
�
� @

@

@
@ �

�
�
�

@
@�

�

@
@

Institut f�ur

Angewandte

Mathematik

Universit�at Karlsruhe (TH)

D-76128 Karlsruhe

C{XSC

A C++ Class Library

for

Extended Scienti�c Computing

Andreas Wietho�

F orschungsschwerpunkt

C omputerarithmetik,

I ntervallrechnung und

N umerische Algorithmen mit

E rgebnisveri�kation

x�

[x](k)

[x](k+1)

Bericht 2/1996

Impressum

Herausgeber: Institut f�ur Angewandte Mathematik

Lehrstuhl Prof. Dr. Ulrich Kulisch
Universit�at Karlsruhe (TH)

D-76128 Karlsruhe

Redaktion: Dr. Dietmar Ratz

Internet-Zugri�

Die Berichte sind in elektronischer Form erh�altlich �uber

ftp://iamk4515.mathematik.uni-karlsruhe.de

im Verzeichnis: /pub/documents/reports

oder �uber die World Wide Web Seiten des Instituts

http://www.uni-karlsruhe.de/~iam

Autoren-Kontaktadresse

R�uckfragen zum Inhalt dieses Berichts bitte an

Andreas Wietho�
Institut f�ur Angewandte Mathematik
Universit�at Karlsruhe (TH)
D-76128 Karlsruhe

E-Mail: c-xsc@math.uni-karlsruhe.de

C{XSC

A C++ Class Library

for

Extended Scienti�c Computing

Andreas Wietho�

Contents

1 Introduction 4

2 Standard Data Types, Prede�ned Operators, and Functions 5

3 Subarrays of Vectors and Matrices 7

4 Evaluation of Expressions with High Accuracy 9

5 Dynamic Multiple-Precision Arithmetic 10

6 Input and Output in C {XSC 11

7 Error Handling in C {XSC 12

8 Library of Problem Solving Routines 12

9 Conclusions 13

References 13

A C {XSC Sample Programs 14

A.1 Interval Newton Method . 14

A.2 Runge-Kutta Method . 16
A.3 Trace of a Product Matrix . 18

4 Andreas Wietho�

Zusammenfassung

C{XSC: Eine C++ Klassenbibliothek f�ur erweitertes Wissenschaftliches Rechnen: C{

XSC ist ein Werkzeug zur Entwicklung numerischer Algorithmen, die hochgenaue und selbstveri-

�zierende Resultate liefern. C {XSC stellt eine gro�e Zahl vorde�nierter Datentypen und Operatoren

zur Verf�ugung. Diese Datentypen sind als Klassen in C++ implementiert. Damit erm�oglicht C {XSC

die komfortable Programmierung numerischer Anwendungen in C bzw. C++. C {XSC ist f�ur viele

Rechnersysteme verf�ugbar.

Abstract

C{XSC: A C++ Class Library for Extended Scienti�c Computing: C{XSC is a tool

for the development of numerical algorithms delivering highly accurate and automatically veri�ed

results. It provides a large number of prede�ned numerical data types and operators. These types are

implemented as C++ classes. Thus, C{XSC allows high-level programming of numerical applications

in C and C++. The C {XSC package is available for many computers with a C++ compiler translating

the AT&T language standard 2.0.

1 Introduction

Some de�ciencies in the programming language C make it seem rather inappropriate
for the programming of numerical algorithms. C does not provide the basic numerical
data structures such as vectors and matrices and does not perform index range checking

for arrays. This results in unpredictable errors which are di�cult to locate within
numerical algorithms. Additionally, pointer handling and the lack of overloadable
operators in C reduce the readability of programs and make program developmentmore
di�cult. Furthermore, C (even the ANSI C standard) does not specify the accuracy
or the rounding direction of the arithmetic operators. The same applies to input and

output library functions of C. The ANSI C standard does not prescribe the conversion
error of input or output.

