
Generation of counterexamples and witnesses for

the �-calculus

August 23, 1995

Alexander Kick�

Lehrstuhl Informatik f�ur Ingenieure und Naturwissenschaftler,

Universit�at Karlsruhe, Am Fasanengarten 5,D-76128 Karlsruhe, Germany

Email: kick@ira.uka.de

Abstract

Symbolic temporal logic model checking is an automatic veri�cation

method. One of its main features is that a counterexample can be con-

structed when a temporal formula does not hold for the model. Most

model checkers so far have restricted the type of formulae that can be

checked to fair CTL formulae. Model checkers constructed just recently

can check arbitrary �-calculus formulae. How to construct counterexam-

ples for arbitrary �-calculus formulae has not been investigated yet. This

paper shows how counterexamples and witnesses for the whole �-calculus

can be constructed.

�Supported by DFG Vo 287/5-2

1

Contents

1 Introduction 3

2 The modal �-calculus 4

2.1 Syntax : 4

2.2 Semantics : 4

2.3 Some terminology, notation and functions to handle �-calculus ex-

pressions : 5

2.4 Elimination of X not in scope of hi or [] : : : : : : : : : : : : : : 7

2.5 Driving in hi and Disjunctive Normal Form : : : : : : : : : : : : : 8

2.6 Model checking the modal �-calculus : : : : : : : : : : : : : : : : 10

3 Counterexamples and witnesses for FCTL 12

3.1 Witness construction for E[fUg] : : : : : : : : : : : : : : : : : : : 12

3.2 Witness construction for EGf : 13
3.3 Witness construction for EGf with fairness constraints : : : : : : 13

4 Witnesses for the �-calculus 14

4.1 Example : 14
4.2 Witness subclass of the �-calculus? : : : : : : : : : : : : : : : : : 15
4.3 Witness construction : 16
4.4 A worked example : 19

4.5 Reduced witnesses : 20
4.6 Side paths and main path : 21
4.7 Abstract and concrete witnesses : : : : : : : : : : : : : : : : : : : 23

5 Main paths of type �X:p(X) 24

5.1 Shortest paths for �X:p(X) : 24
5.1.1 Occurrences of X independent : : : : : : : : : : : : : : : : 24

5.1.2 Interdependent occurrences of X : : : : : : : : : : : : : : 27

6 Main paths of type �X:p(X) 28

6.1 Passive generation of witnesses for �X:p(X) : : : : : : : : : : : : 28
6.2 Active generation of witnesses for �X:p(X) : : : : : : : : : : : : : 28

6.2.1 Fixed depth : 28

6.2.2 Di�erent depths and arbitrary occurrence of X : : : : : : 29

6.3 Normalization of �-expressions : : : : : : : : : : : : : : : : : : : 29

7 Comparing �-calculus to FCTL witness generation 31

7.1 Witnesses for �-expressions of type FCTL : : : : : : : : : : : : : 31

7.2 Interactive generation of witnesses : : : : : : : : : : : : : : : : : : 32

8 Conclusions and future work 32

2

1 Introduction

Complex state-tansitions systems occur frequently in the design of sequential

circuits and protocols. Symbolic temporal logic model checking has shown in

practice to be an extremely useful automatic veri�cation method. In this ap-

proach, the state-transition systems are checked with respect to a propositional

temporal logic speci�cation.

If the model satis�es the speci�cation the model checker returns true. Other-

wise, a counterexample can be constructed. The latter facility is one of the most

important advantages of model checking over other veri�cation approaches.

The symbolic model checker SMV developed at Carnegie Mellon Univer-

sity ([McM93]) can check fair CTL (FCTL) ([CGL93]) formulae and construct

counterexamples for these formulae. Model checkers constructed just recently

([Rau95], [Cle93], and also at Aalborg and Eindhoven University, etc.) can check

�-calculus formulae [Koz83], [EL86]. At Karlsruhe University, a model checker
has been implemented [Bie95a] which is based on OBDDs ([Bry86], [Bry92]) in

contrast to [Cle93] and allows - in contrast to [Rau95] where only �-calculus for-
mulae of alternation depth 2 are allowed - arbitrary �-calculus formulae to be
checked automatically. The model checker described in [Bie95a] can easily be
extended to arbitrary interface languages, thus allowing di�erent descriptions of
the model and the speci�cation. Its modular design also allows various represen-

tations (not just OBDDs, the usual representation for the model) to be used. At
the same time this model checker has greater expressive power, since �-calculus
formulae can be checked in contrast to the small subclass FCTL of the �-calculus.

In [CGMZ94], [CGL93] it is described how to construct counterexamples for
FCTL formulae. To our knowledge, noone has yet investigated how to construct

counterexamples for arbitrary �-calculus formulae. To construct counterexamples
for �-calculus formulae, however, is necessary to make a �-calculus model checker
as useful as a CTL model checker.

In this paper, we therefore investigate how counterexamples for �-calculus
formulae can be computed. We show that this is possible in general, but compu-
tationally expensive for some cases.

The rest of the paper is structured as follows. Section 2 consists of preliminar-

ies where the �-calculus is repeated and some terminology is introduced. Section
3 reminds the reader of how to construct counterexamples for FCTL formulae.
In Section 4, we suggest some algorithms for witness construction for �-calculus

formulae. Sections 5 and 6 show how main paths can be constructed for for-

mulae of type �X:p(X) and of type �X:p(X), respectively. Section 7 compares
our witness construction for the whole �-calculus to the witness construction in

[CGMZ94]. In Section 8, we give a short summary and draw some conclusions.

3

2 The modal �-calculus

In this section we remind the reader of the syntax and semantics of the modal �-

calculus, we introduce some notation and normal forms for formulae and �nally

give a modi�ed model checking algorithm which suits our purposes of witness

construction.

2.1 Syntax

In summarizing syntax and semantics of the modal �-calculus we mainly follow

[Zuc93a].

There are the following syntactic classes:

� PropCon, the class of propositional constants P;Q;R; : : :

� PropVar, the class of propositional variables X;Y;Z; : : :

� ProgAt, the class of program atoms or basic actions A;B;C; : : :

� Form, the class of formulae L� of the propositional �-calculus p; q : : : , de-
�ned by

p ::= P jXjp ^ qj:pj�X:pjhAip

where in �X:p p is any formula syntactically monotone in the propositional

variable X, i.e., all free occurrences of X in p fall under an even number of
negations.

The other connectives are introduced as abbreviations in the usual way:

� p _ q abbreviates :(:p ^ :q)

� [A] p abbreviates :hAi:p

� �X:p(X) abbreviates :�X::p(:X)

2.2 Semantics

The semantics of the �-calculus is de�ned with respect to a model.

A model is a triple M = (S;R;L) where

� S is a set of states,

� R : ProgAt ! P(S � S) is a mapping from program atoms A to a set of

state transitions involving A, and

4

� L : S ! P(PropCon) labels each state with a set of atomic propositions

true in that state.

In the rest of the paper, we rarely need the program atoms. Therefore, we

introduce the abbreviation R :=
S
f(s; t)j(s; t) 2 R(A) ^A 2 ProgAtg.

