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4 Ulrich Kulisch

Zusammenfassung

Die fiinfte Gleitkommaoperation: Seit Ende der 70er Jahre sind an verschiedenen Institutionen
Programmiersprachen, zugehorige Compiler, aber auch Hardwareprozessoren entwickelt worden, wel-
che aufler den vier Gleitkommaoperationen noch eine funfte Gleitkommaoperation bereitstellen, und
zwar die Akkumulation von Gleitkommazahlen und -produkten in Festkommaarithmetik. In Gleit-
kommaarithmetik ist die Akkumulation eine sehr empfindliche Operation. Mit dieser neuen Operation
konnen Skalarprodukte, Matrizenprodukte usw. in infinite precision Arithmetik immer vollig fehlerfrei
berechnet werden, was eine Fehleranalyse bei diesen Operationen uberfliissig macht. Es sind viele Al-
gorithmen entwickelt worden, welche diese neue Operation systematisch anwenden. Bei anderen wird
die Grenze der Anwendbarkeit durch Gebrauch dieser Operation hinausgeschoben. Dartiber hinaus
beschleunigt das optimale Skalarprodukt die Konvergenz von Iterationsverfahren. Dennoch wird im-
mer wieder die Frage gestellt, ob diese Operation uiberhaupt notwendig ist. Die folgende Abhandlung
versucht diese und damit zusammenhangende Fragen zu beantworten.

Abstract

The Fifth Floating-Point Operation: Programming languages, accompanying compilers and even
hardware which, apart from the four floating-point operations, provide an additional fifth floating-
point operation, namely the accumulation of floating-point numbers and products in fixed-point arith-
metic, have been developed at many institutions since the end of the seventies. Accumulation of num-
bers is the most sensitive operation in floating-point arithmetic. By that operation scalar products of
floating-point vectors, matrix products etc. can be computed without any error in infinite precision
arithmetic, making an error analysis for those operations superfluous. Many algorithms applying that
operation systematically have been developed. For others the limits of applicability are extended by
using that fifth operation. Furthermore, the optimal dot product speeds up the convergence of iter-
ative methods. Nevertheless, the question whether that operation is really necessary is often asked.
The following treatise aims at answering that and related questions.

1 A Brief History

Floating-point arithmetic is used since the early forties and fifties (Zuse 73, 1941).
Technology in those days was poor (electro-magnetic relays, electron tubes). It was
complex and expensive. Thus, it was considered to be sufficient to yield or get a
somewhat correct floating-point number as a result of an operation of two floating-
point operands. For more complicated expressions an error analysis was left to and
put on the shoulder of the user.

About 25 years ago a general mathematical theory of computer arithmetic was
developed. It was realized in this context that it is appropriate to provide, apart
from the four basic floating-point operations, a fifth floating-point operation for the
computation of scalar products with maximum accuracy according to the principle of
semimorphism [19], [20]. The first solution methods that have been proposed were of
an algorithmic nature. About 20 years ago it was discovered that the problem can be
solved in software and in hardware in an elegant manner if the products of the vector
components are accumulated into a fixed-point register that covers the full floating-
point range to the double floating-point exponent. Since that time it was desirable to
develop and build a coprocessor in VLSI-technology.
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In a floating-point system the number of mantissa digits as well as the exponent
range are finite. Therefore, the fixed-point register is finite as well and it is relatively
small, consisting of about 1000 to 4000 bits depending on the data format in use. So we
have the seemingly paradox and striking situation that dot products of floating-point
vectors with even millions of components can be computed to a fully accurate result in
infinite precision arithmetic using a relatively small finite local register memory on the
arithmetic unit. The dot product is a fundamental operation in linear algebra. A fully
accurate dot product eliminates many rounding errors in numerical computations. It
stabilizes these computations and speeds them up as well.

In the following years the functionality of the optimal scalar product with sev-
eral roundings was integrated into various computer languages (ACRITH-XSC [15],
PASCAL-XSC [16], C-XSC [17]) by means of a software simulation via integer arith-
metic. In combination with interval arithmetic, algorithms for numerous numerical
problems were developed in short time by which computers could prove both existence
and uniqueness of the computed solution, as well as deliver bounds for the solution
with high accuracy [9], [10], [18]. It turns out that many iterative methods reach the
desired accuracy faster if all dot products are evaluated in infinite precision arithmetic
to full accuracy or with only one final rounding [23], [25], [26]. Nevertheless, till today
there is no commercial VLSI coprocessor available for the computation of the optimal
scalar product.