The programming language C++, an object-oriented C extension, has become more
and more popular over the past few years. It does not provide better facilities for
the given problems, but its new concept of abstract data structures (classes) and the

concept of overloaded operators and functions provide the possibility to create a pro-
gramming tool eliminating the disadvantages of C mentioned above: C {XSC (C for

eXtended Scienti�c Computing). It provides the C and C++ programmer with a tool
to write numerical algorithms producing reliable results in a comfortable programming

environment without having to give up the intrinsic language with its special qualities.
The object-oriented aspects of C++ provide additional powerful language features that

reduce the programming e�ort and enhance the readability and reliability of programs.
With its abstract data structures, prede�ned operators and functions, C {XSC pro-

vides an interface between scienti�c computing and the programming languages C and

C++. Besides, C {XSC supports the programming of algorithms which automatically
enclose the solution of a given mathematical problem in veri�ed bounds. Such algo-

rithms deliver a precise mathematical statement about the true solution.

C{XSC: A C++ Class Library for Extended Scienti�c Computing 5

The most important features of C {XSC are:

� Real, complex, interval, and complex interval arithmetic with mathematically

de�ned properties

� Dynamic vectors and matrices

� Subarrays of vectors and matrices

� Dotprecision data types

� Prede�ned arithmetic operators with highest accuracy

� Standard functions of high accuracy

� Dynamic multiple-precision arithmetic and standard functions

� Rounding control for I/O data

� Error handling

� Library of problem-solving routines

2 Standard Data Types, Prede�ned Operators, and

Functions

C{XSC provides the simple numerical data types

real, interval, complex, and cinterval (complex interval)

with their appropriate arithmetic and relational operators and mathematical standard

functions. All prede�ned arithmetic operators deliver results with an accuracy of at
least 1 ulp (unit in the last place). Thus, they are of maximum accuracy in the sense
of scienti�c computing. The rounding of the arithmetic operators may be controlled
using the data types interval and cinterval. Type casting functions are available for all

mathematically useful combinations. Literal constants may be converted with maxi-

mum accuracy.
All mathematical standard functions for the simple numerical data types may be

called by their generic names and deliver results with guaranteed high accuracy for

arbitrary permissible arguments. The standard functions for the data types interval
and cinterval provide range inclusions which are sharp bounds.

6 Andreas Wietho�

Q
Q
Q
Q
Q
QQ

left

operand

right

operand
integer

real

complex

interval

cinterval

rvector

cvector

ivector

civector

rmatrix

cmatrix

imatrix

cimatrix

monadic � � � � � �

integer

real

complex

+;�; �; =
j

+;�; �; =;
j

� � � �

interval

cinterval

+;�; �; =;
j

+;�; �; =;
j; &

� � � �

rvector

cvector
�; = �; = +;�; �1;

j

+;�; �1;
j

ivector

civector
�; = �; = +;�; �1;

j

+;�; �1;
j; &

rmatrix

cmatrix
�; = �; = �

1
�
1 +;�; �1;

j

+;�; �1;
j

imatrix

cimatrix
�; = �; = �

1
�
1 +;�; �1;

j

+;�; �1;
j; &

j: Convex Hull &: Intersection 1: Dot Product with Maximum Accuracy

Table 1: Prede�ned Arithmetic Operators

Function Generic Name

Sine sin

Cosine cos

Tangent tan

Cotangent cot

Hyperbolic Sine sinh

Hyperbolic Cosine cosh

Hyperbolic Tangent tanh

Hyperbolic Cotangent coth

Square sqr

Integer Power Function power

Exponential Function exp

Power Function pow

Absolute Value abs

Function Generic Name

Arc Sine asin

Arc Cosine acos

Arc Tangent atan

Arc Cotangent acot

Inverse Hyperbolic Sine asinh

Inverse Hyperbolic Cosine acosh

Inverse Hyperbolic Tangent atanh

Inverse Hyperbolic Cotangent acoth

Square Root sqrt

nth Root sqrt

Natural Logarithm ln

Table 2: Mathematical Standard Functions

C{XSC: A C++ Class Library for Extended Scienti�c Computing 7

For the scalar data types presented above, vector and matrix types are available:

rvector, ivector, cvector, and civector,

rmatrix, imatrix, cmatrix, and cimatrix.

