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4 Ulrich Kulisch

Zusammenfassung

Die f�unfte Gleitkommaoperation: Seit Ende der 70er Jahre sind an verschiedenen Institutionen
Programmiersprachen, zugeh�orige Compiler, aber auch Hardwareprozessoren entwickelt worden, wel-
che au�er den vier Gleitkommaoperationen noch eine f�unfte Gleitkommaoperation bereitstellen, und
zwar die Akkumulation von Gleitkommazahlen und -produkten in Festkommaarithmetik. In Gleit-
kommaarithmetik ist die Akkumulation eine sehr emp�ndliche Operation. Mit dieser neuen Operation
k�onnen Skalarprodukte, Matrizenprodukte usw. in in�nite precision Arithmetik immer v�ollig fehlerfrei
berechnet werden, was eine Fehleranalyse bei diesen Operationen �uber
�ussig macht. Es sind viele Al-
gorithmen entwickelt worden, welche diese neue Operation systematisch anwenden. Bei anderen wird
die Grenze der Anwendbarkeit durch Gebrauch dieser Operation hinausgeschoben. Dar�uber hinaus
beschleunigt das optimale Skalarprodukt die Konvergenz von Iterationsverfahren. Dennoch wird im-
mer wieder die Frage gestellt, ob diese Operation �uberhaupt notwendig ist. Die folgende Abhandlung
versucht diese und damit zusammenh�angende Fragen zu beantworten.

Abstract

The Fifth Floating-Point Operation: Programming languages, accompanying compilers and even
hardware which, apart from the four 
oating-point operations, provide an additional �fth 
oating-point
operation, namely the accumulation of 
oating-point numbers and products in �xed-point arithmetic,
have been developed at many institutions since the end of the seventies. Accumulation of numbers is
the most sensitive operation in 
oating-point arithmetic. By that operation scalar products of 
oating-
point vectors, matrix products etc. can be computed without any error in in�nite precision arithmetic,
making an error analysis for those operations super
uous. Many algorithms applying that operation
systematically have been developed. For others the limits of applicability are extended by using that
�fth operation. Furthermore, the optimal dot product speeds up the convergence of iterative methods.
Nevertheless, the question whether that operation is really necessary is often asked. The following
treatise aims at answering that and related questions.

1 Vorgeschichte

Gleitkommaarithmetik wird seit den 40er und 50er Jahren verwendet (Zuse Z3, 1941).
Die damalige Technologie (elektromechanische Relais, Elektronenr�ohren) war kompli-
ziert und teuer. Man war daher damit zufrieden, als Ergebnis der Verkn�upfung zwei-

er Gleitkommazahlen wieder eine einigerma�en korrekte Gleitkommazahl zu erhalten
bzw. abzuliefern. Eine Fehleranalyse f�ur kompliziertere Ausdr�ucke wurde demBenutzer

�uberlassen.

Vor etwa 25 Jahren sch�alte sich im Rahmen der Entwicklung einer allgemeinen

mathematischen Theorie der Rechnerarithmetik [19], [20] die Einsicht heraus, da� es
zweckm�a�ig ist, neben den vier Grundrechenoperationen imRechner auch eine Operati-
on zur Berechnung von Skalarprodukten mit maximaler Genauigkeit nach dem Prinzip

des Semimorphismus bereitzustellen. Die ersten L�osungsvorschl�age waren algorithmi-

scher Natur. Vor etwa 20 Jahren erkannte man dann, da� sich das Problem sowohl in
Software als auch in Hardware elegant l�osen l�a�t, indemman die Komponentenproduk-

te in einem Festkommaregister aufsummiert, welches den gesamten Gleitkommabereich
zum doppelten Exponentenbereich abdeckt. Fast ebenso alt ist die Forderung, hierf�ur

einen Koprozessor in VLSI-Technik zu entwickeln und zu bauen.
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In einem Gleitkommasystem ist sowohl die Anzahl der Mantissenzi�ern als auch

der Exponentenbereich endlich. Das Festkommaregister ist daher ebenfalls endlich. In

Abh�angigkeit vom verwendeten Datenformat ben�otigt man daf�ur etwa 1000 bis 4000

bits. Es besteht also die paradox anmutende Situation, da� sich Skalarprodukte von

Gleitkommavektoren selbst mit Millionen von Komponenten in einem relativ kleinen

Registerspeicher auf der Arithmetikeinheit auf volle Genauigkeit in in�nite precision

Arithmetik berechnen lassen. Das Skalarprodukt ist eine ganz fundamentale Operation

in der linearen Algebra. Ein immer korrektes Skalarprodukt eliminiert viele Rundungs-

fehler in numerischen Rechnungen. Es stabilisiert diese Rechnungen und beschleunigt

sie gleichzeitig.

In der Folgezeit wurde die Funktionalit�at des optimalen Skalarproduktes mit ver-

schiedenen Rundungen mittels einer Softwaresimulation via integer Arithmetik in meh-

rere Programmiersprachen (ACRITH-XSC [15], PASCAL-XSC [16], C-XSC [17]) ein-

gebaut. Zusammen mit der Intervallarithmetik gelang es dann in kurzer Zeit, f�ur eine

gro�e Anzahl von Problemen der numerischen Mathematik Algorithmen zu entwickeln,

bei denen der Rechner sowohl die Existenz und Eindeutigkeit einer L�osung nachweist

als auch hochgenaue Schranken f�ur die L�osung berechnet [9], [10], [18]. Bei iterativen
Verfahren erreicht man eine gew�unschte Ergebnisgenauigkeit h�au�g mit weniger Itera-
tionsschritten, wenn man alle Skalarprodukte in in�nite precision Arithmetikmit voller
Genauigkeit oder mit nur einer einzigen Rundung am Schlu� ausf�uhrt [23], [25], [26].
Dennoch gibt es bis heute keinen kommerziellen VLSI-Koprozessor zur Berechnung des
optimalen Skalarproduktes.