One reason for this certainly is the fact that 20 years ago the technology as well
as the design tools were not powerful enough to solve the problem. An enforced so-
lution would have been very expensive (tens of millions of dollars). A well balanced
design does not only depend on the mathematical solution but also on many bound-
ary conditions such as bandwidth of the data bus, connection to the main processor,
coordination with the arithmetic unit of the main processor, architecture and speed
of the main processor. Moreover, development tools and production technology play
an important role. These multiple dependencies kept many competent and interested
scientists and manufacturers from tackling the problem in VLSI technology.

In 1987 GAMM! published a resolution that criticized the mathematically not ad-
equate execution of matrix and vector operations on vector processors and demanded
an amendment. In 1993 GAMM and IMACS? approved and published a Proposal for
Accurate Floating-Point Vector Arithmetic [6] where a mathematically correct execu-
tion of matrix and vector operations, in particular of scalar products, is demanded and
required for any computer. The proposal indicates solution methods (see also [1], [5],
[12], [28]). In 1995 the IFIP-Working Group 2.5 on Numerical Software endorsed this
proposal. Meanwhile it became a KU-Guideline.

LGAMM = Gesellschaft fiir Angewandte Mathematik und Mechanik
2IMACS = International Association for Mathematics and Computers in Simulation
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2 State of the Art

In 1992 three institutes at Karlsruhe, Hamburg and Stuttgart® got funding (approxi-
mately 900 000 DM) from the VW-Stiftung for a project, that aimed at the construction
of a VLSI vector arithmetic coprocessor for the PC. The project was supposed to be
done within a two-year term (January 1993 to December 1994). At Karlsruhe 3, at
Hamburg 1 and at Stuttgart 2 scientists were working on the project. A VLSI vec-
tor arithmetic coprocessor XPA 3233 was developed and manufactured in the 0.8 ym
CMOS gate array technology of the IMS. The processor can be connected with PCs
via the currently available 33 MHz 32-bit wide PCI-bus. It is the first vector arith-
metic coprocessor on a chip. For instance in PASCAL-XSC [16] the coprocessor can
be addressed directly by the operator symbols for vector and matrix operations which
are provided by the language. On the computer the chip has two properties. It accel-
erates the computation and eliminates all rounding errors that occur in a conventional
accumulation. In a pipeline the three steps: read the two factors for the next product,
perform a multiplication and accumulate a product are executed simultaneously. In
comparison with conventional computation of the dot product in floating-point arith-
metic the execution speed thus is at least doubled. By the time of completion the XPA
computed scalar products faster than any commercially available microprocessors with
conventional floating-point arithmetic, although those were normally manufactured in
a far more refined and advanced technology. In contrast to these, the XPA 3233 al-
ways provides the correct result with full accuracy or with only one single rounding
at the end. Compared to software implementations of the optimal scalar product in
PASCAL-XSC, ACRITH-XSC and C-XSC the XPA yields a speedup by an order of

two magnitudes [5].

3 Definition of Terms

In the following the term precision refers to the number of digits used during a compu-
tation while the term accuracy refers to the accuracy of the final result. By double or
more complete double precision we understand a 64 bit floating-point word for instance
according to the IEEE-arithmetic standard 754 [3]. Quadruple or quadruple preci-
ston describes a 128 bit floating-point format. Long accumulator denotes a fixed-point
format that suffices to sum up products of double precision floating-point numbers
without loss of information. The corresponding accumulation process is simply called
fixed-point accumulation. Actually in case of the IEEE arithmetic standard 754 the
long accumulator consists of local memory on the arithmetic unit of 67 words of 64 bits.
Quadruple accumulator denotes a computer register, that suffices to sum up quadruple
precision floating-point numbers in floating-point arithmetic with a rounding error of
at most 1/2 or 1 ulp (unit in the last place) after each addition.