A path in M is a sequence of states: � = s0s1 : : : such that 8i � 0 : (si; si+1) 2
R.

Finiteness assumption: We assume that the models we deal with in the

following are �nite (i.e., S and ProgAt are �nite).

The semantics for the modal �-calculus is given via least and greatest �x-

points. For the details, the reader is referred to [EL86] and [Bie95b].

The meanings of formulae is de�ned relative to valuations

� : PropV ar ! P(S)

The variant valution �[X=T] is de�ned by

�[X=T](Y) =

8<
:
T Y � X

�(Y) otherwise

The set of states satisfying a formula f in a model M with valuation � is
inductively de�ned as

[[P]]� = fsjP 2 L(s)g

[[X]]� = �(X)

[[p ^ q]]� = [[p]]\ [[q]]

[[:p]]� = S n [[p]]�

[[hAip]]� = fsj9t 2 S : (s; t) 2 R(a) ^ t 2 [[p]]�g

[[�X:p]]� =
\
fS0 � Sj[[p]]�[X=S0] � S0g

We de�ne

s; � j= p, s 2 [[p]]�

2.3 Some terminology, notation and functions to handle

�-calculus expressions

hi shall stand for any hAi, [] for any [A]. p; : : : shall stand for any formulae

which do not contain X (which can comprise � and � subformulae) and p(X); : : :
which do.

The terms subformula, closed formula, bound and free variables are used as

usual ([EL86]). We write p � q if p is a subformula of q. A �-, �-subformula is a

subformula whose main connective is � and �, respectively. A hi-, []-subformula

5

is a subformula whose main connective is hi and [], respectively. We say that q is

a top-level hi-, []-subformula of p provided that q is a hi-, []-subformula of p but

not a proper hi-, []-subformula of any other hi-, []-subformula of p, respectively.

The terms top-level �-, �-subformula are de�ned analagously.

Alternation depth is de�ned in [EL86]. L�i shall denote the sublanguage of

L� with alternation depth i.

The formulae �X:p(X) and �X:p(X) have iteration depth 1, denoted by

I(�X:p(X)) = 1;I(�X:p(X)) = 1, if all proper �- and �-subformulae do not

contain variable X (supposing that no variables are quanti�ed twice).

The function occ(X; f) shall return true if X occurs in formula f and false

otherwise.

�X:p(X) shall stand for either �X:p(X) or �X:p(X), � shall stand for either

[] or hi.
We say that X is in the scope of [], hi in formula f if X is a subformula of a

subformula of f of the form []q and hiq, respectively.

Example 2.1 In Formula �X:(P _ [A]Q_ (�Y:Q ^ [A]Y) _ hAiX), X is not in

the scope of []. However, X is in the scope of [] in the formula �X:P _ [A]X.

We de�ne the depth of an occurrence of variableX in �X:p(X) with I(�X:p(X)) =
1 as the number of � within which X occurs. Since there can be an arbitrary
number of Xs in p(X) we suppose the di�erent occurrences of X are uniquely
labeled, e.g., Xj . l : L� �N� PropV ar!L� labels each such Xj with its depth
m: Xj;m.

l(P; i;X) = P

l(Y; i;X) = Y

l(�Y:q(Y); i;X) = �Y:q(Y)
l(�X:p(X); i;X) = �X:l(p(X); i;X)

l(p ^ q; i;X) = l(p; i;X) ^ l(q; i;X)
l(p _ q; i;X) = l(p; i;X) _ l(q; i;X)
l(�q; i;X) = �l(q; i+ 1;X)
l(:q; i;X) = :l(q; i;X)

l(Xj; i;X) = Xj;i

To label the di�erent occurrences of a variable X in a formula f we start the

labeling with l(f; 0;X).
The smallest depth of a formula p(X) is de�ned to be the smallest depth of

the depths of all occurrences of X, denoted by d(p(X);X).

Example 2.2 l(�X:P _ hi(X ^ �Y:Q ^ hi[]Y) _ hi[](X ^ hiX); 0;X) =

�X:P _ hi(X1;1 ^ �Y:Q ^ hi[]Y) _ hi[](X2;1 ^ hiX3;2)

d(�X:P _ hi(X1;1 ^ �Y:Q ^ hi[]Y) _ hi[](X2;1 ^ hiX3;2);X) = 2

6

2.4 Elimination of X not in scope of hi or []

A formula is said to be in propositional normal form (PNF) provided that no vari-

able is quanti�ed twice and all the negations are applied to atomic propositions

only. Note that every formula can be put in PNF ([SE89]).

Example 2.3

�X:(:(P ^ [](�Y::(X ^ hi:Y _ hi(Q ^ []R)))))

is transformed into its PNF

�X:(:P _ hi(�Y:(X ^ hiY _ hi(Q ^ []R))))

Let all formulae f 2 L� be in PNF in the rest of the paper.

A variable X in �X:p(X) with I(�X:p(X)) = 1 always appears in the scope

of hi or []. Otherwise, we transform the formula into a formula without such an

occurrence of X. The same for �X:p(X).
This becomes clear easily if p(X) in �X:p(X) or �X:p(X) is in disjunctive

normal.
This is intuitively clear when looking at the formula

�X:P _X _ hiX

which we claim to be equivalent to

�X:P _ hiX

The �rst �xpoint iteration yields P for both formulae.
The second �xpoint iteration yields P _ P _ hiP which is equivalent to P _ hiP .
Subsequent iterations are also the same.

In the following two lemmas we suppose p(X) in �X:p(X) to be in disjunctive

normal form (treating L2 = fP;:P;X; �Y:q(Y); �Y:q(Y); []p; hipg as the set of

literals).
In the following lemma, we further suppose that X does not occur in pl, X

can occur in pk(X) and X occurs in pm(X).

Lemma 2.1

�X:(
_
l

pl _X ^ pk(X) _
_
m

pm(X)) = �X:(
_
l

pl _
_
m

pm(X))

Proof: Let ln and rn denote the nth �xpoint iteration of the left-hand and right-

hand side, respectively. Since the least �xpoint iterations represent an increasing

sequence, we have: rn � rn+1. We use this fact to prove the lemma by induction

on the �xpoint iterations of both sides.

7

� Induction basis

For both sides we obtain after the �rst iteration:W
l

pl

� Induction step (n+1st �xpoint iteration)

ln+1 =
W
l

pl _ r
n ^ pk(r

n) _
W
m
pm(r

n)

using the induction hypothesis

=
W
l

pl _
W
m
pm(r

n))

since q ^ rn � rn � rn+1 =
W
l

pl _
W
m
pm(r

n)), q arbitrary

= rn+1

In the following lemma, pi(X) may or may not contain X.

Lemma 2.2

�X:(X ^ pk(X) _
_
m

pm(X)) = �X:(pk(X) _
_
m

pm(X))

Proof: Induction basis: clear
Induction step:
ln+1 = rn ^ pk(r

n) _
W
m
pm(r

n)

= pk(r
n) _

W
m
pm(r

n)

since rn � rn+1 � pk(r
n)

= rn+1

If X does not occur in p(X) of �X:p(X) then we can replace �X:p(X) by
p(X). �X:X can be replaced by true and �X:X by false.

