
�
� @

@

@
@ �

�
�
�

@
@�

�

@
@

Institut f�ur

Angewandte

Mathematik

Universit�at Karlsruhe (TH)

D-76128 Karlsruhe

Improving the E�ciency of a

Nonlinear-System-Solver Using a

Componentwise Newton Method

Stefan Herbort, Dietmar Ratz

F orschungsschwerpunkt

C omputerarithmetik,

I ntervallrechnung und

N umerische Algorithmen mit

E rgebnisveri�kation

x�

[x](k)

[x](k+1)

Bericht 2/1997

Impressum

Herausgeber: Institut f�ur Angewandte Mathematik

Lehrstuhl Prof. Dr. Ulrich Kulisch
Universit�at Karlsruhe (TH)

D-76128 Karlsruhe

Redaktion: Dr. Dietmar Ratz

Internet-Zugri�

Die Berichte sind in elektronischer Form erh�altlich �uber

ftp://iamk4515.mathematik.uni-karlsruhe.de

im Verzeichnis: /pub/documents/reports

oder �uber die World Wide Web Seiten des Instituts

http://www.uni-karlsruhe.de/~iam

Autoren-Kontaktadresse

R�uckfragen zum Inhalt dieses Berichts bitte an

Dietmar Ratz, Stefan Herbort
Institut f�ur Angewandte Mathematik
Universit�at Karlsruhe (TH)
D-76128 Karlsruhe

E-Mail: Dietmar.Ratz@math.uni-karlsruhe.de

Improving the E�ciency of a

Nonlinear-System-Solver Using a

Componentwise Newton Method

Stefan Herbort, Dietmar Ratz

Contents

1 Introduction 4

2 Idea of a Componentwise Interval Newton Method 5

3 The Componentwise Newton Operator Ncmp 6

4 Some Improvements on the Componentwise Method 8

4.1 Using Index-Lists . 8
4.2 Combination with an Interval Newton Gauss-Seidel Step 11
4.3 Verifying the Uniqueness of a Solution 11

5 Algorithmic Description 12

6 Some Properties of AllNcmp 17

7 Examples and Results 18

References 29

4 Stefan Herbort, Dietmar Ratz

Zusammenfassung

Ein komponentenweises Newton-Verfahren: Zur Einschlie�ung aller L�osungen eines nichtlin-

earen Gleichungssystems wird ein leistungsf�ahiges Branch-and-Prune Verfahren vorgestellt. Es basiert

auf einem komponentenweise arbeitenden Intervall-Newton-Operator, der die Funktionen eines Gle-

ichungssystems vor�ubergehend wie eindimensionale reelle Funktionen mit Intervall-Koe�zienten be-

handelt. Durch geschickte Anwendung der Intervallrechnung und mit Hilfe diverser Verbesserungen

an der komponentenweisen Methode ist ein Verfahren entstanden, das vor allem bei ,,real-world\-

Problemen sehr e�zient arbeitet.

Abstract

A Componentwise Interval Newton Method: We give an e�cient branch-and-prune algorithm

for �nding enclosures of all solutions of a system of nonlinear equations. It is based on a componentwise

interval Newton operator that temporarily considers a function of the system of equations as a one-

dimensional real-valued function having interval coe�cients. Using interval arithmetic and enhancing

the componentwise method by several techniques, we present an algorithm that works rather e�ciently,

especially on many \real-world" problems.

1 Introduction

We address the problem of reliably �nding all solutions of the nonlinear system

fi(x1; x2; : : : ; xn) = 0; i = 1; : : : ; n; (1)

where the variables xj are bounded by real intervals:

xj 2 [x]j; j = 1; : : : ; n:

As usual, the set of real intervals is denoted by IIR, accordingly IIRn is the set real

interval vectors. Thus, we denote the search area by [x] = ([x]1; [x]2; : : : ; [x]n)
> 2 IIRn.

When we write a function with interval arguments, e.g. f([x]), we always think of its

natural interval extension. Usually, we do not have the exact range of the function,
anyway.

With f = (f1; f2; : : : ; fn)
> we are looking for enclosures of all x� 2 [x] � IRn with

f(x�) = 0: (2)

For this purpose we introduce a componentwise interval Newton method (Sections 2{4)
that works rather e�ciently. We give an algorithmic discription (Section 5) and some

numerical results (Section 7). The algorithm is close to that from [2, Chapter 13],
and we also compare the results of our componentwise method to that method. For

detailed information on the componentwise method see [4].

A Componentwise Interval Newton Method 5

2 Idea of a Componentwise Interval Newton

Method

The componentwise Newton method for �nding enclosures of the solution vectors of a

system of nonlinear equations is based on a quite simple idea using the properties of

interval arithmetic. Similar conceptions can be found in [5] and [14].

The n-dimensional system of equations

f(x) = (f1(x); : : : ; fn(x))
>
= 0 where f : D � IRn ! IRn (3)

consists of the n real-valued functions fi : D ! IR.

The vector x� 2 D is a solution of (2) i�

fi(x
�) = 0 for all i 2 f1; 2; : : : ; ng:

Hence, by leaving n�1 of the n variables �xed each function fi can be interpreted as a

one-dimensional real-valued function. Now, the ordinary interval Newton method for

one-dimensional functions can be applied. Of course, it is not quite probable to �nd
any solution of fi = 0 if the �xed variables are set to some arbitrary real values. But,
by replacing the �xed variables by the corresponding components [x]j of the interval

vector [x] we can get enclosures of a solution, and interval arithmetic guarantees that
no solution is lost.

Example 2.1 Let f = (f1; f2)
> : D � IR2 ! IR2 a continuously di�erentiable function

and let [x] 2 IIR2 be an interval vector (box) with [x] = ([x]1; [x]2)
> � D.

We consider the function f1 : D! IR. As a necessary condition for x� 2 [x] solving
the system (2) we get:

f1(x
�)

!
= 0:

Let the function g : IR! IR be de�ned by

g(y) := f1(x
�
1; y):

Applying the one-dimensional interval Newton method all roots of g can be found, and
because of the above mentioned necessary condition any root y� of g is a \candidate" for
the 2nd component of a solution of problem (2). Since the point x�1 is usually unknown,

it is replaced by the interval [x]1, i.e. by the 1st component of the search box. Thus
we get the expression f1([x]1; y), and, since the interval extension is inclusion isotonic,

we have

g(y) 2 f1([x]1; y):

The derivative g0([x]2) that is required for the interval Newton operator is treated in

the same manner. This leads to:

N([x]2) := c�
g(c)

g0([x]2)
� c�

f1([x]1; c)
@f1
@x2

([x]1; [x]2)
; (4)

where c := m([x]2); assuming 0 =2 g0([x]2) =
@f1
@x2

([x]1; [x]2). Applying (4) the component

[x]2 of the search interval vector may be reduced. In the same way, i.e. leaving x2 �xed
and replacing it by the (possibly) reduced 2nd component of [x], we can treat the 1st

component [x]1 of the search box.

6 Stefan Herbort, Dietmar Ratz

Considering this �rst example some advantages of the componentwise method can

already be seen. Solving systems of nonlinear equations with the multi-dimensional

Newton method or the preconditioned interval Newton Gauss-Seidel method (see [2,

Chapter 13]) requires the inversion of a matrix. Since the componentwise method treats

a system in a quasi one-dimensional way, no inversion is necessary. Hence, the existence

of a singular matrix in the Jacobian Jf ([x]) does not mean any problem; using extended

interval arithmetic the componentwise method is applicable in any case. Moreover, for

each of the n components [x]j of the search box n di�erent functions fi can be chosen

trying to prune the interval [x]j. We will see that a suitable choice can e�ect a high

performance of the componentwise Newton method.

The following section deals with the detailed derivation of a componentwise interval

Newton operator and its most important properties.

