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4 Ulrich Kulisch

Zusammenfassung

Die fiinfte Gleitkommaoperation: Seit Ende der T0er Jahre sind an verschiedenen Institutionen
Programmiersprachen, zugehorige Compiler, aber auch Hardwareprozessoren entwickelt worden, wel-
che aufler den vier Gleitkommaoperationen noch eine fiinfte Gleitkommaoperation bereitstellen, und
zwar die Akkumulation von Gleitkommazahlen und -produkten in Festkommaarithmetik. In Gleit-
kommaarithmetik ist die Akkumulation eine sehr empfindliche Operation. Mit dieser neuen Operation
koénnen Skalarprodukte, Matrizenprodukte usw. in infinite precision Arithmetik immer vollig fehlerfrei
berechnet werden, was eine Fehleranalyse bei diesen Operationen iiberfliisssig macht. Es sind viele Al-
gorithmen entwickelt worden, welche diese neue Operation systematisch anwenden. Bei anderen wird
die Grenze der Anwendbarkeit durch Gebrauch dieser Operation hinausgeschoben. Dariiber hinaus
beschleunigt das optimale Skalarprodukt die Konvergenz von Iterationsverfahren. Dennoch wird im-
mer wieder die Frage gestellt, ob diese Operation {iberhaupt notwendig ist. Die folgende Abhandlung
versucht diese und damit zusammenhéngende Fragen zu beantworten.

Abstract

The Fifth Floating-Point Operation: Programming languages, accompanying compilers and even
hardware which, apart from the four floating-point operations, provide an additional fifth floating-point
operation, namely the accumulation of floating-point numbers and products in fixed-point arithmetic,
have been developed at many institutions since the end of the seventies. Accumulation of numbers is
the most sensitive operation in floating-point arithmetic. By that operation scalar products of floating-
point vectors, matrix products etc. can be computed without any error in infinite precision arithmetic,
making an error analysis for those operations superfluous. Many algorithms applying that operation
systematically have been developed. For others the limits of applicability are extended by using that
fifth operation. Furthermore, the optimal dot product speeds up the convergence of iterative methods.
Nevertheless, the question whether that operation is really necessary is often asked. The following
treatise aims at answering that and related questions.

1 Vorgeschichte

Gleitkommaarithmetik wird seit den 40er und 50er Jahren verwendet (Zuse 73, 1941).
Die damalige Technologie (elektromechanische Relais, Elektronenréhren) war kompli-
ziert und teuer. Man war daher damit zufrieden, als Frgebnis der Verkniipfung zwei-
er Gleitkommazahlen wieder eine einigermafen korrekte Gleitkommazahl zu erhalten
bzw. abzuliefern. Eine Fehleranalyse fiir kompliziertere Ausdriicke wurde dem Benutzer
iiberlassen.

Vor etwa 25 Jahren schélte sich im Rahmen der Entwicklung einer allgemeinen
mathematischen Theorie der Rechnerarithmetik [19], [20] die Einsicht heraus, daf es
zweckméBig ist, neben den vier Grundrechenoperationen im Rechner auch eine Operati-
on zur Berechnung von Skalarprodukten mit maximaler Genauigkeit nach dem Prinzip
des Semimorphismus bereitzustellen. Die ersten Losungsvorschlage waren algorithmi-
scher Natur. Vor etwa 20 Jahren erkannte man dann, daf} sich das Problem sowohl in
Software als auch in Hardware elegant 16sen 1a8t, indem man die Komponentenproduk-
te in einem Festkommaregister aufsummiert, welches den gesamten Gleitkommabereich
zum doppelten Exponentenbereich abdeckt. Fast ebenso alt ist die Forderung, hierfiir
einen Koprozessor in VLSI-Technik zu entwickeln und zu bauen.
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In einem Gleitkommasystem ist sowohl die Anzahl der Mantissenziffern als auch
der Exponentenbereich endlich. Das Festkommaregister ist daher ebenfalls endlich. In
Abhéangigkeit vom verwendeten Datenformat benétigt man dafiir etwa 1000 bis 4000
bits. Es besteht also die paradox anmutende Situation, dafl sich Skalarprodukte von
Gleitkommavektoren selbst mit Millionen von Komponenten in einem relativ kleinen
Registerspeicher auf der Arithmetikeinheit auf volle Genauigkeit in infinite precision
Arithmetik berechnen lassen. Das Skalarprodukt ist eine ganz fundamentale Operation
in der linearen Algebra. Ein immer korrektes Skalarprodukt eliminiert viele Rundungs-
fehler in numerischen Rechnungen. Es stabilisiert diese Rechnungen und beschleunigt
sie gleichzeitig.

In der Folgezeit wurde die Funktionalitat des optimalen Skalarproduktes mit ver-
schiedenen Rundungen mittels einer Softwaresimulation via integer Arithmetik in meh-
rere Programmiersprachen (ACRITH-XSC [15], PASCAL-XSC [16], C-XSC [17]) ein-
gebaut. Zusammen mit der Intervallarithmetik gelang es dann in kurzer Zeit, fiir eine
grofle Anzahl von Problemen der numerischen Mathematik Algorithmen zu entwickeln,
bei denen der Rechner sowohl die Existenz und Eindeutigkeit einer Losung nachweist
als auch hochgenaue Schranken fiir die Losung berechnet [9], [10], [18]. Bei iterativen
Verfahren erreicht man eine gewiinschte Ergebnisgenauigkeit hdufig mit weniger Itera-
tionsschritten, wenn man alle Skalarprodukte in infinite precision Arithmetik mit voller
Genauigkeit oder mit nur einer einzigen Rundung am Schluf} ausfithrt [23], [25], [26].
Dennoch gibt es bis heute keinen kommerziellen VLSI-Koprozessor zur Berechnung des
optimalen Skalarproduktes.

