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4 Ulrich Kulisch

Zusammenfassung

Die f�unfte Gleitkommaoperation: Seit Ende der 70er Jahre sind an verschiedenen Institutionen
Programmiersprachen, zugeh�orige Compiler, aber auch Hardwareprozessoren entwickelt worden, wel-
che au�er den vier Gleitkommaoperationen noch eine f�unfte Gleitkommaoperation bereitstellen, und
zwar die Akkumulation von Gleitkommazahlen und -produkten in Festkommaarithmetik. In Gleit-
kommaarithmetik ist die Akkumulation eine sehr emp�ndliche Operation. Mit dieser neuen Operation
k�onnen Skalarprodukte, Matrizenprodukte usw. in in�nite precision Arithmetik immer v�ollig fehlerfrei
berechnet werden, was eine Fehleranalyse bei diesen Operationen �uber
�ussig macht. Es sind viele Al-
gorithmen entwickelt worden, welche diese neue Operation systematisch anwenden. Bei anderen wird
die Grenze der Anwendbarkeit durch Gebrauch dieser Operation hinausgeschoben. Dar�uber hinaus
beschleunigt das optimale Skalarprodukt die Konvergenz von Iterationsverfahren. Dennoch wird im-
mer wieder die Frage gestellt, ob diese Operation �uberhaupt notwendig ist. Die folgende Abhandlung
versucht diese und damit zusammenh�angende Fragen zu beantworten.

Abstract

The Fifth Floating-PointOperation: Programming languages, accompanying compilers and even
hardware which, apart from the four 
oating-point operations, provide an additional �fth 
oating-
point operation, namely the accumulation of 
oating-point numbers and products in �xed-point arith-
metic, have been developed at many institutions since the end of the seventies. Accumulation of num-
bers is the most sensitive operation in 
oating-point arithmetic. By that operation scalar products of

oating-point vectors, matrix products etc. can be computed without any error in in�nite precision
arithmetic, making an error analysis for those operations super
uous. Many algorithms applying that
operation systematically have been developed. For others the limits of applicability are extended by
using that �fth operation. Furthermore, the optimal dot product speeds up the convergence of iter-
ative methods. Nevertheless, the question whether that operation is really necessary is often asked.
The following treatise aims at answering that and related questions.

1 A Brief History

Floating-point arithmetic is used since the early forties and �fties (Zuse Z3, 1941).
Technology in those days was poor (electro-magnetic relays, electron tubes). It was
complex and expensive. Thus, it was considered to be su�cient to yield or get a

somewhat correct 
oating-point number as a result of an operation of two 
oating-
point operands. For more complicated expressions an error analysis was left to and

put on the shoulder of the user.

About 25 years ago a general mathematical theory of computer arithmetic was
developed. It was realized in this context that it is appropriate to provide, apart

from the four basic 
oating-point operations, a �fth 
oating-point operation for the
computation of scalar products with maximum accuracy according to the principle of

semimorphism [19], [20]. The �rst solution methods that have been proposed were of

an algorithmic nature. About 20 years ago it was discovered that the problem can be
solved in software and in hardware in an elegant manner if the products of the vector
components are accumulated into a �xed-point register that covers the full 
oating-

point range to the double 
oating-point exponent. Since that time it was desirable to

develop and build a coprocessor in VLSI-technology.
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In a 
oating-point system the number of mantissa digits as well as the exponent

range are �nite. Therefore, the �xed-point register is �nite as well and it is relatively

small, consisting of about 1000 to 4000 bits depending on the data format in use. So we

have the seemingly paradox and striking situation that dot products of 
oating-point

vectors with even millions of components can be computed to a fully accurate result in

in�nite precision arithmetic using a relatively small �nite local register memory on the

arithmetic unit. The dot product is a fundamental operation in linear algebra. A fully

accurate dot product eliminates many rounding errors in numerical computations. It

stabilizes these computations and speeds them up as well.