In the XSC-languages [15], [16], [17] in addition to the numerical data type real and
many additional numerical data types an array type staggered (staggered precision)

3Institut fiir Angewandte Mathematik der Universitat Karlsruhe (IAM) (Prof. U. Kulisch)
Arbeitsbereich Technische Informatik, TU Hamburg-Harburg (TUHH) (Prof. T. Teufel)
Institut fiir Mikroelektronik Stuttgart (IMS) (Prof. B. Hofflinger)
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is available. A variable of the type staggered consists of an array of variables of the
type of its components. Components of the staggered type can be of type real or of
type interval. The value of a variable of type staggered is the sum of its components.
Sums of variables of the type staggered can be computed easily in the long accumulator
and products of two variables of this type can be computed by means of the optimal
dot product. Quotients are computed iteratively. The staggered type is controlled
by a global variable stagprec. If stagprec = 1, the staggered type is identical to its
component type. If, for instance, stagprec = 4 each variable of this type consists of an
array of four variables of its component type. Again its value is the value of the sum
of its components. In this case the variable has, in general, four times the precision
of its components. The global variable stagprec can be incremented or decremented at
arbitrary places in a program. The standard functions for the type staggered are already
available in Karlsruhe for the component types real and interval (see the papers of K.
Braune and W. Kramer in [22]). In the case stagprec = 2 a data type is encountered
that is occasionally denoted as double-double or quadruple precision.

4 A Frequently Quoted Remark by C. F. Gauss

To C. F. Gauss we owe the remark: Der Mangel an mathematischer Bildung gibt sich
durch nichts so auffallend zu erkennen, wie durch maflose Scharfe im Zahlenrechnen
(There is nothing that reveals the lack of mathematical scholarship more conspicuously
than the use of excessive precision when computing with numbers).

Many a numerical analyst feels urged by this remark to compute as many problems
as possible in a short precision. He is proud to solve his problems satisfactorily executing
the entire computation including all scalar products in double, perhaps even in single
precision. If this leads to success, this method is, of course, legitimate and there is no
objection against it.

It is also often concluded from the above remark that a correct scalar product is
not needed on the computer and, consequently, should not be provided. The usual
way to compute scalar products in floating-point arithmetic is considered to be easier
since superfluous digits do not have to be carried along. This conclusion is completely
wrong. [t is due to an insufficient knowledge and familiarity with the technology and
implementation techniques which are available today, on the side of mathematicians.
The engineer on the other hand, who is familiar with these techniques is not aware of
the consequences for mathematics.

The remark by C. F. Gauss is now more than 150 years old. It fits into the time of
Gauss where any computation had to be executed manually and each digit that needed
not to be considered meant an enormous ease of work. The slow manual computation
allowed, as a rule, to perform a simultaneous error analysis or at least an error estimate.

Today we have a completely different situation which could not at all be foreseen or
anticipated at the time of Gauss. Fast processors today are capable to execute a billion
arithmetic operations in each second. This number exceeds the imagination of any user.
The available technology (millions of transistors on a single chip) is extremely powerful.
It allows solutions which even an experienced computer user is totally unaware of.
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For all kinds of computers such as PCs, workstations, mainframes and supercom-
puters there are available circuitries for the computation of the optimal dot product
where virtually no computation time for the arithmetic is needed. In a pipeline, the
arithmetic can be done within the time the processor needs to read the data into the
arithmetic unit. This means, among others, that no other method to compute scalar
products can be faster. This includes, in particular, floating-point arithmetic. Techni-
cally, the process of an always correct accumulation of scalar products in a fixed-point
register, though different, is by no means more complicated than a hardware accumula-
tion in floating-point arithmetic. The basic building blocks for both kinds of arithmetic
such as shifter, multiplier, adder and rounding unit, are very similar. Fixed-point ac-
cumulation only needs an additional small local memory on the arithmetic unit. Many
intermediate steps that are necessary when doing floating-point accumulations such as
normalization, rounding, composition into a floating-point number and decomposition
into mantissa and exponent for the next operation do not occur when doing fixed-point
accumulations.