In the rest of the paper we therefore suppose that all �-calculus formulae are
in PNF and closed and for subformulae �X:p(X), X occurs in p(X) and all

occurrences of X in p(X) are in the scope of hi or [].

2.5 Driving in hi and Disjunctive Normal Form

In the following considerations we treat each �-, �-subformula of p(X) and all

top-level []-subformulae as a literal, i.e., we look upon the set

L1 = fP;:P;X; �Y:q(Y); �Y:q(Y); []pg

as the set of literals.

Example 2.4 In the formula

�X:(P _ [A]Q _ (�Y:Q ^ [A]Y) _ hAiX)

P , [A]Q and �Y:(Q ^ [A]Y) are treated as literals.

8

The following are L� tautologies.

hi(p _ q), hip _ hiq

hi(p ^ q)) hip ^ hiq

[](p ^ q), []p ^ []q

[](p _ q)([]p _ []q

The �rst tautology allows us to drive hi as far into the formula as possible.

Example 2.5 hi(X _ (P ^ hiX)) can be transformed into hiX _ hi(P ^ hiX).

Example 2.6 The formula

hihi(X _ [](P _ hiX))

can be transformed into

hihiX _ hihi[](P _ hiX)

Here, [](P _ hiX) is treated as a literal.

More formally, E does this transformation of driving in hi.

8l 2 L1 : E(l) = l

E(p ^ q) = N(E(p) ^ E(q))

E(p _ q) = E(p) _ E(q)

E(hip) = D(E(p))

8l 2 L2 : D(l) = hil

D(p ^ q) = hi(p ^ q)

D(p _ q) = (D(p) _D(q))

where L2 = fP;:P;X; �Y:q(Y); �Y:q(Y); []p; hipg

9

Example 2.7

E(hi(P ^ hi((�Y:q(Y)) _ hiX))) =

D(E(P ^ hi((�Y:q(Y)) _ hiX))) =

D(N(E(P) ^ E(hi((�Y:q(Y)) _ hiX)))) =

D(N(P ^D(E(((�Y:q(Y)) _ hiX))))) =

D(N(P ^D(E(�Y:q(Y)) _ E(hiX)))) =

D(N(P ^D(E(�Y:q(Y)) _D(E(X))))) =

D(N(P ^D((�Y:q(Y)) _D(X)))) =

D(N(P ^D((�Y:q(Y)) _ hiX))) =

D(N(P ^ (D((�Y:q(Y))) _D(hiX)))) =

D(N(P ^ (hi(�Y:q(Y)) _ hihiX))) =

D(N(P ^ (hi(�Y:q(Y)) _ hihiX))) =

D(P ^ hi(�Y:q(Y)) _ P ^ hihiX) =

hi(P ^ hi(�Y:q(Y))) _ hi(P ^ hihiX)

N transforms a formula into disjunctive normal form, where elements of L2

are treated as literals.

Example 2.8 In �X:((hi(P ^ hi�Y:q(Y)) _ hi(P ^ hiX)) ^ R) the subformulae

hi(P ^hi�Y:q(Y)), hi(P ^hiX) and R are literals in L2. The transformation into

disjunctive normalform yields:

�X:((hi(P ^ hi�Y:q(Y)) ^R) _ (hi(P ^ hiX) ^ R))

By driving in the hi operators we are able to dinstinguish between independent
(de�ned in a later section) occurrences of X in p(X) of �X:p(X) and interdepen-
dent ones, which we need later.

2.6 Model checking the modal �-calculus

The model checking problem is: given a model M , a formula f and a state s in

M , is s 2 [[f]]�. (We do not need to care about �, since it can be arbitrary in the

case of closed formulae which we consider only.)
The model checking algorithm follows directly from the semantics of the �-

calculus (and the �niteness assumption of the model). We give here a modi�ed

version of the model checking procedure which saves information during model

checking which we need for the later constuction of the witnesses.
Function mc computes the set of states which ful�ll formula f , i.e. the set

[[f]]�, � arbitrary. Note that we identify predicates with sets of states.

10

Algorithm 2.1 For a given model M and a given formula f which contains

propositional variables X1; : : : ;Xm, mc(f) determines the set of states of the

model which ful�ll f .

function mc(f :Predicate): Predicate

begin

case f of the form

Xj : S0 := Sj;

P : S0 := fsjP 2 L(s)g;
p ^ q : S0 := mc(p) \mc(q);
p _ q : S0 := mc(p) [mc(q);
:p : S0 := S nmc(p);
hip : S0 := fsj9t 2 mc(p) : (s; t) 2 Rg;
[]p : S0 := fsj8t 2 mc(p) : (s; t) 2 Rg;
�Xj :pj(X):

begin

Sj := ;;
i := 0;
repeat

S0 := Sj;

Sj := mc(pj);

Xi := Sj;

i := i+ 1;
until S0 = Sj;

n(X) := i� 1;
end

�Xj :pj(X):
begin

Sj := S;

repeat

S0 := Sj;

Sj := mc(pj);
until S0 = Sj;

Xn := S0;

end

esac

f r := S0;

return S0

end

During model checking, some information which we will need later for witness

construction is saved. We save

� the result of mc(p) in pr for each subformula of f

11

� the sequence of the �xpoint approximation of �X:p(X) inX0;X1; : : : ;Xn(X)

� the last �xpoint approximation of �X:p(X) in Xn

whenever mc(p), mc(�X:p(X)) and mc(�X:p(X)), respectively, is applied.

In this way, when the model checking algorithm terminates, pr contains the

value of p with the variables bound to their last approximations; X0;X1; : : : ;Xn(X)

contain the last approximations of �X:p(X); and Xn the �nal approximation of

�X:p(X).

3 Counterexamples and witnesses for FCTL

In this section, we remind the reader on how to construct witnesses for the pos-

sible types of CTL and FCTL formulae for which witness construction makes

sense (E[fUg]; EGf and EGf under fairness constraints) except for the witness
construction for E[fUg] under fairness constraints which follows from the witness
construction for EGf under fairness constraints. By doing this, we also present
the witness construction algorithm in [CGMZ94] in a more formal way.

CTL and FCTL are subsets of the �-calculus, in fact subsets of L�2 . We do
not give the syntax of FCTL and CTL here. Instead, we give their translation
into the �-calculus, in this way giving a meaning to the (F)CTL formulae. For the
precise de�nition of the syntax and semantics of these subclasses of the �-calculus
the reader is referred to [CGL93], [Zuc93b].

A counterexample for a formula can be constructed by constructing a witness
for its negation. However, the negation has to belong to the formulae for which
a reasonable witness can be constructed. E.g., constructing a witness for AGf
would not be sensible. Because of the simple connection between counterexamples
and witnesses we will only talk about witnesses in the rest of the paper.