Ein Grund hierfiir besteht darin, dafl vor 20 Jahren die Technologie wie auch die
Entwurfswerkzeuge der Komplexitét des Problems noch nicht gewachsen waren und
eine erzwungene Losung sehr teuer geworden wére (einige zig-Mio. DM). Ein ausge-
wogener Entwurf hdngt nicht nur von dem mathematischen Losungsverfahren fiir das
Problem ab, sondern auch von vielen Randbedingungen wie etwa der Busbreite fiir
die Datenversorgung, der Ankopplung an den Hauptrechner, der Abstimmung mit der
Arithmetikeinheit des Hauptrechners und der Architektur und Geschwindigkeit des
Hauptprozessors. Auch die Entwurfswerkzeuge und die Fertigungstechnologie spielen
eine grofle Rolle. Diese vielfachen Abhéngigkeiten haben auch kompetente und interes-
sierte Wissenschaftler und Hersteller immer wieder davon abgehalten, eine Losung in

VLSI-Technik anzugehen.

Im Jahre 1987 hat die GAMM! eine Resolution veréffentlicht, welche die mathema-
tisch nicht korrekte Ausfithrung von Matrix- und Vektoroperationen in Vektorrechnern
kritisiert und Besserung verlangt. Im Jahre 1993 haben dann die GAMM und die
IMACS? ein Proposal for Accurate Floating-Point Vector Arithmetic [6] verabschiedet,
in dem u. a. eine mathematisch korrekte Ausfithrung von Matrix- und Vektoroperatio-
nen, insbesondere des Skalarproduktes, in allen Rechnern verlangt wird. Das Proposal
enthélt auch Losungsvorschldge (siehe dazu auch [1], [5], [12], [28]). Im Jahre 1995 hat
auch die IFIP-Working Group 2.5 on Numerical Software diesem Proposal zugestimmt.
Inzwischen wurde es zu einer KU-Guideline.

LGAMM = Gesellschaft fiir Angewandte Mathematik und Mechanik
2IMACS = International Association for Mathematics and Computers in Simulation
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2 Stand der Entwicklung

Im Jahre 1992 gelang es drei Instituten aus Karlsruhe, Hamburg und Stuttgart®, von
der VW-Stiftung Fordermittel (ca. 900 TDM) fiir ein Projekt zu bekommen, welches
den Bau eines VLSI-Vektorarithmetik-Koprozessors fiir den PC vorsah. Das Projekt
hatte eine Laufzeit von zwei Jahren (01.01.1993 bis 31.12.1994). In Karlsruhe arbei-
teten drei, in Stuttgart zwei und in Hamburg ein Mitarbeiter an dem Projekt. Es
wurde ein VLSI-Vektorarithmetik-Koprozessor XPA 3233 entwickelt und in der 0,8 gm
CMOS Gate Array Technologie des IMS gefertigt. Der Prozessor kann iiber den derzeit
verfligbaren 33 MHz 32 bit-breiten PCI-Bus an Personal Computer angeschlossen wer-
den. Er ist der erste Vektorarithmetik-Koprozessor auf einem Chip. Der Prozessor kann
beispielsweise unter PASCAL-XSC [16] von den dort vorhandenen Operatorsymbolen
direkt angesprochen werden. Im Rechner wirkt er wie ein Katalysator im doppelten Sin-
ne. Er beschleunigt die Rechnung und eliminiert viele unnétige Rundungsfehler. Die
folgenden drei Schritte werden in einer Pipeline (FlieBbandverarbeitung) stets gleich-
zeitig ausgefithrt: Lesen zweier Faktoren fiir das néchste Produkt, Ausfithrung einer
Multiplikation und Akkumulation eines Produktes. Im Vergleich mit herkémmlicher
Gleitkommaarithmetik erzielt man deshalb bei gleicher Taktfrequenz mindestens die
doppelte Ausfithrungsgeschwindigkeit. Zum Zeitpunkt der Fertigstellung hat der XPA
Skalarprodukte schneller berechnet als alle anderen auf dem Markt erhéltlichen Mi-
kroprozessoren in herkémmlicher Gleitkommaarithmetik, obwohl diese in der Regel in
einer wesentlich feineren Technologie gefertigt waren. Im Gegensatz zu diesen liefert
der XPA 3233 immer das richtige FErgebnis mit voller Genauigkeit oder mit nur einer
einzigen Rundung am Schlufl. Gegeniiber den Softwareimplementierungen des opti-
malen Skalarproduktes in PASCAL-XSC, ACRITH-XSC und C-XSC bringt er eine

Geschwindigkeitssteigerung um einen zweistelligen Faktor [5].

3 Begriffsbestimmungen

Der Begriff precision bezieht sich im folgenden auf die in einer Rechnung mitgefiihrte
Stellenzahl, accuracy auf die Genauigkeit im Endergebnis. Unter double oder ausfiihr-
licher double precision wird im folgenden ein 64 bit Gleitkommawort, beispielsweise im
[EEE-Datenformat im Sinne des IEEE-Arithmetik-Standards 754 [3], verstanden. Qua-
druple oder ausfiithrlicher quadruple precision bezeichnet ein 128 bit Gleitkommawort.
Langer Akkumulator bezeichnet ein Festkommawort, welches ausreicht, um Produkte
von double precision Gleitkommazahlen immer korrekt, d. h. ohne Informationsverlust,
aufzusummieren. Der zugehorige Akkumulationsprozefl wird auch einfach als Festkom-
maakkumulation bezeichnet. Quadruple Akkumulator bezeichnet ein Computerregister,
welches ausreicht, um quadruple precision Gleitkommazahlen in Gleitkommaarithmetik
mit einem Rundungsfehler von 1/2 oder 1 ulp (unit in the last place) aufzusummieren.