A relatively complex arithmetic operation such as the scalar product of floating-
point numbers which can be executed always correctly with moderate technical effort
in today’s technology should indeed always be executed correctly. In any case, this is
the way C. F. Gauss would do it today. An error analysis thus becomes superfluous for
this additional basic operation once and for all. In addition to that, always the same
results are obtained for this operation on different platforms. Computer applications
nowadays are of immense variety. Any discussion of the question where this is favorable
or not is useless and superflouos. Expanding the arithmetic unit of the computer by the
optimal scalar product creates a far more powerful and capable computer. This new
and always absolutely reliable operation can be applied favorably in many algorithms
and places.

5 Problems with Inaccurate and with Accurate Data

In numerical analysis for more than fifty years floating-point arithmetic is used almost
exclusively. This has formed the way of our thinking. Now, it turns out to be difficult
to shake off usual and well trained methods, skills and schemes of thinking. During
that time the so-called backward error analysis was often the only practicable way
to perform an error analysis of numerical algorithms. There, a computed solution is
viewed as the correct solution to a problem with modified input data. If the latter are
close to the given input data of the problem, an algorithm is called well behaved or a
problem is called well conditioned.

This scheme of thinking implies the imagination that, in fact, never the given prob-
lem is solved but always a problem in its neighborhood or surrounding. This suggests
the assumption that absolute accuracy in the data is not significant and that, in princi-
ple, one always has to deal with problems with inexact data. For well behaved problems
this assumption is quite legitimate. In fact, computations are often based on uncertain
assumptions. For instance, measured data are used in a computation, the accuracy
of which is not known, or the mathematical model has to be simplified drastically in
order to make the computation possible at all. When treating differential equations
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numerically, discretization errors can be far greater than computational inaccuracies.
For many applications a great number of similar computations are performed. Based
on experience or experimental measurements one can trust simple floating-point com-
putation.

For such problems, one can prove often mathematically by means of the backward
error analysis that simple floating-point arithmetic suffices to compute a satisfactory
solution. Because of the high frequency of the occurance of such well behaved problems,
many users are not aware of the necessity of highly accurate computations. Any im-
provement of simple floating-point arithmetic is considered to be superfluous. An exact
scalar product has not been employed so far. Consequently, one believes that it is not
needed and it is not demanded. Due to this ignorance, it is overlooked that an optimal
scalar product is simpler and that it runs faster than the traditionally used summation
loop in floating-point arithmetic, so that even well conditioned computations can profit
from it.

However, not all numerical problems are of the above described harmless nature.
Actually this is only one side of the medal. On the other side is the large class of
problems with exact data. Also problems with small but safe intervals in the data
belong to this class. In mathematical modeling, for instance, one usually assumes
exact input data. The model only can be improved systematically if the computational
error can be virtually excluded. Moreover, many inherent mathematical problems have
exact input data. This is true e.g. for weights and nodes of numerical quadrature and
cubature formulas, for coefficients of discretization formulas, for coefficients that arise,
when computing zeros of polynomials, or when computing eigenvalues of matrices or of
differential operators. In computer algebra, as a rule, problems with exact input data
are considered and treated. There the computation is performed whenever possible,
exactly i.e. with a very large number of digits. This can involve a very high overhead
of computation time. A numerical computation of these problems with floating-point
arithmetic that yields certain and sufficiently exact bounds for the solution will run,
in general, much faster.

Computers are getting ever faster. With increasing speed problems to be dealt with
become larger. Instead of two-dimensional problems users would like to solve three-
dimensional problems. A discretization of 100 steps in each one of three coordinate
directions leads to a system of equations of 1 million unknowns. The Gauss elimination
method requires the magnitude of O(n?) operations. If n = 10° then n® is so large that
a GIGAFLOPS computer would need many years to solve such a system. Therefore
large systems of linear equations are to be solved iteratively with less than n® arithmetic
operations. The basic operation of iterative methods (Jacobi method, Gauss-Seidel
method, overrelaxation method, conjugate gradient method, Krylov space methods,
multigrid methods and others like the QR method for the computation of eigenvalues)
is the matrix-vector multiplication which consists of a number of dot products. It is
well-known that finite precision arithmetic often deteriorates the convergence of these
methods [7], [8], [11], [23], [25], [26], [29]. An iterative method which converges to
the solution in infinite precision arithmetic usually converges much slower or even
can diverge in finite precision arithmetic. Fixed-point accumulation of dot products
of floating-point vectors is absolutely error free and it is faster than a conventional
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computation in floating-point arithmetic. An error free computation of dot products
speeds up the rate of convergence for many iterative methods. In many applications the
data of the problem are exact (coefficients of discretization formulas). They are fed back
into the computation at each step of the iteration. So a highly accurate computation
really makes sense. The components of a matrix-vector product can easily be rounded
into a variable of type staggered to two-, three- or four-fold accuracy, and used further
in the algorithm. This increases the run-time only marginally.