3.1 Witness construction for E[fUg]

E[fUg] can be rewritten into the �-expressions �X:g _ (f ^ hiX). During the

�xpoint iteration for this formula, which starts with X
�1 = false, the approx-

imations to X (X0 = g;X1 = g _ (f ^ hig);X2; : : :) are saved (cf. Algorithm
2.1).

In model checking we want to show that a formula f is ful�lled for a set of
initial states I, i.e., I j= f . In the case of formula E[fUg], Xi contains those

states from which a state ful�lling g can be reached in less than or equal to i
transitions. As a consequence, the shortest path which shows that I j= E[fUg]

certainly starts with a state in the �rst nonempty intersection of the initial states
I with an Xi.

Formally, C constructs a shortest path for the �-expression �X:p(X) with

p(X) = g _ (f ^ hiX) with starting state s 2 Xi nXi�1.

12

C(�X:p(X); s;Xi) =

8<
:
s:C(�X:p(X); s0;Xi�1) i > 0

s i = 0

where s0 2 sR \Xi�1 and s 2 Xi nXi�1

Let I be the set of inital states for which the formula �X:p(X) is true. f

calculates the �rst Xi which has a nonempty intersection with I, if started with

i = 0.

f(�X:p(X); i; I) =

8<
:
Xi if Xi \ I 6= ;

f(�X:p(X); i + 1; I) otherwise

V computes the shortest path from an initial state s 2 f(�X:p(X); 0; I) \ I
which is a witness for I j= �X:p(X).

V (�X:p(X); s) = C(�X:p(X); s; f(�X:p(X); 0; I))

3.2 Witness construction for EGf

Let Xn denote the last approximation of the �xpoint iterations for EGf = �X:f^
hiX. Exactly those states s ful�ll this formula where there is an in�nite path
starting at s along which f is always ful�lled. Therefore, C(�X:(f ^ hiX); s)

calculates the witness which consists of a path which leads into a loop.

C(�X:(f ^ hiX); s) =

8<
:
V (�Y:s _Xn ^ hiY); s) s j= �Y:s _Xn ^ hiY

s:C(�X:(f ^ hiX); s0) otherwise

where s0 2 sR \Xn.
V computes a witness for I j= EGf from an initial state s 2 I. (Note that

I � Xn.)

V (�X:(f ^ hiX); s) = C(�X:(f ^ hiX); s)

3.3 Witness construction for EGf with fairness constraints

The following formula calculates EGf under fairness constraints hk.

�Z:[f ^
n̂

k=1

hi[�X:Z ^ hk _ (f ^ hiX)]] (1)

This formula is ful�lled by those states where there is an in�nite path where

all states on the path ful�ll f and the fairness constraints hk are ful�lled in�nitely
often.

13

How to construct witnesses for FCTL formulae has been shown in [CGMZ94]

and [CGL93]. They use the special meaning of FCTL formulae when constructing

the witness.

C(s) calculates the witness which consists of a path which leads into a loop

where each fairness constraint is ful�lled by at least one state on the loop.

C(s) = F (s; s; n)

Whk(s) = V (�X:Z ^ hn�k+1 _ f ^ hiX; s)

F (t; s; k) =

8<
:
Whk(s

0):F (t; last(Whk(s
0)); k � 1) k > 0

B(t; s) k = 0

where s0 2 sR \ Xk
n , and Xk

n is the last approximation for Xk of the formula

�Xk:Z ^ hn�k+1 _ (f ^ hiXk). The function last returns the last state of a �nite

path.

B(t; s) =

8<
:
V (�Y:t _ f ^ hiY; s0) 9s0 2 sR \ Y t

n : s
0 j= �Y:t _ f ^ hiY

C(s) otherwise

where Y t
n is the last approximation of the formula �Y:t _ f ^ hiY .

In contrast to the witness construction for E[fUg], �nding the shortest witness
for formula EG true under fairness constraints is NP-complete [CGMZ94].

4 Witnesses for the �-calculus

In this section we develop a more general approach for the construction of wit-

nesses for arbitrary �-calculus formulae.

4.1 Example

We use an example to give an intuition for the construction of a witness for a
formula in the �-calculus.

What is the witness for

�X:�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY)) (2)

What is value returned for this formula by the model checking algorithm, i.e.

what is the set of states ful�lling this formula? Let Xn be the value of variable X

in the last �xpoint iteration. The value returned by the model checking algorithm

(Algorithm 2.1) is then:

�Y:(P _ (K ^ hBiY)) (3)

14

B B B B B B B

A

A

A

A

A

A

A

A

A A

A

A

A

A

ψ
γ

δ

Figure 1: Witnesses: main path and side paths

where K = �Z:(Xn _ hAiZ).
Figure 1 shows what kind of states ful�ll this formula. A state ful�lls

this formula if there is a main path with only B-transitions where at each state
there is a side path according K. I.e., a sidepath with only A-transitions which
ends in a state, e.g., � where again a structure similar to the one starting at
begins. The main path can either end at a state
 where P holds or end up in a

loop.

4.2 Witness subclass of the �-calculus?

In [CGMZ94] witnesses are only constructed for a subclass of FCTL: for formulae

of type EGf and E[fUg] with or without fairness constraints. I.e., they would

not allow constructing a witness for formulae of type AGf and A[fUg].
For which subclass of the �-calculus do we want to allow witnesses to be

constructed? It does not make sense to compute witnesses which consist of a tree

of hundreds of paths. In FCTL the distinction is according to whether [] appears

in the formula. We have to decide how we shall treat [] in the �-calculus.
We therefore give some de�nitions of sublanguages of the �-calculus which

restrict the �-calculus with respect to [] in di�erent ways and discuss their
appropriateness.

De�nition 4.1 LP� is de�ned as the sublanguage of L� where for all X in

�X:p(X) or �X:p(X) it is the case that within p(X) X is not in the scope

of [].

15

Example 4.1 �X:(P _ (�Y:X ^ hiY)) 2 LP�

�X:(P _ (�Y:X ^ []Y)) 62 LP�

De�nition 4.2 Let LW� be the sublanguage of L� where all variables are not in

the scope of [].

Example 4.2 �X:(P _ [](�Y:X ^ hiY)) 62LW� since Y is in the scope of []

However, �X:(P _ [](�Y:X ^ hiY)) 2 LP�

An even stronger restriction is

De�nition 4.3 LS� is the sublanguage of L� where [] is not allowed.

Example 4.3 �X:([]P _ (�Y:X ^ hiY)) 62 LS�

However, this formula belongs to both LP� and LW� .

In the last de�nition, we can be sure to construct a witness the branching of
which depends only on the type and number of connectives in the formula. In
the second de�nition, we would also allow some short paths the lengths of which

dependent on the number of nested [] and hi, but the branching dependent on
the model. The �rst de�nition would allow arbitrary branching where the length
of the branches depend on the model. If we ever allowed [] arbitrarily within
�-,�-subformulae we would get really large bushy trees.

These de�nitions showed the various e�ects of the position of [] in the formula.

We could restrict the �-calculus formulae to one of the above de�nitions, e.g., to
LS� and give a witness construction algorithm for this subclass.

