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Abstract. The adaptive analysis of structures under transient loading leads to the ques-
tion, which time integration scheme, Finite Elements or Finite Differences, is most fa-
vorably combined with an adaptive spatial FE discretization. In order to judge this, the
properties of different Discontinuous Galerkin and the standard Newmark method are in-
vestigated first, also concerning efficency. In particular, the damping and dispersion effects
are discussed in detail for various types of problems. It must be noted that the type of prob-
lem has to be carefully checked in order to apply the most appropriate and efficient time
integration scheme. It is shown that e.g. for the wave propagation problems the Discon-
tinuous Galerkin method with linear approzimations (DG P1-P1 ) has to be favored when
adaptivity in space is applied. Finally, an adaptive time step modification scheme s pre-
sented and applied to various problems.
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1 Introduction

Complex solid mechanics problems with external time dependent loading and other ex-
citation often require a very high solution effort, and numerical schemes have to be used
for spatial discretization and time integration. As the loading of the different parts of
the structures varies not only within the structure but also with time, adaptive solution
procedures seem to be very attractive to achieve a high efficiency of the solution process
with controlled errors.

The standard schemes for error estimation in FE meshes known from statics cannot be
applied without considering the kinetic and damping effects as well as the time integra-
tion effects. It is particular important to keep in mind that with kinetic effects also many
physical phenomena appear which have to be well represented by the solution methods.

The contribution is therefore directed towards the capturing of kinetic effects, respectively
the interaction of the numerical solution schemes with various details of the solution. First,
Discontinuous Galerkin time integration methods are compared with standard Newmark
type methods for different types of problems using stationary and adaptively modified
meshes. Then, the focus is on dispersion effects, in particular introduced by the spatial
discretization and their representation with the two integration methods discussed before.
This is followed by an investigation, if and how mesh adaptation changes with the effects
observed with stationary meshes. Finally, a simple and efficient time step modification
method is presented and discussed using a numerical example.

2 Time integration — Discontinuous Galerkin vs. Newmark type
methods

In order to take also kinetic aspects into account Cauchy’s first equation of motion for
solids has to be used to describe the behavior of solid type structures under general
loading:

dive + pd = pii, (1)

with : o :linear Cauchy-stress tensor,
d : acceleration field (body force),

u(z,0) = uy, initial displacements,
u(z,0) =y, initial velocities
u(z,

and : boundary conditiong

t)=u(t);VxeTly, }
3

o(x,t)n=p(t);Vx e y.

Initial and boundary conditions must be given
in a standard form, such that the problem is

well-defined. The standard procedure for the so- €,
lution in solid mechanics — only briefly described e OB =T,UT,
in the following — involves a semidiscretization,
thus the discretization in time and space is per-

Figure 1: Solid under general loading.
formed separately, see e.g. Hughes [8],
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Zienkiewicz/Taylor [27], e.g. both with FE method, see Hulbert/Hughes [9]. Other meth-
ods, though promising, see Hulbert [12], have not yet been successful in practice.
For the spatial discretization the standard Bubnov-Galerkin formulation is chosen:

/v(dz’va’ + pd — pi)dV = 0. (2)
B
Applying the Green-Gauss theorem for the first term of (2) :

/Vdiv odV = /va'ndA— /Vva'dV, (3)

B s B

leads to the well known weak form of eq. (1). The following investigations are restricted
to linear behavior with the linear strain tensor €: € = 1/2(Vu+ Vu®) and linear material
laws, e.g. the St.-Venant Kirchhoff model & = C : €. The test space Y and the space of
the trial functions X are defined as: v € V;YV = {(H')",v=0o0onT;}, ue X;X =
{(H")",u(z) =u; on I';} .

Thus, the first step of semidiscretization leads to a second order ordinary differential
equation system (ODE), with the assumption of modal damping D = aM + bK we
obtain:

Mii(t) + Du(t) + Ku(t) = £(1). (4)

In general this ODE system (4) has to be integrated numerically.

3 Numerical time integration

Mainly either Finite Differences (FD) or Finite Elements in Time (FET) are used
for the time integration, see [17], Chung [3], Hilber [6], Hoff [7], Hughes [9], Hulbert
[11], Zienkiewicz [26]. Both methods have in common that the total integration interval
t € [0, 7] is divided into ’local’ intervals I, = [t,, t,11] with a time step size At = t,,1 —t,.
Thus a piecewise integration is performed. In the following, the major differences of both
approaches are investigated, in particular with respect to spatial adaptivity.

The most popular FD scheme is the basic approach of Newmark [19]:

U1 = U, + Ata, + AL((0.5 — B)i, + fu,iq), (5)
W1 = 0, + AH((1 — )b, +y041) - (6)

The parameters § and ~ control the accuracy, artificial damping and the stability of the
method.