By interval arithmetic and the optimal dot product modern numerical analysis has
got new tools which allow new solution methods for numerical problems. Examples:
The new methods for global optimization and for automatic differentiation [1], [9], [10],
[18]. For the reverse mode of automatic differentiation, the memory overhead and the
spatial complexity can be significantly reduced by the optimal dot product. There the
dot product is considered as a single basic operation in the vector spaces [28].

Often these tools allow a productive forward error analysis by the computer itself.
Examples: numerical quadrature and cubature [1], numerical integration of ordinary
differential equations and of integral equations [1], applications in computer geometry
such as the safe computation of the intersection of two surfaces [27] or definite answers
to questions of coincidence [22].

Furthermore, these tools often allow an a posteriori error analysis by means of the
computer. This process is called automatic result verification or validation of results.
Examples: Highly accurate inclusion of the solution of linear and non-linear systems of
equations [9], [10], [18], [21], linear and non-linear optimization problems [18], [22]. The
final verification step can fail which happens only very rarely. But it is detected by the
computer itself. Then computation with higher precision often leads to success. The
staggered data type is the appropriate tool for this purpose. Its arithmetic operations
are realized by means of the optimal dot product [1], [18].

The question how many digits of a defect can be guaranteed with single, double or
extended precision arithmetic has been carefully investigated. With the optimal dot
product the defect can always be computed to full accuracy.

Many problem solving routines of the XSC-languages (PASCAL-XSC, ACRITH-
XSC, C-XSC, FORTRAN-XSC) are available also for (narrow) interval data. Special
routines allow to read data as intervals. If a user does not make use of these possibilities
and enters all data as point data (computer reals) one may conclude that he/she is
of the opinion that the data are represented precisely enough to full accuracy in the
machine. Highly accurate problem solving routines for problems with exact point data
(of infinite accuracy) therefore, are worth-while.

For the solution of problems with exact point data with guaranteed high accuracy,
fixed-point accumulation in a long accumulator is often required and clearly superior
to floating-point accumulation. Example: Eigenvalues of Zielke matrices can be always
computed correctly by means of the long accumulator.
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6 Accumulation of Floating-Point Numbers and Products in
Quadruple-Precision Floating-Point Arithmetic

The scalar product is a central operation in Numerical Analysis. It occurs in complex
arithmetic, matrix and vector arithmetic, defect correction methods, range reduction
when computing elementary functions, multiple precision arithmetic and many other
places. By means of an optimal dot product all operations of the usual product spaces of
numerical analysis can be provided with maximum accuracy according to the principle
of semimorphism [19], [20]. Among these spaces are the real and complex floating-
point numbers, the real and complex floating-point intervals as well as the vectors and
matrices over these four basic data types. By semimorphism the real and complex
vector spaces and the corresponding interval spaces are mapped to their floating-point
subspaces best possible with respect to their algebraic structure. The order structure
can very well be preserved.

New programming languages like Fortran 90 or C4++ provide the scalar product as
a fundamental operation (operators matmul and dotproduct). Similarly an optimal dot-
product can be embedded in and provided by table calculation programs and computer
algebra packages.