Ein Grund hierf�ur besteht darin, da� vor 20 Jahren die Technologie wie auch die
Entwurfswerkzeuge der Komplexit�at des Problems noch nicht gewachsen waren und
eine erzwungene L�osung sehr teuer geworden w�are (einige zig-Mio. DM). Ein ausge-
wogener Entwurf h�angt nicht nur von dem mathematischen L�osungsverfahren f�ur das
Problem ab, sondern auch von vielen Randbedingungen wie etwa der Busbreite f�ur

die Datenversorgung, der Ankopplung an den Hauptrechner, der Abstimmung mit der
Arithmetikeinheit des Hauptrechners und der Architektur und Geschwindigkeit des
Hauptprozessors. Auch die Entwurfswerkzeuge und die Fertigungstechnologie spielen
eine gro�e Rolle. Diese vielfachen Abh�angigkeiten haben auch kompetente und interes-
sierte Wissenschaftler und Hersteller immer wieder davon abgehalten, eine L�osung in

VLSI-Technik anzugehen.

Im Jahre 1987 hat die GAMM1 eine Resolution ver�o�entlicht, welche die mathema-
tisch nicht korrekte Ausf�uhrung von Matrix- und Vektoroperationen in Vektorrechnern

kritisiert und Besserung verlangt. Im Jahre 1993 haben dann die GAMM und die

IMACS2 ein Proposal for Accurate Floating-Point Vector Arithmetic [6] verabschiedet,
in dem u. a. eine mathematisch korrekte Ausf�uhrung von Matrix- und Vektoroperatio-

nen, insbesondere des Skalarproduktes, in allen Rechnern verlangt wird. Das Proposal
enth�alt auch L�osungsvorschl�age (siehe dazu auch [1], [5], [12], [28]). Im Jahre 1995 hat

auch die IFIP-Working Group 2.5 on Numerical Software diesem Proposal zugestimmt.
Inzwischen wurde es zu einer EU-Guideline.

1GAMM = Gesellschaft f�ur Angewandte Mathematik und Mechanik
2IMACS = International Association for Mathematics and Computers in Simulation
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2 Stand der Entwicklung

Im Jahre 1992 gelang es drei Instituten aus Karlsruhe, Hamburg und Stuttgart3, von

der VW-Stiftung F�ordermittel (ca. 900 TDM) f�ur ein Projekt zu bekommen, welches

den Bau eines VLSI-Vektorarithmetik-Koprozessors f�ur den PC vorsah. Das Projekt

hatte eine Laufzeit von zwei Jahren (01.01.1993 bis 31.12.1994). In Karlsruhe arbei-

teten drei, in Stuttgart zwei und in Hamburg ein Mitarbeiter an dem Projekt. Es

wurde ein VLSI-Vektorarithmetik-Koprozessor XPA 3233 entwickelt und in der 0,8 �m

CMOS Gate Array Technologie des IMS gefertigt. Der Prozessor kann �uber den derzeit

verf�ugbaren 33 MHz 32 bit-breiten PCI-Bus an Personal Computer angeschlossen wer-

den. Er ist der erste Vektorarithmetik-Koprozessor auf einem Chip. Der Prozessor kann

beispielsweise unter PASCAL-XSC [16] von den dort vorhandenen Operatorsymbolen

direkt angesprochen werden. Im Rechner wirkt er wie ein Katalysator im doppelten Sin-

ne. Er beschleunigt die Rechnung und eliminiert viele unn�otige Rundungsfehler. Die

folgenden drei Schritte werden in einer Pipeline (Flie�bandverarbeitung) stets gleich-

zeitig ausgef�uhrt: Lesen zweier Faktoren f�ur das n�achste Produkt, Ausf�uhrung einer
Multiplikation und Akkumulation eines Produktes. Im Vergleich mit herk�ommlicher

Gleitkommaarithmetik erzielt man deshalb bei gleicher Taktfrequenz mindestens die
doppelte Ausf�uhrungsgeschwindigkeit. Zum Zeitpunkt der Fertigstellung hat der XPA
Skalarprodukte schneller berechnet als alle anderen auf dem Markt erh�altlichen Mi-
kroprozessoren in herk�ommlicher Gleitkommaarithmetik, obwohl diese in der Regel in
einer wesentlich feineren Technologie gefertigt waren. Im Gegensatz zu diesen liefert

der XPA 3233 immer das richtige Ergebnis mit voller Genauigkeit oder mit nur einer
einzigen Rundung am Schlu�. Gegen�uber den Softwareimplementierungen des opti-
malen Skalarproduktes in PASCAL-XSC, ACRITH-XSC und C-XSC bringt er eine
Geschwindigkeitssteigerung um einen zweistelligen Faktor [5].

3 Begri�sbestimmungen

Der Begri� precision bezieht sich im folgenden auf die in einer Rechnung mitgef�uhrte
Stellenzahl, accuracy auf die Genauigkeit im Endergebnis. Unter double oder ausf�uhr-

licher double precision wird im folgenden ein 64 bit Gleitkommawort, beispielsweise im

IEEE-Datenformat im Sinne des IEEE-Arithmetik-Standards 754 [3], verstanden. Qua-
druple oder ausf�uhrlicher quadruple precision bezeichnet ein 128 bit Gleitkommawort.
Langer Akkumulator bezeichnet ein Festkommawort, welches ausreicht, um Produkte

von double precision Gleitkommazahlen immer korrekt, d. h. ohne Informationsverlust,

aufzusummieren. Der zugeh�orige Akkumulationsproze� wird auch einfach als Festkom-
maakkumulation bezeichnet.Quadruple Akkumulator bezeichnet ein Computerregister,

welches ausreicht, um quadruple precision Gleitkommazahlen in Gleitkommaarithmetik
mit einem Rundungsfehler von 1/2 oder 1 ulp (unit in the last place) aufzusummieren.

