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1 Introduction

Most research in evolutionary computation focuses on
optimization of static, non-changing problems. Many
real world optimization problems however are actually
dynamic, and optimization methods capable of con-
tinuously adapting the solution to a changing environ-
ment are needed.

A restart of the optimizer whenever the problem
changes is certainly the simplest possibility. However,
if one assumes that the changes of the problem are rel-
atively small, it is likely that the new optimum will be
in some sense related to the old one. In that case one
should be able to transfer valuable knowledge from one
state of the problem to the next, e.g. by transferring
individuals.

The other extreme would be to just continue running
the EA. However, then main problem with standard
evolutionary algorithms used for dynamic optimiza-
tion problems appears to be that EAs eventually con-
verge to an optimum and thereby loose their diversity
necessary for efficiently exploring the search space and
consequently also their ability to adapt to a change in
the environment when such a change occurs.

Over the past years, a number of authors have ad-
dressed this problem in many different ways, most of
those could be grouped into one of the following cate-
gories:

1. The EA is run in standard fashion, but as soon
as a change in the environment has been detected,
explicit actions are taken to increase diversity and
thus to facilitate the shift to the new optimum.
Typical representatives of this approach are Hy-
permutation [11] or Variable Local Search [26].

2. Convergence is avoided all the time and it is hoped
that a spread-out population can adapt to changes
more easily. The random immigrants approach

[15] or EAs using sharing or crowding mechanisms
belong into this group [10].

3. The EA is supplied with a memory to be able to
recall useful information from past generations,
which seems especially useful when the optimum
repeatedly returns to previous locations. Memory
based approaches can be further divided into ex-
plicit memory with specific strategies for storing
and retrieving information (see e.g. [5, 22, 23]) or
implicit memory, where the EA is simply using a
redundant representation (e.g. [12, 14, 19, 21, 24]).
As has been first noted in [5] and later confirmed
by several others, memory is very dependent on
diversity and should thus be used in combination
with diversity-preserving techniques.

4. Multiple subpopulations are used, some to track
known local optima, some to search for new op-
tima. The different subpopulations can maintain
information about several promising regions of
the search space, and thus act as a kind of di-
verse, self-adaptive memory. Examples for this
approach are for example [7, 8, 25, 28]

The above mentioned approaches hare well known
and more detailed surveys can be found in [6, 8].
In [6], the topic of evolutionary optimization in dy-
namic environments is treated from a more holis-
tic perspective, also considering aspects like ro-
bustness and flexibility of solutions, as well as
changeover costs. An online repository with cur-
rently more than 110 related articles can be found at
http://www.aifb.uni-karlsruhe.de/~jbr/EvoDOP.
A dedicated mailing-list disseminates more up to date
information on the topic. For subscription, visit
http://www.aifb.uni-karlsruhe.de/mailman/
listinfo/evodop.



2 Recent Trends

It is difficult to distinguish between random fluctua-
tions and real trends. However, there have recently
been a number of publication in the following two ar-
eas, and I would expect these areas to continue to grow
at least in the next couple of years.

2.1 Theory

While most of the early work was of empirical nature,
in the recent past, more and more authors try to look
at the problem from a theoretical point of view, a trend
which is also reflected in the proceedings of the work-
shop.

Droste [13] calculates the first passage time (the ex-
pected time to hit the optimum for the first time) for
a (14 1) evolution strategy on the dynamic bit match-
ing problem. Branke and Wang [9] also consider the
dynamic bit matching problem, and analytically com-
pare different strategies to deal with an environmen-
tal change within a generation (as opposed to between
two generations). Finally, Arnold and Beyer [1] exam-
ine the tracking behavior of an evolution strategy on
a single moving peak.

2.2 Other Metaheuristics

EAs are not the only nature inspired heuristic intu-
itively suitable for dynamic optimization problems.
Recently, also some other population-based heuristics
have been applied to dynamic optimization problems,
namely ant colony optimization [16, 18, 17] and par-
ticle swarm optimization [3, 20] (see also in the pro-
ceedings of this workshop).

3 The Workshop

3.1 History

The EvoDOP workshop as part of GECCO2003 is the
third of a successful series of bi-annual workshops on
“Evolutionary Algorithms for Dynamic Optimization
Problems”.

3.2 Program

This workshop starts with a paper on performance
measures by Ronald Morrison, a topic which is vital
for comparisons, and which has been discussed recently
also by others [4, 6, 27]. Then, Tim Blackwell exam-
ines, theoretically as well as empirically, the applica-
tion of charged swarms to dynamic optimization prob-
lems. The other three papers all have to do with pop-
ulation sizing. First, Liekens et al. propose a Markov

model of an EA in an alternating environment, and use
it to compare a diploid and haploid genetic algorithm.
Andrews and Tuson empirically compare the perfor-
mance of different population sizes, while Schonemann
looks at population size from a theoretical perspective.
The workshop concludes with a panel discussion.

3.3 Program Committee
e Jiirgen Branke (Chair, Germany)
e Ernesto Costa (Portugal)
e Kenneth DeJong (USA)
e Naoki Mori (Japan)
e Ron Morrison (USA)
e Christopher Ronnewinkel (Germany)

o Karsten Weicker (Germany)
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Abstract

There has not been a uniform agreement
regarding what constitutes “good” perfor-
mance for evolutionary algorithms in dy-
namic environments. A performance mea-
surement method should, as a minimum,
have an intuitive meaning and provide
straightforward methods for statistical signif-
icance testing of comparative results. In this
paper we attempt to resolve some issues re-
lated to EA performance measurement in dy-
namic environments.

1 Introduction

Despite the interest in evolutionary algorithms for dy-
namic fitness landscapes, there has not been a uniform
agreement regarding what constitutes “good” perfor-
mance for these algorithms. Advances in research re-
quire that experiments be repeatable and that exper-
imental results be reported in a way that facilitates
comparisons of experimental results. For EA research
in dynamic environments, this means that in addition
to the EA extension or modification we are research-
ing, we must describe the problem we are examining
and describe the performance measurement methods.
The problem description and the description of the re-
sults reporting methods take up valuable pages in the
(usually page limited) published paper. Many papers
need to abbreviate the descriptions of each area to the
point where the results are not repeatable, nor can any
analysis of the limitations or generality of the reported
results be conducted. This severely limits the useful-
ness of published papers. While there has been some
research into standard and easily describable dynamic
problems [1], [2], there is no universal agreement on
methods for reporting results.

In this paper we attempt to resolve some issues related
to EA performance measurement in dynamic environ-
ments. The next section will describe previously used
techniques, examine some problems associated with
their use, and delineate the minimum requirements for
a good measurement technique. The third section will
present our recommended performance evaluation re-
porting methods and provide examples of this perfor-
mance reporting method.

2 Issues and Requirements in
Performance Measurement

Studies of the performance of EAs in dynamic envi-
ronments have sometimes reported results using tra-
ditional measures of EA performance (i.e., offline per-
formance, online performance, and best-so-far curves).
These measurements are, in general, not appropriate
for measuring EA performance on practical dynamic
problems for the following reasons:

e Best-so-far curves are inappropriate, because a
population member with a previously discovered
“best” value may have a very low fitness after a
landscape change.

e Off-line performance measures the running av-
erage best-so-far evaluation for each generation.
In static landscapes, this measure provides a
monotonically increasing value that indicates how
rapidly an EA achieves good performance. In dy-
namic landscapes, however, the use of the “best-
so-far” values are inappropriate, because the val-
ues are meaningless after a landscape change.

e On-line performance, which measures the average
of all fitness function evaluations up to and in-
cluding the current trial, provides no information
about the best values found, which are the values



of interest in any practical implementation of an
EA in a dynamic environment.

