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Abstract 

Calculated are forced oscillations of a clamped elastic beam with a friction device at its free end. Considering partial states, namely 
sticking and sliding, and applying FEM leads to a discrete non-smooth dynamic problem. Stationary oscillations are of interest, depending 
on the number of finite elements and on different types of friction laws. Due to the linearity of partial states of motion, the numerical 
integration is reduced to the calculation of switching times which separate the sequence of partial states. Appropriate chosen internal 
damping diminishes the numerical effort considerably. © 1999 Elsevier Science S.A. All rights reserved. 

1. Introduct ion 

The dissipation of mechanical energy in vibratory systems can be realized in several ways. One method is to 
directly use dry friction, with a distinction between continuous friction [1] and local friction in friction devices. 
The latter situation is being investigated in the following. In practice, friction devices are mainly employed in 

one-dimensional continua, e.g. bars and beams [2]. 
Dry friction naturally leads to non-smooth dynamic systems with strong nonlinearity. The operator F in a 

non-smooth system .~ = F ( X ,  t) is discontinuous. The range of definition of F can be split in a set J// with k 
k f ( j ) .  f ( j )  smooth parts F = U j = ~ j , E J// [3]. The total solution X is constructed by a sequence of partial solutions 

XU); i = 1, 2 . . . . .  which depend on the time history. The transition from X u-~)  to X u) occurs at a certain 

switching time ti_ 1 which separates consecutive states. The sequence of switching times t o < t I < • • • t i_ 1 < t~ < 

• • • is a priori unknown. At t i_ ~ the actual partial operator valid for t > t~_ ~ must be chosen out of a set J//. For 
this purpose, switching decisions must be defined. In addition, the known partial solution X u-  1) at t i i gives the 
initial conditions for the following partial solution X u). Its range of definition is controlled by switching 

conditions which allow to calculate the following switching time ti. 
Comprehensive literature on this subject has been made available recently [4], which, however, is focused on 

rigid-body dynamics. In contrast, contact problems in continuum mechanics lead to systems with finite numbers 
of degrees of freedom after spatial discretization by the finite element method. The main point in question is to 
find a realistic, but comprehensible, typical mechanical system, to describe its dynamic properties and to 
formulate the algorithm to calculate its oscillation. Here, the question arises how the spatial discretization of the 
continuum by finite elements affects the necessary discretization in time for integration of the motion. 

The mathematical problem of non-smooth dynamics can be split into two tasks, namely the time integration of 
successive smooth systems arising from the FE-formulation and the determination of the switching times. Both 
tasks can be performed numerically with limited accuracy [5]. The influence of both kinds of numerical errors 
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cannot be separated. As will be shown later, the partial smooth systems are linear. Their general solutions can be 
given explicitely by well-known methods of linear vibration theory even for large numbers of  finite elements. 
Taking advantage of this possibility, the numerical task is reduced to the calculation of the switching times as 
roots of  algebraic equations. This semianalytical procedure allows to focu,; the investigation on the distinct 
properties of  non-smooth systems especially on the existence of switching conditions and decisions. Moreover, a 
modal decomposition of the linear partial motions allows a discussion about the influence of higher vibrational 
modes on the calculation of the motion. 

2. Mechanical system and force laws 

Consider an Euler-Bernoulli  beam fixed at one end, which has at its free end a support with dry friction. 
Displacements in the transverse direction are possible. The beam is excited in its middle by a harmonic force 

F = F 0 sin $2t. (1) 

By means of the FE method, the continuous problem is discretized according to the known procedure [5] by N 
beam elements (N i> 2, even) (see Fig. 1). 

At each of the N nodes we introduce two degrees of  freedom with regard to rotation and displacement. The 
displacement of  the friction device is treated separately and denominated by v. The other ones are combined to 
one vector x. Hence, the global coordinate vector of  the dimension 2N reads 

qT = [{X}, y ] .  (2) 

Due to the friction support, the boundary conditions of the beam are not unique. During the oscillation 
intermittant constraints must be considered. Three possible partial motions may occur: 'sticking' with vanishing 
velocity 3;------0, +sliding' with a velocity 3; > 0 or 'sliding' with ); < 0. 

