
Proving WAM Compiler Correctness

P.H.Schmitt

January 9, 1995

Abstract

In this note we analyse the proof of compiler correctness of the

WAM given in the paper [B�orger and Rosenzweig 92] with regard to

the question how it could be assisted by an automated theorem prover.

We will give further details of the proof methodology and present the

proof obligations in a form that is amenable to automated deduction

systems.

1 Introduction

The investigations reported in this note were triggered by the discussions

within the nationwide project Deduktion of the DFG on challenge problems

that could be used to evaluate the various theorem provers, that have been

used and developped within the project. One suggestion that received some

attention was the formal veri�cation of the correctness of a Prolog compi-

ler described in [B�orger and Rosenzweig 92]. In this paper the authors start

from a formal speci�cation of Prolog using the familiar computation tree

model and arrive after successive re�nement steps at a formal description of

Prolog at the Warren abstract machine (WAM) level. All speci�cations are

formalized using evolving algebras and proved correct with respect to the

previous level.

As was to be expected additional e�ort had to be invested to transform the

mathematical correctness proofs given in [B�orger and Rosenzweig 92] into so-

mething that could be handled by an automated or semi-automated theorem

prover. We only consider the �rst, and comparatively simple, step in the

series of succesive re�nements of the Prolog tree model hoping that the fol-

lowing steps will be easier once the pattern to follow is understood. We will

give further details of the proof methodology, taking over where the discus-

sion in section 5 of [B�orger and Rosenzweig 92] ends, and present the proof

obligations in a form that is amenable to automated deduction systems.

1

We assume familiarity with the method of evolving algebras, see e.g.

[Gurevich 93] and with the paper [B�orger and Rosenzweig 92], though we

will repeat most of the relevant data. This paper may be retrieved via ftp

from apollo.di.unipi.it:pub/Papers/boerger

where also other papers related to evolving algebras may be found.

In section 2 and 3 we review the evolving algebras for the top level speci�-

cation and for the �rst re�nement. In section 4 the goals to be proved and

our way to atack this task are precisely stated and complete proofs for all

proof obligations are given using usual mathematical reasoning, maybe we

are a little more �ne grained than usual. In section 5 we analyse the proofs

of the preceding section and point out the potentials of automated or semi-

automated reasoning and possible di�culties. In section 6 we sum up our

assessment of the feasability of the challenge problem. The investigations of

this note have been continued in the study project [Oel 94] where the theorem

prover 3T
AP has been used to establish most of the proofs done here with pa-

per and pencil automatically. Work continues. The relationship between the

notion of correctness used in [B�orger and Rosenzweig 92] and the tradional

concept of a correct compiler is delineated in [Beckert, H�ahnle 94]. E�orts to

use the interactive theorem prover KIV to �nd the above mentioned proofs

are underway.

2 Evolving Algebra P1

2.1 Signature

Principal Universes

name de�nition meaning

NODE basic node of computation tree

LIT basic literals

TERM basic Prolog terms

CLAUSE basic Prolog clauses

SUBST basic substitutions

CODE basic program lines

PROGRAM basic program

GOAL TERM� Prolog goals

DECGOAL GOAL�NODE decorated goals, i.e. goal plus

cutpoint information
MODE fCall; Selectg modes

The only universe that gets updated during evaluation of the rules is NODE.

We say that NODE is a dynamic universe, while all others are called static.

2

Auxiliary Universes

name de�nition meaning

IN basic natural numbers

BOOL basic Boolean thruth values

SPECIAL basic universe for various special

constants
STOPMODE f0; 1;�1g stop modes

All auxiliary universes are static.

We distinguish between functions and constants that are essential for

understanding the present rule system, these we call principal, and those

that are only auxiliary. Among the �rst group we distinguish those that get

updated during the evaluation of the rule system and those that don�t. The

former we call dynamic the latter static for the rule system P1.

Dynamic principal functions

name signatur meaning

currnode NODE current node

father NODE ! NODE yields father of a node.

Not de�ned on argument

root
decglseq NODE ! DECGOAL� associates with a node

in the computation tree

the list of decorated goals

still to be solved
s NODE ! SUBST substitution accumula-

ted upto a given node
cands NODE ! NODE� list of sons of a node that

still have to be conside-

red
cll NODE ! CODE clause line,

mode MODE active mode of computation

stop STOPMODE stop = 1

signi�es successful termi-

nation, stop = �1 signi-

�es termination with fai-

lure, stop = 0 still wor-

king
vi IN renaming level

3

Static principal functions

name signatur meaning

root NODE root of computation tree

procdef LIT � PROGRAM ! CODE� yields the procedure de�-

nition of a literal in a gi-

ven program
clause CODE ! CLAUSE clause(m) is the clause at

program line m
unify TERM � TERM !

SUBST [fnilg

uni�er of two terms

nil SPECIAL special constant, used to

signify failure of uni�ca-

tion
subres DECGOAL� � SUBST

! DECGOAL�
subres(G; s) is obtained

by applying substitution

s to G
db PROGRAM database of the Prolog

program

The meaning the following rule system does of course strongly de-

pend on the properties of the uninterpreted function procdef ; we refer to

[B�orger and Rosenzweig 92] for further details.

