
The Call-by-Need Lambda Calculus (Unabridged)�

John Maraist Martin Odersky

Universit�at Karlsruhey
Philip Wadler

University of Glasgowz

October 1994

Abstract

We present a calculus that captures the operational semantics of call-by-need. We

demonstrate that the calculus is conuent and standardizable and entails the same

observational equivalences as call-by-name lambda calculus.

1 Introduction

Procedure calls come in three styles: call-by-value, call-by-name and call-by-need. The
�rst two of these possess elegant models in the form of corresponding lambda calculi. This

paper shows that the third may be equipped with a similar model.
The correspondence between call-by-value lambda calculi and strict functional lan-

guages (such as the pure subset of Standard ML) is quite good. The call-by-value mech-
anism of evaluating an argument in advance is well suited for practical use. The corre-
spondence between call-by-name lambda calculi and lazy functional languages (such as

Miranda or Haskell) is not so good. Call-by-name re-evaluates an argument each time it is
used, which is prohibitively expensive. So lazy languages are implemented using the call-
by-need mechanism proposed by Wadsworth [Wad71], which overwrites an argument with
its value the �rst time it is evaluated, avoiding the need for any subsequent evaluation
[Tur79, Joh84, KL89, Pey92]

Call-by-need reduction implements the observational behavior of call-by-name in a

way that requires no more substitution steps than call-by-value reduction. It seems to
give us something for nothing | the rich equational theory of call-by-name without
the overhead incurred by re-evaluating arguments. Yet the resulting gap between the

conceptual and the implementation calculi can be dangerous since it might lead to program

�Technical Report #28/94, Fakult�at f�ur Informatik, Universit�at Karlsruhe, Germany, October 1994.

Also appears as Technical Report ???, Department of Computing Science, University of Glasgow,

Scotland.
yInstitut f�ur Programmstrukturen und Datenorganisation, Universit�at Karlsruhe, Postfach 6980, 76128

Karlsruhe, Germany. Email, fmaraist,oderskyg@ira.uka.de.
zDepartment of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland. Email,

wadler@dcs.glasgow.ac.uk.

1

transformations that drastically increase the complexity of lazy functional programs. In

practice, this is dealt with in an ad hoc manner. One uses the laws of call-by-name

lambda calculus to convince oneself that the transformations do not alter the meaning

of a program, and one uses informal reasoning to ensure that the transformations do not

increase the cost of execution.

However, the reasoning required is more subtle than it may at �rst appear. For

instance, in the term
let x = 1 + 2 in

let f = �y:x+ y in

f y + f y

the variable x appears textually only once, but substituting 1+2 for x in the body of the

let will cause 1 + 2 to be computed twice rather than once.

Experience shows this can be a signi�cant problem in practice. The Glasgow Haskell

Compiler is written in Haskell and self-compiled; it makes extensive use of program trans-

formations. One such transformation inadvertently introduced a loss of sharing, causing

the symbol table to be rebuilt each time an identi�er was looked up. The bug was sub-

tle enough that it was not caught until pro�ling tools later pinpointed the cause of the
slowdown [SP94].

The calculus presented here has the following properties.

� It is conuent. Reductions may be applied to any part of a term, including under
a lambda, and regardless of order the same normal form will be reached. This
property is valuable for modeling program transformations.

� It possesses a notion of standard reduction: a speci�ed, deterministic reduction

sequence that will terminate whenever any reduction sequence terminates. This
property is valuable for modeling computation.

� It is observationally equivalent to the call-by-name lambda calculus. Here the notion
of observation is taken to be reducibility to weak head normal form, as in the

lazy lambda calculus of Abramsky and Ong [Ong88, Abr90]. A corollary is that
Abramsky and Ong's models are also sound and adequate for our calculus.

� It can be given a natural semantics, similar to the one proposed for lazy lambda cal-

culus by Launchbury [Lau93]. There is a close correspondence between our natural

semantics and our standard reduction scheme.

� It can be formulated with or without the use of a let construct. The reduction

rules appear more intuitive if a let construct is used, but an equivalent calculus can

be formed without let, using the usual equivalence between let x = M in N and

(�x:N)M .

One drawback of our approach is that it does not yield a good model of recursion, such

as that yielded by Launchbury's model. This remains a topic for future work.
Our calculus is the only one we know of with all of these properties. In work done

independently of ours, Felleisen and Ariola have recently proposed a similar system, which

2

corresponds to the standard reductions of our calculus [AF94]. Like our standard reduc-

tion system, their calculus restricts the set of applicable reductions by means of evaluation

contexts. Therefore, fewer program transformations can be expressed as equalities, even

though the computational properties of both calculi are equivalent.

Several other methods for modeling call-by-need have been studied. Josephs [Jos89]

gives a continuation and store-based denotational semantics of lazy evaluation. Pu-

rushotaman and Seaman [PS92] give a structured operational semantics of call-by-name

PCF with explicit environments that is then shown to be equivalent to a standard de-

notational semantics for PCF. Launchbury [Lau93] presents a system with a simpler

operational semantics and gives in addition rules for recursive let-bindings that capture

call-by-need sharing behavior. The key point about all this work is that it provides an

operational model of call-by-need, but does not provide anything like a calculus or a

reduction system.

Yoshida [Yos93] presents a weak lambda calculus with explicit environments similar

to let constructs, and gives an optimal reduction strategy. Her calculus subsumes several

of our reduction rules as structural equivalences. However, due to a di�erent notion of

observation, reduction in this calculus is not equivalent to reduction to WHNF. A number
of researchers [Fie90, ACCL90, Mar91] have studied reductions that preserve sharing in

calculi with explicit substitutions, especially in relation to optimal reduction strategies.
Having di�erent aims, the resulting calculi are considerably more complex than those
presented here.

The rest of this paper is organized as follows. Section 2 reviews the call-by-name calcu-
lus, and Section 3 introduces call-by-need. Section 4 asserts the conuence and standard

reduction properties. Section 5 shows that the call-by-need calculus is observationally
equivalent to the call-by-name calculus. Section 6 reformulates the calculus to show that
extra syntax for let is not required. Section 7 presents a natural semantics of call-by-need,
and relates it to the notion of standard reduction. Section 8 discusses extensions, and
Section 9 concludes.

2 The Call-by-Name Calculus

Figure 1 reviews the call by name lambda calculus. We de�ne the reduction relation �!
�

to be the compatible closure of �, and �!
�
! to be the reexive, transitive closure of �!

�
,

omitting subscripts when possible without confusion. We write M ��!
�s

N to mean that

we have M � E[�], N � E[�0] and h�;�0i 2 �, with ��!
�s
! as the reexive, transitive

closure of ��!
�s

.

Throughout this report we use the following notational conventions. We use fv (M) to

denote the free identi�ers in a termM . A term is closed if fv(M) = ;. We useM � N for

syntactic equality of terms (modulo �-renaming) and reserve M = N for convertibility.

Following Barendregt [Bar81], we work with equivalence classes of �-renamable terms.

To avoid name capture problems in substitutions we assume that the bound and free
identi�ers of a representative term and all its subterms are always distinct. A context

3

Syntactic Domains

Variables x; y; z

Values V;W ::= x j �x:M
Terms L;M;N ::= V j M N

Evaluation Contexts E ::= [] j E M

Reduction Rule

(�) (�x:M)N M [x := N]

Figure 1: The call-by-name lambda calculus.

Syntactic Domains

Variables x; y; z

Values V;W ::= x j �x:M
Terms L;M;N ::= V j M N j let x =M in N

Reduction Rules

(let-I) (�x:M) N ! let x = N in M

(let-V) let x = V in C[x] ! let x = V in C[V]

(let-C) (let x = L in M) N ! let x = L in M N

(let-A) let y = (let x = L in M) in N ! let x = L in let y =M in N

(let-GC) let x =M in N ! N if x 62 fv N

Figure 2: The call-by-need �-calculus �let.

C[] is a term with a single hole [] in it. C[M] denotes the term that results from

replacing the hole in C[] with M . If R is a notion of reduction, we use ��!
R

to express
that M reduces in one R-reduction step to N , and M ��!

R
! N to express that M reduces

in zero or more R-steps to N . The subscript is omitted if clear from the context.

3 The Call-By-Need Lambda Calculus

Figure 2 details the call-by-need1 calculus, �let. We augment the term syntax of �-calculus

with a let-construct. The underlying idea is to represent a reference to a node in a function
graph by a let-bound indenti�er. Hence, sharing in a function graph corresponds to naming
in a term.

The second half of Figure 2 presents reduction rules for �let.

� Rule let-I introduces a let binding from an application. Given an application (�x:M) N ,

1\call-by-need" rather than \lazy" to avoid a name clash with [Abr90] which describes call-by-name

reduction to WHNF.

4

a reducer should construct a copy of the body M where all occurrences of x are re-

placed by a reference to a single occurrence of the graph of N . let-I models this by

representing the reference with a let-bound name.

� Dereferencing is expressed by rule let-V, which substitutes a de�ning value for a

variable occurrence. Note that, since only values are copied, there is no risk of

duplicating work in the form of reductions that should have been made to a single,

shared expression.

� Rule let-C allows let-bindings to commute with applications, and thus pulls a let-

binding out of the function part of an application.