The user can allocate or deallocate storage space for a dynamic array (vector or matrix)

at run time. Thus, without recompilation, the same program may use arrays of size

restricted only by the storage of the computer. Furthermore, the memory is used

e�ciently, since the arrays are stored only in their required sizes. When accessing

components of the array types, the index range is checked at run time to provide

increased security during programming by avoiding invalid memory accesses.

Example: Allocation and resizing of dynamic matrices:

...

int n, m;

cout << "Enter the dimensions n, m:";

cin >> n >> m;

imatrix B, C, A(n, m); /* A[1][1] ... A[n][m] */

Resize(B, m, n); /* B[1][1] ... B[m][n] */

...

C = A * B; /* C[1][1] ... C[n][n] */

De�ning a vector or a matrix without explicitly indicating the index bounds results
in a vector of length 1 or in a 1� 1 matrix. The storage for the object is not allocated
until run time. Here, we use the Resize statement (see example above) to allocate an

object of the desired size. Alternatively, the index bounds may be determined when
de�ning the vector or matrix as we did in the example above with matrix A.

An implicit resizing of a vector or a matrix is also possible during an assignment:
If the index bounds of the object on the right-hand side of an assignment do not
correspond to those of the left-hand side, the object is changed correspondingly on the

left side as shown in the example above with the assignment C = A �B.
The storage space of a dynamic array that is local to a subprogram is automatically

released before control returns to the calling routine.

The size of a vector or a matrix may be determined at any time by calling the

functions Lb() and Ub() for the lower and upper index bounds, respectively.

3 Subarrays of Vectors and Matrices

C{XSC provides a special notation to manipulate subarrays of vectors and matrices.
Subarrays are arbitrary rectangular parts of arrays. All prede�ned operators may also

use subarrays as operands. A subarray of a matrix or vector is accessed using the
()-operator or the []-operator. The ()-operator speci�es a subarray of an object of the

same type as the original object. For example, if A is a real n�n-matrix, then A(i; i) is

the left upper i� i submatrix. Note that parentheses in the declaration of a dynamic
vector or matrix do not specify a subarray, but de�ne the index ranges of the object

8 Andreas Wietho�

to be allocated. The []-operator generates a subarray of a \lower" type. For example,

if A is a n�n rmatrix, then A[i] is the i-th row of A of type rvector and A[i][j] is the

(i; j)-th element of A of type real.

Both types of subarray access may also be combined, for example:

A[k](i; j) is a subvector from index i to index j of the k-th row vector of the matrix A.

The use of subarrays is illustrated in the following example describing the LU-

factorization of a n�n-matrix A:

for (j=1; j<=n-1; j++) {

for (k=j+1; k<=n; k++) {

A[k][j] = A[k][j] / A[j][j];

A[k](j+1,n) = A[k](j+1,n) - A[k][j] * A[j](j+1,n);

}

}

This example demonstrates two important features of C {XSC. First, we save one

loop by using the subarray notation. This reduces program complexity. Second, the
program fragment above is independent of the type of matrix A (either rmatrix, ima-

trix, cmatrix or cimatrix), since all arithmetic operators are suitably prede�ned in the
mathematical sense.

