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Abstract

We present an informal overview of a number of approaches to
di�erential equations which are popular in computer algebra. This
includes symmetry and completion theory, local analysis, di�erential
ideal and Galois theory, dynamical systems and numerical analysis. A
large bibliography is provided.

1 Introduction

Di�erential equations represent one of the largest �elds within mathemat-

ics. Besides being an interesting subject of their own right one can hardly

overestimate their importance for applications. They appear in natural and

engineering sciences and increasingly often in economics and social sciences.

Whenever a continuous process is modeled mathematically, chances are high

that di�erential equations are used.

Thus it is not surprising that di�erential equations also play an impor-

tant role in computer algebra and most general purpose computer algebra

systems provide some kind of solve command. Many casual users believe

that designing and improving such procedures is a central problem in com-

puter algebra. But the real situation is somewhat di�erent. Many computer

algebra applications to di�erential equations work indirectly; they help to

study and understand properties of the solution space.

The purpose of this article is to sketch in an informal way some of the

main research directions in this �eld and to provide a starting point for

more detailed studies by giving a large number of references. Therefore we

omit all mathematical details (there is not a single formula in this article!)

but describe brie
y the central ideas. For the same reason we often cite

introductory articles or books and not the historically �rst or the most

\ground breaking" work.
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The bibliography is of course far from being exhaustive. As a further

source of references one should mention the survey by Singer [115]. It gives

much more details, especially on the more algebraic approaches, and con-

tains a large bibliography. The same holds for the more focused surveys by

Hereman [57, 58] covering symmetry theory and related �elds and the one

by MacCallum [74] on the integration of ordinary di�erential equations. In

addition there have been three conferences devoted exclusively to di�erential

equations and computer algebra. Their proceedings [114, 123, 124] contain a

number of useful introductory or review articles on more specialized topics.

We are taking a rather broad view and consider more or less any con-

structive approach to di�erential equations as \computer algebra". This also

implies that we do not pay special attention to implementations. Among

the many di�erent approaches to di�erential equations which fall under this

broad de�nition of computer algebra one can distinguish certain directions

which have found most attention (at least measured in the number of arti-

cles devoted to them). We concentrate in this article on the following eight

topics: (i) solving di�erential equations, (ii) local analysis, (iii) symmetry

analysis, (iv) completion, (v) di�erential ideal theory, (vi) di�erential Ga-

lois theory, (vii) dynamical systems theory, and (viii) the relation between

numerical analysis and computer algebra.

A comparison of the impact made by symmetry analysis and by di�er-

ential Galois theory, respectively, demonstrates the importance of computer

algebra tools. The latter one is a hardly known theory studied by a few

pure mathematicians. The former one remained in the same state for many

decades following Lie's original work. One reason was de�nitely the te-

dious determination of the symmetry algebra. As soon as computer algebra

systems emerged, the �rst packages to set up at least the determining equa-

tions were written. Since then Lie methods belong to the standard tools for

treating di�erential equations.

2 Solving Di�erential Equations

Most computer algebra systems can solve some di�erential equations. They

mainly apply standard techniques like those in Zwillinger's handbook [138]

or try \pattern matching" in a list of solved equations like Kamke [64].

Heuristics often extend the applicability of this approach, for example by

�nding a transformation of a given equation to one that can be handled by

the implemented methods.

Although this approach solves more di�erential equations than one might

expect (see e. g. the recent review by Postel and Zimmermann [98]
1
), it has

some drawbacks. A major one is that no information is obtained, if the

computer algebra system does not return a solution. It could be that the

1An updated version can be found at http://www.mupad.de/BIB/poszim96.html.
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given di�erential equation has indeed no solution (in closed form) or that

simply the heuristics could not determine a suitable transformation.

For that reason researchers in computer algebra are especially interested

in decision algorithms. These either yield a solution in a speci�c class of

functions or decide that no such solution exists. However, so far only for

linear ordinary di�erential equations such algorithms are known. There it

is possible to decide with the help of di�erential Galois theory (see Sect. 7)

whether or not Liouvillian solutions exist.

There exists a number of reasons for this perhaps disappointing situa-

tion. Computability theory yields principal limits to what can be solved.

For example if one restricts to computable functions some classical existence

theorems for di�erential equations fail [1, 99]. More precisely, one has con-

structed examples of di�erential equations where one can show that solutions

exists but that it is not possible to compute them. Some further (positive

and negative) results in this direction can be found in [29].

Ideally, a solution algorithm should return the general solution. But for

nonlinear equations it is surprisingly di�cult even just to de�ne this term. A

rigorous resolution of this problem (for ordinary di�erential equations) based

on di�erential ideal theory (see Sect. 6) was only recently presented [60].

Intuitively one would expect that the general solution depends on some

arbitrary parameters (constants or functions) and that every solution of the

di�erential equation can be obtained by a suitable specialization of these.

This works �ne for linear equations where the solution space has the struc-

ture of a vector space. But many nonlinear equations possess in addition

singular integrals not contained in the general solution. A solution algorithm

should probably automatically compute these, too.

Similarly, de�ning the term \closed form solution" is notoriously di�cult.

Is a solution in terms of, say, Bessel functions in closed form or not? Up to

now no generally accepted de�nition has emerged. The basic idea behind

\closed form" is that of �nite constructibility out of a set of \elementary

functions"; but now the problem arises how to de�ne \elementary". Note

that this is an algebraic and not an analytic property!

