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Abstract

In this paper we illustrate the risk of non-monomorphicity1 of re-

quirement speci�cations2 by an example from formal software devel-

opment. This example was completely carried out in the KIV system.3

1 Introduction

Formal software development starts with making up a formal requirement
speci�cation that describes the features required of the software system to
be developed. Requirement speci�cations may be(come) an essential part
of a contract between a customer, who wants to get bug-free software for
his (safety-critical) application, and the software developer: the customer
assures to accept the software if (and only if) it meets this speci�cation.

The requirement speci�cation must not be monomorphic. Quite the re-
verse holds: in order to provide the software developer with freedom that

�This work was supported under grants no. Me 672/6-2,3 by the Deutsche Forschungs-

gemeinschaft as part of the focus program \Deduktion".
1A speci�cation is called monomorphic if any two models of it are isomorphic. So a

monomorphic speci�cation is either inconsistent or it determines some algebra uniquely

up to isomorphism.
2In this paper we regard a requirement speci�cation to be a formal description of

the expected external behavior of the software system. So, non-behavioral requirements

(concerning e�ciency, reliability, maintainability, portability, etc.) are not the subject of

our discussion.
3KIV stands for Karlsruhe Interactive Veri�er, which is an advanced tool for the de-

velopment of correct software. It supports the entire design process starting from formal

speci�cations and ending with veri�ed code [9, 13].
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may facilitate more e�cient implementations, it may be desired to specify
only the relevant features. However, on the other hand, non-monomorphicity
(i.e. ambiguity) can be very dangerous, especially if one is unaware of the
(whole extent of the) gaps in the speci�cation.

The aim of this paper is to illustrate two points: �rstly, that in general,
it is in no way trivial to recognize gaps in a speci�cation. Secondly, that
ambiguity of a requirement speci�cation can have far-reaching, dire conse-
quences, even if this ambiguity is caused by gaps which are neither intended
nor easy to see. This illustration is done via a well-known4 example, namely
the formal development of a prover for propositional logic.

We start out from the de�nition of validity in propositional logic given in
[4] and formalize it using a �rst-order5 speci�cation language with (ultra-)
loose semantics.6 This is done in the next section. In section 3 an executable
implementation is presented that meets this speci�cation, but which behaves
not as intended. In section 4 we discuss the reason for this bad surprise:
concealed ambiguity of (parts of) the requirement speci�cation. Section 5
illustrates the di�culties in removing such ambiguity. Finally, in the last
section we draw conclusions and brie
y indicate directions for future work.

2 Specifying a Propositional Logic Prover

In this section we build up a requirement speci�cation for a propositional logic
prover, i.e. a speci�cation of syntax and semantics of propositional logic. As
basis we take the de�nitions given in ([4], p. 4-7) and formalize them (as
literally as possible) in a �rst-order speci�cation language (enlarged with
generation principles). We start with the syntax of propositional formulas,
which is de�ned in ([4], p. 5) as follows:7

\We now set up the propositional logic as a formal language. The

symbols of our language are as follows:

connectives ^ (and), : (not);

parentheses ),(;

a nonempty set S of signature symbols

4This example was already treated (however, with another aim in mind) e.g. in [3, 19],

and also in the KIV system [17].
5enlarged with generation principles (a kind of higher-order axioms).
6In the ultra-loose approach to algebraic speci�cation all models of a speci�cation are

considered; whereas in the loose approach exactly those models are considered which do not

contain junk, i.e. all models whose elements can be denoted by ground terms. However, for

the speci�cations presented in this paper the loose and the ultra-loose semantics coincide

since the speci�cations contain generation principles for all their sorts. The loose semantics

approach to algebraic speci�cation is widely accepted as appropriate for speci�cation of

software systems (see for instance [6, 20, 11]).
7Here and in what follows we quote [4] almost literally. Modi�cations concern the

replacement of `sentential' by `propositional', and `statement' by `formula'.
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Intuitively, the signature symbols stand for atomic formulas, and the

connectives ^, : stand for the words used to combine atomic formulas

into compound formulas. Formally, the formulas of S are de�ned as

follows:

(i). Every signature symbol S is a formula.

(ii). If ' is a formula then (:') is a formula.

(iii). If ' and  are formulas then (' ^  ) is a formula.

(iv). A �nite sequence of symbols is a formula only if it can be shown

to be a formula by a �nite number of applications of (i)-(iii)."