3 The Componentwise Newton Operator Ncmp

Similar to the ordinary one-dimensional interval Newton method we derive the compo-
nentwise method from the mean-value theorem. Let f = (f1; : : : ; fn)

> : D � IRn ! IRn

be the considered function. By choosing one component fi of the multi-dimensional
function and leaving all variables but xj �xed we get the one-dimensional, real-valued
function

~f(ij)(xj) := fi(x
�
1; : : : ; x

�
j�1; xj; x

�
j+1; : : : ; x

�
n)

with i; j 2 f1; 2; : : : ; ng and x�k 2 IR (k 6= j).
The real variable xj may vary within the jth component [x]j of the search box

[x] 2 IIRn. So we get from the already mentioned mean-value theorem:

9� 2 [x]j : ~f(ij)(cj) � ~f(ij)(xj) = ~f 0(ij)(�) � (cj � xj); (5)

where xj 2 [x]j and cj := m([x]j). According to the de�nition of ~f(ij) the derivative
~f 0(ij) is the partial derivative

@fi
@xj

.

Assuming x� 2 IRn to be a root of f and ~f 0(ij) 6= 0, (5) can be transformed to

x�j = cj �
~f(ij)(cj)
~f 0(ij)(�)

because x� is a zero of fi as well. Now, replacing the unknown � 2 [x]j by the whole
interval [x]j leads to

x�j 2 cj �
~f(ij)(cj)

~f 0(ij)([x]j)
=: N :

However, the step from the real function ~f 0(ij) to its interval extension may lead to

0 2 ~f 0(ij)([x]j). We handle this case by applying the extended interval division. Then

the set N may have a gap.
The only information on the �xed x�k (with k 6= j) appearing in function ~f(ij) is the

interval they have to lie in. If the search box is [x] = ([x]1; : : : ; [x]n)
> 2 IIRn then x�k

A Componentwise Interval Newton Method 7

may vary within [x]k. Substituting each x�k (k 6= j) by the corresponding interval [x]k
we get a superset of N because of inclusion isotonicity. Obviously, inclusion isotonicity

must also hold for the extended interval arithmetic (see [4, Chapter 3], [13]).

In terms of the original system of equations we have

N � cj �
fi([x]1; : : : ; [x]j�1; cj; [x]j+1; : : : ; [x]n)

@fi
@xj

([x]1; : : : ; [x]n)
:

Now, we can de�ne the following operator that uses the ith component of the system

of equations to treat the jth component of the search box.

De�nition 3.1 Let f :D � IRn ! IRn, f = (f1; : : : ; fn)
> be a continuously di�er-

entiable function, and let [x] = ([x]1; : : : ; [x]n)
> 2 I IRn be an interval vector with

[x] � D and i; j 2 f1; : : : ; ng. Then the componentwise interval Newton operator Ncmp

is de�ned by

Ncmp([x]; i; j) := m([x]j)�
fi([x]1; : : : ; [x]j�1;m([x]j); [x]j+1; : : : ; [x]n)

@fi
@xj

([x]1; : : : ; [x]n)
(6)

Similar to other interval Newton operators the operator Ncmp has some important
properties concerning the existence of a zero.

Theorem 3.2 Let f :D � IRn ! IRn be a continuously di�erentiable function, and

let [x] = ([x]1; : : : ; [x]n)
> 2 I IRn be an interval vector with [x] � D. Then, the

componentwise interval Newton operator Ncmp has the following properties:

1. Let x� 2 [x] be a zero of f , then we have for arbitrary i; j 2 f1; : : : ; ng :
x� 2 ([x]1; : : : ; [x]j�1; Ncmp([x]; i; j); [x]j+1; : : : ; [x]n)

2. If Ncmp([x]; i; j)\ [x]j = � for any i; j 2 f1; : : : ; ng, then there exists no zero of f

in [x].

Proof: The proof of 1 is very close to the derivation of the Ncmp-operator. Let x
� 2 [x]

be a zero of f , and let i; j 2 f1; : : : ; ng. Considering fi as a real-valued one-dimensional
function in xj, we get from the mean-value theorem

x�j = cj �
fi(x

�
1; : : : ; x

�
j�1; cj; x

�
j+1; : : : ; x

�
n)

@fi
@xj

(x�1; : : : ; x
�
j�1; �; x

�
j+1; : : : ; x

�
n)

with � 2 [x]j;

where cj := m([x]j) and assuming @fi
@xj

(� � �) 6= 0. Replacing the unknown � by the

interval [x]j, we get an inclusion of x�j . Moreover, we substitute each x�k (with k 6= j)

by the corresponding [x]k, that leads to a superset of the mentioned inclusion. Hence,
we have:

x�j 2 cj �
fi(x

�
1; : : : ; x

�
j�1; cj; x

�
j+1; : : : ; x

�
n)

@fi
@xj

(x�1; : : : ; x
�
j�1; [x]j; x

�
j+1; : : : ; x

�
n)

� cj �
fi([x]1; : : : ; [x]j�1; cj; [x]j+1; : : : ; [x]n)

@fi
@xj

([x]1; : : : ; [x]j�1; [x]j; [x]j+1; : : : ; [x]n)

= Ncmp([x]; i; j);

8 Stefan Herbort, Dietmar Ratz

due to inclusion isotonicity.

Since the operator Ncmp([x]; i; j) only treats the jth component of [x], it is shown:

x� 2 ([x]1; : : : ; [x]j�1; Ncmp([x]; i; j); [x]j+1; : : : ; [x]n):

Item 2 can be proved by contradiction:

Assuming x� 2 [x] to be a zero of f , and applying 1 for some arbitrary i; j 2 f1; : : : ; ng,
we have

x�j 2 Ncmp([x]; i; j) � Ncmp([x]; i; j)\ [x]j = �;

and the assumed existence of a zero is contradicted. 2

4 Some Improvements on the Componentwise

Method

The described operator has been tested within a quite naive implementation in which

the Ncmp([x]; i; j)-operator is simply applied for i = j and i = 1; : : : ; n. The ith com-
ponent of the search box [x] is replaced by the results of Ncmp([x]; i; i) intersected with
the old [x]i preventing the iterative method from diverging. Termination is guaran-
teed by bisecting the box if the operator does not prune it su�ciently, and extended
interval arithmetic is used if 0 2 @fi

@xi
([x]) for some i 2 f1; : : : ; ng. The results of that

implementation has been rather varying in comparison to the nlss-module from [2].

Many modi�cations have been tested to improve the componentwise operator on the
di�cult problems. We discuss the most successful ideas.

For detailed information on the used inclusion isotonic extended interval arithmetic

see [4, Chapter 3] or [13].

4.1 Using Index-Lists

The de�nition of the Ncmp-operator is made for arbitrary indices i; j with i; j 2
f1; : : : ; ng. Hence, we have several possibilities to choose such pairs (i; j). We want to
reduce the interval vector [x] , but the Ncmp-operator only treats the jth component.
Therefore, we have to apply Ncmp for all j 2 f1; : : : ; ng, successively. Even if an or-

der of j is given, for each j the index i can be chosen from f1; : : : ; ng. Experimental
results show that the choice of the pairs (i; j) has big in
uence on the e�ciency of

the componentwise method. This is especially true if the operator is applied on sparse

systems.

Obviously, it does not make sense to compute the Ncmp-operator, if the partial

derivative, i.e. the denominator in (6) (page 7), equals zero. In that case, the extended
interval division would result in (�1;+1), provided that the numerator contains zero.

Thus, any evaluation of the function or the derivative would not make sense, since the
Ncmp-operator could not reduce the search box.