4

Auxiliary functions

name signatur meaning

[] X empty list for any sort X

rest X� ! X� tail of a list for any sort X. Not

de�ned on argument []
fst X� ! X �rst element of a list. Not de�ned

on argument []
[j] X �X� ! X� [a j L] is the list obtained from L

by adding a as the new top ele-

ment
length X� ! IN length of a list for arbitrary sort

X
proj X� � IN ! X proj(L; i) = i-th element of list L

fst X2 ! X projection on the �rst element of

a pair
snd X2 ! X projection on the second element

of a pair
<;> X �X ! X2 forms a pair out of two elements

hd CLAUSE ! LIT head of a clause

bdy CLAUSE ! LIT � body of a clause

rename CLAUSE � IN ! CLAUSE renaming of a Prolog

term at a given renaming

level
+ IN � IN ! IN addition of natural numbers

is user defined TERM ! BOOL yields "true" for user de�ned pre-

dicate

2.2 Rules

In the formulation of the following rules we will use the following abbrevia-

tions (see �gure 1):

father � father(currnode)

cands � cands(currnode)

s � s(currnode)

decglseq � decglseq(currnode)

goal � fst(fst(decglseq))

cutpt � snd(fst(decglseq))

act � fst(goal)

cont � [< rest(goal); cutpt >j rest(decglseq)]

5

decglseq = h h h

act

z}|{

g1;1; g2;1; : : : ; g1;k1i
| {z }

goal

;

cutpt

z}|{

n1 i; : : : ; hhgq;1; : : : ; g1;kq i; nqii

cont = h h hg2;1; : : : ; g1;k1i; n1i; : : : ; hhgq;1; : : : ; g1;kqi; nqii

Figure 1: Visualizing the abbreviations

P1-Rule 1 (�nal-success-rule)

IF stop := 0 & decglseq(currnode) = []

THEN stop = 1

P1-Rule 2 (success-rule)

IF stop = 0 & goal = []

THEN decglseq := rest(decglseq)

P1-Rule 3 (call-rule)

IF stop = 0 & is user defined(act) & mode = Call

THEN

LET n = length(procdef(act; db))

EXTEND NODE by temp1; : : : ; tempn
WITH

father(tempi) := currnode

cll(tempi) := proj(procdef(act; db); i)

cands := [temp1; : : : ; tempn]

ENDEXTEND

mode := Select

P1-Rule 4 (select-rule)

IF stop = 0 & is user defined(act) & mode = Select

THENIF cands = []

THEN backtrack

ELSE LET clause = rename(clause(cll(fst(cands))); vi)

LET unify = unify(act; hd(clause))

IF unify = nil

THEN cands := rest(cands)

ELSE currnode := fst(cands)

6

decglseq(fst(cands)) :=

subres([< bdy(clause); father >j cont]; unify)

s(fst(cands)) := s � unify

cands := rest(cands)

mode := Call

vi := vi+ 1

where

backtrack � IF father = root

THEN stop := �1

ELSE currnode := father

mode := Select

P1-Rule 5 (cut-rule)

IF stop = 0 & act =!

THEN father := cutpt

decglseq := cont

2.3 Initial P1-algebra

We start with a given prolog program program and a goal goal. We will

denote the initial P1-algebra by A0

1. It su�ces to describe the dynamic

universes and functions of A0

1
.

The universe NODE of A0

1
consists of two elements:

NODE = fn0; n1g

function value

root n0
currnode n1

father(n1) n0

decglseq(n1) [< goal; n0 >]

s(n1) []

vi 0

stop 0

mode Call

db program

For arguments not mentioned in this table functions are unde�ned.

7

3 Evolving Algebra P2

The representation of the Prolog interpreter by the rule system P2 deviates

from P1-System essentially in two points.

First the new system does no longer contain the constant currnode. The

former functions values f(currnode) are now stored so to speak in a separate

register and named by the corresponding constants f .

More substantial are the changes inthe division of labour between rule 3 and

rule 4 in both systems. A synopsis is depicted in �gure 2.

3.1 Signature

Principal Universes

name de�nition meaning

STATE basic node of computation tree

LIT basic literals

TERM basic Prolog terms

CLAUSE basic Prolog clauses

SUBST basic substitutions

CODEAREA basic program lines

PROGRAM basic program

GOAL TERM� Prolog goals

DECGOAL GOAL � STATE decorated goals, i.e. goal plus

cutpoint information
MODE fCall; Selectg modes

vi IN renaming level

STATE is the only dynamic universe.

All auxiliary universes remain unchanged.

8

P1 P2

� �

� �

mode = Call 6 mode = Call 6

rule 3 rule 3

� �

� �

mode = Select 6

7 8 9

cl
l
=
2
1

cl
l
=
2
2

cl
l
=
2
3

mode = Select 6

procdef

db:

1.

2.

�

�

21.

22.

23.

procdef

db:

1.

2.

�

�

21.

22.