Standard FET have been proposed already since long e.g. by Oden [21], who used
the Hamiltonian and the variation as the starting point of his derivations. Zienkiewicz
[26] showed in a paper the equivalence between the Newmark scheme and a distinct
FET method. All these schemes suggested were based on continuity assumptions at the
beginning resp. end of the local time interval. More recent developments, see Hughes/
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Hulbert [9], Johnson [13] and Aharoni/Bar-Yoseph [1], as well as Wiberg/Li [16] and
Ruge [23] allow discontinuities of the state variables at the internal boundaries with the
penalty of an enlargement of the equation systems. In general, various ways to develop
the final algebraic system of equations can be chosen. If the ODE (4) is directly taken
as starting point, a so-called 2-field formulation with displacements and velocities as
variables seems to have some advantages:
u=v, (7)
Mv + Dv + Ku = f. (8)

A Petrov-Galerkin method is used for the solution of this coupled system; both equations
are weighted with different test functions w, and w, and then integration is performed
over the time interval A¢. In addition, the jumps in displacements Au —u,, and velocities
Av; — v, at the beginning of the time interval are introduced, see figure 2, and the
following (variational) form is obtained:

/WU(MV + Dv + Ku)dr + /qu(u—v)dT + w,;" - Mv,!" + w" - Ku!" =

/va(t)d'r +wim My, "+ w - Ku, ", V{w,,w,} € {H'(0,At) x H'(0,At)}. (9)

u(t) Due to the jump terms other test functions
with less restrictions can be used, as continu-
ity is not required. Such schemes are known
as Discontinuous-Galerkin (DG) methods,
see Johnson/Pitkdranta [14]. The test and
trial functions for displacements S, and ve-
locities S, can be chosen as any order poly-

th thet t nomials. Usually, low order schemes -linear
Figure 2: Time discretization involving  or quadratic- are preferred [11, 16, 23] due
Jumps in displacements. to several aspects discussed in the following.

E.g. if linear functions are chosen for both displacements and velocities, the so-called DG
P1-P1 method is obtained:

N N
Su=A{w,w, € U (Pl(ln))neq}a Sy ={vn,w, € U (Pl(ln))neq}-
n=1 n=1
P! is the space of first order polynomials.
w, = (1—7)u! + mu,.,,, vi = (L=7)vji + 7V, 4,
with :  7="h/At,, At, =ty —tn, h € (0,At).

The resulting equation system can be written as (without any further transformation) :

sK K —3 ALK —s ALK u’ Ku,
1 1 1 1 -
ALK fALK M+ :ALD  IM+ A, D v F, +Mv;
ALK sALK —iM+:A,D M+ :ALD /\ v, F,
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With:Flz/(l—T)f(t)AtndT, FQZ/Tf(t)AtndT.

T T

3.1 Comparing Discontinuous Galerkin and Newmark type algorithms

After the description of the general schemes of both time integrators our focus is on
the specific features, the disadvantages and advantages. It is well known that essential
properties concerning the quality of time integrators can be found through investigations
of the amplification matrix A (A € R?**?) of a single degree of freedom (SDOF) system.
With the eigenvalues A\, Ay of A general statements concerning the spectral stability,
algorithmic damping and the phase error (time dispersion) can be developed. For an
undamped linear SDOF-system with parameters m (mass) and k (stiffness) the following
quantities are obtained:

Phase: = w At, Spectral radius: p = max|X;|; i =1...2,

m()\) i + arctan
Re()) T 2 Im(X)

A Ai (1)

arctan
Natural frequencies, FE - FD : w,ll =

w is the exact natural frequency, wy is the approximated frequency from the time inte-
gration scheme. The first equation for w}(12) is valid in the first quadrant of the complex
numbers, while the second equation for w}’ stands for the second quadrant. The formulas
for the other quadrants can be found analogously. There are two bifurcation points for
the DG -P2 formulation at 2 = 3.1 and = 10.8 (visible in figure 3). Beyond © = 10.8
all roots are real, thus the numerical phase remains constant there.