Now, automatic di�erentiation in conjunction with interval arithmetic seems to be

rather convenient. We need a single evaluation of the Jacobian matrix for the start box
[y] to obtain some important information about the system of equations. For example,

A Componentwise Interval Newton Method 9

let [A] � Jf ([y]) be an interval matrix that includes the Jacobian over [y]. If [a]ij = 0,

the partial derivative @fi
@xj

equals zero. Because of inclusion isotonicity we must have

[a]ij = 0 for any [~y] � [y]. That means, we should not apply the Ncmp-operator on any

pair (i; j) with [a]ij = 0. If 0 2 f([y]) holds for the current search box [y] (otherwise,

there is nothing to do on [y]), then the numerator in our operator will mostly contain

zero.

Using these ideas, it is possible to create a list of pairs (i; j) giving the parameters for

the Ncmp-operator. Such an \index-list" can be created once before the main algorithm

is started. Each element (i; j) signals that the component [x]j of the current search box

should be treated by the component fi of the function. The actual construction of an

index-list can be performed in various manners. Probably, it is not possible to create

something like an optimal list. What we are interested in is to �nd an optimal function

f~{ to a given component |̂, so that d(Ncmp([x]; i; |̂)\ [x]|̂) becomes the minimum among

all i 2 f1; : : : ; ng for i = ~{. That is, �nding an index ~{ with

d(Ncmp([x];~{; |̂) \ [x]|̂) = min
i2f1;:::;ng

d(Ncmp([x]; i; |̂) \ [x]|̂):

Using i = ~{, the componentwise Newton operator would work most e�ciently on the

given component |̂.
It is rather expensive to compute the optimal parameters for Ncmp, and it is not

practical do this in each step of a componentwise method. But there is another idea,
we can achieve high e�ciency with. For �nding the optimal parameter i, we must at
least compute n values of the function f and n values of partial derivatives. This e�ort

can be used as following: we do not really calculate the best i before applying the
Ncmp-operator, but we compute

[x] := ([x]1; : : : ; [x]|̂�1; Ncmp([x]; i; |̂) \ [x]|̂; [x]|̂+1; : : : ; [x]n)

for all i = 1; : : : ; n, successively. After these n steps the diameter of [x]|̂ is at most
as large as it would be using the optimal function f~{ and computing Ncmp once. The
component [x]|̂ can even be smaller because the possibly improved component is used

immediately in the next step. Thus, we can achieve good reduction of the |̂th com-
ponent of the search box. Moreover, we do not need to compute Ncmp([x]; i; |̂) with a
�xed |̂ for all functions fi (i = 1; : : : ; n), but we can create an index-list to control the
indices i to be used.

In an improved implementation of the componentwise Newton method two di�erent

index-lists are created to determine the application of Ncmp. The pairs (i; j) of the �rst
list L1 are used if the element of the Jacobian does not contain zero, i.e. usual interval

division is applicable. The indices in the second list L2 are only used if the needed
element of the Jacobian contains zero and therefore extended interval arithmetic has

to be applied. The lengths of the index-lists depend on the evaluation of the Jacobian

over the starting search box.
The list L1 is built as follows, starting with the diagonal element, going downwards

and jumping from the last to the �rst row, all components in a column of the Jacobian

are analysed. The pair (i; j) is added to the list if the corresponding element of the

Jacobian does not equal the thin interval [0; 0], because in that case usual interval

10 Stefan Herbort, Dietmar Ratz

division would never be applicable. With an additional parameter max f/ that may

vary from 1 to n we can control the maximum number of index-pairs that is added to

the list L1 for a single column of the Jacobian.

The application of extended interval arithmetic may produce splittings and thereby

require a large number of recursive calls. Hence, the list L2 has the maximum length

of n. From each column of the Jacobian at most one pair (i; j) is added to L2. In the

current implementation we choose in each column the element with maximumdiameter

that contains zero. So, the list may also be empty if none of the components of the

Jacobian contains zero.

Example 4.1 We look at the following sparse system to understand the manner in

which the lists are created.

f =

0
BBB@

10 � (x2 � x21)

1 � x1
10 � (x4 � x23)

1 � x3

1
CCCA

Evaluating the Jacobian over the starting box [x] = [�10; 10]4 using automatic di�er-
entiation we get the interval matrix:

Jf ([x]) =

0
BBBB@

[�200; 200] [10; 10] [0; 0] [0; 0]

[�1;�1] [0; 0] [0; 0] [0; 0]

[0; 0] [0; 0] [�200; 200] [10; 10]

[0; 0] [0; 0] [�1;�1] [0; 0]

1
CCCCA

If maximum length of L1 is allowed, then each position with an interval component
unequal to [0; 0] is added to the list. As described above, the diagonal elements have
the priority in each column. Hence, we get

L1 = f(1; 1); (2; 1); (1; 2); (3; 3); (4; 3); (3; 4)g

The list L2 contains the index-pairs for extended interval arithmetic. So, the only
relevant elements are those that contain zero but are di�erent from [0; 0]. Among these

\candidates", in each column the interval with the maximum diameter is chosen to
determine the entry for L2. That leads to the second list:

L2 = f(1; 1); (3; 3)g

Certainly, there are many other ways to construct such index-lists. Moreover, we can

imagine to change the lists during the algorithm, for di�erent search boxes would prob-
ably lead to di�erent index-lists. We looked for a method which does not need to many
evaluations of the Jacobian because that costs a lot of time. The described procedure

that builds both lists once before the main algorithm starts, has been developed in a

quite heuristical way, but it works well on most of the test-problems.

A Componentwise Interval Newton Method 11

4.2 Combination with an Interval Newton Gauss-Seidel Step

Many tests with a simple implementation of the Ncmp-operator have shown that the

componentwise method sometimes does not work very well. Especially, if the system

is almost linear the operator is often not able to reduce the search box, and many

bisections are necessary. However, the module nlss from [2] using an interval Newton

Gauss-Seidel operator is quite e�ciently on those problems. On the other hand, the

componentwise method using the index-lists is the better one on sparse systems and

many other problems.

For detailed information on the interval Newton Gauss-Seidel method see [1], [3]

or [12]. Because of the importance of the interval Newton Gauss-Seidel operator for

the module Ncmp mod (described below) we cite the following theorem giving the most

important properties of that operator (see [2]).

Theorem 4.2 Let f : D � IRn ! IRn be a continuously di�erentiable function, and

let [x] 2 IIRn be an interval vector with [x] � D. The interval Newton Gauss-Seidel

operator NGS([x]) from [2] has the following properties:

1. Every zero x� 2 [x] of f satis�es x� 2 NGS([x]).

2. If NGS([x]) = �, then there exists no zero of f in [x].

3. If NGS([x])
�
� [x], then there exists a unique zero of f in [x] and hence in NGS([x]).

Proof: See [11]. 2

The interval Newton Gauss-Seidel step from [2] is very expensive because it needs the
evaluation of the whole Jacobian matrix and the inverse of its midpoint matrix. Hence,
a combination of the componentwise Newton operator with the Gauss-Seidel operator
should be realized in a way that a Gauss-Seidel step is applied as rarely as possible but

as often as necessary. On the other hand, it is quite di�cult to decide which operator
should be used next until both of them have really been calculated. The following
method has been found to be rather successful.

A simple version of the Gauss-Seidel step is applied only if theNcmp-operator returns
a single box, i.e. no splittings have been produced. That simpli�ed Gauss-Seidel step
does not produce any splittings, because it is not very e�ective to produce too many
recursive calls. Hence, the search box may only be splitted by bisection or by the Ncmp-

operator using extended interval division. We emphasize that the simpli�ed Gauss-

Seidel method still has all the properties of NGS([x]) mentioned in Theorem 4.2.

4.3 Verifying the Uniqueness of a Solution

To prove the uniqueness of a solution we apply Theorem 4.2. Accordingly, a box

[x] contains a locally unique solution if the condition NGS([x])
�
� [x] is ful�lled. This

condition is checked after each Gauss-Seidel step that results in a single interval vector.
Otherwise, i.e. if splittings have been occurred, uniqueness cannot be proved. The

method can also be applied in a separate veri�cation step that uses the interval Newton

Gauss-Seidel operator and the so-called "-in
ation to check on inner inclusion.