In the following years the functionality of the optimal scalar product with sev-

eral roundings was integrated into various computer languages (ACRITH-XSC [15],

PASCAL-XSC [16], C-XSC [17]) by means of a software simulation via integer arith-

metic. In combination with interval arithmetic, algorithms for numerous numerical

problems were developed in short time by which computers could prove both existence

and uniqueness of the computed solution, as well as deliver bounds for the solution

with high accuracy [9], [10], [18]. It turns out that many iterative methods reach the
desired accuracy faster if all dot products are evaluated in in�nite precision arithmetic
to full accuracy or with only one �nal rounding [23], [25], [26]. Nevertheless, till today
there is no commercial VLSI coprocessor available for the computation of the optimal
scalar product.

One reason for this certainly is the fact that 20 years ago the technology as well
as the design tools were not powerful enough to solve the problem. An enforced so-
lution would have been very expensive (tens of millions of dollars). A well balanced
design does not only depend on the mathematical solution but also on many bound-
ary conditions such as bandwidth of the data bus, connection to the main processor,

coordination with the arithmetic unit of the main processor, architecture and speed
of the main processor. Moreover, development tools and production technology play
an important role. These multiple dependencies kept many competent and interested
scientists and manufacturers from tackling the problem in VLSI technology.

In 1987 GAMM1 published a resolution that criticized the mathematically not ad-

equate execution of matrix and vector operations on vector processors and demanded

an amendment. In 1993 GAMM and IMACS2 approved and published a Proposal for

Accurate Floating-Point Vector Arithmetic [6] where a mathematically correct execu-
tion of matrix and vector operations, in particular of scalar products, is demanded and

required for any computer. The proposal indicates solution methods (see also [1], [5],

[12], [28]). In 1995 the IFIP-Working Group 2.5 on Numerical Software endorsed this
proposal. Meanwhile it became a EU-Guideline.

1GAMM = Gesellschaft f�ur Angewandte Mathematik und Mechanik
2IMACS = International Association for Mathematics and Computers in Simulation
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2 State of the Art

In 1992 three institutes at Karlsruhe, Hamburg and Stuttgart3 got funding (approxi-

mately 900 000 DM) from the VW-Stiftung for a project, that aimed at the construction

of a VLSI vector arithmetic coprocessor for the PC. The project was supposed to be

done within a two-year term (January 1993 to December 1994). At Karlsruhe 3, at

Hamburg 1 and at Stuttgart 2 scientists were working on the project. A VLSI vec-

tor arithmetic coprocessor XPA 3233 was developed and manufactured in the 0.8 �m

CMOS gate array technology of the IMS. The processor can be connected with PCs

via the currently available 33 MHz 32-bit wide PCI-bus. It is the �rst vector arith-

metic coprocessor on a chip. For instance in PASCAL-XSC [16] the coprocessor can

be addressed directly by the operator symbols for vector and matrix operations which

are provided by the language. On the computer the chip has two properties. It accel-

erates the computation and eliminates all rounding errors that occur in a conventional

accumulation. In a pipeline the three steps: read the two factors for the next product,

perform a multiplication and accumulate a product are executed simultaneously. In

comparison with conventional computation of the dot product in 
oating-point arith-
metic the execution speed thus is at least doubled. By the time of completion the XPA
computed scalar products faster than any commercially available microprocessors with
conventional 
oating-point arithmetic, although those were normally manufactured in

a far more re�ned and advanced technology. In contrast to these, the XPA 3233 al-
ways provides the correct result with full accuracy or with only one single rounding
at the end. Compared to software implementations of the optimal scalar product in
PASCAL-XSC, ACRITH-XSC and C-XSC the XPA yields a speedup by an order of
two magnitudes [5].

3 De�nition of Terms

In the following the term precision refers to the number of digits used during a compu-

tation while the term accuracy refers to the accuracy of the �nal result. By double or
more complete double precision we understand a 64 bit 
oating-point word for instance
according to the IEEE-arithmetic standard 754 [3]. Quadruple or quadruple preci-

sion describes a 128 bit 
oating-point format. Long accumulator denotes a �xed-point

format that su�ces to sum up products of double precision 
oating-point numbers

without loss of information. The corresponding accumulation process is simply called

�xed-point accumulation. Actually in case of the IEEE arithmetic standard 754 the

long accumulator consists of local memory on the arithmetic unit of 67 words of 64 bits.
Quadruple accumulator denotes a computer register, that su�ces to sum up quadruple

precision 
oating-point numbers in 
oating-point arithmetic with a rounding error of
at most 1/2 or 1 ulp (unit in the last place) after each addition.

