
Applying �:

Towards a Basis for Concurrent Imperative Programming

Martin Odersky

Universit�at Karlsruhe

76128 Karlsruhe, Germany

odersky@ira.uka.de

December 22, 1994

Abstract

We study an extension of asynchronous �-calculus where names can be returned from pro-
cesses. We show that with this simple extension an extensive range of functional, state-based
and control-based programming constructs can be expressed by macro expansions, similar to
Church-encodings in lambda calculus.

1 Introduction

Most programming languages in use today have some way to express concurrent execution of

processes { either in the language itself (e.g. Ada [20], Modula-3 [5], Facile [7], CML [23]) or by

means of a library (e.g. Modula-2's Process module [28], C++'s thread library [25]). This paper

proposes a formal basis for reasoning about such languages.

Traditionally, formal foundations for languages with concurrency constructs come in one of two

styles. Most commonly, one combines a semantic description for the sequential base language with

another one for the concurrency primitives. For instance, semantic descriptions of Facile [7] or

CML [2] de�ne a structured operational semantics for the base language as a special case of a

larger labeled transition system that also models the concurrent aspects of the language. This style

of description has the advantage that a semantics of the sequential part of the language can be

obtained by subsetting. However, the resulting formal systems tend to be large.

Alternatively, one can use a standard process calculus such as CCS [13] or �-calculus [16] to reason

about both the base language and the concurrency primitives. An example of this approach is the

PICT programming language [21] that was designed with asynchronous �-calculus [4] as a basis.

PICT stays fairly close to the underlying calculus and consequently does not fully support sequential

programming constructs such as functions or sequential composition. Representing these constructs

in traditional process calculi requires a global encoding, not unlike a conversion to continuation

passing style in functional programming1. Examples of such encodings are found in work by Milner

1In fact, PICT takes an intermediate approach: There is a notation for function de�nition, which leaves the result

channel implicit, but there is no corresponding notation for function calls, so that an explicit result channel argument

always needs to be passed. In e�ect, this leads to function de�nitions in PICT being CPS-converted one at a time.

1

[15] for the case of functions and by Walker [27] or Jones [11] for the case of objects. If our aim

is to reason about source programs such encodings are undesirable since they are all-or-nothing

propositions: To reason about one part of a program one must encode everything.

We would prefer a relationship between programming language and foundation that is similar to the

relationship between functional languages and �-calculus. There, one is transformed to the other via

Church-encodings, which are pure macro expansions. In this paper we show that a modest change

to a standard process calculus is su�cient to capture both call-by-value functional programming

and imperative programming via similar encodings. The applied � calculus augments asynchronous

� calculus [4] (which is essentially equivalent to �-calculus [10]) with the ability to return a name

from a process. Together with standard name restriction this gives us a way to model anonymous

values in the calculus. It turns out that this is all that is needed to encode essentially all sequential

programming constructs in a concise and straightforward manner.

Interestingly, with just seven term formation rules and one reduction rule, applied � is more compact

than calculi for sequential state-based languages [12, 6, 19]. This comparison is not completely fair,

however, since the encoding into applied � gives us only an operational understanding of functional

and imperative constructs. Much less is known at present about the observational properties of the

encodings. In general, process contexts discriminate more terms than sequential contexts. Hence,

source language constructs would need to be encapsulated in some way in order to preserve their

observational properties, but such an encapsulation is not discussed here. Nevertheless, we believe

that applied � can be useful for gaining semantic intuition about how familiar functional and

state-based programming constructs should behave when extended to a concurrent setting.

Related work. We have already mentioned the work on PICT and the encodings by Milner, Walker,

and Jones. Sangiorgi has argued that the higher-order � calculus improves on �rst-order � calculus

as a foundation for functional programming [24]. In a sense, applied �'s ability to return a name

from a process is an alternative to higher-order processes, since �-abstractions can be represented.