It is known that both the DG and the standard Newmark scheme are A’ stable, however
there are major differences concerning the spectral radii, see figure 3, and the algorith-
mic damping. The spectral radius of the Newmark scheme is independent of the phase,
whereas the DG P1-P1 scheme shows a strongly decaying radius for larger phase resp.
higher frequencies. The values of the DG P2 scheme, however, do not show a clear depen-
dency, in particular, for the medium range of the phase. Remarkably, the spectral radius
remains 1 for the larger phase, thus higher frequency range. This has consequences for
the algorithmic damping € and the phase error e,, which are defined as:

Q
inp = — — 1, with: Q, = Atw,. (12)

g - _Atwh’ N Qh

Their properties for a wide range of frequencies are shown in figure 4a. resp. 4b. As al-
ready visible from figure 3 there is no dependency of the spectral radius from the frequency
for the Newmark scheme thus no algorithmic damping over the full range of frequencies.
There is a varying dependency of the damping in the low frequency range and no damp-
ing of the high frequencies for the DG P2 scheme. A somehow better behavior concerning
damping can be found for the DG P1-P1 method. All high frequencies will be damped
out. Thus, the phase error shown in figure 4b., which causes a dispersion in the time
range, will also be damped out, though the phase error in time is growing steadily. It
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Figure 3: Spectral radii p vs. phase for Newmark and DG time integration.

is also remarkable that the phase error of the Newmark scheme remains below the error
of the DG P1-P1 method in the range /27 > 1.2, however, it is not damped out. The
phase error of the DG P2 scheme remains well below the error of the Newmark scheme
for the full frequency range and similar to the Newmark scheme there is no damping of
this error in the high frequency range. Comparing the accuracy of the DG P1-P1 and the
DG P2 method by Taylor series expansion we get for the remainder :

DG P1-P1:7 = £:O(A#*), DG P2:71 = HO(A#?) |, see Hulbert [11].
Thus, there is only little difference in the accuracy. In order to get the artificial dissipation
in the upper modes also for the DG P2 scheme least-square operators or so-called shock
capturing operators, Hulbert [10] could be used.
Beyond the above mentioned damping properties there are other aspects, which favor the
DG P1-P1 formulation instead of the DG P2 method. First of all, this is the symmetric
block-matrix form for the DG P1-P1 scheme with identical main-diagonals, which is ob-
tained for both DG P1-P1 formulations, Wiberg/Li [16] and Ruge [23], discussed in detail
in the following.
Taking the block structure into account Wiberg/Li obtain the following system of four
rows of block matrices after a FE discretization:

I O —s AT sAIL u’ u,
O I — AT —IAM o | | w (13)
O O M* M + GAtD vy F;
O O IAID+iAPK M* Vi1 F}
with :
1 1
M* = M+ SAMD + éAtQK, M* € Reaxneq
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5 1 2

It is obvious that the third and the fourth row are fully decoupled from the first two rows,

T T T 5 T T T
0.7r
4 L

r Newmark —
0.5 Newmark — 3+ DG P1-P1—

i DG P1-P1 — Q& 1 DG P2
0.3 DG P2 h gl

i A
0.1F

05 0.5 g 15 Oy 0.5 o 15
2T o
a.) b.)

Figure 4: Algorithmic damping resp. phase error vs. phase /27 for Newmark and DG
integration schemes.

thus only a system of 2 X neq equations remains. Furthermore, this large non-symmetric
equation system can be favorably solved by Gauss-Seidel block iteration. For an efficient
iterative solution the spectral radius of the iteration matrix should be small, which may
not be the case for some problems in general. The iterative solution for the velocities is
then written as, see Wiberg/Li [16]:

Iteration 7 :

M*vHi) = Fr — (%M + éAtD)v;f;” (14)
M*v, @ = F: — (lAtD + lAtZK)v““ (15)
n+1 275 3 n
Convergence check with:
(vie) - ()
—(4) —(i—1)
diff = Vil Vi1 (16)

()
v

if dif f < tol then finish;

else continue with next iteration cycle.

The advantage of the iterative block solution in the manner shown above is that the
LDLT decomposition of the matrix M* has to be performed only once. Thus, only
forward — backward substitutions are required for the solution in each iteration cycle.
After convergence of the solution for the velocities the displacements can be computed
without much effort from the two remaining sets of equations, row one and two:

un+1

1 1
= u, + §At(v;r + Vi), ur=u, + éAt(v;r — Vo).
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An alternative to the scheme of Wiberg/Li is suggested by Ruge [23] based on the variation
of the scalar integral I, where H = T + U, kinetic plus strain energy, is the Hamiltonian:

U= %/(Bu)TC BudV, T= %/pr_lpdV, p=pv.
Q Q
Taking the potential W, of the external forces into account, the integral I over the time
interval At is obtained as:

I:/(H+Ha)dt, Ha:—/qudV.
At Q

The standard requirement concerning I (referring to Hamilton’s principle) is, that it
remains stationary : 6/ = 0 . By variation and partial integration with respect to time we

sp” 1'1—— adt — [ou” |p+ 2% —¢|ar = 0. (17)
= [ oot [s- ) ame - oo o1

At Q At
Usually this formulation leads to a conditionally stable integrator with an order of accu-
racy O(At), if u,v € P'(t); t € [tn,tns1]- To overcome the conditional stability, Ruge
[23], following Aharoni/ Bar-Yoseph [1], proposed to add the work of the state variables
at the beginning of the time step to the integral, thus introducing them as independent
variables. Then the variation Ju; and v, are now also not zero leading to the following
form :

obtain :

o = 6I—|—p/5vf{[u;{ —u,|dV — p/éu;{[vf{ — v, ]dQ = 0.