To address these shortcomings, other researchers ex-
amining EA performance in dynamic fitness land-
scapes have suggested the use of the following;:

e the difference between the optimum value and the
value of the best individual in the environment
just before the environment change [3],

e a modified off-line performance measure, where
the best-so-far value is reset at each fitness land-
scape change [1],

e the average Euclidean distance to the optimum at
each generation [4],

e best-of-generation averages, at each generation,
for many EA runs of the same specific problem,
[5], [6], [7], and

e the best-of-generation minus the worst within a
small window of recent generations, compared
to the best within the window minus the worst
within the window [8].

The first two of these measures require knowledge of
the generation when the fitness landscape changed.
This severely restricts their use in standardized evalua-
tion of EA performance in dynamic fitness landscapes
because in many real problem, and some test prob-
lems, acquiring this information can be problematic.
In real problems, there may not be any practical way
to determine that the landscape changed, and, in both
real and test problems, many landscape changes may
not be relevant to the EA performance.

The third measure, the average Euclidean distance to
the optimum at each generation, is only available in
test problems where the exact position of the global
optimum in the search space is already known.

The fourth and most commonly reported measure, av-
erage best-of-generation at each generation over many
runs of the same problem, addresses several of the con-
cerns identified so far. The difficulty in using this
measure is that, as mentioned previously, we are in-
terested in the performance of the EA across the en-
tire range of landscape dynamics, not just at specific
generations. Users of this method usually provide per-
formance curves that can be compared at each specific
generation. This method does not, however, provide a
convenient method for comparing performance across
the full range of landscape dynamics, nor measuring
the statistical significance of the results. Since this

method is the most commonly used method, Figure
1 is provided to illustrate the difficulties in using it
for comparing experimental results. Figure 1 shows
the best of generation over many runs of the same dy-
namic problem for five different EA techniques. As
can be seen by the figure, it is very difficult to deter-
mine which technique performs best and whether any
differences in performance are statistically significant.
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Figure 1: Best of Generation, Five Different Tech-

niques, Landscape Moving Every 60 Generations

The fifth technique mentioned above is a recent at-
tempt to address performance measurement in dy-
namic environments. It is based on an assumption that
the best fitness value will not change much over a small
number of generations, which may not be true. This
measure also does not provide a convenient method for
comparing performance across the full range of land-
scape dynamics.

It appears that a good performance measurement
method for EAs in dynamic environments should, at
a minimum have: (1) intuitive meaning; (2) straight-
forward methods for statistical significance testing of
comparative results; and (3) a measurement over a suf-
ficiently large exposure to the landscape dynamics so
as to reduce the potential of misleading results caused
by examination of only small portions of the possible
problem dynamics.

3 Performance Measurement:
Collective Mean Fitness

A new method of dynamic performance measurement
is presented here that is related to several previous
methods, but differs from previous methods in the
choice of the experimental unit. Since we are con-
cerned with the performance of the EA across the en-
tire range of landscape dynamics, we will consider the



experimental unit to be the entire fitness trajectory,
collected across EA exposure to a large sample of the
landscape dynamics. To begin, we must first define To-
tal Mean Fitness Fr as the average best-of-generation
values over an infinite number of generations, thereby
experiencing all possible problem dynamics, further
averaged over multiple runs. More formally:

G
M gl(FBG)

= Constant, for G = oco. (1)

Where:

Fr = the total average fitness of the EA over
its exposure to all the possible landscape
dynamics

Fpg = the best-of-generation

M = the number of runs of the EA

G = the number of generations.

It should be noted that as G — oo, the effect on Fr
caused by variation in the best-of-generation fitness
value in any specific generation is reduced. For any
particular run, m, the value of Fr_ is the average
performance over exposure to all possible landscape
dynamics. The differences between the various Fr,,
values against the same dynamic problem represent
the variation caused by the stochastic operation of the
EA.

While the above description might indicate that very
large experiments are required for use of this perfor-
mance metric, the value Fr for an EA approaches a
constant after a exposure to a much smaller represen-
tative sample of the dynamic environment under the
following conditions:

1. the EA has a reasonable recovery time for all types
of landscape changes. This means that the EA
doesn’t “get lost” for long periods of time and
then recover. If the EA did get lost for long pe-
riods of time, increased exposure to the dynamics
would be necessary to dampen out the effects of
getting lost.

2. the global maximum fitness can be assumed to
be restricted to a relatively small range of values.
Larger ranges of fitness values require longer ex-
posures to the landscape dynamics to dampen the
effect of fitness value fluctuations.
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Figure 2: Running Average Best of Generation for a
14-cone Landscape Moving Every 20 Generations

These conditions permit us to define a new measure
of performance for use in dynamic fitness landscapes,
the Collective Mean Fitness, F. This is a single value
that is designed to provide an aggregate picture of an
EA’s performance, where the performance information
was collected over a representative sample of the fitness
landscape dynamics. Collective fitness is defined as the
average best-of-generation values, averaged over a suf-
ficient number of generations, G’, required to expose
the EA to a representative sample of all possible land-
scape dynamics, further averaged over multiple runs.
More formally:

The collective mean fitness will approach the total
mean fitness after a sufficiently large exposure to the
landscape dynamics. Sufficient, in this context, means
large enough to provide a representative sample of the
fitness dynamics and allow the stabilization of the run-
ning average best-of-generation fitness value. Exam-
ples of the dampening of individual fluctuations of the
value of F over 20 generations using this performance
metric is illustrated in Figures 2 and 3 for two of the
problems used in a recent study (in these graphs, Fo
is over 100 runs). Figure 2 shows the running average
best-of-generation value where the landscape has 14
cones in 2 dimensions, with all cones are moving chaot-
ically every 20 generations. Figure 3 shows the running
average best-of-generation for a 5-dimensional, 5-cone
problem, where all cones move in large steps every 10
generations. In these two sample cases it is easy to see
the dampening effect of individual best-of-generation
values on the F value.
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Using this metric requires determination of the number
of generations to be used for a representative sample of
the landscape dynamics. The number of generations
necessary is principally determined by the dynamic be-
havior of the landscape under examination. In some
problems where the dynamics are well understood, it
may be possible to estimate the appropriate number
of generations necessary to achieve a stable value of
Fe. In other problems, where the landscape dynamics
may be completely unknown, the number of genera-
tions needed to achieve an acceptably stable value for
Fe may need to be experimentally established. This is
done by observing the running average of the best-of-
generation values and identifying the number of gener-
ations necessary to achieve an acceptably stable value.
Different EA runs against an identical problem will re-
sult in somewhat different values of Fio,_, caused by the
stochastic characteristics of evolutionary search. The
number of runs required is then based on the variance
of the F¢,, values and the desired confidence interval
for Fc.

There are two additional items to notice about this
performance metric. First, in the case where the fit-
ness landscape changes every generation, this measure
is identical to Branke’s modified off-line performance
[1] if the modified off-line performance metrics were
computed over a sufficiently large number of genera-
tions. Second, this method of performance measure-
ment is a form of data compression of the performance
curves provided in [5], [6], and [7], permitting simple
comparison of the performance across the entire dy-
namic run.

4 Summary

In this paper we have addressed issues with measure-
ment of performance when evaluating EAs in dynamic

environments and described a performance measure
that reduces the potential for misinterpreting the ef-
fectiveness of any EA enhancements in dynamic fitness
landscapes. Use of this method ensures that experi-
mental results are based on a representative sample of
the landscape dynamics and provides a basis for de-
termination of the statistical significance of observed
experimental results in dynamic fitness landscapes.
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Abstract

The optimization of dynamic optima can be a
difficult problem for evolutionary algorithms due
to diversity loss. However, another population
based search technique, particle swarm
optimisation (PSO), is well suited to this
problem. If some or all of the particles are
“charged”, an extended swarm can be
maintained, and dynamic optimization is
possible with a simple algorithm. Charged
particle swarms are based on an electrostatic
analogy — inter-particle repulsions enable
charged particles to swarm around a nucleus of
neutral particles. This paper examines the rate of
convergence of neutral swarms, extending some
results that were previously only available for a
simplified model. A diversity measure is
proposed and bounds obtained for neutral and
charged swarms. These bounds enable
predictions for the feasibility of optima tracking
given knowledge of the amount of dynamism.