23.

rule 4 rule 4

6

7 8 9

6

7

Figure 2: Comparing P1 and P2

9

Dynamic principal functions

name signatur meaning

b STATE father of current state

b STATE ! STATE yields father of a state.

Not de�ned on argument

bottom
decglseq STATE ! DECGOAL� associatesd with a state

in the computation tree

the list of decorated goals

still to be solved
decglseq DECGOAL� decorated goal of current

state
s STATE ! SUBST substitution accumula-

ted upto a given state
s SUBST substitution of current

state
cll CODEAREA clause line of current

state
cll STATE ! CODEAREA cll(n) is clause line for

node n
mode MODE active mode of computation

stop STOPMODE stop = 1

signi�es successful termi-

nation, stop = �1 signi-

�es termination with fai-

lure, stop = 0 still wor-

king
vi IN renaming level

10

Static principal functions

name signatur meaning

bottom STATE bottom of computation tree

procdef LIT � PROGRAM ! CODEAREA yields the procedure de�-

nition of a literal in a gi-

ven program
clause CODEAREA ! CLAUSE [fnilg clause(m) is the clause at

program line m
unify TERM � TERM ! SUBST [fnilg uni�er of two terms

nil SPECIAL special constant, used to

signify failure of uni�ca-

tion or end of list
subres DECGOAL� � SUBST

! DECGOAL�
subres(G; s) is obtained

by applying substitution

s to G
+ CODEAREA ! CODEAREA successor function on the

universe CODEAREA
db PROGRAM database of the Prolog

program

Though we did use the same name for it the meaning of the function

procdef in P1-algebras is di�erent from its meaning in P2-algebras, as can

already be seen from the di�erent type declarations. Since procdef is in

both cases an uninterpreted function we have to explicitely state a connec-

tion between both meanings if we want to get any reasonable correspondance

between P1- and P2-algebras at all. For the convenience of the reader we re-

call from [B�orger and Rosenzweig 92]:

clls(Ptr) = IF clause(Ptr) = nil

THEN []

ELSE [Ptr j clls(Ptr+)]

For any P1-algebra A and any P2-algebra B we stipulate

A(procdef(L; db)) = B(clls(procdef(L; db))

3.2 Rules

This time the following abbreviations will su�ce:

11

goal � fst(fst(decglseq))

cutpt � snd(fst(decglseq))

act � fst(goal)

cont � [< rest(goal); cutpt >j rest(decglseq)]

P2-Rule 1 (�nal-success-rule)

IF stop = 0 & decglseq = []

THEN stop := 1

P2-Rule 2 (success-rule)

IF stop = 0 & goal = []

THEN decglseq := rest(decglseq)

P2-Rule 3 (call-rule)

IF stop = 0 & is user defined(act) & mode = Call

THEN cll := procdef(act; db)

mode := Select

P2-Rule 4 (select-rule)

IF stop = 0 & is user defined(act) & mode = Select

THENIF clause(cll) = nil

THEN backtrack

ELSE LET clause = rename(clause(cll); vi)

LET unify = unify(act; hd(clause))

IF unify = nil

THEN cll := cll+

ELSE EXTEND STATE BY temp with

b := temp

b(temp) := b

decglseq(temp) := decglseq

s(temp) := s

cll(temp) := cll+

ENDEXTEND

decglseq := subres([< bdy(clause); b >j cont]; unify)

s := s � unify

mode := Call

vi := vi+ 1

where

12

backtrack � IF b = bottom

THEN stop := �1

ELSE decglseq := decglseq(b)

s := s(b)

b := b(b)

cll := cll(b)

mode := Select

P2-Rule 5 (cut-rule)

IF stop = 0 & act =!

THEN b := cutpt

decglseq := cont

3.3 Initial P2-algebra

The initial P2-algebra will be denoted by A0

2
.

The universe STATE of A0

2
consists of one element:

STATE = fn0g

Furthermore CODEAREA = CODE [fleg for a new line le with

clause(le) = nil.

function value

bottom n0
b n0

decglseq [< goal; n0 >]

s []

vi 0

stop 0

mode Call

db program

4 The Proof Task

4.1 General Set-up

We assume that parameters program and goal are given.

A sequence of P1-algebras A
0
1;A

1
1; : : : ;A

n

1 is called a P1-sequence if for every

13

0 < i � n there is a P1-rule R, such that Ai

1
results from Ai�1

1 by application

of rule R.

A P1-algebra A is called reachable , or more precisely P1-reachable, if

there is a P1-sequence A
0

1
;A1

1
; : : : ;An

1
with A = An

1
.

De�nition 1 (Correct re�nement)

We call P2 a correct re�nement of P1 if

1. whenever there is a terminating P1-sequence

A0

1; : : : ;A
n

1

there is also a terminating P2-sequence

A0

2; : : : ;A
m

2 ,

not necessarily of the same length, such that

An

2
(stop) = Am

1
(stop)

An

2(s) = Am

1 (s(currstate))

2. if there is no terminating P1-sequence starting in A
0

1, then there is also

no terminating P2-sequence starting in A0

2

Since the evolving algebras considered here are deterministic this de�nition

reduces to:

De�nition 2 (Correct re�nement, deterministic case)

We call P2 a correct re�nement of P1 if

1. whenever the P1-computation

A0

1; : : : ;A
n

1

terminates, then also the P2-computation

A0

2
; : : : ;Am

2
,

terminates, not necessarily after the same number of steps, such that

An

2(stop) = Am

1 (stop)

An

2(s) = Am

1 (s(currstate))

2. if the P1-computation starting in A0

1
does not terminate then also the

P2-computation starting in A0

2 does not terminate.