With linear test functions u(¢) and v(¢) - a P1-P1 scheme - the following non-symmetric
set of equations is developed:

2 At At2 -
AtM+ 32D+ 18AtK ——A — 9A ( u,,, )
At At?

vo

n+1
M+2D - 2AtK M u, f;
3—{ 3 91A ") o+ (18)
EM+iD-tak o )\ v, £,
Written in short form as: Az, = Bzy + r. (19)

This system can be transformed to a similar structure with identical block diagonals as
for the rows 3 and 4 of the Wiberg-Li scheme. With specifically chosen hyper-matrices
the following system of equations is found:

0 1 11 :
T, = , Ty = 9 1 3 1 , with eq. (19) and z; = Toy; (20)

-1 At~ At
TIATQ V1 = TIB zo + Tir — 1A>k V1 = B*ZO + r* (21)
M 2 5 oM 5 2
D AtK D AtK
with A* — [ At 53 18 A tTEP 9 _ (22)
D 2k A%,
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Then the same iteration procedure with a block Gauss-Seidel scheme as described for the
Wiberg/Li equation system can be used .

However, the major difference between both equation systems is that Ruge’s scheme
contains the variables u,,; and v, _,, whereas Wiberg/Li solve for the velocities v;" and
v, directly. Thus, a direct comparison is difficult and the judgment is preferably based
on the efficiency of the solution. The latter is mainly influenced by the condition number
of the system matrices, which can be decomposed as follows :

A resp. A*=-L+S-U, (23)

S ... diagonal matrix of A (13) resp. A* (22); L, U ... lower resp. upper triangular
matrix of matrix A resp. A*

A comparison shows that the diagonal of matrix A (eq. (13)) of the Wiberg scheme is far
more dominant than the diagonal of matrix A* (eq. (22)). In figure 5 the spectral radius
pir of the respective iteration matrix Ty = (S — L) 'U is presented for both integration
schemes applied to a SDOF with varying stiffness. It is obvious that the spectral radius
is much smaller for Wiberg/Li’s scheme resulting in a better convergence. Furthermore,
an attempt was made to improve the spectral radius by a combination with a relaxation
scheme. Then the modified iteration matrix T;; becomes:

T, = (S —nL)'[(1 —n)S +7U]. (24)

In the example (SDOF) the relaxation parameter 1 was varied between 0.95, 1.00 and
1.1. For the chosen system parameters a considerable improvement in the spectral radius
was found for n = 1.1. However, in real systems with a widespread band of frequencies no
visible advantage using such a relaxation scheme could be achieved.

0.7 T T I I T o o
0.6 _
WL =095 ——
0.5 W.L.n =100 — -
' W.L. n=1.10
Ruge n =0.95 ——
0.4 Ruge n =1.00 —— B
Ruge n =1.10 —e
0.3 _
0.2 _
0.1
0 x x x x x x x
0 200 400 600 800 1000 1200 1400

k
Figure 5: Spectral radius p;; vs. stiffness k& for the DG P1-P1 schemes proposed by

Wiberg/Li and Ruge combined with relaxation;
SDOF system: m = 0.5 = const., At = 0.1 = const.
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Finally, the wave propagation in a slab, see figure 6, is considered to compare the per-
formance of the solution schemes without relaxation using a constant time step size and
a constant mesh. From figure 7 it can be concluded that the effort required for Ruge’s
scheme is considerably higher at least in the beginning of the process. Similar observations
have been made for other problems.

4 Comparing the performance in time of DG and Newmark time
integration for wave propagation and vibration problems

In order to show the difference between a DG and the standard Newmark method two
completely different types of problems are investigated; an example of an instationary
problem and one for stationary motion. A classical example for an instationary problem
is the wave propagation in solids, while the vibration of a cantilever plate represents a
stationary vibration problem. For both cases different parts of the frequency spectrum
are dominantly excited.

In the wave propagation problem, see figure 8, the response is in the complete frequency
range, whereas in the stationary problem predominantly the response is in the lower
frequencies. In the left diagram in figure 8 the time history for the total energy norm
of the solution ||u|| is presented. The dissipative property of the DG P1-P1 is obvious.
About 25 % of the energy is dissipated after 80 time units, whereas the energy is perfectly
conserved for the Newmark scheme. The comparison of the velocity component v, shows
the positive aspects of the DG P1-P1 scheme on the other hand. As a result of the
algorithmic damping, the higher (less accurate) frequencies are filtered out and a smooth
response is achieved. It is also obvious that both schemes cannot maintain the correct
velocity amplitudes. Although the Newmark scheme conserves the energy, the velocity
amplitude shows a strong variation due the inherent spatial dispersion of the FEM-mesh.
The conclusion is rather clear: Both the DG P1-P1 and Newmark are not applicable for
long time integration in such a case. However, for short duration problems the DG P1-P1
scheme performs rather well.

