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1 Introduction

Regulated rewriting is one of the main topics of formal language theory [3, 13], since there,

basically context-free rewriting mechanisms are enriched by di�erent kinds of regulations,

hence generally enhancing the generative power of such devices enormously. More recently,

investigation of limited forms of parallel rewriting became popular, see e.g. the works of

W�atjen [16, 18]. Such investigations add to the understanding of parallelism in rewriting

and are, at �rst glance, a rather di�erent form of context-free rewriting. The indepence

of regulated and parallel rewriting is stressed e.g. in [17, 10]. Nevertheless, one of the

most beautiful facts of this theory is the close connection between these two variations of

context-freeness, �rst observed by Dassow [2], cf. also [4, 5] and [7, Theorem 3.1].

In this paper, we present some new decidability results for programmed grammars with

unconditional transfer and for limited ET0L systems and their consequences. The maybe

most surprising result is taken as the headline of this paper. Furthermore, we present some

facts from the literature with shortened and/or corrected proofs in some detail in order to
give sort of overview on the area, since [15, 14] might not be readily available.

A programmed grammar ([12, 15, 3]) is a construct G = (VN ; VT ; P; S), where VN , VT ,
and S are the set of nonterminals, the set of terminals and the start symbol, respectively,
and P is a �nite set of productions of the form (r : �! �; �(r); �(r)), where r : �! � is
a rewriting rule labelled by r and �(r) and �(r) are two sets of labels of such core rules in
P . By Lab(P ) we denote the set of all labels of the productions appearing in P . Mostly, we

identify Lab(P ) with P . For (x; r1) and (y; r2) in V �

G
� Lab(P ), we write (x; r1) ) (y; r2)

i� either

x = z1�z2; y = z1�z2; (r1 : �! �; �(r1); �(r1)) 2 P; and r2 2 �(r1) (1)

or

x = y; the rule r1 : �! � for some production (r1 : �! �; �(r1); �(r1)) 2 P

is not applicable to x; and r2 2 �(r1) :

In the latter case, the derivation step is done in appearance checking mode. The set �(r1)

is called success �eld and the set �(r1) failure �eld of r1. The language generated by G is
de�ned as

Lgen(G) = fw 2 V �

T
j (S; r1)

�
) (w; r2) for some r1; r2 2 Lab(P )g :

The family of languages generated by programmed grammars containing only context-

free core rules is denoted by Lgen(P,CF; ac). When no appearance checking features are
involved, i.e. �(r) = ; for each rule in P , we are led to the family Lgen(P,CF). The
special variant of a programmed grammar where the success �eld and the failure �eld

coincide for each rule in the set P of productions is said to be a programmed grammar

with unconditional transfer . For convenience, we do not write both the success and the
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failure �eld, but use, following Rosenkrantz [12], only one go-to-�eld. Observe that due

to our de�nition of derivation, a production with empty go-to-�eld is never applicable.

Hence, we assume without saying that grammars with unconditional transfer contain only

productions with non-empty go-to-�elds. We shall denote the class of languages generated

by programmed grammars with context-free productions and with unconditional transfer

by Lgen(P,CF,ut). If erasing rules are forbidden, we replace the component CF by CF{�

in our notations.

Besides this mode (called `free interpretation' by Stotskii), we also consider leftmost

derivations. In this case, we additionally require in Eq. (1) that z1 does not contain an

occurrence of �.1 We indicate this modi�cation by putting `P{left' instead of `P' in our

notations.

Rosenkrantz showed in [12, page 126]:

Theorem 1.1 There is an algorithm which, given an arbitrary (P{left,CF��,ut) grammar

G and a word x, decides whether there is a word in Lgen(G) having x as one of its pre�xes.

In particular, we need the following corollary in the following:

Corollary 1.2 For any (P{left,CF��,ut)-language L, there is a Turing machine TL which,
given a word x, decides whether there is a word in L having x as one of its pre�xes.

