Zahl der lebenden Zellen und damit umgekehrt proportional zur TNF-Konzentration der Proben. Nach Lyse der Zellen durch ein Detergens wird der Farbstoff freigesetzt und kann spektralphotometrisch bei 550 nm gemessen werden.

2.4.2.1.2. Reagenzien

Folgende Substanzen wurden auf ihre Fähigkeit hin untersucht, bei RAM eine TNF-Freisetzung zu stimulieren:

LPS (Lipopolysaccharid, Fa. Sigma)

Als Standardstimulans zur Induktion einer TNF-Sekretion bei RAM diente LPS. s. unter 2.4.1.2.

PAF (Plättchen-aktivierender Faktor, Fa. Serva)

s. unter 2.4.1.2.

Im Versuch wurde PAF mit der Konzentration 1 ng/ml verwandt.

Leukotrien B₄ (LTB₄, Fa. Paesel) s. unter 2.4.1.2. Im Versuch wurde LTB₄ in den Konzentrationen 20 nM und 160 nM verwandt.

Dexamethason (Fa. Sigma)

Dexamethason befand sich in einer Stammlösung mit der Konzentration von 10^{-4} M in Ethanol, es wurde mit einer Konzentration von 2 x 10^{-7} M in der Reaktionslösung verwandt. Dexamethason ist lichtempfindlich und wurde daher dunkel und bei -20° C gelagert.

IFN-γ (Interferon-γ, Fa. Boehringer, Mannheim)

IFN- γ wurde in einer Stammlösung mit der Konzentration 50.000 U in 1 ml PBS, stabilisiert mit BSA (1 mg/ml) bezogen und Aliquots mit folgenden Konzentrationen hergestellt (denn wiederholtes Auftauen und Einfrieren sollte vermieden werden): 100 µl mit je 5.000 Units in PBS mit BSA (1 mg/ml), die bei - 20° C gelagert wurden.

Die Endkonzentrationen bei den Versuchen waren 750 und 1.000 U/ml.

DPL (L-α-Phosphatidylcholin-Dipalmitoyl, Fa. Sigma)

DPL wurde für das "Coaten" der Zellen mit einer Konzentration von 100 μ g/ml verwandt. Die Vorbehandlung und die Applikation kann dem Punkt 2.4.1.2. entnommen werden.

SiO₂ (Quarz, Fa. Palas)

Für die Versuche mit Quarz wurde Sikron F 600, Fraktion II (Fa. Palas, Karlsruhe) verwandt. Diese Subfraktion wurde bei der Fa. Palas mit Hilfe eines five stage cyclone (Southern Research Institute, Alabama) hergestellt. Die Partikelgrößenverteilung liegt im Bereich zwischen 0,92 und 1,6 μ m. Der Median des geometrischen Durchmessers beträgt 1,03 μ m, der AMAD (activity median aerodynamic diameter) 1,7 μ m.

Quarz wurde in den Versuchen mit 50 μ g/ml appliziert. Dafür wurde die entsprechende Menge Quarz abgewogen, in RPMI 1640 aufgenommen und anschließend für 5 Minuten auf Eis beschallt (Branson Sonifier B 15, pulsed, Einstellung 50%). Zur Ermöglichung der Phagocytose bei Gasphasenkulturen wurden die in Gasphase sitzenden Zellen mit 1 ml der Quarzsuspension bedeckt und für 1 Stunde in den Brutschrank gestellt. Danach wurde der Unterstand unter der Membran abgesaugt, und der Zellüberstand lief durch die 0,4 μ m großen Poren durch die Membran hindurch.

Nachdem die Zellen wieder in Gasphase saßen, erfolgte die Inkubation in den Kammern.

Latex (Fa. Sigma)

Polystyrenlatex (Dow-Latex) sollte im Vergleich zu Quarz als biologisch inerter Staub untersucht werden. Der Durchmesser der Latexpartikel betrug 1,0 μ m, die Konzentration im Versuch betrug 250 μ g/ml.

Das Latex wurde zur homogenen Durchmischung vor Entnahme eine halbe Stunde auf den Schüttler gestellt. Die entsprechende Menge Latex wurde in RPMI 1640 aufgenommen und zur Phagocytose durch die Zellen gleich dem Quarz behandelt.

2.4.2.1.3. Gewinnung von Kulturüberständen für den TNF-Bioassay

TNF-Messungen bei RAM wurden einerseits nach Cytokinapplikation in Gasphase und Submerskultur, anderseits nach Exposition der Zellen mit Luft bzw. NO₂ in Gasphase durchgeführt.

Bei Cytokinapplikationen in Gasphase wurde am Tag nach Lavage der Unterstand unter den Zellen verworfen (s. 2.2.2.) und je Ansatz 1 ml Reaktionslösung auf die Zellen pipettiert. Diese lief durch die Membran hindurch und befand sich während der Inkubation als Unterstand unter den Zellen. Die Inkubation der Zellen erfolgte 2 Stunden lang in der Begasungskammer bei 37°C und synthetischer Luft, die mit 5 % CO₂ versetzt war. Nach 2 Stunden wurde der Unterstand steril entnommen und in autoklavierte Eppendorfgefäße überführt. Um eventuell mitgeführte Zellen zu entfernen, wurden die Unterstände für 10 Minuten bei 1000 g in der Digifuge zentrifugiert. Der Überstand wurde in sterile Eppendorfgefäße aliquotiert und bis zur Durchführung des TNF-Bioassays bei -20°C zwischengelagert.

Bei Cytokinapplikation in Submerskultur wurde das Medium nach der Übernacht-Kultur abgesaugt, 2 ml Reaktionslösung auf die Zellen appliziert, und die Kulturschalen 2 Stunden lang in den Brutschrank gestellt. Die nach der Inkubation gewonnenen Kulturüberstände wurden wie die der Gasphasenversuche weiterbehandelt und für die spätere Verwendung bei - 20°C tiefgefroren.

Gasphasenversuche zur Quantifizierung der Wirkung von Luft bzw. NO₂ auf die TNF-Sekretion bei RAM wurden wie folgt durchgeführt: Die Gasphasenkulturschalen blieben nach der Übernacht-Inkubation im Brutschrank unverändert mit 1 ml RPMI 1640 mit Penicillin und Streptomycin unter der Membran und wurden so in die Luft- bzw. NO₂-Kammer gestellt. Nach einer 2stündigen Begasung wurden die Unterstände verworfen. Sofort nachfolgend wurden pro Ansatz 3 ml Reaktionslösung auf und unter der Membran bzw. den Zellen verteilt und die Kulturschalen für weitere 2 Stunden in den Brutschrank gestellt. Bei den Ansätzen ohne vorherige Inkubation mit Staub wurden die Über- und Unterstände direkt in sterile Eppendorfgefäße überführt. Bei den Ansätzen mit Staubinkubation wurden die Über- und Unterstände zunächst zur Abtrennung der Partikel in Zentrifugenröhrchen (14 ml, Fa. Falcon) abzentrifugiert (2000 g, 10 Minuten), erst dann in Eppendorfgefäße aliquotiert und bei -20°C bis zur weiteren Verwendung gelagert.

2.4.2.1.4. Der TNF-Bioassay

Kultivierung der WEHI-Zellen

WEHI-Zellen wachsen in Kultur als adhärenter Monolayer. Bei ihrer Kultivierung sollte beachtet werden, daß die Zelldichte nicht zu hoch wird, da sie sich sonst ablösen und damit für die Durchführung eines Assays nicht mehr tauglich sind.

Zusammensetzung des Kulturmediums

- 450 ml RPMI (Fa. Gibco)
 - 5 ml Penicillin/Streptomycin (Fa. Gibco)
 - 50 ml FCS (bei 56°C für 30 Minuten hitzeinaktiviert, Fa. Gibco)
 - 5 ml L-Glutamin (200 mM, Fa. Sigma)

Die Zellen wurden in Zellkulturflaschen der Fa. Greiner (250 ml Gesamtvolumen) kultiviert und regelmäßig auf ihre Zelldichte hin überprüft. Nach Erhalt eines konfluenten Monolayers wurden die Zellen zum Passagieren mit Trypsin von ihrer Unterlage abgelöst. Dafür wurde das Medium abgezogen und pro Flasche zuerst mit 4 ml 0,25%igem Trypsin gespült. Nach Dekantieren des Trypsins wurde 1 ml der gleichen Lösung auf die Zellen gegeben und so lange darauf belassen, bis sie sich vom Flaschenboden abgelöst hatten. Zum Abstoppen der Trypsin-Reaktion wurden 10 ml WEHI-Medium auf die Zellen gegeben, gut resuspendiert und Zellen samt Medium zur Zentrifugation in ein steriles 50 ml Zentrifugenröhrchen überführt. Dieses wurde für 10 Minuten bei 4°C und 250 g zentrifugiert und danach der Trypsin-haltige Überstand verworfen. Das Zellpellet wurde in WEHI-Medium resuspendiert. Nach Auszählen der Zellen und Überprüfung der Vitalität mit der Trypanblaumethode wurden 1 x 10⁶ Zellen in 20 ml WEHI-Medium in eine neue Zellkulturflasche überführt. Die Zellen mußten auf diese Art jeden 3. bis 4. Tag passagiert werden und wurden maximal bis zur Passagenzahl 17 verwendet.

Durchführung des WEHI-Assays

Für eine TNF-Quantifizierung mit Hilfe des WEHI-Assays wurden die konfluenten Zellen durch Trypsinbehandlung aus den Kulturflaschen gewonnen (s. vorhergehender Abschnitt) und auf eine Zellzahl von 3 x 10^5 Zellen/ml eingestellt. Die Aussaat der Zellen erfolgte in 96er Mikrotiterplatten (Fa. Falcon, Primaria), und zwar mit einer Dichte von 6 x 10^4 Zellen /Vertiefung (entsprechend 200 µl Zellsuspension).

Zur Adhärenz der Zellen wurden die Mikrotiterplatten für mindestens 4 Stunden in den Brutschrank gestellt und nachfolgend für den Bioassay verwandt.

Am Versuchstag wurden die zu messenden Proben aufgetaut und seriell verdünnt (1:2, 1:5, und 1:10). Die Verdünnung der Proben erfolgte mit WEHI-Medium und wurde vorgenommen, um eventuell auftretende hohe Konzentrationen an TNF, die nicht im linearen Bereich der Eichkurve lagen, durch eine Verdünnung zu erfassen und um eine ebenso mögliche Maskierung unverdünnter oder gering verdünnter Proben zu kompensieren.

Der Ablauf des Bioassays war folgender:

Die erste Reihe der Mikrotiterplatte wurde als Kontrollreihe mitgeführt - sie war das Maß für die Kapazität der Farbstoffbildung durch die verwendete Zellpopulation. Sie erhielt demzufolge pro Vertiefung 100 µl WEHI-Medium. Die letzte Reihe blieb zellfrei und erhielt alle Reagenzien in gleicher Weise wie alle anderen Vertiefungen. Sie wurde als Reagenzienleerwert von allen anderen Meßwerten abgezogen. Die Proben selbst wurden pro Ansatz bzw. Verdünnung jeweils 4 x unabhängig voneinander untersucht. Um ein Maß für den TNF-Gehalt der Proben zu bekommen, wurde eine TNF-Eichkurve mit humanem rekombinantem TNF (rhu-TNF) erstellt. Hier galt für die erste und letzte Reihe das gleiche Prinzip wie für die Probenplatten. Reihe 2 bis 10 der Mikrotiterplatte erhielten absteigende Konzentrationen an rhu-TNF, wobei ein Konzentrationsbereich von 0 bis 1000 pg TNF/ml abgedeckt wurde.
Die Platten wurden anschließend mit 100 μ l Actinomycin D-Lösung (20 μ g/ml in PBS, Fa. Sigma) mit einer Multikanalpipette (Fa. Flow Laboratories) beschickt, entsprechend 2 μ g/Well. Actinomycin D, ein Transkriptionshemmer, verhinderte die weitere Teilung der Zellen und objektivierte die Quantifizierung insofern, als daß während des gesamten Assays die Zellzahl identisch blieb.

Die Zellen wurden zur Inkubation mit den Überständen für 18 Stunden in den Brutschrank gestellt.

Anderentags wurde jede Vertiefung mit 20 μ l MTT versetzt (5 mg/ml in PBS ohne Ca²⁺/Mg²⁺, Fa. Sigma) und die Platten für weitere 4 Stunden in den Brutschrank gestellt. Dieser Schritt ermöglichte die Absorption von MTT durch noch lebende Zellen und seine Überführung in blauviolette Formazankristalle. Danach erfolgte die Lyse der Zellen durch Applikation von 60 μ l SDS pro Vertiefung (20% Sodiumdodecylsulfat in 0,02 M HCl, Fa. Merck p.A.). Zur vollständigen Solubilisierung der Formazankristalle wurde für weitere 18 Stunden im Brutschrank inkubiert.

Die Formazanbildung wurde im ELISA-Reader (Fa. Titertek Multiskan Plus MK II, Labsystem) bei 550 nm quantifiziert. Je größer die gemessenen Werte bei dieser Wellenlänge, desto höher die Zahl der lebenden Zellen bzw. desto geringer war der TNF-Gehalt der Proben. Die Cytotoxizität der Probe errechnetete sich folgendermaßen:

Die Berechnung des TNF-Gehaltes der Probe (pg/ml) erfolgte mit Hilfe einer Eichkurve, die mit humanem rekombinantem TNF erstellt wurde.

2.4.2.2. TNF-Bestimmung bei HL60-Zellen mittels ELISA

2.4.2.2.1. Allgemeines

Da HL60-Zellen humanen Ursprungs sind, können von ihnen gewonnene Über- bzw. Unterstände mit käuflich erwerbbaren ELISAs (Enzyme linked immunosorbent assays) sehr genau quantifiziert werden.

Diesem Assay liegt folgendes Prinzip zugrunde:

Bei der Durchführung der Messung wird eine Lösung mit unbekanntem Antigengehalt auf den Antikörper-beschichteten Boden einer Mikrotiterplatte ausgebracht. Nach einer bestimmten Reaktionszeit hat das Antigen an den Antikörper am Boden einer jeden Vertiefung gebunden und die Überstände werden abgespült. In einem weiteren Schritt wird ein Antikörper zugegeben, der einerseits gegen das zu untersuchende Antigen gerichtet ist, andererseits aber auch an ein Enzym gekoppelt ist. In der dann folgenden Reaktion bindet der zugegebene Antikörper an die Antigene, die zuvor mit den Platten-gebundenen Antikörpern reagiert hatten. Alle nicht gebundenen Antikörper, die mit Enzym beladen sind, werden bei dem nachfolgenden Waschvorgang aus dem System entfernt. Eine dann zupipettierte Substratlösung wird durch das Antikörper-gebundene Enzym umgesetzt, so daß eine photometrisch meßbare Farblösung entsteht. Die Intensität der Farblösung ist demnach proportional zur Zahl der an Antikörper gebundenen Antigene. Nach einem bestimmten Zeitraum wird der Reaktionsablauf gestoppt und die Farbintensität der Überstände spektralphotometrisch bei 450 nm gemessen.

Um die gemessenen Werte mit einer Absolutmenge an TNF gleichsetzen zu können, wird eine Eichkurve mit rhu-TNF erstellt. Die Berechnung der Eichgeraden erfolgte durch lineare Regression, wobei die Korrelation in einem Bereich von 0 bis 1000 pg/ml immer sehr gut war ($r^2 > 0.99$). Liegt der TNF-Gehalt der unbekannten Probe im linearen Bereich der Eichkurve, so kann eine genaue Bestimmung der Konzentration erfolgen.

2.4.2.2.2. Reagenzien

LPS s. unter 2.4.2.1.2.

PAF s. unter 2.4.2.1.2.

Lyso-Phosphatidylcholin (L-PAF, Fa. Sigma)

Das Lysophospholipid wurde als C_{16} -Lyso-PAF im Versuch eingesetzt, die Stammlösung wurde mit Methanol hergestellt.

LTB₄ s. unter 2.4.2.1.2. Leukotrien B₄ kam mit einer Konzentration von 10 und 20 nM im Versuch zur Anwendung.

2.4.2.2.3. Gewinnung TNF-haltiger Kulturunterstände

Die TNF-Konzentration wurde bei HL60-Zellen bestimmt, die entweder mit Hilfe von 1,3 % DMSO zu Granulocyten oder durch Calcitriol zu Makrophagen differenziert worden waren (s. 2.2.2.2.).

Die Überprüfung des Differenzierungszustandes der Zellen erfolgte vor Versuchsbeginn durch optische Kontrolle zusammen mit einem Vitalitätstest (EtBr/FDA-Methode) (s. 2.3.1.).

Für den eigentlichen Versuchsansatz wurde das Medium unterhalb der Membran vollständig entfernt und 1 ml Reaktionslösung pro Gasphasenschälchen ausplattiert. Die Reaktionslösung lief unter die Membran - die HL60 Makrophagen befanden sich während der 2stündigen Reaktionszeit im Brutschrank in Gasphase. Nachfolgend wurden die Zellunterstände steril in 2 ml Eppendorfgefäße überführt, bei 2000 g für 10 Minuten zentrifugiert (Abzentrifugation eventuell mitgeführter Zellen), die Überstände in Eppendorfgefäße aliquotiert und bis zur Durchführung des ELISAs bei -20°C gelagert. Die Zellen aller Ansätze wurden nach Abnahme des Mediums einer fluoreszenzmikroskopischen Vitalitätsbestimmung unterzogen.

2.4.2.2.4. Durchführung der ELISAs zur TNF-Bestimmung

Die ELISAs wurden als Gesamtset von der Fa. Biermann bezogen (Hersteller der "Quantikine": R&D-Systems, USA). Dieses Set hatte folgenden Inhalt: Kulturplatten, Waschpuffer, TNF-Konjugat (polyklonaler Antikörper gegen TNF, konjugiert an eine Merettichperoxidase), Substratlösung (bestehend aus Farbreagens A (stabilisiertes H_2O_2) und Farbreagens B (Tetramethylbenzidin) und eine Stopplösung (2 N Schwefelsäure)).

Zu Beginn des Assays wurden 200 µl Probe oder rhu-TNF-Standardlösung in jede Vertiefung pipettiert. Der mitgelieferte TNF-Standard wurde gelöst und seriell verdünnt, so daß folgende Konzentrationen als TNF-Eichkurve ausgebracht wurden: 500, 250, 125, 62,5, 31,3 und 15,7 pg TNF/ml. Als Reagenzienleerwert wurden 2 Werte, bei denen nur HL60-Medium ausplattiert wurde, mitgeführt. Anschließend wurden die Platten für 2 Stunden bei 37°C im Brutschrank inkubiert. Das Absaugen der Überstände und das 3malige Spülen mit 400 µl des zuvor verdünnten Waschpuffers erfolgte mit einem ELISA-Plattenwäscher (Vertrieb durch Fa. SLT Labinstruments). Nachfolgend wurden 200 µl TNF-Konjugat appliziert und die Mikrotiterplatten zur weiteren Reaktion für 2 Stunden in den Brutschrank gestellt. Das anschließende Waschen verlief nach dem gleichen Schema wie zuvor. Pro Ansatz wurden nun 200 µl Substratlösung ausgebracht - der Überstand färbte sich blau. Nach 20 Minuten Inkubationszeit wurde die Reaktion mit 50 µl Stopplösung pro Ansatz unterbrochen. Die 2 N Schwefelsäure bewirkte einen Farbumschlag nach gelb. Die Messung der Platten erfolgte innerhalb der nächsten 30 Minuten mit einem ELISA-Reader (Fa. Titertek Multiskan) bei 450 nm.

2.4.3. Quantifizierung weiterer Cytokine bei HL60-Zellen durch ELISAs: IL-6 und IL-8

2.4.3.1. Allgemeines

Das Reaktionsprinzip dieser beiden Assaytypen ist das gleiche wie das für TNF- α beschriebene (s. 2.4.2.2.1.)

2.4.3.2. Gewinnung IL-6 und IL-8 haltiger Kulturunterstände

Wie bereits unter 2.4.2.2.3. beschrieben, wurden hierfür HL60-Zellen verwendet, die entweder zu Granulocyten oder zu Makrophagen differenziert worden waren. Die Überführung ausdifferenzierter Zellen in Gasphase sowie alle weiteren Schritte erfolgten analog zu der unter 2.4.2.2.3. beschriebenen Methode.

2.4.3.3. Durchführung der ELISAs zur IL-6 und IL-8 Bestimmung

Die Durchführung der ELISAs erfolgte genau nach der Vorschrift der Hersteller (Quantikine, Fa. Biermann), wobei vor der IL-8-Bestimmung die Proben 1:100 mit Medium verdünnt werden mußten.

2.4.4. Bestimmung von LTB_4 bei RAM durch HPLC

2.4.4.1. Allgemeines

Lipide sind eine große Gruppe natürlich vorkommender Substanzen. Sie sind charakterisiert durch ihre hydrophoben Eigenschaften und können nach ihren Hydrolyseeigenschaften unterteilt werden. Zu den einfachen Lipiden gehören Fettsäuren, Prostaglandine, Steroide usw. Sie besitzen keine hydrolysierbare Bindung. Die komplexen Lipide enthalten i.d.R. Fettsäuren, die mit polyfunktionellen Alkoholen verestert sind, wie Triglyceride, Phospholipide und Sphingolipide. Phospholipide und Sphingolipide sind nochmals mit hochpolaren Gruppen verestert und verleihen dadurch dem Molekül Oberflächenaktivität.

Die verschiedenartige Struktur und Funktion der Lipide verlangen unterschiedliche analytische Prozeduren, um den chemischen Eigenschaften jeder einzelnen Gruppe gerecht zu werden, und um das umgebende Milieu zu berücksichtigen.

Zur Auftrennung komplexer Lipidgemische erzielt eine Reversed-Phase (RP) Säule in Kombination mit einer Hochdruckflüssigkeitschromatographie mit variabler Wellenlänge des UV-Detektors gute Ergebnisse. Die verschiedenen Chromatographieverfahren unterscheiden sich voneinander durch die Art der Bindungskräfte und durch das Trennprinzip.

Bei der Verteilungschromatographie, zu der die RP-Chromatographie gehört, verteilen sich die Substanzen zwischen zwei nicht mischbaren oder nur begrenzt mischbaren Phasen aufgrund der verschiedenen Löslichkeit der Komponenten. Die Reversed-Phase-Chromatographie wird daher 80 benannt, weil das Prinzip des Verfahrens genau gegenteilig zur Adsorptionschromatographie ist. Die stationäre Phase ist nicht polar und besitzt eine hydrophobe Oberfläche: Silicium ist chemisch an Alkylsilylgruppen gebunden. Die Retention der Moleküle erfolgt aufgrund hydrophober Wechselwirkungen zwischen den Molekülen und der Kohlenwasserstoff-Oberfläche der stationären Phase. Die mobile Phase ist polar, i.d.R. H₂O vermischt mit Methanol, Acetonitril und/oder anderen, mit Wasser mischbaren organischen Lösungsmitteln. Die Moleküle werden in der Reihenfolge abnehmender Polarität, also ansteigender Hydrophobie, eluiert. Ein Ansteigen der polaren (wasserhaltigen) Eigenschaften der mobilen Phase erhöht die Retention der zu trennenden Verbindungen. Die mobile Phase kann je nach Wunsch isokratisch (ohne Gradient) oder mit Gradient durchgeführt werden. Allgemein läßt sich feststellen, daß die polaren (weniger hydrophoben) Moleküle am besten in der mobilen Phase getrennt werden, die einen geringen Gehalt an organischen Verbindungen hat. Denn Substanzen mit kurzkettigen Kohlenwasserstoffen treten am besten mit mobilen Phasen mit geringem Gehalt an organischen Verbindungen in Wechselwirkung. In der Praxis ist die Säule als stationäre Phase meist mit C₁₈-Molekülen beladen: Octadecylsilylgruppen sind an Si-Oberflächen gebunden. Bei identischen Bedingungen steigt die Retentionszeit der Moleküle proportional mit der Länge der C-Kette der an das Sigebundenen Gruppen.