3Institut fiir Angewandte Mathematik der Universitit Karlsruhe (IAM) (Prof. U. Kulisch)
Arbeitsbereich Technische Informatik, TU Hamburg-Harburg (TUHH) (Prof. T. Teufel)
Institut fiir Mikroelektronik Stuttgart (IMS) (Prof. B. Hofflinger)
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In den XSC-Sprachen [15], [16], [17] steht aufler dem numerischen Datentyp realund
vielen weiteren numerischen Datentypen noch ein Feldtyp staggered (staggered preci-
sion) zur Verfiigung. Als Komponententyp kann der Typ real (double precision) oder
interval (double precision interval) auftreten. Eine Variable vom Typ staggered besteht
aus einem Feld (array) von Variablen des Komponententyps. Sie erlaubt die Speiche-
rung von Daten mit mehrfacher Genauigkeit. Thr Wert ist die Summe der Komponenten.
Summen von Variablen des Typs staggered lassen sich mit dem langen Akkumulator
— Produkte iiber das optimale Skalarprodukt — leicht berechnen. Quotienten werden
iterativ berechnet. Der Typ staggered wird durch eine globale Variable stagprec gesteu-
ert. Im Falle stagprec = 1 ist der Typ staggered identisch mit dem Komponententyp. Ist
beispielsweise aber stagprec = 4, so besteht jede Variable dieses Typs aus einem Feld
von vier Variablen des Komponententyps. IThr Wert ist die Summe der Komponenten.
Die Variable ist i. allg. von vierfacher Genauigkeit des Komponententyps. Die globale
Variable stagprec kann an beliebigen Stellen im Programm vergroflert oder verkleinert
werden. Die Standardfunktionen fiir den Typ staggered stehen in Karlsruhe fiir die
Komponententypen real und interval bereits zur Verfiigung (siehe die Artikel von K.
Braune und W. Kramer in [22]). Ist stagprec = 2, so hat man es im Falle des Kompo-
nententyps real/ mit einem Datentyp zu tun, welcher gelegentlich auch als double-double
oder als quadruple bezeichnet wird.

4 Eine oft zitierte Bemerkung von C. F. Gauf3

Von C. F. Gauf} stammt die Bemerkung: Der Mangel an mathematischer Bildung gibt
sich durch nichts so auffallend zu erkennen, wie durch maflose Schéirfe im Zahlenrech-
nen.

Mancher Numeriker sieht in dieser Bemerkung eine Aufforderung, moglichst vie-
le Probleme mit einer moglichst kurzen Wortlange (precision) zu rechnen. Er ist stolz
darauf, daf} er seine Probleme zufriedenstellend 16sen kann, indem er die gesamte Rech-
nung einschlieBlich aller Skalarprodukte in double, woméglich sogar in single precision
Gleitkommaarithmetik ausfithrt. Wenn dies zum Erfolg fithrt, ist diese Vorgehensweise
natiirlich berechtigt, und es ist {iberhaupt nichts dagegen einzuwenden.

Héaufig wird aus der Bemerkung aber auch der Schlufl gezogen, man bréuchte ein
immer korrektes Skalarprodukt im Rechner gar nicht und sollte es folglich auch nicht
bereitstellen; die herkémmliche Art, Skalarprodukte in Gleitkommaarithmetik zu be-
rechnen, wire einfacher, da dabei unniitze Ziffern gar nicht erst mitgefithrt wiirden.
Diese Folgerung ist vollig falsch. Sie beruht auf einer unzureichenden Vertrautheit
und Kenntnis der heute verfiigharen Technologie und Implementierungstechniken sei-
tens der Mathematiker. Der Ingenieur andererseits, welcher diese Techniken beherrscht,
iiberblickt in der Regel nicht die Konsequenzen fiir die Mathematik.

Die Bemerkung von C. F. Gauf} ist heute mehr als 150 Jahre alt. Sie pafit in die da-
malige Zeit, als jede Rechnung von Hand ausgefithrt werden mufte und jede Ziffer, die
man nicht mitfithrte, eine enorme Arbeitserleichterung bedeutete. Das langsame Rech-
nen von Hand erlaubte es in der Regel, eine die Rechnung begleitende Fehleranalyse
oder wenigstens eine Fehlerschatzung durchzufiihren.
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Heute liegen ganz andere Verhéltnisse vor, welche man damals in keiner Weise tiber-
sehen oder auch nur ahnen konnte. Schnelle Prozessoren sind heute in der Lage, eine
Milliarde arithmetische Operationen in der Sekunde auszufithren. Diese Zahl tibersteigt
das Vorstellungsvermogen eines Benutzers. Die zur Verfligung stehende Technologie
(mehrere Millionen Transistoren auf einem Chip) ist extrem leistungsfahig. Sie erlaubt
Loésungen, von denen selbst ein gelibter Benutzer von Rechnern nichts ahnt.