In the XSC-languages [15], [16], [17] in addition to the numerical data type real and
many additional numerical data types an array type staggered (staggered precision)

3Institut f�ur Angewandte Mathematik der Universit�at Karlsruhe (IAM) (Prof. U. Kulisch)
Arbeitsbereich Technische Informatik, TU Hamburg-Harburg (TUHH) (Prof. T. Teufel)
Institut f�ur Mikroelektronik Stuttgart (IMS) (Prof. B. H�o�inger)
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is available. A variable of the type staggered consists of an array of variables of the

type of its components. Components of the staggered type can be of type real or of

type interval. The value of a variable of type staggered is the sum of its components.

Sums of variables of the type staggered can be computed easily in the long accumulator

and products of two variables of this type can be computed by means of the optimal

dot product. Quotients are computed iteratively. The staggered type is controlled

by a global variable stagprec. If stagprec = 1, the staggered type is identical to its

component type. If, for instance, stagprec = 4 each variable of this type consists of an

array of four variables of its component type. Again its value is the value of the sum

of its components. In this case the variable has, in general, four times the precision

of its components. The global variable stagprec can be incremented or decremented at

arbitrary places in a program. The standard functions for the type staggered are already

available in Karlsruhe for the component types real and interval (see the papers of K.

Braune and W. Kr�amer in [22]). In the case stagprec = 2 a data type is encountered

that is occasionally denoted as double-double or quadruple precision.

4 A Frequently Quoted Remark by C. F. Gauss

To C. F. Gauss we owe the remark: Der Mangel an mathematischer Bildung gibt sich

durch nichts so auffallend zu erkennen, wie durch ma�lose Sch�arfe im Zahlenrechnen

(There is nothing that reveals the lack of mathematical scholarship more conspicuously

than the use of excessive precision when computing with numbers).

Many a numerical analyst feels urged by this remark to compute as many problems
as possible in a short precision. He is proud to solve his problems satisfactorily executing
the entire computation including all scalar products in double, perhaps even in single
precision. If this leads to success, this method is, of course, legitimate and there is no
objection against it.

It is also often concluded from the above remark that a correct scalar product is

not needed on the computer and, consequently, should not be provided. The usual
way to compute scalar products in 
oating-point arithmetic is considered to be easier
since super
uous digits do not have to be carried along. This conclusion is completely

wrong. It is due to an insu�cient knowledge and familiarity with the technology and
implementation techniques which are available today, on the side of mathematicians.

The engineer on the other hand, who is familiar with these techniques is not aware of
the consequences for mathematics.

The remark by C. F. Gauss is now more than 150 years old. It �ts into the time of
Gauss where any computation had to be executed manually and each digit that needed

not to be considered meant an enormous ease of work. The slow manual computation
allowed, as a rule, to perform a simultaneous error analysis or at least an error estimate.

Today we have a completely di�erent situation which could not at all be foreseen or
anticipated at the time of Gauss. Fast processors today are capable to execute a billion

arithmetic operations in each second. This number exceeds the imagination of any user.
The available technology (millions of transistors on a single chip) is extremely powerful.

It allows solutions which even an experienced computer user is totally unaware of.
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For all kinds of computers such as PCs, workstations, mainframes and supercom-

puters there are available circuitries for the computation of the optimal dot product

where virtually no computation time for the arithmetic is needed. In a pipeline, the

arithmetic can be done within the time the processor needs to read the data into the

arithmetic unit. This means, among others, that no other method to compute scalar

products can be faster. This includes, in particular, 
oating-point arithmetic. Techni-

cally, the process of an always correct accumulation of scalar products in a �xed-point

register, though di�erent, is by no means more complicated than a hardware accumula-

tion in 
oating-point arithmetic. The basic building blocks for both kinds of arithmetic

such as shifter, multiplier, adder and rounding unit, are very similar. Fixed-point ac-

cumulation only needs an additional small local memory on the arithmetic unit. Many

intermediate steps that are necessary when doing 
oating-point accumulations such as

normalization, rounding, composition into a 
oating-point number and decomposition

into mantissa and exponent for the next operation do not occur when doing �xed-point

accumulations.