The relation between two successive levels of re�nement may be as compli-

cated as possible. Here, passing from P1 to P2, we face a relatively simple

case. Ler us give at this point a few hints on the general situation.

The signatures of the two levels to be compared need not, and will in general

not be, the same. A constant that is named nil in the �st algebra might be

named bottom in the second and only the person who devised the algebras

14

know this. As an example in our case the constant stop in the signature of

P2 plays the same role as the function value stop(currnode) in P1. There

may also be function names that occur in both signatures but have di�e-

rent meaning, this is the case with the function procdef in our example. A

function f at the �rst level might correspond to a complicated algorithm

using the functions of the second level. Evolving algebra speci�cations will

usually also contain uninterpreted functions, like procdef in our example.

It may also happen that an uninterpreted function symbol at the �rst level

is replaced by a combination of other uninterpreted functions on the next

level. In general we need some way to associate with every epression of the

�rst level a syntactic entity of the next re�nement level. We do not make

this correspondance explicit in the treatment of P1 and P2, since it is of only

moderate complexity. It is nevertheless implicitely present when we speak

e.g. of s in P2-algebras and of s(currnode) in P1-algebras.

The correspondance between the start algebras of both levels is again very

simple in our case, since both depend only on the parameters db and goal

and both are not a�ected by the re�nement step. This may be di�erent in

general. On the re�ned level there may occur start algebras, that cannot

be obtained as re�nements of a start algebra on the abstract level. This

will then lead to a more careful de�nition of the concept of a correct re�ne-

ment. The ideas that lead to a particular re�nement will most precisely be

decsribed by mapping F from algebras from the second level to algebras on

the �rst level. In case P2 is a correct re�nement ofP1 if and only if P1 is a

correct re�nement of P2. this is a consequence of the deterministic nature of

the aevolving lgebras involved and the simple correspondance between start

algebras. In such cases it would also be possible to consider a mapping G

from P1-algebras to P2-algebras and it is a matter of taste which one to prefer.

4.2 De�nition of F

In the case at hand we de�ne a mapping F , that maps every reachable P2-

algebra into a P1-algebra such that

1. F is de�ned on the initial algebra A0

2 and F(A
0

2) = A0

1

2. for every pair A,B of reachable P2-algebras, such that B results from

A by an application of P2-Rule k also F(B) results from F(A) by an

application of P1-Rule k. See �gure 3.

3. If F is de�ned on the P2-algebra A then

A(stop) = (F(A))(stop)

15

An

2
An+1

2

An

1
An+1

1

P2-rule k

P1-rule k

F F

Figure 3: The mapping F

and

A(s) = (F(A))(s(currnode))

Sometimes there may be an easy de�nition for F , but this time there is

not. The reference [B�orger and Rosenzweig 92] gives all the necessary hints

but no explicit de�nition of F . If one tries to do this one inevitably ends up

with an inductive de�nition of F(A. We will de�ne F by induction on the

number of rule applications, i.e. part 2 of the above requirements is changed

to 2�:

for every pair A,B of reachable P2-algebras, such that B results from A

by an application of P2-Rule k and F(A) is already de�ned, there is also

a P1-algebra F(B) such that F(B) results from F(A) by an application of

P2-Rule k.

The static universes and functions will be identical with the exceptions

already mentioned above

A(CODEAREA) = (F(A))(CODE) [fleg

for one new line le with clause(le) = nil and

(F(A))(procdef(L; db)) = A(clls(procdef(L; db))

There will furthermore be an auxiliary function

F : STATE ! NODE

16

as part of the de�nition for F .

We repeat for the convenience of the reader the de�nition of clls:

clls(Ptr) = IF clause(Ptr) = nil

THEN []

ELSE [Ptr j clls(Ptr+)]

We furthermore need as an auxiliary function mapcll informally de�nied by:

mapcll([n1; : : : ; nk]) = [cll(n1); : : : ; cll(nk)]

For the induction step to work we have to replace the requirement 3 by

the following stronger version 3�:

1. A(stop) = (F(A))(stop)

2. A(mode) = (F(A))(mode)

3. A(s) = (F(A))(s(currnode))

4. F (A(bottom)) = (F(A))(root)

5. F (A(b)) = (F(A))(father(currnode))

6. F (A(decglseq)) = (F(A))(decglseq(currnode))

7. A(vi) = (F(A))(vi)

8. clls(A(cll)) = mapcll((F(A))(cands(currnode)))

9. (A(s))(n) = (F(A)(s))(F (n))

10. F ((A(b))(n)) = (F(A)(father))(F (n))

11. F ((A(decglseq))(n)) = (F(A)(decglseq))(F (n))

12. clls((A(cll))(n)) = mapcll((F(A)(cands))(F (n)))

The parameters n and m occuring in this list range over all elements in

the universe A(STATE). Since decorated goal sequences contain references

to nodes , respectively states, the function F must be applied to them. F (G)

for G 2 DECGOAL is de�ned as one would expect:

F ([]) = []

F ([< L;n >j T]) = [< L;F (n) >j F (T)]

17

4.3 The Proofs

We start the inductive proof by observing that F(A0

2
) = A0

1
with F (n0) = n0

satis�es all requirements.