In this way, however, we have eliminated just one factor for getting large
witnesses. Another factor is the recursive structure of formulae such as in Formula
2. It therefore makes sense to start with a general witness construction algorithm
for the whole �-calculus and then subsequently modify it to construct reduced

witnesses. These reduced witnesses will be easier to understand than the original
ones and thus enhance the understanding of errors.

4.3 Witness construction

Let b(X) = �X:p(X) if the latter formula appears as a subformula of the original

formula f .

We remind the reader that formula pr shall denote the value of subformula p
in the last �xpoint iteration (cf. Algorithm 2.1).

Fact 1 �X:p(X) = Xn = p(Xn)

The value for the subformula �X:p(X) is the value returned for it by the model

checking algorithm in the last �xpoint iteration, i.e., Xn. The second equality

follows from the fact that Xn is a �xpoint of p(X).

16

De�nition 4.4 For a given model (S;R;L) a witness is a tree-like structure in

the set of T 1 or T , formally de�ned as

S1 = S� [S!

T = S� [f(S�;)�S�g

T 1 = S1 [f(S1;)�S1g

Here, S, `f', `g' and `,' belong to the alphabet of the regular expression, whereas
the parentheses `(' and `)' denote the scope of the Kleene star.

Algorithm 4.1 C(f; s) constructs a witness for formula f from a starting state

s j= f . C is de�ned by structural induction:

C : L� � S ! T 1

1. C(P; s) = s

2. C(:P; s) = s

3. C(p ^ q; s) = fC(p; s); C(q; s)g

4. C(p _ q; s) =

8<
:
C(p; s) pr \ fsg 6= ;

C(q; s) otherwise

5. C(hip; s) = s:C(p; s0), where s0 2 sR \ pr

6. C([]p; s) = fs:C(p; s0)js0 2 sRg

7. C(�X:p(X); s) = C(p(X); s)

8. C(X; s) = C(b(X); s)

The motivation for the de�nition of C should be clear. E.g., in order to

construct a witness for p ^ q we construct a witness for p and a witness for q.

In order to construct a witness for p _ q we construct either a witness for p or a
witness for q.

Lemma 4.1 If starting the algorithm C(f; s) with s j= f then the rewrite rules

maintain the property s j= g for derived C(g; s).

Proof:

� (1),(2): For the cases C(P; s) and C(:P; s) this is trivially ful�lled.

� (3): The case C(p ^ q; s) follows from s j= p ^ q, s j= p and s j= q.

17

� (4): Since s j= p , s j= pr we can check easily whether s j= p. If s j= p,

the lemma is trivially ful�lled. Otherwise, s j= q since s j= p _ q , s j= p

or s j= q.

� (5): Follows directly from s j= hip, 9s0 : sRs0 ^ s0 2 p and p = pr.

� (6): from the semantics of []

� (7): from Fact 1 and the fact that we treat X as Xr = Xn in Equation 8

� (8): X = Xr = Xn = b(X), using Fact 1

It should be clear that this algorithm for witness construction does not nec-

essarily terminate.

We can make it terminating by saving for each variable X the states ful�lling

it already reached.

Algorithm 4.2

C : L� � S ! T

C works in the same way as in Algorithm 4.1 except that

� for each variable X the states already reached ful�lling it are saved

h : PropV ar! S

where at the beginning of the algorithm

8X 2 PropV ar : h(X) = ;

� Equation 7 is replaced by

C(�X:p(X); s) =

8<
:
C(p(X); s) s 62 h(X)

s otherwise

where in the �rst case h is updated before C is applied to the arguments

p(X) and s by

h := h[X=h(X) [fsg]

� Only one C can operate at a time, so that h is updated correctly.

18

4.4 A worked example

Let us use again the formula

�X:�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY))

as an example for how Algorithm 4.1 constructs a witness for it from a state

s ful�lling this formula.

C(�X:�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY)); s) = (4)

C(�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY)); s) =

C(P _ ((�Z:(X _ hAiZ) ^ hBiY)); s) =

Let us suppose that s does not ful�ll P . Then we have

C(�Z:(X _ hAiZ) ^ hBiY; s) =

fC(�Z:X _ hAiZ; s); C(hBiY; s)g (5)

Let us �rst continue with the �rst C-term:

C(�Z:(X _ hAiZ; s) =

C(X _ hAiZ; s) =

C(hAiZ; s) =

s:C(Z; s1) =

s:C(�Z:(X _ hAiZ); s1) =

s:C(X _ hAiZ; s1) =

s:C(hAiZ; s1) =

s:s1:C(Z; s2) =

: : : = s:s1: : : : :sl�1:C(X _ hAiZ; sl) =

s:s1: : : : :sl�1:C(X; sl) =

s:s1: : : : :sl�1:C(�X:�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY)); sl)

This expression is in fact similar to 4. We could apply C in a similar fashion.

Figure 2 shows which path we have developed so far.
Let us now continue with the second C-term in 5.

C(hBiY; s) =

19

A

A

X

s

Figure 2: Path developed so far

s:C(Y; s0) =

s:C(�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY)); s0) =

s:C(P _ ((�Z:(X _ hAiZ)) ^ hBiY); s0) =

Let us suppose that s0 does not ful�ll P . We then have:

s:C((�Z:(X _ hAiZ)) ^ hBiY; s0) =

s:fC(�Z:(X _ hAiZ); s0); C(hBiY; s0)g =

We are in a similar situation as in 5. We have to develop a path from s0 to a

state ful�lling X, etc., and also continue along hBi to Y .

C(hBiY; s0) =

s0:C(Y; s00) =

s0:C(�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY)); s00) =

s0:C(P _ ((�Z:(X _ hAiZ)) ^ hBiY); s00) = : : :

Figure 3 shows the paths we have developed so far.

We expand Y as long as we do not reach a state ful�lling P or until we have
found a loop back to states already reached.

In this way we subsequently develop a structure as in Figure 1.

4.5 Reduced witnesses

Huge witnesses, as the one constructed in the above example, are di�cult to

understand. How can we modify function C to construct reduced witnesses.
There are two equations in Algorithm 4.1 which cause witnesses to get very
bushy: Equation 6 and 3. We suggest two possible modi�cations to Algorithm

4.1.

20

B

A

A

A

A

X

X

Bs Y

Figure 3: Paths developed so far

Just one successor If we replace equation 6 by

6'. C([]p; s) = s:C(p; s0), where s0 2 sR

the witness for just one successor is constructed. Until the end of the paper
we use this equation instead of equation 6.

Just one conjunct If we replace equation 3 by

3'. C(p ^ q; s) = choose(p; q), where choose(p; q) returns either C(p; s) or
C(q; s)

the witness for just one conjunct is constructed.

In this way we could, e.g., by continuously choosing the second conjunct,

construct only the path along the B-arcs in Figure 1.
We also could de�ne choose at the beginning of the witness construction, in

this way making coherent choices.

4.6 Side paths and main path

When choosing between the di�erent conjuncts (Equation 3) we could always go

along the side paths. This does, however, not re
ect well the meaning of the

formula. We remedy this problem in this subsection.