In order to formalize this de�nition, we (slightly) restrict it by demanding
that the propositional signature S (i.e. the set of atomic formulas) is in�nite
and enumerable, or even more concrete, we put

S := f Sn j n 2 IN g

where we assume Si 6= Sj whenever i 6= j. Thus, we are allowed to specify
the syntax of propositional formulas as follows:8

speci�cation FORMULA

using NAT

sorts formula

functions S : nat ! formula
:0 � : formula ! formula
� ^0 � : formula � formula ! formula

variables ',  : formula

axioms formula freely generated by S, :0, ^0

end speci�cation

Propositional formulas are represented by terms of the sort formula, which
are built from the constructor functions S, :0 and ^0. In order to rule out
con
icts with the logical connectives of �rst-order logic (which is a subset of
the speci�cation language used here), we have attached a prime (0) at the
symbols :0 and ^0. The dots (�) after :0, and before and after ^0 indicate
that :0 will be used in pre�x notation and ^0 in in�x notation. The sole
axiom is a strengthening of the generation principle

formula generated by S, :0, ^0

which is a kind of higher-order axiom. It restricts the class of models of the
speci�cation to those in which each object of the domain can be denoted by

8The speci�cation NAT of natural numbers used here is given below.
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a constructor term, i.e. by a ground term built from the constructors S, :0,
^0 (plus the constructors for the sort nat). The addition freely means that
any two distinct constructor terms denote distinct objects.

The speci�cation NAT of natural numbers used here can be speci�ed as
follows (the symbol +1 denotes the successor function, written post�x):

speci�cation NAT

sorts nat

functions 0 : ! nat
� +1 : nat ! nat

variables n, m : nat

axioms nat freely generated by 0, +1

end speci�cation

This concludes the speci�cation of the syntax of propositional logic. We now
turn to its semantics. In ([4], p. 4) we �nd the following [motivation for the]
de�nition of the class of models for propositional logic.

\At the most intuitive level, an intended interpretation of these

formulas is a `possible world', in which each formula is either true or

false. We wish to replace these intuitive interpretations by a collection

of precise mathematical objects which we may use as our models.

The �rst thing which comes to mind is a function F which associates

with each atomic formula S one of the truth values `true' or `false'.

Stripping away the inessentials, we shall instead take a model to be

a subset A of S; the idea is that S 2 A indicates that the atomic

formula S is true, and S 62 A indicates that the atomic formula S is

false.

By a model A of S we simply mean a subset A of S."

Again, we slightly modify this de�nition in order to �t our purpose. For the
�rst modi�cation we make use of the fact that we are interested in validity
of (�nite sets of) �nite formulas only (see rest of this section). Therefore (cf.
[4]), it is su�cient to regard �nite models only, i.e. �nite subsets of atomic
formulas. The second modi�cation concerns representation issues only. Since
we have restricted ourself to S = fSn j n 2 INg with Si 6= Sj whenever i 6= j,
we can represent a atomic formula Sn by its index n. So, instead of taking
a model to be a subset of atomic formulas, it is more convenient for us to
represent a modelA as the set of indices of atomic formulas. Thus, we specify
a model A to be a �nite subset of natural numbers. As operations on models
we take the constructors9 empty set (;) and insertion of an element (�), and

9Notice, that the data type of models (i.e. �nite sets) is not freely generated: for

instance, the distinct ground terms 0 � ; and 0 � 0 � ; denote the same object.
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the membership predicate (2), where n 2 A indicates that Sn is true in A
and n 62 A indicates that Sn is false in A.

speci�cation MODEL

using NAT

sorts model

functions ; : ! model
� � � : nat � model ! model

predicates � 2 � : nat � model

variables A, B : model

axioms model generated by ;, �
; 6= n � A (1)
n � m � A = m � n � A (2)
n � n � A = n � A (3)
n 2 A $ n � A = A (4)

end speci�cation

The �rst axiom of this speci�cation states the generatedness by ; and inser-
tion (�). The other axioms can be read as:

(1) By inserting an arbitrary element to an arbitrary set we get a set dis-
tinct from the empty set.

(2) The order of insertion is irrelevant.

(3) Inserting an element twice yields the same result as inserting it once.

(4) An element is member of a set if and only if this set is not changed by
insertion of the element.

It is quite obvious, that all these axioms hold in the intended algebra (which
is the algebra of �nite sets on natural numbers).