@
@
@
@
@
@

left
operand

right
operand

r
e
a
l

i
n
t
e
r
v
a
l

c
o
m
p

l
e
x

c
i
n
t
e
r
v
a
l

r
v
e
c
t
o
r

i
v
e
c
t
o
r

c
v
e
c
t
o
r

c
i
v
e
c
t
o
r

r
m
a
t
r
i
x

i
m
a
t
r
i
x

c
m
a
t
r
i
x

c
i
m
a
t
r
i
x

monadic ! ! ! ! ! ! ! ! ! ! ! !

real _all _� _eq _�

interval _� _1
all

_1
all

complex _eq _eq _�

cinterval _� _1
all

_� _1
all

rvector _all _� _eq _�

ivector _� _1
all

_1
all

cvector _eq _eq _�

civector _� _1
all

_� _1
all

rmatrix _all _� _eq _�

imatrix _� _1
all

_1
all

cmatrix _eq _eq _�

cimatrix _� _1
all

_� _1
all

_all = f==; ! =; <=; <;>=; >g _eq = f==; ! =g

_� = f==; ! =; <=; <g _� = f==; ! =; >=; >g

Table 3: Prede�ned Relational Operators

C{XSC: A C++ Class Library for Extended Scienti�c Computing 9

4 Evaluation of Expressions with High Accuracy

When evaluating arithmetic expressions, accuracy plays a decisive role in many nu-

merical algorithms. Even if all arithmetic operators and standard functions are of

maximum accuracy, expressions composed of several operators and functions do not

necessarily deliver results with maximum accuracy (see [7]). Therefore, methods have

been developed for evaluating numerical expressions with high and mathematically

guaranteed accuracy.

A special kind of such expressions are called dot product expressions, which are

de�ned as sums of simple expressions. A simple expression is either a variable, a

constant, or a single product of two such objects. The variables may be of scalar,

vector, or matrix type. Only the mathematically relevant operations are permitted

for addition and multiplication. The result of such an expression is either a scalar,

a vector, or a matrix. In numerical analysis, dot product expressions are of decisive

importance. For example, methods for defect correction or iterative re�nement for

linear or nonlinear problems are based on dot product expressions. An evaluation of

these expressions with maximumaccuracy avoids cancellation. To obtain an evaluation
with 1 ulp accuracy, C {XSC provides the dotprecision data types

dotprecision, cdotprecision, idotprecision, and cidotprecision.

Intermediate results of a dot product expression can be computed and stored in a
dotprecision variable without any rounding error. The following example computes an
optimal inclusion of the defect b�Ax of a linear system Ax = b:

ivector defect(rvector b, rmatrix A, rvector x)

{

idotprecision accu;

ivector incl(Lb(x),Ub(x));

for (int i=Lb(x); i<=Ub(x); i++) {

accu = b[i];

accumulate(accu, -A[i], x);

incl[i] = rnd(accu);

}

return incl;

}

In the example above, the function accumulate() computes the sum:

nX
j=1

�Aij � xj

and adds the result to the accumulator accu without rounding error. The idotpre-

cision variable accu is initially assigned b[i]. Finally, the accumulator is rounded to the

optimal standard interval incl[i]. Thus, the bounds of incl[i] will either be the same or
two adjacent
oating-point numbers.

For all dotprecision data types, a reduced set of prede�ned operators is available to
compute results without any error. The overloaded dot product routine accumulate()

and the rounding function rnd() are available for all reasonable type combinations.

10 Andreas Wietho�

Q
Q
Q
Q
Q
QQ

left

operand

right

operand real

complex

interval

cinterval

dotprecision

cdotprecision

idotprecision

cidotprecision

monadic � � � �

real

complex

+;�;

�; =; j

+;�;

�; =; j

+;�;
j

+;�;
j

interval

cinterval

+;�;

�; =; j

+;�;