RAM wurden nach ihrer Isolierung entweder in Gasphase (3 x 10⁶ Zellen/Well) oder in Submerskultur (6 x 10⁶ Zellen/Well) in RPMI 1640 ohne Phenolrot über Nacht kultiviert (s. 2.2.2. bzw. 2.2.3). Anderentags wurden bei den Zellen des Gasphasenansatzes das Medium über und unter den Zellen abgesaugt, 1 ml RPMI 1640 ohne Phenolrot unter die Membran gegeben und die Kulturschälchen für 2 Stunden in die Luftkammer gestellt. Bei den Submerskulturen erfolgte ein Mediumwechsel und anschließend eine 2stündige Inkubation im Brutschrank. Zur Stimulation der Zellen wurde dann bei allen Ansätzen das Medium abgesaugt. Bei der Gasphasenkultur wurde die Membran ausgeschnitten, in eine kleine Petrischale überführt und 1 ml der jeweiligen Inkubationslösung auf die Zellen gegeben. Die Zellen in Submerskultur wurden mit 2 ml der entsprechenden Lösung inkubiert. Stimuliert wurden die RAM mit 10 µM A 23187 für 5 Minuten, die Kontrollansätze erhielten ein Äquivalent des Lösemittels des Ionophors (s. 2.4,1.2.). Zur Methodenüberprüfung wurden 2 separate Ansätze mit einem internen Standard parallel dazu durchgeführt. Der erste Standardansatz beinhaltete Zellen plus 100 ng LTB₄, das gleichzeitig mit dem Stimulus für 5 Minuten mitinkubiert wurde. Der zweite Standardansatz beinhaltete ebenfalls Zellen plus 100 ng LTB₄, das jedoch erst bei der nachfolgenden Lipidextraktion mit Ethanol hinzugefügt wurde. Diese Methodenüberprüfung erfolgte sowohl in Gasphase als auch in Submerskultur. Die Extraktion der Zellipide erfolgte bei Zimmertemperatur. Für jeden Ansatz (Kontrolle, stimulierte Zellen, erster und zweiter Standardansatz) wurde Ethanol in einem Glaszentrifugenröhrchen vorgelegt, wobei für die Gasphase 1 ml pro Ansatz und für die Submerskultur 2 ml benötigt wurden. Der zweite Standardansatz wurde zu diesem Zeitpunkt mit 100 ng LTB₄ versehen. Für die Extraktion wurden die Überstände nach der 5minütigen Brutschrankinkubation in die Zentrifugenröhrchen mit dem vorgelegten Ethanol hinzugegeben. Zwecks Durchmischung der wäßrigen und der organischen Phase wurden alle Röhrchen gevortext. Um auch zellassoziiertes LTB₄ zu erfassen, wurden die Zellen mit einem Gummischaber von der Membran der Gaskulturschalen bzw. vom Plastikboden der Petrischale abgekratzt. Die Membran wurde 3 x mit 1 ml Ethanol, der Boden der Petrischale 3 x mit 2 ml Ethanol gespült. Das Gesamtvolumen der ethanolextrahierten Gasphasenansätze betrug 5 ml, das der Submerskulturansätze 10 ml. Die Durchmischung ergab eine einzige Phase.

Hier nochmals den Ablauf der Lipidextraktion mit Ethanol im Überblick

(S1 bedeutet Standard 1 und S2 Standard 2, Ko steht für den Kontrollansatz und bei A 23187 wurden die Zellen mit dem Ca²⁺-Ionophor stimuliert, G bedeutet Kultur der Zellen in Gasphase und S in Submerskultur):

		Ko		А		S 1		S2	
				23187		-			
Kultivierungsmethode		G	S	G	S	G	S	G	S
100 ng LTB ₄ vorlegen		-	-	-	-	X	Х	-	-
EtOH in Zentrifu- genröhrchen vor- legen		1 ml	2 ml	1 ml	2 ml	1 ml	2 ml	l ml	2 ml
Volumen des		1 ml	2 ml	l ml	2 ml	l ml	2 ml	l ml	2 ml
zugegebenen									
Überstandes									
		V	0	r	t	e	X	e	n
Zellen abkratzen									
Waschen der		3 x	3 x	3 x	3 x	3 x	3 x	3 x	3 x
Kulturschale		l ml	2 ml	l ml	2 ml	l ml	2 ml	l ml	2 ml
mit EtOH									

Nachfolgend wurden die Lösungen für 1 Stunde bei 37°C mit einem kleinen Rührfisch gerührt, für 5 Minuten bei 800 g zentrifugiert und über Nacht bei 40°C im Vakuum zur Trockene eingedampft. Zum Einspritzen in die HPLC wurde jede Probe in 200 µl MeOH aufgenommen und ein Aliquot davon injiziert. Für eine Konservierung der Proben wurden sie zur Trockene eingedampft, in 1 ml CHCl₃ aufgenommen und bei -20°C tiefgefroren.

2.4.4.3. Reversed-Phase-Chromatographie von LTB₄ - angewandte Methode

Die Hochdruckflüssigkeitschromatographie mit UV-Detektion wurde dazu verwandt, die LTB_4 -Sekretion von RAM in Gasphase und in Submerskultur zu quantifizieren. Die Bestimmung erfolgte nach der Methode von O'Sullivan et al. (1988).

Dafür gab es bei jeder Kultivierungsmethode einen unstimulierten Kontrollansatz und eine 5minütige Stimulation mit 10 μ M A 23187. Die Zellipide der Überstände wurden mittels einer Ethanolextraktion gewonnen (s. 2.7.2.) und über Nacht im Vakuum zur Trockene eingedampft.

Zur Injektion in die HPLC wurden die Lipide in MeOH aufgenommen und jeweils 10 µl davon injiziert.

Das HPLC-System bestand aus 2 Hochdruckflüssigkeitspumpen (Waters 510 HPLC Pump), die auf eine mit Laufmittel gefüllte Probenschleife einen Druck von ca. 200 PSI brachten. Die Pumpen förderten ein Lösungsmittelgemisch aus MeOH : H_2O : Essigsäure (konz.) im

Verhältnis 75: 25: 0,05, das von Pumpe A, und MeOH : Essigsäure, das im Verhältnis 100 : 0,5 von Pumpe B mit einem 2 Stufen-Gradient durch das System geleitet wurde. Vor Verwendung der Laufmittel erfolgte deren Filtration (Millipore Filter) und deren Entgasung mit Helium während des Pumpenbetriebs. Die Injektion der Proben erfolgte automatisch mit dem Injektor 712 WISP (Fa. Waters). Die Probenschleife führte als erstes zu einer Vorsäule, die zum Abtrennen grober Verunreinigungen angebracht war. Nach der Vorsäule erfolgte die eigentliche Probenauftrennung mit einer NOVA-Pak-Säule, die mit 4 μ m großen C₁₈-Partikeln gefüllt war. Die Probenschleife mündete danach in einen UV-Detektor (Waters 490 programmable multiwavelength), der die Proben bei 269 nm analysierte. Der Detektor selbst war an einen Personalcomputer angeschlossen, von dem aus sowohl die gesamte Systemsteuerung erfolgte, als auch die Signale des Detektors auf dem Bildschirm visualisiert wurden. Die Systemsteuerung und Berechnung der Daten wurde mit Hilfe der Chromatography Workstation, Maxima 820, Version 3.3 durchgeführt.

2.4.4.4. Quantifizierung von LTB₄

Die nach 2.4.5.2. erhaltenen Zellipide wurden für die Injektion in die HPLC zur Trockene eingedampft und in MeOH aufgenommen.

Zusätzlich wurden zu den Proben zur Verifizierung des LTB₄-Peaks 50 ng LTB₄ injiziert.

Als Berechnungsgrundlage für die durch RAM sezernierte LTB₄-Menge diente der nach Injektion der 50 ng LTB₄ detektierte Restbetrag.

2.5. Auswertung der Daten

Jeder Versuch wurde mehrere Male durchgeführt, die Probenanzahl kann der jeweiligen Abbildungslegende entnommen werden. Einzelversuche sind als solche besonders ausgewiesen. Bei den im folgenden Ergebnisteil dargestellten Daten handelt es sich demzufolge um Mittelwerte und den dazugehörigen Standardfehlern.

Die Überprüfung der Werte auf ihre Normalverteilung erfolgte durch den Kolmogoroff-Smirnov-Anpassungstest (KSA). Dieser testet, ob die zu überprüfende unbekannte Verteilungsfunktion F(x) mit einer definierten Verteilungsfunktion $F_0(x)$ übereinstimmt. Dazu werden die zwei folgenden Hypothesen H₀ (Nullhypothese) und H₁ aufgestellt:

H₀: $F(x)=F_0(x) \forall x$

H₁: $F(x) \neq F_0(x)$ für wenigstens ein x

Die Nullhypothese wird zum Niveau α =0,05 verworfen, wenn die Testgröße D_n des KSA-Tests größer gleich dem entsprechenden Schrankenwert d_{n.0.95} ist.

Die vorgegebene Verteilungsfunktion war hierbei die Normalverteilung $N(\mu,\sigma)$. Bei allen untersuchten Daten konnte die Übereinstimmung mit einer Normalverteilung bestätigt werden. Die Unabhängigkeit der einzelnen Datengruppen ergab sich aufgrund des Versuchsansatzes.

Zur Überprüfung der Gleichheit der Mittelwerte wurde die Varianzanalyse (LSD-Test, LSD= least significant difference) angewendet.

Beim Vergleich mehrerer Datengruppen miteinander kann der t-Test nach Student nicht mehr angewendet werden kann, da das Signifikanzniveau nicht konstant bleibt, sondern sich mit zunehmender Anzahl der Datengruppen exponentiell verschlechtert. Eine Auswertemethode beim Vergleich mehrer Datengruppen ist die Varianzanalyse von R.A. Fisher. Je nach denen zugrundeliegenden Verteilungsfunktionen der Meßreihen können verschiedene Testverfahren angewendet werden. Zur statistischen Absicherung der Ergebnisse dieser Arbeit wurde ein LSD-Test verwendet, wobei das Signifikanzniveau α =0,05 betrug.

Bei diesem Testverfahren werden die Mittelwerte mehrerer unabhängiger Datengruppen miteinander verglichen. Zwei aufeinanderfolgende Mittelwerte gelten als signifikant voneinander verschieden, wenn ihre Differenz größer ist als die durch das Testverfahren ermittelte kleinste signifikante Differenz (LSD). Die kleinste signifikante Differenz berechnet sich wie folgt:

$$\Delta = \text{tn-k}; \alpha * \sqrt{s_{in}^2 * \left(\frac{n_a + n_h}{n_a * n_b}\right)} \qquad \text{mit} \qquad s_{in}^2 = \frac{1}{n - k} * \frac{S}{i,j} (x_{i,j} - \mu_i)^2$$

Alle zur Ermittlung der Signifikanzen notwendigen Rechnungen wurden mit einem Personalcomputer und einer speziellen Statistik-Software (NCSS 5. Graphics, J.L. Hintze, Utah 84037, USA) durchgeführt.

Signifikante Unterschiede werden in den Abbildungen über den einzelnen Säulen durch unterschiedliche Buchstaben kenntlich gemacht. Die Darstellung der Daten erfolgt als Mittelwerte und mit den dazugehörigen Standardfehlern.

3. Ergebnisse

3.1. Morphologische und biochemische Untersuchungen

3.1.1. Fluoreszenzmikroskopie von Rinderalveolarmakrophagen (RAM)

RAM zeigten nach einer 2stündigen Inkubation in Gasphase in der Luftkammer eine Vitalität, die zwischen 90 und 95% lag (Abbildung 1). Die lebenden Zellen sind in dieser Abbildung als grün-gelblich zu erkennen. Die Vitalität der Zellen betrug vor Versuchsbeginn immer 90 % und mehr und wurde durch optische Kontrolle ermittelt.

Ein deutlicher Vitalitätsverlust war nach einer 2-Stunden-Begasung mit 3 ppm NO_2 zu sehen (Abbildung 2): die Zahl toter Zellen stieg um 10 - 20% an, so daß die Vitalität zwischen 70 und 80% variierte. Einen nicht ganz so drastischen Effekt induzierte die Applikation von 1,5 ppm NO_2 , es kam zu einer Vitalitätsminderung, die sich zwischen 0 und 10% bewegte (Abbildung 3).

Beiden NO₂-Dosen war gemeinsam, daß es durch das Schadgas zur Bildung von "Blebs" an der Zellmembran vieler Zellen kam. Diese morphologische Veränderung war in allen Fällen eindeutig von der des Luftansatzes abzugrenzen (Abbildung 2 und 3). Dieses Schadstoffinduzierte Phänomen war nach einer anschließenden Inkubation im Brutschrank für 2 Stunden immer noch sichtbar (Abbildung 4).

Abbildung 5 zeigt RAM nach einer 90minütigen Inkubation mit Reaktionslösung für die Superoxidanionenmessung. Die Zellen konnten für die Gesamtdauer der Inkubation Zymosan phagocytieren - dieses ist als dunkler Einschluß in den Zellen erkennbar.

3.1.2. Lichtmikroskopie von RAM

Zellen von Versuchen in Submerskultur wurden vor Versuchsbeginn und danach durch Trypanblauausschluß auf ihre Vitalität hin untersucht. Diese lag bei allen Ansätzen zwischen 90 und 95% (keine Abbildung).

Die Applikation von TPA (12-O-tetradecanolyphorbol-13-acetat) in den Dosen von 10 und 20 ng/ml führte bereits nach einer 1,5 stündigen Inkubation zu einer Aggregation von Zellen, analog zu der, die bei der Fluoreszenzmikroskopie beobachtet werden konnte.

3.1.3 Fluoreszenzmikroskopie von HL60-Zellen

Hier wurde ebenfalls bei allen Gasphasenversuchen die Vitalität vor und nach Versuchsbeginn durch optische Kontrolle geprüft.

Sie lag bei HL60 Granulocyten jedesmal zwischen 80 und 90% und bei HL60 Makrophagen zwischen 85 und 95%.

Die Applikation von TPA induzierte wie bei RAM eine Aggregation der Zellen innerhalb von 90 Minuten (Abbildung 6).

3.1.4. Lichtmikroskopie von HL60-Zellen

HL60 Granulocyten und Makrophagen, mit denen Messungen in Submerskultur durchgeführt wurden, zeigten vor und nach dem Versuch eine Vitalität, die zwischen 85 und 95% lag (gemessen durch Trypanblauausschluß, keine Abbildung).

3.1.5. Quantifizierung der Lactatdehydrogenase (LDH) und der N-Acetyl-β-D-Glucosaminidase (NAG) bei RAM

Die Messung der cytoplasmatischen LDH und der lysosomalen NAG erfolgten für die Gasphase vergleichend nach einer Luft- und einer NO₂-Applikation. Es wurde jeweils der Unterstand unter der Membran nach einer 2stündigen Gasexposition gemessen.

Abbildung 7 zeigt die LDH-Freisetzung in den Unterstand der Kontrolle und nach Applikation von DPL. Das Phospholipid wurde hierbei vor der Kammerinkubation mit einer Konzentration von 100 μ g in 1 ml Medium auf die RAM gegeben, so daß diese während der Begasung von DPL bedeckt waren. Beide NO₂-Unterstände wiesen im Vergleich zu den Luftansätzen einen erhöhten LDH-Gehalt auf. Das "Coaten" der Zellen mit DPL führte zu einer vermehrten LDH-Sekretion - dies konnte jedoch statistisch nicht abgesichert werden. Eine mögliche Zerstörung der LDH durch NO₂ konnte aufgrund eines mitgeführten Precinorm-Standards ausgeschlossen werden.

Die Sekretion der NAG (Abbildung 8) war genauso wie die der LDH beim NO₂-Ansatz erhöht. Die DPL-Applikation führte sowohl beim Luftansatz als auch beim NO₂-Ansatz zur signifikanten Erhöhung der NAG-Freisetzung in den Unterstand.

Die Applikation einer Konzentration von 50 μ g/ml Quarz (pro 3 x 10⁶ ausplattierten Zellen), der vor Versuchsbeginn für 1 Stunde zur Phagocytose angeboten wurde, führte sowohl nach Luft- als auch nach NO₂-Begasung zu einer erhöhten LDH-Sekretion (Abbildung 9), die beim Luftansatz signifikant erhöht war, nicht jedoch beim NO₂-Ansatz. Deutlich war dagegen auch hier wieder, daß 3 ppm NO₂ zum Ansteigen der LDH-Sekretion in den Unterstand führten.

Die Quarzwirkung war bei der NAG-Messung eindeutig sichtbar (Abbildung 10), bei beiden Gasen war der Quarz-Meßwert signifikant gegenüber der dazugehörigen Kontrolle erhöht, und alle NO₂-Ansätze hatten höhere NAG-Werte als die Luftinkubationen.

Die für beide Enzyme gemessene Erhöhung nach NO₂-Applikation korrelierte gut mit der Vitalitätsminderung.

3.2. Superoxidanionenmessungen

3.2.1. Messung der Sekretion von Superoxidanionen durch RAM

3.2.1.1. Einfluß von Cytokinen auf O_2^- -Messungen

In diesem Abschnitt wird die Applikation verschiedener Konzentrationen an TNF und PAF, und deren Einfluß auf die Cytokinsekretion von RAM besprochen. Dabei werden für jede Konzentration vergleichende Betrachtungen zwischen der neuartigen Gasphasenkultur und der konventionellen Submerskultur angestellt. Zu erwähnen ist dabei, daß die Zellen bei beiden Kultivierungsmethoden mit der gleichen Zelldichte ausplattiert wurden.

Abbildung 11 zeigt im oberen Teil einen Gasphasenversuch, bei dem der Plättchen-aktivierende Faktor (PAF) 10⁻¹⁴ M und der Tumor Nekrose Faktor (TNF) mit einer Konzentration von 200 ng/ml appliziert wurden. Es erfolgte die Messung von Superoxidanionen bei voraktivierten Zellen, die über diese Spontansekretion hinaus durch Zymosan noch deutlicher aktivierbar waren. Als "voraktiviert" werden RAM bezeichnet, die O_2^- spontan bilden. Auf mögliche Ursachen dieser Voraktivierung wird in der Diskussion eingegangen. PAF in der Reaktionslösung ergab keine O₂⁻-Sekretion, die sich statistisch signifikant von der Kontrolle unterschied, und 200 ng TNF/ml führten zu einer leicht erhöhten Sekretion gegenüber der Kontrolle. Für PAF und TNF kombiniert appliziert, wie bei getrennter Verabreichung, war die durch TNF induzierte Erhöhung nicht mehr zu sichern. Im mittleren Teil der Abbildung, bei der ebenfalls Penicillin und Streptomycin als Antibiotikum für die Übernacht-Kultur verwendet wurden, die Zellen aber nicht voraktiviert waren, ließ sich der Effekt von 200 ng TNF pro ml mit einer niedrigen Dosis von 5 ng TNF pro ml nicht reproduzieren. Keine Veränderung gegenüber der Kontrolle ergab sich auch durch PAF 10⁻¹⁴ M alleine und in Kombination mit 5 ng TNF/ml. Eine starke Voraktivierung von Zellen durch Amphothericin/Tetracyclin als Zusätze für die Übernacht-Kultur ist aus dem unteren Teil der Abbildung 11 zu ersehen. Eine weitere Aktivierung konnte auch hier durch Zymosan induziert werden. PAF (10-14 M) führte zu einer geringen, statistisch nicht absicherbaren Erhöhung gegenüber der Kontrolle. Die Werte der Kombinationsapplikation von TNF und PAF waren gegenüber der Kontrolle signifikant erhöht.

Betrachtet man nun die dazugehörigen Versuche in Submerskultur, so war bei Abbildung 12 keine Voraktivierung zu verzeichnen. Was die Applikation oben genannter Cytokine anbelangt, so konnte bei Submerskultur in keinem Fall ein Cytokineffekt gemessen werden, der sich signifikant von den übrigen Ansätzen unterschied.

Wie Abbildung 13 zeigt, wurde die Reaktion von RAM nach Gasphasenkultur und Submerskultur auf PAF um Faktor 100 konzentrierter im Vergleich zu oben und auf TNF mit 100 ng pro Milliliter Reaktionslösung gemessen. 100 ng TNF/ml jeweils alleine und mit PAF kombiniert appliziert ergab das gleiche Ergebnis wie für nicht voraktivierte Zellen in Submerskultur. Kein Mediator führte zu einer O_2^- -Sekretion, die sich signifikant von den übrigen Ansätzen unterschied. Dies galt auch für die Applikation aller Stimulanzien in Submerskultur (Abbildung 14 unten).

Da die Literatur bezüglich der Konzentration Hinweise auf eine biphasische Wirkungsweise von PAF bei Makrophagenzellinien gibt (Rola-Pleszczynski und Stankova, 1992) - jeweils im physiologischen und im hohen Dosisbereich - wurde nach den niedrigen PAF Dosen auch eine hochkonzentrierte Applikation von 10^{-6} M PAF untersucht (Abbildung 15). Doch auch hier war PAF sowohl in der Gasphase als auch in der Submerskultur unwirksam.

LTB₄, ein Metabolit der Arachidonsäure, kann als mutmaßliches endogenes Ca²⁺-Ionophor Synthese und Sekretion von Superoxidanionen beeinflussen (Heidel et al. 1991). Um eventuelle Kreuzreaktionen zu untersuchen, wurde LTB₄ in verschieden hohen Konzentrationen der Reaktionslösung beigefügt. Bei Zellen in Submerskultur (Abbildung 16) war nach 10 und 20 nM LTB₄ keine signifikant veränderte O₂⁻-Abgabe im Vergleich zur Kontrolle zu messen, ebenso nicht, wenn LTB_4 mit einer Konzentration von 800 nM appliziert wurde. Nach Verwendung von Amphothericin/Tetracyclin als Zusatz für die Übernacht-Kultur der Gasphase waren die Makrophagen sehr stark voraktiviert und durch Zymosan nicht signifikant mehr stimulierbar (Abbildung 17 oben). Die beiden niedrigeren Konzentrationen an LTB_4 führten allerdings im Vergleich zur Kontrolle zu einer Reduktion an detektierbaren Superoxidanionen. In Abbildung 17 ist im unteren Teil der LTB_4 -Einfluß bei gering voraktivierten Zellen dargestellt. Hier ist dagegen keine Reduktion gegenüber dem Kontrollansatz zu sehen.

Eine weitere Fragestellung ergab sich aus der Verwendung von TPA, einem Phorbolester und stärkstem natürlichen Tumorpromotor und A 23187, einem Ca²⁺-Ionophor - bedienten sich diese Substanzen eines anderen zellulären Mechanismus bei der O_2 -Sekretion als dies bei bioaktiven Mediatoren der Fall war? A 23187, eine im normalen zellulären Geschehen nicht involvierte Substanz, sollte genauso wie TPA als Stellvertreter eines möglicherweise vorkommenden alternativen Signaltransduktionsweges untersucht werden.

TPA zeigte in der Gasphase einen Konzentrationseffekt: 20 ng TPA pro ml führten zu einer höheren O_2^- -Sekretion gegenüber dem Zymosanansatz als dies bei 10 ng/ml der Fall war. Diese höhere Dosis konnte die O_2^- -Abgabe um fast das Doppelte mehr triggern als Zymosan (Abbildung 18). Dieser "Mehreffekt" gegenüber dem natürlichen Stimulans Zymosan verschwand bei 10 ng TPA pro Milliliter. In Submerskultur gab es weder einen Dosiseffekt durch die beiden TPA-Dosen noch einen "Mehreffekt" gegenüber Zymosan: 10 und 20 ng TPA pro ml stimulierten die Zellen genauso stark, wie dies Zymosan zu tun vermochte (Abbildung 19).

A 23187 hat als artifizielle Substanz den vermutlich ähnlichen Wirkungsmechanismus wie LTB₄. Wie Abbildung 18 zeigt, konnte die Konzentration von 10, 100 nM und 1 μ M A 23187 in Gasphase keine signfikant erhöhte O₂⁻-Sekretion gegenüber der Kontrolle induzieren. In Submerskultur gab es bei allen drei Applikationsdosen eine geringe, aber signifikante Reduktion gegenüber der Kontrolle (Abbildung 19).

Eine Applikation von LPS (10 μ g/ml) vermochte weder in Gasphase noch in Submerskultur die O₂⁻-Produktion zu triggern, die signifikant verändert gegenüber der Kontrolle war, und eine kombinierte Applikation von LPS und Zymosan führte in Gasphase zu einer reduzierten O₂⁻- Abgabe gegenüber der durch Zymosan alleine induzierten. In Submerskultur erzielte die kombinierte Applikation von LPS und Zymosan einen Effekt wie Zymosan alleine (Abbildung 20 und 21).

Wenn PAF 10⁻⁶ M oder 10⁻¹⁴ M (Abbildung 20, 21, 22 und 23) gleichzeitig mit Zymosan auf die Zellen gegeben wurde, kam es zu keinem zusätzlichen Triggereffekt, der über den von Zymosan hinausging. Bei Abbildung 22 führte die Kombinationsapplikation sogar zu einer verminderten O_2^- -Sekretion gegenüber dem Zymosanansatz. Wiederholt galt dies für beide Kulturmethoden, und somit kann festgehalten werden, daß es zwischen Zymosan einerseits und LPS und PAF anderseits keine wesentliche Interaktion gibt. Daß selbst ein 20stündiges Triggern mit LPS und dann durchgeführter Stimulation mit Zymosan zu keiner Erhöhung der O_2^- -Sekretion gegenüber Zymosan alleine führt, kann Abbildung 22 und 23 entnommen werden.

3.2.1.2. Einfluß von NO2 und DPL auf die Superoxidanionenfreisetzung durch RAM

Was die Ansätze der Begasung von Zellen mit NO₂ anbelangt, so sei daran erinnert, daß die Applikation von 3 ppm NO₂ zu einem Vitalitätsverlust der Zellen bis zu 20% führte. Dieser betrug bei den 1,5 ppm NO₂-Inkubationen zwischen 0 und 10%. Bei allen nachfolgenden Betrachtungen wird demzufolge unterstellt, daß eine Reduktion der O₂⁻-Sekretion kleiner oder gleich 20% bei einer Applikation von 3 ppm NO₂ auf einen Vitalitätsverlust zurückzuführen war. Alle darüber hinausgehenden Effekte werden von uns als "echt" betrachtet. Das Gleiche gilt für 1,5 ppm NO₂ und einen 10% igen Vitalitätsverlust.

Den nachfolgend besprochenen Abbildungen werden folgende Bewertungskriterien zugrunde gelegt: zuerst erfolgt eine vergleichende Beurteilung des Einflusses von NO₂ auf die spontane und stimulierte Absolutmenge an freigesetztem O_2^- bei der Inkubation an Luft. Darauf folgend werden Ergebnisse über RAM, die mit DPL gecoatet worden waren, betrachtet: hatte DPL einen Einfluß auf die Luft- und/oder NO₂-Inkubation?