The second case, a stationary motion of a clamped cantilever plate with a line load at
the free end - see figure 9 - is investigated next. In the diagrams in figure 10 the total
energy norm of the solution and the vertical velocity v, at the free end are presented. As
expected there is hardly any difference between the results obtained with both schemes.
Obviously higher frequencies are not excited and there is no accuracy advantage for any
method. However, the solution effort needed for the Newmark scheme is far below the
effort required for any DG scheme for such a problem and it should be preferred then.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| J 3 ;7 4 - |
o /13
S = ait) /\
: - 0

/;‘ 7~ v VAN 7~ —~— [ 1 1 1 1
B 200

Figure 6: Wave propagation problem; system and load function vs. time;
Material parameter: £ =1-10% p=10,t=1,v =0.0 .

e.‘

10



ECCM ’99, Miinchen, Germany

Mter

0 | | | |
0 2 4 . 6 8 10
Figure 7: Number of Iterations N;; for DG P1-P1 methods; Example — wave propagation.
]_ I I I I T 0015 T T T T T
NEWM — 1 P1P1 — NEWM —
0sl 1 ootf
[ PIPT—"7  0.005F
||u||total,ﬂ,.t I - Ve 0
[ 1 -0.005}
00 10 25 40 55 70 80 _0'0150 10 25 40 55 70 80
t t
a.) b.)

Figure 8: Wave propagation problem — Time history plot of a.) total energy norm
lul|totarn and b.) velocity v, at x = 140 ; Comparison of Newmark and DG
P1-P1 schemes.

J)J) E=2-10%, v =0.29, p = 7700

u } [ £(t)
p d=101 f(t)ﬂ ol | ‘
V N =10 | \<>b\:1.0 01 5 10

Figure 9: Clamped plate with line load; example for stationary motion.

5 Dispersion effects depending on the spatial FE - discretization

5.1 General

The time integration schemes discussed above showed some phase error (eq. (12), thus
some dispersion changing in time was already found. A similar effect is introduced by the

11
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]_.6 T T T T T T T T T 0.015
] Pl P1— NEWM —
1.2 NEWM — A
P1-P1 —- 0.005
|wltotare | 4 Yz 0
0.6 -0.005 -
0.2 . i
0 1 1 | | _0015 1 1 1 1
2 4 7 eit 6 8 10 0 2 4 it 6
a.) b.)

Figure 10: Clamped plate, stationary motion problem - Time history plot of a.) total
energy norm ||u|t,0 and b.) velocity v, at end of plate; Comparison of
Newmark and DG P1-P1 time integration.

spatial discretization. This artificial dispersion, however, has to be separated from any
dispersion which is inherent in the problem described by the corresponding differential
equation. Such phenomena can be investigated rather well in wave propagation problems.
There, every wave length \; has its own propagation velocity ¢(;).

In figure 11a.) the inherent dispersion for the wave propagation of a bending mode in
plates is shown depending on the kinematic model chosen [18]. Every model (Mindlin
plate, Kirchhoff plate and 3D continuum) has its own dispersion characteristics which
are discussed briefly in the following with the definitions:

h... thickness of the plate, A... wave length of the bending wave, c... propagation velocity
E

2(14+v)p -

From figure 11a. it is obvious that the Kirchhoff model is able to represent the bending

of the bending wave, c,... exact propagation velocity of the shear wave; ¢, =

waves only for large wave lengths resp. low wave numbers, and the kinematic model of
Mindlin corresponds very well to the exact solution of the general 3D model for the
full range of wave numbers. Comparing the longitudinal resp. membrane waves for the
3D continuum and 1D continuum e.g. a bar with circular cross section, a significant
dispersion is found for the exact solution of the 3D case with the definitions :
co =/ E/p ... propagation velocity of 1D continuum,
¢ ... propagation velocity of longitudinal wave; X ... wave length of longitudinal wave .
However, it is also clear that the simplest reduced continuum model, the 1D case is able
to represent the exact solution of the 3D case (¢ = ¢()) ) only for large wave lengths. For
the longitudinal waves in figure 11b. the exact dispersion in 3D converges to a constant
value; here: lims_,,c(\) = 0.57 .
Now the nondispersive characteristics of the 1D wave propagation problem are used to
investigate the artificial dispersion due to the spatial discretization. The well known linear
homogeneous differential equation for the 1D wave propagation problem in a bar with a
constant cross section is - assuming for completeness some boundary and initial conditions:
0u 0u

12
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2 T T T T T T T T T
1
156 Kirchhoff — |
' 3-d + Mindlin— 0.8F })):B: 1
Reissner Z 06F i
Ir 1 @
0.4r 1
051 | o2t |
0 1 1 1 1 1 0 1 1 1 1
0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 )
h/A 1/ A
a.) Bending wave in plates [18] b.) Longitudinal waves in 1D and 3D

continuum after Graff [5]

Figure 11: Propagation velocity vs. inverse of wave-length.

uj-l Uj Uj+l
uj-l uj uj+1
-1 j j+1

|

Figure 12: Discretized bar; unknown quantities at nodes.