A relatively complex arithmetic operation such as the scalar product of 
oating-

point numbers which can be executed always correctly with moderate technical e�ort
in today's technology should indeed always be executed correctly. In any case, this is
the way C. F. Gauss would do it today. An error analysis thus becomes super
uous for
this additional basic operation once and for all. In addition to that, always the same
results are obtained for this operation on di�erent platforms. Computer applications

nowadays are of immense variety. Any discussion of the question where this is favorable
or not is useless and super
ouos. Expanding the arithmetic unit of the computer by the
optimal scalar product creates a far more powerful and capable computer. This new
and always absolutely reliable operation can be applied favorably in many algorithms
and places.

5 Problems with Inaccurate and with Accurate Data

In numerical analysis for more than �fty years 
oating-point arithmetic is used almost

exclusively. This has formed the way of our thinking. Now, it turns out to be di�cult
to shake o� usual and well trained methods, skills and schemes of thinking. During
that time the so-called backward error analysis was often the only practicable way

to perform an error analysis of numerical algorithms. There, a computed solution is
viewed as the correct solution to a problem with modi�ed input data. If the latter are

close to the given input data of the problem, an algorithm is called well behaved or a
problem is called well conditioned.

This scheme of thinking implies the imagination that, in fact, never the given prob-
lem is solved but always a problem in its neighborhood or surrounding. This suggests

the assumption that absolute accuracy in the data is not signi�cant and that, in princi-

ple, one always has to deal with problems with inexact data. For well behaved problems

this assumption is quite legitimate. In fact, computations are often based on uncertain

assumptions. For instance, measured data are used in a computation, the accuracy
of which is not known, or the mathematical model has to be simpli�ed drastically in

order to make the computation possible at all. When treating di�erential equations
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numerically, discretization errors can be far greater than computational inaccuracies.

For many applications a great number of similar computations are performed. Based

on experience or experimental measurements one can trust simple 
oating-point com-

putation.

For such problems, one can prove often mathematically by means of the backward

error analysis that simple 
oating-point arithmetic su�ces to compute a satisfactory

solution. Because of the high frequency of the occurance of such well behaved problems,

many users are not aware of the necessity of highly accurate computations. Any im-

provement of simple 
oating-point arithmetic is considered to be super
uous. An exact

scalar product has not been employed so far. Consequently, one believes that it is not

needed and it is not demanded. Due to this ignorance, it is overlooked that an optimal

scalar product is simpler and that it runs faster than the traditionally used summation

loop in 
oating-point arithmetic, so that even well conditioned computations can pro�t

from it.

However, not all numerical problems are of the above described harmless nature.

Actually this is only one side of the medal. On the other side is the large class of
problems with exact data. Also problems with small but safe intervals in the data
belong to this class. In mathematical modeling, for instance, one usually assumes
exact input data. The model only can be improved systematically if the computational
error can be virtually excluded. Moreover, many inherent mathematical problems have

exact input data. This is true e.g. for weights and nodes of numerical quadrature and
cubature formulas, for coe�cients of discretization formulas, for coe�cients that arise,
when computing zeros of polynomials, or when computing eigenvalues of matrices or of
di�erential operators. In computer algebra, as a rule, problems with exact input data
are considered and treated. There the computation is performed whenever possible,

exactly i.e. with a very large number of digits. This can involve a very high overhead
of computation time. A numerical computation of these problems with 
oating-point
arithmetic that yields certain and su�ciently exact bounds for the solution will run,
in general, much faster.

Computers are getting ever faster. With increasing speed problems to be dealt with

become larger. Instead of two-dimensional problems users would like to solve three-
dimensional problems. A discretization of 100 steps in each one of three coordinate
directions leads to a system of equations of 1 million unknowns. The Gauss elimination

method requires the magnitude of O(n3) operations. If n = 106 then n3 is so large that
a GIGAFLOPS computer would need many years to solve such a system. Therefore

large systems of linear equations are to be solved iteratively with less than n3 arithmetic
operations. The basic operation of iterative methods (Jacobi method, Gauss-Seidel

method, overrelaxation method, conjugate gradient method, Krylov space methods,
multigrid methods and others like the QR method for the computation of eigenvalues)

is the matrix-vector multiplication which consists of a number of dot products. It is

well-known that �nite precision arithmetic often deteriorates the convergence of these