In the state 'sticking',  the support is fixed but shifted against the tensionless straight position of the beam by a 
displacement Yo constant in time. The value of Yo follows from the previous history of the motion. This partial 
state has 2 N -  1 degrees of  freedom with the coordinate vector Ix]. The appropriate contact force R(t)  is a 
passive force which can be calculated from the known motion in this state. 

In both sliding states, the contact force is an active force with a given law of force 

R(f )=Rosgn3;+df'; lYl>0, (3) 

The parameter R o is an adjustable threshold value resulting from a constant compression due to prestressing the 
friction device and a friction coefficient. The value d rules the slope of the characteristic of the friction law for 
[3;[ > 0. In this connection it has to be pointed out that the term d3; in (3) must not be mistaken as an internal 
damping of the beam. In the state 'sticking' described before, this term does not exist which means that it is 
clearly associated with a state 'sliding'.  A value d = 0 in (3) corresponds to Coulomb's  law. Characteristics with 
d > 0 and d < 0 yield increasing and decreasing friction forces with increasing values of  velocity (Fig. 2). In 
both states 'sliding' the beam has no constraint at its free end. These partial states are therefore characterized by 
2N degrees of  freedom with the coordinate vector [{x}, y] according to (2). 

In the time domain, the non-smooth dynamical behaviour of  the beam with a friction device consists of  a 
sequence of smooth partial motions. Each of these partial motions is linear and can be conceived by the known 

Po s i n f l t  

Xl l Xi X2N--1 
,,~ ~"--, • ~ ~ ,,,,, 

Fig. 1. Discretized beam. 
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Fig. 2. Force laws: (a) Coulomb; (b) increasing; (c) decreasing. 

methods of the theory of  vibrations of  systems with finite degrees of freedom. The nonlinearity of  the total 
oscillation problem is therefore based on two fundamental unknown circumstances: 

• the kind of  succession of  the smooth partial motions (sequence of  partial states), 
• the time of  transition from one smooth motion to the following one (switching times between partial states). 
Both facts result from the oscillation history. If a smooth motion at the time t o is assumed to be known, its 

behaviour with increasing time t > t 0 is decisive for its end and for the type of the following smooth motion. 

3. Mot ion  equat ions  and success ion  o f  partial  states 

The global system matrices for a discretization by N elements are obtained by the finite element method [6]. 
In accordance with the representation of  the coordinate vector (2), these matrices are composed of  submatrices. 
Mass (M), damping (D) and stiffness (K) have the following structure 

[-{M,,} {M, l [ {D! l} 
, , ,  D : I _ { D T ,  IN } M = L{MT, iN} miN.2N ] 

The vector of  the excitation force 

F T = [{0}, F(t), {0}] = [{F, (t)}, 0] 

d2N,2N ..]' K = [ { x T , 2 N }  k2N,2N I 
(4) 

(5) 

has a non-vanishing entry for the force excitation (1) at the middle node only. According to the representation of 
the coordinate vector (2), the entry at the friction device is treated seperately. The same applies to the contact 
force vector 

R v = [{0}, R] .  (6) 

3.1. State 'sticking' 

Assume t = t i_ ~ to be a known switching time, at which the partial motion starts where the friction device 
sticks. The previous history at the time t i_ j - 0 yields all coordinates x(t~_ l - 0), y(t~_ l - 0) = Yo and velocities 
~/( t i_ j -  0), ~;(t~_ 1 - 0 ) =  0. They form 2 ( 2 N -  1) initial conditions 

x(t  i_j + O ) = x ( t  i_j - O ) ,  

a~(t~_ ~ + 0) = x(t~_~ - 0) (7) 

for the 2 N -  1 linear equations of  motion 

MI,I  3~ + DI.IX + KI,I x -~ F1 - YoK1.2N " (8) 