�; =; j; &

+;�;
j

+;�;
j; &

dotprecision

cdotprecision

+;�;
j

+;�;
j

+;�;
j

+;�;
j

idotprecision

cidotprecision

+;�;
j

+;�;
j; &

+;�;
j

+;�;
j; &

j : Convex hull & : Intersection

Table 4: Prede�ned Dotprecision Operators

5 Dynamic Multiple-Precision Arithmetic

Besides the classes real and interval, the dynamic classes long real (l real) and long

interval (l interval) as well as the corresponding dynamic vectors and matrices are
implemented including all arithmetic and relational operators and multiple-precision
standard functions. The computing precision may be controlled by the user at run
time. By replacing the real and interval declarations by l real and l interval, the user's
application program turns into a multiple-precision program. This concept provides

the user with a powerful and easy-to-use tool for error analysis. Furthermore, it is
possible to write programs delivering numerical results with a user-speci�ed accuracy
by internally modifying the computing precision at run time in response to the error
bounds for intermediate results within the algorithm.

All prede�ned operators for real and interval types are also available for l real

and l interval. Additionally, all possible operator combinations between single and
multiple-precision types are included. The following example shows a single-precision
program and its multiple-precision version:

#include <interval.hpp>

main()

{

interval a, b; /* Standard intervals */

a = 1.0; /* a = [1.0,1.0] */

b = 3.0; /* b = [3.0,3.0] */

cout << "a/b = " << a/b; /* a/b = [0.333333333333,

0.333333333334] */

}

C{XSC: A C++ Class Library for Extended Scienti�c Computing 11

#include <l_interval.hpp>

main()

{

l_interval a, b; /* Multiple-precision intervals */

a = 1.0;

b = 3.0;

stagprec = 2; /* global integer variable */

cout << "a/b = " << a/b;

/* a/b = [0.3333333333333333333333333,

0.3333333333333333333333334] */

}

At run time, the prede�ned global integer variable stagprec (staggered precision)

controls the computing precision of the multiprecision arithmetic in steps of a single

real (64 bit words). The precision of a multiple-precision number is de�ned as the

number of reals used to store the long number's value. An object of type l real or
l interval may change its precision at run time. Components of a vector or a matrix

may be of di�erent precision. All multiple-precision arithmetic routines and standard
functions compute a numerical result possessing a precision speci�ed by the actual
value of stagprec. Allocation, resize, and subarray access of multiple-precision vectors
and matrices are similar to the corresponding single-precision data types.

6 Input and Output in C{XSC

Using the stream concept and the overloadable operators << and >> of C++, C{XSC
provides rounding and formatting control during I/O (input/output) for all new data

types, even for the dotprecision and multiple-precision data types. I/O parameters
such as rounding direction, �eld width, etc. also use the overloaded I/O operators to
manipulate I/O data. If a new set of I/O parameters is to be used, the old parameter
settings can be saved on an internal stack. New parameter values can then be de�ned.
After the use of the new settings, the old ones can be restored from stack. The following

example illustrates the use of the C {XSC input and output facilities:

12 Andreas Wietho�

main()

{

real a, b;

interval c;

cout << "Please enter real a, b: ";

cout << RndDown;

cin >> a; /* read a rounded downwards */

cout << RndUp;

cin >> b; /* read b rounded upwards */

"[0.11, 0.22]" >> c; /* string to interval conversion */

cout << SaveOpt; /* push I/O parameters to stack */

cout << SetPrecision(20,16); /* set field width, digits */

cout << Hex; /* hexadecimal output format */

cout << c << RestoreOpt; /* pop parameters from stack */

}

7 Error Handling in C {XSC

C++ provides intrinsic safety features such as type checking, type-safe linking of pro-
grams, and function prototypes. C {XSC supports additional features for safe program-

ming such as index range checking for vectors and matrices and checking for numerical
errors such as over
ow, under
ow, loss of accuracy, illegal arguments, etc. C {XSC
provides the user with various modi�cation possibilities to manipulate the reactions of
the error handler.