3Institut f�ur Angewandte Mathematik der Universit�at Karlsruhe (IAM) (Prof. U. Kulisch)
Arbeitsbereich Technische Informatik, TU Hamburg-Harburg (TUHH) (Prof. T. Teufel)
Institut f�ur Mikroelektronik Stuttgart (IMS) (Prof. B. H�o�inger)
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In den XSC-Sprachen [15], [16], [17] steht au�er dem numerischenDatentyp real und

vielen weiteren numerischen Datentypen noch ein Feldtyp staggered (staggered preci-

sion) zur Verf�ugung. Als Komponententyp kann der Typ real (double precision) oder

interval (double precision interval) auftreten. Eine Variable vom Typ staggered besteht

aus einem Feld (array) von Variablen des Komponententyps. Sie erlaubt die Speiche-

rung von Daten mitmehrfacher Genauigkeit. IhrWert ist die Summeder Komponenten.

Summen von Variablen des Typs staggered lassen sich mit dem langen Akkumulator

| Produkte �uber das optimale Skalarprodukt | leicht berechnen. Quotienten werden

iterativ berechnet. Der Typ staggered wird durch eine globale Variable stagprec gesteu-

ert. Im Falle stagprec = 1 ist der Typ staggered identisch mit dem Komponententyp. Ist

beispielsweise aber stagprec = 4, so besteht jede Variable dieses Typs aus einem Feld

von vier Variablen des Komponententyps. Ihr Wert ist die Summe der Komponenten.

Die Variable ist i. allg. von vierfacher Genauigkeit des Komponententyps. Die globale

Variable stagprec kann an beliebigen Stellen im Programm vergr�o�ert oder verkleinert

werden. Die Standardfunktionen f�ur den Typ staggered stehen in Karlsruhe f�ur die

Komponententypen real und interval bereits zur Verf�ugung (siehe die Artikel von K.

Braune und W. Kr�amer in [22]). Ist stagprec = 2; so hat man es im Falle des Kompo-
nententyps real mit einem Datentyp zu tun, welcher gelegentlich auch als double-double
oder als quadruple bezeichnet wird.

4 Eine oft zitierte Bemerkung von C. F. Gau�

Von C. F. Gau� stammt die Bemerkung: Der Mangel an mathematischer Bildung gibt

sich durch nichts so auffallend zu erkennen, wie durch ma�lose Sch�arfe im Zahlenrech-

nen.

Mancher Numeriker sieht in dieser Bemerkung eine Aufforderung, m�oglichst vie-
le Probleme mit einer m�oglichst kurzen Wortl�ange (precision) zu rechnen. Er ist stolz

darauf, da� er seine Probleme zufriedenstellend l�osen kann, indem er die gesamte Rech-
nung einschlie�lich aller Skalarprodukte in double, wom�oglich sogar in single precision
Gleitkommaarithmetik ausf�uhrt. Wenn dies zum Erfolg f�uhrt, ist diese Vorgehensweise
nat�urlich berechtigt, und es ist �uberhaupt nichts dagegen einzuwenden.

H�au�g wird aus der Bemerkung aber auch der Schlu� gezogen, man br�auchte ein
immer korrektes Skalarprodukt im Rechner gar nicht und sollte es folglich auch nicht

bereitstellen; die herk�ommliche Art, Skalarprodukte in Gleitkommaarithmetik zu be-

rechnen, w�are einfacher, da dabei unn�utze Zi�ern gar nicht erst mitgef�uhrt w�urden.
Diese Folgerung ist v�ollig falsch. Sie beruht auf einer unzureichenden Vertrautheit

und Kenntnis der heute verf�ugbaren Technologie und Implementierungstechniken sei-
tens der Mathematiker. Der Ingenieur andererseits, welcher diese Techniken beherrscht,

�uberblickt in der Regel nicht die Konsequenzen f�ur die Mathematik.

Die Bemerkung von C. F. Gau� ist heute mehr als 150 Jahre alt. Sie pa�t in die da-

malige Zeit, als jede Rechnung von Hand ausgef�uhrt werden mu�te und jede Zi�er, die

man nicht mitf�uhrte, eine enorme Arbeitserleichterung bedeutete. Das langsame Rech-
nen von Hand erlaubte es in der Regel, eine die Rechnung begleitende Fehleranalyse

oder wenigstens eine Fehlersch�atzung durchzuf�uhren.
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Heute liegen ganz andere Verh�altnisse vor, welche man damals in keiner Weise �uber-

sehen oder auch nur ahnen konnte. Schnelle Prozessoren sind heute in der Lage, eine

Milliarde arithmetischeOperationen in der Sekunde auszuf�uhren. Diese Zahl �ubersteigt

das Vorstellungsverm�ogen eines Benutzers. Die zur Verf�ugung stehende Technologie

(mehrere Millionen Transistoren auf einem Chip) ist extrem leistungsf�ahig. Sie erlaubt

L�osungen, von denen selbst ein ge�ubter Benutzer von Rechnern nichts ahnt.