After we have speci�ed what we mean by a model, it remains to formalize
the notion of validity of a formula. As above we quote the de�nition from
([4], p. 7):

\We are now ready to build a bridge between the language S and

its models, with the de�nition of the truth of a formula in a model. We

shall express the fact that a formula ' is true in a model A succinctly

by the special notation

A j= ':

The relation A j= ' is de�ned as follows:
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(i). If ' is a signature symbol S, then A j= ' holds if and only if

S 2 A.

(ii). If ' is  ^ �, then A j= ' if and only if both A j=  and A j= �.

(iii). If ' is : , then A j= ' i� it is not the case that A j=  .

When A j= ', we say that [: : : ] A is a model of '.

A formula ' is called valid, in symbols j= ', i� ' holds in all

models for S, that is, i� A j= ' for all A."

The translation of this de�nition into �rst-order logic is completely straight-
forward.10 In fact, the individual parts of it have one-to-one equivalents in
the following speci�cation.

speci�cation VALIDITY

using FORMULA, MODEL

predicates � j= � : model � formula
� is valid : formula

axioms A j= S(n) $ n 2 A
A j= (:0 ') $ : A j= '

A j= (' ^0  ) $ A j= ' ^ A j=  

' is valid $ 8 A . A j= '

end speci�cation

This concludes our speci�cation of syntax and semantics of propositional
logic. Its structure is illustrated in �gure 1.

We hope, that the reader agrees that we have built up the requirement
speci�cation very carefully. Especially, one could (or even should) be con-
vinced that any prover for propositional logic, which can be veri�ed against
this speci�cation is a correct one.

NAT

FORMULA MODEL

VALIDITY
�
�

��	

@
@
@@R

@
@
@@R

�
�
��	

Figure 1: structure of the requirement speci�cation.
(The arrows indicate the `using' relation.)

10Here we bene�t from using full �rst-order logic. A formalization without quanti�ers

would be more complicated (cf. [3]).
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3 Implementing the Speci�ed Prover

In this section we put ourselves in the place of the software developer. In do-
ing so, we no longer have to think about what it means for an implementation
to be correct. This is already formalized in the requirement speci�cation, i.e.
an implementation is regarded as correct whenever it meets this speci�cation.
What the software developer has to think about is optimization of qualities
like veri�ability and e�ciency.11

A clever software developer may state the following procedures as part12

of an implementation of the requirement speci�cation:

VALIDITY-CHECKER (phi : formula ;var b : boolean)
begin

var b1 , b2 : boolean in

VALIDITY-CHECKER-H (true , phi ; b1);
VALIDITY-CHECKER-H (false , phi ; b2);
b := b1 and b2

end.

VALIDITY-CHECKER-H (b0 : boolean , phi : formula ;var b : boolean)
begin

if phi is atomic then b := b0
else if phi is negation then

begin

VALIDITY-CHECKER-H (b0 , phi.negated formula ; b);
b := not b

end

else if phi is conjunction then

begin

var b1 , b2 : boolean in

VALIDITY-CHECKER-H (b0 , phi.�rst conjunct ; b1);
VALIDITY-CHECKER-H (b0 , phi.second conjunct ; b2);
b := b1 and b2

end

else abort

end.

These procedures might not look as the reader expected, but concerning ver-
i�ability, e�ciency and correctness this implementation turns out to be a
good one. This claim will be substantiated in some detail below. First we

11Often ease of veri�ability and e�ciency contradict each other, and one has to be

content with a compromise.
12The complete implementation is given in appendix A.
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have to explain the data structures the procedures work on. We describe
data structures as so-called data speci�cations. Data speci�cations are spec-
i�cations of freely generated data types with selectors for each parameter of a
constructor and optional predicates for each construct. In a highly compact
notion the data speci�cations used in the implementation look as follows:

data speci�cation FORMULA-DATA
using NAT-DATA
formula =

S ( � .index : nat ) with � is atomic
j :0 � ( � .negated formula : formula ) with � is negation
j � ^0 � ( � .�rst conjunct : formula ,