For the solution the standard assumption is taken: u(z,t) = Aexpiw(z/c —t).
Without loss of generality the following can be used as test and trial functions for dis-
cretization in space:

test space: v(x) € Hy(Q), trial space: u(x) € H'(Q).

With the standard Bubnov-Galerkin method, weighting with the test-functions and using
Gauss-Green’s theorem the ordinary differential equation for node j (see Fig. 12) in a FE
mesh with uniform element length [ is obtained :

2
%

iy + dii; + i1 + 65

(—ujt1 + 2uj — u;—1) = 0, j...index for nodes .  (26)

Using the same assumption as for the exact solution:  u; = C'expi(wyt — aj) , with:

C... constant to fulfill the initial conditions, wy... circular frequency, A... wave length,
2

5%

the following relation between the normalized wave number a and the circular frequency
wy, for the discretized solution is found, see Nilsson[20]:

Co 1 —rcosa
= 7/ 65— 27
h l 2+ cosa (27)

Contrary to the analytical exact solution the approximate solution has a so-called cut-

a... normalized wave number; a =

off frequency we,, the maximum frequency which can be represented in the discretized

13
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a.) Circular frequency with cut off b.) propagation velocity with cut off

Figure 13: Circular frequency resp. propagation velocity vs. ratio of element length/
wave length of discretized 1D continuum.

system, see figure 13a. Thus, using a fixed [ for an element, one can only find a maximum
frequency w,, corresponding to a constant ratio [/A. As a consequence of this nonlinear
wave-length-frequency relation a non-constant propagation velocity ¢y, which also depends
on the wave-length, is obtained:
)\h Wh l

Cp, == — — —— . 28

h Th a ( )
Thus, it can be concluded that even for the most simple problem without dispersion
the corresponding FE-discretization introduces artificial dispersion. It is obvious that a
strict distinction between artificial and physical dispersion is not possible for 2D and 3D
continua.

5.2 Uniform discretization in space

In order to show the combined effect of space and time discretization, a wave propagation
example, the 1D continuum problem as shown in figure 6, is investigated. The mesh is kept
uniform and unmodified during the analysis. Three types of time integration are compared:
First, the fully exact solution in time and space is given by an analytical solution. Second,
the structure is discretized in space by FE and followed by modal decomposition. Then
each modal response is integrated separately and summed up exactly as modal solution.
As third action the FE discretization in space is combined with either FET (DG P1-P1)
resp. FD (Newmark ) in time. In the following diagrams the stress state o(x) of the whole
space domain is plotted at several times.

As expected, see figure 14, the modal solution is somehow in front of the exact solution
because of the artificial dispersion inherent in the discretized continuum. The short waves
have a higher propagation velocity than the long waves causing the waviness in front of
the sinusoidal half-wave. With progressing time this artificial dispersion increases. The
Newmark solution shows some artificial waves traveling behind the exact and the modal
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Figure 14: 1D wave propagation - Stress state of complete space domain at different
time states; uniform mesh; behavior of Newmark scheme.

solution. This is mainly due to the phase error (see fig. 4b.) which accumulates in time.
However, it may be noted that taking a much smaller time step, a similar solution as for
the modal method could be obtained.

For the DG P1-P1 method, see figure 15, the modal solution is approximated rather
well mainly due to the order of accuracy O(At?) of the integration scheme. The effect
of the phase error seems to be small for this type of excitation which is also due to the
artificial damping of the higher frequencies. The latter also leads to some decay of the
major amplitude and to reduced amplitudes of the small waves running in front of the
sinusoidal large wave.

