
Using Interactive Visualization for Teaching

the Theory of NP-completeness

Christian Pape

Universit�at Karlsruhe

Institut f�ur Logik, Komplexit�at und Deduktionssysteme

76128 Karlsruhe

pape@ira.uka.de

Abstract

In this paper we investigate the potential of interactive visualiza-

tion for teaching the theory of NP-completeness to undergraduate stu-

dents of computer science. Based on this analysis we developed some

interactive Java applets which we use to present an NP-complete tiling

problem PUZZLE in our lecture. This software is integrated into our

hypertext lecture notes and our students also use it to �nd an NP-

completeness proof for PUZZLE as an exercise.

1 Introduction

The notion of NP-completeness plays an important role in computer science.
It is commonly agreed that once a problem is known to be NP-complete it
is unlikely to �nd an e�cient, i.e. polynomial time, algorithm to solve it.
This has practical consequences: Many existent optimization problems are

known to be NP-complete and, hence, it is usually a waste of time to try

to develop algorithms for these problems with standard techniques like, for
example, divide-and-conquer. Instead other techniques like simulated anneal-

ing are employed, that often lead to good and acceptable results in practice.
Therefore it is important that students of computer sciences understand the

concept of NP-completeness, and are able to check whether a problem is

NP-complete or not.
Due to the rigorous mathematical treatment of complexity theory, many

(if not most) undergraduate students have a serious problem mastering the

concept of NP-completeness and, moreover, in developing their own NP-

completeness proofs. We will report in this paper on our ongoing activities

to use visualization in teaching theoretical computer science at the under-

graduate level and show how the education of the theory of NP-completeness

can bene�t from multi-media techniques.

After recapitulating basic concepts of complexity theory we investigate

in Section 3 the potential of interactive visualization to support the develop-

ment and presentation of NP-completeness proofs. In Section 4 we illustrate

our ideas using a certain NP-complete tiling problem as an example, which

is presented in our lecture with the help of Java-applets. Furthermore the

students use this software to develop an NP-completeness proof as an exer-

cise. These applets and other interactive courseware is integrated into our

HTML based hypertext lecture notes.1 It can be used with every Java capa-

ble HTML browser.

2 Basic De�nitions

To make sure that we are on common grounds we briey rehash the de�nitions
of Turing machines, the classes P and NP, and the notion of NP-completeness.
For a detailed description we refer to [Kfoury et al., 1986]. Turing machines
(TM) are the traditional way to formalize the notion of computable functions.
They were invented in 1936 by Alan Turing [Turing, 1936] and because of

their simplicity they are still a very attractive and convincing concept.
A deterministic Turing machine (DTM) consists of:

1. A two-way-in�nite tape divided into cells. Each cell contains a symbol

taken from a �xed set �. A special symbol B (blank) must occur in �.

2. A read/write head scanning exactly one cell at a time and being able

to move along the tape.

3. A control unit which at any point in time is known to be in one internal
state taken from a �xed set � of states.

The behavior of the TM is described as follows by a transition function

� : �� �! �� �� fL;R;Ug :

If q is the current state of the TM, s is the symbol currently scanned,

and �(q; s) = hr; t; di holds, then the TM overwrites s with t, changes to the

internal state r, and the read/write head, according to the value of d moves

to the left if d = L, to the right if d = R or remains at the current position if
d = U . The Turing machine stops if �(q; s) is unde�ned for the current state

q and the current symbol s.

1http://i12www.ira.uka.de/~info3/skript/companion/companion.htmlonly

A con�guration of a TM T consists of the head position, the current tape,

and state of T . A con�guration is denoted by the relevant part of the tape

written as a string with the current state before the symbol corresponding

to the cell under the the head. For example B00q11B is a shorthand for a

TM consisting of: the tape with symbols 0; 0; 1 and blanks to the left and

to the right; the current state q1; and the read/write head over the cell with

symbol 1.

A DTM computes a function f : �� ! �� starting with an initial state

and a tape that contains in some way the arguments for f . Instructions are

provided to read the function value from the �nal tape inscription when the

TM stops.

Non-deterministic Turing machines (NTM) are de�ned similar to deter-

ministic TM but with a transition function mapping a state and symbol to

a set of possible actions:

� : � � �! 2����fL;R;Ug

The behavior of the NTM is de�ned as follows: If q is the current state of the
NTM and s is the symbol currently scanned, then one triple hr; t; di 2 �(q; s)

is chosen non-deterministically and the internal state of the NTM changes
accordingly.

A (deterministic or non-deterministic) TM decides a language L � �� i�
it stops on every input w 2 �� and the �nal tape contains a 1 if w 2 L holds,
and a 0 otherwise.