On the practical side one must see that even if a solution in closed form

can be computed it may take very long and the result may be completely

useless, as it is too large. Especially, if the main goal is to obtain an impres-

sion of the behavior of the solution, it is often much more e�cient to resort

to numerical methods. For that reason many computer algebra systems

provide at least for ordinary di�erential equations some standard numerical

integrators like Runge-Kutta methods etc. (see also Sect. 9).

In any case one can state that a notable solution theory exists only for

ordinary di�erential equations (see e. g. the survey [74]), mainly based on

either Lie symmetry theory or di�erential Galois theory. But the former

one often does not yield complete algorithms, so that one must resort to

heuristics in intermediate steps. The algorithms of the latter one su�er from
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a very high complexity and are in practice often rather useless, especially

for higher order equations. We will discuss these problems in a bit more

detail in Sects. 4 and 7.

Another possibility that also addresses the problem of useless output is

to search only for \simple" solutions [9]. Popular variants are polynomial,

rational [3] or exponential [14, 93] solutions. Because of their simple struc-

ture it is often possible to determine such solutions, if they exist, rather fast.

But one should note that the classical methods for their computation are

not always useful for computer algebra. It is still an active �eld of research

to design e�ective algorithms being able to handle larger examples.

For partial di�erential equations the situation is much worse; usually one

must already be happy, if one can �nd any closed form solution at all. In

the last century mathematicians designed some solution methods (see e. g.

the survey [129]). However, most of them are more or less forgotten; at least

they are no longer found in standard textbooks. It could be quite interesting

to revive some of them for use in computer algebra systems.

There exist a few implementations of standard techniques like character-

istics, separation of variables or integral transforms (see for example [23]),

but they can usually handle only rather simple equations. Often they just

reduce the partial di�erential equation to a system of (nonlinear) ordinary

di�erential equations and the question is whether this can be solved. The

most important approach to constructing solutions of partial di�erential

equations is provided by symmetry theory (see Sect. 4).

One can argue whether it really makes sense to speak of the general so-

lution of (a system of) partial di�erential equations. For example one de�-

nition of a harmonic function is that it solves the Laplace equation (or more

generally all holomorphic functions are solutions of the Cauchy-Riemann

equations). Thus one might prefer to say that the Laplace equation de�nes

a class of functions.

In some simple cases like the wave equation one can give an explicit

parameterization of this class in terms of some arbitrary functions which

one may call the general solution. But usually no such parameterization

exists. In order to get a well-de�ned problem one must prescribe some

initial or boundary conditions. In most applications such conditions arise

automatically anyway.

3 Local Analysis

If it is not possible to construct a closed form solution, one may go for an

approximate solution describing the behavior of the solution in the neigh-

borhood of a given point.
2

At ordinary points a Taylor series su�ces; at

2Especially in the linear case local solutions can also be very useful for the construction

of closed-form solutions.



Computer Algebra and Di�erential Equations 5

singular points more general expansions must be used. Local analysis is

essentially a complex theory, even if one studies only real equations. Es-

pecially, if one wants to determine the radius of convergence of a formal

solution, one must also take the complex singularities into account.

In the case of linear di�erential equations singular points are only pos-

sible at singularities of the coe�cients. Therefore one speaks of �xed sin-

gularities. Using the Newton polygon of the associated di�erential operator

they can be further classi�ed into regular and irregular ones [31].

In the neighborhood of regular singular point one can represent the so-

lution in form of a Frobenius series, a polynomial in log x with Taylor series

coe�cients multiplied by a factor (x � x0)
�
with � a complex number. At

irregular singular points the solution has typically an essential singularity.

It varies so rapidly that it makes no sense to construct an approximation;

instead one tries to capture its asymptotic behavior which requires the ad-

dition of an exponential part. An elementary introduction can be found in

the textbook [10].

There exist various algorithms for the construction of approximate or

asymptotic solutions, partly dating back at least to Frobenius. Some are

discussed together with implementations in [94, 126]. A main problem in

their application is that one cannot use approximations of the location of the

singularities. One must not only solve polynomial equations but in general

work with algebraic numbers which is quite expensive in any computer alge-

bra system. But a careful analysis of the algorithms can often signi�cantly

reduce the necessary amount of computations with algebraic numbers.

Recent work concerns an extension of the theory to �rst order sys-

tems [8, 93]. In principle, one can transform any system into a single equa-

tion of higher order, e. g. using cyclic vectors. But this approach is rather

ine�cient, especially in higher dimensions. Hence one is interested in deal-

ing directly with systems. Moser's algorithm performs here the classi�cation

into regular and irregular singularities; a rational version of it avoiding the

use of algebraic extensions was presented by Barkatou [7].

For nonlinear di�erential equations the situation becomes much more

complicated as spontaneous or movable singularities may occur, i. e. their

location depends on initial or boundary data. One usually speaks of the

Painlev�e theory [26, 61, 69]. It was introduced by Painlev�e while searching

for new special functions and there still exists a strong connection to special

function theory. If all singularities are poles, no branch points appear in the

(general) solution and it is single valued. A di�erential equation without

movable branch points is said to possess the Painlev�e property or to be

integrable in the sense of Painlev�e.

In general, it is not possible to check algorithmically whether or not a

given di�erential equation has the Painlev�e property. But there exist meth-

ods to check at least some necessary conditions; such methods are usually

called Painlev�e test. The main approach consists in trying to construct a
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Laurent series around the singularity. Essentially, the test is passed, if this

expansion has su�ciently many resonances or Fuchsian indices (free coe�-

cients) to represent the general solution and if these occur at non-negative

powers. In the case of negative resonances a perturbation approach [27]

yields further information. Some references concerning implementations can

be found in [106].