� .second conjunct : formula ) with � is conjunction
variables ',  : formula

end data speci�cation

data speci�cation NAT-DATA
nat = 0

j � +1 ( � �1 : nat )
variables n, m : nat

end data speci�cation

data speci�cation BOOL-DATA
boolean = true j false
variables b : boolean

end data speci�cation

To illustrate the semantics of such data speci�cations we point out that the
speci�cation FORMULA-DATA can be regarded as a compact notion for the
speci�cation one gets from enriching the above speci�cation FORMULA by
the following selector functions and predicates:

functions � .index : formula ! nat
� .negated formula : formula ! formula
� .�rst conjunct : formula ! formula
� .second conjunct : formula ! formula

axioms S(n).index = n
(:0 ').negated formula = '

(' ^0  ).�rst conjunct = '

(' ^0  ).second conjunct =  

8



predicates � is atomic : formula
� is negation : formula
� is conjunction : formula

axioms S(n) is atomic
: (:0 ') is atomic
: (' ^0  ) is atomic

: S(n) is negation
(:0 ') is negation

: (' ^0  ) is negation

: S(n) is conjunction
: (:0 ') is conjunction
(' ^0  ) is conjunction

Data speci�cations are consistent per construction, and code implementing
them can be automatically generated.13 So our implementation is in fact
executable. Furthermore the implementation meets the requirement speci-
�cation. This claim is substantiated in the next section; in appendix A we
sketch a formal correctness proof, which was carried out in the KIV system.
We can hope that the veri�cation of our implementation causes no di�cul-
ties, because the procedures are quite simple. In fact, as you can look up
in appendix A, this hope was proved to be well-founded: the veri�cation
with the KIV system could be done with a high degree of automation and in
about half an hour. Even concerning the e�ciency aspect, our implementa-
tion looks quite nice: the amount of time required by VALIDITY-CHECKER

is linear in the size of the input formula.14

So we have done our job and the customer will be enjoyed about the
results, especially concerning e�ciency and the surprisingly small e�ort of
time (which means money) needed for carrying out the veri�cation. However,
he will be frustrated about the fact that his veri�ed prover insists that the
formula : (S0 ^ : S1) is a valid one. Presumably, this causes a lasting
damage of his con�dence in formal methods for software engineering.

4 What has gone Wrong?

We see us confronted with the unpleasant situation that we have formally
speci�ed and veri�ed a program, but which turns out to behave not as in-
tended. What has gone wrong? Several potential reasons come to mind:

13Cf. e.g. the defstruct construct in the programming language LISP.
14However, this insight should make suspicious, since the validity check problem of

propositional logic is known to be NP-complete (see e.g. [2]).
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1. There is a defect in the informal speci�cation we started from.

2. The formal speci�cation does not correspond to the informal speci�ca-
tion.

3. The veri�cation is not correct, i.e. some `proofs' are not real proofs.

We hope that the reader agrees with us, that the �rst potential reason can
be ruled out: we have adopted the informal speci�cation from ([4], p. 4-7)
with very little modi�cations. Concerning the last potential reason we point
out that a formal veri�cation has been completely done in the KIV system
(cf. appendix A). This gives us reason to trust the proofs.15

For the second potential reason we call to mind that we have constructed
the formal speci�cation very carefully, and quite close along the informal
speci�cation (see section 2). Indeed, reviewing the speci�cation (again and
again) leads to the conviction that there isn't any faulty axiom. So everything
looks �ne.

However, and this is just the thing we want to illustrate on the example,
checking the correctness of the axioms is not enough for ensuring adequate-
ness of the speci�cation, but a kind of completeness has to be guaranteed too.
To be more concrete, one has to make sure that the speci�cation does not
permit any non-intended interpretations. Otherwise there is no guarantee
that an implementation which is proved to meet the speci�cation, behaves
actually as desired. This is exactly what has gone wrong in our formal de-
velopment of the propositional logic prover: the implementation embodies a
non-intended interpretation of the requirement speci�cation.

But the worst thing about it is, that (see end of section 2) we have been
unaware of the whole extent of this ambiguity of the speci�cation, and its
far-reaching consequences. The ambiguity is caused by gaps, which are far
from being completely obvious to see.16

In our example the root of all evil is in the speci�cation of models, i.e. of
�nite sets on natural numbers. It permits non-intended interpretations, for
instance an interpretation AMODEL, which has exactly the two elements17 ;
and IN in its domain. The insert operation � is interpreted by AMODEL as
follows: `inserting' any element n in ; or IN results in IN. This is illustrated
in the following �gure:

15Here we assume the correctness of KIV-produced proofs, i.e. the correctness of the

kernel of the KIV system. For a discussion on how to guarantee correctness of deduction

systems see [1, 16].
16The reader is invited to try to �nd them, before continuing.
17We hope that no confusion arises from using symbols, as ;, on syntactical and on

semantical level.
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The membership predicate is interpreted by AMODEL as one might expect:

2AMODEL
:= f (n; IN) j n 2 IN g :

The reader should convince oneself, that AMODEL is in fact a model of the
speci�cation MODEL, i.e. that it does not con
ict with any of the axioms.