12 Stefan Herbort, Dietmar Ratz

So, we have two possibilities to prove the uniqueness of a solution:

1. after each Gauss-Seidel step that is only applied if the Ncmp-operator results in

one box,

2. by an additional veri�cation step that is applied on each box which uniqueness

has not yet been proved for by method 1.

The second step is similar to an algorithm from [2], but we made some changes with

respect to the componentwise Newton method.

5 Algorithmic Description

The explained improvements on the componentwise method and the componentwise

Newton operator have been combined to aPascal-XSC-module called Ncmp mod. This

module can reliably enclose all solutions of a system of nonlinear equations into narrow
interval vectors. We describe the most important aspects of the algorithms, a more
comprehensive description can be found in [4].

The user of the module can call the global procedure AllNcmp. The input data are
the function f , the search-box [x] 2 IIRn, the tolerance " and two further parameters
max f and UseGSS that control the behaviour of the module. The
ag UseGSS tells
whether the GaussSeidelStep is applied besides the CmpNewtonStep or only within the

Veri�cationStep. The parameter max f controls the length of the index-list L1. More
precisely, the componentwise Newton operator processes a variable xj with at most
max f functions fi, i.e. L1 contains n �max f (or less) index-pairs.

The output data of AllNcmp are the interval matrix [Sol], containing the enclosures
of the solutions row by row, the boolean vector Info, containing information on the
local uniqueness of each solution, the number N of the computed enclosures and an
error-
ag Err).

Algorithm 5.1: AllNcmp(f; [x]; ";max f ;UseGSS; [Sol]; Info;N ;Err)

1. Err := CheckParameters;

2. if Err 6= \No Error" then return Err;

3. N := 0;

4. if (" is too small) then " := \1 ulp accuracy" fcheck "g

5. if (max f =2 f1; : : : ; ng) then max f := 1; fcheck max f g

6. ComputeIndex(f; [x];max f ;L1;L2); fpointers at L1 and L2 are global!g

7. XINcmp(f; [x]; ";UseGSS; true; false; [Sol]; Info;N);

8. return [Sol]; Info;N ;Err;

A Componentwise Interval Newton Method 13

The procedure ComputeIndex creates the two index-lists L1 and L2 as described in

Section 4.1. It needs the function f , the search-box [x] 2 I IRn, and the parameter

max f .

Algorithm 5.2: ComputeIndex(f; [x];max f ;L1;L2)

1. L1 := f g; L2 := f g; finitialization by empty listsg

2. [J] := J�f([x])

3. for j := 1 to n dofL1 used by CmpNewtonStep without ext. interval arithmeticg

(a) k := 0;

(b) for i := j; : : : ; n; 1; : : : ; j � 1 do

if ([J]i;j 6= 0) and (k � max f) then

L1 := L1] (i; j); k := k + 1;

4. for j := 1 to n do fL2 used by CmpNewtonStep with ext. interval arithmeticg

(a) {̂ := 0;

(b) determine {̂ with d([J]{̂j) = max
i=1;:::;n

fd([J]ij) j 0 2 [J]ijg

(c) if (̂{ 6= 0) and (d([J]{̂j) > 0) then
L2 := L2] (̂{; j);

The procedure XINcmp is the central part of the module. It is the realization of a
branch-and-prune-method. The pruning can be done by both the CmpNewtonStep

(Step 2) and the GaussSeidelStep (Step 3(b)ii). The latter may be enabled or disabled
by the
ag UseGSS.

If a box satis�es the desired accuracy (relative diameter) speci�ed by the input

parameter " and has not yet been found to contain a unique solution the Veri�cationStep
is called (Algorithm 5.5). It may happen that an empty intersection occurs in the
Veri�cationStep (i.e. in the called GaussSeidelStep), in that case the current box is
thrown away. Otherwise, the box is stored as a solution together with the information
on its uniqueness.

Algorithm 5.3: XINcmp(f; [y]; ";UseGSS;UseL2 ; uniq; [Sol]; Info;N)

1. if (0 =2 f([y])) then return ;

2. CmpNewtonStep(f; [y]; ";UseL2; [Yp]; p);

3. if (p = 1) then

(a) noBisect := ([Yp]1
�
� [y]);

(b) if UseGSS and (drel;1([Yp]1) > ") then

i. [yold] := [Yp]1;

ii. GaussSeidelStep(f; [Yp]1; q);

iii. if (q = 0) then return ;

14 Stefan Herbort, Dietmar Ratz

iv. if (q = 1) then

InnerIncl := ([Yp]1
�
� [yold]);

uniq := uniq or InnerIncl;

noBisect := noBisect or InnerIncl;

else

uniq := false;

else fp 6= 1g
noBisect := false; uniq := false;

4. for i := 1 to p do

(a) if (drel;1([Yp]i) � ") then

if (0 2 f([Yp]i)) then

if not uniq then Veri�cationStep(f; [Yp]i;uniq);

if ([Yp]i 6= [=]) then

N := N + 1; [Sol]N := [Yp]i; [Info]N := uniq;

(b) else

if not noBisect then

Split([Yp]i; [yl]; [yr]); f[Yp]i = [yl] [[yr]g
XINcmp(f; [yl]; ";UseGSS;UseL2;uniq; [Sol]; Info;N);
XINcmp(f; [yr]; ";UseGSS;UseL2;uniq; [Sol]; Info;N);

else frecursive call of XINcmp for [Yp]ig
XINcmp(f; [Yp]i; ";UseGSS;UseL2;uniq; [Sol]; Info;N);

5. return [Sol], N;

The simpli�ed Gauss-Seidel step (see Section 4.2) is described as Algorithm 5.4. Once
more, we stress the importance of the principle \as rarely as possible but as often as
necessary" for applying GaussSeidelStep. We tried to realize this in XINcmp, but there
will always be a certain amount of heuristical methods.

If the Gauss-Seidel step leads to a union of two non-empty intervals, the procedure

is stopped (see Step 5(d)) and the current box is not changed. Moreover, the procedure
GaussSeidelStep can deliver useful information if an empty intersection occurs. Then

it is proved that there is no solution in [y] and the recursive call of XINcmp is stopped

by setting q = 0 (see Steps 4(c) and 5(c)).

Algorithm 5.4: GaussSeidelStep(f; [y]; q)

1. MatInv(m(Jf ([y])); R; InvErr); finvert midpoint matrix of the Jacobiang

2. if (InvErr 6= \No Error") then R := I;

3. c := m([y]); [A] := R � Jf([y]); [b] := R � f�(c); [yc] := [y]� c; finitializationsg

4. for i := 1 to n do finterval Gauss-Seidel step for 0 62 [A]iig

(a) if (0 2 [A]ii) then nexti;

A Componentwise Interval Newton Method 15

(b) [y]i :=

�
ci �

�
[b]i +

nX
j=1
j 6=i

[A]ij � [yc]j
�.

[A]ii

�
\ [y]i;

(c) if [y]i = [=] then return q = 0;

(d) [yc]i := [y]i � ci;

5. for i := 1 to n do finterval Gauss-Seidel step for 0 2 [A]iig

(a) if (0 62 [A]ii) then nexti;

(b) [z] :=

�
ci �

�
[b]i +

nX
j=1
j 6=i

[A]ij � [yc]j
�.