Weiss et al. [133] generalized the Painlev�e theory to partial di�erential

equations where a whole singularity manifold must be considered. This

extension is much used in the theory of integrable systems, as the Painlev�e

test represents an important indicator for (complete) integrability and can be

performed comparatively easily. The Painlev�e conjecture states that every

ordinary di�erential equation obtained by symmetry reduction (see Sect. 4)

of an integrable system is of Painlev�e type; only weakened versions of it have

been proven [2, 80]. Truncated series expansions are useful for constructing

B�acklund transformations, Lax pairs and much more [132]. There also exist

relations to non-classical symmetry reductions [36].

Comparing with the linear case we see that the nonlinear theory de-

scribed so far corresponds roughly to the case of a regular singular point,

namely a Frobenius expansion of the general solution (often restricted to in-

teger �). Extensions to irregular singular points have been proposed for the

nonlinear case by Kruskal et al. [69]. Essentially the strategy is the same:

one adds an exponential part to the solution ansatz.

4 Symmetry Analysis

Of all the approaches discussed in this overview, symmetry analysis has

made the strongest impact on computer algebra applications to di�erential

equations. The most general de�nition of a symmetry is that of a trans-

formation that maps solutions into solutions. Depending on the kind of

transformations considered one obtains di�erent kinds of symmetries. One

possible application of symmetries is the construction of (special) solutions.

Other goals are classi�cations, a proof of (complete) integrability, separation

ans�atze, conservation laws and much more. Several excellent textbooks on

this subject are available, e. g. [12, 86, 122].

Symmetry analysis goes back to the seminal work of Lie. He developed

the concept of Lie groups in his quest for a Galois theory for di�erential

equations. As we will see later in Sect. 7, not much has remained of this

original motivation. Symmetry and Galois theory have developed in very

di�erent directions. Even the relation between the Lie symmetry group and

the Galois group of a linear di�erential equation is rather unclear.

The most popular variant of symmetry analysis deals with Lie point

symmetries. They are generated by vector �elds acting on the space of inde-

pendent and dependent variables. These vector �elds span the Lie algebra
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of the Lie group of symmetries. The decisive observation of Lie was that

for most purposes it su�ces to work with the vector �elds (or in�nitesimal

symmetries) instead of the symmetries themselves. This leads e�ectively to

a linearization of the problem.

The symmetry generators arise as the solutions of a linear system of

partial di�erential equations, the so-called determining system. For ordinary

di�erential equations it is unfortunately sometimes as di�cult to solve this

system as to solve the original one. This holds especially for �rst order

equations where the original equation is just the characteristic equation of

the determining equation. For partial di�erential equations the determining

system is typically very over-determined and contains often some trivial

equations allowing in many cases a rather straightforward solution. The

analysis of determining systems is a typical task for completion algorithms

(see Sect. 5).

For ordinary di�erential equations the existence of a su�ciently large

and solvable symmetry algebra implies that its general solution can be con-

structed by quadratures, as each symmetry allows us to reduce the order of

the equation by one (\cascade integration"). In the case of partial di�erential

equations symmetry reductions lead only to special solutions, namely those

being invariant under the symmetry group. Here each symmetry allows us

to transform to an equation with one independent variable less. Thus with

a su�ciently large solvable symmetry algebra a partial di�erential equation

can be reduced to an ordinary di�erential equation.

At intermediate steps of the reduction linear partial di�erential equations

must be solved. This starts with the determining system. Later, in order to

obtain the reduction, one must either perform a coordinate transformation

such that the symmetry generator is recti�ed (canonical coordinates) or

the di�erential invariants of the symmetry must be determined. These are

functions annihilated by the symmetry generator, i. e. they are de�ned as

the solutions of a linear partial di�erential equation.

Thus the usefulness of Lie symmetries depends crucially on the ability

to e�ectively solve all the arising partial di�erential equations. At �rst sight

it might look, as if, especially for ordinary di�erential equations, we made

the problem only worse. But in many cases of practical interest it turns

out that is much easier to solve these linear partial di�erential equations

than the original equation. Often the repeated application of rather simple

heuristics su�ces to completely solve at least the determining system.

There exist so many implementations of symmetry methods that it is

rather di�cult to keep an overview; we refer again to the surveys by Here-

man [57, 58] with their huge bibliography. In almost any computer algebra

system one can �nd at least a package for setting up the determining system

which sometimes also tries to solve it. Some packages are even able to use

the symmetries to compute automatically closed form solutions for some

classes of di�erential equations.
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Although Lie point symmetries proved to be very useful in many applica-

tions, there still exist many di�erential equations of practical interest which

do not possess symmetries or at least not su�ciently many. There are two

basic approaches to generalize the theory. One can consider more general

transformations; this leads to generalized or Lie-B�acklund symmetries [5].

Alternatively, one weakens the requirement that every solution is mapped

into a solution; this yields the so-called non-classical methods.

The generators of generalized symmetries may also depend on derivatives

of the dependent variables. The corresponding symmetry transformations

are now no longer given as a simple exponential 
ow but must be determined

as solutions of a partial di�erential equation. In principle, the determination

of generalized symmetry proceeds exactly as for point symmetries. However,

a bound on the order of the derivatives appearing in the generator must be

chosen at the beginning of the computation. Thus it is not possible to

algorithmically construct all generalized symmetries with this approach.

Generalized symmetries are of much interest for (completely) integrable

systems [38, 134]. The existence of a recursion operator or a master sym-

metry generating an in�nite hierarchy of symmetries is a strong indication

that the considered system is integrable. This approach also circumvents

the problem of the a priori bound for the order of the generator. Reduction

with respect to generalized symmetries is an important tool for the con-

struction of soliton solutions. It is also possible to classify nonlinear partial

di�erential equations using these symmetries [82].