LetA be a model of the overall requirement speci�cation, which interprets
the sub-speci�cation MODEL as AMODEL. (It can be shown that such a
model A actually exists.) Then, because of the axiom

' is valid $ 8 A . A j= '

validity (i.e. the predicate is valid) is interpreted by A as follows:

A formula is valid if and only if it holds in the empty model

(which evaluates all atomic formulas to false) and in the total

model (which evaluates all atomic formulas to true).

Surely, this does not coincide with our intuitive understanding of validity,
but this is exactly what the procedure VALIDITY-CHECKER checks.

5 Completing the speci�cation

To summarize the above section, we have located the reason for the unex-
pected behavior of the veri�ed implementation in the non-monomorphicity of
the speci�cation MODEL. So, the gaps in this speci�cation should be �lled
by adding appropriate axioms. Here two questions arise: �rstly, how can we
�nd such appropriate axioms, and secondly, how do we come to know that
we can stop adding further axioms, i.e. that the speci�cation in question is
already monomorphic. This section is intended to illustrate the di�culty of
these questions; a possible answer to them is sketched in the conclusion.

The non-intended interpretation AMODEL can be taken as hint which
axioms to add to the speci�cation of models. For instance, we may want
to exclude interpretations, which contain models for which the membership
relation is true for every natural number (e.g. inAMODEL the model denoted
by IN). This can be done by adding the axiom

9 n . n � A 6= A:
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However, is this enough? The answer is no! Again, there exist non-intended
interpretations. For example, BMODEL with domain

n
;
o
[

n
M [ f1g

��� M � IN �nite
o

In BMODEL inserting any natural number n to a set is interpreted as in-
serting not only n, but in addition the natural number 1. So f1g is the
only singleton set in BMODEL. The membership predicate is interpreted by
BMODEL as usual. Let B be a model of the overall requirement speci�cation,
which interprets the sub-speci�cation MODEL as BMODEL. Then, validity
is interpreted by B as follows:

A formula is valid if and only if it holds in the empty model and

in all models which evaluate S1 to true.

Implementing this interpretation would result in a program that meets the
requirement speci�cation, but again claims the validity of : (S0 ^ : S1).
Taking BMODEL as hint, we may add a further axiom, e.g. :

n � m � A = m � A ! n = m _ n � A = A

Eventually, this results in a monomorphic speci�cation of models.18 The
reader is doing right to ask, how we get to this insight. We refer him to the
next section.

6 Conclusion and Future Work

We have given an example that illustrates two points: �rstly that, even if
the requirement speci�cation is constructed very carefully, one is (without
taking further measures) not safe from ambiguity. Secondly, ambiguity (even
if quite inconspicuous) can have unpleasant, inestimable consequences. The
conclusion is, that without taking further measures one has to reckon on
unpleasant, inestimable consequences.

What does this mean for application of formal methods in practice? As-
sume that customer and software developer agree about a formal requirement
speci�cation in the sense indicated in the introduction. Then the software
developer is always sitting pretty, if he succeeds in verifying that his software
meets the speci�cation. However, as illustrated above, the customer can not
be sure that this software behaves as he has intended. Therefore, in order
to be safe from bad surprises, the customer should insist on a monomorphic
requirement speci�cation.19 This opinion is also taken e.g. in ([10], p. 1049):

18Adding only this axiom (and not 9 n . n � A 6= A) to the speci�cation MODEL would

already result in a monomorphic speci�cation.
19This requirement can be weakened (especially in order to facilitate e�cient implemen-

tations). With this we have in mind, that gaps in requirement speci�cations must not be

completely forbidden, but that it is su�cient to make them explicit.
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\A well-written software requirement speci�cation (SRS) reduces

the probability of the customer being disappointed with the �nal prod-

uct. The SRS de�nes the external behavior of the system to be built

unambiguously, so there can be no misinterpretation. If there is a dis-

agreement between customer and developer concerning external be-

havior, it is worked out during the requirements stage, not during

acceptance testing, when it is much more costly to correct. Unfortu-

nately many developers prefer to keep the SRS fairly ambiguous in

order to provide themselves with more 
exibility during design. How-

ever, this 
exibility signi�cantly increases the customer's risk."