In [16], a new type of parallel derivation was examined, so-called limited L systems.
A k-limited ET0L system (abbreviated as klET0L system) is a quintuple G = (V; V 0,
fP1; : : : ; Prg, !, k) where V

0 is a non-empty subset (terminal alphabet) of the alphabet
V , ! 2 V +, and each so-called table Pi is a �nite subset of V � V � which satis�es the
condition that, for each a 2 V , there is a word wa 2 V � such that a! wa 2 Pi, such that

each Pi de�nes a �nite substitution �i : V
� ! 2V

�

. G is called propagating if no table
contains an erasing production a! �. According to G, x ) y (for x; y 2 V �) i� there is
a table Pi and partitions x = x0�1x1 � � ��nxn, y = x0�1x1 � � � �nxn such that �� ! �� 2 Pi
for each 1 � � � n, and, for each a 2 V , ka = jf� j�� = agj � k where ka < k implies that
a is not contained in x0x1 � � �xn.

The language generated by a generating klET0L systemG is Lgen(G) = fw 2 V 0� j!
�
)

wg. The corresponding language class is denoted by Lgen(klET0L). SinceLgen(klET0L) �

Lgen(1lET0L) = Lgen(P;CF� �;ut) by results of [16, 2], we mostly restrict ourselves to

that particular language class. The class of languages generated by propagating klET0L
systems if denoted by Lgen(klEPT0L).

As basic model of computation we consider register machine programs, or | equivalent-
ly | while programs [11]. An r-register machine or r-RM consists of r registers R1; : : : Rr,

each of them capable of storing one natural number �1; : : : ; �r. It can be supplied with
a program (r-RMP) which obeys the following syntactical restrictions (the semantics is

indicated in parentheses):

1This mode is called `leftmost of type 3' in [3].
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� ai (1 � i � r) is an r-RMP. (Increment the content �i of register i by one.)

� si (1 � i � r) is an r-RMP. (If �i > 0, decrement �i by one.)

� If P1 and P2 are r-RMPs, then so is P1P2. (Follow �rst the instructions of P1 and

then the instructions of P2.)

� If P is an r-RMP, then so is (P )i (1 � i � r). (While �i > 0 do P .)

� Nothing else is an r-RMP.

We de�ne the function fP : N0��!N0 computed by P as follows: Initially, an r-RM is

given r-RMP P , and the argument n for which we want to know fP (n) is stored in R1,

whence �2 = � � � = �r = 0. Then, our r-RM follows the instructions of P according to the

above-sketched semantics. When the r-RM, due to some in�nite looping, does not stop,

fP (n) =? (unde�ned). Otherwise, r-RM will eventually stop. Then, fP (n) = �r.

r-RMPs (while-programs) are a well-known formalization of computability. Hence, for
every recursively enumerable set M of natural numbers, there exists an r-RMP P such
that M is the range of fP .

2 How to represent enumerable sets with 1lEPT0L

systems

We proceed with the following steps. First, we give a proof of the fact that we may code
any enumerable set of natural numbers in a certain sense by (P{left,CF��,ut) grammars (a

proof which is basically shorter than the one of [15, Teorema 3.4] and uses better known
facts). We show how to simulate a given (P,CF��,ut) grammar G via a 1lEPT0L-system
G0 such that Lgen(G)f#g = Lgen(G

0). On the other hand, Dassow showed in [2] how
to simulate a 1lEPT0L-system G0 via an equivalent (P,CF��,ut) grammar G. All these
simulations are e�ective ones.

Theorem 2.1 There is an algorithm which, given an arbitrary r-RMP P implementing

a function fP : N0��!N0 with range M , computes a (P{left,CF��,ut) grammar G with

the property m 2 M () cmcrb
nrcr�1b

nr�1 � � � c1c0 2 Lgen(G) for some nr; : : : ; n1 2 N0.
Furthermore, any word wc0 2 Lgen(G) is of the form w = cmcrb

nrcr�1b
nr�1 � � � c1.

Proof. Synctactically, G has as terminal alphabet fc; c0; : : : ; cr; bg and the nonterminal

alphabet consists of S, the start symbol, F , a distinguished failure symbol, �, a symbol

whose occurrence at the end of a sentential form proves the correctness of the simulation

of P so far (success witness); the content �i of the register Ri is represented as A�i

i
Ci, and

Br is a special rubbish symbol for the simulation of register number r. Furthermore, there

are help symbols A;A0.
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In the following, we describe recursively a procedure how to transform an arbitrary

r-RMP P into G in a uniform way.