As the �rst induction step consider two P2-algebras A and B, such that

B results from A by an application of P2-rule 1. Thus

A(decglseq) = []

Also assume that F(A) is already de�ned and satis�es all the above requi-

rements, in particular we by 3�(6)

F (A(decglseq)) = (F(A))(decglseq(currnode))

This shows that P1-rule 1 is applicable to F(A). The resulting P1-algebra

will be used as F(B). It is almost obvious that B and F(B) satisfy all

requirements.

The case that B results fromA by P2-rule 2 or 5 is treated in the same way.

In the latter case we use the equality (F(A))(father(currnode)) = A(b).

As the next case assume that B results fromA by P2-rule 3. Since the sta-

tic function is user defined is interpreted in all P1- and all P2-algebras in the

same way and since A(stop) = (F(A))(stop) and A(mode) = (F(A))(mode)

we see that P1-rule 3 is also applicable to F(A). As agreed above we take

F(B) to be the algebra that arises from applying P1-rule 3 to F(A). It

remains to show that the pair B and F(B) satis�es all the requirements of

3�. This is trivial for 3�(2). Since F(B)(cands(currnode)) has received a

new value also 3�(8) needs checking.

mapcll((F(B))(cands(currnode)))

= (F(A)(procdef(act; db)) P1-rule 3

= clls(A(procdef(act; db))) global

= clls(B(cll)) P2-rule 3

All remaining parts of 3� are satis�ed since no other function has been

changed.

As the next case assume that B results from A by P2-rule 4. It is easy to

see that P1-rule 4 is also applicable to F(A). Let F(B) be the algebra that

arises from F(A) by application of P1-rule 4.

As subcase 4.1 let us assume that A(cll) = nil and therefore B is

obtained by performing the P2� backtrack transition. Considering the equi-

valences

18

A(cll) = nil

i� clls(A(cll)) = [] def. of clls

i� mapcll(F(A))(cands(currnode))) = [] 3�(8)

i� (F(A))(cands(currnode)) = [] def. of mapcll

we see that also F(B) arises from F(A) by performing the corresponding

P1 � backtrack transition. Inspection of the rules shows that the following

functions (may) have changed:
for P2 decglseq,s,b,cll,mode,stop

for P1 stop,mode,currnode
All conditions from 3� that contain one of these functions have to be

checked. These are 3� (1), (2), (3), (5), (6).

Veri�cation of 3�(1), (2) is simple.

Veri�cation of 3�(3):

B(s)

= A(s(b)) P2 � backtrack

= (F(A))(s(F (b)) 3�(9)

= (F(A))(s(father(currnode)) 3�(5)

= (F(B))(s(currnode)) P1 � backtrack

Veri�cation of 3�(5):

F (B(b))

= F (A(b(b))) P2 � backtrack

= (F(A))(father(F (b)) 3�(10)

= (F(A))(father(father(currnode)) 3�(5)

= (F(B))(father(currnode) P1 � backtrack

Veri�cation of 3�(6):

F (B(decglseq))

= F (A(decglseq(b))) P2 � backtrack

= (F(A))(decglseq(F (b))) 3�(11)

= (F(A))(decglseq(father(currnode))) 3�(5)

= (F(B))(decglseq(currnode)) P1 � backtrack

19

Now consider subcase 4.2 in the application of the P2-rule 4 to A. Our

�rst objective is to show that the local designator "clause" used in both the

P2- and the P1-rule satis�es A(clause) = F(A)(clause). For this it su�ces

to show

A(cll) = F(A)(cll(fst(cands))):

This is proved as follows:

F(A)(cll(fst(cands(currnode))))

= fst(mapcll(F(A)(cands(currnode)))) fact

= fst(clls(A(cll))) 3�(8)

= A(cll) fact

For greater clarity we state the used facts once again seperately. They involve

only static functions:

cll(fst(X)) = fst(mapcll(X))

fst(clls(P)) = P

Subcase 4.2 splits again into two subcases depending on wether

A(unify) = nil or not. In the �rst case, 4.2.1, the functions cll (in P2)

and cands(currnode) (in P2) may have changed. We need thus to check

3�(8) for F(B) and B.

clls(B(cll))

= clls(A(cll)+) P2-rule 4

= rest(clls(A(cll))) fact

= rest(mapcll(F(A)(cands(currnode))) 3�(8)

= mapcll(F(A)(rest(cands(currnode)))) fact P2-rule 3

= mapcll(F(B)(cands(currnode))) P1-rule 4

In the second subcase, 4.2.2, the following functions may have changed:
for P2 decglseq,s,b,mode,vi,decglseq(temp),s(temp),b(temp); cll(temp)

for P1 mode,currnode,decglseq,cands,vi
which requires veri�cation of the following parts of 3�:

(2),(3),(5),(6),(7),(9).