F�ur alle Arten von Rechnern wie Personal Computer, Workstations, Gro�rechner

und Supercomputer gibt es heute einfache Schaltungen f�ur die Berechnung des opti-

malen Skalarproduktes, bei denen f�ur die Arithmetik selbst praktisch keine Rechenzeit

mehr ben�otigt wird. In einer Pipeline l�a�t sich die Arithmetik in der Zeit ausf�uhren, wel-

che ben�otigt wird, um die Daten in die Arithmetikeinheit zu lesen. Das bedeutet u. a.,

da� keine andere Art, Skalarprodukte zu berechnen, schneller sein kann | auch nicht

diejenige in reiner Gleitkommaarithmetik. Technisch ist der Proze� der immer korrek-

ten Akkumulation von Skalarprodukten in einem Festkommaregister zwar anders, aber

keineswegs aufwendiger oder komplizierter als eine Hardwareakkumulation in Gleit-

kommaarithmetik. Beide Arten der Akkumulation arbeiten mit sehr �ahnlichen Grund-
bausteinen der Arithmetik wie Shifter, Multiplizierer, Addierer und Rundungseinheit
| allerdings in unterschiedlicher Anordnung. Die Festkommaakkumulation ben�otigt

zudem lediglich noch einen kleinen lokalen Speicher auf der Arithmetikeinheit. Viele
bei der Gleitkommaakkumulation anfallende Zwischenschritte wie Normalisieren, Run-
den, Zusammensetzen zu einer Gleitkommazahl, Speichern, Wiederzerlegen in Mantisse
und Exponent f�ur die n�achste Operation fallen bei der Festkommaakkumulation gar
nicht an.

Eine relativ komplexe arithmetische Operation wie das Skalarprodukt mit Gleit-

kommazahlen, welche aufgrund der heutigen Technologie mit m�a�igem technischem
Aufwand immer korrekt ausgef�uhrt werden kann, sollte man tats�achlich auch immer
korrekt ausf�uhren. C. F. Gau� w�urde dies heute jedenfalls so machen. Eine Fehler-
analyse er�ubrigt sich f�ur diese zus�atzliche Grundoperation dann ein f�ur allemal, und
auf verschiedenen Rechnerplattformen erh�alt man bei ihrer Ausf�uhrung stets identische
Ergebnisse. Rechneranwendungen sind heute von un�ubersehbarer Vielfalt. Jede Diskus-

sion dar�uber, wo diese zus�atzliche Operation Vorteile bringt und wo nicht, ist nutzlos
und m�u�ig. Durch Erg�anzung der herk�ommlichen Arithmetikeinheit um das optimale
Skalarprodukt entsteht ein wesentlich leistungsf�ahigerer und m�achtigerer Rechner. Die
neue, immer absolut zuverl�assige Operation l�a�t sich bei der Entwicklung von Algo-

rithmen an vielen Stellen vorteilhaft verwenden.

5 Probleme mit ungenauen und mit genauen Daten

Seit mehr als 50 Jahren wird in der Numerik fast ausschlie�lich Gleitkommaarithmetik

verwendet. Dies hat die Denkweise gepr�agt. H�au�g f�allt es daher schwer, sich von ge-

wohnten und ge�ubten Denkschemata zu l�osen. W�ahrend dieser Zeit war die sogenann-
te R�uckw�artsfehleranalyse h�au�g die einzig praktikable Art, eine Fehlerbetrachtung

bei numerischen Algorithmen durchzuf�uhren. Dabei interpretiert man die berechne-
te L�osung eines Problems als die korrekte L�osung zu einem Problem mit ge�anderten
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Ausgangsdaten. Liegen die letzteren nahe bei den Daten des gegebenen Problems, so

spricht man von einem gutartigen Algorithmus oder einem gutkonditionierten Problem.

Dieses Denkschema impliziert die Vorstellung, da� man eigentlich nie das gegebene

Problem l�ost, sondern immer eines aus dessen Nachbarschaft oder Umgebung. Dies

f�uhrt zu der Annahme, es komme auf die absolute Genauigkeit in den Daten gar nicht

an, man habe es imGrunde immermit ungenauen Daten zu tun. Bei gutartigen Proble-

men ist diese Annahme durchaus gerechtfertigt. Tats�achlich st�utzen sich Berechnungen

auch nicht selten auf unsichere Annahmen. In die Berechnung gehen etwa Me�werte

ein, deren Genauigkeit sich nicht angeben l�a�t, oder das mathematischeModell mu�te,

um eine Berechnung �uberhaupt zu erm�oglichen, stark vereinfacht werden. Bei der nu-

merischen Behandlung von Di�erentialgleichungen ist der Diskretisierungsfehler h�au�g

wesentlich gr�o�er als die Rechenungenauigkeiten. Bei vielen Anwendungen werden sehr

viele Berechnungen �ahnlicher Art durchgef�uhrt. Aufgrund der Erfahrung oder von ex-

perimentellen Messungen hat man Vertrauen zur einfachen Gleitkommarechnung.

Bei solchen Problemen l�a�t sich sehr h�au�g mit Hilfe der R�uckw�artsfehleranalyse

mathematisch zeigen, da� einfache Gleitkommaarithmetik zur Berechnung der L�osung
ausreicht. Wegen der gro�en H�au�gkeit des Auftretens derart gutartiger Probleme fehlt
daher bei vielen Anwendern das Problembewu�tsein f�ur eine hochpr�azise Rechnung. Je-
de Verbesserung der bisherigen Arithmetik wird als �uber
�ussig betrachtet: ein genaues
Skalarprodukt wurde bisher nicht verwendet und wird folglich auch nicht ben�otigt und

nicht gefordert. Aus Unkenntnis wird dabei �ubersehen, da� das optimale Skalarpro-
dukt in Hardware schneller als die �ublicherweise verwendete Summationsschleife in
Gleitkommaarithmetik abl�auft, so da� auch gutartige Berechnungen davon pro�tieren
k�onnen.