The most lengthy part of our simulation (which has to be added within Stotskii's work)

is a sweeping routine which sweeps the rubbish symbol Br to the right of the simulated

register r and turns it into a rubbish terminal b. Consider the following sequence of

productions:
S0 Br ! Ar fS1; S2g Ai+1

r
Crb

jAk

r�1 � � �C1�

S1 Ar ! A0 fS1; S2g

S2 Ar ! A00 fS3g

S3 Ar ! F fS4g A0iA00Crb
jAk

r�1 � � �C1�

S4 Cr ! b fS5g A0iA00bj+1Ak

r�1 � � �C1�

S5 A00 ! Cr fS6g A0iCrb
j+1Ak

r�1 � � �C1�

S6 A0 ! Ar fS6; S7g

S7 A0 ! F fexitg Ai

r
Crb

j+1Ak

r�1 � � �C1�

On the right, we see the e�ect of the sequence of productions on some string of the form
BrA

i

r
Crb

jAk

r�1 � � �C1�. Observe that if we start with no � within the string, we leave the

sweeping procedure without �. Note that we will enter the sweep macro only when we
know that there is something to sweep.

Now, we give, for each possible elementary part of P , a set of simulating productions
for G.

� ai: (entry : Ci ! AiCi; fexitg), (1 � i � r).

� si: (entry : Ai ! b; fexitg), (1 � i < r).

� sr: (entry : Cr ! Cr; fS
0; S00g), (S0 : Ar ! F; fexitg), (S00 : Ar ! �; fS000g),

(S000 : �! Br; fsweepg).

� ( ~P )i: (entry : Ci ! Ci; fP
0

i
; P 00

i
g), (P 0

i
: Ai ! F; fexitg), (P 00

i
: Ai ! �Ai; fP

000

i
g),

(P 000

i
: � ! b; f ~Pg) for 1 � i < r. After �nishing with the simulation of ~P , the

simulation goes back to label `entry'.

� ( ~P )r: (entry : Cr ! Cr; fP
0

r
; P 00

r
g), (P 0

r
: Ar ! F; fexitg), (P 00

r
: Ar ! �Ar; fP

000

r
g),

(P 000

r
: � ! b; fsweepg). After `sweep', the simulation of the body ~P starts. After

�nishing with the simulation of ~P , the simulation goes back to label `entry'.

We initialize our simulation with the productions (start : S ! Cr � � �C1�; fcount,exitg),

(count : C1 ! A1C1; fcount,exitg). This means that we generate an arbitrary argument

�1 2 N0, coded in the form Cr � � �C2A
�1

1 C1�. Furthermore, note that the fact that no sym-
bol Ai occurs in Cr � � �C2A

�1

1 C1� for i > 1 corresponds to the convention that computations
of RMPs start with empty registers besides the argument register R1.

Then, we simulate a run of the program P . Before an instruction of the RMP is simu-

lated, we have register contents �1; : : : ; �r. This is encoded by A�r

r
Crb

mrA
�r�1

r�1 � � � b
m2A1C1�
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for some mj 2 N0. In case of subtraction of register r and the while-loop simulation,

we consider two cases: Either the corresponding register is empty (1) or not (2). If the

simulation wrongly enters path (1), the failure symbol F is introduced. If the simulation

wrongly enters path (2), the success indicator � is erased.2

Hence by induction, after a successful simulation of P on argument n, in case fP (n) = m

is de�ned, we arrive at a string of the form A�r

r
Crb

nrA
�r�1

r�1 � � � b
n2A1C1� for some nj 2 N0.

We introduce as terminating productions: (term : Ar ! c; fterm; t1g), (t1 : Cr !

cr; ft2g), (t2 : Ar�1 ! b; ft2; t3g), (t3 : Cr�1 ! cr�1; ft4g), : : :, (t2r : � ! c0; ft2rg). The

claim of the theorem follows. 2

If we consider the above-given grammar not with leftmost but with free interpretation,

the simulation still works, and the assertion of the theorem also keeps true.