Die in Abbildung 24 gezeigten Messungen wurden nach Applikation synthetischer Luft bzw. 3 ppm NO_2 durchgeführt. Das Antibiotikum der Übernacht-Kultur war Penicillin und Streptomycin. Bei diesem Versuch war keine nennenswerte Spontansekretion an O_2^- zu verzeichnen. Die Zellen des Luftansatzes waren durch Zymosan sehr deutlich stimulierbar. Dies kann für die NO_2 -Inkubation ebenfalls ganz klar erkannt werden. Genauso deutlich ist jedoch die verminderte Sekretion an Superoxidanionen nach Zymosanapplikation im Vergleich zum Luftansatz zu erkennen, wobei die Reduktion deutlich über die 20% des Vitalitätsverlustes hinausgeht.

Der Einfluß von DPL auf Luft-inkubierte RAM wird in Abbildung 25 dargestellt. Die Bedeckung der Zellen mit dem Phospholipid hatte weder bei dem unstimulierten Kontrollansatz noch bei den stimulierten Zellen irgendeinen Einfluß auf die gemessene O_2^{-} Sekretion. Analog dazu fällt das Ergebnis nach einer 2stündigen Inkubation DPL gecoateter RAM mit 3 ppm NO₂ aus (Abbildung 26). DPL führte auch hier zu keinem meßbaren Effekt.

Für eine halb so hohe Dosis von 1,5 ppm NO₂ ergibt sich folgendes Bild (bei gleichen Antibiotika und bei schwach voraktivierten Zellen), dargestellt in Abbildung 27: die Makrophagen des Luft- und des NO₂-Ansatzes sind durch Zymosan sehr deutlich stimulierbar, hier war jedoch gegenüber der Applikation von 3 ppm kein NO₂-Effekt zu verzeichnen, NO₂ führte zu keiner Hemmung der stimulierten Freisetzung von Superoxidanionen bei gar keinem oder nicht die Messung beeinflussenden Vitalitätsverlust. Die gering voraktivierte Kontrolle zeigte dagegen nach NO₂-Applikation eine leichte Hemmung der Superoxidanionsekretion, die wie bei 3 ppm statistisch nicht signifikant unterschiedlich zu der des Luftansatzes war. Die bessere Anlehnung des Systems an die in vivo-Situation durch Applikation von DPL vor der Kammerinkubation führte bei dem Luftansatz (Abbildung 28) wie bei der höheren NO₂-Dosis (Abbildung 29) zu keiner signifikant veränderten O₂⁻-Sekretion (Abb. 28 und 29).

Bei <u>spontan voraktivierten</u> Zellen (die Antibiotika waren wie zuvor Penicillin und Streptomycin) wurde bereits bei 1,5 ppm NO₂ anhand des Kontrollansatzes deutlich (Abbildung 30), daß NO₂ zu Veränderungen zellulärer Mechanismen führt: die unspezifisch stimulierte O_2^- -Sekretion war bei 1,5 ppm NO₂ im Vergleich zum Luftansatz über den

Vitalitätsverlust hinaus vermindert. Weniger, aber ebenfalls statistisch signifikant reduziert war ebenfalls die O_2^{-} -Sekretion Zymosan-stimulierter RAM aus der NO₂-Kammer. Auch bei voraktivierten Zellen blieb die DPL-Applikation bei allen Luftansätzen im Vergleich zu den nicht Phospholipid-geschützten RAM ohne Wirkung, und zwar sowohl bei Kontroll- als auch bei Zymosanansätzen (Abbildung 31). Dem Kontrollansatz aus Abbildung 32 ist zu entnehmen, daß es gleichgültig war, ob DPL anwesend war oder nicht.

Anders verhielten sich bereits vorstimulierte Zellen, die nach einer zweistündigen NO₂-Inkubation mit Zymosan stimuliert wurden: DPL entfaltete hier sozusagen einen "Schutzeffekt" und ermöglichte es den Zellen, eine größere Menge an O₂⁻ zu sezernieren als dies bei "nicht geschützten" Zellen der Fall war.

Bei Versuchen, in denen die Zellen über Nacht nicht mit Penicillin und Streptomycin, sondern mit Amphothericin B und Tetracyclin kultiviert worden waren, kam es regelmäßig zu einer "unspezifischen" Voraktivierung der Zellen, die ursächlich wohl auf die Verwendung von Amphothericin B als Antimykotikum zurückzuführen war (Wolf und Massof, 1990).

Aus Abbildung 33 kann ersehen werden, daß die Zellen des Luftansatzes mit einer Spontansekretion von fast 20 nmol O_2^- innerhalb von 90 Minuten so stark voraktiviert waren, wie dies bei manchen Individuen durch Zymosan herbeigeführt werden konnte. Über diese Voraktivierung hinaus waren die Zellen des Luftansatzes durch Zymosan um ein weiteres Drittel zusätzlich zu aktivieren. 3 ppm NO₂ konnten die Voraktivierung fast vollständig unterdrücken, ein drastischer Effekt, der ein Vielfaches über den Verlust an Vitalität hinausging. Auch die Zymosan-stimulierte Radikalsekretion wurde durch NO₂ gehemmt (mehr als durch einen Vitalitätsverlust zu erklären wäre), jedoch war hier keinesfalls eine so deutliche Abnahme wie bei der voraktivierten Kontrolle zu messen. Bei der Luftinkubation voraktivierter Zellen blieb DPL ohne Einfluß (Abbildung 34). Ganz klar ist die Wirkung von DPL bei zuvor mit NO₂-inkubierten, danach Zymosan-stimulierten RAM (Abbildung 35). Die O₂⁻-Abgabe übertraf beim Zymosanansatz den Vergleichsansatz nach Luftinkubation.

Abbildung 36 zeigt zusammenfassend die Dosis-Wirkungsbeziehung zwischen der applizierten NO₂-Konzentration und der O₂⁻-Sekretion. Es gibt keine signifikanten Unterschiede zwischen den Luft- und NO₂-begasten Kontrollansätzen, und die Konzentration von 1,5 ppm NO₂ führt ebenfalls zu keiner signifikanten Modifikation der Zymosan-stimulierten O2⁻-Sekretion. 3 ppm NO₂ führen dagegen eindeutig zu einer Hemmung der stimulierten Freisetzung. Die Abbildungen 37 und 38 zeigen in einer Übersicht eine Zusammenfassung der zuvor präsentierten Daten, was den Effekt von DPL auf die O2⁻-Freisetzung von Luft- und mit 1,5 und 3 ppm NO₂-inkubierten Zellen anbetrifft. Nach Applikation von synthetischer Luft (Abbildung 37 und 38) zeigten die Ansätze mit DPL keine statistisch signifikant veränderte O₂⁻-Sekretion im Vergleich mit den Ansätzen ohne DPL. Nach Applikation von 1,5 ppm NO₂ (Abbildung 37) hatte DPL keinen Einfluß auf die Sekretion unstimulierter Kontrollansätze, dagegen führte es bei den Zymosan-stimulierten Ansätzen zu einer signifikanten Erhöhung der O₂⁻-Abgabe. Für die Messungen nach Applikation von 3 ppm NO₂ (Abbildung 38) trifft das Gleiche zu wie für eine Applikation von 1,5 ppm NO₂: DPL hatte keinen Einfluß auf die Sekretion unstimulierter Kontrollansätze, führte aber bei Zymosan-stimulierten Zellen zu einer signifikanten Erhöhung gegenüber der Sekretion von Zellen, bei denen kein DPL appliziert worden war.

3.2.2. Messung der Sekretion von Superoxidanionen durch HL60-Zellen

3.2.2.1. Einfluß von Cytokinen auf O₂⁻-Messungen

Superoxidanionen werden nach spezifischer Stimulation auch von HL60-Zellen sezerniert, und zwar sowohl von Zellen, die in vitro mit 1,3% Dimethylsulfoxid (DMSO) zu Granulocyten differenziert worden waren, als auch von denjenigen, die nach 10⁻⁶ M Applikation von Calcitriol Makrophagen-ähnlichen Charakter aufwiesen. Bei den Versuchen stellte sich heraus, daß Zymosan bei beiden Zelltypen nicht immer zur Induktion einer Radikalsekretion führte. Das Stimulans, das ein dem Zymosan bei Rinderzellen äquivalentes Potential besaß, war der Phorbolester TPA, der ebenso wie bei RAM wirkte.

Die Versuche zur O_2^- -Sekretion wurden lediglich nach vorheriger Gasphasenkultur durchgeführt. Versuche mit Zellen in Submerskultur ergaben keinen Sinn, denn beide Zellarten sind im ausdifferenzierten Zustand nicht vollständig adhärent.

Abbildung 39 zeigt eine O_2^- -Messung mit HL60 Makrophagen. Die Zellen wurden direkt auf der Membran differenziert und am Versuchstag in Gasphase gebracht. Die Ansätze nach Stimulation mit Zymosan und bei gleichzeitiger Applikation von Zymosan und PAF (10⁻⁶ M) zeigen eine Sekretion, die signifikant höher als die des Kontrollansatzes war. Beide Stimuli waren in ihrer Induktionsfähigkeit gleich effizient. Die Sekretion nach PAF (10⁻⁶ M) alleine hatte keinen signifikanten Effekt gegenüber der des Kontrollansatzes. Dies galt auch für die Applikation von 10⁻¹⁴ M PAF (nicht gezeigt). Eine Stimulation von HL60 Makrophagen mit A 23187 (100 nM) konnte eine O_2^- -Abgabe induzieren, die sich auf die Hälfte der durch Zymosan induzierten Menge belief (keine Abbildung). Hier zeigte sich, daß TPA (20 ng/ml) das geeignete Agens zur Überprüfung der Stimulierbarkeit der verwendeten Zellen darstellt.

HL60 Granulocyten wurden nach Differenzierung in Zellkulturflaschen (s. 2.2.2.2.) am Versuchstag mit der gleichen Zelldichte wie RAM in Gasphasenkulturschälchen ausplattiert. Zymosan induzierte bei HL60 Granulocyten eine geringe O_2^- -Menge mit 2 nmol (Abbildung 40). Die gemeinsame Applikation von Zymosan und PAF (10⁻⁶ M) führte zu keiner signifikant veränderten Sekretion gegenüber Zymosan alleine. Die O_2^- -Abgabe der Zellen nach Applikation von PAF allein (10⁻⁶ M) führte zu keiner statistisch signifikant unterschiedlichen Messung gegenüber der Kontrolle und den Ansätzen mit Zymosan. Wie bei den Messungen mit HL60 Makrophagen erwies sich TPA als das Stimulans, das zu einer deutlichen O_2^- -Abgabe durch die Zellen führte und damit die Überprüfung der Stimulierbarkeit der Zellen im jeweiligen Versuch ermöglichte.

3.3. TNF-Messungen

3.3.1. Messung der Sekretion von Tumor Nekrose Faktor durch RAM

3.3.1.1. Einfluß von Mediatoren auf TNF-Messungen

Um die Funktionstüchtigkeit der Gasphasenkultur für TNF-Messungen unter Beweis zu stellen, wurden die nachfolgend gezeigten Messungen nach Applikation von Stimuli bzw. Cytokinen jeweils vergleichend für die Kultur von Zellen in Gasphase und in Submerskultur dargestellt. Dabei ist besonders anzumerken, daß die Reaktionslösung bei allen Gasphasenversuchen unter die Membran, auf der die Zellen saßen, gegeben wurde. Wenn die Zellen also zur TNF-Sekretion angeregt wurden, dann nicht dadurch, daß die gesamte Zelloberfläche mit dem stimulierenden Agens in Kontakt kam, sondern lediglich durch die "Pseudopodien", die jede Zelle durch die Membranporen in die darunterliegende Reaktionslösung streckte.

Abbildung 41 demonstriert, daß RAM in Gasphase tatsächlich nach basalem Kontakt mit der Reaktionslösung, die 10 μ g LPS pro ml enthielt, stimuliert werden konnten. Das von ihnen sezernierte TNF wurde auch wieder auf demselben Weg in den Unterstand abgegeben. Aus dieser Abbildung kann weiter entnommen werden, daß die TNF-Sekretion einen zeitabhängigen Verlauf aufwies, der "TNF-Effekt" war jedoch bereits nach einer zweistündigen Inkubation vorhanden. Dieser Vorversuch diente als Richtwert für die eigentlichen Untersuchungen, die alle mit einer Inkubationsdauer von 2 Stunden durchgeführt wurden.

Das erste Stimulans, das in Bezug auf Beeinflussung der TNF-Sekretion wichtig erschien, war PAF. Abbildung 42 zeigt eine nicht voraktivierte Kontrolle und Zellen, die durch 10 μ g LPS deutlich zur TNF-Sekretion zu stimulieren waren. PAF (1 ng/ml) konnte keine meßbare TNF-Sekretion in den Unterstand induzieren, und die Meßwerte waren nach einer gemeinsamen Applikation von PAF und LPS im Vergleich zur alleinigen LPS-Applikation leicht erhöht, jedoch bestand kein statistisch signifikanter Unterschied.

Prinzipiell ergab sich für die Submerskultur (Abbildung 43) die gleiche Gesamtaussage wie für die Gasphase, die gemeinsame Applikation von PAF und LPS erbrachte ebenfalls keinen Synergismus.

Um eine mögliche Wechselwirkung zwischen TNF und dem Eicosanoid LTB_4 zu erkennen, wurde der Metabolit der Arachidonsäure in zwei verschiedenen Konzentrationen auf seine Induzierbarkeit von TNF untersucht: 20 nM und 160 nM.

Die geringere Dosis von 20 nM LTB₄ zeigte das gleiche Bild, das sich nach PAF-Applikation ergab: LTB₄ allein appliziert führte weder in Gasphase (Abbildung 44) noch in Submerskultur (Abbildung 45) zu einer meßbaren TNF-Freisetzung. Bei beiden Kultivierungsmethoden waren die Zellen durch LPS im gleichen Ausmaß zu stimulieren. Die kombinierte Gabe von LTB₄ und LPS entsprach in Gasphase dem stimulatorischen Effekt von LPS allein. In Submerskultur dagegen kam es zu einer signifikant verminderten Freisetzung.

Die Applikation der höher dosierten Reaktionslösung (160 nM) (Abbildung 46, dieser Versuch wurde nur in Gasphase durchgeführt) führte dagegen zu einem abweichenden Ergebnis, u.a. möglicherweise dadurch bedingt, daß die Zellen bereits unspezifisch voraktiviert waren. Der

Kontrollansatz wies eine durchschnittliche TNF-Konzentration von 73 pg in 1 ml Unterstand auf, und die Makrophagen waren durch LPS zu keiner statistisch signifikant höheren TNF-Sekretion zu stimulieren. Nach 160 nM LTB₄ betrug die gemessene TNF-Menge nur noch ca. 15 pg in 1 ml Unterstand - eine deutliche Reduktion gegenüber dem Kontrollansatz. Deutlich erniedrigt gegenüber dem LPS-Ansatz war auch die Kombinationswirkung von LPS und LTB₄, anderseits war sie jedoch höher als nach einer Inkubation mit LTB₄ allein.

Interferon- γ (IFN- γ) war hier in Gasphase bezüglich der TNF-Sekretion weder mit der Konzentration von 750 U noch von 1000 U/ ml von Bedeutung (Abbildung 47). In Submerskultur, die eine voraktivierte Kontrolle aufwies, hatten die gleichen Konzentrationen an Interferon- γ sogar einen hemmenden Einfluß auf die spontane TNF-Sekretion: es waren nur noch geringe TNF-Mengen im Zellüberstand zu messen (Abbildung 48).

Schaut man nun die Reaktion von Zellen in Gasphase nach Applikation von Dexamethason, einem synthetischen Glucocorticoid, an (Abbildung 49), so war nach einer 2 x 10⁻⁷ M Dexamethasongabe, die 2 Stunden vor der LPS-Applikation durchgeführt wurde, eine eindeutige Hemmung gegenüber der alleinigen LPS-Applikation zu verzeichnen. Es kam zur Sekretion eines bestimmten Restbetrages an TNF. Wurde Dexamethason gleichzeitig mit LPS auf die Zellen gegeben, so führte dies sogar fast vollständig zur Hemmung der TNF-Freisetzung und führte zu keinem signifikanten Unterschied zur Kontrolle, bei der überhaupt kein TNF gemessen werden konnte. Etwas anders stellte sich der Sachverhalt für die Submerskultur dar: die Zellen waren durch LPS ähnlich stimulierbar wie in Gasphase (Abbildung 50). Wurde Dexamethason 2 Stunden vor LPS appliziert, so war die TNF-Sekretion der RAM vollständig unterbunden. Eine geringfügige, nicht signifikant unterschiedliche Freisetzung von TNF gegenüber der Kontolle und der Dexamethasongabe vor der LPS-Applikation konnte gemessen werden, wenn Dexamethason und LPS gleichzeitig verabreicht wurden.

3.3.1.2. Einfluß von NO₂ und DPL auf die spontane und LPS-induzierte TNF-Freisetzung durch RAM

Nachdem durch Vorversuche klargestellt war, daß eine mögliche Cytokinsekretion während der Applikation von Gasen benachbarte Zellen nicht maßgeblich beeinflußte, wurden bei den im folgenden besprochenen Abbildungen RAM nach ersten Kinetikmessungen für 2 Stunden in Gasphase in der Luft- bzw. NO₂-Kammer inkubiert. Ein "Coaten" der Zellen mit DPL fand vor der Inkubation der Kulturschalen in den Kammers statt: pro Ansatz wurden 100 µg DPL auf die Zellen gegeben, und die Zellen durch Absaugen von Medium sofort wieder in Gasphase gebracht. Die Zellen der Ansätze einer Kombinationsapplikation von Staub und NO₂ bekamen vor Inkubation in den Kammern den jeweiligen Staub für 1 Stunde zur Phagocytose angeboten und wurden nachfolgend in Gasphase gebracht. Alle Ansätze wurden auf die gleiche Weise weiterbehandelt wie die ohne DPL- oder Staubapplikation. Nach Inkubation in den Kammern wurde der Unterstand auf seinen Enzymgehalt untersucht oder verworfen, und dann 3 ml Reaktionslösung auf bzw. unter die Zellen gegeben. Nach einer 2stündigen Inkubation im Brutschrank wurde das Medium zu einem späteren Zeitpunkt mit Hilfe des WEHI-Bioassays

auf seinen TNF-Gehalt hin untersucht. Die Inkubation mit Stimuli konnte nicht gleichzeitig mit der Begasung der Zellen durchgeführt werden. Dies lag darin begründet, daß wir in Vorversuchen gefunden hatten, daß mit NO₂-begastes human rekombinantes TNF- α im Verlauf der Zeit durch NO₂ zerstört wurde. Da dies natürlich auch für das von den Zellen sezernierte Rinder-TNF zu befürchten war, fand die Stimulation der Zellen nach der Kammerinkubation statt.

Die erste NO₂-Applikationsdosis betrug 3 ppm NO₂, und eine nachfolgende Inkubation im Brutschrank von 2, 3 und 4 Stunden ergab, daß die TNF-Sekretion nach LPS-Applikation bereits nach 2 Stunden ausreichend stimuliert worden war (keine Abbildung). Somit wurden wie zuvor schon erwähnt, die Kulturschalen mit der Stimulationslösung für 2 Stunden bei 37°C im Brutschrank inkubiert.

Abbildung 51 zeigt im oberen Teil der Abbildung die Sekretion von TNF in den Kulturüberstand in Abhängigkeit von verschiedenen Substanzen bzw. Stimuli nach einer 2 stündigen Inkubation der AM in der Luftkammer. Aus dem Kontrollansatz ist zu ersehen, daß die Zellen sehr stark vorstimuliert waren (als "gering stimuliert" bezeichnen wir eine spontane Freisetzung von ca. 10 pg/ml). Eine weitere Stimulation durch 10 μ g LPS/ ml Reaktionslösung war möglich, jedoch war der Unterschied zum Kontrollansatz statistisch nicht signifikant. Das Coaten der Zellen mit 100 μ g DPL/ml Medium vor der Inkubation in der Luftkammer konnte den vorstimulierten Zustand der Zellen fast vollständig aufheben. Bei dem Ansatz DPL+LPS zeigten die Zellen "trotz" Coaten mit DPL eine physiologische Reaktion: sie ließen sich durch LPS in dem Maße stimulieren, wie dies durch LPS allein möglich war.

Der untere Teil der Abbildung zeigt eine TNF-Messung nach Inkubation der Zellkulturen für 2 Stunden mit 3 ppm NO₂. Der Kontroll- und der LPS-Ansatz zeigen, daß sowohl die spontane als auch die durch LPS induzierbare TNF-Sekretion durch 3 ppm NO₂ vollständig gehemmt wurde. Dies ist eine deutliche NO₂-Wirkung, die über den sich auf maximal 20% belaufenden Vitalitätsverlust, der durch NO₂ verursacht wurde, hinausgeht. Die Bedeckung der Zellen mit DPL führte nach der NO₂-Begasung per se zu keiner meßbaren TNF-Sekretion in den Kulturüberstand. DPL allein hatte also keine stimulierende Wirkung. Kongruent damit waren die Messungen nach dem Coaten der Zellen mit DPL und anschließender LPS-Stimulation: NO₂ führte bei beiden Zusätzen zur Hemmung der TNF-Sekretion.

Von gering vorstimulierten Zellen kann bei der Messung in Abbildung 52 gesprochen werden. Die TNF Sekretion war durch LPS deutlich zu stimulieren. Bei dem hier repräsentativen Versuch für die Inkubation mit Quarz bekamen die Zellen 50 µg Quarz in 1 ml RPMI 1640 für 1 Stunde zur Phagocytose angeboten. Die Staublösung befand sich, um überhaupt eine Phagocytose des Quarzes zu ermöglichen, als Überstand über den Zellen. Der Ansatz "Kontrolle Quarz" wurde gleich dem Quarzansatz behandelt, jedoch erhielten die Zellen 1 ml Medium ohne Staub. Dieser Kontrollansatz ermöglichte es, eventuell auftretende Einflüsse, die nicht durch den Quarz bedingt waren, auszuschließen (z. B. Aktivierung der Zellen durch Mediumwechsel). Nach der einstündigen Phagocytose wurden die Zellen in Gasphase gebracht und zur Begasung für 2 Stunden in die entsprechenden Kammern gestellt. Die TNF-Sekretion in den Überstand wurde in dem nach der Kammerinkubation neu hinzugegebenen Medium gemessen.

Das Bedecken der Zellen mit Medium beim Ansatz "Kontrolle Quarz" vor der Inkubation in der Luftkammer reduzierte die schwache Voraktivierung der Kontrollzellen, die ständig in Gasphase saßen, weiter. Die Phagocytose von 50 µg Quarz führte zu einer geringen, aber meßbaren TNF-Sekretion. Es bestand jedoch keine statistische Signifikanz zum Ansatz "Kontrolle Quarz".

Im unteren Teil dieser Abbildung war beim Kontrollansatz nach einer 3 ppm NO₂-Begasung keine Hemmung der Voraktivierung zu verzeichnen, jedoch waren die hier gemessenen Werte so gering, daß es fraglich erscheint, hier von einer (nicht) eingetretenen Hemmung zu sprechen. Eindeutig war dagegen der Effekt von NO₂ auf LPS-stimulierte Zellen, es verursachte im Vergleich zum Luftansatz eine deutliche Reduzierung, die ebenfalls über den 20%igen Verlust an lebenden Zellen hinausging. Für die Ansätze "Kontrolle Quarz" und "Quarz" gilt das Gleiche wie für den Kontrollansatz: die sowohl beim Luft- als auch beim NO₂-Ansatz gemessene Sekretion war so gering, daß keine eindeutige Wirkung (sowohl von Quarz als auch von NO₂) feststellbar war.

Die Messungen der zum Quarz analogen Versuche mit Latex sind aus Abbildung 53 zu ersehen. Hier wurden 250 µg Latex in 1 ml Medium für 1 Stunde zur Phagocytose angeboten. Die Zellen wiesen im oberen Teil der Abbildung eine starke Vorstimulation auf. Sie war durch LPS noch steigerbar, jedoch statistisch nicht eindeutig. Der Kontrollansatz für Latex vermochte die Vorstimulation herabzusetzen, und Latex selbst führte zu einer kaum meßbaren TNF-Sekretion, die im Vergleich zum Ansatz "Kontrolle Latex" nicht durch den Staub verursacht worden sein konnte.

3 ppm NO₂ führten auch hier wieder in allen Fällen zur vollständigen Unterdrückung der Voraktivierung und der Induktion der TNF-Sekretion durch LPS, auch bei "Kontrolle Latex" und "Latex".

Für die Applikation der halb so hohen Dosis an Stickstoffdioxid bei gleichbleibenden Versuchsablauf ergab sich folgendes Bild (Abbildung 54): Eine "Bedeckung" der Zellen mit 100 μ g DPL übte stimulierenden Einfluß auf die Zellen aus, es kam im Gegensatz zur LPS-Applikation, die sich von der voraktivierten Kontrolle nicht unterschied, zu einer statistisch signifikant höheren TNF-Sekretion. Die kombinierte Applikation von DPL und LPS führte sogar zu einem Synergismus bezüglich der TNF-Sekretion.

1,5 ppm NO₂ waren genauso wie 3 ppm in der Lage, die gesamte TNF-Freisetzung, die beim Luftansatz auftrat, zur (fast) vollständigen Hemmung zu bringen. Genauso reproduzierbar war das Ergebnis, daß NO₂ in Wechselwirkung mit DPL und DPL + LPS zu keiner Steigerung der TNF-Sekretion durch RAM führte, und zwar auch bei der Dosis von 1,5 ppm. Berücksichtigt man, daß bei dieser NO₂-Konzentration der Vitalitätsverlust zwischen 0 und 10% lag, so war dies ein bei bereits 1,5 ppm NO₂ auftretender eindeutiger Effekt.