Boudol's
-calculus [3] tries to generalize both CCS and �-calculus. Like in � | and unlike in

applied � | communicating agents are matched by position rather than just channel name.

Our process equivalence relation is based on Milner's and Sangiorgi's barbed bisimulation [17].

We adapt their de�nitions in a straightforward way to the asynchronous and applied case. Honda

and Yoshida [9] have shown for an asynchronous calculus that barbed bisimulation has a tractable

characterization that does not depend on a quanti�cation over contexts.

The rest of this paper is organized as follows. Section 2 presents an operational semantics for

applied �. Section 3 de�nes a notion of process equivalence for the calculus. Section 4 shows

how functional programming constructs can be encoded in applied �. Section 5 does the same

for imperative programming, giving encodings for the essential constructions of state and control.

Section 6 presents an encoding of applied � in asynchronous �. Section 7 concludes.

2 The Core Calculus

Syntactic Domains

Variables x; y; z

Preterms M;N; P = x Variable

j �x:M Restriction

j x?y:M Abstraction (Input)

j xM Application (Output)

j M jN Parallel Composition

j !M Replication

j 0 Identity

We build on asynchronous �-calculus [4], modulo some minor notational modi�cations that are

introduced for making the treatment of function application smoother. There is one extension:

Processes may evaluate to names, and an arbitrary term instead of a single name may appear as

the argument of an application. Roughly speaking, an application xM is evaluated by evaluating

M to some number of names which are all passed in parallel to the channel x.

Hence, applied � is a rather small variation of a standard process calculus. However, it can also

be seen as a generalization of �-calculus where the concept of a �-abstraction is generalized in

two ways. First, applied �'s abstractions can be used only once, unless they are pre�xed by a (!)

replicator. This is similar to the role of abstractions in linear �-calculus [1]. Second, an abstraction

and its argument are matched by name rather than by position. Fresh local names are introduced

by a restriction pre�x �x (this has also been studied in the context of �-calculus [22, 18]).

Notational Conventions. fn(M), the set of free names of a term M , is given by

fn(x) = fxg fn(�x:M) = fn(M)nfxg

fn(x?y:M) = fxg [(fn(M)nfyg) fn(xM) = fxg [fn(M)

fn(M j N) = fn(M)[fn(N) fn(!M) = fn(M)

fn(0) = fg:

[x=y]M denotes substitution of x for all free occurrences of y in M . To avoid name capture

problems in substitutions, we assume everywhere that the free and bound variables of a term and

all its subterms are distinct. This can always be achieved by �-renaming (see below).

A note on precedence: Application binds tightest, followed by replication (!) and the binding

pre�xes �x and x?y, followed by parallel composition (j). Application is left-associative and parallel

composition is associative. Grouping can be changed by using parentheses.

We also use the words channel and agent interchangeably for name and term, respectively. We

sometimes contract multiple input or restriction pre�xes, using the abbreviations

�x1 : : : xn:M
def
= �x1: : : : �xn:M

x?y1 : : :yn:M
def
= x?y1: : : : x

?y
n
:M :

Equivalences

Terms are equivalence classes of preterms. We take syntactic equivalence (�) to be the smallest

congruence that satis�es the laws below.

1. Variables can be �-renamed.

(�1) �x:M � �y:[y=x]M (y 62 fn(M))

(�2) z?x:M � z?y:[y=x]M (y 62 fn(M))

2. Replication composes arbitrarily many copies of a term in parallel.

(Repl) !M � M j !M

3. Parallel composition is commutative and associative, with identity 0.

(Comm) M j N � N j M

(Assoc) (M j N) j P � M j (N j P)

(Id) M j 0 � M

4. The scope of a restricted variable x can be extended over parallel composition and application,

provided x is not captured. Restriction with an unused name has no e�ect.

(�-Par) M j �x:N � �x:(M j N) (x 62 fn(M))

(�-Apply) y(�x:M) � �x:yM (x 6= y)

(�-Garbage) �x:M � M (x 62 fn(M))

5. Application distributes over parallel composition. Application has no e�ect on abstraction

arguments.