Theorem 2.2 There is an algorithm which, given an arbitrary r-RMP P implementing

a function fP : N0��!N0 with range M , computes a (P,CF��,ut) grammar G with the

property m 2 M () cmcrb
nrcr�1b

nr�1 � � � c1c0 2 Lgen(G) for some nr; : : : ; n1 2 N0.
Furthermore, any word wc0 2 Lgen(G) is of the form w = cmcrb

nrcr�1b
nr�1 � � � c1.

Now, we present the announced transformation lemma.

Lemma 2.3 There is an algorithm which, given an arbitrary (P,CF��,ut) grammar G,
produces a 1lEPT0L system G0 such that Lgen(G)f#g = Lgen(G

0), where # is a special
symbol.

Proof. We can take the proof of Dassow [2, Claim 2] almost literally.3 Our comments refer
to the notation within that proof. Instead of the initialization table, we take an axiom of
the form S[p] for any production indicator [p]. To any table described by Dassow, we add
productions #! F in order to prevent shortcuts. Finally, we have a (second) termination
table h0

T
with h0

T
([p]) = f#g, h0

T
(a) = fag for any terminal symbol a, h0

T
(A) = fFg

otherwise. 2

Combining the last lemma with the previous theorem, we immediately get:

Theorem 2.4 There is an algorithm which, given an arbitrary r-RMP P implementing a
function fP : N0��!N0 with range M , computes a 1lEPT0L system G with the property

m 2 M () cmcrb
nrcr�1b

nr�1 � � � c1c0# 2 Lgen(G) for some nr; : : : ; n1 2 N0. Further-
more, any word wc0# 2 Lgen(G) is of the form w = cmcrb

nrcr�1b
nr�1 � � � c1.

2The trick with the success witness � is due to Stotskii.
3A small correction is contained in [5].
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3 Simulation of (P,CF��,ut) grammars by klEPT0L

systems

This whole section is devoted to the proof of the following encoding theorem, which is

furthermore a rather weak one. Hopefully, using the techniques presented in its proof,

improvements of such a helpful theorem are possible.

Theorem 3.1 Let k � 2. There is an algorithm which, given an arbitrary r-RMP P

implementing a function fP : N0��!N0 with range M , computes a klEPT0L system

G with the property m 2 M () cmcrb
nrcr�1b

nr�1 � � � c1c0$b
0j# 2 Lgen(G) for some

nr; : : : ; n1; j 2 N0. Furthermore, any word wc0$b
0j# 2 Lgen(G) with w 2 fc; cr; : : : ; c1; bg

�

is of the form w = cmcrb
nrcr�1b

nr�1 � � � c1.

More precisely, we present a rather lengthy proof of the following lemma from which

the theorem follows.

Lemma 3.2 Let k � 2. There is an algorithm which, given an arbitrary (P,CF��,ut)
grammar G, produces a klEPT0L system G0 such that w 2 Lgen(G) () w$bj# 2

Lgen(G
0) for some j 2 N0, where $; b;# are special symbols.

Proof. Let G = (VN ; VT ; P; S) be a (P,CF��,ut) grammar. Lab(P ) = fp1; : : : ; pmg

with (pi : Ai ! wi; Pi). We construct a klEPT0L grammar G0 = (V; V 0; P 0; S0; k) having
the claimed property. Let V 0 = VT [ f$; b;#g and V = V 0 [ VN [ f[p]; [p; 1]; : : : ; [p; 4] j
p 2 Pg [ fS0; F; �; �0; �00g.

In the following, we describe the di�erent kinds of tables included in P 0. We start with
an initialization table hI with hI(S

0) = fS[pi]� j 9i(Ai = S)g and hI (X) = fFg otherwise.
The simulation is terminated applying the termination table hT de�ned by hT ([p]) = f$g
for p 2 P , hT (�) = f#g, hT (x) = fxg for x 2 V 0, and hT (Y ) = fFg otherwise.