[A]ii

�
\ [y]i; f[z] = [z]1 [[z]2g

(c) if ([z] = [=]) then return q = 0;

(d) if ([z]2 6= [=]) then return [y]; q = 2;

(e) [y]i := [z]1; [yc]i := [y]i� ci;

6. return [y]; q = 1;

Algorithm 5.5: Veri�cationStep(f; [y];Unique)

1. kmax := 5; k := 0; [yin] := [y]; " := 0:25; Unique := false; finitializationsg

2. while (not Unique) and (k < kmax) do fdo kmax loops at mostg

(a) [yold] := [y] ./ "; f"-in
ationg

(b) k := k + 1; [y] := [yold];

(c) GaussSeidelStep(f; [y]; p);

(d) if p > 1 then exitwhile-loop; fno veri�cation possibleg

(e) if p = 0 then return [y] = [=]; fno soulition in [y]g

(f) if [y] = [yold] then
" := " � 8; fincrease "g

else

Unique := ([y]
�
� [yold]); finner inclusion =) uniquenessg

3. if not Unique then [y] := [yin]; freset [y] to starting valueg

4. return [y];Unique;

The procedure CmpNewtonStep (Algorithm 5.6) is most important for the e�ciency of

the module. We use the index-lists L1 and L2 to control the order of pairs (i; j) the

componentwise Newton operator is applied on. First, we pass through the list L1 and

the Ncmp-operator is only applied if the required Jacobian element does not equal zero.

After that, the list L2 is used to apply the componentwise Newton operator on those
pairs for which we must use the extended interval arithmetic. In either case, an empty

intersection during the calculation of Ncmp makes the CmpNewtonStep stop, proving

that there is no solution within the current box [y].

16 Stefan Herbort, Dietmar Ratz

To reduce the number of evaluations we introduced the variable UseL2 . This
ag

indicates whether CmpNewtonStep goes through the list L2 or not. Often, the elements

of the Jacobian matrix listed in L2 do not contain zero after several iterations. Hence,

the part of the procedure CmpNewtonStep that uses the list L2 and extended interval

arithmetic does not apply the Newton operator any more. If the evaluation of the Jaco-

bian over the current interval vector [y] does not contain zero in the L2-components the

ag UseL2 is set to false. Thus, we avoid unnecessary evaluations of partial derivatives

in later iterations for the box [y] .

Algorithm 5.6: CmpNewtonStep(f; [y]; ";UseL2 ; [V]; p)

1. p := 0; finitializationg

2. for all (i; j) 2 L1 do

(a) if (0 2 [Jf([y])]ij) then next(i;j);

(b) c := m([y]j); [yh] := [y]; [yh]j := c;

(c) [y]j :=
�
c� [fi([yh])] / [Jf ([y])]ij

�
\ [y]j;

(d) if ([y]j = [=]) then return p = 0;

3. if not UseL2 or (drel;1([y]) � ") then goto 6.

4. UseL2 := false;

5. for all (i; j) 2 L2 do

(a) if (0 =2 [Jf([y])]ii) then next(i;j);

(b) UseL2 := true;

(c) if (0 2 [fi([yh])]) then next(i;j); fext. interval division =) (�1;+1) !g

(d) c := m([y]j); [yh] := [y]; [yh]j := c;

(e) [z] :=
�
c� [fi([yh])] = [Jf ([y])]ij

�
\ [y]j; f[z] = [z]1 [[z]2g

(f) if ([z] = [=]) then return [V]; p; UseL2

(g) [y]j := [z]1

(h) if ([z]2 6= [=]) then

p := p+ 1; [V]p := [y]; [V]p j := [z]2

6. p := p+ 1; [V]p := [y]; fstore current boxg

7. return [V]; p; UseL2;

A Componentwise Interval Newton Method 17

6 Some Properties of AllNcmp

The global procedure AllNcmp from the module Ncmp mod has some important prop-

erties which can be derived from the structure of the algorithms and the properties of

the Newton operators.

Theorem 6.1 The algorithm AllNcmp (5.1) terminates after a �nite number of steps.

Proof: The tolerance " cannot be chosen smaller than the machine accuracy. Thus,

the number of bisections and, consequently, the number of recursive calls are limited.

All other procedures called by AllNcmp or XINcmp, respectively, only do a �nite number

of steps. 2

Theorem 6.2 Let f : D � IRn ! IRn be a continuously di�erentiable function and

let [x] 2 I IRn be an interval vector with [x] � D. Then the solution set X� of the

system of nonlinear equations f(x) = 0 satis�es:

X� := fx� 2 [x] j f(x�) = 0g �
N[
i=1

[Sol]i:

Proof: From Theorem 3.2 we know that no solution x� can be lost when applying
the componentwise Newton operator. For arbitrary i; j 2 f1; : : : ; ng and [y] � [x] the
following inclusion holds:

x� 2 [y]
3:2
=) x� 2 ([y]1; : : : ; [y]j�1; Ncmp([y]; i; j)\ [yj]; [y]j+1; : : : ; [y]n):

The same property holds for the Gauss-Seidel step (see Theorem 4.2) that may always
(not depending on UseGSS) be called by the Veri�cationStep. We have:

x� 2 [y]
4:2
=) x� 2 NGS([y]):

Any calculation using interval arithmetic leads to enclosures, hence it is guaranteed
that all \candidates" for a solution are stored in [Sol]. And so, the union of all [Sol]i
must be a superset of the solution set X�. 2

The described algorithm divides the search-box [x] 2 IIRn successively into smaller sub-
boxes [y](l) � [x] that may contain one or more zeros of the problem. Concerning the
preceding consideration, no solution x� 2 X� can be lost during this process. Every

box that is thrown away reliably contains no solution. So, all boxes [y](l) from the

(current) ith call of the procedure XINcmp plus all boxes [y](l) from former recursive

calls, which have not yet been treated, may still contain zeros. Let us call these boxes
\active candidates", and let

Ii :=
n
l 2 IN j [y](l) is an \active candidat" in the ith step

o

be the corresponding index-set. All active candidates in the ith step are in the set

Ki :=
[
l2Ii

[y](l):

18 Stefan Herbort, Dietmar Ratz

Theorem 6.3 Let f : D � IRn ! IRn be a continuously di�erentiable function and

let [x] 2 IIRn be an interval vector with [x] � D. Moreover, let all calculations be real

(i.e. exact), and let the tolerance be " = 0. Let each point z 2 D and every sequence

([z](k)) with [z](k) ! z and [z](k) � D satisfy f([z](k))! f(z). Then we have:

X� =
1\
i=1

Ki:

Proof: As mentioned above, no zero x� can be lost, i.e. each point x� 2 X� belongs

to every set Ki. Hence,

X� �
1\
i=1

Ki

holds.

On the other hand, let x̂ 2
1T
i=1
Ki, then there exists a sequence ([y](i)) with [y](i) � Ki

and x̂ 2 [y](i) for all i. According to the construction of the algorithm and because of

the preliminaries (" = 0 and exact calculation), we have:

d([y](i))! 0 for i!1; and hence, [y](i) ! x̂ for i!1:

The sequence of the function values satis�es (according to the preliminaries):

f([y](i))! f(x̂) for i!1:

The point x̂ belongs to each Ki, therefore, f(x̂) = 0 holds and we have x̂ 2 X�, i.e.

1\
i=1

Ki � X�:

2

7 Examples and Results

Now, we give some numerical examples. All results were obtained by running the
modules on an Intel-Pentium-based Personal Computer with a 75 MHz CPU. The

source code has been compiled using a Pascal-XSC-compiler, Version 2.03, and a

Zortech C 3.0 C-compiler on a DOS operating-system.
The results of our module Ncmp mod (with four di�erent parameter selections) are

compared to the module nlss from [2]. The results are summarized in tables where

we use the following abbreviations.

Method used solving-method. TBNLSS is the module nlss from [2] and Ncmp marks

the componentwise method followed by the value of the parameter max f

(here: 1 or n) and the
ag UseGSS. If the Gauss-Seidel step may be called
by the procedure XINcmp we write a '+'. A '-' shows that no extra Gauss-

Seidel step was executed.

A Componentwise Interval Newton Method 19

Time time (in seconds if no di�erent unit is given) the global procedures AllNLSS

and AllNcmp, respectively, were active.

Encls number of enclosures found.

Unique number of enclosures proved to contain locally unique solutions.