In the XSC-languages and by the XPA 3233, floating-point numbers and products
of floating-point numbers are accumulated into a long fixed-point word (long accumu-
lator). Doing so, no information is lost. Since the final result is almost always rounded
to a double precision floating-point number, often the question is asked whether this
is really necessary, and whether it would not suffice to accumulate the double length
products of floating-point numbers in quadruple precision floating-point arithmetic.
For such an addition an accumulator is needed which is only slightly longer than this
quadruple precision format. We are now going to compare these two accumulation
methods. Weighting up the pros and cons of both methods shows definite advantages
for the fixed-point accumulation.

The computation of the scalar product of two floating-point vectors in the long
accumulator is the only floating-point operation that always yields a totally correct
result. Compared to this, an accumulation of products of floating-point numbers in a
quadruple accumulator can occasionally yield a wrong result. Therefore, the user has
to ponder the computational error whenever such an operation is executed. With the
long accumulator, an error estimate is never needed, the result is always correct.

The long accumulator is far easier to handle than a quadruple accumulator, because
the long accumulator only operates on one data format which is double precision. The
quadruple accumulation, on the other hand, has to cope with two different formats,
double and quadruple precision. Only very few additional machine instructions are
needed for computation of the optimal scalar product by fixed-point accumulation in
the long accumulator. For the quadruple accumulation, instructions for mixed types
have to be provided as well. Thus, more opcodes are needed.

So far experience with different technologies (assembler, microcode, bit-slice-
technology, VLSI) has shown that fixed-point accumulation of double precision prod-
ucts is faster and simpler than double precision floating-point accumulation in the
traditional manner. An accumulation of double length products of double precision
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variables in quadruple precision is very likely to run slower than the traditional double
precision floating-point accumulation. The fixed-point accumulation only needs two
instructions: shift and accumulate. The exponent of the product provides the ad-
dress for its addition. In case of floating-point accumulation many intermediate steps
have to be performed additionally. The following steps are necessary: decomposition
of operands, shift, addition, normalization, rounding, composition to a floating-point
number, decomposition into mantissa and exponent for the next operation et cetera.
Compared to that fixed-point accumulation is simpler. It only needs a shift and an
addition. Rounding is performed only once at the very end.

When computing scalar products, the products of floating-point numbers that are
to be accumulated are only of double length. Therefore the adder required for the
fixed-point accumulation is of the same order as the adder for the quadruple precision
accumulation. The long accumulator only has to be kept as local memory on the
arithmetic logical unit. In case of the IEEE arithmetic data format double the long
accumulator consists of 67 words of memory of 64 bits, [1], [5], [12], [30], [31].

The long accumulator that is used for the fixed-point accumulation covers the full
double exponent range and some additional guard digits. Thus an overflow or under-
flow in a scalar product computation can never happen. For the quadruple precision
accumulation the data format is not uniquely defined. It can be a double double word
or a genuine quadruple format. Thus, with different manufacturers, different results
can be obtained when doing accumulation with quadruple precision. When a quadruple
format is realized as a double double format, only the double precision exponent range
is available and underflow or overflow of exponents can easily occur. Thus, when com-
puting, many plus or minus infinity or NaN results are obtained, that yield virtually
no information. Since quadruple arithmetic is not precisely defined, when transfer-
ring data between machines from different manufacturers problems are very likely to
occur, if a quadruple accumulation is provided. These problems do not arise with a
fixed-point accumulation since it uses only one format, i.e. double precision. With
the long accumulator a quadruple arithmetic is treated as a simple case of a multi-
ple precision (staggered) arithmetic based on the double precision format. A multiple
precision number (of staggered format) is represented as an array of double precision
components. The value of a number of type staggered is the sum of its components.
Addition of such numbers is performed within the long accumulator. Multiplication is
simply a sum of products.

One advantage of quadruple precision accumulation of products of double precision
numbers seems to be, that many users believe they immediately can imagine what
this means. Yet, the idea of it can be different from user to user. Normally, a user
will believe, that a full quadruple precision format with all four basic operations is
provided. This imagination will finally put pressure on the manufacturers, to include
far more with their hardware, than is actually necessary. That is, simply, to provide
a full quadruple arithmetic including appropriate standard functions. By this, the
necessary, useful and essential system features are fairly exceeded.

On the other hand, the staggered type as an array of double precision reals or
intervals is far more powerful than the quadruple precision type, since it provides a
dynamic precision.
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7 How Much Local Memory is Needed on the Arithmetic
Unit?