In complexity theory, problems (e.g. the problem PUZZLE introduced in

Sec. 4.1) are encoded into formal languages L � �� for a �xed signature � to
abstract from their informal description. An instance of a problem is a word
w 2 �� and the question is whether w belongs to L or not. This makes it
much easier to investigate them in a more general way. Therefore we assume
that a decidability problem consists of a language L � �� such that x 2 L

i� x is solvable. By de�nition L is decidable i� the question x 2 L can be

decided for every x 2 �� with a (deterministic or non-deterministic) TM.
It is commonly agreed among computer scientists that all problems which

can be solved by a DTM within a polynomial time bound are feasible, i.e.

an e�cient algorithm to decide it exists. All other problems are not feasible.

This classi�cation leads to the following de�nition:
The class P and NP are the sets of all problems L � �� which can be

decided by a deterministic resp. non-deterministic Turing machine T in at
most p(n) steps where p is a polynom and n the length of the input word

w 2 L.

Because every problem in NP is bounded by a polynom the following can
be proved:

Theorem 1 For every language L � �� in NP there exists a non-determinis-

tic TM that stops on every input with resulting output 1 i� w 2 L holds.

First of all one might guess that NTM are more powerful, i.e. can decide

more problems than deterministic ones. However, this impression is wrong

and a proof is presented to undergraduates that both models are equally

powerful. But one might expect that non-deterministic computations are

less complex than deterministic ones. If this is really the case, i.e. P=NP

holds or not, is one of the most important unsolved problems in computer

science, because currently only exponential time algorithms are known to

solve problems that are in NP but not in P. The technique of reduction and

notion of NP-completeness can be employed to �nd such unfeasible problems:

A problem L0 is polynomial reducible on a problem L, denoted by L0 �p L,

if there exists a DTM that computes a function f : �� ! �� in polynomial

time such that w 2 L0 i� f(w) 2 L.
A problemL 2 NP is NP-complete if every problemL0 2 NP is polynomial

reducible on L, i.e. L0 �p L.

3 Developing and Presenting NP-complete-

ness Proofs

There are two general methods for proving the NP-completeness of a problem
P1 � ��:

First, by �nding a polynomial reduction from another problem P2 � ��

which is known to be NP-complete, i.e. P2 �p P1.
Second, by an elementary proof, i.e. by giving a transformation, com-

putable in polynomial time by a DTM, that maps every NTM with given
input tape into an instance I1 2 �� such that I1 2 P1 i� the corresponding
NTM stops.

The main part of both methods is the construction of a mapping from
one domain (an NTM or an NP-complete problem) into another domain (a

problem).

Interactive visualization can support the presentation and development
of such an NP-completeness proof in several di�erent manners:

If the problem itself is presented in a lecture or textbook, then it is a
useful and traditional approach to give a visualization of some examples

of the problem. An electronic text, in addition, can visualize the problem
in many other ways: Instead of presenting static pictures, it is possible to

simulate an instance of the problem, for example, an instance of the traveling
salesman problem can be represented as a graph (or map) and the students

can search for a short round tour interactively. This may give them a better

comprehension of the problem and its complexity (see Sec. 4.1 for an example

of such a visualization in case of a tiling problem). Moreover, instead of

choosing one instance of the problem, it is possible to provide an editor for

typing in an instance of the problem and then investigating it interactively.

If a reduction L �p L
0 is used in a proof, then both problems L and L0 can

be visualized as described. But what is more, we are able to map an instance

of L0 into an instance of L and investigate the e�ects and properties of the

transformation visually.

If an NP-completeness proof is not given but has to be carried out by the

student, e.g. as an exercise, then an interactive visualization can also help him

understanding the problem better. However, the crucial and di�cult part

of any NP-completeness proof is the construction of the mapping between

the two domains. It is likely that most students fail on the �rst attempt

to �nd the correct transformation. Here an interactive software can help

them to check their transformation on suitable problem instances. First of
all, the student has to type in the transformation (which depends on the

given problems). An appropriate implementation can focus on the relevant
and interesting parts of the transformation such that nonsensical inputs are
impossible. The student then has the opportunity to check his transformation
for errors much easier than doing it by hand. As another advantage, the
result can often be checked automatically (for example if only �nitely many
correct transformations exist). Thus the student get immediate feedback on

the correctness of his solution. But even if the solution can not be checked
automatically, it may be possible that the student can test his solution on
certain instances of the problem interactively with the help of a simulation of
the problem (see Sec. 4.2 for an example). In many situations it might also
be possible to generate counterexamples for wrong solutions automatically.

These counterexamples then can be inspected with the help of the software.
As an additional remark let us note that the technique of reduction is

not restricted to the framework of NP-completeness. In computer science
reductions are also used, for example, to prove lower time bounds or the
undecidability of problems; thus most of the above techniques for visualizing

reductions can be used in these areas as well.