Nun sind aber keineswegs alle numerischen Probleme von der beschriebenen harm-
losen Art. Tats�achlich ist dies nur eine Seite der Medaille. Auf der anderen be�ndet
sich die gro�e Klasse der Probleme mit exakten Daten. Hierher geh�oren auch Probleme
mit kleinen, aber sicheren Schranken f�ur die Daten. In der mathematischen Modellbil-

dung geht man beispielsweise in der Regel von exakten Eingabedaten aus. Das Modell
kann nur dann systematisch weiter verbessert werden, wenn der Rechenfehler weitge-
hend ausgeschlossen werden kann. Auch bei vielen innermathematischen Problemen hat
man es mit exakten Eingabedaten zu tun, z. B. f�ur die Gewichte und St�utzstellen von
Quadratur- und Kubaturformeln, f�ur die Koe�zienten von Diskretisierungsformeln,

f�ur die Koe�zienten bei der Berechnung von Polynomnullstellen, von Eigenwerten von
Matrizen oder von Di�erentialoperatoren. In der Computeralgebra behandelt man in

der Regel Probleme mit exakten Eingabedaten. Die Rechnung wird nach M�oglichkeit

exakt, d. h. mit sehr langen Wortl�angen, ausgef�uhrt. Dies kann sehr gro�e Rechenzei-
ten erforderlich machen. Eine numerische Rechnung mit Gleitkommaarithmetik, welche

sichere und hinreichend genaue Schranken f�ur die L�osung des Problems liefert, wird
i. allg. wesentlich schneller ablaufen.

Die Rechner werden immer schneller. Mit steigender Rechenleistung wachsen auch
die zu behandelnden Probleme. An Stelle zweidimensionaler m�ochten die Benutzer

gerne dreidimensionale Probleme l�osen. Eine Diskretisierung von 100 Schritten in jede
von drei Koordinatenrichtungen f�uhrt auf ein Gleichungssystem mit einer Million Un-

bekannten. Der Gau�-Algorithmus ben�otigt O(n3) Operationen. Ist z. B. n = 106, so
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ist n3 so gro�, da� selbst ein GIGAFLOPS Computer viele Jahre ben�otigt, um ein sol-

ches System zu l�osen. Bei gro�en Gleichungssystemen ist man daher auf iterative L�oser

angewiesen. Man ho�t, mit weniger als n
3 arithmetischen Operationen eine geeignete

Approximation der L�osung zu erhalten. Bei iterativen Methoden (Jacobi-Verfahren,

Gau�-Seidel-Verfahren, Relaxationsverfahren, cg-Verfahren, Krylow-Raum-Methoden,

Multigrid-Verfahren und anderen wie etwa das QR-Verfahren zur Berechnung von Ei-

genwerten) ist die Matrix-Vektormultiplikation die zentrale Operation. Sie besteht aus

einer Anzahl von Skalarprodukten. Es ist wohlbekannt, da� �nite precision Arithmetik

die Konvergenz von Iterationsverfahren verschlechtert [7], [8], [11], [23], [25], [26], [29].

Ein Iterationsverfahren, welches im Reellen gegen die L�osung konvergiert, konvergiert

bei Rechnung mit �nite precision Arithmetik i. allg. langsamer. Es kann sogar diver-

gieren. Die Festkommaakkumulation von Skalarprodukten von Gleitkommavektoren ist

absolut fehlerfrei. Sie ist dar�uber hinaus sogar noch schneller als eine konventionelle Be-

rechnung in Gleitkommaarithmetik. Eine fehlerfreie Berechnung von Skalarprodukten

beschleunigt zudem die Konvergenz bei vielen Iterationsverfahren. Bei vielen Anwen-

dungen liegen die Problemdaten exakt vor (Koe�zienten von Diskretisierungsformeln).

Sie werden in jedem Iterationsschritt aufs neue in die Rechnung hineingef�uttert. Eine
hochgenaue Rechnung erscheint daher als besonders sinnvoll. Die Komponenten eines
Matrix-Vektorproduktes werden dabei in eine Variable vom Typ staggered auf zwei-,
drei- oder vierfache Genauigkeit gerundet und so im Algorithmus weiterverwendet. Die
Laufzeit des Algorithmus wird dadurch nur unwesentlich erh�oht.

Der modernen Numerik stehen mit der Intervallrechnung und dem optimalen Ska-
larprodukt neue Werkzeuge zur Verf�ugung, welche neuartige L�osungsverfahren f�ur nu-
merische Fragestellungen erm�oglichen, z. B. die neuen Methoden der globalen Optimie-
rung und die automatische Di�erentiation [1], [9], [10], [18]. Bei der R�uckw�artsmethode
der automatischen Di�erentiation l�a�t sich mit dem optimalen Skalarprodukt der Spei-

cheraufwand drastisch reduzieren. Dabei wird das Skalarprodukt als Grundoperation
in den Vektorr�aumen aufgefa�t [28].

H�au�g erlauben diese Werkzeuge zudem eine produktive Vorw�artsfehleranalyse.
Beispiele: numerische Quadratur und Kubatur [1], numerische Integration gew�ohnli-
cher Di�erentialgleichungen [1], Anwendungen in der Computergeometrie wie die si-

chere Berechnung des Schnittes zweier Fl�achen [27] oder die sichere Beantwortung von
Koinzidenzfragen [22].