FcEv number of evaluations of a single component of the function (after an eval-

uation of the whole function this counter is increased by the dimension n

of the systems).

JcEv number of evaluations of a single component of the the Jacobian matrix (an

evaluation of the whole Jacobian leads to an increase of 'JcEv' by n2).

Ncmp number of CmpNewtonStep-calls.

GS number of calls of the interval Newton Gauss-Seidel step (including the calls

by the veri�cation step).

Bisect number of bisections executed by XINewton or XINcmp, respectively.

We do not list the found enclosures, they are not very useful for the comparison of the
di�erent methods. Sometimes, a certain method gives more enclosures than other ones.

Usually, the boxes are pruned and bisected in di�erent ways. The usual overestimation
of the range of a function may cause that a box is stored as a \candidate" although
it does not contain any zero. Moreover, a poor bisection may result in two boxes
containing the same zero. Hence, only the number of enclosures is really interesting in
the current background.

We start with some \traditional problems" from several interval arithmetic papers.

Example 7.1 The system

x21 + x22 � 1 = 0

x21 � x2 = 0

can be found in many papers (e.g. [5]). It shows the e�ciency of our module searching

zeros in a very large starting box.

Starting box: [-1.0E+008 , 1.0E+008]2, tolerance: " = 1:0E� 008

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 0.50 0.22 0.16 0.22 0.17

Encls 2 2 2 2 2

Unique 2 2 2 2 2
FcEv 686 455 425 225 225

JcEv 1004 266 352 230 276
Ncmp | 91 75 31 29

GS 90 2 2 29 27

Bisect 123 69 53 21 21

20 Stefan Herbort, Dietmar Ratz

Starting box: [-1.0E+016 , 1.0E+016]2, tolerance: " = 1:0E� 008

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 0.88 0.28 0.27 0.33 0.33

Encls 2 2 2 2 2
Unique 2 2 2 2 2

FcEv 1230 631 599 397 407
JcEv 1812 380 518 408 494

Ncmp | 121 105 53 53

GS 160 2 2 51 49
Bisect 224 99 81 43 43

Example 7.2 The so-called Feigenbaum-example

�3:84x2k + 3:84xk � xk+1 = 0; k = 1; : : : ; n� 1

�3:84x2n + 3:84xn � x1 = 0

demonstrates the behaviour of the methods on increasing dimension n.

Starting box: [0.0E+000 , 1.0E+002]3, tolerance: " = 1:0E� 010

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 1.87 1.54 2.36 0.88 0.99
Encls 8 10 10 8 8
Unique 8 10 10 8 8
FcEv 1737 3873 5237 886 1142
JcEv 3087 1977 3355 1118 1353

Ncmp | 670 670 105 105
GS 228 16 16 74 71
Bisect 162 343 338 55 55

Starting box: [0.0E+000 , 1.0E+002]5, tolerance: " = 1:0E� 010

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 48.55 4.18 6.42 5.06 5.49

Encls 12 12 12 12 12

Unique 12 12 12 12 12
FcEv 33830 10014 13645 4330 5554

JcEv 105550 5714 9457 7089 7966

Ncmp | 1051 1043 341 339

GS 2532 12 12 182 166

Bisect 2097 467 436 188 179

A Componentwise Interval Newton Method 21

Example 7.3 \Brown's almost linear function" is another system that can be con-

sidered for arbitrary dimensions.

xk +
nX

j=1

xj � (n+ 1); = 0; k = 1; : : : ; n� 1

� nY
j=1

xj

�
� 1 = 0

Starting box: [-1.0E+001 , 1.0E+001]3, tolerance: " = 1:0E� 006

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 1.92 4.06 5.22 1.05 1.04

Encls 7 5 6 4 4

Unique 7 5 6 4 4
FcEv 1899 11025 11990 1012 1315

JcEv 3861 5201 8696 1279 1541

Ncmp | 1570 1063 108 94

GS 197 37 28 92 73
Bisect 209 1157 607 63 51

Starting box: [-1.0E+001 , 1.0E+001]4, tolerance: " = 1:0E� 006

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 19.17 69.37 113.03 6.54 7.69

Encls 2 5 9 2 2
Unique 2 5 9 2 2
FcEv 17048 177432 234981 4859 8289
JcEv 50880 82554 181807 7881 10864

Ncmp | 19312 13088 383 358
GS 1080 372 254 371 307
Bisect 1588 14584 7391 222 196

Here, the Ncmp-operator itself (Ncmp(1-) and Ncmp(n-)) does not work very well, it
needs a lot of evaluations and bisection, and using the full index-list is even worse. But,

by the combination with the Gauss-Seidel step (Ncmp(1+) and Ncmp(n+)) our module
is much better than the module nlss that uses the Gauss-Seidel method exclusively.

Example 7.4 This function is derived from the discretization of a boundary value

problem (see [10])

2xk � xk+1 � xk�1 +
h2

2
(xk + kh+ 1)3; k = 1; : : : ; n

where x0 = xn+1 = 0 and h = 1
n+1

. Especially for a large n, the nonlinear term

becomes very small. Hence, we have another almost linear system. This example
shows a limitation of our module, the (preconditioned) Gauss-Seidel method works

very well on that kind of problems.

22 Stefan Herbort, Dietmar Ratz

Starting box: [-5.0E-001 , 0.0E+000]5, tolerance: " = 1:0E� 005

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 0.05 0.28 0.60 0.11 0.11

Encls 1 1 1 1 1
Unique 1 1 1 1 1

FcEv 35 390 694 50 74
JcEv 75 240 544 115 139

Ncmp | 38 38 3 3

GS 3 1 1 3 3
Bisect 0 0 0 0 0

Starting box: [-5.0E-001 , 0.0E+000]10, tolerance: " = 1:0E� 005

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 0.22 34.50 51.63 0.38 0.44

Encls 1 5 5 1 1
Unique 1 5 5 1 1
FcEv 70 51405 64832 100 154
JcEv 300 25142 46592 430 484
Ncmp | 2456 2040 3 3

GS 3 39 27 3 3
Bisect 0 1736 1030 0 0

Example 7.5 According to Kearfott (see [6]) Powell's singular function is a \se-
vere test of most methods".

x1 + 10x2 = 0
p
5 � (x3 � x4) = 0

(x2 � 2x3)
2 = 0

p
10 � (x1 � x4)

2 = 0

The system has the (only) solution x� = (0; 0; 0; 0)>, and in that point the Jacobian
matrix is singular.

Starting box: [-1.0E+000 , 1.0E+000]4, tolerance: " = 1:0E� 006

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 12.14 2.75 0.49 5.11 1.21

Encls 13 16 4 14 4

Unique 0 0 0 0 0
FcEv 15104 6371 1051 6186 1221

JcEv 48064 4504 912 7312 1776
Ncmp | 533 70 415 67

GS 759 16 4 251 60

Bisect 1495 723 74 569 71

A Componentwise Interval Newton Method 23

Starting box: [-5.0E-001 , 1.0E+000]4, tolerance: " = 1:0E� 006

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time >999 1.76 0.33 3.79 0.38

Encls ? 1 1 1 1
Unique ? 0 0 0 0

FcEv ? 4086 977 4523 984
JcEv ? 2840 560 5268 592

Ncmp | 351 44 303 44

GS ? 1 1 177 3
Bisect ? 451 99 449 99

This example demonstrates the very good results on sparse systems. Moreover, the

usage of the full index-list improves the componentwise method enormously. We can

also notice a strong in
uence of the choice of the starting box. But, this is not very

astonishing because in the �rst case the starting box is bisected at 0 in each component,

hence, the solution is included in both of the sub-boxes. Therefore, the number of found
enclosures is rather high. With the second search box the Ncmp mod-module is much
better, while the nlss-module is even worse.