1 INTRODUCTION

Particle Swarm Optimization (PSO) is a population based
optimization technique inspired by models of swarm and
flock behavior (Kennedy and Eberhart 1995). Although
PSO has much in common with evolutionary algorithms,
it differs from other approaches by the inclusion of a
solution (or particle) velocity. New potentially good
solutions are generated by adding the velocity to the
particle position. Particles are connected both temporally
and spatially to other particles in the population (swarm)
by two accelerations. These accelerations are spring-like:
each particle is attracted to its previous best position, and
to the global best position attained by the swarm, where
‘best’ is quantified by the value of a state function at that
position. These swarms have proven to be very successful
in finding global optima in various static contexts such as

the optimization of certain benchmark functions (Eberhart
and Shi 2001a).

Evolutionary techniques have been applied to the
dynamic problem (Angeline 1998, Béack 1998, Branke
1999). The application of PSO techniques is a new area
and results for environments of low spatial severity are
encouraging (Eberhart and Shi 2001b, Carlise and Dozier
2000). Both evolutionary and PSO algorithms, in a
dynamic context, can suffer from over-specialization. In
general, they require further adaptations so that they can
detect change, and then response to it. Some work has
been done on possible adaptations of the PSO, but these
adaptations remain arbitrary (Hu and Eberhart 2002). A
different extension of PSO, which solves the problem of
change detection and response, has been suggested by
Blackwell and Bentley (2002). In this extension (CPSO),
some or all of the particles have, in analogy with
electrostatics, a ‘charge’. A third collision-avoiding
acceleration is added to the particle dynamics, by
incorporating electrostatic repulsion between charged
particles. This repulsion maintains population diversity,
enabling the swarm to automatically detect and respond to
change, yet does not diminish greatly the quality of
solution. In particular, it works well in certain spatially
severe environments (Blackwell and Bentley 2002).
Entirely charged swarms and swarms with 50% or their
members charged have been compared with adapted PSO
and random search in a variety of dynamic contexts,
including cases of very high spatial and temporal severity
(Blackwell 2003).

Much of the understanding of the behavior of particle
swarms is of an empirical nature, but a recent paper by
Clerc and Kennedy advances theoretical knowledge by
proving convergence for a simplified model (2002). This
simplified one-dimensional model, which does not
optimize anything, is for non-interacting particles. For
optimization, particle interactions need to be included so
that knowledge of a good position a particle may find (i.e.
potential good solution) can be communicated with the
other particles. In practice, the spring constants are
randomized so that the influence of the swarm as a whole
(the attractor at the global best position) and of the



particle’s own history (the attractor at its personal best
position) vary in significance from iteration to iteration.

This paper extends the work of Clerc and Kennedy to
include particle interactions. It is suggested here that the
maximum spatial extent |S| of the swarm is a suitable
diversity measure. For neutral (i.e. uncharged) swarms,
the rate of contraction of |S| will then give bounds for the
jump rate of the optimum position; if the optimum always
moves within the hypersphere |S], it will expected that the
swarm can re-optimize without further adaptations. A
limit is also suggested for |S*|, the maximum spatial extent
of a charged swarm. The balance of electrostatic repulsion
between charged particles and the attraction to the best
positions will maintain the population diversity at a fixed
level, so that optimum jumps on any time scale can be
attracted, if they occur within |S”.

The (C)PSO algorithm is defined and the background to
Clerc and Kennedy’s proof is covered in the next section.
Section 3 defines |S| and obtains bounds for the simplified
model of Clerc and Kennedy, and for the simplified
model with particle interactions and charge. The paper
ends with a discussion of the results.

2 PARTICLE SWARM ALGORITHMS
AND CONVERGENCE

A swarm of i = 1...N particles is a set of positions x, and
velocities v, S = {x, v} where each vector has
components j = 1...d. Particle positions are updated by
adding an acceleration to the current velocity. The
updated velocity is then added to the current position to
give an updated position. The acceleration is a simple
spring-like attraction to an attractor p,(spring constant ¢,),
which may differ for each particle, and to the attractor p,
(spring constant ¢,) of the best performing particle (index
g) in some neighborhood (which may be the whole
swarm). The particles interact by modifying attractors
{p,}. This modification, which is the essence of what may
be termed swarm intelligence (SI), arises from the
evaluation of an objective function f at x. The PSO
algorithm is given in Table 1. The statements enclosed by
brackets [] and braces {} refer to parts of the algorithm
concerning charged PSO and SI respectively.

In Table 1, y is a constriction factor, chosen to ensure
convergence, and & , are random numbers drawn from the
interval [0, 1]. Since &, multiply the spring constants,
they have the effect of randomising the spring constants
within [0, ¢;, ] at each iteration. Table 1 also shows an
additional repulsive acceleration a; = > a; , which is
included only for charged swarms , wherk?*!

— Qi Qk (

Ay = 3 X; = X;),
| x; — x|

r s x —x < 7

(1a)

R X — X
aik:Qle(l k)’ x-—xk<r

2 i c
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a;, =0 ry, <|x; —x;
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and i, k are particle indices. The PSO is therefore a special
case of the CPSO, whereby every particle is uncharged,

0;=0.

Table 1. Particle Swarm Algorithm for Charged and Neutral
Swarms

[CIPSO {with ST}

initialise S = {x;, v;} in cube [-X, X]"

g, t=0
{for i =1 to Population Size
Pi= X
if f(py) < f(p,) then g = i}
next i}
do
t++

for i =1 to Population Size (N)
[calculate a;]
for j =1 to Dimension Size (d)
Vi = x(vi + E101(py — X)) + Eada(pyg — X))
[vij = Vi + ]
Xij = Xjj T Vj
next j
{if f(x;) < f(p;) then p; = x;
if f(pi) < f(p,) then g =1}
next i

until termination criterion is met

Avoidance is only between pairs of particles that have
non zero charge Q, and is Coulomb-like in the shell . <
< r, At separations less than the core radius r;, the
repulsion is fixed at the value at the core radius, and there
is no avoidance for separations beyond the perception
limit of each particle, 7,. The core radius serves to tame
the repulsion at small separations. If the Coulomb law
were operative to very short separations, the acceleration
would be very large and the charged sub-swarm would be
in danger of exploding. The limit of perception, r, is also
set at X since this expected to control the size of the
swarm. Notice that the particle repulsion «; is determined
before the update of each component x;. This is because
the Coulomb law, unlike the spring laws used for the
attractive accelerations, depends on the Euclidean



separation r and not on the component separation r;, and
so should not be implemented inside the loop j =1,...d.

The convergence proof of Clerc and Kennedy is for a
simplified model without interaction and without random
springs (2002). The algorithm is set out in Table 2.