The actual simulation is done by a sequence of simulating tables si;1; : : : ; si;5 (or s
�

i
if

the production pi is used in appearance checking) which are applied sequentially (this is

enforced by using markers [p; j] and [p]). The plan is the next: if (w; pi) ) (v; qi) holds
in G (with qi 2 Pi), then via 5 derivation steps of G0 (or 1 step if the production pi is
used in appearance checking), we obtain v[qi]b

l� from w[pi]b
j� for some l � j. On the

other hand, using our simulating tables 5 times (or one time if the production pi is used in

appearance checking), starting with w[pi]b
j�, we get v[qi]b

l� for some l � j which implies

that (w; pi) ) (v; qi) holds in G (with qi 2 Pi). Furthermore, sentential forms of the form
u[p]bj� can only occur in a derivation according to G0 before applying s�

i
, si;1 or hT (only

these types of tables can deal with the occurrence of [pi] in the sentential form), and after
applying s�

i
, si;5 or hI (which produce exactly such an occurrence).

Applying the �rst simulating table si;1, we try to mark the Ai in the present sentential

form we want to replace. Of course, there are various pitfalls we have to omit: (1) What
happens if Ai does not occur in our sentential form? (2) How do we prevent G0 from
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applying this selection twice, thrice, : : : , k times? The basic idea to check these mistakes

is again the employment of success witnesses.

First we handle the di�culty (1).

s�
i
(Ai) = fFg

s�
i
(X) = fXg for X 2 f�; bg [ VN [ VT n fAig

s�
i
([pi]) = f[qi])g

s�
i
(Y ) = fFg otherwise

si;1(Ai) = fAi; �g

si;1(�) = f�kg

si;1(X) = fXg for X 2 fbg [ VN [ VT n fAig

si;1([pi]) = f[pi; 1]g

si;1(Y ) = fFg otherwise

si;2(�) = f�0g

si;2(X) = fXg for X 2 fbg [ VN [ VT

si;2([pi; 1]) = f[pi; 2]g

si;2(Y ) = fFg otherwise

In case no Ai has been converted into � by si;1 erroneously, all occurrences of the success
witness � are deleted by si;2. Now, we deal with di�culty (2). In the errorfree case, there
are exactly k occurrences of �0 and one occurrence of � as su�x of the sentential form.

si;3(�) = fb�00�g

si;3(�
0) = f�00g

si;3(X) = fXg for X 2 fbg [ VN [ VT

si;3([pi; 2]) = f[pi; 3]g

si;3(Y ) = fFg otherwise

In case more than one occurrence Ai has been converted into � by si;1 erroneously,

there will be �nally a witness b of this error to the left of $. In the errorfree case, there are
now exactly k + 1 occurrences of �00; k of them will be converted to b by the next table.

In case � has been left in a place other than as su�x, there is now a symbol �00 at the

end of the word. This will be converted to b by the next table, hence witnessing this error.
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si;4(�
00) = fbg

si;4(X) = fXg for X 2 f�; bg [ VN [ VT

si;4([pi; 3]) = f[pi; 4]g

si;4(Y ) = fFg otherwise

We conclude our simulation cycle doing the actual derivation step.

si;5(�
00) = fwig

si;5(X) = fXg for X 2 f�; bg [ VN [ VT

si;5([pi; 4]) = f[qi] j qi 2 Pig

si;5(Y ) = fFg otherwise

2

4 Non-closure and undecidability results

For the convenience of the reader, below we repeat some of Stotskii's arguments in the �rst
two theorems.

Theorem 4.1 Lgen(P{left;CF� �;ut) is not closed under intersection with regular lan-
guages.

Proof. Let M be some enumerable but nonrecursive set of natural numbers given as the
range of some r-RMP. By Theorem 2.1, there is a language LM 2 Lgen(P{left;CF��;ut)
encoding M in the sense that

m 2M () cmcrb
nrcr�1b

nr�1 � � � c1c0 2 LM

for some nj 2 N0. If Lgen(P{left;CF � �;ut) were closed under intersection with regular
languages,

L = LM \ fcg�fcrgfbg
�
� � � fc1c0g

would lie in Lgen(P{left;CF � �;ut). Obviously, m 2 M i� cmcr is the pre�x of some

word of L. By Rosenkrantz' Theorem in the form 1.2, the latter property is decidable,
contradicting our assumption on M . 2

Stotskii claims that the same is valid for Lgen(P;CF � �;ut), too. This would entail

the non-closure of Lgen(klEPT0L) under intersection with regular languages for arbitrary
k � 2. Unfortunately, we are not convinced by Stotskii's argument.