Die Phagocytose von 50 μ g/ml Quarz führte bei RAM zu einer deutlichen TNF-Sekretion (Abbildung 55). Diese Quarz-induzierte Stimulation der TNF-Sekretion konnte durch NO₂-Begasung supprimiert werden, sie ging um ein Vielfaches über den Vitalitätsverlust hinaus. Durch TNF-Messung nach der Luftbegasung konnte hier auch noch gezeigt werden, daß ein Mediumwechsel nicht notwendigerweise zur Voraktivierung der Zellen führen muß (Ansatz "Kontrolle Quarz"). Allen NO₂-Ansätzen war gemeinsam, daß das Gas nicht einen stimulierenden, sondern einen hemmenden Einfluß auf zelluläre Mechanismen der TNF-Sekretion hatte. Die durch LPS induzierte TNF-Sekretion war im Vergleich zum Luftansatz um den Faktor 15 vermindert.

Was eine Applikation von 1,5 ppm Stickstoffdioxid nach Phagocytose des sogenannten Inertstaubes Latex induzierte, kann Abbildung 56 entnommen werden. Bei dem Luftansatz war die Kontrolle wiederholt stark voraktiviert und die Zellen durch LPS nicht weiter zu stimulieren. Bei dem Staubkontrollansatz ist bemerkenswert, daß der Mediumwechsel zu einer stärkeren Stimulation der Zellen als LPS führte. Der Ansatz mit 250 µg Latex wies ebenfalls eine stimulierte TNF-Sekretion auf, dies war aber nicht auf die Latexwirkung zurückzuführen, sondern resultierte, wie dem "Kontrolle-Latex" -Ansatz entnommen werden kann, aus einer unspezifischen Voraktivierung der Zellen.

1,5 ppm NO_2 beeinflußten die spezfische Aktivierung der Zellen (LPS) und die unspezifische (Kontrolle, Kontrolle Latex) in supprimierender Weise. Alle Ansätze waren im Vergleich zur Luftinkubation jeweils signifikant gehemmt.

Desweiteren scheint es erwähnenswert, daß die Zellen bei diversen Versuchen weder durch LPS noch unspezifisch zu einer TNF-Sekretion in den Überstand zu stimulieren waren. Die Gesamtzahl dieser Versuche bei 3 ppm betrug 6 von insgesamt 15 durchgeführten Versuchen. Bei 1,5 ppm wurde mit einer geänderten Zusammensetzung der Reaktionslösung gearbeitet: anstatt wie bei den Versuchen mit 3 ppm NO₂ die Reaktionslösung zur Stabilisierung des TNF mit Rinderserumalbumin zu supplementieren, wurde bei diesen Versuchen ein 10% iger FCS-Zusatz gewählt. Hier waren bei einer Gesamtzahl von 8 Versuchen die Zellen in allen Fällen zu stimulieren.

Bei den nicht zu stimulierenden Versuchen konnte zwar die Hemmwirkung des NO_2 nicht demonstriert werden, jedoch kann auch ihnen entnommen werden, daß NO_2 per se zu keiner TNF-Sekretion durch RAM führte.

3.4. TNF-, IL-6- und IL-8-Messungen bei HL60-Zellen

Im folgenden Kapitel stellte sich die Frage, inwieweit sich eine menschliche Zellinie nach Cytokinapplikation von den Rinderalveolarmakrophagen unterschied, und zwar auch in Bezug auf die Verwendung des jeweiligen Kultursystems.

Die mit Hilfe eines ELISAs durchgeführte Quantifizierung von TNF, IL-6 und IL-8 wurde bei HL60 Granulocyten und HL60 Makrophagen sowohl in Gasphase als auch in Submerskultur durchgeführt.

Die in den Abbildungen 57 (a-c) gezeigten Daten von HL60 Granulocyten, sind Ergebnisse von Zellen, die in Gasphasenkultur durch den Unterstand unter der Membran stimuliert worden waren (oberer Teil der Abbildung). In diesen Unterstand wurden die gemessenen Cytokine auch wieder sezerniert. Eine andere methodische Vorgehensweise ergab sich zwangsläufig für die Granulocyten in Submerskultur. Da diese Zellinie eine Suspensionskultur darstellt, mußten die Zellen nach vorheriger Zentrifugation bereits in der entsprechenden Reaktionslösung aufgenommen werden und die Cytokinsekretion der Zellen erfolgte in den Zellüberstand (unterer Teil der Abbildung). Diese unterschiedliche Behandlungsweise der Zellen in Gasphase und in Submerskultur trifft auch für alle weiteren in diesem Kapitel besprochenen Versuche zu. Die gezeigte Gegenüberstellung der beiden Kulturmethoden nach Applikation von PAF allein und kombiniert mit Endotoxin läßt folgende Aussage zu: bei beiden Kulturmethoden kann

davon ausgegangen werden, daß es sich hier um voraktivierte Zellen handelte. In Gasphase erzielte die Applikation von 1 ng PAF pro Milliliter Reaktionslösung im Vergleich zur Kontrolle keinen Effekt, und die Kombinationsapplikation PAF plus LPS resultierte in einer tendenziell höheren Freisetzung an TNF (Abbildung 57 a), IL-6 (Abbildung 57 b) und IL-8 (Abbildung 57 c), die nur in manchen Fällen statistisch abzusichern war. Die Granulocyten in Submerskultur zeigten die gleiche Verhaltensweise wie die in Gasphase.

Eine vergleichende Untersuchung zur Gasphasenkultur von HL60 Makrophagen ist in den Abbildungen 58 (a-c) dargestellt. Im oberen Teil des Schaubildes wurden Messungen bei nicht voraktivierten Zellen durchgeführt, im unteren Teil waren die HL60-Zellen deutlich spontan aktiviert.

Bei nicht voraktivierten Zellen in Gasphase konnten weder PAF (1 ng/ml Reaktionslösung) noch Lyso-PAF bei gleicher Konzentration die Sekretion von einem der drei untersuchten Cytokine so beeinflussen, daß ein von der Kontrolle deutlich abweichender Wert aufgetreten wäre (Abbildung 58 a, b und c, jeweils die obere Abbildung). Aus dem unteren Teil der Abbildungen kann ersehen werden, daß eine derart hohe Spontanaktivierung dazu führte, daß die Zellen durch Endotoxin gar nicht deutlich mehr aktiviert werden konnten, so wie dies für die IL-6 und IL-8 Quantifizierung zutraf (Abbildung 58 b und c). Trotzdem ergibt sich auch hier dasselbe Bild wie bei den obigen Ergebnissen: PAF verursachte auch bei voraktivierten Zellen keine wesentliche Veränderung gegenüber der Kontrolle. Eine zu PAF äquivalente Aussage ergab sich auch für die Applikation der physiologischen Dosen von 10 und 20 nM LTB4 in der Reaktionslösung.

Die analoge Betrachtungsweise zu den Abbildungen 58 liefern die Abbildung 59 (a-c) für die Submerskultur: im oberen Teil der Abbildungen nicht spontan aktivierte Zellen, im unteren Teil voraktivierte Zellen.

Nicht voraktivierte HL60 Makrophagen in Submerskultur verhielten sich wie Zellen in Gasphase, PAF zeigte keine Wirkung bzw. es führte sogar bei der IL-8 Sekretion zu einer verminderten Freisetzung. Die voraktivierten Zellen der Submerskultur waren ebenso wie voraktivierte Zellen in Gasphase durch Endotoxin so gut wie gar nicht zusätzlich zu stimulieren, eine deutliche Stimulation erzielte jedoch PAF bei allen drei gemessenen Cytokinen. Die stimulierende Wirkung von PAF wurde durch LPS im Fall von TNF und IL-6 aufgehoben (Abbildung 59 a und b, Ansatz "PAF+LPS"). Für IL-8 galt dieser "Reversionseffekt" von LPS nicht. Während also bei der Gasphase kein wesentlicher Unterschied in der Reaktion nicht spontan vorstimulierter und spontan vorstimulierter Zellen festgestellt werden konnte, war dies für die PAF-Wirkung in Submerskultur durchaus der Fall.

3.5. LTB₄-Bestimmung bei RAM per HPLC

Wie bei allen zuvor untersuchten Cytokinen wurden auch bei der Quantifizierung von LTB_4 vergleichende Betrachtungen der beiden Kulturmethoden Gasphase und Submerskultur angestellt.

Die Stimulation der Zellen erfolgte durch eine 5minütige Inkubation mit 10 μ M A 23187. Zur Überprüfung der Methode wurden 2 Standards mitgeführt: ein interner Standard (St. 1), der während der 5minütigen Inkubation zu den Zellen gegeben wurde (unstimulierter Kontrollansatz), und ein zweiter Standard (St. 2), der für die nachfolgende Lipidextraktion mit Ethanol in ein Zentrifugenröhrchen vorgelegt wurde. Der interne Standard war für die quantitative Auswertung von durch die Zellen sezerniertem LTB₄ vorgesehen, der 2. Standard sollte eine quantitative Überprüfung der Lipidextraktion (durch Ethanol) gewährleisten.

Das Chromatogramm (Abbildung 60) zeigt die Daten zur Wiederfindungsrate von LTB₄ nach Gasphasenkultur der RAM. Es wurde das Chromatogramm von Standard 1 und Standard 2 übereinandergelegt. Die Wiederfindungsrate für den internen Standard (St. 1) betrug ca. 40 % (bei 100 ng eingesetztem LTB₄) und 70% für den Standard 2. Die Vergrößerung der mit dem Pfeil markierten Stelle zeigt die Peaks für LTB₄. Abbildung 61 zeigt 3 übereinandergelegte Chromatogramme: Messungen einer unstimulierten Kontrolle und von Zellen, die mit 10 μ M A 23187 für 5 Minuten stimuliert worden waren. Die Kontrolle wies eine geringe LTB₄-Sekretion auf (4-5 ng pro 3 x 10⁶ ausplattierten Zellen), die durch Ionophor nicht weiter stimuliert werden konnte. Ersichtlich ist dies anhand des Standards 2, der über die beiden anderen Chromatogramme gelegt wurde. Die mit einem Pfeil markierte Stelle der Chromatogramme wurde im oberen rechten Teil der Abbildung herausvergrößert. Sie zeigt den LTB₄-Peak, und die beiden darunterliegenden Chromatogramme (Kontrolle und A 23187-stimulierte Zellen) lassen keine deutlich sichtbare LTB₄-Sekretion erkennen.

Die Chromatogramme der Abbildung 62 und 63 zeigen die Daten der Zellen nach Submerskultur. In Abbildung 62 wurden die Chromatogramme von Standard 1 und Standard 2, die zur Submerskultur hinzugegeben worden waren, übereinandergelegt. Die mit dem Pfeil gekennzeichnete Stelle zeigt in Vergrößerung den Peak für LTB₄. Die Wiederfindungsrate für den internen Standard belief sich hier auf ca. 50 % (bei 100 ng eingesetztem LTB₄) und auf 65% für den Standard 2. Bei der Submerskultur wurden 6 x 10⁶ Zellen ausplattiert. Abbildung 63 zeigt 3 übereinandergelegte Chromatogramme: Messungen einer unstimulierten Kontrolle und von Zellen, die mit 10 μ M A 23187 für 5 Minuten stimuliert worden waren. Die LTB₄-Sekretion des Kontrollansatzes blieb mit durchschnittlich 3 ng bei doppelter Zahl an ausplattierten Zellen unterhalb der des Gasphasenansatzes, und die Zellen waren durch A 23187 zu einer geringfügig höheren LTB₄-Abgabe von ca. 8 ng zu stimulieren. Die Vergrößerung der mit dem Pfeil markierten Stelle zeigt den LTB₄-Peak, und den Chromatogrammen kann entnommen werden, daß es auch bei der konventionellen Submerskultur zu einer vernachlässigbaren Sekretion an LTB₄ kommt.

4. Diskussion

Die Erforschung schadgasinduzierter Zellschädigungen gehört nach wie vor zu den aktuellen umweltmedizinischen Problemstellungen unserer Zeit. Kontrollierte in vitro-Expositionsstudien können zumindest teilweise das Manko epidemiologischer Untersuchungen an Menschen oder das von Tierversuchen kompensieren, da die Zahl der in die Versuchsergebnisse einfließenden Parameter genau definiert und limitiert werden kann.

Wie eingangs erwähnt, ist es daher Ziel der vorliegenden Arbeit, anhand eines solchen in vitro-Systems, das eine möglichst naturgetreue Reproduktion der wirklichen Situation darstellen sollte, kontrollierte Untersuchungen der Wirkung von Stickstoffdioxid in Kombination mit Stäuben auf Alveolarmakrophagen durchzuführen.

Aus der neuartigen Gasphasenkultur von Zellen ergibt sich eine weitere Zielsetzung dieser Arbeit: es soll überprüft werden, ob mit HL60 Makrophagen als Modell eine Gasphasenkultur möglich sei (diese Zellen leben unter konventionellen Kulturbedingungen nicht an Luft).

Naturgetreu bedeutet in diesem Zusammenhang eine Kulturmethode zu finden, die einem direkten Kontakt zwischen Zelle und gasförmiger Expositionsnoxe gerecht wird, in diesem Fall die Kultur von Zellen in Gasphase. Dieses, wie auch jedes andere artifizielle Kultursystem, ist in seiner Übertragbarkeit auf die in vivo-Situation durch Vernachlässigung von Einflüssen, die in vivo vorhanden sind, potentiell gefährdet. Einer der Fehler, mit dem dieses System behaftet ist, ergibt sich aus der Verwendung von nur einem einzigen lungenspezifischen Zelltyp, den Alveolarmakrophagen. Dies sollte dadurch kompensiert werden, daß mögliche Cytokineinflüsse, sei es durch die Sekretion derselben Zellen oder durch andere relevante Zelltypen, erfaßt bzw. ausgeschlossen würden. Daher wurde eine exogene Mediatorapplikation über einen weiten Konzentrationsbereich untersucht. Ein weiterer Schritt in Richtung der in vivo-Situation stellte das "Coaten" von Zellen mit DPL, dem Hauptbestandteil des Surfactantmaterials der Lunge, dar.

Parameter der Schädigung waren die Sekretion cytoplasmatischer und lysosomaler Enzyme in den Zellunterstand, die Freisetzung von Superoxidanionen unter Berücksichtigung verschiedener Variationen beim Versuchsablauf und der Einfluß von NO₂ und Stäuben auf die Sekretion des Tumor Nekrose Faktor bei Alveolarmakrophagen.

4.1. Eignung der Kulturmethode zum Nachweis von Effekten gasförmiger Noxen

Da in dieser Arbeit die Messung des Einflusses gasförmiger Luftschadstoffe auf zelluläre Mechanismen durchgeführt werden sollte, galt es zu allererst, ein geeignetes Kultursystem zu finden. Dieses sollte den direkten Kontakt zwischen Gas und Zelle ermöglichen, ein Grund, warum die konventionelle Submerskultur dafür ungeeignet war. Mit dem von Voisin übernommenen System ist es möglich, Alveolarmakrophagen diverser Spezies mit Gasen wie NO2 oder O3 über längere Zeiträume hinweg ohne Vitalitätsverlust zu exponieren. Das klassische Kultursystem hätte darüberhinaus die Quantifizierung, welche Schadgaskonzentration überhaupt zur Zelle vordringt, nicht erlaubt. Weiterhin wäre unbekannt geblieben, inwieweit sich NO2 in Medium löst und damit z.B. durch eine Ansäuerung zu Artefakten bezüglich der durchgeführten Messungen führen könnte. So führten

epidemiologische Untersuchungen am Menschen zu der Erkenntnis, daß eine Ansäuerung der Luft signifikant mit verschiedenen Indikatoren des Status Asthmaticus assoziiert war, u.a. Husten und Kurzatmigkeit (Ostro et al. 1991). Die Alveolarmakrophagen könnten durch diese Kultursystem-bedingte Ansäuerung bereits in einen ähnlich unphysiologischen Zustand versetzt werden wie beim Status Asthmaticus.

Daß dieses Kultursystem in Bezug auf seine "Funktionstüchtigkeit" mit der konventionellen Submerskultur vergleichbar ist, konnte durch die Staubapplikation verifiziert werden: Quarz (50 μ g/ml) führt nach Inkubation von RAM in der Luftkammer zur signifikant höheren Enzymfreisetzung in den Zellunterstand im Vergleich zu den Ansätzen ohne Staub. Es induziert damit auch eine cytotoxische Wirkung, die mit der der Submerskultur von RAM vergleichbar ist (Schmidt, 1992), und Latex bleibt als Inertstaub ohne Einfluß (Abbildung 53 und 55) auf die TNF-Sekretion.

4.2. Eignung von HL60 Makrophagen und HL60 Granulocyten für die Gasphasenkultur

Die Überprüfung der Fragestellung, ob eine Gasphasenkultur von HL60-Zellen überhaupt möglich ist, um mit dieser Zellinie auch andere zelluläre Mechanismen zu untersuchen, erfolgte unter anderem durch eine Quantifizierung der Radikalsekretion.

Es stellte sich heraus, daß Zymosan, das Standardstimulans von RAM, weder bei HL60 Makrophagen noch bei HL60 Granulocyten geeignet war, reproduzierbar eine deutliche Menge an O_2^- zu induzieren. Als adäquates Stimulus bei HL60-Zellen stellte sich TPA heraus.

PAF ergab bei beiden HL60-Zelltypen keine von der Kontrolle abweichende Sekretion und auch die gemeinsame Appikation von PAF und Zymosan erbrachte keine andersartige Erkenntnis als bei RAM.

HL60-Zellen könnten hierbei als Substitut für RAM Verwendung finden. Jedoch ist dies noch insofern in Frage zu stellen, als daß Zymosan nur eine schwach induktive Wirkung besitzt und bei HL60-Zellen möglicherweise andere Mechanismen der Signaltransduktion in Betracht kommen. So bliebe denn bei einem neu auszutestenden Agens die Frage offen, ob es nicht über den gleichen Mechanismus wie Zymosan eine O_2^{-} -Sekretion hätte auslösen können und deshalb nur wenig wirksam war.

Weiterhin sollte die Tauglichkeit der Gasphasenkultur von HL60-Zellen durch Messung einer Cytokinsekretion überprüft werden. HL60 Granulocyten und HL60 Makrophagen wurden mit LPS und/oder PAF, Lyso-PAF und LTB₄ im Zellunterstand während einer Gasphasenkultur und im Überstand bei der Submerskultur inkubiert. Quantifiziert wurden dann TNF- α , IL-6 und IL-8.

LPS vermochte in allen untersuchten Fällen eine Sekretion der drei Cytokine zu induzieren, es sei denn, die Zellen waren sehr stark hypersensibilisiert.

Bei nicht voraktivierten HL60 Makrophagen hatten weder PAF noch Lyso-PAF bei beiden Kulturmethoden irgendeine Wirkung. Voraktivierte Zellen verhielten sich dagegen anders. PAF konnte in manchen Fällen zu einer Cytokinsekretion führen, deutlich ausgeprägt war. Dies traf aber nur für die Submerskultur zu. Die Ansätze nach Kombinationsapplikation von PAF und LPS verhielten sich bezüglich voraktivierten Zellen ähnlich wie die von PAF allein: die zelluläre Reaktion war nicht einheitlich, und ein vorhandener Effekt kam bei der Submerskultur

deutlicher zur Ausprägung. In ihrer Sekretionsrate untereinander verglichen, kam der Effekt bei TNF am deutlichsten zum Tragen.

Da bei HL60 Granulocyten nur Daten über voraktivierte Zellen vorliegen, können keine Betrachtungen zum "Normalverhalten" der Zellen angestellt werden. Hier gilt wie für die Makrophagen, daß ein Effekt nach Applikation von PAF oder PAF und LPS zusammen vorwiegend bei der Submerskultur der Zellen auftrat und bei den drei gemessenen Cytokinen TNF am stärksten induziert wurde. Eine vergleichbare Wirkung von Cytokinen auf voraktivierte Zellen fanden Gosset et al. (1991) bei Alveolarmakrophagen von Asthmatikern. Carre et al. (1991) arbeiteten mit Alveolarmakrophagen von Patienten mit einer idiopathischen Lungenfibrose. Die Zellen wiesen eine gesteigerte Expressionsrate des IL-8 Gens auf. Durch die pathologische Vorgeschichte der Patienten kann in beiden Fällen davon ausgegangen werden, daß es sich um voraktivierte Zellen handelt. Daß eine gesteigerte Cytokinsekretion tatsächlich auf eine Vorstimulation zurückgehen kann, konnten Boutten et al. (1992) zeigen. Die Autoren fanden nach Applikation des α_1 -sauren Glykoproteins (AGP) keine Cytokinsekretion. Wurden die Monocyten bzw. Makrophagen mit einer suboptimalen LPS-Konzentration vorstimuliert, so erhöhte AGP signifikant die IL-1, IL-6 und die TNF-Produktion.

Zusammenfassend kann festgestellt werden daß HL60-Zellen für die Gasphasenkultur geeignet sind. Standardstimuli wie LPS können die Zellen zur Cytokinsekretion stimulieren, und auch die Exposition von HL60-Zellen in Gasphase mit NO₂ führen zu Ergebnissen, die mit denen von RAM vergleichbar sind (Polzer in press).

- 4.3. Bildung von Superoxidanionen und Tumor Nekrose Faktor durch verschiedenen Mediatoren
- 4.3.1. Einflüsse von Cytokinen und Lipidmediatoren

Bezüglich der Induktion der Superoxidanionenfreisetzung stellte sich heraus, daß die Voraktivierung der Rinderalveolarmakrophagen unter Umständen spontanen Charakter hatte, möglicherweise bedingt durch die individuelle Vorgeschichte eines jeden Tieres. Die Verwendung bestimmter Zusätze für die Übernacht-Kultur konnte das System ebenfalls beeinflussen: das Versetzen des Mediums mit Amphothericin/Tetracyclin führte regelmäßig zu einer Voraktivierung der Kontrollansätze. Daß diese Erhöhung der Atmungsaktivität möglicherweise auf Amphothericin zurückzuführen ist, zeigen Untersuchungen von Wolf und Massof (1990), die ebenfalls eine erhöhte O_2^- -Sekretion nach Amphothericin B-Zusatz statistisch absichern konnten. Nach der Erkenntnis, daß bereits die Art der Zellkultur solch drastischen Einfluß auf die durchgeführten Messungen haben kann, erschien es um so wichtiger, derartige Beeinflussungen des Systems von vornherein auszuschließen.

Zur Realisierung eines naturnahen in vitro-Modells war es notwendig, den Einfluß exogener oder endogener Mediatoren zu bestimmen, denn Alveolarmakrophagen haben im Atemraum Kontakt zu anderen Zellarten wie Epithelzellen und Endothelzellen, die nach Aktivierung sekretorisch aktiv werden können. Zur Überprüfung der "Funktionstüchtigkeit" der Gasphasenkultur wurde bei Messungen von Sauerstoffradikalen und TNF eine Applikation der jeweiligen Substanzen für beide Kutursysteme (Gasphase und Submerskultur) vorgenommen, um dann eventuell auftretende Unterschiede genau qualifizieren und quantifizieren zu können.

Wie schon eingangs dargelegt, hat TNF mit seiner Wirkung auf reaktive Sauerstoffspezies zwei antagonistische Wirkungsweisen: er führt vermutlich durch Stimulation der Bildung von Sauerstoffradikalen zur Schädigung zellulärer Bestandteile (Freeman und Crapo, 1982). TNF kann aber auch eine vermehrte Bildung antioxidativer Enzyme bewirken und führt somit zu einem Schutz vor einer Sauerstofftoxizität (Tsan et al., 1990; Visner et al. 1992).

In den hier durchgeführten Untersuchungen kam es nach Applikation von TNF bei beiden Kultursystemen zu keiner signifikant höheren O_2^- -Sekretion im Vergleich zur Kontrolle. Eine Ausnahme bildeten die folgenden Fälle: die Applikation von 100 ng/ml TNF nach Gasphasenkultur von RAM führte zu einer signifikant höheren O_2^- -Freisetzung als die Kontrolle. Die nach der Applikation von 100 ng/ml TNF sezernierte O_2^- -Menge unterschied sich nicht von der nach einer Kombinationsapplikation von TNF und PAF, die ihrerseits wiederum nicht signifikant unterschiedlich zur Kontrolle war (Abb. 13). Ähnlich zeigte sich das Verhalten dreier Messungen mit RAM nach Submerskultur: die Menge an gemessenem O_2^- nach TNF-Gabe unterschied sich zwar signifikant von der Kontrolle, nicht aber von der gemeinschaftlichen Applikation von TNF und PAF, die wie auch für den oben beschriebenen Fall der Gasphasenkultur nicht signifikant unterschiedlich zur Kontrolle war (Abb. 12, 13 und 14).

Diese Ergebnisse sind ein Hinweis darauf, daß TNF bei RAM kein primärer Stimulus der O_2^{-} -Produktion ist. Bestätigt wird dies durch Untersuchungen von Tanner at al. (1992), die bei Makrophagen, die vom Knochenmark abstammten, ebenfalls keine primär stimulierende Wirkung des TNF bei der Superoxidsekretion feststellen konnten. Das Gleiche gilt für Untersuchungen von Peters et al. (1990), die Sauerstoffradikale bei Kupfferzellen der Ratte quantifizierten.