The friction device itself is governed by y(t)=--Yo and #(t) ------ 0 for t > ti_ 1. The" motion of  the beam occurs 
around a curved shape of the beam given by the known displacement Yo. The contact force (passive force) 
results from an algebraic equation 

R(t) = MT,2~i( + Dv~,zN,f + KTI.zuX + Yok2N,2N . (9) 

The partial state 'sticking' exists in a time interval t~_ ~ < t < t~. The unknown switching time t~ characterizes the 
change to a new state. Sticking is finished as soon as the value of the contact force reaches the threshold value 
R 0 in Eq. (3). Thus, the switching condition 
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[R(t)l = R 0 (10) 

corresponds to the search for the first root of (10) in (t~ j, t[. Sticking is followed by sliding. The switching 
decision 

sgn(y(t~ + 0)) = sgn(R(t~ - 0)) (11) 

rules the direction of  sliding. At the switching point, the contact force is continuous, but not continuously 
differentiable. 

3.2. States 'sliding' 

Assume t = t i_ j to be a known switching time, at which a partial state 'sliding' in a known direction starts. 
The previous history yields all coordinates q(t,_ ~ - 0) and velocities q(t i_ 1 - 0) at the time t i ~ - O. They form 
2 × 2N initial conditions 

q(t~_ L + O) = q(t i j - 0) ,  (12) 

q ( t , _ l  + O )  = q ( t ,  ~ - O) 

for the 2N equations of motion 

M q  + D q  + Kq = F - R ( y ) .  (13) 

The contact force R is an active friction force given by the force law (3). Because its direction is known from 
the history, Eq. (13) is linear. Both states 'sliding' are described by the same equation (13). The only difference 
between both states is the sign of  the constant R o, which can be seen from Eqs. (6) and (3). Both partial states 
'sliding' exist in a time range t~_ 1 < t < t i. The unknown switching time t, characterizes the transition to the new 
state. Sliding is finished when the velocity y becomes zero. The search for ~the first root of (14) in the open 
interval (t,_~, t[ thus corresponds to the switching condition 

y(t) = 0 .  (14) 

For the new state starting at ti + 0 there are two possibilities: first, 'sticking' is presupposed. Then the contact 
force can be calculated from (9) as the passive force R(ti + 0). If  the switching condition 

IR(ti + 0)1 <s , ,  (15) 

is met, 'sticking' really exists in the open interval (t~_l, t[. If, on the other hand, 

IR(t, + 0)1 > g o ,  (16) 

we have an immediate reversal of motion to opposite sliding 

sgnO;(t~ + 0)) = -sgnO;(t~ - 0)) .  (17) 

At the end of  each sl!ding process, the contact force is discontinuous. 
Both smooth linear initial value problems (12), (13) or, respectively (7), (8) are treated using classic methods 

of the linear theory of  vibration. Assuming internal damping 

D = ceM + /3K (18) 

of  the beam in the form of Rayleigh damping, analytical solutions for all partial problems result by a modal 
decomposition. In the case 'sticking' 2N - 1 natural frequencies and modes carl be calculated independent of the 
total oscillation, in both cases 'sliding' 2N, respectively. Altogether, they form general solutions for all partial 
motions. At each switching time the integration constants must be adjusted to the initial conditions (7) and (12), 
respectively. The only numerical task in this procedure is to determine all roots of  the characteristic equation for 
the natural frequencies. This, however, can be achieved with high accuracy using known methods. The way of  
calculation for distinct numbers N will not be given in detail. The system matrices (4) for different numbers of  
elements will also not be presented explicitly. Both of  them count among the elementary problems of  the Finite 
Element method. Thus, the essential point is that the three linear partial problems can be calculated analytically. 
The nonlinear problem of integrating the total oscillation thus concentrates on the determination of  the switching 
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times on the basis of the switching conditions (9) and (16). This is the inherent numerical problem. As the 
conditions (9) and (16) cannot be strictly fulfilled, they are substituted by approximations. The time axis is 
passed in constant steps At. Due to the known analytical solutions in each partial motion, the functions )~(t) and 
R(t) can be calculated exactly in two successive times t and t + At. The remaining point of  interest is to know 
whether the interval (t, t + At) contains a switching time. This is checked by examining 

sgn(~(t + At)) = - sgn ( f ( / ) ) ,  (19) 

sgn(R o - IR(t + ~t)l) = -sgn(Rn - IR(t)l). (20) 