20

Since B(STATE) = A(STATE) [ftempg we also have to extend the

function F . This we do by

F (temp) = father(fst(F(A)(cands(currnode))))

We skip the easy veri�cation of 3�(2)

Veri�cation of 3�(3)

B(s)

= A(s) � unify P2-rule 4

= F(A)(s) � unify 3�(3)

= (F(B)(s))(F(A)(fst(cands(currnode)))) P1-rule 4

= (F(B)(s))(F(B)(currnode)) P1-rule 4

= F(B)(currnode) algebra

Veri�cation of 3�(5)

F (B(b))

= F (temp) P2-rule 4

= F(A)(father(fst(F(A)(cands(currnode)))) def. of F

= F(B)(father(currnode)) P1-rule 4

Veri�cation of 3�(6)

F (B(decglseq))

= F (subres([< bdy(clause);A(b)>j A(cont)]; unify))

P2-rule 4

= subres([< bdy(clause); F (A(b))>j F (A(cont))]; unify)

def. of F

= subres([< bdy(clause);F(A)(father(currnode)) >j F (A(cont))]; unify)

3�(5)

= subres([< bdy(clause);F(A)(father(currnode)) >j F(A)(cont)]; unify)

auxiliary1

= (F(B)(F(decglseq))(F(A)(fst(cands(currnode)))))

P1-rule 4

= (F(B)(decglseq))(F(B)(currnode)))) P1-rule 4

= F(B)(decglseq(currnode)) algebra

21

We did use as an auxiliary equation, auxiliary1:

F (A(cont)) = F(A)(cont)

Here is the veri�cation for it

F (A(cont))

= F (A([< rest(goal); cutpt >j rest(decglseq(currnode))])

def. of cont

= F ([< rest(A(goal));A(cutpt) >j rest(decglseq(currnode))])

algebra

= [< rest(A(goal)); F (A(cutpt))>j F (A(rest(decglseq(currnode))))]

def. of F (list)

[< rest(A(goal));F(A)(cutpt)) >j F (A(rest(decglseq(currnode))))]

auxiliary2

[< rest(A(goal));F(A)(cutpt)) >j F(A)(rest(decglseq(currnode))))]

local ind.hyp.

= F(A)([< rest(A(goal)); cutpt >j rest(decglseq(currnode))])

algebra

= F(A)(cont)

def. of cont

We have used auxiliary2:

F (A(cutpt)) = F(A)(cutpt)

which may be veri�ed as follows:

F (A(cutpt))

= F (A(snd(fst(decglseq)))) def. of cutpt

= snd(fst(F (A(decglseq)))) def.of F (list)

= F(A)(snd(fst(decglseq))) 3�(6)

= F(A)(cutpt) def. of cutpt

We again skip the easy veri�cation of 3�(7).

Veri�cation of 3�(9)

(B(s))(temp)

= A(s) P2-rule 4

22

= F(A)(s(currnode)) 3�(3)

= F(A)(s(father(fst(cands(currnode))))) fact

= (F(B)(s))(F(A)(father(fst(cands(currnode))))) P1-rule 4

= (F(B)(s))(F (temp) def. of F (temp)

Two remarks are necessary on this derivation.

(1) The last but one step, justi�ed by an appeal to P1-rule 4,

is a type of frame axiom. Since we know that in all P1-algebras

for all nodes n father(n) 6= n, we get in particular in F(A) that

father(fst(cands(currnode))) 6= fst(cands(currnode)). The value of

F(B)(s) is

only changed at the argument position F(A)(fst(cands(currnode))). Thus

(F(B)(s))(F(A)(fst(cands(currnode)))) remains unaltered, i.e. is equal to

(F(A)(s))(F(A)(fst(cands(currnode)))).

(2) The fact that is used in the above derivation states that for every

reachable P1-algebra C and all nodes n the following is true:

mode(n) = Select! father(fst(cands(n))) = n

Looking at the rules it is not to di�cult for the human mind to see that it is

true, but it poses additional di�culties for mechanical veri�cation:

� it is for the �rst time a conditional equation instead of simply an equa-

tion.

� it needs proof by induction on the number of transitions neccessary to

reach C from the initial P1-algebra.

� this induction will not be straightforward since in one-step transitions

the premisse of the implication we want to prove, i.e. mode(n) =

Select, is not true in the induction hypothesis.

Veri�cation of 3�(10)

F (B(b)(temp))

= F (A(b)) P2-rule 4

= F(A)(father(currnode)) 3�(5)

= F(A)(father(father(fst(cands(currnode))))) fact

= (F(B)(father))(F(A)(father(fst(cands(currnode)))))

P1-rule 4

= (F(B))(father(F (temp))) def. of F (temp)

23

The fact used is the same as in the previous derivation. The e�ect of P1-

rule 4 concerns again the fact that a function, father in this case, remains

unchanged. We have classi�ed father among the dynamic functions. This

makes sense since father(temp) has to updated for new elements temp 2

NODE. One the other hand this is the only dynamic behaviour for father;

a function value once assigned is never changed again. One could think of

creating a new type of semi-dynamic or extensible functions.