(Dist) x(M j N) � xM j xN

(Absorb) x(y?z:M) � y?z:M

Except for (�-Apply), equalities (1){(4) all have counterparts in �-calculus. Equalities (Dist) and

(Absorb) are perhaps surprising at �rst. Essentially, they introduce a fundamental asymmetry

between applications and abstractions. Abstractions are volatile, in that they can move freely into

and out-of applications. By contrast, applications are stationary, they appear only a single �xed

context. Note the similarity to �rst order functional programming, where abstractions correspond

to function de�nitions (where the location of the de�nition does not matter) and applications

correspond to function calls (where the point of call does matter). However, unlike in functional

programming, an abstraction can be used only once if it is not replicated. We will see that this

resource-consciousness is the essential ingredient that allows applied � to model side-e�ects in

expressions.

Reduction

There is a single reduction rule.

(Reaction) x?y:M j xz ! [z=y]M

Reduction is considered modulo syntactic equivalence. Reduction can be applied anywhere in a

term except under an abstraction or a replication. That is, a binary reduction relation (!) between

terms is given by the axiom (Reaction) and the inference rule

(Context)
M 0 �M M ! N N � N 0

E[M 0]! E[N 0]

where E is an arbitrary evaluation context that can be generated by the grammar

E = [] j �x:E j xE j E jM :

Let !! be the re
exive transitive closure of reduction.

3 A Process Equivalence

Our notion of equivalence of applied � terms is based on bisimulation. The central intuition

of bisimulation is that an experiment which tests whether two processes are equivalent can be

constructed from two basic actions: One can observe the interaction of a running process, and one

can freeze a process in a given state and let in run repeatedly starting from this state. The latter

distinguishes bisimulation from trace equivalence.

For processes whose operational semantics is de�ned by means of a reduction relation, a particularly

simple form of bisimulation can be devised, which tests only the possibility of interacting on a

channel, but disregards what is communicated over it. This relation is called barbed bisimulation

[17]. For applied �, barbed bisimulation can be simpli�ed further in that only the action of returning

a name, but not input or output actions, can be observed. This is formalized in the following

de�nitions.

De�nition. A symmetric relation R on terms is reduction-closed i� MRN and M !! M 0 implies

the existence of a term N 0 such that N !! N 0 and M 0RN 0.

De�nition. A term M converges, written M +, if M !! (x j N), or M !! �x:(x j N) for some

name x and term N .

De�nition. A symmetric relation R between terms is a (weak) barbed bisimulation for applied �

i� R is reduction-closed and MRN and M + implies N +. M _�N i� there is a bisimulation R such

that MRN .

_� is not a congruence, for instance it is not preserved by parallel composition: x?y:0 _� x?y:y, but

not x?y:0 j xz _� x?y:y j xz. We therefore de�ne:

De�nition. Let � be the largest congruence such that �� _�.

In the following, whenever we say that two terms M , N are equivalent (written M = N) we mean

that they are barbed congruent, i.e. M � N .

Proposition 3.1 (a) The following are bisimulation equivalences in applied �.

x(!M) = !xM (1)

!M = !M j !M (2)

�x:x?y:M = 0 (3)

�x:(xy j x?z:M) = �x:[y=z]M (4)

�x:(xy j !x?z:M) = �x:[y=z]M (5)

(b) If x 62 fn(M;N; P) then the following are also bisimulation equivalences.

�x:(xM j x?y:zy) = zM (6)

�x:(xM j xN j !x?y:P) = �x:(xM j !x?y:P) j �x:(xN j !x?y:P) (7)

�x:(!xM j !x?y:P) = !�x:(xM j !x?y:P) (8)

Equation (1) is the analogue of the (Absorb) equivalence for replicated abstraction. Equation (2)

says that parallel composition is idempotent on replicated terms. Equation (3) says that any term

that reads from a freshly allocated variable is an identity for parallel composition. We also call

such terms inert. Equations (4) and (5) say that reduction via a local variable is an equivalence.