Example 7.6 The following system is a representative of a set of examples given by
Moore and Jones (see [9]).

x1 � 0:25428722 � 0:18324757 x4x3x9 = 0

x2 � 0:37842197 � 0:16275449 x1x10x6 = 0

x3 � 0:27162577 � 0:16955071 x1x2x10 = 0

x4 � 0:19807914 � 0:15585316 x7x1x6 = 0

x5 � 0:44166728 � 0:19950920 x7x6x3 = 0

x6 � 0:14654113 � 0:18922793 x8x5x10 = 0

x7 � 0:42937161 � 0:21180486 x2x5x8 = 0

x8 � 0:07056438 � 0:17081208 x1x7x6 = 0

x9 � 0:34504906 � 0:19612740 x10x6x8 = 0

x10 � 0:42651102 � 0:21466544 x4x8x1 = 0

Starting box: [0.0E+000 , 2.0E+000]10, tolerance: " = 1:0E� 006

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 2.41 0.11 0.27 0.22 0.28

Encls 1 1 1 1 1
Unique 1 1 1 1 1

FcEv 1450 120 250 90 160

JcEv 12500 260 410 340 430
Ncmp | 5 5 3 3

GS 19 1 1 2 2
Bisect 61 0 0 0 0

24 Stefan Herbort, Dietmar Ratz

Starting box: [-2.0E+000 , 2.0E+000]10, tolerance: " = 1:0E� 006

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 54.38 0.16 0.27 0.33 0.39

Encls 1 1 1 1 1
Unique 1 1 1 1 1

FcEv 21840 130 235 110 163
JcEv 155200 270 420 450 540

Ncmp | 5 5 3 3

GS 631 1 1 3 3
Bisect 775 0 0 0 0

We point at the fact that our algorithm does not make any bisection. With the enlarged

starting box the Toolbox-module has severe problems on �nding an enclosure.

We continue by presenting some results for systems containing transcendental func-
tions; they are taken from [7].

Example 7.7

1� 2x2 + 0:05 sin(4�x2)� x1 = 0

x2 � 0:5 sin(2�x1) = 0

Starting box: [-1.0E+001 , 1.0E+001]2, tolerance: " = 1:0E� 008

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 1.48 7.25 2.64 1.48 1.27
Encls 6 5 5 5 5

Unique 6 5 5 5 5
FcEv 446 1749 519 261 225
JcEv 616 735 356 252 202

Ncmp | 341 79 39 27

GS 63 7 5 37 19

Bisect 71 292 23 16 15

Example 7.8

x21 � x2 + 1 = 0

x1 � cos(
�

2
x2) = 0

A Componentwise Interval Newton Method 25

Starting box: [-3.0E+000 , 3.0E+000]2, tolerance: " = 1:0E� 008

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 0.61 2.69 1.43 0.77 0.60

Encls 5 5 4 4 3
Unique 5 5 4 4 3

FcEv 264 1071 509 207 160
JcEv 324 690 344 236 174

Ncmp | 219 77 31 20

GS 46 5 4 29 18
Bisect 37 192 52 20 9

Example 7.9

2 sin(2�x1=5) � sin(2�x3=5) � x2 = 0

2:5� x3 + 0:1x2 sin(2�x3)� x1 = 0

1 + 0:1x2 sin(2�x1)� x3 = 0

Starting box: [-1.0E+000 , 3.0E+000]3, tolerance: " = 1:0E� 006

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 3.24 19.72 4.33 2.09 1.65
Encls 4 3 2 1 1
Unique 4 3 2 1 1

FcEv 630 2589 474 181 142

JcEv 1251 1875 513 276 213
Ncmp | 365 48 19 12

GS 67 6 2 17 9
Bisect 67 321 24 13 6

Similar to the behaviour on almost linear systems, the componentwise method
without the Gauss-Seidel operator does not work very well. The Ncmp(n+)-method is

better than the TBNLSS because the latter gives too many enclosures for these examples.

The number of enclosures in the rightmost column always equals the correct number
of solutions.

We close this section looking at some \real-world" problems. The results show

again: by the combination of the componentwise operator with a su�ciently long

index-list and supported by the Gauss-Seidel operator we get very high e�ciency.

Example 7.10 The robot kinematics problem has 16 solutions within the starting box

(see [6])

a1x1x3 + a2x2x3 + a3x1 + a4x2 + a5x4 + a6x7 + a7 = 0

a8x1x3 + a9x2x3 + a10x1 + a11x2 + a12x4 + a13 = 0

a14x6x8 + a15x1 + a16x2 = 0

a17x1 + a18x2 + a19 = 0

26 Stefan Herbort, Dietmar Ratz

x21 + x22 � 1 = 0

x23 + x24 � 1 = 0

x25 + x26 � 1 = 0

x27 + x28 � 1 = 0

where a1 = 4:731 � 10�3; a2 = �0:3578; a3 = �0:1238; a4 = �1:637 � 10�3; a5 = �0:9338;
a6 = 1:0; a7 = �0:3571; a8 = 0:2238; a9 = 0:7623; a10 = 0:2638; a11 = �0:7745 � 10�1;
a12 = �0:6734; a13 = �0:6022; a14 = 1:0; a15 = 0:3578; a16 = 4:731 � 10�3;
a17 = �0; 7623; a18 = 0:2238; a19 = 0:3461

Starting box: [-1 , 1]8, tolerance: " = 1E� 8

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 215.80 ??? 10.87 26.81 7.80
Encls 16 ? 16 16 16
Unique 16 ? 16 16 16
FcEv 131272 ? 18025 12361 4849

JcEv 794048 ? 14643 37872 10675
Ncmp | ? 573 482 125
GS 3986 ? 16 474 110
Bisect 6192 ? 284 314 68

Example 7.11 Another kinematics problem is taken from [5].

�x3x10x11 � x5x10x11 � x7x10x11 + x4x12 + x6x12 + x8x12 � 0:4077 = 0

x2x4x9 + x2x6x9 + x2x8x9 + x1x10 � 1:9115 = 0

x3x9 + x5x9 + x7x9 � 1:9791 = 0

3x2x4 + 2x2x6 + x2x8 � 4:0616 = 0

3x1x4 + 2x1x6 + x1x8 � 1:7172 = 0

3x3 + 2x5 + x7 � 3:9701 = 0

x21 + x22 � 1 = 0

x23 + x24 � 1 = 0

x25 + x26 � 1 = 0

x27 + x28 � 1 = 0

x29 + x210 � 1 = 0

x211 + x212 � 1 = 0

A Componentwise Interval Newton Method 27

Starting box: [0 , 1]12, tolerance: " = 1E� 6

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 2241 ??? ??? 84 44

Encls 2 ? ? 2 2
Unique 2 ? ? 2 2

FcEv 1032084 ? ? 21612 17595
JcEv 10810800 ? ? 94408 49419

Ncmp | ? ? 604 281

GS 10930 ? ? 579 253
Bisect 37536 ? ? 366 149

Starting box: [-1 , 1]12, tolerance: " = 1E� 6

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 2:47 h ??? ??? 0:09 h 0:04 h

Encls 16 ? ? 16 16
unique 16 ? ? 16 16
FcEv 4532376 ? ? 141350 101420

JcEv 46867824 ? ? 626263 287835
Ncmp | ? ? 3939 1689
GS 52209 ? ? 3807 1453

Bisect 162726 ? ? 2607 904

Example 7.12 A combustion chemistry problem (see [6])

a1x2x4 + a2x2 + a3x1x4 + a4x1 + a5x4 = 0

b1x2x4 + b2x1x3 + b3x1x4 + b4x3x4 + b5x3 + b6x4 + b7 = 0

x21 � x2 = 0

x24 � x3 = 0

where a1 = �1:697 � 107; a2 = 2:177 � 107; a3 = 0:55; a4 = 0:45; a5 = �1:0;
b1 = 1:585 � 1014; b2 = 4:126 � 107; b3 = �8:285000 � 106; b4 = 2:284 � 107;
b5 = �1:918 � 107; b6 = 48:4; b7 = �27:73

