
Some Implementation Results on

Random Polling Dynamic Load Balancing

Peter Sanders

Department of Computer Science

University of Karlsruhe, 76128 Karlsruhe, Germany

Email: sanders@ira.uka.de

Abstract

Using two sample applications, we demonstrate the e�ectiveness of our porta-

ble and reusable library for parallel tree search. On 1024 Transputers we achieve

near optimal speedup even for quite small instances of the Golomb ruler prob-

lem. The 0/1 knapsack problem is more challenging but it is possible to achieve

superlinear speedup compared to the standard sequential depth �rst algorithm

the implementation is based on.

1 The Problem

Many algorithms in operations research and arti�cial intelligence are based on depth

�rst search in implicitly de�ned trees. Since these problems are often very time con-

suming, parallelization is an attractive approach to extend the applicability of these

algorithms. Unfortunately, the current status of parallel programming tools and the

background of application programmers make an e�ective parallelization di�cult. This

problem can be (partially) solved by encapsulating the parallelization into an applica-

tion independent library. We outline the design and implementation of such a library

and demonstrate its e�ectiveness using the following two examples:

A Golomb ruler [1] of length m with n marks at the integer positions 0 = m1, m2,

. . . , mn = m has the property jfmj �mi : 1 � i < j � ngj = n(n� 1)=2, i.e., the ruler

can be used to measure a maximum number of distances. For a given n we want to

�nd a Golomb ruler with minimalm. These rulers have applications in interferometry

and telematics.

An instance of the 0-1 knapsack problem is de�ned by n items with weight wi and

pro�t pi and a knapsack of capacityM . We are looking for xi 2 f0; 1g such that
P
pixi

is maximized subject to the constraint
P
wixi � M . Next to the traveling salesman

problem, the knapsack problem might be one of the most extensively studied discrete

optimization problems [5].

2 Sequential Algorithms

The Golomb ruler problem is solved using backtracking. On level i of the search tree

mark i is placed. Starting from a trivial approach, we introduced a number of heuristics

1



which reduced the sequential execution time by two orders of magnitude. The search

tree therefore has a quite irregular shape, but it is not very deep and it remains wide

and bushy. Node evaluations are linear in m.

There are two basic approaches to exact solutions of the knapsack problem. Dy-

namic programming is good if n is not too large and the wi lie within a small discrete

range. In other cases, dynamic programming fails due to its exponential memory re-

quirements. For these cases, variants of depth �rst branch-and-bound are better. First,

the items are sorted by their pro�t-density (from now on, let wi, pi refer to the i-th

best item); then depth �rst branch-and-bound traverses a binary search tree where xi

is determined at level i of the tree. Lower bounds for the branch-and-bound heuristics

are based on relaxing the integrality constraints on the xi. The bounds can be com-

puted quickly (in O(log n) time) using binary search and some precomputation. The

instances we consider have a very deep but thin irregularly shaped search tree.

3 Parallelization

Our library PIGSeL (parallel implicit graph search library) is a layered system of

interchangeable modules. The only part which needs to be ported to a new machine is

a messaging interface supporting asynchronous communication including a simple form

of active messages. Collective operations like broadcast or reduce are implemented on

top of this although they can use native routines when desired. A load balancing and

coordination module handles the parallelization using a simple interface to a search

engine. Besides sequential search, the search engine provides functionality for splitting

the search space. This is usually done by manipulating an explicitly managed search

stack. For coarser grained problems like Golomb rulers even the search engine is generic

{ the user only has to de�ne node evaluation and expansion functionality.

The central aspect of parallelization is load balancing. We currently use random

polling [3] { an almost penetrantly simple algorithm. Every PE (processing element)

works on a single subproblem at a time. When the subproblem is exhausted, it asks

a randomly chosen other PE to split its subproblem. When the requested PE is also

idle, another random PE is choosen. It can be shown [10] that for a large class of

problems it is unlikely that any PE has to issue more than O(log P ) requests overall

(Let P denote the number of PEs). So, if the per PE load is larger than the cost for

communicating O(log P ) subproblems, arbitrarily high e�ciency can be achieved.

In order to get a scalable implementation, a number of additional aspects have to

be considered:

� Each PE is initialized with a subproblem using a single broadcast of the root

problem and dlog
2
P e subsequent local splits based on the PE number.

� We use a termination detection algorithm based on embedding a binary tree into

the network. Its time consumption is proportional to the network diameter [6].

In contrast, the more popular ring based schemes take time O(P ).

� When a new solution is found in branch-and-bound, the new bound needs to be

quickly disseminated to all PEs. We do this by indirectly sending the value to

PE 0 along a binary reduction tree. Values which are only locally optimal are

discarded as soon as possible. Only when the value has reached PE 0 it is broad-

casted to all PEs. If locally improved solutions were immediately broadcasted,

2



this would result in severe network contention for applications like the knapsack

problem where many suboptimal solutions are found initially.

� For the knapsack problem, the search space is split by evenly dividing open

subproblems on all tree levels between the subproblems [8]. The simpler (and

often su�cient) approach of only splitting the top open problem would generate

very unequal splits most of the time.

4 Results

All measurements we are presenting here were performed on a Parsytech GCel-3/1024;1

a 32 � 32 mesh of 30MHz T805 transputers. We use the parallel operating system

Cosy [2]. Refer to [11] for measurements with PIGSeL using PVM on a network of

workstations.