Equation (6) says that forwarding a term via a local variable is equivalent to sending the term

directly to its �nal destination. Finally, equations (7) and (8) are factoring laws for a parallel

composition or replication of output terms in a local computation.

4 Encoding Functions

We now encode functional programming constructs in applied �, using just macro expansions. We

de�ne an a�ne �-abstraction �1x:M , which can be applied at most once, and an unrestricted

call-by-value abstraction �x:M .

�1x:M
def
= �f:(f j f ?x:M) (f fresh)

�x:M
def
= �f:(f j !f ?x:M) (f fresh)

General function application can be simulated by using a local name for the function part of the

application. Here we have a choice, whether function and argument part should be evaluated con-

currently or in sequence. We start with sequential application, which is expressed by juxtaposition

of function and argument and is encoded as follows:

M N
def
= �x:(xM j !x?f:fN) (x; f fresh)

Application of a channel x is (modulo =) a special case of sequential function application, as is seen

by looking at the expanded form of xM , i.e. �y:(yx j !y?f:fM); where y and f are fresh names.

�y:(yx j y?f:fM)

= �y:xM by (5)

� xM by (�-GC)

This explains why we have chosen to use x? for abstraction and plain x for application, whereas in

original � calculus plain x is an input pre�x amd x is an output pre�x.

Example 4.1

(�1x:x) (�1y:y)
def
= �a:(a(�g:(g j g?x:x)) j a?g:gH) where H

def
= �h:(h j h?y:y)

� �a:�g:(a(g j g?x:x) j a?g:gH) by (�-*)

� �a:�g:((ag j g?x:x) j a?g:gH) by (Dist), (Absorb)

� �a:�g:((ag j a?g:gH) j g?x:x) by (Assoc), (Comm)

! �a:�g:(gH j g?x:x) by reduction

� �a:�g:(g(�h:(h j h?y:y)) j g?x:x) substituting the de�nition of H

� �a:�g:�h:(g(h j h?y:y) j g?x:x) by various (�) equivalences

� �a:�g:�h:((gh j h?y:y) j g?x:x) by (Dist), (Absorb)

� �a:�g:�h:(gh j g?x:x j h?y:y) by (Assoc), (Comm)

! �a:�g:�h:(h j h?y:y) reducing via g

� �h:(h j h?y:y) by (�-*), (GC)
def
= �1y:y by sugaring

Proposition 4.2 The following are observational equivalences for applied �.

(M j N)P = M P j N P (9)

M (N j P) = M N j M P (10)

(x?y:M)N = x?y:M (11)

(!M)N = !(MN) (12)

The proofs are all simple equivalence chains. Two examples are: (9):

(M j N)P
def
= �x:(x(M j N) j !x?y:yP) desugaring the application

� �x:(xM j xN j !x?y:yP) by (Dist)

= �x:(xM j !x?y:yP) j �x:(xN j !x?y:yP) by (7)
def
= M P j N P resugaring

(12):

(!M)N
def
= �x:(x(!M) j !x?f:fN) desugaring the application

= �x:(!xM j !x?f:fN) by (1)

= !�x:(xM j !x?f:fN) by (8)
def
= !(MN) resugaring

Note that symmetric versions of (11) and (12) do not hold; e.g. in M (x?y:N), the abstraction

becomes available only after M reduces to a name.

Parallel application (�) imposes no sequencing constraints on the evaluation of a function and its

argument. It is encoded as follows.