8 Library of Problem Solving Routines

The C{XSC problem solving library is a collection of routines for standard problems
of numerical analysis producing guaranteed results of high accuracy. The following
areas are covered:

� Evaluation and zeros of polynomials

� Matrix inversion, linear systems

� Eigenvalues, eigenvectors

� Fast Fourier Transform

� Zeros of a nonlinear equation

� Systems of nonlinear equations

� Initial value problems in ordinary di�erential equations

C{XSC: A C++ Class Library for Extended Scienti�c Computing 13

9 Conclusions

In contrast to C and C++, all prede�ned arithmetic operators, especially the vector

and matrix operations, deliver a result of at least 1 ulp accuracy in C {XSC. There

is no need to learn the new features of C++ in order to be able to use the C {XSC

programming environment for numerical applications. In most cases, knowledge of the

language C is su�cient to work with C{XSC.

The advanced user can extend C{XSC using object-oriented programming features

of C++. Programs written in C {XSC can be combined with any other C++ software.

If some elementary programming rules are respected, C {XSC programs always deliver

compatible numerical results even on di�erent computers with di�erent C++ compilers.

That is, C {XSC is a tool to achieve full numerical result compatibility in the sense of

interval mathematics.

References

[1] Adams, E.; Kulisch, U.: Scienti�c Computing with Automatic Result Veri�cation.
Academic Press, New York, 1993.

[2] Alefeld, G.; Herzberger, J.: Introduction to Interval Analysis. Academic Press,
New York, 1983.

[3] Ellis, M. A.; Stroustrup, B.: The Annotated C++ Reference Manual. Addison-
Wesley, Reading, Mass., 1990.

[4] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D.: C++ Toolbox for Veri�ed Com-

puting. Basic Numerical Problems. Springer-Verlag, Berlin, 1995.

[5] Kernighan, B. W.; Ritchie, D. M.: The C Programming Language. Second Edition,

ANSI C, Prentice Hall, 1989.

[6] Klatte, R.; Kulisch, U.; Lawo, C.; Rauch, M.; Wietho�, A.: C{XSC { A C++

Class Library for Scienti�c Computing. Springer-Verlag, Berlin, 1993.

[7] Kulisch, U.: Computer Arithmetic in Theory and Practice. Academic Press, New
York, 1983.

[8] Stroustrup, B.: The C++ Programming Language. Second Edition, Addison-
Wesley, Reading, Mass., 1991.

14 Andreas Wietho�

A C{XSC Sample Programs

The examples demonstrate various concepts of C {XSC

� Interval Newton Method

{ Data type interval

{ Interval operators

{ Interval standard functions

� Runge-Kutta Method

{ Dynamic arrays

{ Array operators

{ Overloading of operators

{ Mathematical notation

� Trace of a Product Matrix

{ Dynamic arrays

{ Subarrays

{ Dotproduct expressions

Well-known algorithms were intentionally chosen so that a brief explanation of

the mathematical background is su�cient. Since the programs are largely self-
explanantory, comments are kept to a minimum.

A.1 Interval Newton Method

Compute an enclosure of a zero of a real function f(x). It is assumed that the derivative
f 0(x) is continuous in [a; b], and that

0 =2 ff 0(x); x 2 [a; b]g; and f(a) � f(b) < 0:

If Xn is an inclusion of the zero, then an improved inclusion Xn+1 may be computed
by

Xn+1 :=

m(Xn)�

f(m(Xn))

f 0(Xn)

!
\Xn;

where m(X) is a point within the interval X, usually the midpoint. The mathematical

theory of the Interval Newton method appears in [1].
In this example, we apply Newton's method to the function

f(x) =
p
x+ (x+ 1) � cos(x):

Generic function names are used for interval square root, interval sine, and interval

cosine so that f may be written in a mathematical notation.