21

It does not make sense to return the whole bushy tree in Figure 1 as a witness

for Formula 2. Since there are a vast amount of side paths (along hAi-arcs), we
should refrain from constructing these. Indeed, the user of a model checker only

wants to see the main path - the path along the B-arcs in Figure 1 - and not

all side conditions the states on the path have to ful�ll. We therefore suggest

returning just the main path as a witness, e.g., the witness for the much simpler

Formula 3, treating K as a propositional constant, as a witness for Formula 2.

The main paths of a formula f (M(f)) are de�ned as

M : L� ! P(L�)

M(�X:p(X)) =

8<
:
f�X:p(X)g I(�X:p(X)) = 1

M(p(X)) otherwise

M(�X:p(X)) =

8<
:
f�X:p(X)g I(�X:p(X)) = 1

M(p(X)) otherwise

M(p ^ q) =M(p) [M(q)

M(p _ q) =M(p) [M(q)

M(hip) =M(p)

M([]p) =M(p)

M(P) = ;

M(Y) = ;

M(:P) = ;

VM(f) = fXj�X:p(X) 2M(f)g

The motivation behind this de�nition is that the �xpoint iterations of �- and
�-expressions with iteration depth 1 are the last when model checking a formula
f .

Example 4.4

M(�X:�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY))) =

f�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY))g

Example 4.5

M(�X:(hAi(�Y:Q ^ hAiY ^X) _ hAi(�Z:R ^ hAi(�W:Z ^X _ hAiW)))) =

f�Y:Q ^ hAiY ^X;�W:Z ^X _ hAiWg

22

Algorithm 4.3 We can easily obtain an algorithm which constructs only the

main paths of a formula f from Algorithm 4.2 by replacing Equation 7 by

7. C(�X:p(X); s) =

8<
:
s (8X 2 VM(f) : X 6� �X:p(X)) _ s 2 h(X)

C(p(X); s) otherwise

and Equation 8 by

8. C(X; s) =

8<
:
C(b(X); s) b(X) 2M(f)

s otherwise

Example 4.6 In the formula

�X:((�Y:(X ^ h ^ hiY)) ^ hi(P ^X))

X does not only appear within a subformula with iteration depth 1. In this

case, Algorithm 4.3 constructs the witness for �Y:(X ^ h ^ hiY) plus another

short path of length 1 to a state which ful�lls both P and X as a witness for this

formula. In other words, we refrain from constructing another witness for the last

X. This makes sense, since otherwise we would �nd ourselves in a cycle where

we construct a path for X again and again.

4.7 Abstract and concrete witnesses

As we have seen in the case of CTL, �X:p(X) represents states from which there

is a �nite path to certain conditions. In the case of CTL, �X:p(X) represents
states from which there is an in�nite path along states ful�lling certain conditions.

In the general case of the �-calculus, what is the meaning of a formula
�X:p(X)? The states ful�lling this formula are those from which states ful-
�lling p(false) can be reached. Therefore, a natural witness for s j= �X:p(X)

would be a path from s to p(false).
Let us consider Figure 4. The witness construction algorithms presented so

far could construct a witness for this formula consisting of the path from s to
s0 and the path along the circle back to s0. I.e., an abstract witness would be

constructed, in the sense that for each state on the witness for �X:p(X) which is

supposed to ful�ll �X:p(X), it is shown that it ful�lls p(X).
In the case of �X:p(X) we do not have this problem since, of course, a looping

path can be returned as a witness for �X:p(X). This is a concrete witness.
We have to modify Algorithm 4.3 so that it is ensured that for both �X:p(X)

and �X:p(X) the natural (concrete) witnesses are constructed, i.e, for �X:p(X)

a path to p(false).

23

s

p(false)

s’

Figure 4: An abstract witness for �X:p(X)

Algorithm 4.4 We can obtain an algorithm which constructs only concrete wit-

nesses from Algorithm 4.3 by replacing Equation 7 by

7". C(�X:p(X); s) =

8<
:
V (�X:p(X); s) �X:p(X) 2M(f)

C(p(X); s) otherwise

and Equation 8 by

8". C(X; s) = s

where V constructs concrete witnesses for the main paths of f .

Termination of this algorithm follows from the termination of V and the fact

that C is non-recursive (Equation 8").

In the following two sections we investigate how to construct concrete wit-
nesses for the main paths.

5 Main paths of type �X:p(X)

5.1 Shortest paths for �X:p(X)

We did not care about constructing shortest witnesses in the previous section.

We will talk about this now.
In the case of CTL, a shortest witness for �X:p(X) can be constructed e�-

ciently. In the following, we will see how shortest witnesses can be constructed
for general formulae of type �.

5.1.1 Occurrences of X independent

De�nition 5.1 The di�erent occurrences of X in p(X) in �X:p(X) are called

24

independent of each other if p(X) can be rewritten into
W
pj(X) where each pj(X)

does not contain X or pj(X) is of the form qj0 ^�(qj1 ^ : : :�(qjn ^X) : : :) where

each qjm does not contain X.

For this class of �X:p(X) we can give an algorithm which calculates the

shortest witness.

When calculating the �xpoint approximations we save the values of the dis-

juncts pj(X) containing X in p(X) separately. In this way, we achieve a kind of

tree (Figure 5) when the approximations are computed. X
j
i denotes the value

obtained in the ith �xpoint iteration by substituting father(Xj
i), i.e., one of the

splitted values in the previous �xpoint iteration, for X in the jth disjunct contain-

ing X. During the �xpoint iterations we also save for each X
j
i the total distance

t in transitions from X0: X
j;t
i .

Example 5.1 The formula �X:(P_hiX_hihihiX) has the approximationsX0;X1; : : :

to its least �xpoint. These approximations are split according to hiX and hihihiX.

Let p1(X) = hiX and p2(X) = hihihiX.

at the beginning:

X0 = P

after the �rst �xpoint iteration:

X1

1
= hiP , X2

1
= hihihiP

after the second �xpoint iteration:

substituting X1

1
and X2

1
in p1(X) we obtain:

X1

2
= hihiP and X2

2
= hihihihiP

substituting X1

1
and X2

1
in p2(X) we obtain:

X1

2
= hihihihiP and X2

2
= hihihihihihiP

At this time we have constructed a tree as in Figure 5.

The process continues similarly.

The total distance for, e.g., X2

2
as a son of X2

1
would be 6.

We construct the shortest path in a similar fashion as in the case of CTL.
f returns the Xj

i with smallest distance from X0.

f : L� �P(S)! PropV ar

f(�X:p(X); I) =
loop

h = 0

if 9Xj;h
i : Xj;h

i \ I 6= ; return Xj;h
i

h = h + 1

pool

25

X0

X1
1

X2
1 X2

1X2 X2

X1

2

2

2

Figure 5: Approximations where there are di�erent depths in a � expression

C : L� � S � PropV ar ! T

C(�X:p(X); s;Xj
i) =

8<
:
D(�X:p(X); s;Xj

i ; n) i > 0

s i = 0

where pj(X) = qj0 ^�(qj1 ^ : : :�(qjn ^X) : : :)

D : L� � S � PropV ar � N! T

D(�X:p(X); s;Xj
i ; k) =

8<
:
s:D(�X:p(X); s0;Xj

i ; k � 1) k > 1

s:C(�X:p(X); s0; father(Xj
i)) k = 1

where s0 2 sR \ qln�k+1 \ R
k�1father(Xj

i) and s 2 X
j
i n father(X

j
i).