Non-classical reductions can be understood within the general scheme of

augmenting a given di�erential equation with di�erential constraints [87].

This corresponds to requiring that only some solutions are mapped into

solutions. Hence one hopes to �nd more symmetries (these are sometimes

called weak or conditional symmetries). In this approach the emphasis lies

less on group theory but on the theory of over-determined systems of partial

di�erential equations and thus on questions of completion (cf. [111]).

The �rst non-classical method was developed by Bluman and Cole [11]

and uses the invariant surface condition as constraint. Although this leads

for many di�erential equations to new reductions, the drawback is that the

determining system becomes nonlinear. The direct method of Clarkson and

Kruskal [25] tries to reduce a given partial di�erential equation to a system of

ordinary di�erential equations by constructing a good ansatz; it corresponds

to a special case of the method of Bluman and Cole.

The main problem in the method of di�erential constraints is to �nd

compatible constraints leading to non-trivial reductions. Besides using the

invariant surface condition no systematic way has been discovered so far

and thus it remains essentially a game of \try and error". For this reason

di�erential constraints have not yet found much attention in applications.

One can also combine both generalizations and obtains then so-called

\non-classical or conditional generalized symmetries". These have been used
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to study the interaction of traveling waves solution of non-integrable sys-

tems [39]. However, one must note that this approach does not lead beyond

the theory of di�erential constraints. As already pointed out by Olver and

Rosenau [89] any di�erential constraint may be considered as the character-

istic of a generalized symmetry generator.

5 Completion

Most textbooks on di�erential equations treat only normal systems (or sys-

tems in Cauchy-Kowalevsky form). For ordinary di�erential equations this

implies that one assumes that the equations can be solved for the highest

order derivatives. For partial di�erential equations one must furthermore

assume the existence of a distinguished independent variable such that one

can solve for its derivatives to obtain the Cauchy-Kowalevsky form. How-

ever, in many �elds one encounters systems of di�erential equations which

are not normal. A simple example are the determining systems in symmetry

analysis (see Sect. 4) which are usually over-determined. Non-normal sys-

tems also occur naturally in di�erential geometry and in theoretical physics

(gauge theories).

For a non-normal system it is a priori not clear whether it possesses any

solutions at all. It may happen that the system is inconsistent. This can

only be decided after the construction of all integrability conditions. These

are further di�erential equations satis�ed by any solution of the system but

nevertheless algebraically independent of it. While it easy to construct one

integrability condition (typically this requires only a cross-derivative), it is

not so easy to decide when all have been found, as in principle an in�nite

number of conditions must be checked.

The process of �nding all integrability conditions is called completion.

It results in a formally integrable system,
3
as after completion it is straight-

forward to construct order by order a formal power series solution. Under

additional assumptions it is sometimes possible to show the convergence of

the series. This leads for analytic systems to existence and uniqueness the-

orems like the Cartan-K�ahler theorem (the well-known Cauchy-Kowalevsky

theorem is a special case of it). For non-analytic systems solvability is a

much more complicated question due to Lewy type e�ects [72].

The �rst systematic approach to the problem of completion was proba-

bly provided by the Janet-Riquier theory [62] with the introduction of pas-

sive systems. Their de�nition is based on a ranking of the derivatives which

decides in what order the integrability conditions are constructed. The com-

pletion can be done completely automatically only for quasi-linear systems

(if all arising integrability conditions are also quasi-linear), as it must be

3Not to be confused with a completely integrable system as mentioned in Sect. 4!
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possible to solve for the leading derivative. In this case the resulting passive

system is sometimes called a standard form [103].

In geometric theories the notion of a passive system is replaced by in-

volution. It combines a geometric de�nition of formal integrability with an

algebraic criterion for the termination of the completion. As an intrinsic

concept involution requires no coordinate dependent ingredients like a rank-

ing. Involution analysis based on the Cartan-K�ahler theory [17] for exterior

systems is discussed from an algorithmic point of view in [55, 56]. A com-

pletion algorithm for the jet bundle formalism based on the formal theory

of Pommaret [96] was presented in [108].

Completion algorithms are very useful in the symmetry analysis of dif-

ferential equations. Once a system is either passive or involutive, one can

make statements about the size of the solution space [103, 109]. Thus it

is possible to compute the size of the symmetry group without explicitly

solving the determining system or to determine the loss of generality in a

symmetry reduction [110]. One can even compute the abstract structure of

the symmetry algebra without solving the determining system [73, 104].

These concepts are closely related to Gr�obner bases in commutative al-

gebra. This holds especially for the Janet-Riquier theory where rankings

play a similar role as in the de�nition of a Gr�obner basis. Therefore one

sometimes �nds the term di�erential Gr�obner basis for a passive system.

Integrability conditions arising from cross-derivatives may be considered as

\di�erential S-polynomials". But these analogies acquire a precise meaning

only in the context of di�erential algebra (see Sect. 6).

There is a one-to-one correspondence between linear systems of partial

di�erential equations in one dependent variable with constant coe�cients

and polynomial ideals. This has lead in commutative algebra to the new

concept of an involutive basis of an ideal [50]. It is computed using algo-

rithms coming from the completion theory of di�erential equations, but it

is an ordinary (though not reduced) Gr�obner basis. In some cases the new

algorithms are considerably faster than the classical Buchberger algorithm.

Involutive bases also allow for a straightforward determination of the Hilbert

polynomial4 [6].