Starting box: [0.0E+000 , 1.0E+001]4, tolerance: " = 1:0E� 008

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 9.23 88.65 2.36 3.57 1.70

Encls 1 2 1 1 1

Unique 1 2 1 1 1
FcEv 6208 149399 4012 2429 1323

JcEv 14992 107416 3201 4140 2133
Ncmp | 14327 281 178 77

GS 614 14 3 178 67

Bisect 467 14301 191 129 49

28 Stefan Herbort, Dietmar Ratz

Example 7.13 Modelling the combustion of propane (see [8])

x1x2 + x1 � 3x5 = 0

2x1x2 + x1 + x2x
2
3 +R8x2 �Rx5 + 2R10x

2
2 +R7x2x3 +R9x2x4 = 0

2x2x
2
3 + 2R5x

2
3 � 8x5 +R6x3 +R7x2x3 = 0

R9x2x4 + 2x24 � 4Rx5 = 0

x1x2 + x1 +R10x
2
2 + x2x

2
3 +R8x2 +R5x

2
3 + x24 � 1 +R6x3 +R7x2x3 +R9x2x4 = 0

where R = 10, R5 = 0:193, R6 = 0:002597=
p
40, R7 = 0:003448=

p
40,

R8 = 0:00001799=40, R9 = 0:0002155=
p
40, R10 = 0:00003846=40

Starting box: [0 , 1E+8]5, tolerance: " = 1E� 6

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time > 8 h > 30 min 525 sec > 30 min 402 sec

Encls ? ? 1 ? 1

Unique ? ? 1 ? 1
FcEv ? ? 680684 ? 275124
JcEv ? ? 534783 ? 400313
Ncmp | ? 34769 ? 10927

GS ? ? 380 ? 7859
Bisect ? ? 18024 ? 5997

Example 7.14 According to Van Hentenryck, McAllester and Kapur a \dif-
�cult economic modelling problem" (see [14]).

�
xk +

n�k�1X
j=1

xjxj+k

�
� xn � ck = 0; k = 1; : : : ; n� 1;

n�1X
j=1

xj + 1 = 0

The constants ck may be chosen at random.

Starting box: [-1.0E+001 , 1.0E+001]4, tolerance: " = 1E� 4

c1 = 1:5; c2 = �0:4; c3 = 2:0; c4 = 1:83

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 79.26 11.43 2.30 13.35 2.31

Encls 2 3 4 2 2

Unique 2 3 4 2 2
FcEv 79764 26030 4407 10359 2360

JcEv 254320 14543 3683 16577 3330
Ncmp | 2418 313 752 133

GS 4044 17 8 685 89

Bisect 7946 2428 182 677 84

A Componentwise Interval Newton Method 29

Starting box: [-5.0E+000 , 8.0E+000]4, tolerance: " = 1E� 4

c1 = 1:5; c2 = �0:4; c3 = 2:0; c4 = 1:83

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 32.90 5.93 2.59 8.45 2.31
Encls 2 5 3 2 2

Unique 2 5 3 2 2
FcEv 37620 13556 4873 6792 2230

JcEv 129072 7038 4219 10527 3489

Ncmp | 1271 360 489 142
GS 1336 14 9 427 92

Bisect 4032 1204 213 461 91

Starting box: [-4.0E+000 , 4.0E+000]5, tolerance: " = 1E� 4

c1 = 1:5; c2 = �0:4; c3 = 2:0; c4 = 1:83; c5 = �2:1

Method TBNLSS Ncmp(1-) Ncmp(n-) Ncmp(1+) Ncmp(n+)

Time 1155.79 31.86 22.13 50.32 13.67
Encls 2 7 10 2 2
Unique 2 7 10 2 2
FcEv 1027215 68847 39752 32886 11840

JcEv 4338250 38174 33131 60914 19202
Ncmp | 5801 2063 1949 511
GS 31911 58 26 1709 339
Bisect 86764 4780 1164 1654 307

References

[1] Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Aca-
demic Press, New York (1983)

[2] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D.: Numerical Toolbox for

Veri�ed Computing I: Basic Numerical Problems. Springer-Verlag, Berlin/Heidel-
berg/New York (1993)

[3] Hansen, E.R.; Sengupta, S.: Bounding Solutions of Systems of Equations

Using Interval Analysis. BIT 21, 203{211 (1981)

[4] Herbort, S.: Ein komponentenreduzierendes Branch-and-Prune-Verfahren zur

veri�zierten L�osung nichtlinearer Gleichungssysteme. Diplomarbeit, Universit�at

Karlsruhe (1996)

[5] Hong, H.; Stahl, V.: Safe Starting Regions by Fixed Points and Tightening.

Computing 53, 323{335 (1994)

[6] Kearfott, R.B.: Some Tests of Generalized Bisection. ACM Transactions on
Mathematical Software 13, 197{220 (1987)

30 Stefan Herbort, Dietmar Ratz

[7] Kn�uppel, O.: Einschlie�ungsmethoden zur Bestimmung der Nullstellen nicht-

linearer Gleichungssysteme und ihre Implementierung. Dissertation, Technische

Universit�at Hamburg-Harburg (1995)

[8] Meintjes, K.; Morgan, A. P.: Chemical Equilibrium Systems. ACM Trans-

actions on Mathematical Software 16, 143{151 (1990)

[9] Moore, R. E.; Jones, S. T.: Safe Starting Regions for Iterative Methods. SIAM

Journal on Numerical Analysis 14, 1051{1065 (1977)

[10] Mor�e, J. J.; Cosnard, M. Y.: Numerical Solution of Nonlinear Equations.

ACM Transactions on Mathematical Software 5, 64{85 (1979)

[11] Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University

Press, Cambridge (1990)

[12] Ratz, D.: Automatische Ergebnisveri�kation bei globalen Optimierungsproble-

men. Dissertation, Universit�at Karlsruhe (1992)

[13] Ratz, D.: On Extended Interval Arithmetic and Inclusion Isotonicity. Submitted
for publication in SIAM Journal on Numerical Analysis

[14] Van Hentenryck, P.; McAllester, D.; Kapur, D.: Solving Polynomial

Systems Using a Branch and Prune Approach. Technical Report CS-95-01, Dept.
of Comp. Sci., Brown University (1995)

In dieser Reihe sind bisher die folgenden Arbeiten erschienen:

1/1996 Ulrich Kulisch: Memorandum �uber Computer, Arithmetik und Numerik.

2/1996 Andreas Wietho�: C{XSC | A C++ Class Library for Extended Scienti�c

Computing.

3/1996 Walter Kr�amer: Sichere und genaue Absch�atzung des Approximationsfehlers

bei rationalen Approximationen.

4/1996 Dietmar Ratz: An Optimized Interval Slope Arithmetic and its Application.

5/1996 Dietmar Ratz: Inclusion Isotone Extended Interval Arithmetic.

1/1997 Astrid Goos, Dietmar Ratz: Praktische Realisierung und Test eines Veri-

�kationsverfahrens zur L�osung globaler Optimierungsprobleme mit Unglei-

chungsnebenbedingungen.

2/1997 Stefan Herbort, Dietmar Ratz: Improving the E�ciency of a Nonlinear-

System-Solver Using a Componentwise Newton Method.

3/1997 Ulrich Kulisch: Die f�unfte Gleitkommaoperation f�ur top-performance Com-

puter | oder | Akkumulation von Gleitkommazahlen und -produkten in

Festkommaarithmetik.

4/1997 Ulrich Kulisch: The Fifth Floating-Point Operation for Top-Performance

Computers | or | Accumulation of Floating-Point Numbers and Products

in Fixed-Point Arithmetic.

5/1997 Walter Kr�amer: Eine Fehlerfaktorarithmetik f�ur zuverl�assige a priori Fehler-
absch�atzungen.