If one of the conditions is met, t~ is approximately equated to t + At. The switching time within the obtained 
time step At can be determined more exactly by an iteration, e.g. by the method of bisection. The optimum 
choice of  a time step for a given problem is not known. The fundamental presumption is to assume that the time 
step At includes only one switching time. This condition cannot be safely checked. Switching times may be 
skipped o r - - i f  the time step At contains several ones- -be  chosen wrongly. In general, this has fatal 
consequences for the solution (see [7,8]). From the pragmatic point of  view, At can be determined by means of 
numerical tests. As to the problem under consideration, At depends on the number N of  the finite elements, the 
force law and the sequence of  sticking and sliding states, i.e. on the properties of  the mechanical system and the 

excitation. 

4. The parameters of the problem 

In order to calculate realistic oscillations, certain parameters have to be chosen. They follow the mechanical 
properties of  a real model used for experimental investigations on the subject [9]. For the excitation a constant 
force amplitude F 0 = 2 .4N is chosen. Geometry ( / = 2 . 4 7  m), stiffness (El=: 1.09 × 104Nm 2) and mass 
properties (35.4 k g / m )  of the beam are taken into account by the lowest natural angular frequency %~ = 10.1 s 
in the state 'sliding'. The displacement y is referred to the deflection y,~, = 0.34 mm of a clamped-free, beam 
loaded by a static force F o. The reference quantity for the velocity 3; is •,g = y~g%~. Experimental investigations 
[9] yielded for friction between steel and plastics (increasing characteristic) d = 30 N s / m ,  for friction between 
steel and brass (falling characteristic) d = - 3 0 N s / m .  For the Rayleigh damping a = 2 . 5 x  10 2/s and 
/3 = 5.5 × 10 -s s are chosen. The lowest natural mode in the case 'sliding' then has as dimensionless damping 
D~,~ = 0.0015 which is realistic for steel beams. The damping of  all higher modes of all partial states grows 
almost linearly as the order of the natural modes increases (Table 1). 

The control parameters of the problem are the relative exciting frequency 12/%~ and the relative threshold for 
sliding R o / F  o. With the dimensionless time r = ~2t/27r one obtains the dimensionless excitation period T = 1. 
Thus, the time step Ar can be chosen as a pure number from now. Due to the modal representation of the linear 
partial problems, the analytical solutions are composed of 2N or, respectively, 2N -- 1 harmonic oscillations with 
an equivalent number of  natural frequencies. Thus, the frequency spectrum mainly depends on the involved 
number N of finite elements. The lowest and the highest frequencies are compared in Table 2. 

With regard to smooth beam dynamics, FE discretizations yield good results for the lowest frequencies %~ 
and w¢,~ even for small N. As the number of the higher modes increases, the accuracy decreases considerably. 
The lower ones can be improved by choosing a larger N. However, it has to be taken into account that the 
additional higher frequencies also have a high error rate. For example, calculating the frequency %20 according 
to the continuum theory one obtains the exact value 6o~20 = 12 800 s instead of the frequency given in Table 2. 
Furthermore, the numerics may be complicated by the fact that the values of  lowest and highest frequency differ 
by orders of  magnitude. Thus, treating non-smooth dynamical problems, emerging from finite element 

Table 1 
Damping coefficients of the lowest and highest natural modes of the Linear partial problems for N = 10 

State 'sliding' State 'sticking' 

D~ = 0.0015 D/, ~ = 0.0015 
D_,,~ - 0.47 Din, , = 0.39 
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Table 2 
Lowest and highest natural frequencies of the linear partial problems for different numbers of elements 

Number of elements State 'sliding' State 'sticking' 

2 to~ = 10.1 s to~, =44.8 s 
to84 = 629 s to~ = 448 s 

10 wg~ = 10.1 s w~,~ = 44.4 s 
Wg 4 = 349 s wh3 = 301 s 
we2 o = 17 300 s wj, t = 14 300 s 

discretizations, one has to face the fact that on the one hand, all natural  modes are necessary for the calculation,  
but on the other hand, the higher ones are very inaccurate.  