6 Di�erential Ideal Theory

Di�erential ideal theory belongs to the �eld of di�erential algebra. It can be

informally described as an attempt \to write di�erential in front of every-

thing in algebra". It deals with di�erential rings, di�erential �elds etc. This

requires an algebraic de�nition of di�erentiation. In di�erential algebra any

mapping that is linear with respect to addition and satis�es the Leibniz or

4For a discussion of the Hilbert or di�erential dimension polynomial of di�erential

equations see [90, 109].
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product rule is called a derivation. A di�erential ring is a commutative ring

together with one (or more) derivation.

Di�erential polynomials arise by adjunction of di�erential indeterminates

to a di�erential ring. However, adjoining one di�erential indeterminate cor-

responds to adjoining in�nitely many algebraic indeterminates, as one must

introduce all its derivatives as additional, algebraically independent vari-

ables. Thus Hilbert's basis theorem does not apply and the ring of di�eren-

tial polynomials is not Noetherian.

A di�erential ideal is an ideal which is in addition closed under the

derivation of the di�erential ring. Many of the basic ideas in di�erential

ideal theory can be traced back to Ritt [105]; the most advanced book is

still the one by Kolchin [68]. The Ritt-Raudenbush theorem asserts that any

perfect di�erential ideal, i. e. one that is equal to its radical, is the radical of

a �nitely generated di�erential ideal. In analogy to algebraic geometry one

can try to introduce di�erential algebraic varieties as the set of \zeros" of a

system of di�erential polynomials, i. e. the solution set of the corresponding

di�erential equations. In general, this requires an extension of the base �eld.

As in the purely algebraic theory one would like to introduce Gr�obner

bases. But as the Ritt-Raudenbush theorem is weaker than full Noetheri-

anity, algorithms along the lines of the Buchberger algorithm do not always

terminate [21]. More generally, one can prove that the ideal membership

problem is undecidable for arbitrary di�erential ideals [43]. However, this

result is more of theoretical interest, as for �nitely generated ideals the decid-

ability is still an open question. In any case one must say that no generally

accepted de�nition of a di�erential Gr�obner basis has yet emerged.

There exist two basic strategies to circumvent this principal problem.

One can either restrict to special ideals where a proof of termination is pos-

sible or one weakens the properties expected of a di�erential Gr�obner basis.

The completion algorithm of the Janet-Riquier theory (see Sect. 5) can be

considered as a simple example for the �rst strategy. An example for the

second one are the bases introduced by Mans�eld [79]. They are computed

with pseudo-reductions and have thus weaker properties than their algebraic

counterpart. Especially, it may happen that one leaves the ideal.

Recently, Boulier et al. [13] presented a Rosenfeld-Gr�obner algorithm

which computes a representation for perfect di�erential ideals in the fol-

lowing form. The ideal is written as a �nite intersection of saturations

ideals; these are radical di�erential ideals de�ned by a system of di�erential

polynomial equations and inequalities. This representation allows for an

easy algorithmic test of radical ideal membership and for computing formal

power series solutions.

Open problems are to obtain a minimal decomposition, i. e. to use only

a minimal number of saturation ideals, and to �nd bases for these ideals

(avoiding the inequalities). These questions are closely related to the inclu-

sion problem for di�erential ideals which in turn can be seen as the problem
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of determining the relation between the singular and the general solutions of

a di�erential equation [60]. The principal obstacle in the construction of the

bases is a very typical one in di�erential algebra. A theorem of Ritt asserts

that by taking su�ciently many derivatives of the equations one can always

get a basis but no bound for the number of derivatives needed is known.

Di�erential algebra is applied in automatic theorem proving in di�erential

geometry [137]. This is similar to the use of algebraic ideal theory in theorem

proving in elementary geometry. For this kind of applications characteristic

sets seem to be more useful than Gr�obner bases. A nice example for the

possibilities here is the automatic derivation of Newton's law of gravity from

the three Kepler laws [136].

Besides ideals of di�erential polynomials there has been some work on

ideals of linear di�erential operators or ideals of the Weyl algebra [42]. But

here one is dealing with non-commutative rings. One could also consider

the Cartan-K�ahler theory (see Sect. 5) as a kind of di�erential ideal theory,

as it represents di�erential equations by closed ideals of di�erential forms.

7 Di�erential Galois Theory

Already Lie was looking for a di�erential analogue of the (algebraic) Galois

theory, when he introduced Lie groups. What is nowadays usually called dif-

ferential Galois theory [75, 116] has however no connection to Lie symmetry

theory. The latter one uses continuous transformation groups and can be

applied to any di�erential equations. But as discussed in Sect. 4 it is not

completely algorithmic. The former one is based on linear algebraic groups.

It considers exclusively linear ordinary di�erential equations and culminates

in various algorithms for explicitly computing Liouvillian solutions.

Determining the solutions of linear di�erential equations is a very clas-

sical topic and many famous mathematicians like Liouville, Fuchs, Klein or

Jordan studied it in the last century and their results are still very impor-

tant for the design of algorithms. Di�erential Galois theory was essentially

founded by Picard and Vessiot and given its modern form by Kolchin [68].

Pommaret [97] developed an alternative theory following more closely Lie's

ideas and using the formal theory.

We mentioned already in the last section that the solutions of algebraic

di�erential equations typically lie in some extension of the base di�erential

�eld. In di�erential Galois theory these extensions are studied in more de-

tail. One can show that for a linear equation of order q a di�erential splitting

�eld, the Picard-Vessiot extension, exists containing q solutions linearly in-

dependent over the constants. The di�erential Galois group consists of �eld

automorphisms of this extension that commute with the derivation and that

leave elements of the base �eld invariant.