M �N = �x:�y:(xM j yN j x?f:y?a:fa)

Local De�nitions

Using lambda abstraction and application, we can de�ne a let-construct let x = M in N to be sugar

for (�x:N)M . Expanding this and simplifying yields:

let x = M in N
def
= (�x:N)M
def
= �z:(z(�y:(y j !y?x:N)) j !z?w:wM)

� �y:(�z:(zy j !z?w:wM) j !y?x:N)

= �y:(yM j !y?x:N) by (5) :

As in the �-calculus, this gives us a non-recursive local de�nition where the variable x cannot

appear in the body of its de�ning term,M . Recursive (function) de�nitions are also possible. They

can be de�ned as follows:

letrec f x = M in N
def
= �f:(N j !f ?x:M) :

This extends naturally to mutual recursion:

letrec f1 x1 = M1; : : : ; fn xn = M
n
in N

def
= �f1 : : : fn:(N j !f ?

1x1:M1 j : : : j !f
?
n
x
n
:M

n
) :

5 Encoding Imperative Programs

Sequential Composition

We can de�ne the sequential composition of a value-producing term M and a term N by

M ; N
def
= �x:(xM j x?y:N) (x; y fresh) :

This evaluates M until a value is produced, and then continues with N . The value produced by M

is discarded. We use the convention that (;) has higher precedence than (j) but lower precedence

than the unary operators.

If in (M1 j : : : j Mn
) ; P each M

i
produces a value then P will be enabled as soon as one of the M

i

produces its result. We can force a wait for all M
i
's by de�ning a blocking parallel composition (jjj)

of independent subcomputations | this is essentially Hoare's interleave operator [8]. Interleave is

expressed as follows:

M1 jjj : : : jjjMn

def
= �x1 : : : x

n
:(x1M1 j : : : j xnMn

j x?
1y1 : : : x?

n
y
n
:())

Here, the empty tuple () is a shorthand that stands for some arbitrary reserved name, whose

identity is unimportant.

Dereferencing

One sometimes wants to use the result of a read operation as an argument in an application.

Writing x(y?z:z) would not do, as this expression is equivalent to just y?z:z. Instead, one can use

x(y ") where the read operator (") is given by:

x"
def
= �a:(a() j x?y:a?z:y) :

Note the role of the acknowledgment channel a. Its purpose can be explained as follows. Clearly,

to read from a channel x, we need a term of the form x?y:M . The problem is that this term is

volatile, and hence will reduce in the context of the corresponding output operation. But when

writing z(x "), for instance, we want the read value to be passed to z. This is accomplished by

the pair of the output action a() in the parallel composition and the input action a?z in the reader

term. Figuratively an interaction via a \pulls back" the abstraction a?z:y into the context of the

output term a(). A similar technique is used below in the modeling of mutable variables.

Mutable Variables

We now encode mutable variables with an allocation operation newref x, where M computes the

initial value of the allocated result variable, an assignment operation r := x, and a dereferencing

operation r".

newref x
def
= �r:(r j rx)

r := x
def
= �a:(a() j r?y:(rx j a?z:x))

r"
def
= �a:(a() j r?y:(ry j a?z:y))

These constructs model a mutable variable by a name r that always has a pending output operation

rx, where x denotes the current value of the variable. Consequently, assignment to a mutable

variable involves reading out the old value before the new value is written. Likewise, dereferencing

a mutable a variable involves reading out its value and then writing it back. Note that this makes

assignment and read symmetric operations, which is re
ected in the similarity of their encodings.

Initializations and assignments with structured terms are derived from these encodings as in the

case of functions. That is,

newref M
def
= (�x:newref x)M = �y:(y?x:newref x j yM) ;

and, analogously,

r :=M
def
= (�x:r := x)M = �y:(y?x:r := x j yM) :

Multiple assignments can be expressed by interleaving.

r1; : : : ; rn := M1; : : : ;Mn

def
= r1 :=M1 jjj : : : jjjrn :=M

n
:

Example 5.1 The following reduction shows that (;) enforces sequential execution of assign-

ments. Consider the sequence of assignments r := 1 ; r := r" +1 with initial value 0 of r:

(r := 1 ; r := r" +1) j r0
def
= (�a:(a() j r?y:(r1 j a?z:1)) ; r := r" +1) j r0 by desugaring the

�rst assignment
def
= �s:(s(�a:(a() j r?y:(r1 j a?z:1))) j s?d:r := r" +1) j r0 by expanding the

sequential composition

� �s:�a:(s(a()) j r?y:(r1 j a?z:1) j s?d:r := r" +1 j r0) by various equivalences

! �s:�a:(s(a()) j r1 j a?z:1 j s?d:r := r" +1) reducing via r

� �s:�a:(s(a() j a?z:1) j r1 j s?d:r := r" +1) by (Dist), (Absorb)

! �s:�a:(s1 j r1 j s?d:r := r" +1) reducing via a

! �s:�a:(r1 j r := r" +1) reducing via s

� r1 j r := r" +1 by (GC)

Control

We conclude our overview of sequential programming constructs with an encoding of control oper-

ators abort and call=cc in applied �. To make a program M abortable, embed it in the context

�e:(M j e()) :

where e is some fresh name. Then abort is given by

abort x
def
= e?y:x :

Note the reverse trigger, e(), that gets replaced by the argument x of abort by creating the agent

e?y:x. Since abstractions are volatile, an occurrence of abort inside an application chain will thus

react with the top-level trigger e(), thereby returning a result from the program. A similar trick is

used in the encoding of call=cc:

call=cc f
def
= �e:�k:(fk j !k?x:e?y:x j !e())

This passes a continuation k that captures the current context to the function f . Again, e() acts

as a reverse trigger that injects the argument of the continuation variable k into the context of the

call=cc.

6 Encoding Applied � in Asynchronous �

Applied � has close relations to asynchronous � calculus. We now formalize this statement by

giving an encoding of applied � in asynchronous �. We use a slight variation of Boudol's de�nition.

In our version, �async, terms are given by

M = �x:M j x?y:M j xy j M jN j !M j 0 ;

modulo syntactic equivalences (�), (Repl), (Comm), (Assoc), (Id), (�-Par), (�-Garbage) and re-

duction is as in applied �.

As an equivalence theory for asynchronous � terms we also use barbed bisimulation, which now

takes the following form.

De�nition. A term M 2 �async outputs on a channel x, written M +
x
, if there is a name y and a

term N such that either M !! xy j N or M !! �y:(xy j N).

That is, we take as observables output actions, but not input actions. Based on this notion of

observation, barbed bisimulation and barbed congruence are then de�ned as usual:

De�nition. A symmetric relation R between terms in �async is a (weak) asynchronous barbed

bisimulation i� R is reduction-closed and MRN and M +
x
implies N +

x
. M _�asyncN i� there is

an asynchronous bisimulation R such that MRN . let �async be the largest congruence contained

in _�.

We now de�ne a mapping [[�]] that takes as arguments an applied � term M and a name r and

yields a term in �async. The name r represents a channel where the result of the translated term

should be sent to. The translation is given by:

[[x]]r = rx

[[�x:M]]r = �x:[[M]]r

[[x?y:M]]r = x?(y; s):[[M]]s

[[xM]]r = �s:([[M]]s j !�t:s?y:(x(y; t) j !t?z:rz))

[[M j N]]r = [[M]]r j [[N]]r

[[!M]]r = ![[M]]r :

We use for brevity polyadic inputs x?(y; z):M and outputs x(y; z) which can be expanded with

Honda and Tokoro's \zip-lock" technique2 [10]:

x?(y; z):M
def
= x?u:�v:(uv j v?y:�w:(uw j w?z:M))

x(y; z)
def
= �u:(xu j u?v:(vy j u?w:wz)) :

To show that this encoding is well-de�ned, have have to verify that it is insensitive to the preterm

chosen to represent a term.

Proposition 6.1 Let r be a name. Let M , N be preterms such thatM � N . Then [[M]]r � [[N]]r.