Vermutlich ist jedoch die primär stimulierende Wirkung von TNF Zelltyp-spezifisch, denn TNF kann bei Nierenzellen eine O_2^- -Abgabe induzieren (Radeke et al., 1990), ebenso wie dies für neutrophile Granulocyten der Ratte (Peters et al., 1990) oder für die L-929-Zellinie (Hennet et al., 1993) zutrifft.

In diesem Falle scheint es relativ unwahrscheinlich, daß TNF wie oben erwähnt innerhalb des hier angewandten Meßzeitraumes von 90 Minuten zur Bildung und Sekretion antioxidativer Schutzenzyme führt und ihm dadurch eine bimodale bzw. antagonistische Wirkungsweise zukommt: es induziert einerseits die Expression und Sekretion antioxidativ wirkender Schutzenzyme, anderseits ist es ein Primärstimulus der O_2^- -Sekretion.

Weiterhin enthält die Literatur Hinweise darauf, daß sich die Wirksamkeit von TNF bei Makrophagen auf den Mechanismus der Vor- oder Zweitstimulation von Zellen zu beschränken scheint (Humbert und Winsor, 1990; Tanner et al., 1992). Dies stellt auch eine mögliche Erklärung des Effektes dar, warum bei dieser Untersuchung in einigen Fällen die Applikation von TNF mit PAF zu einer geringen, aber signifikant höheren O_2^- -Produktion als bei der Kontrolle führt. Um die Rolle des TNF bezüglich seiner Triggerwirkung eindeutig klären zu können, sollten RAM für einen längeren Zeitraum mit TNF vorinkubiert werden, um dann mit einem Zweitstimulus induziert zu werden oder umgekehrt.

53

Wie eingangs dargelegt, führt PAF nach einer in vivo-Applikation direkt zur Superoxidanionenbildung bei Alveolarmakrophagen des Meerschweinchens (Kato et al., 1993). 10^{-14} , 10^{-12} und 10^{-6} M appliziert führte PAF bei den Alveolarmakrophagen des Rindes in Gasphase zu keiner signifikant unterschiedlichen Menge an Radikalen im Vergleich zur Kontrolle. Die signifikant geringere Freisetzung nach einer 10^{-6} M Applikation von PAF in Submerskultur muß aufgrund der geringen Ausprägung diese Effektes mit Vorbehalt bewertet werden.

Es gibt immer noch Widersprüchliches, was die Rolle von PAF als Aktivator für die Bildung reaktiver Sauerstoffintermediate anbetrifft. Tatsächlich gibt es weitere Untersuchungen, bei denen PAF die Atmungsaktivität bei Meerschweinchenmakrophagen stimuliert: und zwar die von Peritonealmakrophagen als auch die von Alveolarmakrophagen (Maridonneau-Parini et al., 1985; Parnham und Bittner, 1986). Im Gegensatz dazu fanden einige Autoren, daß PAF keinen Einfluß auf Rattenalveolarmakrophagen hat (Hwang et al., 1983). Offensichtlich ändert sich die Wirkung von PAF als eine Funktion des Gewebetyps und der Spezies, von denen die Zellen abstammen, genauso wie sie vom Phänotyp der Zelle ("voraktiviert" oder "ruhend") und von den Kulturbedingungen abhängig zu sein scheint.

Kombinationsapplikationen von PAF und TNF führten zu keiner abweichenden Erkenntnis gegenüber der Einzelapplikation des jeweiligen Agens. Zwar kam es zu signifikanten Abweichungen von der Kontrolle sowohl für die Gasphase (Abb. 11 und 14) als auch für die Submerskultur (Abb. 12 und 14), diese Erniedrigungen oder Erhöhungen der O_2^- -Sekretion waren jedoch äußerst gering, und für die Gasphase eher von widersprüchlicher Natur. Bei den betreffenden Versuchen waren die Zellen jeweils voraktiviert und es wurden ähnliche Konzentrationen angewandt, die Messungen verhielten sich aber entgegengesetzt. Es ist naheliegend, daß der Grund dafür nicht in zellulären Abläufen liegt, sondern dies auf die methodische Behandlung zurückzuführen ist. Für die Submerskultur zeigte sich, daß die gemessenen Kombinationseffekte durch TNF verursacht werden. In den Versuchen, bei denen TNF zur signifikanten Erhöhung oder Erniedrigung gegenüber der Kontrolle führte, ergab die Applikation beider Agenzien dasselbe Resultat. Dies scheint ein weiterer Hinweis für Richtigkeit der Annahme zu sein, daß RAM auf PAF nicht reagieren. Kommt es zu einer veränderten O_2^- -Sekretion, so scheint sie TNF-induziert zu sein.

Diese Hypothese wird durch folgende Messungen ergänzt: PAF konnte bei gleichzeitiger Applikation mit Zymosan zu keinem Triggern der O_2^- -Produktion führen (Abb. 20-23).

Diese Verhaltensweise der Alveolarmakrophagen steht im deutlichen Gegensatz zu den Daten, die Paubert-Braquet und Mitarbeiter (1990) erzielen konnten: eine TNF-Applikation erhöht bei menschlichen neutrophilen Granulocyten die PAF-induzierte O_2^- -Produktion.

LTB₄ ist ein von der Membran abstammender Lipidmediator, der aus Arachidonsäure über den 5-Lipoxygenaseweg produziert wird. Arachidonsäure kann die Bildung freier Radikale wie O_2^- und H_2O_2 induzieren, und ihre Freisetzung ist durch TNF stimulierbar (Das et al., 1990). Der Mechanismus, daß eine Stimulation der Zellen zu einer LTB₄-Sekretion führt, die ihrerseits die Bildung von Sauerstoffradikalen induziert, könnte auch für LTB₄ wirksam sein. Hinweise darauf ergeben sich aus folgenden Publikationen: die Stimulation menschlicher Alveolarmakrophagen führt zur Produktion großer Mengen an LTB₄ (Bigby und Holtzman,

1987), und eine LTB₄-Vorbehandlung führt bei neutrophilen Granulocyten aus der Rinderlunge zur Sekretion an Superoxidanionen (Heidel et al., 1991).

In den hier durchgeführten Versuchen induzierte LTB₄ in der Submerskultur von RAM keine signifikant veränderte Menge an O_2^- im Vergleich zur Kontrolle. Dasselbe ergab sich für Zellen in Gasphasenkultur, die immunologisch nicht voraktiviert waren. Wiesen die Zellen der Gasphasenkultur dagegen eine starke Vorstimulation auf, so führte LTB₄ zu der genau gegenteiligen Wirkung wie der von Heidel et al. (1991) gezeigten: LTB₄ hemmte die O₂⁻⁻ Sekretion signifikant. Eine mögliche Erklärung für dieses Ergebnis stellen die folgenden Sachverhalte dar: LTB₄ gehört zu den Substanzen, die Entzündungen auslösen (Pauwels, 1990). Da entzündliche Prozesse unter anderem zur Rekrutierung neutrophiler Granulocyten in die Lunge führen (Neijens, 1990; O'Byrne et al., 1985), die ihrerseits zellschädigende Wirkung ausüben können, wirkt die reduzierte Radikalsekretion voraktivierter Makrophagen diesem Prozeß entgegen. Eine derartige Hemmung auf zellulärere Ebene erscheint insofern sinnvoll, als daß die Sekretion reaktiver Sauerstoffspezies während entzündlicher Prozesse zu einem zusätzlichen Gewebeschaden und damit zu einer weiteren Verschlechterung des Krankheitszustandes beitragen würde.

Eine LTB₄-Sekretion durch RAM selbst konnte nicht gemessen werden (Abb. 60-63), da jedoch bei inflammatorischen Reaktionen eine Vielzahl von Zellen und Cytokinen miteinander interagierten, sollte in dieser Untersuchung nicht ausgeschlossen werden, daß exogen gebildetes LTB₄ RAM in ihrer zellulären Antwort beeinflussen könnte.

Mediatoren wie PAF, LTB₄ und IFN- γ vermochten bei Gasphasen-inkubierten RAM keine TNF-Sekretion zu induzieren. Eine Kombinationsapplikation mit LPS führte zu Ergebnissen, die der jeweiligen Messung mit LPS allein entsprachen. LTB₄ zeigte dagegen bei voraktivierten Zellen eine abweichende Wirkungsweise: 160 nM LTB₄ führten in Gasphase zu einer Hemmung gegenüber der voraktivierten Kontrolle, genauso wie LPS und LTB₄ zusammen. Es wäre denkbar, daß Cytokine unter entsprechenden Bedingungen einen Status der Hyporeagibilität induzieren, so wie dies für LPS der Fall sein kann (Chu et al., 1993). Cytokine in Submerskultur erbrachten keine von der Gasphase abweichenden Erkenntnisse.

4.3.2. Einflüsse von TPA, Ca²⁺-Ionophor, LPS und Dexamethason

Die Produktion reaktiver Sauerstoffintermediate kann in verschiedenen Zelltypen, darunter auch bei Alveolarmakrophagen, durch lösliche Aktivatoren wie TPA stimuliert werden (Goya et al., 1992, Robison et al., 1990).

Dies bestätigte sich auch für RAM in Gasphase und Submerskultur. 20 ng/ml TPA führten nach Gasphasenkultur zur signifikant höheren O_2^- -Sekretion gegenüber dem Zymosanstimulierten Ansatz. Die TPA-induzierte Radikalsekretion war dosisabhängig: die niedrigere TPA-Menge induzierte eine signifikant geringere O_2^- -Sekretion als die doppelt so hohe. In Submerskultur zeigten RAM ein abweichendes Sekretionsverhalten: eine Steigerung der Wirkung von TPA war durch die höhere Dosis nicht mehr zu erzielen, ein Effekt der durch die Kulturmethode bedingt zu sein scheint. Möglicherweise kann eine Gasphasenkultur die Sensibilität der Zellen gegenüber einer nachfolgenden Stimulation mit TPA im Vergleich zur Submerskultur erhöhen.

Mayer et al. (1993) konnten in diesem Zusammenhang ermitteln, daß TNF-a bei Ratten-AM lediglich die TPA-stimulierte, nicht aber die A 23187- oder die Zymosan-stimulierte O2--Produktion erhöhen konnte. Diese Tatsache, und die in dieser Untersuchung gewonnene Erkenntnis, daß TPA zu einer deutlich höheren O2-Sekretion als Zymosan führen kann, scheint die Vermutung zu bestätigen, daß es verschiedene zelluläre Mechanismen bezüglich der Sekretion reaktiver Sauerstoffspezies gibt. So kann TPA z.B. neutrophile Granulocyten aktivieren. Es kommt nachfolgend zur Superoxidanionensekretion, wobei sowohl Ca²⁺ als auch die Phospholipid-abhängige Proteinkinase (PKC) an dieser Stimulus-abhängigen Produktion beteiligt zu sein scheinen (Nishizuka, 1984). Jedoch ist die Rolle der PKC bei dem Mechanismus der NADPH-Oxidase-Aktivierung ungeklärt (Rotrosen und Leto, 1990; Nauseef et al., 1991; Sharma et al., 1991). Es gibt eine neuere Untersuchung von Watson et al. (1991), die bei menschlichen neutrophilen Granulocyten PKC-abhängige und PKC-unabhängige Mechanismen der NADPH-Oxidase-Aktivierung finden konnten. Bhaskaran und Mitarbeiter (1992) bestimmten die Superoxidanionensekretion bei menschlichen AM und kamen ebenfalls zu der Schlußfolgerung, daß je nach Stimulus verschiedene Signaltransduktionswege beschritten werden.

A 23187 ist eine artifizielle Verbindung, die als Ca²⁺-Ionophor Verwendung findet. Sie führt durch Induktion eines Ca²⁺-Einstroms in die Zelle zur Mobilisierung der Arachidonsäure (Steward und Phillips, 1989; Henerson, 1987). Es besitzt also einen Wirkungsmechanismus, der dem des LTB₄ vergleichbar ist.

A 23187 zeigt bei der Gasphasenkultur keinen signifikanten Effekt auf die O_2^- -Produktion im Vergleich zur Kontrolle. Bei der Submerskultur kommt es bei allen drei applizierten Konzentrationen zu einer geringen Hemmung gegenüber dem Kontrollansatz. Ein Ergebnis, das dem mit voraktivierten Zellen in Gasphase nach LTB₄-Applikation entspricht. A 23187 zeigt durch seine fehlende oder hemmende Wirkungsweise keine Parallele zu dem Signaltransduktionsweg, dessen sich das TPA bedient und kann, zumindest was die O_2^- -Sekretion anbelangt, nicht als Substanz für die Erforschung alternativer Stoffwechselwege Verwendung finden.

LPS stellt einen wichtigen Makrophagen-aktivierenden Stimulus dar - die Mechanismen, über die das Endotoxin seine Wirkung ausübt, sind jedoch noch unbekannt. Es mehren sich die Beweise, daß die Pathophysiologie z.T. auf oxidative Reaktionen zurückgeführt werden kann, die dann zum Gewebeschaden und Organversagen führen. So konnten Jackson et al. (1989) zeigen, daß die Makrophagen von Mäusen in vitro freie Radikale nach Endotoxinstimulation produzieren, und Arthur und Mitarbeiter (1988) konnten durch Applikation von Antioxidanzien wie SOD die Wirkung des Endotoxins auf Makrophagen herabsetzen.

In den hier durchgeführten Untersuchungen sollte herausgefunden werden, ob dieser Mechanismus der Endotoxinwirkung für RAM und damit möglicherweise für die Lunge ebenfalls zutrifft, und ob LPS die O_2^{-} -Sekretion zu triggern vermag, wenn es vor und gleichzeitig mit Zymosan appliziert wird.

LPS führte bei RAM weder in Gasphase noch in Submerskultur zu einer signifikant veränderten O_2^{-} -Sekretion, wenn es allein und in Konzentrationen appliziert wurde, die zur Erhöhung der TNF-Freisetzung durch diese Zellen ausreichte.

Eine Vorinkubation der Zellen mit LPS für 20 Stunden ergab eine O_2^{-} Abgabe, die dem Zymosanansatz entsprach, und war damit keinen Hinweis auf ein mögliches Triggern. Die gleichzeitige Applikation von Zymosan und LPS erbrachte für die Submerskultur keine neue Erkenntnis. Beim entsprechenden Gasphasenansatz kam es zu einer signifikanten Reduktion gegenüber der Stimulation mit Zymosan. Da LPS bei allen anderen Versuchen aber keine Hemmwirkung auszuüben vermochte, und diese Messung mit einem relativ hohen Standardfehler behaftet ist, scheint es naheliegend, diesen Effekt einem Artefakt zuzuordnen.

Werden Makrophagen in vitro mit LPS stimuliert, so produzieren sie eine bestimmte Anzahl an Cytokinen, u.a. TNF- α , das direkt zu der Fähigkeit der Makrophagen beiträgt, eindringende Bakterien zu töten, dann aber andererseits an der Entstehung des Septischen Schocks beteiligt ist (Old, 1988; Tracey et al., 1986).

Daß RAM nach Applikation von LPS zur Sekretion von TNF stimuliert werden, konnte bereits Schmidt (1992) in unserem Labor zeigen. Ganz neu ist jedoch die Erkenntnis, daß die Zellen auch dazu in der Lage sind, wenn sie in Gasphase lediglich mit ihren Pseudopodien Kontakt zu der LPS-Lösung hatten (Abb. 41). Dies bedeutet, daß schon der Kontakt einer kleinen Anzahl von Rezeptoren mit LPS die Zellen aktiviert. Ähnliche Schlußfolgerungen hatte bereits Geiger (1993) aus seinen Untersuchungen mit HL60-Zellen gezogen.

Im Laufe der TNF-Quantifizierung stellte sich heraus, daß sich RAM in einigen Versuchen mit LPS zu keiner TNF-Sekretion stimulieren ließen. Diese mangelhafte Simulierbarkeit der Zellen ließ sich revertieren, wenn während der Inkubation mit dem Stimulus dem Medium fötales Kälberserum beigefügt wurde. Khemlani et al. (1992) fanden Hinweise darauf, daß die Reaktion der Vertebraten auf bakterielles Lipopolysaccarid zum Teil durch Serumfaktoren reguliert werden könnte, die die Bioverfügbarkeit und die Bindungsaffinität für LPS auf zellulärer Ebene beeinflussen. Sie konnten im Serum von adulten und fötalen Rindern einen Faktor finden, der an LPS bindet. Daß es sich bei diesem Faktor um das Lipopolysaccharid-bindende Protein (LBP) handeln könnte, ergab sich aus Untersuchungen von Corradin et al. (1992), Martin et al. (1992) und Gallay et al. (1993). Die Autorengruppen fanden eine Hyporeagibilität der Zellen nach Fehlen von Serumfaktoren. Da in dieser Untersuchung die Stimulierbarkeit der Zellen durch Serum in allen Fällen erreicht werden konnte, ist es naheliegend, den Grund dafür in einem solchen Serumfaktor wie LBP zu suchen.

Dexamethason ist ein synthetisches Glucocorticosteroid. Es kann die TNF-Biosynthese beeinflussen: es verhindert als anti-inflammatorisches Agens die Biosynthese von TNF und Monokinen und erlangt damit Bedeutung auf dem klinischen Sektor. Aus der Literatur war bekannt, daß eine Vorbehandlung von Makrophagen mit Dexamethason dazu führen kann, daß die Zellen auf eine LPS-Stimulation kein TNF mehr produzieren können (Beutler, 1990). Ist das LPS bereits mit den Zellen assoziiert, so können die Glucocorticoide eine TNF-Biosynthese nicht mehr verhindern.

Die Versuche ergaben, daß RAM vermutlich Corticosteroidrezeptoren besitzen, denn die gemeinsame Applikation von Dexamethason und LPS führte bei beiden Kulturmethoden zu einer deutlichen Hemmung der TNF-Sekretion. Diese Ergebnisse stehen nur teilweise in Einklang mit den Untersuchungen von Floch und Mitarbeitern (1989), die in vitro bei Mausmakrophagen zeigen konnten, daß Dexamethason nur wirksam ist, wenn es 15 Minuten vor der Stimulation mit LPS appliziert wird. In dieser Arbeit führte die gleichzeitige

Applikation von Dexamethason und LPS noch zusätzlich zu einer Hemmung der TNF-Sekretion, wobei die Zellen in Submerskultur stärker gehemmt wurden als die in Gasphase. Eine Erklärung hierfür könnte u.a. in den unterschiedlichen Kulturbedingungen liegen, denn in Submerskultur wird dem Agens leichter ein Zutritt an die Zelle ermöglicht als dies bei der Gasphasenkultur der Fall ist.

Insgesamt kann man doch wohl aus den relativ geringen Effekten von PAF, LTB₄ und TNF schließen, daß die Aussagen zur Wirkung von NO₂ (und anderen Gasen), die mittels des Gasphasenkultursystems erhalten werden, nicht dadurch verfälscht sein können, daß nur Alveolarmakrophagen ohne Zusammenhang mit PAF-, LTB₄- oder TNF-produzierenden Zellen im Gewebsverband benutzt wurden. Also ein weiteres Argument für die Validität unseres Systems.

4.4. Wirkung von NO₂ auf die Vitalität, Enzymfreisetzung und Morphologie von Rinderalveolarmakrophagen

Die Exposition mit 3 ppm NO₂ für 2 Stunden führt bei RAM zu einem Vitalitätsverlust, der sich zwischen 10 und 20% bewegt. Nach einer Begasung der Zellen mit 1,5 ppm variiert der Prozentsatz an toten Zellen zwischen 0 und 10%. Trotz der subjektiven Auswertungsmethode und der Individuen-bedingten Schwankung der Vitalitätsraten ist zwischen beiden Konzentrationen deutlich eine Dosis-Wirkungsbeziehung zu ersehen. Polzer et al. (in press) können für HL60 Makrophagen bei den gleichen NO2-Konzentrationen sehr ähnliche Vitalitätsverluste verzeichnen: ein ca. 10% iger Vitalitätsverlust tritt bei HL60-Zellen bereits nach 1 ppm NO₂ für 3 Stunden auf. Daß eine Exposition mit NO₂ dosisabhängig zu einem Anstieg der Letalitätsrate führen kann, wird durch Untersuchungen von Zamora et al. (1986), Davis et al. (1992) und Smeglin et al. (1986) bestätigt. Smeglin und Mitarbeiter fanden nach Exposition von Nichtrauchern mit 0,6 ppm NO₂ keine signifikante Vitalitätsveränderung der Alveolarmakrophagen. Davis und Mitarbeiter konnten bei Mäusen eine Dosis-Wirkungsbeziehung feststellen: im höherer Konzentrationsbereich von 5 und 10 ppm fand eine signifikante Reduktion der Vitalität statt, nicht aber nach 2 ppm NO₂. Zamora und Coautoren konnten nach einer in vitro-Exposition von Epithelzellen eine Vitalitätsabnahme nach einer einstündigen Exposition mit 6 ppm NO₂ verzeichnen. Der durch ein oxidatives Schadgas bedingte schädliche Einfluß auf Alveolarmakrophagen kann sich u.a. auch durch eine erhöhte Zellzahl nach Lavage der Lunge bemerkbar machen, denn die Zellen lösen sich dann leichter von der Lungenoberfläche ab. Dies konnten Mochitate et al. (1986) nach einer 10tägigen Applikation von 4 ppm NO_2 bei Ratten messen.

Eine Bestätigung bzw. Ergänzung dieser optischen Quantifizierung von NO₂-bedingten Vitalitätsänderungen ergaben sich durch die biochemische Messungen der Enzymfreisetzung in den Unterstand der Zellen in Gasphase. Eine Exposition von RAM mit 3 ppm NO₂ führt in allen Fällen zu einer signifikant höheren Freisetzung an LDH und NAG in das Medium unterhalb der Membran (Abbildung 7 bis 10). Die Freisetzung der cytoplasmatischen LDH und der lysosomalen NAG von RAM in den Extrazellularraum sind ein Parameter für Zellyse (Pätzold, 1989). Wie nachfolgend noch genauer besprochen, kann die allgemein festgestellte suppressive Wirkung, die NO₂ ausübt, für enzymatische Messungen nicht festgestellt werden.

Dies ist natürlich auf die Freisetzung von Enzymen nach dem Zelltod zurückzuführen, die durch NO_2 nicht verhindert werden kann.

Siegel und George (1990) konnten ebenfalls eine erhöhte LDH-Menge nach Exposition von Mäusen für 1 Stunde mit 50 und 91 ppm NO₂ feststellen. Vetrano et al. (1992) kamen zu dem gleichen Ergebnis, jedoch bereits bei der geringeren Dosis von 20 ppm.

Oxidative Schadgase wie NO_2 führen nicht nur zu Vitalitätsverlusten, sondern auch zu morphologischen Veränderungen. Zamora et al. (1986) fanden nach Exposition einer Lungenepithelzellinie mit NO_2 morphologische Veränderungen, die nach Applikation von 6 ppm NO_2 besonders deutlich zur Ausprägung kamen: die Zellen waren mit großen cytoplasmatischen Vesikeln angefüllt, und die Zelloberfläche war von Trümmern bedeckt. Eine ähnlich Veränderung des Zelläußeren konnte in dieser Untersuchung nach Begasung von RAM bei 1,5 und 3 ppm NO_2 festgestellt werden. Es kam zur Bildung von "Blebs" an der Außenwand der Zellmembran, die in Abbildung 2 und 3 als fluoreszierende Vesikel an vielen Zellen erkennbar sind.

4.5. Bildung von Superoxidanionen und Tumor Nekrose Faktor bei Rinderalveolarmakrophagen unter dem Einfluß von NO₂

Aus der Literatur ist bereits seit längerem bekannt, daß Stickstoffdioxid zu einer verminderten Infektabwehr aufgrund seiner suppressiven Wirkung auf verschiedene immunologische Parameter führt (Acton und Myrvik, 1972; Frampton et al., 1989).

Diese durch NO₂-induzierte Hemmung läßt sich bei den Versuchen zur Superoxidanionenmessung bei RAM ebenfalls feststellen: nicht bzw. gering voraktivierte Zellen zeigen nach 3 ppm NO₂ eine Hemmung der Zymosan-stimulierten O₂⁻-Produktion, die für die geringere Dosis von 1,5 ppm jedoch nicht gezeigt werden kann. Die Kontrollansätze beider NO₂-Konzentrationen weisen keine statistisch absicherbare Hemmung auf.

Anders zeigt sich der immunmodulierende Einfluß von NO₂ bei voraktivierten Zellen: sowohl die unstimulierte Kontrolle als auch die Zymosan-stimulierten Ansätze unterliegen einer signifikanten Hemmung bei beiden NO2-Konzentrationen. Hinweise auf dieses Phänomen liefern Untersuchungen von Suzuki et al. (1986) und Voter et al. (1991). Beide Autorengruppen arbeiteten mit Alveolarmakrophagen, die in vivo mit NO₂ exponiert worden waren: Voter et al. konnten nach einer 6stündigen NO₂-Exposition mit 2 ppm eine Absenkung der O₂⁻-Produktion bei den unstimulierten Zellen nachweisen und Suzuki et al. maßen bei 8 ppm eine Hemmung der voraktivierten Kontrolle. Eine dosisabhängige Hemmung nach den NO₂-Konzentrationen von 1, 5 und 20 ppm konnten Robison et al. (1990) bei stimulierten Alveolarmakrophagen dokumentieren. Im gewissen Gegensatz dazu stehen die Untersuchungen von Frampton et al. (1992), die Raucher bei 2 ppm NO₂ exponierten und bei den anschließend isolierten Alveolarmakrophagen keinen Einfluß von NO2 auf die Superoxidanionenproduktion feststellen konnten.