Very important extensions of the �eld of rational functions are the Liou-
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villian functions. They comprise essentially all expressions one can \easily

write down". Allowed operations are the usual arithmetic ones, roots, ex-

ponentials, logarithms, integrals and algebraic functions. A more formal

de�nition uses a tower of simple extensions. An important point is that

for any Liouvillian function one needs only a �nite number of extensions,

thus it is algorithmically constructible. Most expressions one would call

\closed-form" are in fact Liouvillian.

Most solution algorithms are based on the seminal work of Singer [113].

He showed that the logarithmic derivative of any Liouvillian solution is al-

gebraic and determined an a priori bound for the degree of the minimal

polynomial, namely the Jordan bound for the index of an Abelian normal

subgroup of a �nite linear group. In principle, this su�ces to determine

all Liouvillian solutions, but the bound grows rapidly with the order of the

equation leading thus to a very high complexity of the algorithm.

Using the representation theory of �nite groups Ulmer [125] could sig-

ni�cantly improve the bound given by Singer, so that at least the treatment

of equations up to third order seems feasible, but there does not yet exist

an implementation. Group theory yields also a number of other interesting

results like criteria for the existence (and number) of algebraic solutions (the

solutions which are most expensive to determine belong to this class) and

gives the basic case distinctions in the solution algorithms.

The original work of Singer covered only equations with rational coe�-

cients. Later, it was extended to Liouvillian coe�cients [15, 117]. For second

order equations Kova�cic [63, 34] developed independently a solution algo-

rithm. Only much later one could show that the classi�cation behind this

algorithm can also be derived within the Singer theory [119]. The Kova�cic

algorithm has been implemented in several computer algebra systems.

An alternative approach based on the invariant ring of the di�erential

Galois group was presented by Fakler [37] following ideas going back to Fuchs

(see also the work of Singer and Ulmer [119] and van Hoeij and Weil [127],

respectively). For second order equations there exists an isomorphism be-

tween the invariant ring and the rational solutions of some symmetric power

of the di�erential equation. This isomorphism allows one to derive explicit

solution formulae and thus a rather e�cient algorithm.

Determining the di�erential Galois group of a given equation is di�cult.

Some progress has recently been made for second and third order equa-

tions [118] where the problem could be reduced to �nding solutions of some

associated linear di�erential equations in the coe�cient �eld and to factor-

ing such equations. If there was an easy way to compute the group directly,

one could probably design more e�cient solution algorithms. But currently

it is the other way round: the solution algorithms help �nding the group.

There has also been some work on the inverse problem of di�erential

Galois theory. Here a linear algebraic group is given and the task is to

determine a di�erential equation that has it as di�erential Galois group. One
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can prove that such a di�erential equation always exists [83]. Ramis [101]

showed that it is often possible to reduce the inverse problem to the direct

problem and then even give an explicit solution.

All the theory mentioned here works only for irreducible equations. Thus

the (e�cient) factorization of linear di�erential operators is an important

problem in di�erential Galois theory. A solution of this problem based on

the Newton polygon was recently presented by van Hoeij [126]. Factorization

(although only of polynomials) is an issue in di�erential ideal theory, too.

Di�erential Galois theory can also be used to �nd (Liouvillian) �rst in-

tegrals [78, 100, 131]. These help to construct explicit solutions [77]. Other

applications appear in the theory of (completely) integrable systems. Ziglin

has given an algebraic characterization of such systems based on their mon-

odromy group. His criterion for integrability can be rephrased in terms of

certain properties of the di�erential Galois group [24, 84].

8 Dynamical Systems

Applications in dynamical systems theory are not really in the main stream

of computer algebra. Conversely, numerical computations play a much more

prominent role within dynamical systems theory than symbolic ones. Nev-

ertheless, the use of computer algebra systems is becoming more and more

popular in this �eld. Their main task is the determination of approximations

or more generally perturbation analysis [102]. Two fundamental techniques

in dynamical systems theory are especially well suited for computer algebra:

normal forms and center manifolds. Other applications include bifurcation

analysis, the Poincar�e map and Hilbert's 16
th

problem.

De�ning normal forms and deriving algorithms to compute them is a

classical topic in computer algebra. For dynamical systems normal forms

have already been introduced by Poincar�e, Birkho�, Gustavson and many

others, often in the context of celestial mechanics [16, 30]. They form the

basis for the solution of many problems in dynamical systems theory like for

example stability or bifurcation analysis. One should however note that the

word \normal form" is used here in a slightly di�erent meaning than usually

in computer algebra, as the normal form of a dynamical system is only an

approximation of it.

The main idea behind normal forms is to study the system in the neigh-

borhood of a �xed point (or equilibrium) and to try to remove by a near-

identity coordinate transformation as many nonlinear terms from the de�n-

ing vector �eld as possible. According to the Hartman-Grobman theorem

all such terms can be eliminated near a hyperbolic �xed point where the

Jacobian has no zero or purely imaginary eigenvalues [92]. Thus at such a

point linear stability theory is su�cient.

Around other types of equilibria like centers the analysis is more in-
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volved. This concerns especially Hamiltonian systems where �xed points

can never be hyperbolic. If there are resonances between the eigenvalues

of the Jacobian, the normal form is necessarily non-linear. In order to de-

termine a normal form one makes a power series ansatz for the coordinate

transformation and determines the coe�cients of the ansatz by requiring

that besides the resonances all non-linear terms of the vector �eld up to a

certain order disappear. The resulting transformed �eld is a normal form.