Proof Sketch: Verify that the translations of all syntactic equivalence rules are barbed asynchronous

bisimulations. 2

The following lemma shows that forwarding of a result via an intermediary is indistinguishable

from passing the result directly:

Lemma 6.2 Assume s; t 62 fn(M). Then [[M]]r � �s:([[M]]s j s?x:rx):

2Note how parallel compositions in the input term correspond to input pre�xes in the output term and vice versa.

We now show that the encoding preserves the reduction semantics of applied �, in the following

sense:

De�nition. Let M;N 2 �async. M !�

async N i� there are termsM 0 �async M and N 0 �async N such

that M 0 !async N
0.

Proposition 6.3 Let M , N be terms in applied � and let r 62 fn(M;N). If M ! N then

[[M]]r!�

async [[N]]r.

Proof: Assume M ! N and r 62 fn(M;N). Then we have:

[[x?z:M j xy]]r

� x?(z; s):[[M]]s j �s:(sy j s?z:�t:(x(z; t) j t?u:ru))

= x?(z; s):[[M]]s j �t:(x(y; t) j t?u:ru)) by local reduction

! �t:([y=z; t=s][[M]]s j t?u:ru)

� �t:([[[y=z]M]]t j t?u:ru)

= [[[y=z]M]]r by Lemma 6.2

2

Proposition 6.4 Let M , N be terms in applied �. If, for all r 62 fn(M;N), [[M]]r �async [[N]]r then

M � N .

Proof: Assume M 6� N . Then there is a context C such that one of C[M], C[N] converges but

the other does not. W.l.o.g. assume that C[M] +, C[N] 6+. Let a be a fresh name. Then, because

of Proposition 6.3, [[C[M]]]a +
a
but [[C[N]]]a 6+

a
. Since the encoding [[�]] is compositional on terms,

there is a context D in �async and a name r 62 fn(P) such that [[C[P]a]] � D[[[P]]r], for all terms P ,

names a. Hence, D[[[M]]r] +
a
but D[[[N]]r] 6+

a
. It follows that [[M]]r 6�async [[N]]r. 2

Unfortunately, the other direction of Proposition 6.4 seems to be much harder to prove. Propo-

sition 6.4 requires that reductions in applied � can be simulated by reductions in asynchonous �,

which is guaranteed by Proposition 6.3. The reverse direction would require that every possible

asynchronous reduction sequence that starts and ends in an encoded applied term simulates a re-

duction seuquence in applied �. This appears credible, but a formal proof is still missing. We

therefore can only conjecture that [[�]] takes equivalences in applied � to equivalences in �
a
sync.

Conjecture LetM , N be terms in applied �. Let r 62 fn(M;N). IfM � N then [[M]]r �async [[N]]r.

7 Conclusion

We have presented a modi�cation of asynchronous � calculus that allows us to model sequential

programming constructs in a simple way, using just macro expansions. We believe that this proposal

might evolve into a formal foundation for programming languages that can express concurrent

execution of processes but at the same time retain their sequential programming heritage. However,

more work needs to be done until this goal is achieved.

In particular, we would like to get process equivalence criteria that are more tractable than the

barbed congruence we have used. Another open question concerns the relationship between the

process equivalence theory of applied � and the corresponding theory of the pure asynchronous

calculus. Finally, it should be possible to de�ne a typed version of applied � by generalizing

Milner's sorting approach for � calculus [14].

Acknowledgments I'd like to thank John Maraist, for reading and commenting on previous

drafts of this work, and Benjamin Pierce, for his thorough review, which was a great help in

improving the paper.

References

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science, 111:3{
57, 1993.

[2] Dave Berry, Robin Milner, and David N. Turner. A semantics for ML concurrency primitives. In
Conference Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 119{129, January 1992.

[3] G�erard Boudol. Towards a lambda-calculus for concurrent and communicating systems. In J. D��az
and F. Orejas, editors, Proceedings TAPSOFT '1989, pages 149{161, New York, March 1989. Springer-
Verlag. Lecture Notes in Computer Science 351.