� Rule let-A transforms left-nested let's into right-nested let's. It is a directed version

of the associativity law for the call-by-name monad [Mog91].

� Finally, the \garbage collection" rule let-GC drops a let-binding whose de�ned vari-

able no longer appears in the term. let-GC is not strictly needed for evaluation (as

seen in Section 4 where we discuss standard reduction), but it helps to keep terms

shorter.

Clearly, these rules never duplicate a term which is not a value. Furthermore, we will
show in Section 5 that a term evaluates to an answer in our calculus if and only if it
evaluates to an answer in the call-by-name �-calculus. So �let ful�lls the expectations
for what a call-by-need reduction scheme should provide: no loss of sharing except inside
values and observational equivalence to the classical call-by-name calculus.

Note also that �let is an extension of the call-by-value �-calculus. A �V -reduction

(�x:M) V ! [V=x]M

can be expressed by the following sequence of �let-reductions, where there is one let-V

step for each occurrence of x in M .

(�x:M) V ���!
let-I

let x = V in M

����!
let-V
! let x = V in [V=x]M

�����!
let-GC

[V=x]M

Example 3.1. (�x:x x) (�y:y).

(�x:x x) (�y:y) ���!
let-I

let x = �y:y

in x x

����!
let-V

let x = �y:y

in (�y:y) x
���!
let-I

let x = �y:y

in let y = x

in y

����!
let-V

let x = �y:y

in let y = x

in x

����!
let-V

let x = �y:y

in let y = x

in �y:y

�����!
let-GC

2 �y:y

5

Graphically, we have the following sequence, where we mark the node currently considered

the root of the graph with a star (?).

x x

@

@?

�x �y

y
� A

@�

���!
let-I

y

�y

x : � x : �

@?

@ �

� @

����!
let-V y

�y

y

�y

x : �

@?
� @

���!
let-I

y

�y

x : �

y : �?

����!
let-V

y

�y

x : �?

y : �

����!
let-V

y

�y?

x : �

y : �

�����!
let-GC

2

y

�y?

4 Syntactic Properties

Lambda calculi have a number of properties that are useful in modeling programming

languages, as has been demonstrated by their great success in modeling Algol, Iswim, and

a host of successor languages. The conuence property set forth in the Church-Rosser

theorem allows reductions to be performed in any order, providing a simple model of

program transformation and compiler optimization. The standard reduction property set
forth in the Curry-Feys standardization theorem speci�es a reduction sequence that only
performs \necessary" reductions, providing a simple model for program execution.

We now establish call-by-need analogues of the Church-Rosser theorem and the Curry-

Feys standardization theorem for classical �-calculus.

Theorem 4.1. �let is conuent:

M

M 0 M 00

9N

��	let	 @@RletR

. .. .RletR

.....	let
	

The full proof is given in the appendix, cumulating in the theorem Theorem A.19.

Proof Sketch: We �rst show that the system consisting of just let-I and let-V is conuent,
using Plotkin's method of parallel reductions [Plo75]. We then show that the remaining

reductions let-C, let-A and let-GC are both weakly Church-Rosser and strongly normaliz-
ing, and thus Church-Rosser. Since both subsystems commute, the theorem follows from
the Lemma of Hindley and Rosen [Bar81, Proposition 3.3.5]. 2

The conuence result shows that di�erent orders of reduction cannot yield di�erent
normal forms. It still might be the case that some reduction sequences terminate with a

normal form while others do not terminate at all. However, the notion of reduction can

be restricted to a standard reduction that always reaches an answer if there is one.
Figure 3 details our notion of standard reduction. To state the standard reduction

property, we �rst make precise the kind of observations that can be made about �let

programs. Following the spirit of [Abr90], we de�ne an observation to be a reduction

6

Additional Syntactic Domains

Standard Values Vs ::= �x:M

Answers A;A0 ::= Vs j let x =M in A

Evaluation

Contexts

E;E0 ::= [] j E M j let x =M in E j let x = E in E0[x]

Standard Reduction Rules

(lets-I) (�x:M) N �!s let x = N in M

(lets-V) let x = Vs in E[x] �!s let x = Vs in E[Vs]

(lets-C) (let x = L in A) N �!s let x = L in A N

(lets-A) let y = (let x = L in A) in E[y] �!s let x = L in let y = A in E[y]

Figure 3: Standard call-by-need reduction.

sequence that ends in a function term. In �let, a function term can be wrapped in let-

bindings (since those can be pulled out of a function application by rule let-C). Hence,
an answer A is either an abstraction or a let with an answer as its body.

Standard reduction is a restriction of ordinary reduction in that each redex must
occupy the hole of an evaluation context. The �rst two productions for evaluation contexts
in Figure 3 are those of the call-by-name calculus. The third production states that

evaluation is possible in the body of a let. The �nal production emphasizes the call-by-
need aspect of the strategy. It says that a de�nition should be evaluated if the de�ned
node is demanded (i.e., it appears in evaluation position itself).

The restriction to evaluation contexts alone does not make call-by-need reduction
deterministic. For instance,

let x = V in let y = W in x y

has both let's in evaluation position, and hence would admit either the substitution of V

for x or the substitution of W for y. We arrive at a deterministic standard reduction by
specializing reduction rules to those shown in the second half of Figure 3. Note that there
is no rule lets-GC, since garbage-collection is not needed to reduce a term to an answer.

De�nition. Let �!s be the smallest relation that contains lets-fIVCAg and that is closed

under the implicationM �!s N) E[M] �!s E[N].

De�nition. We write M + i� there is an answer A such that M !! A. Likewise, we

write M +s i� there is an answer A such that M �!s! A.

Theorem 4.2. �!s is a standard reduction relation for �let. For all M 2 �,

M + , M +s :

7

Proof Sketch: The proof relies on two subsidiary results: that all answers are in �!s -normal

form, and that standard reduction keeps head and internal redexes separate [Bar81, Lem-

ma 11.4.3]. The result then follows by reasoning as in Barendregt's standardization proof

for the call-by-name calculus. 2

5 Observational Equivalence

The call-by-need calculus is conuent and has a standard reduction order, and so it is, at

least, a workable calculus. As of yet, though, we have to explore the relationship between

�let and �. The conversion theories =�let
and =� are clearly di�erent | otherwise there

would be little point in studying call-by-need systems! However, we will show that the

observational equivalence theories of � and �let coincide on their common term language,

�.

To keep the di�erent equational theories of � and �let apart, we will pre�x reductions

and convergence statements by the theory in which they are valid, e.g., �� ` M +. Here
and in the following, �� stands for either � or �let.

A function term in � is just a �-abstraction. Hence, answers in � are taken to be
�-abstractions and we de�ne:

De�nition. � ` M + i� there is an abstraction �x:N such that � ` M !! �x:N .

Observational equivalence is the coarsest equivalence relation over terms that still distin-
guishes between terms with di�erent observational behavior. Formally:

De�nition. Two terms M;N 2 �� are observationally equivalent in ��, written �� j=
M �= N , i� for all ��-contexts C such that C[M] and C[N] are closed,

�� ` C[M] + , �� ` C[N] + :

The remainder of this section works toward a theorem that the observational equivalence
theories of � and �let coincide on �. The �rst step towards this goal is Proposition 5.8,

which links a term in �let with its let-expanded version in �.

De�nition. The let-expansion M� of a term M 2 �let is de�ned inductively as follows:

x� = x

(�x:M)� = �x:M�

(M N)� = M�N�

(let x =M in N)� = [M�=x]N�

let-expansion extends to contexts by []� = [].

The following proposition is a direct consequence of the �nite developments theorem
in �-calculus (with let terms as labeled �-redexes).

8

Proposition 5.1. Every term in �let has a let-expansion.

Lemma 5.2. For all termsM , N ,

[N�=x]M� � ([N=x]M)�:

Proof: By an easy structural induction on the form of M . 2

Lemma 5.3. Let C be a single-hole context in �let such that C� is an n-hole context

(n � 0). Then is a substitution � such that for all termsM 2 �let

(C[M])� � C�[�M�; :::; �M�

| {z }
n

]

Proof: Let xi (i = 1; :::;m) be the variables that are let-bound in C and that have a

bound occurrence in C[xi] and let Ni (i = 1; :::;m) be their de�ning terms. Then by the

de�nition of let-expansion the lemma holds with � = [N�
i =xi]i=1;:::;m. 2

Lemma 5.4. For all terms M , N , if M ! N by a let-V-C-A-GC reduction, then M� �
N�.

Proof: A straightforward analysis of reduction rules. 2

Lemma 5.5. For all termsM;N 2 �let the following diagram commutes.

M

M� N�

N-
let

?

�

?

�

-
�
- :

Proof: By a structural induction on the proof of reduction ��!
let

. For let-V-C-A-GC re-
ductions at top-level, the lemma follows from Lemma 5.4. For toplevel let-I reductions,

observe that

((�x:M)N)� � (�x:M�)N� �!
�

[N�=x]M� � ([N=x]M)�

where the last equivalence follows from Lemma 5.2. It remains to show the lemma for the
case where the last step in the proof of reduction is

M ��!
let

N

C[M] ��!
let

C[N]

for some terms M , N , context C. By Lemma 5.3 there is an integer n � 0 and a

substitution � such that

(C[M])� � C�[�M�; :::; �M�

| {z }
n

]

(C[N])� � C�[�N�; :::; �N�

| {z }
n

] :

By the induction hypothesis, M� �!
�
! N�. Therefore, (C[M])� � C�[�M�; :::; �M�] �!