5. The influence of  the force law on periodic solutions 

A harmonic  excitat ion is expected to cause periodic responses.  These stat ionary responses are calculated from 
transient  oscillations. First, the influence of  the relative threshold R o / F  o on the., type of oscil lat ion is considered. 
In the ideal case, i.e. C o u l o m b ' s  law disregarding internal damping,  Fig. 3 shows orbits for the coordinate y of 

the friction device. The excitat ion ~ = 2.45wg~ is approximately in the middle; be tween both lowest resonances 
of  the two l inear partial systems. The number  of  e lements  is N = 2. The t ime step for the determinat ion of  the 
switching times is AT = 0.5 × 10 -3. The exact localizat ion of  the switching t imes is made by iteration. 

Because in a state ' s t icking '  the displacement  is constant  and the velocity ze:ro, the whole state is indicated by 
one point  on the y-axis in the phase plane. For a better unders tanding the letters in Fig. 3 designate the sequence 
of  the partial motions dur ing one stationary response period. The meanings  are: H = ' s t icking ' ,  G ÷ ' s l id ing '  

with }; > 0, G -  ' s l id ing '  with 3; < 0. As the threshold R o decreases, the ampli tude of  the response increases 
under  the same excitation. The number  of  sticking states in one period reduces. The oscil lations are unique.  
Bifurcations do not  occur. The stationary response is independent  of  the initial condit ions and the initial state at 
the t ime r = 0. 

Under  the same presumptions  Fig. 4 shows the stationary oscil lat ions for a decreasing characteristic. 
The solution is no longer  unique.  There exist two different dynamic  equi l ibr ium positions, which belong to 

different initial condit ions.  Both solutions are symmetr ic  to each other and show the same sequence of  partial 
states. As the threshold R o decreases, bifurcat ions (subharmonic  solutions) occur. The ampli tudes increase 
considerably and the number  of st icking states grows. 

In order to compare the influence of  C o u l o m b ' s  law with those of  an increasing characteristic on the type of  
oscil lat ion a discretization with N = 10 is made. It is sufficient to consider  exemplar i ly  the arbitrarily chosen 

Y'g ~"-"-HG Y" 
a HG'HG*HG'HG- b +HG- 

t o.;? ~ a 

HG~'HG+ HG- HG- H G  - 

o.'2 
Y,g 

Y,B 

Fig. 3. Orbits in the case of Coulomb's law for the motion of the Fig. 4. Orbits in the case of a decreasing characteristic for the 
friction device. (a) Rc~ large; (b) R,j small, motion of the friction device. (a) R~ large; (b) R o small. 
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Fig. 5. Exemplary stationary period of coordinate, velocity and contact force. (a) Coulomb; (b) increasing characteristic. 

value R o [F  o = 0.167, since both force laws always yield unique and nonbifurcated solutions. The chosen time 
step is A7 = 2 X 10 3 with iteration. Internal damping is neglected. The excitation frequency ~ = 0 .99o~ is 
close to the resonance of  the partial state 'sliding'. Fig. 5 shows coordinate y, velocity 3; and contact force R 
versus time during one stationary period of  the response. 

Taking transient motions into consideration, the transient oscillation under Coulomb's  law has a duration of  
about 300 excitation periods, for the increasing characteristic the stationary oscillation is reached already after 
20 periods. This impressive influence of additional dissipation also becomes evident in the results shown in Fig. 
5. In the case of the increasing characteristic, the amplitudes of coordinate and velocity are much lower 
compared to those of Coulomb's  law. Furthermore, it is remarkable that under Coulomb's  law the chosen 
excitation frequency does not cause sticking, but only sliding in different directions. In the case of  the increasing 
characteristic short states of sticking occur. 