[4] G�erard Boudol. Asynchrony and the pi-calculus. Research Report 1702, INRIA, May 1992.

[5] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson. Modula-3
language de�nition. ACM SIGPLAN Notices, 27(8):15{42, August 1992.

[6] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential control
and state. Theoretical Computer Science, 103:235{271, 1992.

[7] Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad. Facile: A symmetric integration of concur-
rent and functional programming. International Journal of Parallel Programming, 18(2):121{160, April
1989.

[8] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cli�s, New Jersey,
1985.

[9] Keiho Honda and Nobuko Yoshida. On reduction-based process semantics. In Proc. 13th Conf. on

Foundations of Softawre Technology and Theoretical Computer Science, pages 373{387, December 1993.

[10] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In Proc. 5th

European Conference on Object-Oriented Programming, pages 133{147, July 1991. Springer LNCS 512.

[11] C.B. Jones. Process-algebraic foundations for an object-based design notation. Technical Report UMCS-
93-10-1, University of Manchester, 1993.

[12] Ian Mason and Carolyn Talcott. Equivalence in functional languages with side e�ects. Journal of

Functional Programming, 1(3):287{327, July 1991.

[13] Robin Milner. Communication and Concurrency. Prentice-Hall International, 1989.

[14] Robin Milner. The polyadic �-calculus: A tutorial. Report ECS-LFCS-91-180, Laboratory for Founda-
tions of Computer Science, Edinburgh University, October 1991.

[15] Robin Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119{141,
1992.

[16] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I + II. Information

and Computation, 100:1{77, 1992.

[17] Robin Milner and D. Sangiorgi. Barbed bisimulation. In Automata, Languages, and Programming, 19th

International Colloquium, 1992. Lecture Notes in Computer Science 623.

[18] Martin Odersky. A functional theory of local names. In Proc. 21st ACM Symposium on Principles of

Programming Languages, pages 48{59, January 1994.

[19] Martin Odersky, Dan Rabin, and Paul Hudak. Call-by-name, assignment, and the lambda calculus. In
Proc. 20th ACM Symposium on Principles of Programming Languages, pages 43{56, January 1993.

[20] United States Department of Defense. The Programming Language Ada Reference Manual. Springer-
Verlag, 1980.

[21] Benjamin C. Pierce, Didier R�emy, and David N. Turner. A typed higher-order programming language
based on the Pi-calculus. Draft report; available in the PICT distribution, July 1993.

[22] Andrew Pitts and Ian Stark. On the observable properties of higher order functions that dynamically
create local names. In SIPL '93 ACM SIGPLAN Workshop on State in Programming Languages,

Copenhagen, Denmark, pages 31{45, June 1993. Yale University Research Report YALEU/DCS/RR-
968.

[23] John H. Reppy. CML: A higher-order concurrent language. In Proceedings of the ACM SIGPLAN '91

Conference on Programming Language Design and Implementation, pages 293{305, June 1991.

[24] Davide Sangiorgi. An investigation into functions as processes. In Proc. 9th International Conference

on the Mathematical Foundation of Programming Semantics, New Orleans, Lousiana, pages 143{159,
April 1993.

[25] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[26] Vipin Swarup, Uday S. Reddy, and Evan Ireland. Assignments for applicative languages. In John Hugh-
es, editor, Functional Programming Languages and Computer Architecture, pages 192{214. Springer-
Verlag, August 1991. Lecture Notes in Computer Science 523.

[27] David Walker. �-calculus semantics of object-oriented programming languages. In Takayasu Ito and
Albert R. Meyer, editors, Proc. Theoretical Aspects of Computer Software, pages 532{547. Springer-
Verlag, September 1991. LNCS 526.

[28] Niklaus Wirth. Programming in Modula-2. Springer Verlag, 2nd edition, 1983.