Fiir alle Arten von Rechnern wie Personal Computer, Workstations, Grofirechner
und Supercomputer gibt es heute einfache Schaltungen fiir die Berechnung des opti-
malen Skalarproduktes, bei denen fiir die Arithmetik selbst praktisch keine Rechenzeit
mehr bendtigt wird. In einer Pipeline 148t sich die Arithmetik in der Zeit ausfithren, wel-
che benétigt wird, um die Daten in die Arithmetikeinheit zu lesen. Das bedeutet u. a.,
daf} keine andere Art, Skalarprodukte zu berechnen, schneller sein kann — auch nicht
diejenige in reiner Gleitkommaarithmetik. Technisch ist der Prozefl der immer korrek-
ten Akkumulation von Skalarprodukten in einem Festkommaregister zwar anders, aber
keineswegs aufwendiger oder komplizierter als eine Hardwareakkumulation in Gleit-
kommaarithmetik. Beide Arten der Akkumulation arbeiten mit sehr &hnlichen Grund-
bausteinen der Arithmetik wie Shifter, Multiplizierer, Addierer und Rundungseinheit
— allerdings in unterschiedlicher Anordnung. Die Festkommaakkumulation ben&tigt
zudem lediglich noch einen kleinen lokalen Speicher auf der Arithmetikeinheit. Viele
bei der Gleitkommaakkumulation anfallende Zwischenschritte wie Normalisieren, Run-
den, Zusammensetzen zu einer Gleitkommazahl, Speichern, Wiederzerlegen in Mantisse
und Exponent fiir die ndchste Operation fallen bei der Festkommaakkumulation gar
nicht an.

Eine relativ komplexe arithmetische Operation wie das Skalarprodukt mit Gleit-
kommazahlen, welche aufgrund der heutigen Technologie mit méafliigem technischem
Aufwand immer korrekt ausgefithrt werden kann, sollte man tatsdchlich auch immer
korrekt ausfithren. C. F. Gaufl wiirde dies heute jedenfalls so machen. Eine Fehler-
analyse eriibrigt sich fiir diese zusdtzliche Grundoperation dann ein fiir allemal, und
auf verschiedenen Rechnerplattformen erhélt man bei ihrer Ausfithrung stets identische
Ergebnisse. Rechneranwendungen sind heute von uniibersehbarer Vielfalt. Jede Diskus-
sion dariiber, wo diese zusédtzliche Operation Vorteile bringt und wo nicht, ist nutzlos
und miiBig. Durch Ergdnzung der herkémmlichen Arithmetikeinheit um das optimale
Skalarprodukt entsteht ein wesentlich leistungsfahigerer und méchtigerer Rechner. Die
neue, immer absolut zuverléssige Operation 148t sich bei der Entwicklung von Algo-
rithmen an vielen Stellen vorteilhaft verwenden.

5 Probleme mit ungenauen und mit genauen Daten

Seit mehr als 50 Jahren wird in der Numerik fast ausschliefllich Gleitkommaarithmetik
verwendet. Dies hat die Denkweise gepragt. Haufig fallt es daher schwer, sich von ge-
wohnten und getibten Denkschemata zu 16sen. Wahrend dieser Zeit war die sogenann-
te Riickwértsfehleranalyse héufig die einzig praktikable Art, eine Fehlerbetrachtung
bei numerischen Algorithmen durchzufithren. Dabei interpretiert man die berechne-
te Losung eines Problems als die korrekte Losung zu einem Problem mit gednderten
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Ausgangsdaten. Liegen die letzteren nahe bei den Daten des gegebenen Problems, so
spricht man von einem gutartigen Algorithmus oder einem gutkonditionierten Problem.
Dieses Denkschema impliziert die Vorstellung, dafl man eigentlich nie das gegebene
Problem 16st, sondern immer eines aus dessen Nachbarschaft oder Umgebung. Dies
fithrt zu der Annahme, es komme auf die absolute Genauigkeit in den Daten gar nicht
an, man habe es im Grunde immer mit ungenauen Daten zu tun. Bei gutartigen Proble-
men ist diese Annahme durchaus gerechtfertigt. Tatsachlich stiitzen sich Berechnungen
auch nicht selten auf unsichere Annahmen. In die Berechnung gehen etwa Mefiwerte
ein, deren Genauigkeit sich nicht angeben 1a8t, oder das mathematische Modell mufite,
um eine Berechnung iiberhaupt zu erméglichen, stark vereinfacht werden. Bei der nu-
merischen Behandlung von Differentialgleichungen ist der Diskretisierungsfehler haufig
wesentlich grofler als die Rechenungenauigkeiten. Bei vielen Anwendungen werden sehr
viele Berechnungen dhnlicher Art durchgefiihrt. Aufgrund der Erfahrung oder von ex-
perimentellen Messungen hat man Vertrauen zur einfachen Gleitkommarechnung.

Bei solchen Problemen 148t sich sehr hdufig mit Hilfe der Riickwartsfehleranalyse
mathematisch zeigen, daf} einfache Gleitkommaarithmetik zur Berechnung der Losung
ausreicht. Wegen der groflen Haufigkeit des Auftretens derart gutartiger Probleme fehlt
daher bei vielen Anwendern das Problembewuftsein fiir eine hochprézise Rechnung. Je-
de Verbesserung der bisherigen Arithmetik wird als tiberfliissig betrachtet: ein genaues
Skalarprodukt wurde bisher nicht verwendet und wird folglich auch nicht benétigt und
nicht gefordert. Aus Unkenntnis wird dabei iibersehen, dafl das optimale Skalarpro-
dukt in Hardware schneller als die tiblicherweise verwendete Summationsschleife in
Gleitkommaarithmetik ablauft, so dafl auch gutartige Berechnungen davon profitieren
kénnen.