�
!

C�[�N�; :::; �N�] � (C[N])�: 2

9

For the proof of the next lemmas we need some more notation and de�nitions. In

the following we will write a term let x1 = M1 in : : : let xn = Mn in M alternatively as

let � in M , where the heap � is the sequence of bindings (x1 7! M1; :::; xn 7! Mn)
2. In

general, heaps are �nite sequences of bindings (xi 7! Mi)i such that xi = xj) i = j

and xi 2 fv(Mj)) i < j. Let (�1;�2) denote the concatenation of the heaps �1 and �2

where is assumed that the bound variables of �1 and �2 form disjoint sets. Furthermore,

let the de�ning occurence of a variable x in a heap � be

def(x;�) =

8>><
>>:

def(y;�) if x 7! y 2 �,

M if x 7!M 2 � and M is not a variable,

x otherwise:

Finally, we extend let-expansion to a mapping from heaps to substitutions, by de�ning

(x1 7!M1; :::; xn 7!Mn)
� = [M�

1=x1]:::[M
�
n=xn] :

Lemma 5.6. For all terms M 2 �let, N 2 � there exist terms M 0 2 �let, N
0 2 � such

that the following diagram commutes.

M

M� N N 0

M 0.-
let

?

�

?

�

-
�

.-
�
- :

Proof: W.l.o.g. assume that the termM in this diagram is in let-V-C-A-GC normal form
| if it is not we can can always reduce it to such a normal form (Lemma A.15), and the
reduction keeps the image under (�) invariant (Lemma 5.4).

We use a structural induction on the proof of M� ��!
�s

N . There are two cases.

Case 1 The reduction is a top-level application of the � rule. In this case,

M� � (�x:Q1)Q2 ��!
�s

[Q1=x]Q2 � N

for some variable x, terms Q1, Q2. Let M � let � in M0 where M0 is not a let-binding.

Then one of the following subcases applies.

Case 1.1 M0 � z, for some variable z and def(z;�) = (�x:P1)P2 for some terms P1, P2

with ��P �
i � Q�

i (i = 1; 2). By the de�nition of def(;) there exist heaps �1, �2 and a

variable y such that � = (�1; y 7! (�x:P1)P2;�2) and def(z;�2) = y. Therefore,

M � let �1; y 7! (�x:P1)P2;�2 in z

���!
let-I

let �1; y 7! let x = P2 in P1;�2 in z

����!
let-A

let �1; x 7! P2; y 7! P1;�2 in z
def
= M 0

2Note the relationship to the natural semantics in Section 7.

10

Furthermore,

(M 0)� � ��
1([P

�
2 =x]([P

�
1 =y](�

�
2z)))

� ��
1([P

�
2 =x]([P

�
1 =y]y)) since def(z;�2) = y

� ��
1([P

�
2 =x]P

�
1)

� ��([P �
2 =x]P

�
1) since fv([P �

2 =x]P
�
1) \ (dom(�2) [fx; yg) = ;

� [Q2=x]Q1 by Lemma 5.2 :

Case 1.2 M0 � (�x:P1)P2, for some terms P1, P2 with ��P �
i � Q�

i (i = 1; 2). This case

is similar, but somewhat simpler, than the previous case. It is omitted here.

No other subcases apply. To see this, assume that M0 � �y:P , for some variable y,

term P . Then by de�nition of (�), M� � �y:��P �, a contradiction. Or assume that

M0 � P1P2P3 for some terms P1, P2, P3. In this case, M� � (��P �
1)(�

�P �
2)(�

�P �
3), a

contradiction. Finally, assume that M0 � yP , for some variable y, term P . We then

distinguish according to def(y;�). If def(y;�) is a variable, say z, we get M� � z(��P �),

a contradiction. If def(y;�) is a �-abstraction we get a contradiction since then M is not

in let-V-C-A-GC normal form. Finally, if y is an application P1P2 we get a contradiction
since in that case M� � (��P �

1)(�
�P �

2)(�
�P �

3).
This concludes the case where the reduction M� �!s N is top-level.

Case 2 The redex in the reduction M� �!s N is a proper subterm of M�. In this case
the last step in the proof of this reduction is an application of the rule

Q1 �!s Q0
1

Q1Q2 �!s Q0
1Q2

where M� � Q1Q2. Let again M � let � in M0 where M0 is not a let-binding. Then one
of the following cases applies.

Case 1.1 M0 � z, for some variable z and def(z;�) = P1P2, for some terms P1, P2

with ��P �
i � Q�

i (i = 1; 2). Then there exist heaps �1, �2 and a variable y such that

� = (�1; y 7! P1P2;�2) and def(z;�2) = y. Since fv(P1; P2) \ (dom(�2) [y) = ;, we
have also that ��

1P
�
i � Q�

i (i = 1; 2). By the induction hypothesis, let �1 in P1 ��!let! P 0
1,

for some term P 0
1 such that Q0

1 �!�! (P 0
1)

�. A straightforward induction on the notion

of reduction in �let shows that P 0
1 is of the form let �0

1 in P 00
1 where for all terms P ,

let �1 in P ��!
let
! let �0

1 in P . It follows that

M � let �1; y 7! P1P2;�2 in z

��!
let
! let �0

1 y 7! P 00
1 P2;�2 in z

def
= M 0 :

11

Furthermore,

(M 0)� � (�0
1)

�([(P 00
1 P2)

�=y](��
2z))

� (�0
1)

�([(P 00
1 P2)

�=y]y) since def(z;�2) = y

� ((�0
1)

�(P 00
1)

�)((�0
1)
�P �

2)

� Q0
1((�

0
1)

�P �
2)

def
= N 0 :

Since (�0
1)

�P �
2 � (let �0

1 in P2)
� and let �1 in P2 !! let �0

1 in P2, it follows with Lemma 5.5

that Q2 � (let �1 in P2)
� �!

�
! (�0

1)
�P �

2 . In summary, Q0
1Q2 �!�! N 0.

Case 2.2 M0 � P1P2, for some terms P1, P2 with ��P �
i � Q�

i (i = 1; 2). This case is

similar, but somewhat simpler, than the previous case. It is omitted here.

By a similar reasoning as for Case 1, we can show that no other subcases apply. 2

We also need a fact about standard reduction in classical lambda calculus.

Notation We write M !n N if M reduces in at most n steps to N .

Proposition 5.7. Let M;N 2 �, such that � ` M �!
i
! N and � ` M �!s

n A, for some
answer A, n � 0. Then N �!s

n A0 for some answer A0.

The proof of Proposition 5.7 is found in Appendix A.3. Now everything is in place for
our central technical result.

Proposition 5.8. For all M 2 �let,

�let ` M + , � ` M� + :

Proof: \)": An easy induction on the length of reduction from M to an answer, using
Lemma 5.5 at each step.

\(": Assume that M� +. By the Curry-Feys standardisation theorem [Bar81, 11.4.7],
M reduces to an answer by a sequence of standard reductions. We use an induction on
the length n of this sequence. If n = 0 then M� is an answer, i.e. a �-abstraction, say

�x:Q. Then the de�nition of let-expansion implies that one of two cases apply. Either
M � let � in �x:P , for some heap �, term P such that ��P � � Q. Then M is an answer
in �let. Or M � let � in z, for some heap �, variable z such that def(z;�) = �x:P and

��P � � Q. In that case M reduces to the answer let � in �x:P by a sequence of let-V

reductions.

Assume now thatM� +n
s for n > 0. Let N be the standard reduct ofM�, i.e. M� �!s N

and N +n�1
s . By Lemma 5.6 there is a term M 0 2 �let such that �let ` M !! M 0 and

N �!
�
! (M 0)�. By Proposition 5.7, (M 0)� +n�1

s , Therefore, by the induction hypothesis,

M 0 +. With �let ` M !!M 0 this implies that M +. 2

12

Proposition 5.8 implies that �let is a conservative observational extension of �:

Theorem 5.9. The observational equivalence theories of � and �let coincide on �. For

all terms M;N 2 �,

� j=M �= N , �let j=M �= N :

Proof: \)": Assume � j=M �= N and let C be a �let-context such that C[M] and C[N]

are closed. Let C# result from C by eliminating all let's in C using rule let-I repeatedly

in reverse. Then

�let ` C[M] +

, �let ` C#[M] + since �let ` C#[M] = C[M]

, � ` C#[M] + by Proposition 5.8, since (C#[M])� = C#[M]

, � ` C#[N] + since � j=M �= N

, �let ` C[N] + by the reverse argument

\(": By a symmetric argument, with C instead of C#, and leaving out the �rst step in
the equivalence chain. 2

Corollary 5.10. � is an observational equivalence in �let: For allM;N 2 �let, (�x:M)N �=
[M=x]N .