Further complications arise, if the linear part of the vector �eld is not

semi-simple, i. e. if it contains a nilpotent part. In this case an additional

normalization is necessary, as the classical algorithms consider only the semi-

simple part. This requires further tools from invariant and representation

theory of Lie algebras. For the special case of sl(2; IR) this is discussed in

some detail in [28]. For planar systems with nilpotent linear part generic

normal forms up to eightth order have been computed in [40] using Reduce.

An algorithm for computing normal forms that is suitable for implemen-

tation in a computer algebra system was presented by Walcher [130]. It is

closely related to Lie transforms [81]. This technique has its origin in Hamil-

tonian mechanics where it yields a canonical transformation. However, it

can be extended to general dynamical systems. In contrast to this Birkho�

normal form Gatermann and Lauterbach [48] took normal forms from sin-

gularity theory in order to study bifurcation phenomena. For equivariant

systems (see below) they automatically classify them using Gr�obner bases.

Computer algebra is also much used to determine (approximations of)

center manifolds [20], a special form of invariant manifolds. If a dynamical

system possesses a center manifold, it often su�ces to study its behavior on

this manifold. If the zero solution of the reduced system is stable, solutions of

the original system for initial data su�ciently close to the center manifold

will approach this manifold exponentially fast. Thus the reduced system

completely describes the asymptotic behavior of such solutions.

Center manifold theory has such a great importance, because it yields

a reduction of the dimension and thus often a considerable simpli�cation of

the analysis. Sometimes it is even possible to reduce an in�nite-dimensional

problem to a �nite-dimensional one. There are two main computational

steps. First we need an approximation for the center manifold, then we must

compute the reduced system. As in normal form theory, this is done with

a power series ansatz [41]. Laure and Demay [70] showed for the Couette-

Taylor problem how computer algebra and numerical analysis can interact to

solve a complicated bifurcation problem for an in�nite-dimensional problem

using a reduction to a �nite-dimensional center manifold.

But also some classical (computer) algebraic problems are of great im-

portance in the study of dynamical systems. For example, before a �xed

point can be analyzed it must be determined. This requires the solution of

a nonlinear system of algebraic equations. If the de�ning vector �eld is ra-

tional, this can be done with Gr�obner bases. Often the vector �eld depends
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on some parameters. At certain values of these parameters, the properties

of the vector �eld may change, i. e. a bifurcation occurs. The determination

of these values is a fundamental problem in dynamical systems theory.

Of special interest are here equivariant systems where the vector �eld

is invariant under the action of a symmetry group [52, 53]. Here one can

use linear representation theory and polynomial invariant theory for deter-

mining the fundamental invariants and equivariants [46, 135]. Using normal

forms they enable the local bifurcation analysis, i. e. the typical bifurcation

diagram in the neighborhood of a critical point can be derived.

If bifurcations of periodic solutions are to be studied, the Poincar�e map

is often a very useful tool. However, in general it is not possible to obtain

it analytically. Thus one computes again a power series approximation of

it. The bifurcation depends then on the Taylor coe�cients. They satisfy a

system of di�erential equations which must be integrated numerically. In

order to set up this system one needs higher order derivatives of the vector

�eld which can often be determined only by computer algebra. A combined

numerical-symbolical approach to the Poincar�e map is described in [66]. A

pureMaple package using the built-in numerical and graphical facilities for

plotting Poincar�e sections was presented in [22].

A more theoretical application concerns Hilbert's 16th problem of bound-

ing the number of limit cycles in a planar polynomial system. For quadratic

systems a lot of results are known [107]; however already the cubic case

becomes very complicated. An important subproblem is the center problem,

namely to distinguish between a focus and a center. The derivation of su�-

cient and especially of necessary conditions for a center can be very involved

and is sometimes hardly feasible without computer algebra [91]. In a recent

study of cubic systems [35] a Cray-J90 had to be used.

9 Numerical Analysis

It was already mentioned in Sect. 2 that the capabilities of computer algebra

systems in explicitly solving di�erential equations are limited. This holds

especially for partial di�erential equations. Hence numerical methods have

lost nothing of their importance. Symbolic and numerical computations can

interact in many ways and most systems provide some numerical facilities.

The oldest and simplest approach consists of interfacing a computer

algebra system and a numerical library. Typically the interaction is one-way:

the computer algebra system is used to derive the di�erential equations; the

interface generates code in the language of the numerical library (perhaps

including some optimization steps); �nally, the di�erential equations are

solved by some routines from the numerical library.

To some extend most common computer algebra systems can do this, as

they provide commands to convert an expression into C or Fortran. How-
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ever, it is rather cumbersome to automatically generate whole programs

that way. For such purposes one better uses a specialized package like Gen-

tran [49]. Another important problem is the optimization of the generated

code which is usually necessary. In Reduce the package Scope [128] was

developed for this purpose. Its main strategy is to detect common subex-

pressions of large expressions.

MuPAD provides a very e�cient form of interfacing, namely dynamical

modules [121]. These are modules developed in a language like C or C++

that can be linked dynamically at run-time to the computer algebra system.

Compared with approaches based on interprocess communication this leads

to much less overhead. And as the module has direct access to the internal

data of the MuPAD session, much less data must be communicated. The

procedures implemented in a dynamical module can be called within MuPAD

like any other function. Provided a convenient interface exists this allows in

principle to work interactively with a numerical library.

Computer algebra systems can also help to select an appropriate method

from a numerical library. Modern libraries have reached such a level of

sophistication that for many users it is increasingly di�cult to fully exploit

their potential. They provide many di�erent routines for the same task and

the working of these routines can be further tuned by many input parameters

whose meaning remains a secret for non-experts. A computer algebra system

can analyze the given di�erential equation (e. g. estimate its sti�ness) and

then choose an appropriate method and determine reasonable values for its

parameters. An example for this approach is the Axiom package Anna

developed by Dup�ee [33].