Was die Untersuchungen zur gesundheitsschädlichen Wirkung des NO₂ auf die Lunge anbetrifft, so stehen folgende Untersuchungsgebiete im Vordergrund:

Veränderungen der Infektanfälligkeit, enzymatische Quantifizierungen, Beeinflussung der Membranlipidzusammensetzung bzw. von deren Derivaten, Radikalmessungen, Erfassung der Verhältnisse von Zellpopulationen zueinander und Lungenfunktionsmessungen bzw. Atemwegsreaktivitäten. Dabei gibt es sowohl zahlreiche in vivo-Untersuchungen am lebenden Tier, vornehmlich an Ratten und Mäusen, als auch an menschlichen Probanden. Biochemische Untersuchungen wurden vorwiegend mit Zellen gemacht, die zuvor im lebenden Organismus mit dem Schadgas exponiert worden und danach isoliert worden waren.

Ganz allgemein läßt sich feststellen, daß NO_2 in allen untersuchten Fällen zu einer signifikanten Hemmung der TNF-Sekretion führte. Die Hemmwirkung des NO_2 auf die TNF-Sekretion scheint über einen allgemeinen Mechanismus abzulaufen, denn eine voraktivierte Kontrolle wird genauso wie ein LPS-stimulierter Ansatz gehemmt.

NO₂ führt auch hier wie bei der Messung von Superoxidanionen zu keiner Stimulation irgendeines Ansatzes, und im Gegensatz zur Radikalsekretion kann aus den beiden applizierten Konzentrationen kein Dosiseffekt bzw. ein möglicherweise vorhandener Synergismus von NO₂ und LPS auf die TNF-Sekretion ersehen werden. Um dies aber eindeutig behaupten zu können, wären diesbezüglich noch weitere Untersuchungen vonnöten, die eine größere Konzentrationsbreite an NO₂ vorsähen und eine größere Zahl an untersuchten Individuen mit ihrer jeweiligen Vorgeschichte einbezögen. Bestätigung finden die hier gemachten Feststellungen bei Versuchen mit HL60 Makrophagen: eine Applikation identischer NO₂-Konzentrationen führte zu ganz ähnlichen Ergebnissen (Polzer in press).

Die Kombinationswirkung von Staub und NO_2 führt zu keiner neuen Erkenntnis, insofern, als daß die mit der Staubphagocytose verknüpfte TNF-Sekretion durch NO_2 supprimiert wirdund zwar sowohl bei dem sogenannten Inertstaub Latex als auch nach Phagocytose von Quarz. Hinweise auf die supprimierende Wirkung von NO_2 in Kombination mit einer Staubphagocytose liefern die folgenden Publikationen:

Vetrano et al. (1992) fanden, daß die Exposition mit NO₂ nach intratrachealer Instillation von Siliciumdioxid bei Mäusen zur signifikanten Abnahme an Enzymen und Eiweißen führt. Eine suppressive Wirkung nach Phagocytose und NO₂-Applikation konnten auch Kouzan et al. (1989) verzeichnen. NO₂ wirkte cytotoxisch: es kam zur Abnahme der LTB₄-Produktion nach einer durch Eisen induzierten Phagocytose. Stickstoffdioxid hatte auch hier keinen stimulierenden Einfluß auf den Arachidonsäuremetabolismus nach Induktion der Phagocytose. Die Daten beinhalten, daß eine Exposition mit dem Schadgas nicht zur Freisetzung von Entzündungsmediatoren führt.

Lefkowitz et al. (1986) und Katz und Laskin (1975) untersuchten die Phagocytoserate von Latex bei NO_2 -begasten AM. Bei beiden Autorengruppen führte eine Dosis zwischen 5 und 10 ppm zu keiner veränderten Phagocytose, Katz und Laskin (1975) konnten jedoch bei 25 ppm eine signifikante Hemmung verzeichnen. Auch hier führte Stickstoffdioxid wieder zu einer Supprimierung der Phagocytose von Latex, allerdings stellen 25 ppm NO_2 eine relativ hohe Konzentrationen dar. Die erst bei höheren Konzentrationen auftretende suppressive Wirkung des Schadgases mag unter anderem darin begründet liegen, daß diese Art der Messung für einen niedrigen Konzentrationsbereich nicht empfindlich genug ist.

Vetrano und Mitarbeiter (1992) fanden, daß eine vorgeschaltete SiO₂-Applikation zur Verstärkung der NO₂-gehemmten Enzymsekretion führt. Dies könnte Veränderungen in der Konzentration Si-induzierter Antioxidanzien wiederspiegeln. Freie Radikale, die durch Si-Partikel gebildet werden, könnten durch Antioxidanzien (z.B. SOD, Glutathion) abgefangen

werden, was anderseits ihre Verfügbarkeit gegenüber oxidativen Gasen herabsetzt (Henderson et al., 1991).

Die Suppression der Sekretion von Superoxidanionen und TNF nach einer NO₂-Exposition könnte folgendermaßen bedingt sein:

NO₂ führt aufgrund seines oxidativen Potentials zu Veränderungen der Lipidkomponenten der Zellmembran (Rietjens et al., 1987, Alink et al., 1988, Mohsenin, Sagai und Ichinose, 1991, De und Ghosh, 1991). Durch die Schadgas-induzierte Radikalbildung könnten sekretorische Mechanismen, bei denen die Zellwand beteiligt ist, gestört sein. Als Folge davon kommt es zu einer verringerten Abgabe an Mediatoren in das extrazelluläre Medium.

4.6. Einfluß von Dipalmitoyllecithin auf die Wirkung von NO₂ bei Rinderalveolarmakrophagen

DPL wurde bei den Versuchen zur Wirkung von NO_2 sowohl bei der Messung der Enzymfreisetzung in den Zellunterstand, der Superoxidanionenbildung als auch bei der Quantifizierung der TNF-Sekretion eingesetzt.

Bei den Untersuchungen zur Wirkung von DPL kann bei den NO₂-behandelten Zellen bezüglich der LDH-Freisetzung kein Unterschied zu den ohne DPL exponierten Zellen festgestellt werden. Bezüglich der Freisetzung der lysosomalen NAG kommt es zur signifikant höheren Freisetzung in das Medium unterhalb der Zellen (wie eingangs bereits erwähnt führte Stickstoffdioxid nicht zur Hemmung der Enzymfreisetzung). Eine Parallele dazu ergab sich auch nach einer Kombinationsexposition von Quarz und NO₂: es kann lediglich bei der NAG-Quantifizierung einer vermehrte Freisetzung im Vergleich zu der dazugehörigen Kontrolle beobachtet werden. Eine höhere NAG-Aktivität zu einem früheren Zeitpunkt als eine LDH-Erhöhung konnte auch Polzer (1992) bei cytotoxischen Prozessen feststellen.

Sowohl bei voraktivierten als auch bei nicht voraktivierten Zellen des Luftansatzes zeigt die nicht stimulierte Kontrolle eine von DPL unbeeinflußte Sekretion an Superoxidanionen. Demgegenüber zeigen nicht voraktivierte "gecoatete" Zellen, die mit Zymosan stimuliert worden waren, nur in einem Fall eine signifikante Erhöhung der O_2^- -Produktion gegenüber nicht mit DPL behandelten Zellen. In allen anderen Fällen bleibt das Meßergebnis unabhängig vom Aktivierungszustand der Zellen dasselbe (Abbildungen 24-35). Dies könnte ein Hinweis darauf sein, daß dem Surfactant unter physiologischen Bedingungen kein immunmodulierender Effekt zukommt.

Anders stellt sich die Situation für voraktivierte, mit NO₂ begaste Zellen dar (dies entspräche in vivo der Situation, in der bereits eine Belastung der Lunge vorliegt und zusätzlich eine NO₂-Exposition hinzukäme). Werden diese Zellen mit Zymosan stimuliert, so übt DPL eine protektive Wirkung aus. Es kommt bei 1,5 und 3 ppm NO₂ zu einer verstärkten O₂⁻⁻ Sekretion, die der DPL-Applikation zuzuordnen ist (Abb. 37 und 38). Bei 1,5 ppm wird der suppressive Effekt von NO₂ durch DPL gegenüber den Ansätzen ohne DPL vollständig kompensiert, die O₂⁻⁻Sekretion entspricht der des dazugehörigen Ansatzes nach der Luftinkubation. Nach einer Exposition mit 3 ppm NO₂ zeigen voraktiviert RAM eine Radikalsekretion, die sogar signifikant höher als die des Luftansatzes liegt. NO₂ scheint in Kombination mit DPL bei beiden NO₂-Konzentrationen eine stimulatorische Wirkung zu besitzen. Diese erhöhte Sekretion im Vergleich zum Luftansatz kann bei 1,5 ppm ebenfalls bereits festgestellt werden, sie ist jedoch statistisch nicht abzusichern. Die Literatur enthält Hinweise darauf, daß NO₂ im niedrigen Dosisbereich zu einer Erhöhung der Radikalsekretion führt: Bart et al. (1988) konnten nach einer Kurzzeitexposition von AM von Rauchern mit 0,2 ppm eine Stimulation der O₂⁻-Sekretion messen. Da bei AM von Rauchern davon ausgegangen werden kann, daß es sich um bereits voraktivierte Zellen handelt (Mosbach 1993, unveröffentlicht), steht dies in Übereinstimmung mit den hier präsentierten Daten, daß DPL nur bei vorstimulierten, NO₂-behandelten Zellen eine Wirkung besitzt. Dies könnte u.a. dadurch erklärt werden, daß immunologisch "vorgeschädigte" Zellen in Gegenwart von intaktem Surfactant eine Überreaktion bezüglich der O₂⁻-Produktion zeigen, wenn kompensatorische Mechanismen nicht in ausreichendem Maße zur Verfügung stehen, z.B. bei

einer Unterversorgung mit dem das O_2^- detoxifizierende Enzym Superoxiddismutase. In dieser Untersuchung hat DPL bei Luft-begasten RAM keinen Einfluß, und bei einer Exposition mit NO₂ zeigt es eine Schutzwirkung gegenüber den Ansätzen ohne DPL, die sogar zu einer Erhöhung der O₂⁻-Sekretion führt. Es wäre denkbar, daß das Coaten der Zellen mit DPL zu einer Verminderung der Schadgasmenge führt, die an die Zellen herantritt.

In diese Hypothese würde sich die Untersuchung von Frampton et al. (1992) einfügen, bei der kein suppressiver Effekt von NO_2 bei Rauchern festgestellt werden kann.

Bei der TNF-Quantifizierung nach vorheriger DPL- und NO₂-Applikation war im Gegensatz zu den Messungen von Superoxidanionen keine Modifikation der Daten durch DPL zu verzeichnen. Es gibt damit auch keine protektive Wirkung von DPL im niedrigen NO₂-Konzentrationsbereich. Über eine mögliche Verstärkungswirkung des NO₂-Effektes durch DPL kann lediglich spekuliert werden, da in allen Fällen die Hemmung auch ohne DPL-Applikation bereits zu 100% erfolgte.

Die in den hier unterswichten Fällen beschriebene protektive Wirkung des DPL bezüglich der O_2^- -Freisetzung bei Kurzzeitbegasungen mit NO₂ im niedrigen Konzentrationsbereich wurde auch bei Ozon bezüglich der TNF-Freisetzung beobachtet (Mosbach 1993, unveröffentlicht). Sie stellte fest, daß DPL nach einer zweistündigen Begasung von RAM mit 0,5 bzw. 1 ppm O₃ eine Schutzwirkung entfaltete. Es wäre aber auch durchaus denkbar, daß nach längerer Applikation oxidativer Gase oder nach Steigerung der Schadgaskonzentration die gegenteilige Wirkung eintritt. Langzeitexpositionen mit Stickstoffdioxid können nach Untersuchungen von Tepper et al. (1993) zu Veränderungen bei Lungenfunktionsmessungen führen. Ähnliche Effekte könnten nach wiederholten Expositionen eintreten: eine mögliche Lipidperoxidation käme unter Umständen erst nach längerer Inkubationsdauer auf zellulärer Ebene zur Ausprägung. Hinweise auf ein anderes Verhalten von Zellen nach wiederholter NO₂-Exposition ergeben sich aus den Untersuchungen von Sandström et al. (1992). Eine mögliche Modifikation der gezeigten Daten müßte in weiteren Versuchen überprüft werden.

Um herauszufinden, ob DPL bei TNF-Messungen auch eine Schutzwirkung aufweist, wäre es notwendig, die Schwellenkonzentration für NO₂ herauszufinden, bei der keine 100% ige Hemmung mehr auftritt.

Für die DPL-Applikation beim Luftansatz zeigen sich die Daten der TNF-Messung eher widersprüchlich. In einem Fall reduziert DPL eine bereits bestehende Voraktivierung, in dem

zweiten wirkt es als stimulierendes Agens, das wirksamer als LPS ist. Nach gemeinsamer Applikation von DPL und LPS kristallisiert sich eine additive bzw. synergistische Wirkung beider Agenzien heraus. Eine stimulierende Wirkung von DPL bei voraktivierten Zellen konnte in unserem Labor wiederholt festgestellt werden (Mosbach 1993, unveröffentlicht).

Robison et al. (1990) konnten bei Alveolarmakrophagen der Ratte nach einer Begasung mit 5 ppm NO₂ für 1 Stunde eine erhöhte Sekretionsrate an LTB₄ verzeichnen. Dies führten die Autoren auf Lipidperoxidationsprozesse, bedingt durch das Stickstoffdioxid, zurück. Die aus diesen Oxidationsprozessen resultierende Bildung von Hydroperoxiden induzierte ihrerseits eine erhöhte LTB₄-Bildung. Bei 20 ppm NO₂ führte die höhere Konzentration an Hydroperoxiden zu einer Verringerung der LTB₄-Produktion.

Es scheint so, als gälte für die hier durchgeführten Messungen folgendes Prinzip:

steht der gemessene Parameter oder eine zellspezifische Komponente in struktureller Beziehung zu den Membranlipiden, wie z.B. LTB₄, so gibt es zwei Konzentrationsbereiche, innerhalb derer NO₂ eine gegenteilige Wirkung entfaltet: die niedrige Dosis an NO₂ führt zu einer stimulierten Sekretion, die höhere resultiert in einer Suppression. Besteht anderseits zwischen Meßparameter und Zellmembran keine direkte strukturelle Relation, so scheint NO₂ lediglich eine hemmende Wirkung zu entfalten.

4.7. Zusammenfassende Diskussion

Zusammenfassend können wir feststellen, daß die Reaktion von Alveolarmakrophagen auf physiologische und pathologische Stimuli in der Gasphasenkultur jener in der Submerskultur zumindest qualitativ recht ähnlich ist. Damit ist gezeigt, daß sich die Gasphasenkultur prinzipiell eignet. Die alleinige Verwendung von Alveolarmakrophagen ohne Kokultur könnte mit anderen Zelltypen des Atemtraktes die Reaktivität der Makrophagen so verändern, daß artifizielle Effekte auftreten. Aus unseren Ergebnissen wird jedoch deutlich, daß so potente Mediatoren wie PAF und TNF keine so erhebliche Änderung der Reaktionslage von Alveolarmakrophgen bedingen, daß durch Nichtberücksichtigen ihrer Anwesenheit eine Verfälschung der Aussagen zur Wirkung von Noxen wie NO_2 zu erwarten wäre. Unsere Ergebnisse weisen allerdings darauf hin, daß es für eine Gesamtbeurteilung der Wirkung von inhalativen Noxen auf Alveolarmakrophagen notwendig ist, in Anwesenheit von Surfactant oder seinen Bestandteilen zu arbeiten.

Aus unseren Befunden schließen wir, daß NO_2 in Konzentrationen, die höher sind als in der allgemeinen Umwelt, aber niedriger als der MAK-Wert, eine supprimierende Wirkung auf die Stimulus-induzierte Bildung von Superoxidanion und TNF haben kann. Im deutlichen Gegensatz zum Ozon hat NO_2 für sich allein bei diesen Konzentrationen keine stimulierende Wirkung für Alveolarmakrophagen.

Für bestimmte Fragestellungen eignen sich auch differenzierte HL60-Zellen in der Gasphasenkultur als Modellzellen. Diese bieten den Vorteil, daß für einen Teil der Mediatoren spezifische ELISA-Verfahren anstelle von biologischen Tests benutzt werden können.
5. Zusammenfassung

In der vorliegenden Arbeit wurde eine Methode zur Kultur von Zellen direkt in der Gasphase etabliert. Benutzt wurden post-mortal gewonnene Rinderalveolarmakrophagen wie auch differenzierte HL-60 Zellen als Modell für menschliche Zellen.

Mittels dieses Systems wurde die Wirkung der Inhalationsnoxe NO₂ auf Rinderalveolarmakrophagen untersucht.

 NO_2 führte dosisabhängig zu einem Vitalitätsverlust der Rinderalveolarmakrophagen, der nach Applikation von 1,5 ppm NO_2 maximal 10% betrug und nach 3 ppm sich zwischen 10 und 20% bewegte. Damit verbunden war eine Sekretion lysosomaler und cytoplasmatischer Enzyme. Bei beiden Konzentrationen kam es zu morphologischen Veränderungen an der Zellmembran (Bildung sogenannter "Blebs").

Das Gas führte per se zu keiner Stimulation der Sekretion an Superoxidanionen oder TNF, zeigte jedoch bezüglich der Sekretion von Superoxidanionen eine dosisabhängige Hemmung sowohl bei Zymosan-stimulierten als auch bei spontan voraktivierten Zellen. In fast allen Fällen führte NO₂ zu einer vollständigen Hemmung der LPS-stimulierten TNF-Sekretion, die also sehr empfindlich auf das Gas reagierte.

Die Kombinationsapplikation von Staub (Quarz und Latex) und Schadgas hatte ebenfalls suppressive Wirkung.

Die gleichzeitige Anwesenheit des Hauptbestandteils des Surfactants, Dipalmitoyllecithin, konnte bei der Messung der Superoxidanionenbildung bei beiden NO₂-Konzentrationen die hemmende Wirkung von NO₂ kompensieren. Die vollständige Hemmung der TNF-Bildung blieb trotz eines solchen Zusatz bestehen.

In der Arbeit wurde geprüft, inwiefern bestimmte Mediatoren, die im Alveolarraum als Reaktion auf eine Noxe auftreten, RAM beeinflussen könnten.

Bei nicht voraktivierten Zellen führte die Anwesenheit von micro- und picomolaren Konzentrationen von PAF zu keiner Stimulation der Superoxidanionenfreisetzung, auch nicht in Kombination mit TNF oder Zymosan. TNF und LTB₄ für sich allein waren ebenfalls ohne Einfluß. Spontan voraktivierte Zellen können durch diese Mediatoren stimuliert werden.

Was die TNF-Sekretion durch RAM betrifft, so waren PAF, LTB_4 und IFN- γ , jeweils alleine appliziert, ohne Effekte. Die gleichzeitige Verabreichung von PAF bzw. LTB_4 zusammen mit LPS bewirkte keine über den bloßen LPS-Effekt hinausgehende TNF-Freisetzung. Wichtige Mediatoren des Entzündungsgeschehens haben also für sich allein oder in Kombination keinen Einfluß auf die Superoxidanionen- bzw. TNF-Freisetzung durch Alveolarmakrophagen. Dexamethason hatte eine Hemmung der LPS-stimulierten TNF-Bildung zur Folge.

Es wurde festgestellt, daß auch zu Makrophagen oder zu Granulocyten differenzierte HL60-Zellen sich für die Gasphasenkultur eignen. Sie setzen nach Stimulation TNF, IL 6 und IL 8 in den Kulturunterstand frei, wie mittels ELISA nachgewiesen werden konnte. Damit steht auch ein Modell mit menschlichen Zellen für bestimmte Fragestellungen zur Verfügung. Es wurde somit gezeigt, daß unsere Gasphasenkultur ein valides System zur Untersuchung der Wirkungen von Schadgasen darstellt. Für NO₂ wurden mit dieser Methode deutlich immunsuppressive Wirkungen für Konzentrationen nachgewiesen, die zwar erheblich über den umweltüblichen, aber unterhalb des MAK-Wertes liegen.

6. Literaturverzeichnis

Acton, J.D., Myrvik, Q.N. (1972) Nitrogen dioxide effects in alveolar macrophages. Arch. Env. Hlth., 24, 48-52

Adamson,I.Y.R., Bowden,D.H. (1984) Role of polymorphonuclear leukocytes in silica-induced pulmonary fibrosis. Am. J. Pathol., 117, 37-43

Alink,G.M., Rietjens,I.M.C.M. (1988) Mechanisms of O_3 and NO_2 -toxicity in lung cells in vitro. Zbl. Bakt. Hyg. B 185, 469-497

Andersen,O.K., Stenvold,S.E., Volden,G. (1982) Optimalized assay conditions of 3T3 cell lysosomal hydrolases. Europ. Rev. Med. Pharmacol. Sci., IV, 265-272

Arthur, M.J.P., Kowalsky-Saunders, P., Wright, R. (1988) Effect of endotoxin on release of reactive oxygen intermediates by rat hepatic macrophages. Gastroenterology, 95, 1588-1594

Bachwich, P.R., Chensue, S.W., Larrick, J.W., Kunkel, S.L. (1986) Tumor necrosis factor stimulates interleukin-1 and prostaglandin E₂ production in resting macrophages. Biochem. Biophys. Res. Commun., 136, 94-101

Bart,F., Aerts,C., Deroubaix,C., Wallaert,B., Voisin,C. (1988) In vitro short exposure of human alveolar macrophages to 0,2 ppm nitrogen dioxide. Evidence for an increased generation of superoxide anion and neutrophil chemotactic activity. Am. Rev. Respir. Dis., 138, 168

Beutler, B. (1990) TNF in pathophysiology - biosynthetic regulation. Journal of Investigative Dermatology, 95, 81-84

Bhaskaran,G., Nii,A., Sone,S., Ogura,T. (1992) Differential effects of interleukin-4 on superoxide anion production by human alveolar macrophages stimulated with LPS and interferon- γ . Journal of Leukocyte Biology, 52, 218-223

Bigby,T.A., Holtzman,M.J. (1987) Enhanced 5-lipoxygenase activity in lung macrophages compared to monocytes from normal subjects. J. Immunol., 138, 1546-1550

Bils,R.F., Christie,B. (1980) The experimental pathology of oxidant and air pollutant inhalation. Inter. Rev. Exp. Pathol., 21, 195-293 Boutten,A., Dehoux,M., Deschenes,M., Rouzeau,J-D., Bories,P.N., Durand,G. (1992) Alpha-1-acid glycoprotein potentiates lipopolysaccharide-induced secretion of interleukin-1 ß, interleukin-6 and tumor necrosis factor-alpha by human monocytes and alveolar and peritoneal macrophages.