Ferner erm�oglichen es diese neuen Werkzeuge h�au�g, eine �a posteriori Fehleranaly-
se mit dem Rechner durchzuf�uhren. Dies wird gelegentlich auch als automatische Er-

gebnisveri�kation oder als Ergebnisvalidierung bezeichnet. Beispiele: hochgenaue Ein-

schlie�ung der L�osung linearer und nichtlinearer Gleichungssysteme [9], [10], [18], [21],
lineare und nichtlineare Optimierungsprobleme [18], [22]. Schl�agt der abschlie�ende Ve-
ri�kationsschritt fehl | was nur sehr selten vorkommt, dann aber auch vom Rechner

selbst festgestellt wird |, so f�uhrt eine erneute Berechnung mit h�oherer Rechengenau-

igkeit (precision) h�au�g zum Ziel. Der Datentyp staggered, dessen arithmetische Ope-

rationen �uber das optimale Skalarprodukt realisiert werden, ist das geeignete Werkzeug

hierzu [1], [18].
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Die Frage, wie viele Stellen eines Defektes bei Rechnung in single, double oder

extended precision garantiert werden k�onnen, ist in der Vergangenheit sorgf�altig unter-

sucht worden. Mit dem optimalen Skalarprodukt l�a�t sich der Defekt immer auf volle

Genauigkeit und zudem schneller berechnen.

Viele Probleml�oseroutinen der XSC-Sprachen (PASCAL-XSC, ACRITH-XSC, C-

XSC, FORTRAN-XSC) sind auch verf�ugbar f�ur (kleine) Intervalle als Daten. Es stehen

auch Routinen zur Verf�ugung, welche es erlauben, Daten als Intervalle einzulesen. Falls

ein Benutzer davon keinen Gebrauch macht und alle Daten als Punktdaten (computer

reals) einliest, kann man davon ausgehen, da� er der Meinung ist, da� seine Daten

in der Maschine damit genau genug beschrieben sind. Hochgenaue Probleml�oser f�ur

Probleme mit exakten Punktdaten (von unendlicher Genauigkeit) sind daher durchaus

sinnvoll. Zur L�osung von Punktproblemen mit garantierter hoher Genauigkeit ist die

Festkommaakkumulation im langen Akkumulator h�au�g erforderlich und der Gleitkom-

maakkumulation deutlich �uberlegen. Beispiel: Eigenwerte von Zielke-Matrizen lassen

sich mit dem langen Akkumulator immer richtig berechnen.

6 Akkumulation von Gleitkommazahlen und -produkten in

quadruple precision Gleitkommaarithmetik

Das Skalarprodukt ist eine ganz zentrale Operation in der Numerik. Es tritt auf in
der komplexen Arithmetik, in der Matrix- und Vektorarithmetik, bei Defektkorrektur-
methoden, in der Bereichsreduktion bei der Berechnung von Standardfunktionen, in
mehrfach genauer Arithmetik und an vielen anderen Stellen. Mit dem optimalen Ska-

larprodukt lassen sich alle Operationen in den �ublichen Produktr�aumen der Numerik
| insbesondere f�ur Vektoren und Matrizen �uber den reellen bzw. komplexen Gleit-
kommazahlen oder -intervallen | nach dem Prinzip des Semimorphismus [19], [20]
und damit immer maximal genau bereitstellen. Die entsprechenden reellen und kom-
plexen Vektorr�aume und die zugeh�origen Intervallr�aume werden dadurch bez�uglich der
algebraischen Struktur bestm�oglich und bez�uglich der Ordnungsstruktur weitestgehend

strukturerhaltend auf die entsprechenden R�aume �uber Gleitkommazahlen abgebildet.

Neuere Programmiersprachen wie Fortran 90 oder C++ stellen das Skalarprodukt

als Grundoperation (Operatoren matmul und dotproduct) zur Verf�ugung. �Ahnlich l�a�t
sich das optimale Skalarprodukt beispielsweise auch in Tabellenkalkulationsprogram-
me, Computeralgebrapakete usw. einarbeiten.

In den XSC-Sprachen und beim XPA 3233 werden Zahlen und Produkte von Gleit-
kommazahlen in ein langes Festkommawort (langer Akkumulator) akkumuliert. Bei

dieser Vorgehensweise geht keinerlei Information verloren. Oft wird die Frage gestellt,

ob dies wirklich notwendig ist oder ob es nicht ausreicht, die doppelt langen Pro-
dukte zweier Gleitkommazahlen als quadruple precision Zahlen in einem f�ur dieses

Datenformat bereitgestellten Addierer, welcher nur geringf�ugig breiter ist als dieses
Datenformat, zu akkumulieren, da man das Endergebnis letztlich fast immer in eine

double precision Variable rundet. Es sollen jetzt diese beiden Arten der Akkumulati-
on miteinander verglichen werden. Die Waage neigt sich eindeutig auf die Seite der

Festkommaakkumulation.
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Die Berechnung des Skalarproduktes im langen Akkumulator ist die einzige Gleit-

kommaoperation, welche immer ein richtiges Ergebnis liefert. Eine Akkumulation von

Produkten von Gleitkommazahlen im quadruple Akkumulator kann demgegen�uber ge-

legentlich ein falsches Ergebnis liefern: der Benutzer mu� sich bei jeder Ausf�uhrung

einer solchen Operation Gedanken �uber den Rechenfehler machen. Bei der Berechnung

des Skalarproduktes im langen Akkumulator braucht man nie eine Fehlerabsch�atzung

durchzuf�uhren | das Ergebnis ist immer richtig.

Der lange Akkumulator ist wesentlich einfacher zu handhaben als ein quadruple Ak-

kumulator, weil der lange Akkumulator mit nur einem Datenformat, n�amlich double,

arbeitet. Bei einer quadruple Akkumulation hat man es hingegen mit zwei verschiede-

nen Datenformaten zu tun. F�ur die Berechnung des optimalen Skalarproduktes in Fest-

kommaakkumulation im langen Akkumulator braucht man nur ganz wenige zus�atzliche

Befehle in der Maschine. Bei einer quadruple Akkumulation mu� man auch Befehle f�ur

gemischte Operationen vorsehen. Man braucht daher wesentlich mehr OP Codes.