Proof: Let M;N 2 �let. Let M
0; N 0 be the corresponding �-terms that result from elimi-

nating all let's in M;N by performing let-I reductions in reverse. Then we have in �let:

(�x:M)N = (�x:M 0)N 0 �= [N 0=x]M 0 = [N=x]M

where \�=" follows from Theorem 5.9. 2

6 The Let-Less Call-By-Need Calculus

In call-by-name �-calculus, let x = M in N is syntactic sugar for (�x:N) M : so let-

bindings are not really essential. It turns out that we can use the same same expansion to
get rid of let's in call-by-need. The resulting calculus is �` (where the ` stands for \lazy").
Its notions of general and standard reduction are shown in Figure 4.

While �` is perhaps somewhat less intuitive than �let, its simpler syntax makes some

of the basic (syntactic) results easier to derive. It also allows better comparison with the
call-by-name calculus, since no additional syntactic constructs are introduced.

Clearly, �let and �` are closely related. More precisely, the following theorem states
that reduction in �let can be simulated in �`, and that the converse is also true, provided

we identify terms that are equal up to let-I introduction.

Proposition 6.1. For all M 2 �`, M
0 2 �let,

13

Syntactic Domains

Variables x; y; z

Standard Values Vs ::= �x:M

Values V;W ::= x j Vs
Terms L;M;N ::= V j M N

Answers A;A0 ::= Vs j (�x:A)M
Evaluation

Contexts

E;E0 ::= [] j E M j (�x:E)M j (�x:E 0[x]) E

General Reduction Rules

(`-V) (�x:C[x]) V ! (�x:C[V]) V

(`-C) (�x:L)MN ! (�x:LN)M

(`-A) (�x:L)((�y:M)N) ! (�y:(�x:L)M)N

(`-GC) (�x:M) N ! M if x 62 fv(M)

Standard Reduction Rules

(`s-V) (�x:E[x]) Vs �!s (�x:E[Vs]) Vs
(`s-C) (�x:A)MN �!s (�x:AN)M
(`s-A) (�x:E[x])((�y:A)N) �!s (�y:(�x:E[x])A)N

Figure 4: The let-less call-by-need calculus.

M

M 0 N 0

N-
`
-

?

let-I

?

.........?

let-I

?
.-

let
-

M

M 0 N 0

N.-
`
-

?

let-I

?

.........?

let-I

?
-

let
- :

Proposition 6.1 can be used to derive the essential syntactic and properties of �` from
those of �let:

Theorem 6.2. �` is Church Rosser.

Theorem 6.3. �!s is a standard reduction relation for �`. For all M 2 �,

M + , M +s :

�` has close relations to both the call-by-value calculus �V and the call-by-name calculus
�. Its notion of equality =�` | i.e., the least equivalence relation generated by the

reduction relation | �ts between those of the other two calculi, making �` an extension
of �V and � an extension of �`.

14

Theorem 6.4.

=�V � =�` � =� :

Proof: (1) �V can be expressed by a sequence of �` reductions as was shown at the end

of Section 3. Therefore, =�V � =�`. (2) Each �` reduction rule is an equality in �. For

instance, in the case of `-V one has:

(�x:C[x]) V =� [V=x](C[x]) � [V=x](C[V]) =� (�x:C[V]) V

The other rules have equally simple translations. In summary, =�` � =�. 2

Each of the inclusions of Theorem 6.4 is proper; e.g.,

(�x:x) ((�y:y)
) = (�y:(�x:x) y)

is an instance of rule `-A, but it is not an equality in the call-by-value calculus (
 stands

for a non-terminating computation). On the other hand, the following instance of � is

not an equality in �`:
(�x:x)
 =
 :

However, one can show by a simple application of Theorem 5.9 together with Proposi-
tion 6.1 that the observational equivalence theories of �` and � are identical (and are
incompatible with the observational equivalence theory of �V).

Theorem 6.5. For all termsM;N 2 �,

� j=M �= N , �` j=M �= N:

Theorem 6.4 implies that any model of call-by-name �-calculus is also a model of �`,
since it validates all equalities in �`. Theorem 6.5 implies that any adequate (respectively
fully-abstract) model of � is also adequate (fully-abstract) for �`, since the observational
equivalence theories of both calculi are the same. For instance, Abramsky and Ong's
model of the lazy lambda calculus [Abr90] is adequate for �`.

7 Natural semantics

This section presents an operational semantics for call-by-need in the natural semantics

style of Plotkin and Kahn, similar to one given by Launchbury [Lau93]. A proposition is
stated that relates the natural semantics to standard reduction.

A heap abstracts the state of the store at a point in the computation. It consists of a
sequence of pairs binding variables to terms,

x1 7!M1; : : : ; xn 7!Mn:

The order of the sequence of bindings is signi�cant: all free variables of a term must be
bound to the left of it. Furthermore, all variables bound by the heap must be distinct.

15

Id
h�iM + h	iV

h�; x 7!M; �ix + h	; x 7! V; �iV

Abs
h�i�x:N + h�i�x:N

App
h�iL + h	i�x:N h	; x0 7!Mi [x0=x]N + h�iV

h�iL M + h�iV

Figure 5: Operational semantics of call-by-need lambda calculus.

Thus the heap above is well-formed if fv(Mi) � fx1; : : : ; xi�1g for each i in the range

1 � i � n, and all the xi are distinct. Let �;	;� range over heaps. If � is the heap

x1 7! M1; : : : ; xn 7! Mn, de�ne vars(�) = fx1; : : : ; xng: A con�guration pairs a heap

with a term, where the free variables of the term are bound by the heap. Thus h�iM is
well-formed if � is well-formed and fv(M) � vars(�). The operation of evaluation takes
con�gurations into con�gurations. The term of the �nal con�guration is always a value.
Thus evaluation judgments take the form h�iM + h	iV .

The rules de�ning evaluation are given in Figure 5. There are three rules, for identi�ers,

abstractions and applications.

� Abstractions are trivial. As abstractions are already values, the heap is left un-

changed and the abstraction is returned.

� Applications are straightforward. Evaluate the function to yield a lambda abstrac-
tion, extend the heap so that the the bound variable of the abstraction is bound to
the argument, then evaluate the body of the abstraction. In this rule, x0 is a new

name not appearing in 	 or N . The renaming guarantees that each identi�er in the
heap is unique.

� Variables are more subtle. The basic idea is straightforward: �nd the term bound
to the variable in the heap, evaluate the term, then update the heap to bind the

variable to the resulting value. But some care is required to ensure that the heap
remains well-formed. The original heap is partitioned into �; x 7! M; �. Since

the heap is well-formed, only � is required to evaluate M . Evaluation yields a new

heap 	 and value V . The new heap 	 will di�er from the old heap � in two ways:
binding may be updated (by Var) and bindings may be added (by App). The free

variables of V are bound by 	, so to ensure the heap stays well-formed, the �nal
heap has the form 	; x 7! V; �.

A semantics of let terms can be derived from the above rules: the semantics of let x =

M in N is identical to the semantics of (�x:M) N .
As one would expect, evaluation uses only well-formed con�gurations, and evaluation

only extends the heap.

16

Syntactic Domains

Operators p

Constructorskn (of arity n)

Values V;W ::= x j �x:M j kn V1 ::: Vn (n � 0)

Terms L;M;N ::= V j M N j let x =M in N j p

Additional Reduction Rules

(�-V) p V ! �(p; V) (�(f; V) de�ned)

(�-A) p (let x =M in N) ! let x =M in p N

Figure 6: Data constructors and primitive operations.

Lemma 7.1. Given an evaluation tree with root h�iM + h	iV , if h�iM is well-formed

then every con�guration in the tree is well-formed, and furthermore vars(�) � vars().

Thanks to the care taken to preserve the ordering of heaps, it is possible to draw

a close correspondence between evaluation and standard reductions. If � is the heap
x1 7!M1; : : : ; xn 7!Mn, write let � in N for the term

let x1 =M1 in � � � let xn =Mn in N:

Every answer A can be written let 	 in V for some heap 	 and value V . Then a simple
induction on +-derivations yields the following result.

Proposition 7.2. h�iM + h	iV if and only if �` ` let � in M �!s! let 	 in V .

The semantics given here is similar to that presented by Launchbury [Lau93]. An
advantage of our semantics over Launchbury's is that the form of terms is standard,
and care is taken to preserve ordering in the heap. Launchbury uses a non-standard
syntax, in order to achieve a closer correspondence between terms and evaluations: in an
application the argument to a term must be a variable, and all bound variables must be

uniquely named. Here, general application is supported directly and all renaming occurs
as part of the application rule. It is interesting to note that Launchbury presents an
alternative formulation quite similar to ours, buried in one of his proofs.

An advantage of Launchbury's semantics over ours is that his copes more neatly with
recursion, by the use of multiple, recursive let bindings. An extension of our semantics

to include recursion (such as that of Ariola and Felleisen [AF94]) would lose the ordering
property of the heap, and hence lose the close connection to standard reductions [WT94].

8 Extensions

Functional programming languages generally have more constructs than just function

abstraction and application. Typically, data constructors and selectors as well as various

17

other primitive operators are provided. Of course, these additions can be simulated in the

base language via Church encodings. Yet a more high-level treatment is often desirable

for reasons of both clarity and e�ciency. The full paper will detail how these extensions

can be added to the call-by-need calculus.