4 NP-completeness Proof for a Tiling Prob-

lem

Every introduction into the theory of NP-completeness starts with the def-

inition of the classes P, NP and the notion of NP-complete problems, and

then presents the technique of reduction to prove the NP-completeness of
one problem using the known NP-completeness of another problem. How-

ever, this leaves open the question of how to proof the NP-completeness of

the latter problem. In our lecture we do this by presenting Cooks Theorem,

which states that the problem of deciding the satis�ability of propositional

formulas is NP-complete [Cook, 1971], and we give an elementary proof based

on a transformation of NTMs into propositional formulas.

To understand this transformation one has to be familiar with proposi-

tional logic. Though �rst year students are teached basic parts of formal

logic, many (if not most) of them have problems to understand the proof, in

particular its general scheme and the validity of the transformation.

To make sure that the students well understand this proof and the concept

behind it, they have to carry out an elementary NP-completeness proof for

another problem | a tiling problem | as an exercise. In our hypertext

the presentation of this problem is supported by an interactive simulation of

some of its instances (Sec. 4.1); and we developed a Java-applet which makes

it much easier for the students trying to solve the exercise (Sec. 4.2).

4.1 The Tiling Problem

Consider the following tiling problem PUZZLE [Wagner, 1994]:
INSTANCE: Given an alphabet �, a collection T1; : : : ; Tn 2 �4; n � 1 of

\tiles" (where ha; b; c; di denotes a type of tile with top side a, right side b,
bottom side c, and left side d), and a quadratic frame F 2 �4t; t � 1.

QUESTION: Is it possible to �ll the frame F with tiles of the type
T1; : : : ; Tn such the sides of the tiles match with the corresponding sides
of the frame and their neighboring tiles?

In our lecture notes we exemplify this problem with visual representa-
tions of two small instances: one which is solvable and another one which

has no solutions. Figure 1 (a) shows the paper version of the solvable ex-
ample, where � = f1; 2; 3; 4; 5g; t = 3; F = h1; 2; 3; 1; 1; 3; 2; 5; 2; 2; 3; 5i; T1 =
h2; 3; 2; 4i; T2 = h2; 1; 2; 3i; T3 = h1; 4; 2; 2i; T4 = h4; 4; 5; 5i; T5 = h2; 5; 2; 5i.
The quadratic frame of an instance of PUZZLE is build from F starting from
the top left edge in clockwise orientation.

In the hypertext this picture is omitted and replaced by a simulation of the

instance (Fig. 1 (b)): Here, the students can pick the tiles with the mouse and
try to �ll the frame with them. If two tiles do not �t, i.e. the touching borders
have di�erent symbols, then these parts are highlited black. The advantage

of this simulation over the paper version is the immediate response to a

wrong or correct attempt to solve the instance, which makes it easier for the
student to understand the problem in detail. After some experiments with

the simulation most students should be familiar with PUZZLE, in particular
because of its obvious relation to jigsaw puzzles.

For the proof of the NP-completeness of PUZZLE we consider one-way-

in�nite Turing machines, which di�er from two-way-in�nite Turing machines

(a) (b)

Figure 1: Example of PUZZLE: (a) paper version, (b) simulation in hypertext

only in the restriction that the tape has a leftmost cell (and an in�nite supply
of cells to the right); in case the transition function attempts to move the
head o� the tape to the left the machine just stops.

In our lecture we prove that the expressive power of one-way-in�nite Tur-
ing machines does not di�er from that of two-way-in�nite ones. Its proof is
based on a transformation of one type of Turing machine into the other. The

proof is given in our hypertext lecture notes; its central parts are visualized
with corresponding simulations of the original and the transformed Turing
machine (see [Pape and Schmitt, 1997] for details).

4.2 Supporting the Development of an NP-complete-

ness Proof for PUZZLE

The central part of the NP-completeness proof of PUZZLE is to show that
every problem L 2 NP; L � �� is polynomial reducible on PUZZLE. By
de�nition of NP and Theorem 1 we conclude that a (one-way-in�nite) NTM
T exists that stops on input w 2 �� with �nal output 1 after p(jwj) steps
(where p is a polynom) i� w 2 L holds. From the description of T and given

input w we have to construct an instance of PUZZLE that is solvable i� T

stops on input w with �nal output 1.
The main idea of the proof is to simulate T with the corresponding in-

stance of PUZZLE by encoding a con�guration of T and all possible tran-

sitions into a row of tiles. These tiles must be designed such that a row

r of tiles �ts under the preceding row i� r corresponds to a next possible

con�guration of T .

The top side of a tile contains the symbol of the corresponding cell. If
the read/write head is over this cell than the current state is added to the

top side, too, and the left and right sides of the tiles are used to simulate

the head movement over the tape. The bottom side of a tile contains the

information for the resulting con�guration.