The question arises how to guarantee that a speci�cation is monomor-
phic. Unfortunately, in general20 monomorphicity is neither easy to see nor
decidable at all. The set of all monomorphic speci�cations is not even ef-
fectively enumerable. However, it is possible to prove monomorphicity of a
given speci�cation, for example by meta-reasoning [11, 15]. Currently we
investigate a method that reduces the task of proving monomorphicity to
a task of proving certain properties of programs [18]. This allows one to
directly employ well-established techniques known from software veri�cation
(as implemented e.g. in the KIV system).

Another important question concerns the construction of monomorphic
speci�cations: how can a given speci�cation be made monomorphic, i.e. how
to �nd appropriate axioms which �ll the gaps in it. Maybe, one can get
valuable hints for appropriate axioms by trying to prove monomorphicity
of the non-monomorphic speci�cation and analyzing the subgoals where the
proof attempt gets stuck.21
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cations, the things get much simpler, since in this case, determinism and totality of these

algorithms are su�cient for monomorphicity.
21Adding some appropriate axioms will enable us to do some more proof steps, but again

we may get stuck, and hope to get valuable hints from analyzing the open subgoals, etc.

So, the monomorphicity proof and the speci�cation are completed step by step and hand

in hand. This method may be titled as synthesis of speci�cations or specifying by proving.
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A Verifying the Implementation

In section 3 we have presented only a part of the implementation, namely
the procedures (with data structures FORMULA-DATA, BOOL-DATA) im-
plementing the is valid predicate. In the following is presented, how the
other sorts and operations of the requirement speci�cation are implemented.
The sorts and operations of the sub-speci�cations FORMULA and NAT are
implemented by identity, i.e. by their corresponding sorts and operations of
the data speci�cations FORMULA-DATA and NAT-DATA. The rest of the
requirement speci�cation is implemented as follows:

boolean implements model
EMPTY-SET implements ;

INSERT implements �

MEMBER implements 2
VALIDITY-CHECKER-H implements j=
VALIDITY-CHECKER implements is valid

Here VALIDITY-CHECKER and VALIDITY-CHECKER-H are the procedures
presented in section 3. It remains to give the (fairly tricky) declarations of
the procedures EMPTY-SET, INSERT and MEMBER:

EMPTY-SET (var b : boolean)
begin

b := false
end.

INSERT (n : nat , b0 : boolean ;var b : boolean)
begin

b := true
end.

MEMBER (n : nat , b0 : boolean ;var b : boolean)
begin

b := b0
end.

Now, what we want to prove here is that this implementation meets the
requirement speci�cation given in section 2, which is the case if all procedures
terminate and exhibit the behavior speci�ed in the axioms of the requirement
speci�cation.22 This conditions can be formulated in dynamic logic [7, 8],

22See [12, 14] for details of the more general approach to correctness of modular software

systems, that is taken in the KIV system.
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which is done automatically in the KIV system. In the following we list
the KIV-generated proof obligations. The �rst �ve of them express that the
procedures terminate:

(1) termination of procedure EMPTY-SET:

hEMPTY-SET (; b)i true

(2) termination of procedure INSERT:

hINSERT (n , b0 ; b)i true

(3) termination of procedure MEMBER:

hMEMBER (n , b0 ; b)i true

(4) termination of procedure VALIDITY-CHECKER-H:

hVALIDITY-CHECKER-H (b0 , phi ; b)i true

(5) termination of procedure VALIDITY-CHECKER:

hVALIDITY-CHECKER (phi ; b)i true

The following conditions express that the procedures exhibit the behavior
speci�ed in the requirement speci�cation: every axiom of the speci�cations
MODEL and VALIDITY is translated into a proof obligation:

(6) procedures satisfy \; 6= n � A":

: hEMPTY-SET (; b1)i hINSERT (n , b0 ; b2)i b1 = b2

(7) procedures satisfy \n � m � A = m � n � A":

hINSERT (n , b0 ; b1)i hINSERT (m , b1 ; b2)i
hINSERT (m , b0 ; b3)i hINSERT (n , b3 ; b4)i b2 = b4