Veri�cation of 3�(11)

F (B(decglseq(temp)))

= F (A(decglseq)) P2-rule 4

= F(A)(decglseq(currnode)) 3�(6)

= (F(A)(decglseq))(F(A)(father(fst(cands(currnode)))))

fact

= (F(B)(decglseq))(F(A)(father(fst(cands(currnode)))))

P1-rule 4

= (F(B)(decglseq))(F (temp)) def. of F (temp)

Again we did use the same fact as in the previous two derivations.

Veri�cation of 3�(12)

clls((B(cll))(temp))

= clls(A(cll+)) P2-rule 4

= rest(clls(A(cll))) fact

= rest(mapcll(F(A)(cands(currnode)))) 3�(8)

= mapcll(F(A)(rest(cands(currnode)))) fact

= mapcll((F(B)(cands))(F(A)(currnode))) P1-rule 4

= mapcll((F(B)(cands))(F (temp))) fact and

def. of F (temp)

The two facts we used here, besides the one that we did already employ in

the previous derivations, are:

rest(clls(P)) = clls(P+)

rest(mapcll(L)) = mapcll(rest(L))

24

5 Analysis

The way to proof completeness and correctness of P2 for P1 presented in the

previous section is not the only one, but it seem to be a very plausible one.

We list the various tasks that have to be solved in a proof of the com-

pleteness of P2 for P1 together with explanations of their complexity and

pecularities.

1. Induction hypothesis:

In the previous section these were listed in 3�. This is hard to automize

and the correct version may only be obtained after some experiments.

In the previous section I had in the beginning additional requirements

� A(cll) = (F(A))(cll(currnode))

� (A(cll))(n) = (F(A)(cll))(F (n))

� A(b)(n) = m i� (F(A))(father(F (n)) = F (m)

which turned out later to be superuous. Also the given from of 3�(8)

and (12) were only obtained at second thought. So one should leave

the task to �nd the appropriate induction hypothesis, at least in the

�rst attempt, totally to the user.

2. De�nition of F :

More precisely, the update of F for fresh elements added to the universe

STATE have to be given. This should be completely done by the user

since it is incorporated in the whole set-up of the re�nement from one

evolving algebra system to another. There is furthermore no unique

choice. In the above case instead of the chosen de�nition

F (temp) = father(fst(F(A)(cands(currnode))))

also

F (temp) = F(A)(currnode)

is possible, with no improvement on the ensuing computations.

3. Control:

The system has to know which induction steps (= transition rules)

have already been treated. Within a transition rule record has to be

kept of various subcases. The task to show equivalence of the test condi-

tions in a transitions rule (IN-conditions) has to be distinguished from

the task of verifying correspondence of the resulting algebras,(OUT-

conditions). Also a possible preprocessing step could be included, that

25

sorts out those induction hypothesis that remain true since they are

not a�ected by a transition step. This task can be completely auto-

mated. It is not clear how much support existing theorem provers and

veri�cation systems provide in this respect. In the worst case it has to

be imnplemented from scratch.

4. Axioms and Rules:

The premisses for logical deduction come from various sources, which

we list below. We have deliberatly mentioned rules in the caption,

since it remains to be decided if a certain piece of information should

be presented as an axiom or as a proof rule. The typical proof situation

comprises four algebras A, B, F(A) and F(B) and statements about

the relationship between interpretations of terms in these algebras.

(a) AXIOMS FROM THE ACTION PART OF TRANSITION RU-

LES

Typical examples are:

B(mode) = Select

F(B)(currnode) = F(A)(fst(cands(currnode)))

Note that a transition rule like

cands(currnode) := rest(cands(currnode))

leads to an axioms of the form:

F(B)(F(A)(currnode)) = F(A)(rest(cands(currnode)))

i.e. argument terms on the left hand side of an assignment are

evaluated in the old algebra. These axioms can in most cases be

easily generated from the transition rules with the possible ex-

ceptions of universe extension rules like the one encountered in

P1-rule 3 above.

A much severe problem concerns the function values that do not

change. It is prohibitive to include them all as axioms. A possible

solution could be to keep a list of function values, that have chan-

ged, and if a term, say (F(B)(s))(F(A)(fst(cands(currnode)))),

is encountered with s(fst(cands(currnode))) not in the list of up-

dated function values in the transition from F(A) to F(B), then

rewriting into (F(A)(s))(F(A)(fst(cands(currnode)))) could be

26

triggered. Notice, that this neccesitates reasoning about inequa-

lity.

(b) AXIOMS ON UNINTERPRETED FUNCTIONS

These obviously have to be supplied by the user, sicne they exist

only in his brain. In the previous section the crucial axiom of this

type was:

C(procdef(L; db)) = A(clls(procdef(L; db))

for any P1-algebra C and any P2-algebra A.