The frame of the puzzle has size t = p(jwj) and is generated as follows:

The top side of it is constructed from the given input tape and initial state

of T ; the bottom side is build from the given output 1 (the rest is �lled with

blanks); the left and right side is �lled with special symbols (#) not occuring

in �.

Figure 4.2 shows an example for a puzzle related to some TM (the details

of the TM need not to concern us here): The top side corresponds to the

initial con�guration q101B and the bottom side corresponds to a (desired)

�nal con�guration q2100B. The �rst row of tiles corresponds to the initial

con�guration q101B (top side of tiles) and the resulting next con�guration

1q11B (bottom side of tiles); the tile in the top left corner of the puzzle

simulates the transition hq1; 0i 7! hq1; 1; Ri.

Figure 2: A partial �lled PUZZLE related to some non-deterministic Turing

machine

The di�cult part of the proof is to �nd this transformation. For an

introductional course on complexity theory this task is far to complex to

solve without any hints. To make the search for a correct transformation
easier, we developed a Java-applet with which it is possible to specify the

transformation, to type in a Turing machine to which the transformation is
automatically applied, and to try to solve the resulting puzzle.

The frame is build automatically from the input tape and the output;

therefore it is not necessary for the student to specify this part of the trans-
formation. Furthermore, the graphical user interface for the input of the
transformation is designed to forbid as much nonsensical inputs as possible

without giving too much hints.

It is possible to classify the types of the tiles into six categories depending

on the di�erent actions and states of the NTM. Recall that a tile is directly

related to a cell of the tape:

1. Neither before nor after the next step of the NTM the head is over this

cell of the tape.

2. (p; b; U) 2 �(q; a), i.e. the head is above this cell, a new symbol is

written to it, the head moves to the right, and the internal state of the

NTM changes. In the applet the correct solution for this category is

given as a hint.

3. (p; b;R) 2 �(q; a), analogous to 2.

4. (p; b; L) 2 �(q; a), analogous to 2.

5. The head moves into the cell from the left.

6. The head moves into the cell from the right.

In these categories a; b and q; p are placeholders for the corresponding symbols
and states of the NTM. The input of the transformation for one category is
done by a multiple-choice selection of symbols, states, or pairs of symbols

and states (see Fig. 3 for categories 2 and 5). This approach makes it a lot
easier for the students to �nd the correct transformation and it inhibits too
much nonsensical input.

(a) (b)

Figure 3: Input of the transformation: (a) correct input for category 2, (b)
partially �lled out category 5

After the transformation is typed in, the students can feed in an NTM

and have a closer look at the corresponding instance of PUZZLE, which is
automatically generated applying the given transformation. They now can

experiment with their solution and get con�dent about its correctness or they
can try to falsify it by �nding counterexamples, i.e. Turing machines which

stop on a certain input but where the corresponding instance of PUZZLE has

no solution or vice versa. If the latter happens then it is possible to modify

the transformation and they can try to experiment with the new version

again.

5 Conclusion and Further Work

We investigated the potential of interactive visualization for the development

and presentation of NP-completeness proofs in computer science education

and reported on our implementation of an example which incorporates most

of our ideas. We believe that with this software students can learn certain

parts of NP-completeness theory much better than with traditional teaching

methods.

The next step in our work will be a practical test during the lecture and
tutorials. Based on this evaluation we are going to improve our software, e.g.

by generating counterexamples for wrong solutions.
Currently the students' solutions are still checked by human tutors, but

we are also working on an fully automatic intelligent tutor for helping stu-
dents with checking NP-completeness proofs based on the reduction tech-
nique for certain variants of 3SAT.

References

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem proving proce-

dures. In Proc. Third Annual ACM Symposium on the Theory of Comput-

ing, pages 151{158.

[Kfoury et al., 1986] Kfoury, A. J., Moll, R. A., and Arbib, M. A. (1986).

A Programming Approach to Computability. Second printing. Texts and
Monographs in Computer Science. Springer-Verlag.

[Pape and Schmitt, 1997] Pape, C. and Schmitt, P. H. (1997). Visualiza-

tions for Proof Presentation in Theoretical Computer Science Education.
In Halim, Z., Ottmann, T., and Razak, Z., editors, Proceedings of In-

ternational Conference on Computers in Education, Kuching, Sarawak,

Malaysia, December 2{6, pages 229{236, Charlottesville. Association for

the Advancement of Computing in Education.

[Turing, 1936] Turing, A. M. (1936). On computable numbers, with an appli-
cation to the Entscheidungsproblem. Proc. London Mathematical Society,

42:230{265.

[Wagner, 1994] Wagner, K. W. (1994). Enf�uhrung in die Theoretische Infor-

matik. Grundlagen und Modelle. Springer.