C{XSC: A C++ Class Library for Extended Scienti�c Computing 15

#include <interval.hpp> // Interval arithmetic package

#include <imath.hpp> // Interval standard functions

interval f(real& x)

{ // Function f

interval y;

y = x; // Use interval arithmetic

return sqrt(y) + (y+1.0) * cos(y);

}

interval deriv(interval& x)

{ // Derivative function f'

return (1.0 / (2.0 * sqrt(x)) + cos(x) - (x+1.0) * sin(x));

}

int criter(interval& x) // f(a)*f(b) < 0 and

{ // not 0 in f'([x])?

return (Sup(f(Inf(x))*f(Sup(x))) < 0.0 &&

!(0.0 <= deriv(x))); // '<=': `element of'

}

main()

{

interval y, y_old;

cout << "Please enter starting interval: "; cin >> y;

cout << SetPrecision(20,12);

if (criter(y))

do {

y_old = y;

cout << "y = " << y << endl;

y = (mid(y)-f(mid(y))/deriv(y)) & y; // Iter. formula

} while (y != y_old); // &: intersection

else

cout << "Criterion not satisfied!" << endl;

}

Run Time Output

Please enter starting interval: [2.0,3.0]

y = [2.000000000000, 3.000000000000]

y = [2.000000000000, 2.218137182954]

y = [2.051401462380, 2.064726329908]

y = [2.059037791936, 2.059053011234]

y = [2.059045253413, 2.059045253417]

y = [2.059045253415, 2.059045253416]

16 Andreas Wietho�

A.2 Runge-Kutta Method

The initial value problem for a system of di�erential equations is to be solved by

the well known Runge-Kutta method. The C{XSC program is very similar to the

mathematical notation. Dynamic vectors are used to make the program independent

of the size of the system of di�erential equations to be solved.

Consider the �rst-order system of di�erential equations

Y 0 = F (x; Y); Y (x0) = Y0:

If the solution Y is known at a point x, the approximation Y (x+h) may be determined

by the Runge-Kutta method:

K1 = h � F (x; Y)

K2 = h � F (x+ h=2; Y +K1=2)

K3 = h � F (x+ h=2; Y +K2=2)

K4 = h � F (x+ h; Y +K3)

Y (x+ h) = Y + (K1 + 2 �K2 + 2 �K3 +K4)=6:

For example, we solve the system

Y 0
1 = Y2Y3; Y1(0) = 0

Y 0
2 = �Y1Y3; Y2(0) = 1
Y 0
3 = �0:522Y1Y2; Y3(0) = 1:

The program computes an approximation of the solution at the points

xi = x0 + i � h; i = 1; 2; 3;

starting at given x0 (here: x0 = 0; h = 0:1).

#include <rvector.hpp>

rvector F(real x, rvector Y)

{ // Function definition

rvector Z(3); // Constructor call

x = 0.0; // F is independent of x

Z[1] = Y[2] * Y[3];

Z[2] = -Y[1] * Y[3];

Z[3] = -0.522 * Y[1] * Y[2];

return Z;

}

void Init(real& x, real& h, rvector& Y)

{ // Initialization

Resize(Y,3); // Resize dynamic array

x = 0.0; h = 0.1;

Y[1] = 0.0; Y[2] = 1.0; Y[3] = 1.0;

}

C{XSC: A C++ Class Library for Extended Scienti�c Computing 17

main()

{

real x, h;

rvector Y(3), K1(3), K2(3), K3(3), K4(3);

Init(x, h, Y);

for (int i=1; i<=3; i++) { // 3 Runge-Kutta steps

K1 = h * F(x, Y); // with array result

K2 = h * F(x + h / 2, Y + K1 / 2);

K3 = h * F(x + h / 2, Y + K2 / 2);

K4 = h * F(x + h, Y + K3);

Y = Y + (K1 + 2 * K2 + 2 * K3 + K4) / 6;

x += h;

cout << SetPrecision(18,16) << Dec; // I/O modification

cout << "Step: " << i << ", "

<< "x = " << x << endl;

cout << "Y = " << endl << Y << endl;

}

}

Run Time Output

Step: 1, x = 0.1000000000000000

Y =

0.0997468762564554

0.9950128338579525

0.9973998103188983

Step: 2, x = 0.2000000000000000

Y =

0.1979929459605080

0.9802034181615258

0.9897155789871044

Step: 3, x = 0.3000000000000000

Y =

0.2933197040249942

0.9560143619620973

0.9772864889519136

18 Andreas Wietho�

A.3 Trace of a Product Matrix

Dot product expressions are sums of real, interval, complex, or cinterval constants,

variables, vectors, matrices, or simple products of them. Dotprecision variables are

used to store intermediate results of a dot product expression without any rounding

error. The contents of a dotprecision variable may be rounded into a
oating-point

number using the rounding direction speci�ed by the user.