Nun sind aber keineswegs alle numerischen Probleme von der beschriebenen harm-
losen Art. Tatsdchlich ist dies nur eine Seite der Medaille. Auf der anderen befindet
sich die grofie Klasse der Probleme mit exakten Daten. Hierher geh6ren auch Probleme
mit kleinen, aber sicheren Schranken fiir die Daten. In der mathematischen Modellbil-
dung geht man beispielsweise in der Regel von exakten Fingabedaten aus. Das Modell
kann nur dann systematisch weiter verbessert werden, wenn der Rechenfehler weitge-
hend ausgeschlossen werden kann. Auch bei vielen innermathematischen Problemen hat
man es mit exakten Eingabedaten zu tun, z. B. fiir die Gewichte und Stiitzstellen von
Quadratur- und Kubaturformeln, fiir die Koeffizienten von Diskretisierungsformeln,
fiir die Koeffizienten bei der Berechnung von Polynomnullstellen, von Eigenwerten von
Matrizen oder von Differentialoperatoren. In der Computeralgebra behandelt man in
der Regel Probleme mit exakten Eingabedaten. Die Rechnung wird nach Méglichkeit
exakt, d. h. mit sehr langen Wortlangen, ausgefithrt. Dies kann sehr grofle Rechenzei-
ten erforderlich machen. Fine numerische Rechnung mit Gleitkommaarithmetik, welche
sichere und hinreichend genaue Schranken fiir die Lésung des Problems liefert, wird
i. allg. wesentlich schneller ablaufen.

Die Rechner werden immer schneller. Mit steigender Rechenleistung wachsen auch
die zu behandelnden Probleme. An Stelle zweidimensionaler mochten die Benutzer
gerne dreidimensionale Probleme 16sen. Eine Diskretisierung von 100 Schritten in jede
von drei Koordinatenrichtungen fiithrt auf ein Gleichungssystem mit einer Million Un-
bekannten. Der Gaufi-Algorithmus benétigt O(n?) Operationen. Ist z. B. n = 10°, so
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ist n® so grof, daf selbst ein GIGAFLOPS Computer viele Jahre benétigt, um ein sol-
ches System zu 16sen. Bei groflen Gleichungssystemen ist man daher auf iterative Loser
angewiesen. Man hofft, mit weniger als n® arithmetischen Operationen eine geeignete
Approximation der Losung zu erhalten. Bei iterativen Methoden (Jacobi-Verfahren,
GauB-Seidel-Verfahren, Relaxationsverfahren, cg-Verfahren, Krylow-Raum-Methoden,
Multigrid-Verfahren und anderen wie etwa das QR-Verfahren zur Berechnung von Fi-
genwerten) ist die Matrix-Vektormultiplikation die zentrale Operation. Sie besteht aus
einer Anzahl von Skalarprodukten. Es ist wohlbekannt, daf finite precision Arithmetik
die Konvergenz von Iterationsverfahren verschlechtert [7], [8], [11], [23], [25], [26], [29].
Ein Iterationsverfahren, welches im Reellen gegen die Losung konvergiert, konvergiert
bei Rechnung mit finite precision Arithmetik i. allg. langsamer. Es kann sogar diver-
gieren. Die Festkommaakkumulation von Skalarprodukten von Gleitkommavektoren ist
absolut fehlerfrei. Sie ist dariiber hinaus sogar noch schneller als eine konventionelle Be-
rechnung in Gleitkommaarithmetik. Eine fehlerfreie Berechnung von Skalarprodukten
beschleunigt zudem die Konvergenz bei vielen Iterationsverfahren. Bei vielen Anwen-
dungen liegen die Problemdaten exakt vor (Koeffizienten von Diskretisierungsformeln).
Sie werden in jedem Iterationsschritt aufs neue in die Rechnung hineingefiittert. Eine
hochgenaue Rechnung erscheint daher als besonders sinnvoll. Die Komponenten eines
Matrix-Vektorproduktes werden dabei in eine Variable vom Typ staggered auf zwei-,
drei- oder vierfache Genauigkeit gerundet und so im Algorithmus weiterverwendet. Die
Laufzeit des Algorithmus wird dadurch nur unwesentlich erh&ht.

Der modernen Numerik stehen mit der Intervallrechnung und dem optimalen Ska-
larprodukt neue Werkzeuge zur Verfiigung, welche neuartige Losungsverfahren fiir nu-
merische Fragestellungen erméglichen, z. B. die neuen Methoden der globalen Optimie-
rung und die automatische Differentiation [1], [9], [10], [18]. Bei der Riickwartsmethode
der automatischen Differentiation 148t sich mit dem optimalen Skalarprodukt der Spei-
cheraufwand drastisch reduzieren. Dabei wird das Skalarprodukt als Grundoperation
in den Vektorrdumen aufgefafit [28].

Héaufig erlauben diese Werkzeuge zudem eine produktive Vorwirtsfehleranalyse.
Beispiele: numerische Quadratur und Kubatur [1], numerische Integration gewohnli-
cher Differentialgleichungen [1], Anwendungen in der Computergeometrie wie die si-
chere Berechnung des Schnittes zweier Flachen [27] oder die sichere Beantwortung von
Koinzidenzfragen [22].