(8) procedures satisfy \n � n � A = n � A":

hINSERT (n , b0 ; b1)i hINSERT (n , b1 ; b2)i
hINSERT (n , b0 ; b3)i b2 = b3

(9) procedures satisfy \n 2 A $ n � A = A":

hMEMBER (n , b0 ; b)i b = true $ hINSERT (n , b0 ; b)i b = b0

(10) procedures satisfy \A j= S(n) $ n 2 A":

hVALIDITY-CHECKER-H (b0 , S(n) ; b)i b = true $
hMEMBER (n , b0 ; b)i b = true
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(11) procedures satisfy \A j= (:0 ') $ : A j= '":

hVALIDITY-CHECKER-H (b0 ,:0 phi ; b)i b = true $
: hVALIDITY-CHECKER-H (b0 , phi ; b)i b = true

(12) procedures satisfy \A j= (' ^0  ) $ A j= ' ^ A j=  ":

hVALIDITY-CHECKER-H (b0 , phi ^0 psi ; b)i b = true $
hVALIDITY-CHECKER-H (b0 , phi ; b)i b = true ^
hVALIDITY-CHECKER-H (b0 , psi ; b)i b = true

(13) procedures satisfy \' is valid $ 8 A . A j= '":

hVALIDITY-CHECKER (phi ; b)i b = true $
8 b0 . hVALIDITY-CHECKER-H (b0 , phi ; b)i b = true

The last condition expresses that the procedures implementing the construc-
tors of the sort model satisfy the generation principle for the sort model:

(14) procedures satisfy \model generated by ;, �":

hGENERATE-MODEL (b ; )i true

Here GENERATE-MODEL is a procedure, which has a terminating run ex-
actly for those input values that can be constructed by �nitely many ap-
plications of the procedures EMPTY-SET and INSERT. Such a procedure
is automatically generated by the KIV system (n := ? and b1 := ? are
indeterministic assignments):

GENERATE-MODEL (b : boolean ; )
begin

var b0 : boolean in

EMPTY-SET (; b0);
if b0 = b then skip

else var n : nat, b1 : boolean in

n := ? ; b1 := ?;
GENERATE-MODEL (b1 ; );
INSERT (n , b1 ; b0);
if b0 = b then skip else abort

end.

We brie
y sketch the proofs for all the obligations (1) { (14). The proce-
dures EMPTY-SET, INSERT, and MEMBER contain no calls of recursive pro-
cedures, so they can always be unfolded. This unfolding is enough for proving
(1), (2), (3), (6), (7), (8), and (9). The proof of (4) works by structural
induction23 on the input formula phi and simple symbolic execution. While

23This induction is permitted because there is a corresponding generation principle in

the speci�cation FORMULA-DATA.
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this symbolic execution exactly these calls of VALIDITY-CHECKER-H are
unfolded, which have as input formula a term that is not merely a variable
(i.e. which has some structure). (5) can be reduced to (4). The proofs for
(10), (11), and (12) work by symbolic execution (the same way as in the
proof for (4)). In addition, for (11) the (already proven) theorem (4) about
the termination of VALIDITY-CHECKER-H is useful. Proving (13) can be
done by unfolding the de�nition of VALIDITY-CHECKER and employing that
a boolean is either true or false. For (14) we have to show that for each in-
put value b there is a terminating run of GENERATE-MODEL (b ; ). This
can be done by executing the procedure call and choosing b1 = false in the
random assignment. So the recursive call does not run in the else-case, and
termination is trivial.

These proofs have been carried out in the KIV system. All together they
took 175 rule applications, where the KIV system found 168 of them (i.e.
96%) on its own.24 The remaining interactive proof steps are quite natu-
ral, especially they have one-to-one equivalences in the above informal proof
sketches (e.g. inserting a lemma or choosing b1 = false in the random assign-
ment while proving (14)). No auxiliary lemmas were required.25 Carrying
out this case-study took about 2 hours of interactive work with the KIV
system (1.5 hours for setting up the speci�cation and implementation, and
about 0.5 hours for the veri�cation).

24This degree of automation can even be increased by making more extensive use of

speci�c heuristics.
25Thus, this case-study is an extremely atypical application of the KIV system. See [5]

for more typical and more impressing case-studies carried out within the KIV system.
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