methods [7], [8], [11], [23], [25], [26], [29]. An iterative method which converges to

the solution in in�nite precision arithmetic usually converges much slower or even
can diverge in �nite precision arithmetic. Fixed-point accumulation of dot products

of 
oating-point vectors is absolutely error free and it is faster than a conventional
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computation in 
oating-point arithmetic. An error free computation of dot products

speeds up the rate of convergence for many iterative methods. In many applications the

data of the problem are exact (coe�cients of discretization formulas). They are fed back

into the computation at each step of the iteration. So a highly accurate computation

really makes sense. The components of a matrix-vector product can easily be rounded

into a variable of type staggered to two-, three- or four-fold accuracy, and used further

in the algorithm. This increases the run-time only marginally.

By interval arithmetic and the optimal dot product modern numerical analysis has

got new tools which allow new solution methods for numerical problems. Examples:

The new methods for global optimization and for automatic di�erentiation [1], [9], [10],

[18]. For the reverse mode of automatic di�erentiation, the memory overhead and the

spatial complexity can be signi�cantly reduced by the optimal dot product. There the

dot product is considered as a single basic operation in the vector spaces [28].

Often these tools allow a productive forward error analysis by the computer itself.

Examples: numerical quadrature and cubature [1], numerical integration of ordinary
di�erential equations and of integral equations [1], applications in computer geometry
such as the safe computation of the intersection of two surfaces [27] or de�nite answers
to questions of coincidence [22].

Furthermore, these tools often allow an a posteriori error analysis by means of the
computer. This process is called automatic result veri�cation or validation of results.
Examples: Highly accurate inclusion of the solution of linear and non-linear systems of
equations [9], [10], [18], [21], linear and non-linear optimization problems [18], [22]. The
�nal veri�cation step can fail which happens only very rarely. But it is detected by the

computer itself. Then computation with higher precision often leads to success. The
staggered data type is the appropriate tool for this purpose. Its arithmetic operations
are realized by means of the optimal dot product [1], [18].

The question how many digits of a defect can be guaranteed with single, double or

extended precision arithmetic has been carefully investigated. With the optimal dot
product the defect can always be computed to full accuracy.

Many problem solving routines of the XSC-languages (PASCAL-XSC, ACRITH-

XSC, C-XSC, FORTRAN-XSC) are available also for (narrow) interval data. Special

routines allow to read data as intervals. If a user does not make use of these possibilities
and enters all data as point data (computer reals) one may conclude that he/she is

of the opinion that the data are represented precisely enough to full accuracy in the
machine. Highly accurate problem solving routines for problems with exact point data

(of in�nite accuracy) therefore, are worth-while.

For the solution of problems with exact point data with guaranteed high accuracy,

�xed-point accumulation in a long accumulator is often required and clearly superior
to 
oating-point accumulation. Example: Eigenvalues of Zielke matrices can be always

computed correctly by means of the long accumulator.
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6 Accumulation of Floating-Point Numbers and Products in

Quadruple-Precision Floating-Point Arithmetic

The scalar product is a central operation in Numerical Analysis. It occurs in complex

arithmetic, matrix and vector arithmetic, defect correction methods, range reduction

when computing elementary functions, multiple precision arithmetic and many other

places. By means of an optimal dot product all operations of the usual product spaces of

numerical analysis can be provided with maximum accuracy according to the principle

of semimorphism [19], [20]. Among these spaces are the real and complex 
oating-

point numbers, the real and complex 
oating-point intervals as well as the vectors and

matrices over these four basic data types. By semimorphism the real and complex

vector spaces and the corresponding interval spaces are mapped to their 
oating-point

subspaces best possible with respect to their algebraic structure. The order structure

can very well be preserved.

New programming languages like Fortran 90 or C++ provide the scalar product as

a fundamental operation (operators matmul and dotproduct). Similarly an optimal dot-

product can be embedded in and provided by table calculation programs and computer
algebra packages.

In the XSC-languages and by the XPA 3233, 
oating-point numbers and products
of 
oating-point numbers are accumulated into a long �xed-point word (long accumu-
lator). Doing so, no information is lost. Since the �nal result is almost always rounded
to a double precision 
oating-point number, often the question is asked whether this
is really necessary, and whether it would not su�ce to accumulate the double length

products of 
oating-point numbers in quadruple precision 
oating-point arithmetic.
For such an addition an accumulator is needed which is only slightly longer than this
quadruple precision format. We are now going to compare these two accumulation
methods. Weighting up the pros and cons of both methods shows de�nite advantages
for the �xed-point accumulation.