Ferner erméglichen es diese neuen Werkzeuge héufig, eine a posteriori Fehleranaly-
se mit dem Rechner durchzufiihren. Dies wird gelegentlich auch als automatische Fr-
gebnisverifikation oder als Ergebnisvalidierung bezeichnet. Beispiele: hochgenaue Ein-
schlieffung der Losung linearer und nichtlinearer Gleichungssysteme [9], [10], [18], [21],
lineare und nichtlineare Optimierungsprobleme [18], [22]. Schlagt der abschlieende Ve-
rifikationsschritt fehl — was nur sehr selten vorkommt, dann aber auch vom Rechner
selbst festgestellt wird —, so fithrt eine erneute Berechnung mit héherer Rechengenau-
igkeit (precision) haufig zum Ziel. Der Datentyp staggered, dessen arithmetische Ope-
rationen iiber das optimale Skalarprodukt realisiert werden, ist das geeignete Werkzeug

hierzu [1], [18].
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Die Frage, wie viele Stellen eines Defektes bei Rechnung in single, double oder
extended precision garantiert werden kénnen, ist in der Vergangenheit sorgfaltig unter-
sucht worden. Mit dem optimalen Skalarprodukt 148t sich der Defekt immer auf volle
Genauigkeit und zudem schneller berechnen.

Viele Problemloseroutinen der XSC-Sprachen (PASCAL-XSC, ACRITH-XSC, C-
XSC, FORTRAN-XSC) sind auch verfiighar fiir (kleine) Intervalle als Daten. Es stehen
auch Routinen zur Verfiigung, welche es erlauben, Daten als Intervalle einzulesen. Falls
ein Benutzer davon keinen Gebrauch macht und alle Daten als Punktdaten (computer
reals) einliest, kann man davon ausgehen, daf} er der Meinung ist, daBl seine Daten
in der Maschine damit genau genug beschrieben sind. Hochgenaue Problemléser fiir
Probleme mit exakten Punktdaten (von unendlicher Genauigkeit) sind daher durchaus
sinnvoll. Zur Lésung von Punktproblemen mit garantierter hoher Genauigkeit ist die
Festkommaakkumulation im langen Akkumulator hédufig erforderlich und der Gleitkom-
maakkumulation deutlich tiberlegen. Beispiel: Eigenwerte von Zielke-Matrizen lassen
sich mit dem langen Akkumulator immer richtig berechnen.

6 Akkumulation von Gleitkommazahlen und -produkten in
quadruple precision Gleitkommaarithmetik

Das Skalarprodukt ist eine ganz zentrale Operation in der Numerik. Es tritt auf in
der komplexen Arithmetik, in der Matrix- und Vektorarithmetik, bei Defektkorrektur-
methoden, in der Bereichsreduktion bei der Berechnung von Standardfunktionen, in
mehrfach genauer Arithmetik und an vielen anderen Stellen. Mit dem optimalen Ska-
larprodukt lassen sich alle Operationen in den tiblichen Produktrdumen der Numerik
— insbesondere fiir Vektoren und Matrizen tiber den reellen bzw. komplexen Gleit-
kommazahlen oder -intervallen — nach dem Prinzip des Semimorphismus [19], [20]
und damit immer maximal genau bereitstellen. Die entsprechenden reellen und kom-
plexen Vektorrdume und die zugehérigen Intervallriume werden dadurch beziiglich der
algebraischen Struktur bestmoglich und beziiglich der Ordnungsstruktur weitestgehend
strukturerhaltend auf die entsprechenden Raume iiber Gleitkommazahlen abgebildet.

Neuere Programmiersprachen wie Fortran 90 oder C++4 stellen das Skalarprodukt
als Grundoperation (Operatoren matmul und dotproduct) zur Verfiigung. Ahnlich 158t
sich das optimale Skalarprodukt beispielsweise auch in Tabellenkalkulationsprogram-
me, Computeralgebrapakete usw. einarbeiten.

In den XSC-Sprachen und beim XPA 3233 werden Zahlen und Produkte von Gleit-
kommazahlen in ein langes Festkommawort (langer Akkumulator) akkumuliert. Bei
dieser Vorgehensweise geht keinerlei Information verloren. Oft wird die Frage gestellt,
ob dies wirklich notwendig ist oder ob es nicht ausreicht, die doppelt langen Pro-
dukte zweier Gleitkommazahlen als quadruple precision Zahlen in einem fiir dieses
Datenformat bereitgestellten Addierer, welcher nur geringfiigig breiter ist als dieses
Datenformat, zu akkumulieren, da man das FEndergebnis letztlich fast immer in eine
double precision Variable rundet. Es sollen jetzt diese beiden Arten der Akkumulati-
on miteinander verglichen werden. Die Waage neigt sich eindeutig auf die Seite der
Festkommaakkumulation.
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Die Berechnung des Skalarproduktes im langen Akkumulator ist die einzige Gleit-
kommaoperation, welche immer ein richtiges Ergebnis liefert. Eine Akkumulation von
Produkten von Gleitkommazahlen im quadruple Akkumulator kann demgegeniiber ge-
legentlich ein falsches Ergebnis liefern: der Benutzer muf sich bei jeder Ausfithrung
einer solchen Operation Gedanken {iber den Rechenfehler machen. Bei der Berechnung
des Skalarproduktes im langen Akkumulator braucht man nie eine Fehlerabschatzung
durchzufithren — das Frgebnis ist immer richtig.

Der lange Akkumulator ist wesentlich einfacher zu handhaben als ein quadruple Ak-
kumulator, weil der lange Akkumulator mit nur einem Datenformat, namlich double,
arbeitet. Bei einer quadruple Akkumulation hat man es hingegen mit zwei verschiede-
nen Datenformaten zu tun. Fiir die Berechnung des optimalen Skalarproduktes in Fest-
kommaakkumulation im langen Akkumulator braucht man nur ganz wenige zuséatzliche
Befehle in der Maschine. Bei einer quadruple Akkumulation muff man auch Befehle fiir
gemischte Operationen vorsehen. Man braucht daher wesentlich mehr OP Codes.