Nach allen bisherigen Erfahrungen (Assembler, Mikrocode, Bit-Slice-Technologie,

VLSI) ist die Festkommaakkumulation von Produkten von double precision Variablen
schneller und einfacher als die Gleitkommaakkumulation in double precision. Eine Ak-
kumulation von doppelt langen Produkten von double precision Variablen in quadruple
precision wird aller Voraussicht nach noch einmal langsamer ablaufen. Bei der Festkom-
maakkumulation wird nur ein shift ausgef�uhrt, und es wird akkumuliert. Der Exponent

stellt die Adresse f�ur die Addition des Produktes dar. Bei der Gleitkommaakkumulation
m�ussen viele Zwischenschritte zus�atzlich ausgef�uhrt werden. Es f�allt an: Dekomposition
der Operanden, Schieben, Addieren, Normalisieren, Runden, Zusammensetzen zu einer
Gleitkommazahl, Dekomposition in Mantisse und Exponent f�ur die n�achste Operation
und vieles andere mehr. Bei der Festkommaakkumulation f�allt demgegen�uber nur an:

Schieben und Addieren. Gerundet wird nur einmal am Schlu�.

Da bei der Berechnung von Skalarprodukten die zu akkumulierenden Produkte
von Gleitkommazahlen nur doppelt lang sind, ist der f�ur die Festkommaakkumulation

ben�otigte Addierer von der gleichen Gr�o�enordnung wie derjenige f�ur die Akkumulation
in quadruple precision. Der lange Akkumulator braucht nur als lokaler Speicher auf der
Arithmetikeinheit gehalten zu werden. Im Falle des Datenformates double precision
des IEEE Standards 754 besteht er aus 67 Worten �a 64 bit [1], [5], [12], [30], [31].

Bei der Festkommaakkumulation im langen Akkumulator hat man den doppel-

ten Exponentenbereich und zus�atzlich einige Schutzzi�ern zur Verf�ugung. Ein �Uber-
lauf oder Unterlauf ist im Skalarprodukt ausgeschlossen. Bei quadruple precision ist

zun�achst das Datenformat nicht eindeutig de�niert. Es kann ein double-double Wort
sein, aber auch ein echtes quadruple Format ist m�oglich. Bei verschiedenen Herstel-

lern k�onnen daher bei Akkumulation in quadruple precision durchaus verschiedene
Ergebnisse anfallen. Wenn quadruple nur als double-double aufgefa�t wird, steht aus-

schlie�lich der einfache Exponentenbereich zur Verf�ugung, und man kann leicht �Uber-

oder Unterlauf im Exponenten bekommen. In der Rechnung treten dann viele plus

oder minus in�nity oder NaNs auf, welche praktisch keine Information enthalten. Da

quadruple nicht genau de�niert ist, handelt man sich, wenn man eine quadruple Arith-
metik bereitstellt, �Ubertragungsprobleme f�ur Daten zwischen Maschinen verschiedener

Hersteller ein. Bei der Festkommal�osung treten solche Probleme nicht auf, da es nur ein
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Datenformat, n�amlich double precision, gibt. Eine quadruple Arithmetik wird damit

als einfacher Fall einer mehrfach genauen Arithmetik realisiert, und zwar auf der Basis

des Datenformates double precision. Eine mehrfach genaue Zahl (vom Typ staggered)

wird als array von double precision Variablen dargestellt. Der Wert einer Variablen vom

Typ staggered ist die Summe der Komponenten. Die Addition solcher Zahlen erfolgt

im langen Akkumulator. Die Multiplikation ist nichts anderes als ein Skalarprodukt.

Ein scheinbarer Vorteil der Akkumulation von double precision Produkten in qua-

druple precision besteht darin, da� viele Benutzer glauben, sich sofort etwas darunter

vorstellen zu k�onnen. Diese Vorstellung kann und wird allerdings von Benutzer zu

Benutzer verschieden ausfallen. Normalerweise wird ein Benutzer zun�achst glauben,

da� ein volles Datenformat quadruple precision mit allen vier Grundoperationen zur

Verf�ugung steht. Dadurch entsteht ein Druck auf die Hersteller, wesentlich mehr als

unbedingt notwendig in die Hardware hineinzupacken | eben eine volle quadruple

Arithmetik einschlie�lich der zugeh�origen Standardfunktionen. Damit wird weit �uber

das Notwendige, N�utzliche und Wesentliche hinausgegangen.

Der Typ staggered als ein array von double precision reals ist wesentlich lei-
stungsf�ahiger als der Typ quadruple precision, weil er praktisch eine dynamische pre-
cision bereitstellt.

7 Wieviel lokalen Speicher braucht man auf der Arithmetik-

einheit?

Braucht man f�ur spezielle Anwendungen mehrere lange Akkumulatoren auf der Arith-

metikeinheit? Mit der gleichen Argumentation, welche bei reellen Punktproblemen
einen langen Akkumulator fordert, verwendet man bei komplexen Punktproblemen
zweckm�a�igerweise zwei lange Akkumulatoren. Dies halbiert den Aufwand bei der Da-
ten�ubertragung in die Arithmetikeinheit. Dann lassen sich komplexe Skalarprodukte
immer korrekt ausf�uhren. Der zweite Akkumulator vergr�o�ert nur den lokalen Speicher

auf der Arithmetikeinheit. Die Steuerung und der Befehlssatz brauchen nur geringf�ugig
erg�anzt zu werden. Wenn auf der Arithmetikeinheit gen�ugend Speicher f�ur zwei lan-
ge Akkumulatoren zur Verf�ugung steht, kann man auch Intervallskalarprodukte im-
mer unter Verwendung von zwei langen Akkumulatoren aufsummieren. Das Ergebnis

wird dabei in der Regel nicht wesentlich besser ausfallen, als wenn man die beiden

Schranken des Ergebnisses in quadruple precision aufsummiert. Es tre�en aber wie-
der alle Nachteile zu, welche bereits oben f�ur quadruple precision aufgelistet wurden.