(c) LEMMATA ON DATA STRUCTURES

Typical examples are the facts used above concerning static func-

tions:

cll(fst(X)) = fst(mapcll(X))

fst(clls(P)) = P

rest(clls(P)) = clls(P+)

rest(mapcll(L)) = mapcll(rest(L))

The task is twofold: �rst to �nd out what lemmata would be use-

ful and second to prove that a hypothetical lemma is in fact true.

Typically these equations involve inductively de�ned functions.

Resolution provers like Otter are not very suited for this type of

reasoning, while LIPS- based provers like the Boyer-Moore system

are well adapted.

The �rst subtask will probably be handled best by user interac-

tion. The second subtask could be automated, though it remains

to be seen if this really pays o� given the small number of lemma-

tas needed. In a �rst version one could just through this lemmatas

in as veri�ed truth.

(d) CRUCIAL LEMMATA

P1-algebra C and all nodes n the following is true:

8C8n 2 C(STATE)(mode(n) = Select!

father(fst(cands(n))) = n)

These pose a real challenge, they are hard to �nd and hard to

prove. Others like

27

F (A(cont)) = F(A)(cont)

F (A(cutpt)) = F(A)(cutpt)

are easy to deal with.

(e) ALGEBRA

As an example of what we have in mind consider:

F(A)(decglseq(currnode)) = (F(A)(decglseq))(F(A)(currnode))

Rewritings of this kind are frequently necessary for subsequent

replacment of inner subterms.

Under the same heading come equations like

B(unify(L1; L2)) = A(unify(L1; L2))

for static functions, that cannot be altered, or semi-static functi-

ons like father that can be extended, but altered.

In the derivations of the previous section we have used rewritings

of this kind without mentioning. Since there is, in particular for

larger terms, an abundance of rewritings of this kind possible, they

should be severely controlled. It is not clear at the moment how

di�cult this will be.

(f) EXCEPTIONS

This item is included here to bring to mind the negligence com-

mitted in the previous section: We did not check for exceptional

cases, like unde�ned functions or the occurence of constants nil or

le. Maybe this is trival, maybe one has to invent something new

here.

5. Derivations:

The bulk of reasoning required is reasoning about equalities and, to a

lesser extend, inequalities. This suggest rewriting as a basic technique.

The challenge lies in the control of the derivations. Exhaustive search

seems out of the question. On the other hand the derivations given

in the previous section show a great degree of regularity, the overall

proof pattern is very similar for all steps. So there is hope for a highly

specialized proof tactic.

6. new phenomena:

The analysis given so far is based on the proof step detailed in the

28

previous section. This is only concerned with the �rst and simplest

re�nement step, from the tree model to the stack model. In later

re�nements more di�cult situations occur. One transition rule in the

Pk+1-algebras may then correspond to a sequence of more than one

transition rule in the Pk-algebras. This will require a type of reasoning

completely di�erent from what we have encountered so far. We may

need information on the possible sequences of rule applications, like

after transition rule P1-rule 3 has been applied only application of

P1-rule 4 is possible

after �nitely many successive applications of transition rule P1-rule 4

mode = Call will happen

6 Conclusion

It is possible to built a theorem proving system that supports the proof of

the WAM compiler correctness given in [B�orger and Rosenzweig 92], but the

following cautions have to be clearly stated:

� it will be a huge enterprise, not an application that one does on the

side.

� the theorem proving capabilites required are strongly biased on equa-

tional reasoning and rewriting.

� the theorem proving program proper will be small compared with other

parts of the system.

7 References

[Beckert, H�ahnle 94] Bernhard Beckert, Reiner H�ahnle Proving Compiler

Correctness with Evolving Algebra Speci�cations informal note Institut

f�ur Logik, Komplexit�at und Deduktionssysteme, Fakulkt�at f�ur Informa-

tik, Univerist�at Karlsruhe, Dezember 1994

[B�orger and Rosenzweig 92] Egon B�orger and Dean Rosenzweig. The WAM

- De�nition and Compiler Correctness TR-14/92, Dipartimento di In-

formatica, Universit�a di Pisa, 1992.

29

[B�orger and Rosenzweig 93] Egon B�orger and Dean Rosenzweig. A Mathe-

matical De�nition of Full Prolog to appear in: Science of Computer

Programming

[Gurevich 93] Yuri Gurevich. Evolving Algebras: An Attempt to Discover

Semantics In: Current Trends in Theoretical Computer Science eds.

G. Rozenberg and A. Salomaa, World Scienti�c, 1993, 266{292. A pre-

vious version appeared in the Bulletin of the European Association for

Theoretical Computer Science, no. 43, Feb. 1991, 264{284.

[Oel 94] Peter Oel Machbarkeitsstudie: Einsatz taktischer und automati-

scher Theorembeweiser zur Veri�kation eines Prolog/WAM Compilers

Studienarbeit am Institut f�ur Logik, Komplexit�at und Deduktionssy-

steme, Fakulkt�at f�ur Informatik, Universit�at Karlsruhe, Dezember 1994

30