6. The influence of the number of elements and the viscous internal damping 

So far, the numerical efforts depending on the number N of  the employed elements were not discussed and 
viscous internal damping was not considered. Fig. 6 shows three different case~; for the same values Y2 = 1.1 Wg~, 
R o / F  o = 0.275. The figures show one period of the stationary response of coordinate, velocity and contact force 
versus time after transient oscillations of  20 excitation periods, Coulomb's  htw being valid in all cases. 

Fig. 6(a) and (b) allow a comparison of the results for N = 2 and N = 10 without damping. Qualitatively, the 
course of  all curves is the same in both cases, but the values of  the amplitudes differ significantly. Obviously, 
the small number N = 2 of elements is not sufficient to obtain a quantitatively correct result. The principal 
numerical problem becomes evident in the course of the contact force. For N = 2 it is comparatively smooth. For 
N = 10 the transitions between long lasting sticking and sliding processes are characterized by rapid change- 
overs because switching from one state to another occurs in short time intervals. During one period a total of 12 
switching times for N = 2 and 60 for N = 10 exist. This also explains the extremely different necessary time 
steps Ar  = 5 X 10 --~ for N = 2 and AT = 5 X 10 -5 for N = 10. They are caused by the numerous inaccurate 
higher modes of the linear partial motions mentioned in Section 4, which are mainly apparent near switching 
points. 
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Fig. 6. Stationary response of coordinate, velocity and contact force. (a) N = 2, no damping; (b) N = 10, no damping; (c) N = 10, Rayleigh 

damping. 

On the one hand, an exact result requires a sufficiently large number of finite elements to capture the lower 
modes exactly, on the other hand the consideration of all inaccurate higher modes causes a great computational 
effort which is not justifiable for practical interests. This conflict is solved by taking account of internal damping 
in the beam. In the case of Rayleigh damping, the basic modes decisive for the actual oscillation are slightly 
damped, all higher modes are strongly damped (see Table 1). Above all, the higher modes lose their influence 
when determining the switching times. Additionally, the calculation becomes less sensitive with regard to 
numerical inaccuracies resulting from the calculation of the switching points. This is shown in Fig. 6(c). It is 
particularly remarkable that the course of the contact force versus time becomes smooth. In spite of N = 10, the 
number of switching times in one period reduces to 12. The necessary time slep is only AT = 2.5 × 10 2, i.e. it 
is by almost one order of magnitude larger than in the case N = 2 without clamping. The factor by which the 
computational effort is reduced compared to the results of Figs. 6(b) and (c) is approximately 300. 

7. Conclusion 

The FE-formulation of a dynamic contact problem is considered. Non-smooth oscillations due to dry friction 
exist. A distinct separation of states of sticking and sliding in a friction device leads to a sequence of different 
linear partial motions, which is not known a priori because it depends on time history. Classical treatments of 
contact problems with FEM turn over non-smooth motions into smooth problems by regularisation of the 
friction law. This is achieved by introducing an elastic contact stiffness at the point of contact. The general 
consequences of this heuristic procedure have already been discussed in [10]. As far as the considered example 
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is concerned, an elastic contact element would give rise to a change of the natural frequencies of the partial 
linear states of the mechanical system. Mostly, the higher modes would be affected. But these are responsible 
for the numerical problems which have been discussed. Much more severe is the fact, that states of 'sticking',  
which can be observed in realistic experiments [9], are eliminated by regularisation methods. 

In contrast, the numerical effort for the non-smooth problem considered is reduced considerably by 
introducing internal damping in the beam itself. It influences mostly all higher modes of the linear partial 
motions, describing sticking and sliding at the friction device separately. The influence of all higher modes with 
less accuracy due to FEM vanishes. The contact force is smoothened realistically while the distinct separation of 
all properties of the friction device still exists. 
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