Figure 6 extends �let with data constructors kn of arbitrary arity n and primitive

operators p (of which selectors are a special case). There is one new form of value:

kn V1 ::: Vn where the components V1;...;Vn must be values | otherwise sharing would

be lost when copying the compound value. For instance, inl (1 + 1) is not a legal value,

since copying it would also copy the unevaluated term (1+ 1). Instead, one writes letx =

1 + 1 in inl x.

There are two new reduction rules. Rule �-V is the usual rewrite rule for primitive

operator application. It is de�ned in terms of a partial function | also called � | from

operators and values to terms. This function can be arbitrary, as long as it does not

\look inside" lambda abstractions. That is, we postulate that for all operators p and

contexts C there is a context D such that for all terms M , �(p;C[�x:M]) = D[�x:M] or

�(p;C[�x:M]) is unde�ned. Note that rule �-V makes all primitive operators unary and

strict. Operators of more than one argument can still be simulated by currying. Rule �-A
allows let� bindings of operator arguments to be pulled out of the application.

Modelling Heap Maintenance. The transition from the general call-by-need calculus
to the standard scheme pares away steps not strictly needed for reduction to an answer.

As we have seen, garbage collection is one sort of these steps.
Related to garbage collection | and performed by many implementation at the same

time as garbage collection| is the task of shorting out indirections [Pey87]. An indirection
node is a graph element that only points to some other graph node, and contains no other
information itself. Since referencing through such indirection wastes time, pointers to

indirection nodes should be replaced with pointers to what the indirection itself points
to; although retaining indirection nodes decreases e�ciency, their presence should not
disrupt program evaluation.

In �`, indirection shortening is a sort of non-standard `-V redex: namely, the case
where the argument is a single free variable.

`-S : (�x:C[x])y ! [y=x]M :

Let �S` be the theory obtained by extending �` with `-S.

The extension does not alter the resulting theory:

Theorem 8.1.

�S` j=M �= N , �` j=M �= N :

Proof: Trivial, by Theorem 5.9, since `-S contractions are just ordinary � contractions.
2

Likewise, a rule for indirection shortening will not alter the theory �let.

18

Although Launchbury does not identify an indirection shortening rule, such an exten-

sion for his system would be relatively simple, viz.,

[y=x]� : e + � : z

(�; x 7! y) : e + � : z
; x 62 fv(�) :

`-GC and `-S allow a nice, two-layered generalization of the standard ordering. At

one layer is `s-fV,C,Ag, by itself deterministic and which will therefore always reach

answers when they exist. At a second layer, `-fGC,Sg reduction, while not deterministic,

is strongly normalizing, and the two layers together form a conuent calculus which, like

`s-fV,C,Ag, will produce an answer whenever possible. Their interaction is exactly the

role we expect a garbage collector to play: we may cease reduction at any time to collect

as much garbage as we like without altering the eventual result.

9 Conclusion

The calculus presented here has several nice properties that make it suitable as a rea-

soning tool for lazy functional programs: it operates on the lambda-terms themselves |

or possibly a mildly sugared version | rather than needing a separate store of bindings;
it can be de�ned by a few simple rules; its theory extends to subterms, even those un-
der abstractions. The calculus �ts naturally between the call-by-value and call-by-name
versions of �. It shares with call-by-value the property that only values are copied, yet
validates all observational equivalences of call-by-name.

A shortcoming of our approach is its treatment of recursion. We express recursion
with a �xpoint combinator (which is de�nable since our calculus is untyped). This agrees
with Wadsworth's original treatment and most subsequent formalizations of call-by-need3.
However, implementations of lazy functional languages generally express recursion by a
back-pointer in the function graph. The two schemes are equivalent for recursive function

de�nitions but they have di�erent sharing behavior in the case of circular data structures.
A circular pointer can allow more e�cient sharing in the case of (say)

let xs = (1 + 1) : xs in xs :

It seems possible to extend our calculus with a recursive let-construct on order to better
model recursion. This remains a topic for future work.

Acknowledgements. The authors would like to thank Zena Ariola, Matthias Felleisen,
John Field and David N. Turner for valuable discussions.

References

[Abr90] Samson Abramsky. The Lazy Lambda Calculus, chapter 4, pages 65{116. The UT

Year of Programming Series. Addison-Wesley Publishing Company, Inc., 1990.

3with the notable exception of [Lau93].

19

[ACCL90] Mart��n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques L�evy. Explicit

substitutions. In Proc. 18th ACM Symposium on Principles of Programming Lan-

guages, San Francisco, California. ACM Press, January 1990.

[AF94] Zena Ariola and Matthias Felleisen. The call-by-need lambda calculus. Technical

Report CIS-TR-94-23, Department of Computer Science, University of Oregon, Oc-

tober 1994.

[AFM+95] Zena Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Phillip Wadler.

A call-by-need lambda calculus. In Proc. 22nd Sym. on Principles of Programming

Languages, San Francisco. ACM Press, January 1995.

[Bar81] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of

Studies in Logic and the Foundations of Mathematics. North-Holland Publishing

Company, 1981.

[Fie90] John Field. On laziness and optimality in lambda interpreters: Tools for speci�ca-

tion and analysis. In Proc. 18th ACM Symposium on Principles of Programming

Languages, San Francisco, California. ACM Press, January 1990.

[Joh84] Thomas Johnsson. E�cient compilation of lazy evaluation. In Proceedings of the

1984 ACM SIGPLAN Conference on Compiler Construction, New York, June 1984.

ACM.

[Jos89] Mark B. Josephs. The semantics of lazy functional languages. Theoretical Computer

Science, 68:105{111, 1989.

[KL89] Philip J. Koopman Jr. and Peter Lee. A fresh look at combinator graph reduction.

In Proceedings of the SIGPLAN '89 Conference on Programming Language Design

and Implementation. ACM, ACM Press, June 1989.

[Lau93] John Launchbury. A natural semantics for lazy evaluation. In Proc. 21st ACM

Symposium on Principles of Programming Languages, Charleston, South Carolina.

ACM Press, January 1993.

[Mar91] Luc Maranget. Optimal derivations in weak lambda-calculi and in orthogonal term

rewriting systems. In Proc. 19th ACM Symposium on Principles of Programming

Languages, Orlando, Florida, pages 255{269. ACM Press, January 1991.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation,

93:55{92, 1991.

[Ong88] Chih-Hao Luke Ong. Fully abstract models of the lazy lambda calculus. In Proceed-

ings of the 29th Symposium on Foundations of Computer Science, pages 368{376.

IEEE, 1988.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Programming Languages.

International Series in Computer Science. Prentice Hall, 1987.

[Pey92] Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware:

the Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127{202,

July 1992.

20

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the � calculus. Theoretical

Computer Science, 1:125{159, 1975.

[PS92] S. Purushothaman and Jill Seaman. An adequate operational semantics of shar-

ing in lazy evaluation. In B. Krieg-Br�uckner, editor, Lecture Notes in Computer

Science 582, pages 435{450, New York, February 1992. ESOP'92, Fourth European

Symposium on Programming, Springer-Verlag.

[SP94] Patrick M. Sansom and Simon L. Peyton Jones. Time and space pro�ling for non-

strict higher-order functional language, July 1994. Submitted to 22'nd ACM Sym-

posium on Principles of Programming Languages.

[Tur79] David A. Turner. A new implementation technique for applicative programming

languages. Software|Practice and Experience, 9(31{49), 1979.

[Wad71] Christopher P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD

thesis, Oxford University, 1971.

[WT94] Philip Wadler and David N. Turner. Once upon a type. Presented to the Semantique

Workshop, �Arhus, Denmark, June 1994.

[Yos93] Nobuko Yoshida. Optimal reduction in weak-lambda-calculus with shared environ-

ments. In FPCA'93: Conference on Functional Programming Languages and Com-

puter Architecture, Copenhagen, Denmark, New York, June 1993. ACM Press.

A Proofs

A.1 Church-Rosser

De�nition A.1. Let the set ��

let
be the collection all terms matching T in the grammar:

T ::= x
i j �x:T j T T j let x = T in T

where i is a positive integer.

Let � be a map from the individual variables of a term T 2 �let to positive integers; then

(T; �) denotes the ��

let
term obtained by weighting T 's variables according to �.

De�ne the projection map j : j : ��

let
! �let by erasing the weights from a term.

Lemma A.2. For every term T
�
2 ��

let
, there exists some � such that T � � (jT �j; �).

Proof: Trivial; each term's weights de�ne the appropriate function. 2

De�nition A.3. The norm k : k : ��

let
! N , by

kxik = i+ 1

ke1 e2k = ke1 k � ke2k

k�x:ek = 2 + kek

klet x = e1 in e2k = ke1 k � ke2k+ 1 :

21

Lemma A.4. Let T 2 ��

let
. Then kT �k > 1.

Proof: Trivial. 2

De�nition A.5. A term T
�
2 ��

let
is said to have a decreasing weighting (or for a term (T; �),

that � is a decreasing weighting) if for every subterm let x =M
�

in N
� of T , and for every xi in

N , we have

i > kMk :

Algorithm A.6. Given a term T , we �rst number the variable occurances in T from two from

right to left, except that within an expression let x =M in N we number M and then number

N . Then we obtain a weighting for T by giving the variable numbered i the weighting ii.

Lemma A.7. Every term has a decreasing weighting.