Die Akkumulation von Intervallskalarprodukten in quadruple precision w�are daher al-
ler Voraussicht nach langsamer als mit zwei langen Akkumulatoren; au�erdem werden

sich die bei den Additionen in quadruple precision anfallenden Rundungsfehler in den

Schranken akkumulieren, w�ahrend bei der Akkumulation von Intervallskalarprodukten
im langen Akkumulator keine Rundungsfehler auftreten und somit das Ergebnis in der
Regel genauer ausf�allt als eine entsprechende Akkumulation in quadruple precision. Bei

Festkommaakkumulation werden die Schranken des Ergebnisses nur ganz am Schlu�

der Rechnung ein einziges Mal gerundet.
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8 Optimales Skalarprodukt bei Multi-User-Systemen

Bei der Festkommaakkumulation im langen Akkumulator tritt stets die Frage auf, wie

Kontextwechsel behandelt werden sollen. Diese Frage l�a�t sich dadurch beantworten,

da� man hinreichend viel lokalen Speicher f�ur mehrere lange Akkumulatoren auf der

Arithmetikeinheit bereitstellt. Der hyperstone, ein deutscher DSP (Digital Signal Pro-

zessor), stellt auf der Arithmetikeinheit 8 KByte lokalen Speicher zur Verf�ugung. Dies

reicht aus f�ur etwa sieben lange Akkumulatoren f�ur das IEEE-Datenformat double

precision. Bei Kontextwechsel, welcher einen langen Akkumulator ben�otigt, wird ein-

fach ein neuer Akkumulator er�o�net. Dadurch erledigt sich das Auslagern von Zwi-

schenergebnissen. In [5] werden verfeinerte Techniken zur Handhabung des optimalen

Skalarproduktes in Multi-User-Systemen behandelt.

9 Bedeutet der lange Akkumulator eine R�uckkehr zur

Festkommaarithmetik?

Die Antwort auf diese Frage lautet nein. Einfache Gleitkommaoperationen werden nach
wie vor in Gleitkommaarithmetik ausgef�uhrt. Auch die Datenhaltung erfolgt nach wie
vor in Gleitkomma. Die Vorteile der Gleitkommaarithmetik, wie der Wegfall l�astiger
Skalierungen bzw. deren Automatisierung, bleiben daher erhalten. Nur die Akkumula-
tion, die emp�ndlichste Operation in Gleitkomma, wird in Festkommaarithmetik aus-

gef�uhrt. Die Festkommaakkumulation von Gleitkommazahlen und -produkten verl�auft
immer absolut fehlerfrei. Die Erweiterung der herk�ommlichen Gleitkommaarithmetik
um die f�unfte Gleitkommaoperation, die Akkumulation von Gleitkommazahlen und
-produkten in Festkommaarithmetik, ist eine ideale Kombination von Fest- und Gleit-
kommaarithmetik, welche die Vorteile beider verbindet. Durch die Bereitstellung der

f�unften Gleitkommaoperation in Rechenanlagen erf�ahrt das bisherige arithmetische Re-
pertoire eine wesentliche Erg�anzung.

10 Ist das Datenformat double precision ein nat�urliches

Datenformat?

Es stellt sich noch die Frage, ob das Datenformat double precision f�ur heutigentags
zu l�osende Probleme ein nat�urliches Datenformat ist oder ob es uns durch die heutige

Technologie aufoktroyiert wird. Die Daten k�onnen bei vielen Ingenieurproblemen mit
etwa vier bis sechs dezimalen Zi�ern hinreichend genau beschrieben werden. Trotzdem

rechnen alle Ingenieure ihre Probleme praktisch immer in double precision, was etwa
16 dezimalen Zi�ern entspricht. Man kann wohl davon ausgehen, da� bei Verf�ugbarkeit

einer gleichschnellen, vollst�andigen quadruple Arithmetik alle Anwender sofort diese

quadruple Arithmetik einsetzen und verwenden w�urden. Wenn es jemandem gel�ange,

ein gepacktes Datenformat zu er�nden, welches es erlaubt, mit 100 dezimalen Zi�ern

genauso schnell zu rechnen wie mit double precision, w�urde jeder sofort dieses gepack-
te Datenformat verwenden. Dies ist auch gerechtfertigt; denn die korrekte Rechnung

im Raume der reellen Zahlen w�urde mit in�nite precision ablaufen. In der Intervall-
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rechnung wird gezeigt, da� bei Erh�ohung der precision die Ergebnisgenauigkeit i. allg.

zu-, keinesfalls aber abnimmt. In diesem Sinne ist die heutige double Arithmetik nicht

nat�urlich und nicht optimal den heutigen Problemen angepa�t. �Uber den langen Akku-

mulator wird dem Benutzer in Form des Datenformates staggered in gewissen Grenzen

auf einfache Weise eine dem Problem anpa�bare Arithmetik mit dynamischer Genauig-

keit bereitgestellt, welche auf der double Arithmetik aufbaut. Der Datentyp staggered

erm�oglicht es, an beliebigen, ausgew�ahlten Stellen im Programm die precision in gewis-

sen Grenzen zu erh�ohen oder zu erniedrigen. Der Benutzer kann sich die Genauigkeit

aussuchen, welche seinem Problem angepa�t ist. Im Rechner gibt es nur ein (standardi-

siertes) Gleitkommadatenformat, n�amlich double precision. Auf diese Weise baut eine

nat�urliche (dynamische) Arithmetik auf nur einer vorhandenen standardisierten Gleit-

kommaarithmetik auf, was seinerseits auch die Bedeutung eines derartigen Standards

unterstreicht.
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