Nach allen bisherigen Erfahrungen (Assembler, Mikrocode, Bit-Slice-Technologie,
VLSI) ist die Festkommaakkumulation von Produkten von double precision Variablen
schneller und einfacher als die Gleitkommaakkumulation in double precision. Eine Ak-
kumulation von doppelt langen Produkten von double precision Variablen in quadruple
precision wird aller Voraussicht nach noch einmal langsamer ablaufen. Bei der Festkom-
maakkumulation wird nur ein shift ausgefiithrt, und es wird akkumuliert. Der Exponent
stellt die Adresse fiir die Addition des Produktes dar. Bei der Gleitkommaakkumulation
miissen viele Zwischenschritte zusatzlich ausgefithrt werden. Es fallt an: Dekomposition
der Operanden, Schieben, Addieren, Normalisieren, Runden, Zusammensetzen zu einer
Gleitkommazahl, Dekomposition in Mantisse und Exponent fiir die nachste Operation
und vieles andere mehr. Bei der Festkommaakkumulation fallt demgegeniiber nur an:
Schieben und Addieren. Gerundet wird nur einmal am Schluf.

Da bei der Berechnung von Skalarprodukten die zu akkumulierenden Produkte
von Gleitkommazahlen nur doppelt lang sind, ist der fiir die Festkommaakkumulation
bendtigte Addierer von der gleichen Groenordnung wie derjenige fiir die Akkumulation
in quadruple precision. Der lange Akkumulator braucht nur als lokaler Speicher auf der
Arithmetikeinheit gehalten zu werden. Im Falle des Datenformates double precision
des IEEE Standards 754 besteht er aus 67 Worten a 64 bit [1], [5], [12], [30], [31].

Bei der Festkommaakkumulation im langen Akkumulator hat man den doppel-
ten Exponentenbereich und zusitzlich einige Schutzziffern zur Verfiigung. Ein Uber-
lauf oder Unterlauf ist im Skalarprodukt ausgeschlossen. Bei quadruple precision ist
zunachst das Datenformat nicht eindeutig definiert. Es kann ein double-double Wort
sein, aber auch ein echtes quadruple Format ist moglich. Bei verschiedenen Herstel-
lern kénnen daher bei Akkumulation in quadruple precision durchaus verschiedene
Ergebnisse anfallen. Wenn quadruple nur als double-double aufgefafit wird, steht aus-
schlieBlich der einfache Exponentenbereich zur Verfiigung, und man kann leicht Uber-
oder Unterlauf im Exponenten bekommen. In der Rechnung treten dann viele plus
oder minus infinity oder NaNs auf, welche praktisch keine Information enthalten. Da
quadruple nicht genau definiert ist, handelt man sich, wenn man eine quadruple Arith-
metik bereitstellt, Ubertragungsprobleme fiir Daten zwischen Maschinen verschiedener
Hersteller ein. Bei der Festkommal6sung treten solche Probleme nicht auf, da es nur ein
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Datenformat, namlich double precision, gibt. Eine quadruple Arithmetik wird damit
als einfacher Fall einer mehrfach genauen Arithmetik realisiert, und zwar auf der Basis
des Datenformates double precision. Eine mehrfach genaue Zahl (vom Typ staggered)
wird als array von double precision Variablen dargestellt. Der Wert einer Variablen vom
Typ staggered ist die Summe der Komponenten. Die Addition solcher Zahlen erfolgt
im langen Akkumulator. Die Multiplikation ist nichts anderes als ein Skalarprodukt.

Ein scheinbarer Vorteil der Akkumulation von double precision Produkten in qua-
druple precision besteht darin, dafl viele Benutzer glauben, sich sofort etwas darunter
vorstellen zu koénnen. Diese Vorstellung kann und wird allerdings von Benutzer zu
Benutzer verschieden ausfallen. Normalerweise wird ein Benutzer zunéchst glauben,
daB ein volles Datenformat quadruple precision mit allen vier Grundoperationen zur
Verfiigung steht. Dadurch entsteht ein Druck auf die Hersteller, wesentlich mehr als
unbedingt notwendig in die Hardware hineinzupacken — eben eine volle quadruple
Arithmetik einschlieBlich der zugehérigen Standardfunktionen. Damit wird weit iiber
das Notwendige, Niitzliche und Wesentliche hinausgegangen.

Der Typ staggered als ein array von double precision reals ist wesentlich lei-
stungsféhiger als der Typ quadruple precision, weil er praktisch eine dynamische pre-
cision bereitstellt.

7 Wieviel lokalen Speicher braucht man auf der Arithmetik-
einheit?

Braucht man fiir spezielle Anwendungen mehrere lange Akkumulatoren auf der Arith-
metikeinheit? Mit der gleichen Argumentation, welche bei reellen Punktproblemen
einen langen Akkumulator fordert, verwendet man bei komplexen Punktproblemen
zweckméBigerweise zwei lange Akkumulatoren. Dies halbiert den Aufwand bei der Da-
tentibertragung in die Arithmetikeinheit. Dann lassen sich komplexe Skalarprodukte
immer korrekt ausfithren. Der zweite Akkumulator vergroflert nur den lokalen Speicher
auf der Arithmetikeinheit. Die Steuerung und der Befehlssatz brauchen nur geringfiigig
ergianzt zu werden. Wenn auf der Arithmetikeinheit geniigend Speicher fiir zwei lan-
ge Akkumulatoren zur Verfiigung steht, kann man auch Intervallskalarprodukte im-
mer unter Verwendung von zwei langen Akkumulatoren aufsummieren. Das Ergebnis
wird dabei in der Regel nicht wesentlich besser ausfallen, als wenn man die beiden
Schranken des Ergebnisses in quadruple precision aufsummiert. Es treffen aber wie-
der alle Nachteile zu, welche bereits oben fiir quadruple precision aufgelistet wurden.
Die Akkumulation von Intervallskalarprodukten in quadruple precision wére daher al-
ler Voraussicht nach langsamer als mit zwei langen Akkumulatoren; auflerdem werden
sich die bei den Additionen in quadruple precision anfallenden Rundungsfehler in den
Schranken akkumulieren, wahrend bei der Akkumulation von Intervallskalarprodukten
im langen Akkumulator keine Rundungsfehler auftreten und somit das Ergebnis in der
Regel genauer ausféllt als eine entsprechende Akkumulation in quadruple precision. Bei
Festkommaakkumulation werden die Schranken des Ergebnisses nur ganz am Schlufl
der Rechnung ein einziges Mal gerundet.
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8 Optimales Skalarprodukt bei Multi-User-Systemen