V (�X:p(X); s) constructs the shortest witness for formula �X:p(X) for a
starting state s where all transitions are shown.

V : L� � S ! T

V (�X:p(X); s) = C(�X:p(X); s; f(�X:p(X); I))

where s 2 f(�X:p(X); I) \ I.
We can de�ne a rougher witness construction as follows:

C(�X:p(X); s;Xj
i) =

8<
:
s:C(�X:p(X); s0; father(Xj

i)) i > 0

s i = 0

26

s2

s1

s0 P

u

v

Figure 6: Interdependent X

P

{} {s1}

Figure 7: Wrong tree for interdependent X

where s0 2 sRn \ father(Xj
i) and s 2 X

j
i n father(X

j
i).

In this way we achieve in a faster way the rough structure of the witness which
might also be easier to understand.

The tree in Figure 5 can also degenerate to a linear list. This is trivially the
case when there is just one X in p(X) of �X:p(X).

When all occurrences of X have the same depth, we can also make the tree
degenerate to a linear list. This can be achieved by not di�erentiating between

the di�erent disjuncts at the time of the calculation of the approximations. The
price we have to pay is that we always have to �nd the �rst j with s j= pj(Xi�1)
at the time of witness construction where s is the current state.

5.1.2 Interdependent occurrences of X

An example for interdependent X is the formula

�X:P _ hiX ^ hihiX _ hihiX

Figure 6 illustrates why the witness construction given in the previous sub-

subsection does not work. In this model, only s0 j= P and only s2 2 I. The �rst
�xpoint iterations for the above formula yields the tree in Figure 7. In the second

�xpoint iteration we would like to replace the empty set of the left son by fs2g.
We see that with higher �xpoint iteration the shortest path to the goal state

(P) does not necessarily increase, but can in fact decrease with each iteration.
This is the case in this model where the shortest witness s2! s0 is added via a

di�erent path and where the paths to s0 from s2 in previous �xpoint iterations

were longer.

27

6 Main paths of type �X:p(X)

6.1 Passive generation of witnesses for �X:p(X)

Similarly to Algortihm 4.2 the states already reached during the witness con-

struction are saved and the construction is stopped as soon as a state is reached

again.

Algorithm 6.1 W� : L��PropV ar�S ! T operates in the same way as C in

Algortihm 4.2, except for the last two equations:

1. W�(�Y:p(Y);X; s) =

8<
:
W�(p(Y);X; s) Y � X ^ s 62 h(X)

s otherwise

2. W�(Y;X; s) =

8<
:
W�(b(Y);X; s) Y � X

s otherwise

The algorithm starts with W�(�X:p(X);X; s) where �X:p(X) is a main path.

In this algorithm h only needs to save the states marked with X.

The above algorithm may still construct large branching trees as a witness.
The reason for this are conjoined subformulae within �X:p(X) which contain X.

We can remedy this problem by replacing Equation 3 by

W (p ^ q;X; s) =

8<
:
W�(p;X; s) occ(X; p)

W�(q;X; s) otherwise

In this way, just one path is constructed.
The following de�nition of V combines this algorithm with Algorithm 4.4

V (�X:p(X); s) = W�(�X:p(X);X; s)

6.2 Active generation of witnesses for �X:p(X)

In the case of EGf = �X:f^hiX the witness construction procedure for CTL and
FCTL searches for a loop in a more goal-directed way. We extend this approach

to a bit broader class of formulae.

6.2.1 Fixed depth

We restrict the class of formulae to the type

�X:(p ^ himX)

28

where m � 1, p 6= true and p is a conjunction of disjuncts not containing X (L2

are the subformulae treated as literals.).

Let Xn denote the value of the last �xpoint iteration of �X:p ^ himX. Let

s 2 Xn \ I. Xn contains all states where there is an in�nite path taking m steps

between such states, each of which ful�lls p.

C(�X:(p ^ himX); s) =

8<
:
V (�Y:s _Xn ^ hi

mY; s) s j= �Y:s _Xn ^ hi
mY

D(�X:(p ^ himX); s;m) otherwise

where

E : L� � S � N! T

E(�X:(p ^ himX); s; d) =

8<
:
s:E(�X:(p ^ himX); s0; d� 1) d > 0

C(�X:(p ^ himX); s) otherwise

where s0 2 sR \Rd�1Xn.

V (�X:p(X); s) = C(�X:p(X); s)

where s 2 Xn \ I.
Obviously, the calculation of C(�X:p(X); s) is expensive since for each newly

reached state s 2 Xn, �Y:s _ Xn ^ hi
mY has to be calculated. In [CGMZ94]

they do not have a similar problem since they do such a test only after having

calculated long paths. We could do it similarly: one could come away with fewer
of such �xpoint iterations by computing longer paths in Xn before such a test is
performed.

6.2.2 Di�erent depths and arbitrary occurrence of X

Actively looking for loops could also be extended to general �X:p(X). It remains
to be seen in practice what kind of method is in general computationally the less

expensive.

6.3 Normalization of �-expressions

For �-expressions of arbitrary form it is not the case as in CTL that �-expressions

represent only in�nite paths. Instead, they can represent both �nite and in�nite
trees. However, we are able to extract the �nite witnesses from the �-expressions.

Lemma 6.1

�X:p(X) � �X:p(X)

29

Proof: By induction on the number of �xpoint iterations and the fact that p(X)

is monotone.

Corollary 6.1

�X:p(X) = �X:p(X) _ �X:p(X)

If we impose certain restrictions on the �-expressions we are even able to

separate �nite from in�nite witnesses.

When treating L2 as the set of literals we bring p(X) in �X:p(X) into dis-

junctive normal form. We then have:

Lemma 6.2

�X:(
_
l

pl _
_
m

pm(X))

where each pl and pm is constructed by the operators hi and ^ and the literals in

L2 (pm does and pl does not contain X) and 8q 2 L2 n fXg : (q � �X:(
W
l

pl _
W
m
pm(X)))! :occ(X; q).

�X:(
_
l

pl _
_
m

pm(X)) =

�X:(
_
l

pl _
_
m

pm(X)) _ �X:(
_
m

pm(X))

Proof: We show that the nth �xpoint iteration on the left-hand side is equivalent
to the union of the two nth �xpoint iterations on the right-hand side. I.e., ln =
rn
1
_ rn

2
where

l = �X:(
_
l

pl _
_
m

pm(X))

r1 = �X:(
_
l

pl _
_
m

pm(X))

and
r2 = �X:(

_
m

pm(X))

The rest follows from the fact that all three �xpoints exist.