As already stated in [15], we can conclude the following undecidability result.
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Theorem 4.2 Let w be a non-empty word. In general, there is no Turing machine Tw
which, given a (P{left,CF��,ut) grammar G, decides whether w is the su�x of some word

of Lgen(G) or not.

Proof. Similarly to the proof of Theorem 2.1, to any enumerable set M we can construct

a (P{left,CF��,ut) grammar G such that w is the su�x of some word in Lgen(G) i�

M 6= ;.4 2

We can also state the theorem in another way which is more appropriate when sepa-

rating language classes or disproving closure properties.5

Theorem 4.3 Let L 2 Lgen(P{left;CF � �;ut). In general, there is no Turing machine

TL which, given an arbitrary (non-empty) word w, decides whether w is the su�x of some

word of L or not.

Proof. In the initialization phase of the simulation in the proof of Theorem 2.1, we could

have recorded the original argument n in an additional `register' to the right. Starting

with some arbitrary partial recursive function f : N0��!N0, in this way we arrive at a (P{
left,CF��,ut)-language L with the property xnc1d

nc0 2 L for some xn i� f(n) is de�ned.
In this case, of course, xn = cf(n)cr � � � b

n2 as before. Since in general there is no Turing
machine Tf which, given a natural number n, decides whether f(n) is de�ned or not, the
required machine TL cannot exist either. 2

The argument in the preceding proofs are also valid when we consider free interpretation
instead of leftmost. Since (P,CF��,ut) grammars are trivially e�ectively closed under
mirror operation, we immediately get the corresponding undecidability results for the pre�x

properties.6

Corollary 4.4 Let w be a non-empty word. There is no Turing machine Tw which, given
a (P,CF��,ut) grammarG, decides whether w is the su�x/pre�x of some word of Lgen(G)
or not. 2

Corollary 4.5 Let L 2 Lgen(P;CF��;ut). There is no Turing machine TL which, given

an arbitrary (non-empty) word w, decides whether w is the su�x/pre�x of some word of
L or not. 2

By Lemma 2.3, we know that any given (P,CF��,ut) grammar G can be e�ectively
transformed into a 1lEPT0L system G0 such that Lgen(G

0) = Lgen(G)#. Hence, the

su�x/pre�x problems under consideration cannot be algorithmically solvable for 1lEPT0L

systems as well.

4In our above construction, we have w = c0.
5This idea has to be added in [15]. The proof given there is the one contained in the preceding theorem.
6The corresponding Lemma 1.5.8 in [3] is wrong.
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Corollary 4.6 Let w be a non-empty word. There is no Turing machine Tw which, given

a 1lEPT0L system G, decides whether w is the su�x/pre�x of some word of Lgen(G) or

not. 2

Corollary 4.7 Let L 2 Lgen(1lEPT0L). There is no Turing machine TL which, given an

arbitrary (non-empty) word w, decides whether w is the su�x/pre�x of some word of L or

not. 2

We were not able to show these properties for klEPT0L systems (k � 2) as well.

Contrary to the facts described up to now, Rosenkrantz and Stotskii proved that for any

of the grammar families considered in this paper, the emptiness problem is algorithmically

solvable.

We now prove a new result on programmed grammars (limited systems) concerning

their power comparing to recursive languages.

Theorem 4.8 Each of the familiesLgen(P{left;CF;ut), Lgen(P;CF;ut) and Lgen(1lET0L)

contains languages which are not recursive.