Bei der Festkommaakkumulation im langen Akkumulator tritt stets die Frage auf, wie
Kontextwechsel behandelt werden sollen. Diese Frage 148t sich dadurch beantworten,
dafl man hinreichend viel lokalen Speicher fiir mehrere lange Akkumulatoren auf der
Arithmetikeinheit bereitstellt. Der hyperstone, ein deutscher DSP (Digital Signal Pro-
zessor), stellt auf der Arithmetikeinheit 8 KByte lokalen Speicher zur Verfiigung. Dies
reicht aus fiir etwa sieben lange Akkumulatoren fiir das TEEE-Datenformat double
precision. Bei Kontextwechsel, welcher einen langen Akkumulator benétigt, wird ein-
fach ein neuer Akkumulator erdffnet. Dadurch erledigt sich das Auslagern von Zwi-
schenergebnissen. In [5] werden verfeinerte Techniken zur Handhabung des optimalen
Skalarproduktes in Multi-User-Systemen behandelt.

9 Bedeutet der lange Akkumulator eine Riickkehr zur
Festkommaarithmetik?

Die Antwort auf diese Frage lautet nein. Finfache Gleitkommaoperationen werden nach
wie vor in Gleitkommaarithmetik ausgefithrt. Auch die Datenhaltung erfolgt nach wie
vor in Gleitkomma. Die Vorteile der Gleitkommaarithmetik, wie der Wegfall lastiger
Skalierungen bzw. deren Automatisierung, bleiben daher erhalten. Nur die Akkumula-
tion, die empfindlichste Operation in Gleitkomma, wird in Festkommaarithmetik aus-
gefithrt. Die Festkommaakkumulation von Gleitkommazahlen und -produkten verlduft
immer absolut fehlerfrei. Die Erweiterung der herkémmlichen Gleitkommaarithmetik
um die fiinfte Gleitkommaoperation, die Akkumulation von Gleitkommazahlen und
-produkten in Festkommaarithmetik, ist eine ideale Kombination von Fest- und Gleit-
kommaarithmetik, welche die Vorteile beider verbindet. Durch die Bereitstellung der
fiinften Gleitkommaoperation in Rechenanlagen erfahrt das bisherige arithmetische Re-
pertoire eine wesentliche Erganzung.

10 Ist das Datenformat double precision ein natiirliches
Datenformat?

Es stellt sich noch die Frage, ob das Datenformat double precision fiir heutigentags
zu losende Probleme ein natiirliches Datenformat ist oder ob es uns durch die heutige
Technologie aufoktroyiert wird. Die Daten kénnen bei vielen Ingenieurproblemen mit
etwa vier bis sechs dezimalen Ziffern hinreichend genau beschrieben werden. Trotzdem
rechnen alle Ingenieure ihre Probleme praktisch immer in double precision, was etwa
16 dezimalen Ziffern entspricht. Man kann wohl davon ausgehen, dafl bei Verfiigbarkeit
einer gleichschnellen, vollstandigen quadruple Arithmetik alle Anwender sofort diese
quadruple Arithmetik einsetzen und verwenden wiirden. Wenn es jemandem geldnge,
ein gepacktes Datenformat zu erfinden, welches es erlaubt, mit 100 dezimalen Ziffern
genauso schnell zu rechnen wie mit double precision, wiirde jeder sofort dieses gepack-
te Datenformat verwenden. Dies ist auch gerechtfertigt; denn die korrekte Rechnung
im Raume der reellen Zahlen wiirde mit infinite precision ablaufen. In der Intervall-
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rechnung wird gezeigt, dafl bei Erhéhung der precision die Ergebnisgenauigkeit i. allg.

zu-, keinesfalls aber abnimmt. In diesem Sinne ist die heutige double Arithmetik nicht
natiirlich und nicht optimal den heutigen Problemen angepaft. Uber den langen Akku-
mulator wird dem Benutzer in Form des Datenformates staggered in gewissen Grenzen
auf einfache Weise eine dem Problem anpafibare Arithmetik mit dynamischer Genauig-
keit bereitgestellt, welche auf der double Arithmetik aufbaut. Der Datentyp staggered
ermoglicht es, an beliebigen, ausgewahlten Stellen im Programm die precision in gewis-
sen Grenzen zu erhéhen oder zu erniedrigen. Der Benutzer kann sich die Genauigkeit
aussuchen, welche seinem Problem angepaft ist. Im Rechner gibt es nur ein (standardi-
siertes) Gleitkommadatenformat, ndmlich double precision. Auf diese Weise baut eine
natiirliche (dynamische) Arithmetik auf nur einer vorhandenen standardisierten Gleit-
kommaarithmetik auf, was seinerseits auch die Bedeutung eines derartigen Standards
unterstreicht.
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