Table 2. The Simplified Model One Dimensional Non-
interacting Model

Simplified Model
initialise S = {x;, v;} in cube [-X, X]"
do

for i =1 to Population Size (N)
for j =1 to Dimension Size (d)
Vi = x(vi T o(pj — X ) )
Xij = Xij T Vij
next j
next i

until termination criterion is met

This model is analysed by considering a one dimensional
dynamic system with fixed attractor p and fixed spring
constant ¢

v(t +1) = (1) + p(p - x(2))

x(t+1) = x(t) +v(t) + ¢(p —x(t)) &

Velocity constriction, which takes the place of velocity
clamping in older versions of PSO, is applied by scaling
v(z+1) by a factor y <I:

v(t+1) = 2(v(0) + ¢(p - x(1)))

. 3
x(t+1) = x(0) + () + $(p— x(1))) %)

For simplicity, this is rewritten by Clerc and Kennedy as

v(t+1) =2 (@) + (1))

W+ 1) = 30+ 1(=v(0) - (1) @
or in matrix form as
P(t+1)= MP(¢t) (5)

where y(f) = p - x(1), P(t) = [v(£), y()]" and M is the 2x2
transformation matrix defined by the matrix equation

{V(Hl)}{z b }{V(t)} ©
ye+) | |-z 1-xe|y®)]

M is diagonalized by the similarity transform A,

-1 € 0
AMAT =L=|'] : 7)
€

The convergence conditions for y and ¢ are obtained by
noting that ||P(7)|| increases as |[M'P(0)|| = ||IL"AP(0)||
where ||.|| is, for example, the Euclidean norm. Clerc and
Kennedy show that the eigenvalues e;, are complex and
of modulus Vy, for ¢ > 4, with y given by

_ 2K
p-2+\g" - 4

x ®)

which is smaller than 1 for k < 1. Hence convergence will
follow if the constriction factor for a given spring
constant ¢ is given by Equation (7) .

3 DIVERSITY MEASURE FOR
PARTICLE SWARMS

The above result can be used to estimate the maximum
spatial extent |S| of the swarm. Consider an ensemble S of
N non-interacting particles, moving in d dimensions and
attracted to the same fixed attractor p. Then the simplified
model applies to each component x;. |S| at iteration ¢ is
defined as the maximum distance between position
components j:

|S\:maxj(maxi{x,j}—mini{xij}) . 9)

Since [)(?)| is the distance of a particle position component
from the attractor p = x,,

| S[<max;(2[y; ] - (10)

In the following, a point at x is considered to be inside the
swarm if | x - xcy | £ |S| and outside the swarm if
| x - xcur | > |S| where the swarm centre of mass is denoted
Xcm-

If x, is within the swarm, then max;; (2[y;[) will be a good
estimate of |S|. A typical configuration of attractors
(triangles) inside the swarm is illustrated in Figure 1. If,
though, x, is outside the swarm, max; (2|y;|) will over-
estimate |S|. This would be the case for unusual
configurations where the swarm is undergoing collective
oscillations about x, (Figure 2)

S|

A
v

max{y}

Figure 1: Attractors lying within swarm



S|
«—

o

d
<

ik,

v

max{y}

Figure 2: Collective oscillation of particles about an
attracting group lying outside swarm

This argument suggests that |S| increases as (\ )",

1Sk

This result can be extended to an interacting neutral
swarm without random springs by modifying the velocity
update to

v(t+ D) =v(O) +d(p; = x;(D) + hr(pg —x; (1) . (12)

The simplified form is recovered by the replacement

(SM) . (11)

:¢1pi + ¢2pg
¢1+¢2 (13)
P=¢+¢, .

Consider particle i at iteration ¢ and suppose that p, and/or
p, were updated at iteration #-1. This may happen when
x(t-1) betters p, and if p, is bettered by one or more
members of the set {p;}. In either case, p changes by an
amount

¢ ¢
T, (14)

épig (t) = ¢ ¢

which is bounded by max {|dp.|, |p,l}.

Now consider a particle k that lies on the edge of the
swarm i.e. a component of x, contributes to ISI. If, instead
of updating p,, as a result of the swarm intelligence, we
always hold p;, fixed, then the effect is equivalent to
adding dp, to P = [wy, y" i.e. a coordinate ‘shift’ y,(r) <—
Yi(0) + Pig and wi(?) <= vi(0) + Pig.

If the coordinate shifts are implemented by multiplying
P(f) by a transformation matrix A then || Pypeq || <|| 4P|
where A = diag( 1+5,) and

|®@an|&@mu
EAGIREAGIEE (15)

0, = max{

This leads to an estimate of ||P(¢)|| so that equation (5)
becomes, in the presence of swarm intelligence,

I P@ < (1+3,) | MP(z=1) || (SD). (16)

In order to proceed, some estimate of J, is necessary. A
simple argument suggests that the maximum relative shift
4, s independent of |S| and hence of 7.

Firstly, |v(#)|] is of order |S|; this follows because
V(1) = pi(t-1) - yi(0) = O] < =D + @] < [S(-D] +
IS@)-

Second, o, is also O(|S]). To obtain this, note if the
attractors p are within the swarm then |Jpy,| < |S|. Since
vi(®)), v(¥)| and |Jp| are O(]S)), their ratio, & will not, to
first order, depend on |S| (and therefore not on f). It is
therefore proposed that the swarm shrinks at a constant
rate given by the exponential law

[ PO < A+9) [ MPE-1)| (SD. a7

If p; or p, should lie outside the swarm then
OPre< max; (2y;)) and the above argument needs to be
repeated with |S| replaced by max;; (2[y;]). The same result
(17) will follow since we are using max; (2]y;]) as an
estimator of |S| (equation (10) ).

Over a period T of many iterations, the shift in p may
occur 7, = qT times, 1/T < q < 1. The final result is that,
with SI, || should decrease as

1S = )" (ST) (17)

providing that 7= (1+6)* is a small factor > 1, which
renormalizes y. Convergence therefore requires that y; =
nx<l.

Finally, predictions can be made for the median and
maximum spatial extent of a charged swarm of M"
particles. For simplicity, if 7. is set to zero and 7, is set to
infinity, then standard results for the inverse square force
can be used. Suppose a charged particle at r is on the
surface, or above, a sphere centered at O containing a
continuous charge density, amounting to a total charge of
(M'-1)Q ~M'Q. Then the repulsive acceleration is
M (Qz)//) radially away from O. If p is also at O,
repulsion will be in equilibrium with the attractive
acceleration towards P at R, where R satisfies M Q°/R* =
¢R or R = (M'Q’/$)"". If the charged particle is inside the
sphere of uniform charge density, then the repulsive
acceleration is M'(Q°r/R’). This leads to the same
equilibrium condition for R. This suggests that the
charged swarm has median size R where, defining the
probability density n(r) for particle
positions, j(f n(r)dr=0.5,



1
R{M*QT (18)
p

The maximum spatial extent |S'|, is a measure of the
maximum component separation between charged
particles and might be considerably bigger than R. Since
the maximum repulsive acceleration between particles is
O’Ir? and since there is no attraction if a particle is at p,
the maximum acceleration radially away from p that a
particle & can conceivably experience is (M'-1)Q°/r.,
which could only happen if all other charged particles
clump together at a point within a separation r. from &.
Assuming that the velocity of £ is small compared to this
acceleration (it is unlikely anyway to lie in the same
direction), E)article k will receive a position update of the
order M" g /r. sending it to the edge of the swarm at r
~ M"Q’/r;, which is an estimate of the swarm spatial size
|S*| in this extreme case. Therefore,
M+ 2

VZQ : (19)

c

|57 =

Note that R and |S'| are time independent since the
charged swarm is not converging on p.

4 CONCLUSIONS

This paper has extended a convergence proof for non-
interacting swarms to the interacting model which
includes Swarm Intelligence (but not random spring
constants). This has important consequences for the
predictability of particle swarm optimisation in the
dynamic context. The neutral particle swarm shrinks
towards the optimum position, losing diversity. |S|, the
maximum spatial extent of the swarm is a useful diversity
measure; if optimum jumps occur within |S] at any time,
then the swarm should be able to re-optimize. However,
this paper argues that |S| is exponentially decreasing
which places constraints on the amount of dynamism that
this scheme can cope with.