5.3 Adaptive discretization in space

If instationary meshes are used, e.g. adaptive mesh generation takes place, then the sit-
uation changes. In the following for the estimation of the spatial discretization error the
well-known estimator of Zienkiewicz/Zhu [29] for the strain energy norm of error and an
additional indicator for the kinetic energy part, proposed by Riccius, Schweizerhof [22] are
applied. In order to judge the effect of the time integration schemes the time step is kept
constant. Thus, the exact analytical solution and fully numerical solutions are compared.
Due to the graded meshes, generated in the adaption process, the maximum amplitude
in the response o, presented in figure 16 at various time states is considerably reduced for
both numerical schemes. Though the artificial dispersion cannot be controlled perfectly,
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Figure 15: 1D wave propagation - stress state of complete space domain at different
times; uniform mesh; behavior of DG P1-P1 scheme.

very good results can be achieved with the DG P1-P1 method. Only a small increase of
the width of the wave and no longer additional small waves are obtained. Furthermore,
there is only a very small phase error visible after a while, e.g. at time ¢ = 17.2. However,
the solution errors with the Newmark method increase considerably with time. In partic-
ular, the artificial wave following the physical wavefront grows. The reason is the mesh
refinement in space also for the region of these smaller waves.

An amplitude decay is visible for both methods. For the energy conserving Newmark
scheme this is caused by the energy transfer from the long wave to the smaller artificial
waves. The latter is also the reason for the energy decay - by far less pronounced - in the
DG P1-P1 method, as it is not possible to damp out the higher modes without affecting
the lower modes. Thus, the artificial damping of the DG P1-P1 scheme will damp out all
modes in time as ¢ — oo. Typical meshes created in the adaptive process are shown in
figure 18.

Spurious Reflections

Besides the discussed effect of artificial dispersion the adaptive meshing could also create
so-called spurious reflections. Bazant/Celep [2] investigated this phenomena on station-
ary graded meshes with the conclusions that only short waves will be reflected at the
element interface in the case ly > 20y, see figure 17, and [; > A/10, if a graded mesh is cre-
ated. However, such an effect was not observed during all investigations with instationary
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Figure 16: 1D wave propagation - stress state of complete space domain; comparing

DG P1-P1 and Newmark time integration with exact solution; adaptive dis-
cretization in space.
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Figure 17: Spurious reflections in graded meshes.

(adaptive) meshes so far.

6 Adaptive time stepping

Though in general it is possible to integrate the complete time dependent problem with
e.g. time-space finite elements with different time step size for each spatial element, see
Hulbert/Hughes [9] or at least parts of structures with different time step size and/or
different time integration schemes, see e.g. Hughes [8], Hulbert/Hughes [12], it is favorable
from a practical point of view to obtain the total information of the status of a structure
at a given time. Thus integration schemes with a uniform time step size At for the
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Figure 18: Adaptive meshes at various times created in combination with two different
time integration schemes; colored: distribution of the total energy.

complete structure are discussed and our focus is on their properties within a typical
interval I, = [t,, t,11] with At =1, — t,.

The error within an interval can be viewed as local error and its accumulation over the
complete process time as global error. The latter is of major interest for the final result
and the question is, how to obtain a proper information about this error in order to adjust
the time step size. Currently, some global schemes [24], [4] based on duality considerations
are developed. However, though they give some hints about the global error, their use for
real-size FE problems seems to be limited. Thus, our focus is on the local error estimates
and the use of such an estimate for a global estimate and time step adaptation.

The error in displacements and velocities at time ¢ = ¢,,, is given as:

€nt+1 = Uez,n+1 — Upn+1, ©pt1 = Ueznt+1 — Upptl - (29)

For the DG P1-P1 method the velocity error is given by the separately interpolated
velocity-field v. In order to couple the time integration error with the spatial discretization
error the total energy-norm of error can be computed, see Riccius/ Schweizerhof [22]:

1/2
e(A)totat, 0,01 = /(Len+1)T -CLey11dQ2 + /P < €ny1,€p41 > dQ2 . (30)
B B

For the Newmark-scheme a Taylor series expansion can be performed to obtain some
information about the local error within a time step, assuming the quantities in the
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previous time steps are computed exactly:

A AP A
Ueppnt1 R W, + Atu, + 5 i, + 5 u, + 54 i, + O(A),

31)
At? .. At .. (
Uegpi1 A Up + Abll, + Tiln + o i, + O(AtY).

To eliminate terms of order 3 and 4 in eq. (31) the central difference scheme;

f, = L0l (AR,

2At
) 8 on 4
u, = ol AI;Z T Un + O(At?), is used twice, similar to Li [15].

Then the displacements and velocities depend only on displacements, velocities and ac-
celerations of the last two time steps plus higher order remainders:

) 1. 5. 1.
Uerni1 ~ U, + Atd, + Af? (—ﬂunl + T + §Un+1> + O(At),

. . 1. 2. J ..
Uegr n+1 ~ u,+ At <—Eun1 + gun —+ ﬁun+1> + O(At4) .