Induction basis:

at iteration -1: true = true

at iteration 0:
W
l

pl _
W
m
pm(true)) =

W
l

pl _
W
m
pm(false)) _

W
m
pm(true))

Induction step:

ln+1 =
W
pl _

W
pm(
W
pn _

W
po(l

n�1)) =

30

W
pl _

W
pm(
W
pn _

W
po(r

n�1
1

_ rn�1
2

)) =

induction hypothesisW
pl _

W
pm(
W
pn) _

WW
pm(po(r

n�1
1

)) _
WW

pm(po(r
n�1
2

))

using the fact that both operators ^ and hi (and these are the only operators in

pm, po (besides the literals in L2)) distribute over _

rn+11 =
W
pl _

W
pm(r

n
1
) =W

pl _
W
pm(
W
pn _

W
po(r

n
1
)) =W

pl _
W
pm(
W
pn) _

WW
pm(po(r

n
1
))

rn+1
2

=
W
pm(po(r

n�1
2

))

It follows directly that ln+1 = rn+1
1

_ rn+1
2

.

This lemmas allow us to simplify the witness construction for �X:p(X).
Let �X:p(X) = �Y:q(Y) _ �Z:r(Z) where the right hand-side is obtained

by application of the previous lemma or previous corollary. �Y:q(Y) then con-

tains all �nite witnesses contained in �X:p(X). Let �Y:q(Y) = false if such a
transformation is not possible. Let

norm1(�X:p(X)) = �Y:q(Y)

norm2(�X:p(X)) = �Z:r(Z)

The following de�nition of V incorporates the normalization:

V (�X:p(X); s) =

8<
:
V (norm1(�X:p(X)); s) s j= norm1(�X:p(X))

V (norm2(�X:p(X)); s) otherwise

I.e., in order to calculate a witness for �X:p(X) we try �rst to �nd a �nite

witness for the �-expression obtained by normalization. If there is no such �nite
witness, we calculate the �-expressions and construct the in�nite witness from
it. In this way, we could get away without the expensive witness construction for

�X:p(X).

7 Comparing �-calculus to FCTL witness gen-

eration

7.1 Witnesses for �-expressions of type FCTL

FCTL is a subclass of L�2 . The counterexamples for FCTL in [CGMZ94] are for

a special type of L�2 formulae. In the construction of the witnesses the special

31

meaning of the FCTL formula is exploited. Therefore, their counterexample

construction does not extend to the whole �-calculus .

Our algorithm above would construct a path for each separate ^ in the formula

�Z:[f ^
^
k

hi[�X:Z ^ hk _ (f ^ hiX)]] (6)

The algorithm in [CGMZ94], however, would construct a single path with a

cycle in which all fairness constraints hk are contained.

If we wanted a similar witness we would have to modify Algorithm 4.4 so that

the �rst subformula with iteration depth 2 of type

�Z:[L ^
^
k

hi[�X:Z ^ hk _ (P ^ himX)]]

is dealt with as in [CGMZ94]. Note that L and P can refer to higher level
variables and that we can have arbitrary nesting everywhere else in the formula
which contains this subformula.

7.2 Interactive generation of witnesses

The witness constructed by Algorithm 4.4 could be expanded interactively by the
user.

For example, Algorithm 4.4 would construct a path for each ^ in Formula 1.
Each such path ends with a state (e.g. s) ful�lling hk^Z. The user could demand
to extend such a path by interactively typing V (�X:Z ^h2 _ (f ^ hiX); s), which

would construct a path to fairness constraint h2. In this way, the user could
himself make construct the counterexample as it would be constructed by the
algorithm in [CGMZ94].

We could also modify Algorithm 4.4 in such a way that only the path for
just one conjunct is constructed. The path could then be extended by, e.g., the

witness for a di�erent conjunct in the case of Formula 1.
Interactive generation of witnesses allows di�erent paths to be pursued. This

allows a much more
exible witness generation.

8 Conclusions and future work

We have presented an algorithm for witness generation for formulae of the whole

�-calculus. Calculating reduced witnesses enhances the understanding of wit-
nesses. It turned out that constructing short witnesses is not computationally

expensive for many �-calculus formulae.
The �-calculus allows greater
exibility than formulae in CTL. The interactive

generation of counterexamples/witnesses can also increase the user's
exibility.

32

In future work, the suggested algorithms have to be implemented into our �-

calculus model checker [Bie95a]. Testing and analysis will show which of the algo-

rithms are most appropriate for what kind of model checking problems/formulae.

Especially the classes of L� formulae for which the di�erent main path witness

construction algorithms are best have to be determined in practice.

References

[Bie95a] A. Biere. �cke { an evaluator of �-calculus formulae. Technical report,

Fakult�at f�ur Informatik,University of Karlsruhe,Germany, 1995.

[Bie95b] A. Biere. Semantik eines �-Kalk�ul-Auswerters. Technical report,

Fakult�at f�ur Informatik,University of Karlsruhe,Germany, 1995.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Transactions on Computers, C-35(8), 1986.

[Bry92] R. E. Bryant. Symbolic boolean manipulation with ordered binary de-
cision diagrams. ACM Computing Surveys, 24(3):293 { 318, Septem-
ber 1992.

[CGL93] E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-
state concurrent systems. In de Bakker, editor, A Decade of Con-

currency, REX School/Symposium, volume 803 of LNCS, pages 124
{ 175. Springer, 1993.

[CGMZ94] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. E�cient gen-
eration of counterexamples and witnesses in symbolic model check-
ing. Technical Report CMU-CS-94-204, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA 15213, October 1994.

[Cle93] Rance Cleaveland. The concurrency workbench: A semantics-based

veri�cation tool for the veri�cation of concurrent systems. ACM

Transactions on Programming Languages and Systems, 15(1):36{72,

January 1993.

[EL86] E. A. Emerson and C.-L. Lei. E�cient model checking in fragments

of the propositional mu-calculus. In IEEE Symposium on Logic in

Computer Science, pages 267{278, 1986.

[Koz83] D. Kozen. Results on the propositional �-calculus. Theoretical Com-

puter Science, 27:333{354, 1983.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-

lishers, Boston,USA, 1993.

33

[Rau95] Antoine Rauzy. Toupie: A constraint language for model checking.

In Andreas Podelski, editor, Constraint Programming: Basics and

Trends, LNCS 910. Springer-Verlag, 1995. (Châtillon-sur-Seine Spring

School, France, May 1994).

[SE89] Robert S. Streett and E. Allen Emerson. An automata theoretic

decision procedure for the propositional mu-calculus. Information

and Computation, 81(3):249{264, June 1989.

[Zuc93a] J. Zucker. The propositional mu-calculus and its use in model check-

ing. In P. E. Lauer, editor, Functional Programming, Concurrency,

Simulation and Automated Reasoning, volume 693 of LNCS, pages

117{128. Springer-Verlag, Berlin, DE, 1993.

[Zuc93b] J. Zucker. Propositional temporal logics and their use in model check-

ing. In P. E. Lauer, editor, Functional Programming, Concurrency,

Simulation and Automated Reasoning, volume 693 of LNCS, pages

108{116. Springer-Verlag, Berlin, DE, 1993.

34