Goldman et al. [51] go considerably further in their application of com-

puter algebra by using it as a software engineering tool. They automatically

generate the full Fortran code for numerically solving the Navier-Stokes

equations. Their argument is that such programs are so long and com-

plicated that their maintenance and adaption (new boundary conditions,

di�erent discretizations etc) is rather di�cult and error-prone. They use

instead a number of input �les that contain all the relevant information

about the problem in a format that is comparatively easy to read and let

the computer algebra system then generate the complete code.

One can also use computer algebra to derive numerical schemes. The

Butcher theory of Runge-Kutta methods is here a typical example. For

higher order methods the order conditions become rather large and com-

plicated. Computer algebra packages have been developed that derive and

solve them (using Gr�obner bases) [54, 120]. For partial di�erential equa-

tions the construction of higher-order discretizations or �nite elements can

be rather involved and is sometimes only feasible with the help of a computer

algebra system [85].

At a more theoretical level computer algebra is used for the analysis of

numerical methods. It may, for instance, assist in proving the stability of
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�nite di�erence schemes for partial di�erential equations [44]. Another ex-

ample is the derivation of so-called modi�ed equations [4], i. e. of di�erential

equations whose solution is much closer to the numerically computed one

than the solution of the original equation.

Another topic where computer algebra plays a certain role in numerical

analysis are di�erential algebraic equations. The index of such a system

comprising di�erential and algebraic equations measures in a certain sense,

how far it is away from a pure di�erential equation [18]. This gives an in-

dication of the di�culties one must expect in a numerical integration. The

determination of the index is essentially equivalent to the completion proce-

dures described in Sect. 5 [71, 95, 112], as it can be de�ned as the number

of steps needed for the completion. However, in practice numerical analysts

often prefer the use of automatic di�erentiation to computer algebra [19].

None of the applications described in this section represents really what

one would call a hybrid algorithm combining symbolic and numerical ele-

ments, i. e. where computer algebra is an integral part of the solution process

and not only used to determine either the problem or the numerical method

for its solution.
5

We are not aware of any such algorithm for di�erential

equations, although some ans�atze based on symmetry theory have been de-

veloped. Dorotnitsyn [32] showed how one may construct �nite di�erence

schemes inheriting the symmetries of a di�erential equation. Such schemes

should very well preserve the associated conservation laws, but so far no

numerical tests have been published.

In contrast, for solving algebraic equations several hybrid algorithms

have already been designed. One of them deals with nonlinear systems

possessing symmetries [47], as they e. g. arise in equivariant systems (see

Sect. 8). In the symbolic part it uses the linear representation theory of �nite

groups to transform the problem into an optimal form for the numerical

part. This includes for example a block diagonalization of the Jacobian.

The numerical algorithm is complicated due to the underlying group theory.

Gatermann [45] showed how the numerical computations can be automated

by �rst computing the necessary group theoretic data which is summarized

in a bifurcation graph.

10 Conclusions and Outlook

The application of computer algebra to di�erential equations is a vast �eld.

We could only brie
y discuss some of the main research directions and had

to omit many others. For example, one can extend the idea of transforming

di�erential equations far beyond simple heuristics and is then lead to the

equivalence problem of Cartan [65, 88]. Within the algebraic approaches we

5One may, however, consider the work of Kleczka et al. [66] on the Poincar�e map (see

Sect. 8) as such a hybrid algorithm. See also [67].
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ignored the theory of D-modules [76] which is important in control theory.

The �elds we have touched on are in rather di�erent states. Some of them

like symmetry theory are meanwhile fairly mature with the fundamentals

well understood and they provide standard techniques for tackling di�eren-

tial equations implemented in many computer algebra systems. Others are

still in an early stage of their development and essential questions are open.

Such �elds are usually known only to some experts and only prototypical

implementations of algorithms exist.

One common feature shared by most of the �elds is the complexity of

the algorithms. If we take the various completion methods as example, it

is obvious from their close relation to Gr�obner bases that their (worst case)

complexity is at least as bad as that of Buchberger's algorithm, i. e. double

exponential. Although Gr�obner bases solve in principle many problems in

commutative algebra, it is well-known that one often fails to get a basis

in reasonable time. One possible way out is the stronger use of heuristics

and techniques from Arti�cial Intelligence, although this is an unpleasant

thought for many pure mathematicians.

Some readers might be surprised that we discussed the combination of

symbolic and numerical computations at such length. But in the future this

topic will be among the most important ones | at least for applications.

In the form of simple interfaces it happens already now in many places

and hopefully we can soon add powerful hybrid methods. For most users

of computer algebra systems (this is a very di�erent community than the

participants of computer algebra conferences!) such possibilities are of much

greater importance than the fancy algorithms developed by theorists.

Despite all the successes of Lie symmetries, di�erential Galois theory etc.

one must clearly see that these theories are of hardly any value for many of

the problems an engineer for example typically faces. A popular benchmark

problem in di�erential algebraic equations models with �ve links a car wheel

suspension [59]. Its equations of motion must be generated by computer and

consist of about 7000 lines of Fortran code. It appears hardly realistic to

solve such a system by analytic techniques.

This does not imply that there is no point in studying symbolic methods.

Toy models that can be solved analytically are very important for obtaining

a deeper understanding of underlying structures. One may hope that such

understanding may lead to more e�cient numerical algorithms for such large

problems. And again we want to stress that the application of computer

algebra to di�erential equations is not restricted to solving them!
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