Proof: As assigned by the above algorithm, as in [Bar81, Lemma 11.2.17]. 2

Lemma A.8. Let T �
2 ��

let
and

T
� ������������!

let-fI,C,A,GCg
T
�0

:

Then kT �0k < kT �k.

Proof: Trivial, by analysis of the before-and-after term structures. 2

Lemma A.9. Let T � � (T; �) 2 ��

let
, � a decreasing weighting for T , and

T
� � (T; �) ����!

let-V
T
�0

:

Then kT �0k < kT �k.

Proof: Again, by analysis of the terms. 2

Corollary A.10. Let T � � (T; �) 2 ��

let
, � a decreasing weighting for T , and

T
� � (T; �) ���!

�let
T
�0

:

Then kT �0k < kT �k.

Proof: Follows from Lemma A.8 and Lemma A.9. 2

Lemma A.11. Let T 2 �let, � a decreasing weighting for T , and

(T; �) �������������!
let-fV,C,A,GCg

(T 0

; �
0) :

Then �
0 is a decreasing weighting for T 0.

Proof: As in [Bar81, Lemma 11.2.18 (ii)]. 2

22

Lemma A.12.

M

M
0

M
00

9N

��	let-I @@Rlet-I

.....Rlet-I

.....	let-I

Proof: By a trivial structural induction. 2

Lemma A.13, CR(let-I). let-I is conuent:

M

M
0

M
00

9N

��	let-I	
@@Rlet-IR

.....Rlet-I
R

.....	let-I
	

Proof: Follows trivially from Lemma A.12 by induction on the number of single steps from M

to M 0 and from M to M 00 as suggested by the following diagram: 2

Lemma A.14, SN(let-I). let-I is strongly normalizing.

Proof: Follows from Lemma A.4 and Lemma A.8. 2

Lemma A.15, SN(let-fV,C,A,GCg). let-fV,C,A,GCg is strongly normalizing.

Proof: Follows from Lemma A.4, Corollary A.10 and Lemma A.11. 2

Lemma A.16, WCR(let-fV,C,A,GCg). let-fV,C,A,GCg is weakly Church-Rosser.

Proof: By a tedious but straightforward diagram chase. 2

Lemma A.17, CR(let-fV,C,A,GCg). let-fV,C,A,GCg is conuent.

Proof: Follows from Lemma A.15 and Lemma A.16 by Newman's Lemma [Bar81, Proposi-

tion 3.1.25]. 2

Lemma A.18. let-fV,C,A,GCg and let-I commute.

Proof: Again, by a tedious but straightforward diagram chase. 2

Theorem A.19, CR(�let). �let is conuent:

M

M
0

M
00

9N

��	let	
@@RletR

.....Rlet
R

.....	let
	

Proof: Follows from Lemma A.13, Lemma A.17 and Lemma A.18 by the Lemma of Hindley-

Rosen [Bar81, Proposition 3.3.5]. 2

23

A.2 Standard Reduction

A.2.1 Preliminaries

Lemma A.20. Some simple observations:

a. For any M , x 2 fv(M), there is no evaluation context E such that E[x] � �y:M .

b. Let C be a context, but not an evaluation context, and E be an evaluation context, C[V] �

E[x]. Then there exists an evaluation context E0 and a non-evaluation context C0 such

that:
E0[x] � C[x] C[V] � E[x]

E0[V] � C0[x] C0[V] � E[V] :

Proof: (a.) Obvious. (b.) By a trivial structural induction on C[V] � E[x]: there must be some

point in the structure where the hole of each term is in di�erent subterms (since the evaluation

context will not \look inside" the value), and E0 and C0 can be contructed from those subterms.

2

Lemma A.21. Let A 2 A. Then A 6�!
s
.

Proof: By a simple structural induction on A.

Case 1: A � �x:M . Trivially, A is neither a redex nor formable into an evaluation context.

Case 2: A � let x =M in A
0. Follows from the inductive hypothesis and Lemma A.20.a.

2

Lemma A.22. Let M �������!
�letn�lets

A. Then M 2 A:

Proof: By structural induction over A.

Case 1: A � �x:N . Clearly A is not itself the contraction of any let-fI,V,C,Ag-redex, so two

cases are possible:

Case 1.A: M ������!
let-GC

A. Then M � let y =M
0 in A 2 A.

Case 1.B: M � �x:M
0, M 0 �������!

�letn�let
s

N . Clearly M 2 A.

Case 2: A � let x = N in A
0. By analysis of the position of the redex within M :

Case 2.A: hM;Ai 2 �let n �lets . M cannot be a let-I-redex, as all top-level let-I-redexes are

standard redexes. We also cannot have M a let-C-redex, which always produces an application,

and hence never an answer.

Case 2.A.1: hM;Ai 2 let-V n lets-V.

Case 2.A.2: hM;Ai 2 let-A n lets-A.

Case 2.A.3: hM;Ai 2 let-GC n lets-GC.

Case 2.B: So M � let x =M
0
in M

00, and one of the following:

Case 2.B.1: M 0 ���������!
�
let

n�
lets

N , M 00 � A, and so M 2 A.

Case 2.B.2: M 00 ���������!
�
let

n�
lets

A. So by the induction hypothesis M 00
2 A, and then M

00
2 A.

2

24

A.2.2 Reversing Non-Standard and Standard Sequences

The next four lemmas are dreadful, and correspond to what Barendregt achieves quite easily

with a �niteness of developments theorem [Bar81, Th. 11.2.25, Lemmas 11.4.4 and 11.4.5]. This

technique is not easily available to us since we have developed a bookkeeping technique only for

one sort of redex; to keep track of all of the other, di�erent redexes would be at least as messy

as this approach.

Lemma A.23. LetM �������!
�letn�lets

N ����!
lets-I

N
0. Then there exists a termM

0 such thatM 0 �������!
�letn�lets

N
0 and exactly one of the following is true:

1. M ����!
lets-I

M
0.

2. There exists another term M
00 such that M �����!

lets-C
M

00 ����!
lets-I

M
0.

Proof: By several case analyses:

Case 1: hM;Ni 2 �
let

n �
lets

. We cannot have hM;Ni 2 let-I n lets-I, since all top-level let-I-

redexes are standard.

Case 1.A: hM;Ni 2 let-V n lets-V. So

M � let x = V in C[x] ;

N � let x = V in C[V] � let x = V in E[(�y:L1) L2] ;

N
0 � let x = V in E[let y = L2 in L1] ;

where C is not an evaluation context. We perform a structural induction on E:

Case 1.A.1: E � []. Trivial: take for instance C � (�y:C1[x])L2; then we have

M � let x = V in C[x] ����������!
let-Vnlets-V

N � let x = V in C[V]

� let x = V in (�y:L1) L2

����!
lets-I

N
0 � let x = V in let y = L2 in L1

So V must be a subterm of either L1 or L2; considering the case where C � (�y:C1)L2, C1 again

not an evaluation context, we have

M � let x = V in (�y:C1[x])L2 ����!
lets-I

M
0 � let x = V in let y = L2 in C1[x]

����������!
let-Vnlets-V

let x = V in let y = L2 in C1[V] � N
0

And similarly for V a subterm of L1.

Case 1.A.2: E � E1 N2. So we have that C must also be an application; if we have C �

E1[(�x:L1)L2]C2 then the result is trivial. Otherwise, for C � C1N2 we must make an inductive

argument; the key idea is that we must either have the expression �lling the whole of C as a

subterm of the standard contractum (as in Case 1.A.1) or in a di�erent \branch" of the term

(as in the previous alternative for this case).

Case 1.A.3: E � let z = N1 in E1, and

Case 1.A.4: E � let z = E2 in E1[z]. Similarly.

Case 1.B: hM;Ni 2 let-A n lets-A. So

M � let x = (let y =M0 in M1) in M2 ;

N � let y =M0 in let x =M1 in M2 ;

25

where M is not a standard redex. We have that the standard redex contracts either M0 to M
0

0,

M1 to M
0

1 or M2 to M
0

2. In the �rst case (respectively, the second and third) we have

N
0 � let y =M

0

0 in let x =M1 in M2

(let y =M0 in let x =M
0

1 in M2 and let y =M0 in let x =M1 in M
0

2), and so

M
0 � let x = (let y =M

0

0 in M1) in M2

(let x = (let y =M0 in M
0

1) in M2 and let x = (let y =M0 in M1) in M
0

2).

Case 1.C: hM;Ni 2 let-C n lets-C. As in case 1.B.

Case 1.D: hM;Ni 2 let-GC. So M � let x =M0 in N , x 62 fv(N), and M 0 � let x =M0 in N
0.

Case 2: hM;Ni 62 �
let

n �
lets

.

Case 2.A: hN;N 0i 2 lets-I. So we have N � (�x:N1)N2, and we distinguish two subcases:

Case 2.A.1: M � (let y = N0 in �x:N1)N2, hlet y = N0 in �x:N1; �x:N1i 2 let-GC. �x:N1 2 A,

so we have

(let y = N0 in �x:N1)N2

������!
lets-C

let y = N0 in (�x:N1)N2

�����!
lets-I

M
0 � let y = N0 in let x = N2 in N1

�������!
let-GC

let x = N2 in N1 � N
0

:

Case 2.A.2: Otherwise, the non-standard redex must be contained entirely within either N1 or

N2, and we have the result by a simple diagram chase, with in either caseM 0 � let x = N
0
2 in N

0
1

where of the two pairs N0
1 & N1 and N

0
2 & N2, in one pair the �rst reduces to the second, and

in the other, the two are identical.