European Journal Immunology, 22, 2687-2695

Brody, A.R., Roe, M.W., Evans, J.N., Davis, G.S. (1982) Deposition and translocation of inhaled silica in rats. Laboratory Investigation, 47, 533-542

Carre,P.C., Mortenson,R.L., King,T.E., Noble,P.W., Sable,C.L., Riches,D.W.H. (1991) Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 88, 1802-1810

Carswell,E.A., Old,L.J., Kassel,R.L., Green,S., Fiore,N., Williamson,B. (1975) An endotoxin-induced serum factor that causes necrosis of tumors. P.N.A.S., 72, 3666-3670

Chance, B., Sies, H., Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59, 527-605

Chu,E., Casey,L.C., Harris,J.E., Braun,D.P. (1993) Suppression of the development of tumoricidal function in gamma interferon-treated human peripheral blood monocytes by lipopolysaccharide: the role of cyclooxygenase metabolites. J. of Clinical Immunol., 13, 49-57

Collins, S.J., Gallo, R.C., Gallagher, R.E., (1977) Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature, 270, 347-349

Collins,S.J., Ruscetti,F.W., Gallagher,R.E., Gallo,R.C. (1978) Terminal differentiation of human promyelotic leukemia cells induced by dimethyl sulfoxide and other polar compounds. P.N.A.S., 75, 2458-2462

Corradin,S.B., Mauel,J., Gallay,P., Heumann,D., Ulevitch,R.J., Tobias,P.S. (1992) Enhancement of murine macrophage binding of and response to bacterial lipopolysaccharide (LPS) by LPS-binding protein. Journal of Leukocyte Biology, 52, 363-368

Crapo, J.D., Barry, B.E., Chang, L., Mercer, R.R. (1984) Alterations in lung structure caused by inhalation of oxidants. Journal of Environmental Health, 13, 301-321

Dankberg,F., Persidsky,M.D. (1976) A test of granulocyte membrane integrity and phagocytic function. Cyrobiology, 13, 430-432 Das,U.N., Padma,M., Sagar,P.S., Ramesh,G., Koratkar,R. (1990) Stimulation of free radical generation in human leukocytes by various agents including tumor necrosis factor is a calmodulin dependent process. Biochem. Biophys. Res. Commun., 167, 1030-1036

Davis, J.K., Davidson, M.K., Schoeb, T.R., Lindsey, J.R. (1992) Decreased intrapulmonary killing of mycoplasma pulmonis after short-term exposure to NO₂ is associated with damaged alveolar macrophages. Am. Rev. Respir. Dis., 145, 406-411

De,A.K., Ghosh,J.J. (1991) Effects of short-term capsaicin treatment on formalin and nitrogen dioxide induced changes in lipid peroxidation and antioxidant enzyme system in rat lung. Phytotherapy Research, 5, 88-90

Dinarello,C.A., Bishai,I., Rosenwasser,L.J., Coceani,F. (1984) The influence of lipoxygenase inhibitors of the in vitro production of human leukocyte pyrogen and lymphocyte activating factor (interleukin-1). Int. J. Immunopharmacol., 6, 43-50

Dubois, C., Bissonnette, E., Rola-Pleszczynski, R. (1989) Platelet-activating factor (PAF) enhances tumor necrosis factor production by alveolar macrophages. J. Immunol., 143, 964-970

Espevik, T., Nissen-Meyer, J. (1986) A highly sensitive cell line, WEHI 164 clone 13 for measuring cytotoxic factor/tumor necrosis factor from human monocytes. Journal of Immunological Methods, 95, 99-105

Evans, M.J., Johnson, L.V., Stephens, R.J., Freeman, G. (1976) Renewal of the terminal bronchiolar epithelium in the rat. Lab. Invest., 35, 246-257

Floch, A., Bousseau, A., Hetier, E., Floch, F., Bost, P.E., Cavero, I. (1989) RP-55778, a PAF receptor antagonist, prevents and reverses LPS-induced hemoconcentration and TNF release. Journal of Lipid Mediators, 1, 349-360

Frampton,M.W., Morrow,P.E., Cox,C., Gibb,F.R., Speers,D.M., Urtell,M.J. (1991) Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans. Am. Rev. Res. Dis., 143, 522-527

Frampton, M.W., Smeglin, A.M., Roberts, N.J., Finkelstein, J.N., Morrow, P.E., Utell, M.J. (1989) Nitrogen dioxide exposure in vivo and human alveolar macrophage inactivation of influenza virus in vitro. Environ. Res., 48, 179-192

Frampton, M.W., Voter, K.Z., Morrow, P.E., Roberts Jr., N.J., Gavras, J.B., Utell, M.J. (1992) Effects of NO₂ exposure on human host defense. Am. Rev. Respir. Dis., International Conference of the American Lung Association and the American Thoracic Society, 145, A455 Freeman, B.A., Crapo, J.D. (1982) Free radicals and tissue injury. Lab. Invest., 47, 412-419 Freeman, B.A., Young, S.L., Crapo, J.D. (1983) Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury. Journal of Biological Chemistry, 258, 12534-12542 Fridovich,I. (1983) Superoxide radical: an endogenous toxicant. Ann. Rev. Pharmacol. Toxicol., 23, 239-257 Gallay, P., Carrel, S., Glauser, M.P., Barras, C., Ulevitch, R.J., Tobias, P.S., Baumgartner, J.-D., Heumann, D. (1993) Purification and characterization of murine lipopolysaccharide-binding protein. Infection and Immunity, 61, 378-383 Gardner, D.E., Holzman.R.S., Coff, D.L. (1969) Effects of nitrogen dioxide on pulmonary population. Journal of Bacteriology, 98, 1041-1043 Geiger, M. (1993) Expression und Freisetzung des Tumor Nekrose Faktors- α bei HL-60 Zellen und Alveolarmakrophagen. Diplomarbeit, Universität Karlsruhe Glasgow, J.E., Piertra, G.G., Abrams, W.R., Bank, J., Oppenheim, D.M., Weinbaum, G. (1987) Neutrophil recruitment and degranulation during induction of emphysema in the rat by nitrogen dioxide. Am. Rev. Respir. Dis., 135, 1129-1136 Goldstein, E., Eagle, M.C., Hoeprich, P.D. (1973) Effect of nitrogen dioxide on pulmonary bacterial defense mechanisms. Arch. Environ. Health, 26, 202-204 Gosset, P., Tsicopoulos, A., Wallaert, B., Vannimenus, C., Joseph, M., Tonnel, A.B., Capron, A. (1991)Increased secretion of tumor necrosis factor-alpha and interleukin-6 by alveolar macrophages consecutive to the development of the late asthmatic reaction. J.Allergy Clin. Immunol., 88, 561-571

Goodglick,L.A., Kane,A.B. (1986) Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages. Cancer Research, 46, 5558-5566 Goya,T., Abe,M., Shimura,H., Torisu,M. (1992) Characteristics of alveolar macrophages in experimental septic lung. Journal of Leucocyte Biology, 52, 236-243

Harwood, J.L. (1987) Lung surfactant. Prog. Lipid Res., 26, 211-256

Heidel, J.R., Taylor, S.M., Silflow, R.M., Laegreid, W.W., Leid, R.W. (1991) Characterization of arachidonic acid metabolism, superoxide production and bacterial killing by bovine alveolar neutrophils elicted with leukotriene B₄ and zymosan-activated plasma. Inflammation, 15, 31-42

Henderson, R.F., Harkema, J.R., Hotchkiss, J.A., Boehme, D.S. (1991) Effect of blood leukocyte depletion on the inflammatory response of the lung to quartz. Toxicol. Appl. Pharmacol., 109, 127-136

Henerson, W.R. (1987) Eicosanoids and lung inflammation. Am. Rev. Respir. Dis., 135, 1176-1185

Hennet,T., Richter,C., Peterhans,E. (1993) Tumor necrosis factor alpha induces superoxide anion generation in mitochondria of L 929 cells. Biochem. J., 298, 587-592

Houdijk,A.L.F., Smolders,A.J.P., Roelofs,J.G.M. (1993) The effects of atmospheric nitrogen deposition on the soil chemistry of coniferous forests in the Netherlands. Environmental Pollution, 80, 73-78

Humbert, J.R., Winsor, E.L. (1990) Tumor necrosis factor primes neutrophils by shortening the lag period of the respiratory burst. Am. J. Med. Sci., 300, 209-213

Hwang,S-B., Lee,C-S.C., Cheah,M.J., Shen,T.Y. (1983) Specific receptor sites for 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (PAF) on rabbit platelets and guinea smooth muscle membranes. Biochem., 22, 4756-4763

Jackson,S.K., Stark,J.M., Rowlands,C.C., Evans,J.C. (1989) Electron spin resonance detection of oxygen-centred radicals in murine macrophages stimulated with bacterial endotoxin. Free Radic. Biol. Med., 7, 165-170

Johnston, R.B. Jr. (1981) Secretion of superoxide anion. In: Methods for Studying Mononuclear Phagocytes, (Ed.: Adams, P.O., Edelson, P.J., Karen, H.), Academic Press, N.Y., 1981, 489-497 Kato, M., Tokuyama, K., Morikawa, A., Kuroume, T., Barnes, P.J. (1993) Platelet-activating factor-induced enhancement of superoxide anion generation in guinea-pigs. Eur. J. Pharmacol., 323, 7-12

Katz,G.V., Laskin,S. (1975) Pulmonary macrophages respond to irritant gases. Air pollution and the Lung, Proceedings of the Twentieth Annual "OHOLO" Biological Conference Ma'alot, Israel, March 16-19 (Ed.: Aharonson,E.F., Ben-David,A., Klingberg,M.A.), Israel Universities Press, Jerusalem

Khemlani,L.S., Bochsler,P.N., Maddux,J.M. (1992) Lipopolysaccharide-binding factors are present in bovine serum. BioFactors, 4, 33-36

Kim,S.U., Koenig,J.Q., Pierson,W.E., Hanley,Q.S., (1991) Acute pulmonary effects of nitrogen dioxide exposure during exercise in competitive athletes. Chest, 99, 815-819

Kleinerman, J., Ip, M.C.P., Sorensen, J. (1982) Nitrogen dioxide exposure and alveolar macrophage elastase in hamsters. Am. Rev. Respir. Dis., 15, 203-207

Kobayashi,T., Shinozaki,Y. (1992) Induction of transient airway hyperresponsiveness by exposure to 4 ppm nitrogen dioxide in guinea pigs. Journal Toxicology and Environmental Health, 37, 451-461

Kosmider, St., Misiewicz, A., Felus, E., Drozdz, M., Ludyga, K. (1973) Experimentelle und klinische Untersuchungen über den Einfluß der Stickstoffoxide auf die Immunität. Int. Arch. Arbeitsmed., 31, 9-23

Kouzan,S., Fournier,T., Voisin,C., Jaurand,M.C., Bignon,J. (1989) Arachidonic acid metabolite production by alveolar macrophages cultured in gazeous phase. Effects of NO₂ and diesel exhaust. In: Effects of mineral dusts on cells, (Ed.: Mossman,B.T., Begin,R.O.), Springer Verlag Berlin Heidelberg, 1989, 215-222

Lefkowitz,S.S., McGrath,J.J., Lefkowitz,D.L. (1986) Effects of NO₂ on immune responses. Journal of Toxicology and Environmental Health, 17, 241-248

Lind,I. (1989) Untersuchungen zur Superoxidanionenproduktion durch Makrophagen: Einfluß von Kulturbedingungen und Stäuben. Diplomarbeit, Universität Karlsruhe

Lohmann-Matthes,M-L. (1981) Der Makrophage. BIUZ, 11, 135-143 Lynch, J.M., Henson, P.M. (1986) The intracellular retention of newly synthesized platelet-activating factor. Journal of Immunology, 137, 2653-2661

Maridonneau-Parini,I., Lagente,V., Lefort,J., Randon,I., Russo-Marie,F., Vargaftig,B.B. (1985) Desensitization to PAF-induced bronchoconstriction and to activation of the alveolar macrophages by repeated inhalations of PAF in the guinea pig. Biochem. Biophys. Res. Commun., 131, 42-49

Martin,T.R., Mathison,F.C., Tobias,P.S., Leturcq,D.J., Moriarty,A.M., Maunder,R.J., Ulevitch,R.J. (1992) Lipopolysaccaride binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccaride. Journal of Clinical Investigation, 90, 2209-2219

Matejka, M. (1992) Einfluß von Lanthan und Cer auf die Freisetzung des Tumornekrosefaktors durch Makrophagen. Diplomarbeit, Universität Karlsruhe

Mayer, A.M.S., Pittner, R.A., Lipscomb, G.E., Spitzer, J.A. (1993) Effect of in vivo TNF administration on superoxide production and PKC activity of rat alveolar macrophages. Am. J. Physiol., 264, L 43 - L 52

McPhail,L.C., Clayton,C.C., Snyderman,R. (1984) A potential second messenger role for unsaturated fatty acid: activation of Ca²⁺-dependent proteinkinase. Science, 224, 622-625

Menzel,D.B. (1976) The role of free radicals in the toxicity of air pollutants (nitrogen dioxide and ozone). Free Radicals in Biology, 181-202

Mochitate, K., Takahashi, Y., Ohsumi, T. (1986) Activation and increment of alveolar macrophages induced by nitrogen dioxide. Journal of Toxicology and Environmental Health, 17, 229-239

Mohsenin,V. (1988) Airway responses to 2.0 ppm nitrogen dioxide in normal subjects. Archives of Environmental Health, 43, 242-246

Mohsenin,V. (1991) Lipid peroxidation and antielastase activity in the lung under oxidant stress - role of antioxidant defenses. Journal of Applied Physiology, 70, 1456-1462

Mustafa,M.G., Tierney,D.F. (1978) Biochemical and metabolic changes in the lung with oxygen, ozone, and nitrogen dioxide toxicity. Am. Rev. Respir. Dis., 118, 1061-1090 Nauseef,W.M., Volpp,B.D., McCormick,S., Leidal,K.G.,Clark,R.A. (1991) Assembly of the neutrophil respiratory burst oxidase. Journal of Biological Chemistry, 266, 5911-5917

Neijens,H.J. (1990) Determinants and regulating process in bronchial hyperreactivity. Lung, Suppl., 268-277

Newburger, P.E., Chovaniec, M.E., Greenberger, J.S., Cohen, H.J. (1979) Functional changes in human leukemic cell line HL-60. A model for myeloid differentiation. J. Cell Biol., 82, 315-322

Nishizuka, Y. (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature, 308, 693-698

Norman, V., Keith,C.H. (1965) Nitrogen oxides in tabacco smoke. Nature, 205, 915-916

Old,L.J. (1988) Der Tumor-Nekrose-Faktor. Spektrum der Wissenschaft, 7, 42-51

Ostro,B.D., Lipsett,M.J., Wiener,M.B., Selner,J.C. (1991) Asthmatic responses to airborne acid aerosols. American Journal of Public Health, 81, 694-702

O'Byrne,O.M., Leikauf,G.D., Aizawa,H. (1985) Leukotrien B₄-induced airway hyperresponsiveness in dogs. J. Appl. Physiol., 59, 1941-1946

O'Sullivan,M.G., Dobrowsky,R.T., Fleisher,L.N., Olson,N.C., Brown Jr.,T.T. (1988) Arachidonic acid metabolites produced by bovine alveolar macrophages. Am. J. Vet. Res., 49, 1214-1217

Pätzold,S. (1989) Morphologische und biochemische Untersuchungen zur Wirkung von Quarz auf Rinderalveolarmakrophagen und deren Organellen. Dissertation, Universität Karlsruhe

Parnham,M.J., Bittner,C. (1986) Pharmacological analysis of guinea-pig macrophage chemiluminescence responsive to platelet activating factor and opsonized zymosan. Int. J. Immunopharmac., 8, 951-959,

Paubert-Braquet,M., Hosford,D., Klotz,P., Guilbaud,J., Braquet,P. (1990) Tumor necrosis factor alpha primes the platelet-activating factor-induced superoxide production by human neutrophils - possible involvement of G proteins. Journal of Lipid Mediators, 2, 1-14 Pauwels,R. (1990) The pharmacology of airway hyperresponsiveness and inflammation. Lung, Suppl., 221-229

Peters, T., Gaillard, T., Decker, K. (1990) Tumor necrosis factor alpha stimulates prostaglandin but not superoxide synthesis in rat Kupffer cells. Eicosanoids, 3, 115-120

Pinkerton,K.E., Mercer,R.R., Chechowitz,M.A., Crapo,J.D. (1990) Biological sequelae of exposure to low levels of ozone and chrysotil asbestos. Ann. Rev. Respir. Dis., 141, A 418

Pinkston,P., Smeglin,A., Roberts,N.J., Gibb,F.R., Morrow,P.E., Utell,M.J. (1988) Effects of in vitro exposure to nitrogen dioxide on human alveolar macrophage release of neutrophil chemotactic factor and interleukin-1. Environmental Research, 47, 48-58

Polzer,G. (1992) Morphologische und biochemische Untersuchungen zur Wirkung von Seltenen Erdmetallverbindungen auf Rinderalveolarmakrophagen. Dissertation, Universität Karlsruhe

Polzer, G., Lind, I., Krüger, E., Seidel, A. In vitro effects NO₂ on the superoxide anion, TNF- α , and IL-8 release by HL60-macrophages and bovine alveolar macrophages. (in press)

Postlethwait,E.M., Langford,S.D., Bidani,A. (1991) Transfer of NO₂ through pulmonary epithelial lining fluid. Toxicology and Applied Pharmacology, 109, 464-471

Radeke,H.H., Meier,B., Topley,N., Flöge,J., Habermehl,G.G., Resch,K. (1990) Interleukin 1-alpha and tumor necrosis factor-alpha induce oxygen radical production in mesangial cells. Kidney International, 37, 767-775

Reid,T.R., Torti,F.M., Ringold,G.M. (1989) Evidence for two mechanisms by which tumor necrosis factor kills cells. Journal of Biological Chemistry, 264, 4583-4589

Richters, A., Damji, K. (1988) Changes in T-lymphocyte subpopulations and natural killer cells following exposure to ambient levels of nitrogen dioxide. Journal of Toxicology and Environmental Health, 25, 247-256 Rietjens,I.M.C.M., Poelen,M.C.M., Hempenius,R.A., Gijbels,M.I.J., Alink,G.M. (1986) Toxicity of ozone and nitrogen dioxide to alveoar macrophages: comparative study revealing differences in their mechanisms of toxic action.

Journal of Toxicology and Environmental Health, 19, 555-568

Rietjens, I.M.C.M., Van Tilburg, C.A.M., Coenen, T.M.M., Alink, G.M., Konings, A.W.T. (1987) Influence of polyunsaturated fatty acid supplementation and membrane fluidity on ozone and

nitrogen dioxide sensitivity of rat alveolar macrophages. Journal of Toxicology and Environmental Health, 21, 45-56

Robison, T.W., Duncan, D.P., Forman, H.J. (1990) Chemoattractant and leukotriene B₄ production from rat alveolar macrophages exposed to nitrogen dioxide. Am. J. Respir. Cell Mol. Biol., 3, 21-26

Rola-Pleszczynski, M., Stankova, J. (1992) Differentiation-dependent modulation of TNF production by PAF in human HL60 myeloid leukemia cells. Journal of Leukocyte Biology, 51, 609-616

Rossi,P., Chini,L., Fattorossi,A., Gidlund,M., Galli,E., Laan,K., Jondal,M., Wigzell,H. (1987) 1,25-Dihydroxyvitamin D₃ and phorbolesters (TPA) may induce select in vivo differentiation pathways in the HL-60 promyelotic cell line. Clinical Immunology and Immunopathology, 44, 308-316

Rotrosen, D., Leto, T.L. (1990) Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. Journal of Biological Chemistry, 265, 19910-19915

Ruggiero,V., Tavernier,J., Fiers,W., Baglino,C. (1986) Induction of the synthesis of tumor necrosis factor receptors by interferon-γ. J. Immunol., 136, 2445-2450

Sagai,M., Ichinose,T. (1987) Lipid peroxidation and antioxidative protection mechanisms in rat lungs upon acute and chronic exposure to nitrogen dioxide. Environ. Health Perspect., 73, 179-189

Sagai, M., Ichinose, T. (1991) Biochemical effects of combined gases of nitrogen dioxide and ozone. IV. Changes of lipid peroxidation and antioxidative protective systems in rat lungs upon life span exposure. Toxicology, 66, 121-132

Sagai, M., Icinose, T., Kubota, K. (1984) Studies on the biochemical effects of nitrogen dioxide. Toxicology and Applied Pharmacology, 73, 444-456 Sandström, T., Wilnerzon-Thörn, R., Bjermer, L., Stjernberg, N. (1992) Repeated exposure to nitrogen dioxide causes a different cell response in the lung in comparison with single exposure. Am. Rev. Respir. Dis., International Conference of the American Lung Association and the American Thoracic Society, 145, A 455

Satouchi,K., Oda,M., Yasunaga,K., Saito,K. (1983) Application of selected ion monitoring to determination of platelet activating factor. Journal of Biochemistry, 94, 2067-2070

Schmidt, A.M. (1992) Die Wirkung von Quarz auf Lysosomen und die TNF-Produktion von Alveolarmakrophagen. Dissertation, Universität Karlsruhe

Sharma,P., Evans,A.T., Parker,P.J., Evans,F.J. (1991) NADPH-Oxidase activation by protein kinase C-isotypes. Biochem. Biophys. Res. Commun., 177, 1033-1040

Shi,X., Dalad,N.S., Vallayathan,V. (1988) ESR evidence for the hydroxyl radical formation in aqueous suspension of quartz particles and its possible signifacance to lipid peroxidation in silicosis. Journal of Toxicology and Environmental Health, 25, 237-245

Shiotsuka,R.N., Yermakoff,J.K., Osheroff,M.R., Dew,R.T. (1986) The combination of ozone and silica on the development of pulmonary fibrosis. Journal of Toxicology and Environmental Health, 17, 297-310

Siegel,P.D., George,W.J. (1990) Pharmacologic manipulation of the murine pulmonary biochemical response to NO₂. JEPTO, 10, 231-236

Smeglin,A.M., Roberts Jr,N.J., Morrow,P.E., Utell,M.J. (1986) Effects of 0,6 ppm nitrogen dioxide on human alveolar macrophage inactivation of influenza virus. Am. Rev. Respir. Dis., Joint Annual Meeting of the American Lung Association and the

Smolen, J.E. (1984) Lag period for superoxide anion generation and lysosomal enzyme release from human neutrophils: effects of calcium antagonists and anion channel blockers. The Journal of Laboratory and Clinical Medicine, 104, 1-10

Snider,G.L. (1983) Interstitial pulmanary fibrosis - which cell is the culprit? Am. Rev. Respir. Dis., 127, 535-539

American Thoracic Society, Kansas City, 133, A 216

Stephens, R.J., Freeman, G., Evans, M.J. (1972) Early response of lungs to low levels of nitrogen dioxide. Arch. Environ. Health, 24, 160-179 Steward,A.G., Phillips,W.A. (1989)
Intracellular platelet-activating factor regulates eicosanoid generation in guinea-pig resident peritoneal macrophages.
Br. J. Pharmacol., 98, 141-148
Suzuki,T., Ikeda,S., Kanoh,T., Mizoguchi,I. (1986)
Decreased phagocytosis and superoxide anion production in alveolar macrophages of rats exposed to nitrogen dioxide.
Arch. Environ. Contam. Toxicol., 15, 733-739
Tabor,D.R., Burchett,S.K., Jacobs,R.F. (1988)
Enhanced production of monokines by canine alveolar macrophages in response to endotoxin-induced shock.
Proc. Soc. Exp. Biol. Med., 187, 408-415

Tanner, W.G., Welborn, M.B., Sheperd, V.L. (1992) Tumor necrosis factor-alpha and interleukin-1-alpha synergistically enhance phorbol myristate acetate-induced superoxide production by rat bone marrow-derived macrophages. Am. J. Respir. Cell Mol. Biol., 7, 379-384

Tapia,D.P., Hursh,D.M., Kartha,R.K. (1989) Inhibition of platelet-activating factor release by magnesium sulfate in guinea pig alveolar macrophages. Anesthesiology, 73, A 740

Tepper, J.S., Costa, D.L., Winsett, D.W., Stevens, M.A., Doerfler, D.L., Watkinson, W.P. (1993) Near-lifetime exposure of the rat to a simulated urban profile of nitrogen dioxide: pulmonary function evaluation. Fundamental and Applied Toxicology, 20, 88-96

Tracey,K.L., Beutler,B., Lowry,S.F. (1986) Shock and tissue injury induced by recombinant human cachectin. Science, 234, 470-474

Tsan,M.F., White,J.E., Teanor,C., Shaffer,J.B. (1990) Molecular basis for tumor necrosis factor-induced increase in pulmonary superoxide dismutase activities. American Journal of Physiology, 259, L 506- L 512

Tsujimoto, M., Okamura, N., Adachi, H.(1988) Dexamethasone inhibits the cytotoxic activity of tumor necrosis factor. Biochem. Biophys. Res. Commun., 153, 109-115

Vallayathan,V., Xianglin,S., Dalad,N.S., Irr,W., Castranova,V. (1988) Generation of free radicals from freshly fractured silica dust. Potential role in acute silicainduced lung injury. Am. Rev. Respir. Dis., 138, 1213-1219

Vetrano,K.M., Morris,J.B., Hubbard,A.K. (1992) Silica-induced pulmonary inflammation and fibrosis in mice is altered by acute exposure to nitrogen dioxide. Journal of Toxicology and Environmental Health, 37, 425-442 Visner,G.A., Chesrown,S.E., Monnier,J., Ryan,U.S., Nick,H.S. (1992) Regulation of manganese superoxide dismutase: IL-1 and TNF induction in pulmonary artery and microvascular endothelial cells. Biochem. Biophys. Res. Commun., 188, 453-462

Voisin, C., Aerts, C., Jakubczak, E., Tonnel, A.B. (1977) La culture cellulaire en phase gazeuse. Bull. Europ. Physiopath. Resp., 13, 69-82

Voter,K.Z., Frampton,M.W., Whitin,J.C., Morrow,P.E., Utell,M.J. (1991) The effects of NO₂ on superoxide anion generation by human alveolar acrophages. Am. Rev. Respir. Dis., International Conference of the American Lung Association and the American Thoracic Society, 143, A705

Wagner, U., Barth, P.J., Amon, D., Kimpel, C., Saalmann, R., von Wichert, P. (1992) Untersuchungen zur Korrelation pathophysiologischer und pathomorphologischer Prozesse des Epithels der Trachea, der submukösen Trachealdrüsen und des Epithels der peripheren Atemwege nach inhalativer Exposition gegenüber den Noxen NO₂ und SO₂. In: Berichtsband zum 1. Statuskolloquium des Projektes Umwelt und Gesundheit, Karlsruhe, KFK-PUG 4, 61-62

Weiss,S.J., LoBuglio,A.F. (1982) Biology of disease - phagocyte generated oxygen metabolites and cellular injury. Lab. Invest., 47, 5-18

Wolf, J.E., Massof, S.E. (1990) In vivo activation of macrophage oxidative burst activity by cytokines and amphothericin B. Infection and Immunity, 58, 1296-1300

Yamauchi,N., Kuriyama,H., Watanabe,N., Neda,H., Maeda,M., Niitsu,Y. (1989) Intracellular hydroxyl radical production induced by recombinant human tumor necrosis factor and its implication in the killing of tumor cells in vitro. Cancer Research, 49, 1671-1675

Zamora,P.O., Gregory,R.E., Li,A.P., Brooks,A.L. (1986) An in vitro model for the exposure of lung alveolar epithelial cells to toxic gases. JEPTO, 7, 159-168

Zimmermann,R.J., Chan,A., Leadon,S.A. (1989) Oxidative damage in murine tumor cells treated in vitro by recombinant human tumor necrosis factor. Cancer Research, 49, 1644-1648

Zoratti,E.M., Sedgwick,J.B., Vrtis,R.R., Busse,W.W. (1991) The effect of platelet-activating factor on the generation of superoxide anion in human eosinophils and neutrophils. Journal of Allergy and Clinical Immunology, 88, 749-758

7. Abbildungen

Abbildung 1:

Fluoreszenzmikroskopische Aufnahme von RAM nach einer 2stündigen Inkubation in Gasphase in der Luftkammer. Die lebenden Zellen fluoreszieren grün, die toten rotgelblich (Vergrößerung: 150x)

Abbildung 2:

Darstellung des Vitalitätsverlustes nach einer 2stündigen Begasung von RAM mit <u>3 ppm NO</u>₂. Die "Blebs", die nach NO₂-Applikation auftreten, sind mit einem Pfeil gekennzeichnet. (Vergrößerung 150x)

Abbildung 3: Darstellung des Vitalitätsverlustes nach einer 2stündigen Begasung von RAM mit <u>1.5 ppm NO</u>₂. Die "Blebs", die nach NO₂-Applikation auftreten, sind mit einem Pfeil gekennzeichnet. (Vergrößerung 150x)

Abbildung 4:

Fluoreszenzmikroskopische Aufnahme von RAM, die zuerst einer 2stündigen Begasung mit 3 ppm NO₂ ausgesetzt waren, und anschließend die gleiche Zeitdauer im Brutschrank inkubiert wurden.