The computation of the scalar product of two 
oating-point vectors in the long
accumulator is the only 
oating-point operation that always yields a totally correct
result. Compared to this, an accumulation of products of 
oating-point numbers in a

quadruple accumulator can occasionally yield a wrong result. Therefore, the user has

to ponder the computational error whenever such an operation is executed. With the
long accumulator, an error estimate is never needed, the result is always correct.

The long accumulator is far easier to handle than a quadruple accumulator, because
the long accumulator only operates on one data format which is double precision. The

quadruple accumulation, on the other hand, has to cope with two di�erent formats,

double and quadruple precision. Only very few additional machine instructions are

needed for computation of the optimal scalar product by �xed-point accumulation in

the long accumulator. For the quadruple accumulation, instructions for mixed types
have to be provided as well. Thus, more opcodes are needed.

So far experience with di�erent technologies (assembler, microcode, bit-slice-

technology, VLSI) has shown that �xed-point accumulation of double precision prod-
ucts is faster and simpler than double precision 
oating-point accumulation in the

traditional manner. An accumulation of double length products of double precision
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variables in quadruple precision is very likely to run slower than the traditional double

precision 
oating-point accumulation. The �xed-point accumulation only needs two

instructions: shift and accumulate. The exponent of the product provides the ad-

dress for its addition. In case of 
oating-point accumulation many intermediate steps

have to be performed additionally. The following steps are necessary: decomposition

of operands, shift, addition, normalization, rounding, composition to a 
oating-point

number, decomposition into mantissa and exponent for the next operation et cetera.

Compared to that �xed-point accumulation is simpler. It only needs a shift and an

addition. Rounding is performed only once at the very end.

When computing scalar products, the products of 
oating-point numbers that are

to be accumulated are only of double length. Therefore the adder required for the

�xed-point accumulation is of the same order as the adder for the quadruple precision

accumulation. The long accumulator only has to be kept as local memory on the

arithmetic logical unit. In case of the IEEE arithmetic data format double the long

accumulator consists of 67 words of memory of 64 bits, [1], [5], [12], [30], [31].

The long accumulator that is used for the �xed-point accumulation covers the full
double exponent range and some additional guard digits. Thus an over
ow or under-

ow in a scalar product computation can never happen. For the quadruple precision
accumulation the data format is not uniquely de�ned. It can be a double double word
or a genuine quadruple format. Thus, with di�erent manufacturers, di�erent results

can be obtained when doing accumulation with quadruple precision. When a quadruple
format is realized as a double double format, only the double precision exponent range
is available and under
ow or over
ow of exponents can easily occur. Thus, when com-
puting, many plus or minus in�nity or NaN results are obtained, that yield virtually
no information. Since quadruple arithmetic is not precisely de�ned, when transfer-

ring data between machines from di�erent manufacturers problems are very likely to
occur, if a quadruple accumulation is provided. These problems do not arise with a
�xed-point accumulation since it uses only one format, i.e. double precision. With
the long accumulator a quadruple arithmetic is treated as a simple case of a multi-
ple precision (staggered) arithmetic based on the double precision format. A multiple
precision number (of staggered format) is represented as an array of double precision

components. The value of a number of type staggered is the sum of its components.
Addition of such numbers is performed within the long accumulator. Multiplication is

simply a sum of products.

One advantage of quadruple precision accumulation of products of double precision

numbers seems to be, that many users believe they immediately can imagine what

this means. Yet, the idea of it can be di�erent from user to user. Normally, a user
will believe, that a full quadruple precision format with all four basic operations is

provided. This imagination will �nally put pressure on the manufacturers, to include
far more with their hardware, than is actually necessary. That is, simply, to provide

a full quadruple arithmetic including appropriate standard functions. By this, the
necessary, useful and essential system features are fairly exceeded.

On the other hand, the staggered type as an array of double precision reals or
intervals is far more powerful than the quadruple precision type, since it provides a

dynamic precision.
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7 How Much Local Memory is Needed on the Arithmetic

Unit?