Case 2.B: hN;N 0i 62 lets-I. We have two possible cases for the structure of M :

Case 2.B.1: M �M0M3. Then we have four simple subcases:

Case 2.B.1.a: N 0 � N
0

0M3, M0 �������!
�letn�lets

N0 ����!lets-I
N

0

0, and

Case 2.B.1.b: N 0 �M0 N
0

3, M3 �������!�letn�let
s

N3 ����!lets-I
N

0

3. By the induction hypothesis.

Case 2.B.1.c: N 0 �M
0

0 M
0

3, M0 �������!�letn�lets

M
0

0, M3 ����!lets-I
M

0

3, and

Case 2.B.1.d: N 0 �M
0

0 M
0

3, M0 ����!lets-I
M

0

0, M3 �������!�letn�let
s

M
0

3. Trivial.

Case 2.B.2: M � let x =M0 in M3. Four similar subcases, each either by the induction hypoth-

esis or trivial subterm analysis.

2

Lemma A.24.

M N

M
0

N
0

-
�let n �lets

?

lets-V

.

..

.

..

..

.?

lets-V

?
.-
�let n �lets

-

Proof: By several case analyses:

Case 1: hM;Ni 2 �let n �lets . We again cannot have hM;Ni 2 let-I n lets-I, since all top-level

let-I-redexes are standard.

26

Case 1.A: hM;Ni 2 let-V n lets-V. So

M � let x = V in C[x] ;

N � let x = V in C[V] ;

where C is not an evaluation context. As in case 1.A, Lemma A.23, except that more than one

non-standard contraction may be required if the original non-standard redex is within the value

which the standard redex dereferences.

Case 1.B: hM;Ni 2 let-A n lets-A. So

M � let x = (let y =M0 in M1) in M2 ;

N � let y =M0 in let x =M1 in M2 ;

where M is not a standard redex. We have three cases, revolving around this constraint on M :

Case 1.B.1: M1 2 A, (6 9E)M2 � E[x]. We must have the standard redex is internal to M2, and

so

M
0 � let x = (let y =M0 in M1) in M

0

2 :

Case 1.B.2: M2 � E[x], M1 62 A. Then the standard redex is either internal to M1, or else

internal to M0 with M1 � E0[y]; in the former case we have

M
0 � let x = (let y =M0 in M 0

1) in M2 ;

and in the latter case,

M
0 � let x = (let y =M

0

0 in M1) in M2 :

Case 1.B.3: M1 62 A, (6 9E)M2 � E[x]. As in Case 1.B.1 above.

Case 1.C: hM;Ni 2 let-C n lets-C. So we have M � (let x =M0 in M1)M2, M1 62 A; clearly the

standard redex is internal to M1, M1 �����!lets-V
M

0

1, and we have

M
0 � (let x =M0 in M

0

1)M2 :

Case 1.D: hM;Ni 2 let-GC. So M � let x =M0 in N , x 62 fv(N), and M 0 � let x =M0 in N
0.

Case 2: hM;Ni 62 �let n �lets .

Case 2.A: hN;N 0i 2 lets-V. So N � let x = V in E[x]. Where the non-standard reduction is a

subterm of V , we have the result trivially; where it is a subterm of E[x], the result follows from

Lemma A.20.b.

Case 2.B: hN;N 0i 62 lets-V. As in Case 2.B of Lemma A.23.

2

Lemma A.25.

M N

M
0

N
0

-
�let n �lets

?

lets-A

.

.

..

..

.

..?

lets-A

?
.-
�let n �lets

-

27

Proof: By several case analyses:

Case 1: hM;Ni 2 �let n �let
s

. We again cannot have hM;Ni 2 let-I n lets-I, since all top-level

let-I-redexes are standard.

Case 1.A: hM;Ni 2 let-V n lets-V. So

M � let x = V in C[x] ;

N � let x = V in C[V] ;

where C is not an evaluation context. As in case 1.A, Lemma A.23.

Case 1.B: hM;Ni 2 let-A n lets-A. So

M � let x = (let y =M0 in M1) in M2 ;

N � let y =M0 in let x =M1 in M2 ;

where M is not a standard redex. We again have three cases about the non-standardness ofM 's

contraction.

Case 1.B.1: M1 2 A, (6 9E)M2 � E[x]. As in Case 1.B.1 of Lemma A.24.

Case 1.B.2: M2 � E0[x], M1 62 A.

Case 1.B.2.a: M1 � E1[y].

Case 1.B.2.a.i: M0 2 Vs. So we have

M � let x = let y = �z:M3

in E1[y]

in E0[x] ; and

M �����!
lets-V

M
00 � let x = let y = �z:M3

in E1[�z:M3]

in E0[x] :

If E1[�z:M3] is then an answer, then we have M 00 �����!
lets-A

M
0 � N

0, otherwise M 00 �M
0.

Case 1.B.2.a.ii: M0 2 A n Vs. So we have

M � let x = let y = (let z =M3 in A0)

in E1[y]

in E0[x] ; and

M �����!
lets-A

M
0 � let x = let z = M3

in let y = A0

in E1[y]

in E0[x] :

28

and a particularly nasty diagram chase,

M
0 � let x = let z = M3

in let y = A0

in E1[y]

in E0[x] :

N
00 � let z = M3

in let x = let y = A0

in E1[y]

in E0[x]

N
0 � let z = M3

in let y = A0

in let x = E1[y]

in E0[x]

M � let x = let y = let z = M3

in A0

in E1[y]

in E0[x]

N � let y = let z = M3

in A0

in let x = E1[y]

in E0[x]

-
let-A n lets-A

-
let-A n lets-A

-
let-A n lets-A

?
lets-A

?
lets-A

Case 1.B.2.a.iii: M0 62 A. Then the standard contraction is clearly internal to M0, and M
0 is

trivially constructed.

Case 1.B.2.b: (6 9E1)M1 � E1[y]. Trivially, the standard redex is a subterm of M0, and we have

the result by a simple diagram chase.

Case 1.B.3: M1 62 A, (6 9E)M2 � E[x]. As in Case 1.B.1 of Lemma A.24.

Case 1.C: hM;Ni 2 let-C n lets-C. As in Case 1.C of Lemma A.24.

Case 1.D: hM;Ni 2 let-GC. So M � let x =M0 in N , x 62 fv(N), and M 0 � let x =M0 in N 0.

Case 2: hM;Ni 62 �let n �lets .

Case 2.A: hN;N 0i 2 lets-A. So N � let x = let y = N0 in A in E[x], and we distinguish two

cases:

Case 2.A.1: M � let x = (let z = (let y =M0 in M1) in A) in E[x], and

hlet z = (let y =M0 in M1) in A; let y = N0 in Ai 2 let-A n lets-A :

Case 2.A.2: Otherwise, the non-standard redex is internal, and produces N0, A or E[x], and in

either case we have the result by a simple diagram chase.

Case 2.B: hN;N 0i 62 lets-A. As in Case 2.B of Lemma A.23.

2

Corollary A.26.

M N

M
0

N
0

-
�let n �lets

-

?

lets-fV,Ag

..

.

..

.

..

.?

lets-fV,Ag

?
.-
�let n �lets

-

Proof: By induction over the length of the reduction sequence from M to N . 2

Lemma A.27. Let M �������!
�letn�lets

N �����!
lets-C

N
0. Then one of the following must be true:

1. There exists some term M
0 such that

M �����!
lets-C

!M
0 �������!

�letn�lets

! N
0
:

29

2. There exists terms M 0 and N 00 such that both

M �����!
lets-C

M
0 �������!

�letn�lets

N
00

and

N
0 �����!

lets-C
N

00

:

Proof: By several case analyses:

Case 1: hM;Ni 2 �
let

n �
lets

. The subcases are as in the previous proofs:

Case 1.A: hM;Ni 2 let-V n lets-V. So

M � let x = V in C[x] ;

N � let x = V in C[V] ;

where C is not an evaluation context. As in case 1.A, Lemma A.23, with N 0 � N
00.

Case 1.B: hM;Ni 2 let-A n lets-A. So

M � let x = (let y =M0 in M1) in M2 ;

N � let y =M0 in let x =M1 in M2 ;

where M is not a standard redex. We again have three cases about the non-standardness ofM 's

contraction. As in Case 1.B of Lemma A.24, with N
0 � N

00.

Case 1.C: hM;Ni 2 let-C n lets-C. So

M � (let x =M0 in M1)M2; M1 62 A

N � let x =M0 in M1 M2 :

Note that we cannot have hM1 M2; N0i 2 lets-C, since M1 62 A. So the standard redex must be

within M1, M1 �����!lets-C
N1, M

00 � (let x =M0 in N1)M2. If we have N1 2 A, then M
00 �����!

lets-C

M
0 � N

0; otherwise M 00 �M
0 ���������!

let-Cnlets-C
N

0 � N
00.

Case 1.D: hM;Ni 2 let-GC. So M � let x =M0 in N , x 62 fv(N), and M
0 � let x =M0 in N

0,

N
0 � N

00.