Alternatively, a charged swarm does not contract and
therefore maintains particle diversity. The diversity
measure, |S'|, is time independent and is given by
parameters of the model. The conclusion is that if
dynamism is expected to occur within some dynamic
range X, then the parameters can be set to give  |S|~ X
so that tracking can be achieved on any time scale. |S”]|
will however be subject to fluctuations in time, so this
conclusion is based on the assumption that fluctuations
will be small. This may not be the case for small core
radii, since particle accelerations can then be very large.
Another measure which will be less sensitive to
fluctuations is the median swarm size R. Once more this
is given by parameters of the model and setting X to R
would be another strategy.

Expressions for |S], |S'| and R have been derived in this
paper, but are subject to a number of assumptions. It

would be interesting to test out these predictions on some
standard dynamic problems. In particular, the assertion
that |S| follows a similar scaling law to the simplified
model, but with renormalized constriction is important
and needs verifying, and the proof needs to extended to
include the full model with random springs.
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Abstract

Particle swarms, if suitably adapted, are
candidates for dynamic optimization algorithms.
In one such adaptation, the charged particle
swarm, diversity is maintained by inter-particle
repulsion. This paper examines, in a series of
experiments, the use of the maximum swarm
spatial extent as a useful diversity measure both
for neutral and charged swarms, and compares
the results with some theoretical predictions. The
conjecture that neutral particle swarms collapse
exponentially is verified for the sphere function
in three dimensions. The efficacy of charged
swarms in dynamic problems of high spatial
severity is also demonstrated and comparisons
made with a neutral swarm.

1 INTRODUCTION

Evolutionary techniques and particle swarm optimization
(PSO) have been applied to dynamic optimization
problems (Branke 1999, Eberhart and Shi 2001,
Blackwell and Bentley 2002). However, both can suffer
from over-specialization. In general, they require further
adaptations so that they can detect change, and then
response to it. Some work has been done on possible
adaptations of the PSO, but these adaptations remain
arbitrary (Hu and Eberhart 2002). A different extension of
PSO, which solves the problem of change detection and
response, has been suggested by Blackwell and Bentley
(2002). In this extension (CPSO), some or all of the
particles have, in analogy with electrostatics, a ‘charge’.
A collision-avoiding acceleration is added to the particle
dynamics, by incorporating electrostatic repulsion
between charged particles. This repulsion maintains
population diversity, enabling the swarm to automatically
detect and respond to change, yet does not diminish
greatly the quality of solution. In particular, it works well
in certain spatially severe environments.

Recently, a measure of particle swarm diversity has been
proposed (Blackwell 2003). This measure estimates the
maximum spatial extent ISl of the particle swarm. If, at
any time, the optimum location jumps position to a new
point within ISl, the prediction is that the swarm will be

able to re-optimize. In the above paper, the time
dependence of IS is estimated for a simplified non-
interacting model and for the simplified model plus
particle interactions. But in a charged swarm, ISl is
expected to be constant in time, although there will be
fluctuation about the mean. A conjecture is also made
concerning the relationship between ISl and the
parameters of the algorithm. Such a relationship would
enable the parameters of a charged swarm to be tuned to a
particular environment, where, bounds can be placed on
jumps of the optimum location. Since IS'l is subject to
fluctuations, an alternative and steadier diversity measure
may be useful. The median swarm size R has been put
forward as an alternative to 1S].

This paper presents an experimental study of the
conjectures referred to above. The experiments are
described in section 2 and the results presented in section
3. These results are analyzed in section 4 and the paper
ends with some conclusions. Particle swarm algorithms,
parameter definitions and nomenclature are described in
detail by Blackwell (2003), which, for reasons of brevity,
are not reproduced in this paper.

2 EXPERIMENT DESIGN

Six experiments were devised to investigate the effects of
swarm intelligence, random spring constants and particle
charge on swarm spatial extent,
| § |= max ; (max, {x; } —min,{x;}), for charged and

neutral swarms. For the charged swarm, a further statistic,
the radial density p(r) was also studied for two different
values of the core radius r.. (The inverse square law
repulsion is operative in the shell . < r < r, where r, is the
perception limit; the accelerations are zero for separations
bigger than 7, and held at the core radius acceleration for
separations less than r..) The first experiment sets up the
conditions for  Clerc-Kennedy convergence by
implementing the simplified model (no interactions
between the particles, descriptor SM) with a 20 particle
neutral swarm and fixing the attractor p at O. The
presence of an objective function f is irrelevant in this
experiment. Experiments 2-4 group examine the effects of
introducing swarm intelligence (particle attractions to the



global and individual best positions p, and p,, descriptor
ST) and spring randomization (multiplication of the spring
constants ¢;, by random numbers &, ~[0,1], descriptor
RS) into the simplified model. Experiments 5 and 6
investigate swarm spatial size for charged swarms
(swarms with N neutral and M' charged particles of
charge O, descriptor CS) with different core radii. The
objective function f was chosen to be the three-
dimensional sphere function f,;(x) = x.x.

A further two experiments, 7 and 8, were also devised for
the neutral and charged swarms without random springs
in a dynamic environment where the attractor moves by
one half of the dynamic range in periods of 100 iterations.
These two experiments study the performance of a neutral
swarm and a charged swarm in a dynamic scenario
(descriptor D). In each case, an offset vector (5, 5, 5) was
added to the global minimum x, of the sphere function
Jspu(x) every 100 iterations, where an iteration is a
complete update of each particle in the swarm. The
swarms examined were an (N, M) = (40, 0) neutral
swarm and a O = 1, (20, 20"), charged swarm with .= 1.0
and r, = 10. In each case, the spring constants were not
randomized.

All experiments were run for 1000 iterations, with each
random number generator separately seeded so that the
initial swarm configuration for a given number of N + M"
particles and the sequence of random numbers &; and &,
were identical across runs. All experiments are in d = 3
dimensions and for a dynamic range X = 10. The spring
constants ¢; ,are 2.05 in all cases. The details of the
experiments are set out in Table 1.

Table 1: Experiment Details

ID | Swarm | Description | r. T &r2 O;
1| 0,0 SM A
2| @0 | osmst |- - | - |-
3| o0 | smrs | - | - [~ -
4| o0 | smstrs | - | - |~o11] -
s | 0,20h | smsices |10]100] - |10
6 | 20,20n | smsics |o1]100] - |10
7| @00 | smszp | - | - | - |-
8 | (20,207 SMC%[’D’ 10100 - |10

3 RESULTS

Figures 1-4 show |S(¢)| for the Experiments 1-4. The
figure caption gives the equation of the best fit straight

line. Figures 5 and 7 depict the spatial extent |S'| of the
charged sub-swarm for Experiments 5-6. This is because
the neutral swarm is unaffected by accelerations due to
charge and hence is shrinking in a similar way to Figure 2
(Experiment 2, a (20, 0) swarm). Two additional graphs
have also been prepared for these two experiments.
Figures 6 and 8 show the radial probability density n(r)
for the charged sub-swarm, where n(r)or is the probability
that a particle position lies in the shell [r, » + or]. The
statistics in Figures 6 and 8 were compiled from 16000
particle positions and with or = 0.2. The results for the
dynamic experiments 7 and 8 are shown in Figures 9 and
10. For these figures, the statistic is |py(f) — x,(7)|, the
Euclidean distance of the entire swarm’s best position at
iteration ¢, p,(¢), from the global minimum at x,,.

4 ANALYSIS

A striking feature of Figures 1-4 is the clear evidence for
exponentially decaying neutral swarm size,

|Sl=ka™ , )

k and o constants. This evidence is particularly strong for
the simplified model (Figure 1) and the simplified model
with interactions (Figure 2). When random springs are
included, the plots show fluctuations about a straight line
but the trend is still, on average, an exponential decay.