Are there several long accumulators needed on the arithmetical logical unit for special

applications? By the same argumentation that demands one long accumulator for real

point problems, two long accumulators are suitably used for complex point problems.

Thus, the overhead of data transfer to the arithmetic unit is halved. Complex scalar

products, then, can be always executed correctly. For the second accumulator, merely

the required local memory on the arithmetic unit has to be increased. Nothing else

has to be changed on the arithmetic unit. If there is enough memory available for

two long accumulators on the arithmetic unit, interval scalar products can be summed

up as well using always two long accumulators. In general the bounds obtained this

way will only be gradually better than those obtained by accumulating the interval

bounds with quadruple precision. But all the disadvantages listed above for quadruple

precision accumulation apply again. Thus, in all probability, accumulation of interval

scalar products with quadruple precision is slower than with two long accumulators.
Furthermore, the accumulation result of interval scalar products is liable to be more
accurate than a corresponding quadruple precision accumulation, since unnecessary
rounding errors that occur with quadruple precision additions are not accumulated.
When doing �xed-point accumulation of intervals, the bounds of the result are only

rounded once at the end of the computation.

8 Optimal Scalar Product for Multi-User Systems

In connection with �xed-point accumulation usually the question arises what has to be
done in case of a context-switch or an interrupt. This problem can easily be solved by

providing enough local memory for several long accumulators on the arithmetic unit.
The Hyperstone, a German DSP (Digital Signal Processor), provides 8 KByte of local
memory on the arithmetic unit. This is enough for about seven long accumulators for
the IEEE arithmetic format double precision. If a context switch requires another long
accumulator simply a new accumulator is allocated. Thereby, swapping of intermediate

results is avoided. In [5], re�ned techniques for handling optimal scalar products in

multi-user systems are dealt with and presented.

9 Does the Long Accumulator Mean a Return to Fixed-

Point Arithmetic?

The answer to this question is strictly no. Simple 
oating-point computations are still

performed by 
oating-point arithmetic. All data are still stored in the 
oating-point

format. The advantages of 
oating-point arithmetic such as the abendening of tiresome
(problem) scalings, i.e. their automatization, still apply. Only accumulation, the most

sensitive 
oating-point operation, is performed by �xed-point arithmetic. Fixed-point
accumulation of 
oating-point numbers and products is absolutely error free. Extend-

ing traditional 
oating-point arithmetic by the �fth 
oating-point operation, which is
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accumulation of 
oating-point numbers and products in �xed-point arithmetic, means

an ideal combination of �xed- and 
oating-point arithmetic, combining the advantages

of both. Providing the �fth 
oating-point operation on computers, expands essentially

their traditional arithmetical repertoire.

10 Is the Double Precision Format a Natural Format?

There still remains the question whether the double precision format of our days is a

natural format for the problems that are to be solved today, or whether it is imposed by

today's technology. Data used in engineering problems, in general, can be represented

precisely enough by about four to six decimal digits. Nevertheless, every engineer com-

putes his problems virtually always with double precision, which corresponds to about

16 decimal digits. If a complete and equally fast quadruple arithmetic were available,

it can be expected that all users would immediately employ and use this quadruple

arithmetic. If someone would invent a packed format that allows to compute with hun-

dred decimal digits as fast as with double precision, everybody would immediately use

this packed format. And this is justi�ed, since correct computation in the space of real
numbers would be carried out with in�nite precision. In interval arithmetic it is shown
that increasing the precision also increases the accuracy of the result or at least does
not decrease it. In this sense, today's double arithmetic is neither naturally nor opti-
mally adjusted to our problems. By means of the long accumulator, in the form of the

staggered format a dynamic precision is provided to the user. Within certain bounds,
the arithmetic can be adjusted to the needs of the problem. The staggered type allows
to increase or decrease precision within certain bounds at arbitrary places of a pro-
gram. The user or the computer itself can choose the precision which optimally �ts to
his problem. On the computer, there is only one (standardized) 
oating-point format

that is double precision. Thus, a natural (dynamic) arithmetic is built upon only one
existing standardized 
oating-point arithmetic. This, in return, strongly emphasizes
the meaning of a double precision 
oating-point arithmetic standard.
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