Case 2: hM;Ni 62 �let n �let
s

.

Case 2.A: hN;N 0i 2 lets-C. So N � N1N2, N1 � let x = N3 in A and N 0 � let x = N3 in AN2.

Case 2.A.1: M � N1 N0, N0 �������!
�letn�lets

N2. Trivial; we have M
0 � let x = N3 in AN0 and

N
0 � N

00.

Case 2.A.2: M � N4 N2, N4 �������!�letn�lets

N1. To this point we have

N4N2 �M N � N1N2

N
0 � let x = N3

in AN2

(let x = N3

in A)N2

-
�let n �lets

?

lets-C

6
?
�

30

We have two cases depending on whether N4 is itself the contractum.

Case 2.A.2.a: hN4; N1i 2 �let n �let
s

. By analysis of the speci�c form of reduction. Note that

we cannot have hN4; N1i 2 let-I n lets-I; such would be a standard redex. We also cannot have

hN4; N1i 2 let-C n lets-C since N1 would not be an answer, and hence hN;N 0i not a standard

redex.

Case 2.A.2.a.i: hN4; N1i 2 let-V n lets-V. So N4 � let x = N3 in A0 (we have A0 2 A by Lem-

ma A.22) and A0 ����������!let-Vnlets-V
A; then:

M � N4N2 �����!lets-C
M

0 � let x = N3 in A0 N2 ����������!let-Vnlets-V
N

00 � N
0

:

Case 2.A.2.a.ii: hN4; N1i 2 let-A n lets-A. So we have

A � let y = M6

in A0

N4 � let y = let x = N3 in M6

in A0

;

and then
M � (let y = let x = N3 in M6

in A0)N2

N � (let x = N3

in let y = M6

in A0)N2

N
0 � let x = N3

in (let y = M6

in A0)N2

N
00 � let x = N3

in let y = M6

in A0 N2

M
0 � let y = let x = N3 in M6

in A0 N2

-
let-A n lets-A

-
let-A n lets-A

?
lets-C

?
lets-C?

lets-C

Case 2.A.2.a.iii: hN4; N1i 2 let-GC. So N4 � let y =M7 in N1. Expanding terms, we have:

M � (let y = M7

in let x = N3

in A)N2

N � (let x = N3

in A)N2

M
00 � let y = M7

in (let x = N3

in A)N2

M
0 � let y = M7

in let x = N3

in AN2

N
00 � N

0 � let x = N3

in AN2

-
let-GC

-
let-GC

?
lets-C

?
lets-C ?

lets-C

31

Case 2.A.2.b: hN4; N1i 62 �
let

n �
lets

. So N4 � let x = N5 in N6 where one of the following is

true:

Case 2.A.2.b.i: N5 �������!�letn�let
s

N3 and N6 � A. Trivially, M 0 � let x = N5 in (AN2), N
0 � N

00.

Case 2.A.2.b.ii: N6 �������!�letn�lets

A and N3 � N5. Then by Lemma A.22, N6 2 A, and we have

M
0 � let x = N3 in (N6N2), N

0 � N
00.

Case 2.B: hN;N 0i 62 lets-C. We have N 0 � N
00, with two possible cases for the structure of M

as in Case 2.B of Lemma A.23.

2

Corollary A.28.

M N

M
0

N
0

N
00

-
�let n �lets

-

?

lets-C

.

.

.

.

.

.

.

.

.?

lets-C

?
.
.
.
.
.
.
.
.
.?

lets-C

?

.............R
�let n �lets

R

Proof: By induction on the length of the reduction sequence from M to N . 2

Corollary A.29.

M

M0

N

M
0

N
0

-
�let n �lets

-

?

lets-I

.

.

.

.

.?
lets-C

?
.
.
..
.?
lets-I

?
.-
�let n �lets

- ;

with M0 6�M
0.

Proof: Since the sequence of lets-C-reductions is necessarily followed by at least one lets-I-

contraction, we have an automatic upper limit on the length of the N 0 ! N
00 sequence which

Corollary A.28 does not explicity limit. 2

A.2.3 Main Standardization Lemmas

Lemma A.30. For N 0 6����!
�lets

,

M N

M
0

N
0 6����!

�let
s

-
�let n �lets

-

?

�lets

.

..

.

..

.

..?

�lets

?
.-
�let n �lets

-

32

Proof: Follows from Corollary A.26, Corollary A.28 and Corollary A.29. We need not worry

about a trailing lets-C-sequence since we know N
0 to be in �let

s

-normal form. 2

Lemma A.31. For N 0 6����!
�let

s

,

M N

M
0

N
0 6����!

�lets

-
�let n �lets

-

?

�lets

?

.

.

.

.

.

.

.

.

.?

�lets

?
.-
�let n �lets

-

Proof: By induction on the length of the reduction sequence from N to N 0. The base case is

Lemma A.30; the inductive case has

N ����!
�lets

N0 ����!�lets

! N
0

then based on the speci�c sort of contraction from N to N0 we use either Corollary A.29,

Corollary A.26 or Corollary A.28. The third case requires a partition of the N0 ����!
�let

s

! N
0

sequence into N0 ����!
�let

s

! N
0

0 ����!
�let

s

! N
0: The �rst half of the partition is that required as the

trailing lets-C-sequence, and is thus resolved; the inductive step is on N
0

0 ����!�let
s

! N
0 only. 2

Lemma A.32. For N 6����!
�let

s

,

M

N 6����!
�lets

9M 0

?

�let

?

.j�letsj
.......� �let n �lets�

:

Proof: Any reduction M ���!
�let

N can be written as

M �������!
�letn�lets

!M1;0 ����!�lets

!M1;1

�������!
�letn�lets

!M2;0 ����!�let
s

!M2;1

...

�������!
�letn�let

s

!Mn;0 ����!�let
s

!Mn;1 � N :

So the result follows from Lemma A.31 by induction on n. 2

Theorem A.33, SR(�let). �lets is a standard reduction relation for �let:

M ���!
�let

A =) (9A0)M ����!
�lets

A
0

:

Proof: By Lemma A.21 we know that A is a �lets
-normal form. So by Lemma A.32 we have

M
0,

M ����!
�lets

! M
0 �������!

�letn�let
s

! A :

Then by Lemma A.22, M 0
2 A. 2

33

A.3 Uniform Monotonicity of Standard Call-by-Name Reduc-

tion

This appendix proves a property of call-by-name �-calculus, namely that �-reduction does not

increase the length of a standard reduction sequence from a term to an answer.

Notation Let �!
s

be head reduction in call-by-name �-calculus and let �!
i
denote reduction

of a non-head redex, i.e. �!
i
[�!

s
=��!

�
. Furthermore, M ��!

i;1
N means that we have not only

� :M �!
i
N , but also some collection of redexes F contained in M such that � : (M;F)!!cpl

N .

If ! is some reduction relation, we writeM !n
N to express thatM reduces in at most n steps

to N .

Lemma A.34.

M

N 9N 0

M
0-

s

?

i; 1

?

.

.

.

.

.

.

.

.

.?

i

?
.-

s
:

Proof: Take � :M
�
!s M

0 and � : (M;F)!!cpl
i
N . By Lemma 11.4.3 (ii) of Barendregt, �

�
= f�0g,

where �0 is the head redex of N ; take N1 such that N
�

0

�!s N1. Also, by Lemma 11.4.3 (iii) of

Barendregt, every �i 2
F

�
is an internal redex of N ; take N2 such that (M 0

;
F

�
)!!cpl

i
N2. Now we

have that both

�
0 :M

F

!!1;i N

�

�
�! N1

and

�
0 :M

�
�!s M

0

F

�
!! N2

are complete developments of (M;F [f�g), so by FD N
0 � N1 � N2. 2

Corollary A.35.

M

N 9N 0

M
0-

s

?

i

.

..

..

.

..

.?

i

?
.-

s
:

Proof: Follows from Lemma A.34 since

M
�
�!i N =) (M; f�g)!!cpl

i
N :

2

34

Proposition 5.7 Let M;N 2 �, such that � ` M !! N and � ` M �!
s

n
A, for some answer

A, n � 0. Then N �!
s

n
A
0 for some answer A0.

Proof: We use an induction on n. If n = 0, we have M � A!! N . By the de�nition of answers

A is an abstraction. Hence N is also an abstraction and therefore an answer.

For the inductive step assume M �!
s
M

0 �!
s

n�1
A and M !! N . We use an induction on the

length m of reduction from M to N .

If m = 0, the proposition follows immediately. Otherwise let N 0 be such thatM ! N
0 !m�1

N . If M �!
s
M

0, it follows that N 0 �M
0 since standard reduction is deterministic. By the outer

induction hypothesis, N 0 �!
s

n�1
A
0, for some answer A0. Then, by the inner induction hypothesis,

N �!
s

n�1
A
0.

On the other hand, if not M �!
s
N

0, it must hold that M �!
i
N

0. By Corollary A.35, there

is an N
00 such that N 0 �!

s
N

00 and M
0 �!

i
! N

00. By the outer induction hypothesis there is an

answer A0 such that N 00 �!
s

n�1
A
0. Hence, N 0 �!

s

n
A
0, and, by the inner induction hypothesis,

N �!
s

n
A
0. 2

35