The gradient of Figure 1 is -0.0684 giving o = 100 =

0.854, in very good agreement with the prediction
1S G2 @)
where y is given by equation (8) in Blackwell (2003). For

@=¢;+ ¢>= 4.1, (¢, = 2.05) and x = 1.0, the predicted
relation is |S] ~ (V0.729843788)' = 0.854308953".

Figure 2 suggests that, in the presence of swarm
intelligence, and for this choice of f; the collapse of the
swarm is slowed to 10%%%= 0.923, which is close to non-
convergence. This experimental evidence of exponential
decay supports the analysis of Blackwell (2003),

1S~ nz) (SD 3)

with a renormalization of ¢ by a factor n= (1+|d)2q =

1.17 where o6 is a time indepedent estimate for the
quantityd, defined by Blackwell (2003) in equation (15)
and ¢ is the update probability. An inspection of the data
files produced in Experiment 2 suggested that ¢ =~ 1. This
leads to a figure of 0.082 for &.

The inclusion of randomization, Figures 3 and 4, shows
that convergence still occurs, but is less regular. The
values for o are 0.915 (Figure 3) and 0.921 (Figure 4).
Random springs, therefore, only have a small effect on
average convergence when included with swarm
intelligence, and an effect similar to SI when compared to
the non-interacting model. The result that, when SI and/or
randomization is included, the convergence factor « is
close to the limiting value for convergence of 1.0, may
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explain why a clamping velocity is often used in PSO
implementations. For example, Eberhart and Shi (2000)
recommend that each particle velocity is clamped,
immediately after velocity update, to the dynamic range.

Figures 6 and 8 show the charge density for 20 particle
charged swarms when the core radius r, is 1.0 and 0.1
respectively. Figure 6 show three peaks, at » = 0, 0.5 and
1.5. After the third peak, there is a steady fall off in n up
to r ~ 13. The prediction of Blackwell (2003) equation
(18) for median size R, for M= 20 and ¢ = 4.1, is R =
1.70. This predicted value of R falls just to the right of the
third peak, and is broadly consistent with the definition of
R as the median distance. The peak at the origin
corresponds to particles which have been attracted to p
and have experienced zero total repulsive acceleration.
The peak at » = 0.5 is interesting because it is close to 7.
However, when 7, is changed to 0.1 (Figure 8), this peak
moves closer to 1.0, so its position dos not appear to be
correlated with r.. Also, Figure 8 shows a third broader
peak displaced to higher r. This could be explained by the
higher maximum acceleration (M'-1)Q%/r; that will
increase the diversity of the swarm, pushing particles
further outward.
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The results for |S'| (Figures 5 and 7) show an average
value around 12 for both . = 1.0 and 0.1, but with very
large fluctuations, |S'| < 200, when r, = 0.1. |S| has
smaller fluctuation for », = 1.0, with |S'| < 18. The
prediction for |S'| given by Blackwell (2003) in equation
(19), is compatible with Figure 5, but badly
overestimates at 7. = 0.1. This is because the particle
configuration (M- 1 particles clumped at a point within 7.,
of a particle which is close to p) which leads to this
prediction is very unlikely. In fact the results indicate that
large fluctuations occur due to the repulsion of a particle
by just one or two others. The similarity of the average
value of |S”| for either core radius is interesting since it is
of the order of the dynamic range, which is also the limit
of perception.

Figure 9, a plot of |p,(f) — x,(¢)| versus iteration ¢ shows
that the neutral swarm struggles to optimize this dynamic
function. Although there is some improvement in |p.(f) —
x,(f)| between jumps, the best position found by the
swarm at the end of each period (i.e. just before a jump),
|pe — x|, is monotonically increasing.

On the other hand, the charged swarm achieves more
success in following x, (Figure 10). The jumps are clearly
seen as spikes in Figure 10. The charged swarm, with its



greater diversity, always has a particle close enough to the
new attractor to pull the swarm in the direction of the
change, with a rapid improvement in |p(f) — x,(f)| and
final best values |p, — x,| in the range 0.01 - 0.1 for each
period.

5 CONCLUSIONS

If Particle Swarm Optimization is to be applied to a
dynamic problem, then some knowledge of the rate of
convergence of the swarm compared to the average jump
in optimum position is desirable. If, at change, the swarm
size is much smaller than the average jump length, it will
be difficult for the swarm to diversify and follow the
change. One measure of diversity which takes into
account fluctuations is the maximum swarm spatial size,
[SI. If the jump to the new optimum position occurs within
IS, then the swarm may have enough diversity to follow
the change.

It should be noted that ISI does not take into account
asymmetric particle distributions which may arise with
asymmetric problems. In such cases, an analysis using the
maximum spatial extent along each axis, ISjI, j=1..4d,
might be more appropriate. (Experiments and analysis of
a simple case where the optimum does lie outside IS| has
already been reported (Blackwell and Bentley 2002)).

The neutral swarm of PSO can be adapted with a charged
sub-swarm. This charged sub-swarm maintains population
diversity through the collision avoiding repulsions of
charged particles. However, some quantification of the
spatial size |S] is still needed since the repulsions depends
on a number of adjustable parameters such as particle
charge, core radius and perception limit. The median
radius of the swarm, R, is a second measure of diversity,
and is less sensitive to fluctuations.

This paper presents empirical results for ISI for a
simplified non-interacting swarm, and for the simplified
model with swarm intelligence. The analysis motivates
the result that an interacting swarm should shrink as

|S|= (Jnx)" where 77 is a small renormalization factor (7

> 1) and y is a constriction factor introduced by Clerc and
Kennedy to ensure convergence of the simplified model.
The empirical results, for the sphere function in three
dimensions support this finding, and the near critical
convergence (yr =y = 0.923) shed light on the PSO
folk-lore that velocity clamping is helpful even under
constriction. The empirical results for the simplified
model are in agreement with theory.

In practice, PSO is usually implemented with random
spring constants. This is believed to aid convergence in
difficult cases. Theoretical analysis of the effects of
randomization is lacking, but the empirical result of this
paper for a single objective function is that randomization
produces fluctuations around the exponential decay law,
with a renormalized constriction factor y similar to that
gained from particle interactions. When random springs
and particle interactions are included, yz is approximately

the same as for the model without randomization, except
that convergence is less regular.

Two results for the maximum size |S’| and median size R
of a charged swarm have also been derived. The analysis
for R is based on an electrostatic argument and assumes
an inverse square repulsive acceleration between charged
particles. In the CPSO, the Coulomb acceleration is
replaced by a constant acceleration at distances less than a
core radius, and is set to zero for separations beyond a
perception limit. The empirical results for charged
swarms of different core radii indicates that median
swarm size R should not be affected by the core radius or
perception limit.

The analysis for |S'|, the maximum spatial size of a
charged swarm, does indicate a dependence on core
radius, although the theoretical prediction |S'| ~ r.? badly
over estimates for small .. The argument rests on a
calculation of a maximum acceleration due to a very
unlikely swarm configuration, and clearly needs to be
refined.

The conclusion of the analysis for charged swarms is that
if the dynamic range is within |S'| then the charged swarm
should be able to follow any change. This was
demonstrated for a simple dynamic problem with |S'| set
at twice the dynamic range, and optimum jumps occurring
within one half the dynamic range. The neutral PSO, by
contrast, was not able to track this dynamism.
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Abstract

In order to study genetic algorithms in dy-
namic environments, we describe a stochas-
tic finite population model of dynamic op-
timization, assuming an alternating fitness
functions approach. We propose models and
methods that can be used to determine exact
expectations of performance. As an appli-
cation of the model, an analysis of the per-
formance of haploid and diploid genetic al-
gorithms for a small problem is given. Some
preliminary, exact results on the influences of
mutation rates, population sizes and ploidy
on the performance of a genetic algorithm in
dynamic environments are presented.