Proof. We consider again the grammar GM produced via Theorem 2.1 to some nonrecur-
sive set M . It is simple to alter the construction such that in the end all b0s are erased.
Hence, we get a language LM 2 Lgen(P{left;CF;ut) with the property cm � � � c1c0 2 LM

i� m 2 M . If LM were recursive, M would be so, too. Similarly, one can prove the claim
for the other two language classes, using Theorems 2.2 and 2.4 instead. 2

In particular, we get the announced property that the membership problem is not

solvable for 1lET0L languages in general. Unfortunately, this proof does not work for
klET0L languages for k � 2, since our encoding theorem for them is essentially too weak,
because we cannot simply erase the b and b0 occurring in our construction simultaneously.

In the following, we consider various non-closure properties which also might help to
discern the language families under discourse from other ones encountered in the literature.

The families Lgen(P;CF��;ut) and Lgen(1lEPT0L) are trivially closed under mirror
operation. Contrary to this situation, Stotskii found, combining 1.2 and 4.3:

Theorem 4.9 Lgen(P{left;CF� �;ut) is not closed under mirror operation. 2

Because for any of the non-erasing grammars/systems the membership problem is solv-
able, the corresponding language families with an unsolvable su�x problem cannot be
closed under the operator INIT de�ned by INIT(L)=fx j 9y(xy 2 L)g. Similarly, none of

the language families under consideration is closed under quotient with regular sets de�ned

by L=R = fx j 9y 2 R(xy 2 L)g (In this case, we can check the success witness c3 of our

encoding construction quite easily.).
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Theorem 4.10 Each of the familiesLgen(P;CF��;ut) and Lgen(1lEPT0L) is not closed

under INIT nor under quotient with regular sets. Lgen(P{left;CF � �;ut) is not closed

under quotient with regular sets. 2

Finally, we consider our language classes with erasing restricted to singleton terminal

alphabets. We use a prime to indicate this subclass.

Theorem 4.11 Let k � 1. Let L 2 fLgen(P{left;CF;ut);Lgen(P;CF;ut);Lgen(klET0L)g.

If L is closed under intersection with regular sets, then L0 = L0gen(RE).

Proof. Each L is closed under homomorphism. By closure under intersection with reg-

ular sets, it would be possible to �lter out those words which actually encode a given

arbitrary recursively enumerable language M over a one-letter-alphabet. Now, an erasing

homomorphism could be used to produce M . 2

Observe that this proof is also valid for klET0L languages with k � 2, since the regular
set can use the important position information of b and b0, respectively.

Unfortunately, we were not able to convert unary to say binary number representation
using any sort of our grammars. This would allow us to establish the following nice
relationship: L is closed under intersection with regular languages i� L = Lgen(RE).

Remark 4.12 If Lgen(klET0L) were closed under intersection with regular languages, the

construction of Lemma 3.2 would yield Lgen(P;CF;ut) � Lgen(klET0L). On the other
hand, Lgen(P;CF;ut) � Lgen(klET0L) by [4, Theorem 4.5].7 Therefore, under the above
closure assumption, Lgen(klET0L) = Lgen(1lET0L). This would answer a question raised
in [16].

5 Hierarchy results

First of all, we compare the power of erasing in the language families under consideration.
This new result easily follows by the fact that any non-erasing family only contains recursive
sets.

Theorem 5.1 � Lgen(P{left;CF� �;ut) 6= Lgen(P{left;CF;ut),

� Lgen(P;CF� �;ut) 6= Lgen(P;CF;ut)

� Lgen(1lEPT0L) 6= Lgen(1lET0L) 2

In [5], we raised the question whether 1lEPT0L systems are as powerful as ordered

grammars with context-free �-free core rules or not. Here, we can settle this question.

7Any klET0L system is also a PERlET0L system in the sense of [4].
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An ordered grammar (cf. [8, 15, 3]) is a quintuple G = (VN ; VT ; P; S;�), where VN , VT ,

P , and S 2 VN are the nonterminal alphabet, terminal alphabet, set of productions, and

start symbol, respectively. � is a partial order on P . A productionA! w 2 P is applicable

to a string x = x1Ax2, if there is no production A0 ! w0 2 P with A0 ! w0 � A ! w

such that A0 occurs in x; the application of A! w to x yields y = x1wx2. We shall write

x ) y in that case. As usual,
�
) denotes the reexive and transitive closure of ), and

L(G�) = fx 2 V �

T
jS

�
) wg. Let Lgen(O;CF[��]) be the language class generated by

ordered grammars with context-free [�-free] core rules.