Are there several long accumulators needed on the arithmetical logical unit for special
applications? By the same argumentation that demands one long accumulator for real
point problems, two long accumulators are suitably used for complex point problems.
Thus, the overhead of data transfer to the arithmetic unit is halved. Complex scalar
products, then, can be always executed correctly. For the second accumulator, merely
the required local memory on the arithmetic unit has to be increased. Nothing else
has to be changed on the arithmetic unit. If there is enough memory available for
two long accumulators on the arithmetic unit, interval scalar products can be summed
up as well using always two long accumulators. In general the bounds obtained this
way will only be gradually better than those obtained by accumulating the interval
bounds with quadruple precision. But all the disadvantages listed above for quadruple
precision accumulation apply again. Thus, in all probability, accumulation of interval
scalar products with quadruple precision is slower than with two long accumulators.
Furthermore, the accumulation result of interval scalar products is liable to be more
accurate than a corresponding quadruple precision accumulation, since unnecessary
rounding errors that occur with quadruple precision additions are not accumulated.
When doing fixed-point accumulation of intervals, the bounds of the result are only
rounded once at the end of the computation.

8 Optimal Scalar Product for Multi-User Systems

In connection with fixed-point accumulation usually the question arises what has to be
done in case of a context-switch or an interrupt. This problem can easily be solved by
providing enough local memory for several long accumulators on the arithmetic unit.
The Hyperstone, a German DSP (Digital Signal Processor), provides 8 KByte of local
memory on the arithmetic unit. This is enough for about seven long accumulators for
the IEEE arithmetic format double precision. If a context switch requires another long
accumulator simply a new accumulator is allocated. Thereby, swapping of intermediate
results is avoided. In [5], refined techniques for handling optimal scalar products in
multi-user systems are dealt with and presented.

9 Does the Long Accumulator Mean a Return to Fixed-
Point Arithmetic?

The answer to this question is strictly no. Simple floating-point computations are still
performed by floating-point arithmetic. All data are still stored in the floating-point
format. The advantages of floating-point arithmetic such as the abendening of tiresome
(problem) scalings, i.e. their automatization, still apply. Only accumulation, the most
sensitive floating-point operation, is performed by fixed-point arithmetic. Fixed-point
accumulation of floating-point numbers and products is absolutely error free. Extend-
ing traditional floating-point arithmetic by the fifth floating-point operation, which is
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accumulation of floating-point numbers and products in fixed-point arithmetic, means
an ideal combination of fixed- and floating-point arithmetic, combining the advantages
of both. Providing the fifth floating-point operation on computers, expands essentially
their traditional arithmetical repertoire.

10 Is the Double Precision Format a Natural Format?

There still remains the question whether the double precision format of our days is a
natural format for the problems that are to be solved today, or whether it is imposed by
today’s technology. Data used in engineering problems, in general, can be represented
precisely enough by about four to six decimal digits. Nevertheless, every engineer com-
putes his problems virtually always with double precision, which corresponds to about
16 decimal digits. If a complete and equally fast quadruple arithmetic were available,
it can be expected that all users would immediately employ and use this quadruple
arithmetic. If someone would invent a packed format that allows to compute with hun-
dred decimal digits as fast as with double precision, everybody would immediately use
this packed format. And this is justified, since correct computation in the space of real
numbers would be carried out with infinite precision. In interval arithmetic it is shown
that increasing the precision also increases the accuracy of the result or at least does
not decrease it. In this sense, today’s double arithmetic is neither naturally nor opti-
mally adjusted to our problems. By means of the long accumulator, in the form of the
staggered format a dynamic precision is provided to the user. Within certain bounds,
the arithmetic can be adjusted to the needs of the problem. The staggered type allows
to increase or decrease precision within certain bounds at arbitrary places of a pro-
gram. The user or the computer itself can choose the precision which optimally fits to
his problem. On the computer, there is only one (standardized) floating-point format
that is double precision. Thus, a natural (dynamic) arithmetic is built upon only one
existing standardized floating-point arithmetic. This, in return, strongly emphasizes
the meaning of a double precision floating-point arithmetic standard.
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