With the Newmark interpolation for the displacements uy, ;41 and velocities 0y, 11, see
eq. (5, 6) the local error estimate for the Newmark scheme can be given:

A¢?

e = (a2 20006, + 249 - D) +OOF), ()
At

€nt1 = i) (1 + (4 = 129), + (127 = 5)it,q1) + O(AtY) . (33)

For the DG P1-P1 scheme a very simple local error indicator can be constructed, see Ruge
[23] and Wiberg/Li [16], based on the discontinuity of displacements and velocities:

i1 = Uy — Upyy,  €np1 =V — Vg (34)
However, the latter cannot be used for the global error estimation. As a short remark for
the DG P2 method, we have to note that there is no displacement discontinuity in time,
because u:{H = u,,,,. That is another aspect, why the DG P1-P1 is superior concerning
efficiency when compared to DG P2. The global error of the DG schemes discussed is
certainly also dependent on their properties concerning the high frequency damping, thus
global error estimates based on the rather simple local error estimates are difficult and
an error estimation function as proposed in [24] seems appropriate for the DG methods.

For the Newmark scheme a rather simple formula for the global time integration error
|le(A?)||totar0,r is based on an extrapolation proposed by Zienkiewicz/Xie [28] and War-
burton [25]:

le(At) liotar, 0.7 = Nrlle(A1)lrotar, 01,41 (35)
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with N7 = T /At, as remaining number of time steps until the end of the process.

Time step control
If a constant time step size is assumed, e.g. At,., = cAt,q, and the order of accuracy of
the Newmark scheme is taken into account, we obtain:

le(cAt) ||totar.0r = ||€(At) || totar01 - (36)

With a required energy norm of the error ¢, at the end of the process the constant c
can be computed :

< Eu,T ) 12 < v, 1A o1d ) 2 (37)
c= = .
||e(At)| total QT T ||e(At)||total,Q,tn+1

For the limitation of the estimated error at the end of the process after eq.(35) an

upper limit is given for accuracy and a lower limit for efficiency reasons : epinr <
lle(At)||totar.r < Emaz,r- The time step size is modified, if any of the tolerances is vi-
olated. Then the question remains, how often the time step size has to be adjusted. As
the matrices remain constant with constant time step size, then it is advantageous to keep
the same time step size, if it is smaller than the required one, as the factorization of the
matrices can be avoided then. It is suggested, however, that a time step size adjustment
is also performed after each mesh modification.

The same strategy, global error estimation and time step control, was applied as a simple
test with the DG P1-P1 scheme.

As numerical example the clamped plate system, see figure 9, is taken to show the effects
of both error estimators resp. indicators, eq. (32,33) and (34). For both the Newmark and
the DG P1-P1 schemes first a constant and second an adaptively modified time step is
used. For comparison also the solution for the velocity v, at the end of the cantilever using
modal decomposition of the FE model was computed. In order to get a physically moti-
vated change of the time step size, the modal damping parameters ¢ and b were chosen
as: a = 0.4, b = 0.0014. The default resp. starting time step size for all computations was
set to At = 0.1; the integration interval considered is ¢ € [0, 5].

In figure 19 the evolution of the time step size is presented. It is expected, that the DG
P1-P1 method would lead to a larger time step size than the Newmark method due to the
higher order accuracy. However, as found also in other numerical examples, the Newmark
scheme leads to a larger time step size. The main reason is that the jumps (Au, Av) give
only a restricted information about the error at a discrete time state, whereas the local
error estimator for the Newmark scheme describes the error evolution in one time step.
The time history plots of the velocity v, at the end of the clamped plate in figure 20a.
show the solution with time step adaptation for the Newmark method which approaches
the modal solution very well.
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the solution with constant time step size
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tion, which is caused by the physical 0 1 5 3 1 5
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small differences between the solutions Figure 19: Evolution of the time step size
with constant and variable time step in time for Newmark and

were obtained, also indicating the DG P1-PI methods.

higher accuracy properties for the fairly large time steps.
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Figure 20: Velocity history at the end of cantilever with and without time step adapta-
tion using DG P1-P1 and Newmark scheme compared to the modal solution.

7 Conclusions

The basic properties of two numerical time integration schemes, Discontinuous Galerkin
and Newmark method were presented and compared. It was also shown, that the DG P1-
P1 scheme has some advantages compared to the DG P2 scheme within the DG family
of methods. Then, two representative problems for wave propagation and for stationary
vibration were chosen to discuss the properties of the numerical integration schemes.
In particular two different proposals for the DG P1-P1 method by Wiberg/Li and by
Ruge were compared concerning efficiency. Further, the artificial dispersion introduced by
spatial discretization was investigated on stationary and adaptively modified FE-meshes.
It was found that the DG P1-P1 scheme leads to rather good solutions in adaptively
modified meshes for short duration problems, where the numerical damping does not yet
affect the global energy too much. Finally, two local error estimators resp. indicators for
the time integration error were discussed briefly using a numerical example.
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