(Vergrößerung 150x)

Abbildung 5:

RAM nach 2stündiger Exposition in der Luftkammer und anschließend durchgeführter 90minütiger Inkubation mit Reaktionslösung zur Superoxidanionenmessung. Die Zellen konnten für die Gesamtdauer der Inkubation Zymosan phagocytieren - dieses ist als dunkler Einschluß in den Zellen sichtbar. (Vergrößerung 150x)

Abbildung 6: Fluoreszenzmikroskopische Aufnahme von HL60-Zellen nach TPA-Applikation. Bereits nach 90 Minuten war eine Aggregation der Zellen feststellbar. (Vergrößerung 300x).

Abbildung 7:

Einfluß von 3 ppm NO₂ und DPL (100 μ g/ml) auf die <u>LDH-Freisetzung</u> von RAM in Gasphase in den Zellunterstand (2stündige Inkubation mit Gas, n = 15). Signifikante Unterschiede werden in allen folgenden Abbildungen durch unterschiedliche Ruchstaben kenntlich gemacht. Die Darstellung der Daten erfolgt als

unterschiedliche Buchstaben kenntlich gemacht. Die Darstellung der Daten erfolgt als Mittelwerte und mit den dazugehörigen Standardfehlern.

Abbildung 8:

Einfluß von 3 ppm NO₂ und DPL (100 μ g/ml) auf die <u>NAG-Freisetzung</u> von RAM in Gasphase in den Zellunterstand (2stündige Inkubation mit Gas, n = 15).

Abbildung 9:

Einfluß einer Exposition mit NO₂ (3 ppm, 2 Stunden)auf die <u>LDH-Freisetzung</u> von RAM, die zuvor 50 μ g Quarz 1 Stunde lang phagocytierten. (n = 21).

Abbildung 10:

Einfluß einer Exposition mit NO₂ (3 ppm, 2 Stunden) auf die <u>NAG-Freisetzung</u> von RAM, die zuvor 50 μ g Quarz 1 Stunde lang phagocytierten. (n = 21).

Abbildung 11:

Einfluß von PAF (10⁻¹⁴M) und verschiedener Konzentrationen an TNF auf die Sekretion von Superoxidanionen bei RAM nach Kultur in Gasphase und in Abhängigkeit vom Voraktivierungszustand der Zellen.

Positivkontrollansatz mit Zymosan (1 mg/ml).

Obere Abbildung: Einzelversuch mit voraktivierten Zellen (n = 3)

Mittlere Abbildung: Versuch mit nicht voraktivierten Zellen (n = 9)

Untere Abbildung: Versuch mit voraktivierten Zellen (n = 12)

Abbildung 12:

Einfluß der Applikation von PAF (10^{-14} M) und/oder verschiedener Konzentrationen an TNF auf die O₂⁻-Freisetzung von RAM in Submerskultur. Positivkontrollansatz mit Zymosan (1 mg/ml).

Oben: Einzelversuch (n = 3)

Unten: (n = 9)

Abbildung 13:

Vergleich der beiden angewandten Kultivierungsmethoden bei RAM hinsichtlich ihres Einflusses auf die O_2^- -Freisetzung nach Applikation von PAF (<u>10⁻¹²M</u>) und/oder TNF (<u>100 ng/ml</u>).

Positivkontrollansatz mit Zymosan (1 mg/ml).

obere Abbildung: Gasphasenkultur, Einzelversuch (n = 3)

untere Abbildung: Submerskultur, Einzelversuch (n = 3)

Abbildung 14:

Vergleich der beiden angewandten Kultivierungsmethoden bei RAM hinsichtlich ihres Einflusses auf die O₂⁻-Freisetzung nach Applikation von PAF (<u>10</u>⁻¹²<u>M</u>) und/oder TNF (<u>10 ng/ml</u>).

Positivkontrollansatz mit Zymosan (1 mg/ml).

obere Abbildung: Gasphasenkultur, Einzelversuch (n = 3)

untere Abbildung: Submerskultur, Einzelversuch (n = 3)

Abbildung 15:

Vergleich der beiden angewandten Kultivierungsmethoden bei RAM hinsichtlich ihres Einflusses auf die O_2 ⁻-Freisetzung nach Applikation von PAF (10⁻⁶M). Positivkontrollansatz mit Zymosan (1 mg/ml). obere Abbildung: Gasphasenkultur (n = 6)

untere Abbildung: Submerskultur (n = 6)

Abbildung 16: Einfluß von LTB₄ auf die O_2^- -Freisetzung von RAM in Submerskultur. Positivkontrollansatz mit Zymosan (1 mg/ml). (n = 6)

Abbildung 17:

Quantifizierung der Sekretion an Superoxidanionen bei RAM nach Gasphasenkultur. Einfluß zweier verschiedener Konzentrationen an LTB_4 in Abhängigkeit vom Voraktivierungszustand der Zellen.

Positivkontrollansatz mit Zymosan (1 mg/ml).

Obere Abbildung: Versuch mit voraktivierten Zellen (n = 12)

Untere Abbildung: Versuch mit nicht voraktivierten Zellen (n = 6)

Abbildung 18:

Einfluß von A 23187 und TPA auf die O_2 -Freisetzung von RAM nach Gasphasenkultur.

Positivkontrollansatz mit Zymosan (1 mg/ml).

Obere Abbildung: Versuch mit nicht voraktivierten Zellen (n = 6)Untere Abbildung: Versuch mit schwach voraktivierten Zellen (n = 6)Die statistische Analyse wurde für beide Abbildungen getrennt durchgeführt.

Abbildung 19:

Einfluß von A 23187 und TPA auf die O_2 -Freisetzung von RAM nach Submerskultur.

Positivkontrollansatz mit Zymosan (1 mg/ml).

Obere Abbildung: Versuch mit nicht voraktivierten Zellen (n = 6)Untere Abbildung: Versuch mit schwach voraktivierten Zellen (n = 6)

Abbildung 21:

Einfluß einer Applikation von Zymosan und LPS, sowie einer Kombination von LPS und PAF mit Zymosan auf die O_2^- -Freisetzung von RAM in <u>Submerskultur</u>. (n = 6)

Abbildung 22:

Kultur von RAM in <u>Gasphase</u> und anschließende Messung von O_2^- . Bei Säule drei wurden die Alveolarmakrophagen 20 Stunden mit 10 µg/ml LPS vorinkubiert und dann mit Zymosan zur O_2^- -Sekretion stimuliert. Bei den übrigen Ansätzen wurden Zymosan und zusätzlicher Stimulus gleichzeitig appliziert. Positivkontrollansatz mit Zymosan (1 mg/ml).

Einzelversuch (n = 3)

Abbildung 23:

Kultur von RAM in <u>Submerskultur</u> und anschließende Messung von O_2^- . Bei Säule drei wurden die Alveolarmakrophagen 20 Stunden mit 10 µg/ml LPS vorinkubiert und dann mit Zymosan zur O_2^- -Sekretion stimuliert. Bei den übrigen Ansätzen wurden Zymosan und zusätzlicher Stimulus gleichzeitig appliziert. Positivkontrollansatz mit Zymosan (1 mg/ml). Einzelversuch (n = 3)

Abbildung 24:

Einfluß einer NO₂-Exposition auf die O_2^- -Freisetzung von RAM.

Im linken Teil der Abbildung wird die unstimulierte und die Zymosan-stimulierte Sekretion nach Inkubation in der Luftkammer gezeigt, im rechten Teil der Abbildung nach 3 ppm NO₂ (2stündige Inkubation mit Gas).

Abbildung 25:

Einfluß von DPL (100 μ g/ml) auf die spontane und Zymosan-stimulierte O₂⁻⁻ Freisetzung von RAM (2stündige Inkubation mit <u>Luft</u>, n = 12).

Abbildung 26: Einfluß von DPL (100 μ g/ml) auf die spontane und Zymosan-stimulierte O₂⁻-Freisetzung von RAM (2stündige Inkubation mit <u>3 ppm NO</u>₂, n = 12)

Abbildung 27:

Einfluß einer NO₂-Exposition auf die O₂⁻-Freisetzung von RAM.

Im linken Teil der Abbildung wird die unstimulierte und die Zymosan-stimulierte Sekretion nach Inkubation in der Luftkammer gezeigt, im rechten Teil der Abbildung nach 3 ppm NO₂ (2stündige Inkubation mit Gas).

Einfluß von DPL (100 μ g/ml) auf die spontane und Zymosan-stimulierte O₂⁻⁻ Freisetzung von RAM (2stündige Inkubation mit <u>Luft</u>, n = 9)

Abbildung 29:

Einfluß von DPL (100 μ g/ml) auf die spontane und Zymosan-stimulierte O₂⁻⁻ Freisetzung von RAM (2stündige Inkubation mit <u>1.5 ppm NO</u>₂, n = 9)

Abbildung 30:

Einfluß einer NO₂-Exposition auf die O_2^- -Freisetzung von RAM.

Im linken Teil der Abbildung wird die <u>vorstimulierte</u> und die Zymosan-stimulierte Sekretion nach Inkubation in der Luftkammer gezeigt, im rechten Teil der Abbildung nach 1,5 ppm NO₂ (2stündige Inkubation mit Gas).

Abbildung 31:

Einfluß von DPL (100 μ g/ml) auf die <u>vorstimulierte</u> und Zymosan-stimulierte O₂⁻-Freisetzung von RAM (2stündige Inkubation mit <u>Luft</u>, n = 6).

Abbildung 32:

Einfluß von DPL (100 μ g/ml) auf die <u>vorstimulierte</u> und Zymosan-stimulierte O₂-Freisetzung bei voraktivierten RAM nach 1,5 ppm <u>NO</u>₂ (2stündige Inkubation mit NO₂).

(n = 6).

Abbildung 33:

Einfluß einer NO₂-Exposition auf die O_2^- -Freisetzung von RAM.

Im linken Teil der Abbildung wird die <u>vorstimulierte</u> und die Zymosan-stimulierte Sekretion nach Inkubation in der Luftkammer gezeigt, im rechten Teil der Abbildung nach 3 ppm NO₂ (2stündige Inkubation mit Gas).

Abbildung 34:

Einfluß von DPL (100 μ g/ml) auf die vorstimulierte und Zymosan-stimulierte O₂⁻⁻ Freisetzung von RAM (2stündige Inkubation mit Luft, n = 6).

Abbildung 36:

Vergleichende Übersicht der spontanen und Zymosan-stimulierten O_2^- -Freisetzung von RAM mit Luft (L) bzw. mit 1,5 und 3 ppm NO₂ (NO₂). (2stündige Inkubation mit Gas, n = 6).

Abbildung 37:

Vergleichende Übersicht der spontanen und Zymosan-stimulierten O_2^- -Freisetzung von RAM mit Luft bzw. mit 1,5 ppm NO₂. Quantifizierung des Einflusses von DPL und der Vorstimulierung der Zellen (2stündige Inkubation mit Gas, n = 6).

Die statistische Analyse wurde für die linke und die rechte Hälfte der Abbildung getrennt durchgeführt.

Abbildung 38:

Vergleichende Übersicht der spontanen und Zymosan-stimulierten O_2^- -Freisetzung von RAM mit Luft bzw. mit 3 ppm NO₂. Quantifizierung des Einflusses von DPL und der Vorstimulierung der Zellen (2stündige Inkubation mit Gas, n = 6).

Die statistische Analyse wurde für die linke und die rechte Hälfte der Abbildung getrennt durchgeführt.

Abbildung 39:

Einfluß verschiedener Stimulanzien auf die O₂⁻-Freisetzung von HL60-Makrophagen nach Gasphasenkultur. Die Stimulation erfolgte mit Zymosan (1 mg/ml) und/oder PAF (10^{-6} M) und TPA (20 ng/ml). (n = 6)

Abbildung 40:

Einfluß verschiedener Stimulanzien auf die O_2^- -Freisetzung von HL60-Granulocyten nach Gasphasenkultur. Die Stimulation erfolgte mit Zymosan (1 mg/ml) und/oder PAF (10⁻⁶M) und TPA (20 ng/ml).

Einzelversuch (n = 3)

Abbildung 41:

Zeitabhängigkeit der stimulierten TNF-Freisetzung durch RAM nach Gasphasenkultur. Die Stimulation der Zellen erfolgte mit LPS für 2, 3 und 4 Stunden. (n = 9).

Abbildung 42:

Einfluß verschiedener Stimulanzien auf die TNF-Sekretion von RAM nach Gasphasenkultur. Die Stimulation erfolgte mit LPS, PAF und einer Kombinationsapplikation (2stündige Inkubation mit den Agenzien).

Abbildung 43:

Einfluß verschiedener Stimulanzien auf die TNF-Sekretion von nach RAM Submerskultur. PAF Die Stimulation erfolgte mit LPS, und einer Kombinationsapplikation (2stündige Inkubation mit den Agenzien).

Abbildung 44:

Einfluß verschiedener Stimulanzien auf die TNF-Sekretion von RAM nach <u>Gasphasenkultur</u>. Die Stimulation erfolgte mit LPS (10 μ g/ml), LTB₄ (20 nM) und einer Kombinationsapplikation (2stündige Inkubation mit den Agenzien).

Abbildung 45:

Einfluß verschiedener Stimulanzien auf die TNF-Sekretion von RAM nach <u>Submerskultur</u>. Die Stimulation erfolgte mit LPS (10 μ g/ml), LTB₄ (20 nM) und einer Kombinationsapplikation (2stündige Inkubation mit den Agenzien).

Abbildung 46:

Exposition von voraktivierten RAM in Gasphase. Messung der TNF-Sekretion in dem Kulturunterstand nach Inkubation mit LPS (10 μ g/ml), LTB₄ (160 nM) und einer Kombination beider Substanzen (2stündige Inkubation mit den Agenzien). Einzelversuch (n = 3)

Abbildung 47:

Einfluß der Stimulation mit LPS oder IFN- γ auf die TNF-Sekretion von RAM nach <u>Gasphasenkultur</u> (2stündige Inkubation mit den Agenzien). Einzelversuch (n = 3)

Abbildung 48:

Einfluß der Stimulation mit LPS oder IFN- γ auf die TNF-Sekretion von RAM nach <u>Submerskultur</u> (2stündige Inkubation mit den Agenzien). Einzelversuch (n = 3)

Abbildung 49:

Einfluß von LPS (10 μ g/ml) und Dexamethason (2 x 10⁻⁷ M) auf die TNF-Sekretion von RAM nach <u>Gasphasenkultur</u>.

Bei dem Ansatz "Dex. vor LPS" wurde Dexamethason eine Stunde vor der Applikation von LPS in den Zellunterstand gegeben, bei "Dex. gleichzeitig mit LPS" wurden beide Substanzen gleichzeitig verabreicht (2stündige Inkubation mit den Agenzien).

Einzelversuch (n = 3)

Abbildung 50:

Einfluß von LPS (10 μ g/ml) und Dexamethason (2 x 10⁻⁷ M) auf die TNF-Sekretion von RAM nach <u>Submerskultur</u>.

Bei dem Ansatz "Dex. vor LPS" wurde Dexamethason eine Stunde vor der Applikation von LPS in den Zellunterstand gegeben, bei "Dex. gleichzeitig mit LPS" wurden beide Substanzen gleichzeitig verabreicht (2stündige Inkubation mit den Agenzien).

Einzelversuch (n = 3)

Abbildung 51:

Einfluß einer DPL-Behandlung auf die LPS-stimulierte und unstimulierte TNF-Sekretion von RAM nach Gasphasenkultur.

obere Abbildung: 2 Stunden, Luft

untere Abbildung: 2 Stunden, NO₂, <u>3 ppm</u>

Abbildung 52:

Einfluß einer Quarzphagocytose auf die LPS-stimulierte und unstimulierte TNF-Sekretion von RAM nach Gasphase. Die Staubphagocytose fand vor der Inkubation mit Gasen statt.

obere Abbildung: 2 Stunden, Luft

untere Abbildung: 2 Stunden, NO₂, <u>3 ppm</u>

Abbildung 53:

Einfluß einer Latexphagocytose auf die LPS-stimulierte und unstimulierte TNF-Sekretion von RAM nach Gasphase. Die Staubphagocytose fand vor der Inkubation mit Gasen statt.

obere Abbildung: 2 Stunden, Luft

untere Abbildung: 2 Stunden, NO₂, <u>3 ppm</u>

Abbildung 54:

Einfluß einer DPL-Behandlung auf die LPS-stimulierte und unstimulierte TNF-Sekretion von RAM nach Gasphasenkultur.

obere Abbildung: 2 Stunden, Luft

untere Abbildung: 2 Stunden, NO₂, <u>1.5 ppm</u>

Abbildung 55:

Einfluß einer Quarzphagocytose auf die LPS-stimulierte und unstimulierte TNF-Sekretion von RAM nach Gasphase. Die Staubphagocytose fand vor der Inkubation mit Gasen statt.

obere Abbildung: 2 Stunden, Luft

untere Abbildung: 2 Stunden, NO₂, <u>1.5 ppm</u>

Abbildung 56:

Einfluß einer Latexphagocytose auf die LPS-stimulierte und unstimulierte TNF-Sekretion von RAM nach Gasphase. Die Staubphagocytose fand vor der Inkubation mit Gasen statt.

obere Abbildung: 2 Stunden, Luft

untere Abbildung: 2 Stunden, NO₂, <u>1.5 ppm</u>

Abbildung 57 a:

<u>TNF-Sekretion</u> von HL60-Granulocyten in den Zellunterstand bzw. -überstand nach zweistündiger Stimulation mit LPS, PAF und LPS + PAF. oben: Gasphasenkultur unten: Submerskultur Die statistische Analyse wurde für beide Abbildungen getrennt durchgeführt (n = 6).

Abbildung 57 b:

<u>IL-6 Sekretion</u> von HL60-Granulocyten in den Zellunterstand bzw. -überstand nach zweistündiger Stimulation mit LPS, PAF und LPS + PAF. oben: Gasphasenkultur unten: Submerskultur Die statistische Analyse wurde für beide Abbildungen getrennt durchgeführt (n = 6).

Abbildung 57 c:

<u>IL-8 Sekretion</u> von HL60-Granulocyten in den Zellunterstand bzw. -überstand nach zweistündiger Stimulation mit LPS, PAF und LPS + PAF. oben: Gasphasenkultur unten: Submerskultur

Abbildung 58 a:

Einfluß des Aktivierungszustandes auf die Stimulierbarkeit der <u>TNF-Sekretion</u> von HL60-Makrophagen <u>nach Gasphasenkultur</u>. Im oberen Teil der Abbildung wurden nicht voraktivierte Zellen mit LPS, PAF und Lyso-PAF inkubiert. In der unteren Abbildung handelt es sich um voraktivierte Zellen, die mit LPS, PAF, LPS + PAF und zwei verschiedenen Konzentrationen an LTB₄ stimuliert worden waren.

Abbildung 58 b:

Einfluß des Aktivierungszustandes auf die Stimulierbarkeit der <u>IL-6-Sekretion</u> von HL60-Makrophagen <u>nach Gasphasenkultur</u>. Im oberen Teil der Abbildung wurden nicht voraktivierte Zellen mit LPS, PAF und Lyso-PAF inkubiert. In der unteren Abbildung handelt es sich um voraktivierte Zellen, die mit LPS, PAF, LPS + PAF und zwei verschiedenen Konzentrationen an LTB₄ stimuliert worden waren.

Abbildung 58 c:

Einfluß des Aktivierungszustandes auf die Stimulierbarkeit der <u>IL-8-Sekretion</u> von HL60-Makrophagen <u>nach Gasphasenkultur</u>. Im oberen Teil der Abbildung wurden nicht voraktivierte Zellen mit LPS, PAF und Lyso-PAF inkubiert. In der unteren Abbildung handelt es sich um voraktivierte Zellen, die mit LPS, PAF, LPS + PAF und zwei verschiedenen Konzentrationen an LTB₄ stimuliert worden waren.

Abbildung 59 a:

Einfluß des Aktivierungszustandes auf die Stimulierbarkeit der <u>TNF-Sekretion</u> von HL60-Makrophagen <u>nach Submerskultur</u>. Im oberen Teil der Abbildung wurden nicht voraktivierte Zellen mit LPS, PAF und Lyso-PAF inkubiert. In der unteren Abbildung handelt es sich um voraktivierte Zellen, die mit LPS, PAF, LPS + PAF und zwei verschiedenen Konzentrationen an LTB₄ stimuliert worden waren.

Abbildung 59 b:

Einfluß des Aktivierungszustandes auf die Stimulierbarkeit der <u>IL-6-Sekretion</u> von HL60-Makrophagen <u>nach Submerskultur</u>. Im oberen Teil der Abbildung wurden nicht voraktivierte Zellen mit LPS, PAF und Lyso-PAF inkubiert. In der unteren Abbildung handelt es sich um voraktivierte Zellen, die mit LPS, PAF, LPS + PAF und zwei verschiedenen Konzentrationen an LTB₄ stimuliert worden waren.

Abbildung 59 c:

Einfluß des Aktivierungszustandes auf die Stimulierbarkeit der <u>IL-8-Sekretion</u> von HL60-Makrophagen <u>nach Submerskultur</u>. Im oberen Teil der Abbildung wurden nicht voraktivierte Zellen mit LPS, PAF und Lyso-PAF inkubiert. In der unteren Abbildung handelt es sich um voraktivierte Zellen, die mit LPS, PAF, LPS + PAF und zwei verschiedenen Konzentrationen an LTB₄ stimuliert worden waren.

Abbildung 60:

Das Chromatogramm zeigt die Wiederfindungsrate des LTB_4 -Standards nach Auftrennung in der HPLC. Der Standard (100 ng LTB_4) wurde zu zwei verschiedenen Zeitpunkten zu RAM in <u>Gasphase</u> gegeben. Der erste LTB_4 -Standard (St.1) wurde während der 5minütigen Inkubationszeit zu den Zellen gegeben, der Standard 2 (St.2) wurde bei der nachfolgenden Lipidextraktion zugefügt. Die Abszisse zeigt die Retentionszeitpunkte der jeweiligen Substanzen in Minuten, die Ordinate die Spannung in Volt (n=6).

Abbildung 61:

Diese Abbildung zeigt drei separate Chromatogramme von Zellextrakten nach der Auftrennung in der HPLC, die im nachhinein übereinandergelegt wurden. Die Zellextrakte wurden von unstimulierten Zellen (Ko) und von Zellen, die fünf Minuten lang mit A 23187 (A23) stimuliert worden waren, gewonnen. Als methodische Kontrolle wurde den unstimulierten Zellen bei der Extraktion 100 ng LTB₄ (St.2) zugegeben. Dieser Standard entspricht dem Standard 2 aus der vorherigen Abbildung. Der Aus-

schnitt zeigt die Vergrößerung der Daten von Ko, A 23187 und St. 2. Alle Ansätze wurden mit RAM in Gasphasenkultur durchgeführt, (n=6).

Das Chromatogramm zeigt die Wiederfindungsrate des LTB_4 -Standards nach Auftrennung in der HPLC. Der Standard (100 ng LTB_4) wurde zu zwei verschiedenen Zeitpunkten zu RAM in <u>Submerskultur</u> gegeben. Der erste LTB_4 -Standard (St. 1) wurde während der 5minütigen Inkubationszeit zu den Zellen gegeben, der Standard 2 (St. 2) wurde bei der nachfolgenden Lipidextraktion zugefügt. Die Abszisse zeigt die Retentionszeitpunkte der jeweiligen Substanzen in Minuten, die Ordinate die Spannung in Volt (n=6).

Abbildung 63:

Diese Abbildung zeigt drei separate Chromatogramme von Zellextrakten nach der Auftrennung in der HPLC, die im nachhinein übereinandergelegt wurden. Die Zellextrakte wurden von unstimulierten Zellen (Ko) und von Zellen, die fünf Minuten lang mit A 23187 (A23) stimuliert worden waren, gewonnen. Als methodische Kontrolle wurde den unstimulierten Zellen bei der Extraktion 100 ng LTB₄

(St. 2) zugegeben. Dieser Standard entspricht dem Standard 2 aus der vorherigen Abbildung. Der Ausschnitt zeigt die Vergrößerung der Daten von Ko, A23187 und St. 2. Alle Ansätze wurden mit RAM in <u>Submerskultur</u> durchgeführt, (n=6).