The following C{XSC program demonstrates the use of this concept. The trace of

a complex matrix A �B is evaluated without calculating the actual product. The result

is of maximum accuracy. That is, it is the best possible approximation of the exact

result. The trace of the product matrix is

Trace(A �B) :=
nX
i=1

nX
j=1

Aij �Bji:

#include <cmatrix.hpp> // Use the complex matrix package

main()

{

int n;

cout << "Please enter the matrix dimension n: ";

cin >> n;

cmatrix A(n,n), B(n,n); // Dynamic allocation of A, B

complex result; cdotprecision accu;

cout << "Please enter the matrix A:" << endl; cin >> A;

cout << "Please enter the matrix B:" << endl; cin >> B;

accu = 0.0; // Clear accumulator

for (int i=1; i<=n; i++)

accumulate(accu, A[i], B[Col(i)]);

// A[i] and B[Col(i)] are subarrays of type cvector.

// Rounding the exact result to the nearest complex number:

result = rnd(accu);

cout << SetPrecision(15,8) << RndNext << Dec;

cout << "The trace of the product matrix is: " << endl

<< result << endl;

}

Run Time Output

Please enter the matrix dimension n: 3

Please enter the matrix A:

(2.2,3.3) (-4.1,0.0) (7.2,-1.1)

(1.2,3.4) (4.1,-5.0) (2.2,1.3)

(2.3,4.5) (-5.2,0.0) (5.2,1.4)

Please enter the matrix B:

(5.2,4.3) (-9.1,0.2) (4.2,-1.1)

(1.3,6.8) (4.1,5.9) (-2.2,1.3)

(4.5,6.5) (5.7,0.3) (4.2,-1.4)

The trace of the product matrix is:

(128.18000000, 29.86000000)

In dieser Reihe sind bisher die folgenden Arbeiten erschienen:

1/1996 Ulrich Kulisch: Memorandum �uber Computer, Arithmetik und Numerik.

2/1996 Andreas Wietho�: C{XSC | A C++ Class Library for Extended Scienti�c

Computing.

3/1996 Walter Kr�amer: Sichere und genaue Absch�atzung des Approximationsfehlers

bei rationalen Approximationen.

4/1996 Dietmar Ratz: An Optimized Interval Slope Arithmetic and its Application.

5/1996 Dietmar Ratz: Inclusion Isotone Extended Interval Arithmetic.

1/1997 Astrid Goos, Dietmar Ratz: Praktische Realisierung und Test eines Veri-

�kationsverfahrens zur L�osung globaler Optimierungsprobleme mit Unglei-

chungsnebenbedingungen.

2/1997 Stefan Herbort, Dietmar Ratz: Improving the E�ciency of a Nonlinear-

System-Solver Using a Componentwise Newton Method.

3/1997 Ulrich Kulisch: Die f�unfte Gleitkommaoperation f�ur top-performance Com-

puter | oder | Akkumulation von Gleitkommazahlen und -produkten in

Festkommaarithmetik.

4/1997 Ulrich Kulisch: The Fifth Floating-Point Operation for Top-Performance

Computers | or | Accumulation of Floating-Point Numbers and Products

in Fixed-Point Arithmetic.

5/1997 Walter Kr�amer: Eine Fehlerfaktorarithmetik f�ur zuverl�assige a priori Fehler-
absch�atzungen.