The algorithm for the Golomb ruler problem is well suited for studying scalability

issues. In Figure 1 it is used to verify that the shortest known ruler with 12 respec-

tively 13 marks are indeed optimal. In this mode, the search tree is independent of

the order in which subtrees are evaluated. We therefore get smooth, well reproducible

speedup curves. (Small 
uctuations due to the randomized load balancer have been

damped by averaging over 5 measurements). Even for the quite small problem with 12

marks we get a speedup of 578 at a parallel execution time of 0:88s. For even larger

problems we achieve almost perfect speedup. (Compared to the specialized sequential

algorithm.) Since there is little communication taking place, large backtracking prob-

lems like �nding new Golomb rulers can also be successfully parallelized on networks

of workstations.

128

256

384

512

640

768

896

1024

1 64 256 576 1024

sp
ee

du
p

PEs

12 marks: 0.88s par. time
13 marks: 12.07s par. time

perfect speedup

Figure 1: Speedup for Golomb rulers.

1We would like to thank the Paderborn Center for Parallel Computing (PC2) for making this
machine available.

3



The e�ectivity of parallelizing the knapsack problem is very dependent on the in-

stances considered. One can generate very large trees with very small n � 50. These

are easy to parallelize. On the other hand, in [5] a class of very easy instances with

n up to 250000 is considered where sorting the items by pro�t density is the limiting

factor { there is virtually no parallelism in the tree search phase. We have generated

256 random instances with n = 2000, wi 2 [0:01; 1:01], pi 2 [wi + 0:1; wi + 0:125]

using the (32-bit) random number generator of INMOS-C. This statistics was cho-

sen to provide nontrivial but still sequentially tractable problems with large n. The

double-logarithmic plot in Figure 2 shows the relation between speedup and sequential

execution time. There is a large number of very small problems for which we can-

not expect any signi�cant speedup. Beginning at per PE loads of about 10s we start

to observe good performance. Very large problems show a considerable superlinear

speedup. For these instances the sequential algorithm appears to have run into some

kind of \dead end". The parallel algorithm is more robust because it follows multiple

search paths at once. The overall parallel execution time for 1024 PEs is 1410 times

smaller than the sequential time. This indicates that the traditional pure depth �rst

strategy is not the best choice for a sequential algorithm.2

0.25

1

4

16

64

256

1024

4096

16384

65536

1 10 100 1000 10000 100000

sp
ee

du
p

sequential execution time [s]

Figure 2: Speedup for 256 instances of the knapsack problem on 1024 PEs.

5 Conclusions

We have demonstrated that it is possible to e�ciently exploit large parallel machines

for searching irregularly shaped trees using a reusable portable parallel library. The

random polling algorithm, which was known to be successful on low diameter networks

2But note that traditional best �rst methods are no alternative here because they have excessive
memory requirements and a large management overhead considering the fast node evaluation functions
available for the knapsack problem.

4



[3], is equally e�ective on high latency machines with software routing. The results

for small golomb ruler problems demonstrate an e�cient parallel execution time which

is at least an order of magnitude smaller than previous results [9, 12]. Much of this

e�ectivity carries over to more challenging problems like the knapsack problem which

requires �ne-grained depth �rst branch-and-bound with a deep thin search tree and

frequent bound updates. Previous work on parallelizing the knapsack problem [4, 7]

did not yield comparable results.

References

[1] G. S. Bloom and S. W. Golomb. Applications of numbered undirected graphs.

Proceedings of the IEEE, 65(4):562{570, April 1977.

[2] R. Butenuth and S. Gilles. COSY | ein Betriebssystem f�ur hochparallele Com-

puter. In Transputer Anwender Tre�en, Aachen, 1994.

[3] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Com-

puting. Design and Analysis of Algorithms. Benjamin/Cummings, 1994.

[4] W. Loots and T. H. C. Smith. A parallel algorithm for the 0-1 knapsack problem.

International Journal of Parallel Programming, 21(5):349{362, 1992.

[5] S. Martello and P. Toth. Knapsack Problems { Algorithms and Computer Imple-

mentations. Wiley, 1990.

[6] F. Mattern. Verteilte Basisalgorithmen. Number 226 in Informatik-Fachberichte.

Springer, 1987.

[7] G. P. McKeown, V. J. Rayward-Smith, and S. A. Rush. Parallel branch-and-

bound. In Advances in Parallel Algorithms, pages 349{362. Blackwell, 1992.

[8] V. N. Rao and V. Kumar. Parallel depth �rst search. Part I. International Journal

of Parallel Programming, 16(6):470{499, 1987.

[9] A. Reinefeld and V. Schnecke. Work-load balancing in highly parallel depth-

�rst search. In Scalable High Performance Computing Conference, pages 773{780,

Knoxville, 1994.

[10] P. Sanders. A detailed analysis of random polling dynamic load balancing. In In-

ternational Symposium on Parallel Architectures Algorithms and Networks, pages

382{389, Kanazawa, Japan, 1994.

[11] P. Sanders. Portable parallele Baumsuchverfahren: Entwurf einer e�zienten Bib-

liothek. In Transputer Anwender Tre�en, pages 168{177, Aachen, 1994. IOS.

[12] S. Tsch�oke, M. R�acke, R. L�uling, and B. Monien. Solving the traveling salesman

problem with a parallel branch-and-bound algorithm on a 1024 processor network.

Technical report, Universit�at Paderborn, 1994.

5