1 Introduction

In dynamic optimization, online optimization tech-
niques try to track optima of changing problems [1].
Genetic algorithms (GA) in dynamic environments
have been studied formally assuming infinite popula-
tion models [2]. In this paper, we present a stochastic
model of GAs with finite population sizes in specific
dynamic environments. Stochastic transition matrices
of consecutive generations — with possibly distinct fit-
ness functions — are combined into one Markov matrix.
We can then determine and analyze the limit behavior
of these stochastic systems. In order to find expecta-
tions of performance of the GA toward the limit, we
unroll the combined matrix again to calculate an ex-
pectation of fitness, based on the limit behavior of the
combined chain. In a similar coupled model, we have
studied the limit behavior of co-evolution of haploid
and diploid populations [3].

2 Models and Methods

We first give a general definition of a stochastic, fi-
nite population model of the Simple GA (SGA) with
a static fitness function. Similar models are later com-
bined to form a model of a GA with a dynamic fit-
ness function. In order to build a (stochastic) Markov
model for a GA, we have to identify all states of the
GA, and to determine the transition probabilities be-
tween these states.

2.1 Haploid and diploid reproduction
schemes

The following constructions are based on the definition
of haploid and diploid simple genetic algorithms with
finite population sizes as described in [4].

2.1.1 Haploid reproduction

Let Qg be the space of binary bit strings with length
l. The bit string serves as a genotype with [ loci,
that each can hold the alleles 0 or 1. Qg serves as
the search space for the Haploid Simple Genetic Al-
gorithm (HSGA). Let Py be a haploid population,
Py = {zo,21,...,Zry—1}, a multi set with z; € Qg
for 0 < i < rg, and rg = |Pg| the population size.
Let 7y denote the set of all possible populations Py
of size rg.

Let fg : Qg — RT denote the fitness function. Let
Sfu - TH — g represent stochastic selection, propor-
tional to fitness function fg. Crossover is a genetic op-
erator that takes two parent individuals, and results in
a new child individual that shares properties of these
parents. Mutation slightly changes the genotype of an
individual. Crossover and mutation are represented
by the stochastic functions x : Qg x Qg — Qp and
Qg — Qp respectively.

In a HSGA, a new generation of individuals is created



through sexual reproduction of selected parents from
the current population. The probability that a haploid
individual i € Qg is generated from a population Py
can be written according to this process as

Pr[i is generated from Py] = (1)
Pr[p (X (Spu (P) s Spu (Pr))) = 1]

where it has been shown in [4] that the order of mu-
tation and crossover may be interchanged in (1).

2.1.2 Diploid reproduction

In the Diploid Simple Genetic Algorithm (DSGA), an
individual consists of two haploid genomes. An in-
dividual of the diploid population is represented by
a multi set of two instances of Qp, e.g. {i,j} with
i,j € Qm. The set of all possible diploid instances
is denoted by Qp, the search space of the DSGA. A
diploid population Pp with population size rp is de-
fined over Q2p, similar to the definition of a haploid
population. Let 7mp denote the set of possible popula-
tions.

Haploid selection, mutation and crossover are reused
in the diploid algorithm. Two more specific genetic
operators must be defined. Let § : Qp — Qg be
the dominance operator. A fitness function fg de-
fined for the haploid algorithm, can be reused in a
fitness function fp for the diploid algorithm with
fol{isi}) = fu(3({i,j}) for any {i,j} in Qp. An-
other diploid-specific operator is fertilization, which
merges two gametes (members of Q) into one diploid
individual: ¢ : Qg X Qg — Qp. Throughout this pa-
per we will assume that ¢(i,j) = {i,j} for all i,j in
Q. The probability that a diploid child is generated
according to this scheme can now be written as

Pr[{i,j} is generated from Pp] = (2)
Pr (¢ (1 (X (o (PD))) » 1 (X ($55 (Pp)))) = {i,j}]-

2.2 Simple genetic algorithms

In the simple GA (SGA), a new population P’ of fixed
size r over search space () for the next generation is
built according to population P with

Pr(r(P) = P'| = ®3)

ﬁ'}?'(z)' [I;cp Pr[i is generated from P]
where 7 : m — 7 represents the stochastic construction
of a new population from and into population space «
of the SGA, and P’(¢) denotes the number of individu-
als ¢ in P'. Since the system to create a new generation

P’ only depends on the previous state P, the SGA is
Markovian. This implies that the SGA can now be
written as a Markov chain with transition matrix T
with Tp:p = Pr[r(P) = P']. If mutation can map
any individual to any other individual, all elements of
T become strictly positive, and T becomes irreducible
and aperiodic. The limit behavior of the Markov chain
can then be studied by finding the eigenvector, with
corresponding eigenvalue 1, of T'.

We will assume uniform crossover, bitwise mutation
according to a mutation probability u, and selection
proportional to fitness throughout the paper.

This completes the formal construction of haploid and
diploid simple genetic algorithms. More details of this
construction can be found in [4].

2.3 Alternating fitness functions

Next, we extend these models for dynamic environ-
ments. Qur approach is to combine several Markov
models of GAs, with specific fitness functions, into one
new transition matrix.

Consider a GA and n fitness functions f;. For each of
the fitness functions, let 7; describe the state transi-
tions of the GA, with selection according to f;. Let
T; denote the Markov matrix of the GA according to
transition 7;. We assume that all other parameters of
the modeled GAs — such as population sizes and pa-
rameters of reproduction — are equal for any of the n
Markov matrices. If we assume that during a run of
the GA each of the n fitness functions f; governs the
selection alternately for a fixed finite number of gen-
erations t;, then we can construct a combined Markov
model Ty, with

Tdyn =Tl

n

..... thz . Tfl . (4)

This combined transition matrix Tgy, gives the tran-
sition of the GA for t;,; = E?:l t; generations, start-
ing with the first generation with fitness function fi,
and ending with the last generation of fitness function
fn. Consequently, a run of the model repeatedly visits
all fitness functions and simulates a dynamic environ-
ment. Since Tyy, is independent of time, the chain is
Markovian.

2.4 Limit behavior
2.4.1 Existence of a unique limit

One can show that the combination of irreducible
and aperiodic Markov matrices 711, ...,T),, as defined
above, does not always result in a transition matrix
Tqyn that is irreducible and aperiodic. Therefore, we



cannot simply assume that the Markov chain based on
transition matrix Tgy, converges to a unique equilib-
rium distribution.

We can, however, make the following assumptions: If
mutation can map any individual to any other indi-
vidual in the algorithm’s search space with a strictly
positive probability, then all elements in transition ma-
trices T; are strictly positive [4]. According to (4), all
transition probabilities of the combined model Tgyn
are thus strictly positive. This makes the combined
Markov model irreducible and aperiodic, and hence,
due to Perron-Frobenius theorem, there exists a unique
eigenvector of the matrix with corresponding eigen-
value 1. Consequently, this eigenvector describes the
fixed point distribution over the states of the GA to-
ward the limit.

2.4.2 Interpretation of the limit

Let &y denote the unique eigenvector, with correspond-
ing eigenvalue 1, of the irreducible and aperiodic tran-
sition matrix Tgy,. The eigenvector describes the
probability distribution over the states of the GA.
By definition, & = Ty4yn - { or more specifically,

=Tt ... . T . T . &. Let &, denote the dis-
tribution over all states of the GA, u generations since
eigenvector &, with 0 < u < t44, i-e.,

gu:Ty.Ttvl...Tfl.go (5)

whereu =t +ta+---+t, 1 +wand 0 <w < t,. All
&, are vectors describing the consecutive distributions
over the GA’s search space with § = &,

2.5 Expected performance

Since we know the fitness function at each of the gener-
ations, we can find a mean fitness of all generations, as
the system defined by T4y, converges toward the limit.
This mean fitness, derived from the exact eigenvector,
gives us the expected mean fitness of a simulation run
of the GA.