Theorem 5.2 Lgen(O;CF[��]) � Lgen(1lE[P]T0L)

Proof. The inclusion was shown in [5, Lemma 3.10] whose proof is also valid in the

case when we admit �-rules. Since ordered grammars have a decidable pre�x problem

[15], the inclusion is strict in the �-free case. Since for arbitrary ordered grammars, the

membership problem is solvable [1, Corollary 3.8], the existence of a nonrecursive language

in Lgen(1lET0L) proves the last claim. 2

Another interesting open question is the interrelation between (1) programmed gram-

mars with unconditional transfer and such ones without appearance checking and (2) lim-
ited and uniformly limited ET0L systems. Note that there are very close connections
between question (1) and (2). By Theorem 4.8, we can answer these questions at least par-
tially, since for programmed grammars without appearance checking and uniformly limited
ET0L systems, the membership problem is solvable.

Theorem 5.3 � Lgen(P;CF;ut) 6� Lgen(P;CF)

� Lgen(1lET0L) 6� Lgen(ulET0L)

In particular, this means that even in case e.g. Lgen(ulET0L) � Lgen(1lET0L), this

inclusion has to be strict. Note that in case of accepting grammars/systems, these opposite
strict inclusions do actually hold [1, 7].

Similarly, the connection with context-sensitive languages was still open. Our above
considerations show

Theorem 5.4 Neither Lgen(1lET0L) = Lgen(P;CF;ut) nor Lgen(P{left;CF;ut) con-
tains only context-sensitive languages. 2

What about the other inclusions in question? Since each of the language families (with
erasing productions!) is easily seen to be closed under homomorphism, we �nd:

Theorem 5.5 � Lgen(CS) � Lgen(1lET0L) i� Lgen(1lET0L) = Lgen(P;CF;ut) =

Lgen(RE).

� Lgen(CS) � Lgen(P{left;CF;ut) if and only if Lgen(P{left;CF;ut) = Lgen(RE).2
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Finally, let us mention that from 1.2 and the corresponding undecidability results for

1lEPT0L and (P,CF��,ut)-languages it is easily seen [15] that neither Lgen(1lEPT0L) nor

Lgen(P,CF��,ut) is contained in Lgen(P{left,CF��,ut). In [15], it is claimed that the

reversed inclusions do not hold either. We do believe in this result, but not in the proof

given there. So, we regard this question as still open.

6 Conclusions

In the present paper, we furthered the research on programmed grammars with uncondi-

tional transfer and at the same time that on limited ET0L systems. Especially, we showed

that there are nonrecursive languages generable by limited ET0L systems. Note that our

construction shows that the membership problem is also unsolvable in general for 1lT0L

systems. Hence, we partially answered a question raised in [16] for kl0L systems.

The most important question in our area seems to be whether limited ET0L systems
(or, equivalently, programmed grammars with unconditional transfer) can generate all
recursively enumerable languages. There is some evidence against it, like the solvability of

the emptiness problem, but it might also be that we encountered a rather strange class of
grammars characterizing the enumerable languages. Obviously, there is no algorithmical
transformation of a say type-0 grammar into an equivalent 1lET0L system. Hence, other
non-constructive proof techniques for showing this equivalence must be applied.

The present paper also continues our investigations on how to use decidability results

in order to separate language classes [6], since we basically separate Lgen(O,CF��) from
Lgen(klEPT0L) by the (un)decidability of the pre�x problem.

Note that due to the nature of the proof of the encoding theorems, there may be also
connections to the so-called mappings investigations [3, Chapter 9.5].

In the light of the new results, further investigations of variants of limited L systems

which are at least as powerful as 1lET0L systems (e.g. function-limited systems with
bounded or even not bounded recursive functions [4] or partition-limited systems [9]8) are
interesting. Maybe, we can �nd even new characterizations of enumerable sets using in
principle only context-free derivations.
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