Let &, (P) denote the probability of being in state P of
the GA, at u generations since eigenvector &. Let f,,)
denote the fitness function that is applied at the uth
generation since &. Let m denote the weighted mean
fitness of the populations according to distribution &,,

ie.,

Pem

with

fw(P) =B Z feuy (8) (M)

i€eP

where f(,)(P) denotes the mean fitness of population
P according to fitness function f(,). The overall mean
fitness f of all f(,) with

> Tw ®)

gives us the expected fitness over all generation, as
the GA goes toward the limit. Similarly to the mean
fitness measure, we could compute the expected pro-
portion of individuals with maximal fitness toward the
limit. Because of limited space, we do not discuss the
maximum fitness measure here.

3 Applications

In order to show how the models and methods from
section 2 can be utilized in practical applications to
study the performance of distinct algorithms and their
parameters in dynamic optimization, we discuss a
small dynamic problem, and give the expected perfor-
mance toward the limit of a haploid and diploid GA
tracking the problem.

3.1 Alternating the deleterious bit

We discuss a small single locus, two allele dynamic
problem. In terms of bit strings, this implies that
the GAs have a bit string of length 1 as their phe-
notype. We will use n = 2 different fitness functions
for our dynamic problem. Alternately, we let 0 and 1
be the deleterious allele for a finite number of gener-
ations tg = t1 = 10. Therefore, let fo and f;, with
fo(O) = L,fo(l) = 1,f1(0) =1 and fl(l) = L, be the
alternating fitness functions, with L denoting a mea-
sure of selection pressure, with 0 < L < 1. With L
smaller, the selection pressure is higher. Let Ty and
T denote the transition matrices for one generation of
a GA whose selection is according to fo and fi, respec-
tively. Matrix Ty, = Tfl -T(f“ represents the transition
probabilities of the GA for ¢y + t; consecutive gener-
ations, starting with the first generation using fitness
function fy. The unique eigenvector of Ty, with cor-
responding eigenvalue 1, of this transition matrix is
used for computing the algorithm’s performance for
this problem.

3.2 Limit behavior

Several preliminary results of the algorithm’s behavior
under several parameter settings are given. As default
parameters, population size r is set to 10, bit-flip mu-
tation rate p equals 0.02, selection pressure measure
L = 0.1, assuming fitness proportional selection. The



fixed point distribution, or eigenvector of the resulting
transition matrix Ty, has been computed. Conse-
quently, we can compute the exact fitness measures

f(u) and f
3.2.1 Haploid algorithm

Figures 1 and 2 show the mean fitnesses % In the
first 10 generations of both figures, selection of the GA
is governed by fo, whereas f; is active in the last 10
generations. The results in both halves of each figure
have the same performance results since the haploid
algorithm reacts analogous when switching the dele-
terious allele from 0 to 1 or vice versa. As fitnesses
switch, f becomes (1 + L) — f, and selection and re-
production proceeds according to the new fitness func-
tion. The distribution at generation 20 is equal to that
at generation 0, by definition.
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Figure 1: Exact limit behavior of the haploid algo-
rithm under different mutation rates. Performance
measure f equals 0.6677,0.7692,0.8322, 0.8097 for p =
0.02,0.04,0.08,0.16, respectively.

Figure 1 shows the influence of different mutation rates
on the performance of the GA for the dynamic prob-
lem. It can be shown that a bitwise mutation rate of
p =~ 0.095 gives the best performance, with f ~ 0.835.

Figure 2 shows that, as we increase the population size
of the GA, it performs better at tracking the optima of
the dynamic problem. An infinite population approach
could show the limit of the performance as r goes to oco.
Since larger populations require more computational
effort for making the step to the next generation, one
could choose to speed up the dynamic environment
as the population becomes larger. Since selection and
reproduction proceed inherently parallel in nature and
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Figure 2: Influence of different population sizes. f =
0.6677,0.7589,0.8305 for r = 10, 20, 40, respectively.

our primary goal is to build a biologically viable model,
we ignore this for now.

3.2.2 Diploid algorithm

Figures 3 and 4 show some preliminary results of the

influence of ploidy on the performance of the GA in
the dynamic environment.
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Figure 3: Exact limit behavior of comparable haploid
and diploid algorithms. f equals 0.6677 and 0.6798 for
the haploid and diploid algorithm, respectively.

Figure 3 shows how a haploid and diploid GA perform
at tracking the dynamic problem. In our specific ex-
ample, diploidy performs slightly better than the hap-



loid implementation. The diploid algorithm assumes
1 as its dominant allele. Therefore, the diploid algo-
rithm is able to gather more fitness when 0 is the dele-
terious allele, and less when 1 is deleterious. Hence
the asymmetry in the figures of the diploid algorithm.
The haploid algorithm performs increasingly better as
the period of alternating the fitness function becomes
larger. It can be shown that a diploid algorithm in-
herently performs not as good as haploid algorithms
in static environments. As the periods between fitness
function shifts become longer, the haploid algorithm
can profit from this effect.
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Figure 4: Influence of different dominance coefficients
in the diploid algorithm. f = 0.6798,0.7018,0.7070
for h = 0,0.05, 0.5, respectively.

Figure 4 shows the influence of a varying coefficient
of dominance for the deleterious allele. The coefficient
of dominance, symbolized by h, is a measure of dom-
inance of the recessive allele in the case of heterozy-
gosity. In this dominance scheme, the heterozygous
genotype {0,1} has phenotype 0 with probability h,
and phenotype 1 with probability 1 — h. The diploid
algorithm gathers more fitness in the dynamic setup
as the dominance degree goes to 0.5. Figure 3 is based
on a dominance degree of h = 0. The asymmetry in
the graphs that arose as diploidy was introduced, dis-
appears again as h = 0.5.

4 Discussion and Future Work

We have proposed a stochastic model and methods
for analyzing the limit behavior of GAs tracking the
optima of dynamic problems. The model provides a
method for calculating an exact and stochastic perfor-

mance expectation. This can be utilized to study the
influences of different parameter settings in the GA’s
implementation on the performance.

However, the applications of the model proposed here
are limited by the characteristic of deterministically
alternating fitness functions. We are currently work-
ing on relaxations of this property, by stochastically
alternating the fitness functions, which can easily be
incorporated in the Markov model of the GA. Also,
Markov models have the property of becoming compu-
tationally hard to solve as the size of the state space
increases, e.g., because of larger search spaces or in-
creasing population sizes. Consequently, this problem
is also present in our model. The model allows many
future enhancements, such as implementations of n-
ploidy and complexer dominance schemes.

The computational results in this paper are prelim-
inary, and more work needs to be done on a general
analysis of the performance of haploid and diploid GAs
in dynamic applications. Based on the current results
of the models it is hard to state whether haploid or
diploid algorithms perform generally better for instan-
tiations of dynamic problems. The difficulty of this
process increases as many parameters — such as mea-
sures of selection and recombination pressure — need
to be taken into account in such an analysis. Similarly,
it is unclear whether the single locus results carry over
to multiple loci problems. However, stochastic models
and the limit behavior for small problems can prove
helpful in predicting the performance of algorithms
in dynamic environments, complimentary to empirical
studies or theoretical infinite population approxima-
tions.
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Abstract

Dynamic optimiser design currently assumes
that diversity is a desirable property towards
achieving adaptability, as a population-based
optimiser contains an implicit memory. This
paper examines the applicability of this
assumption. Population-based algorithms of
different size are tested against optimisers using
a single solution. Results presented here suggest
that this view is somewhat simplistic, and that
population size should be considered as a design
variable in optimiser design for dynamic
environments.

1 INTRODUCTION

Research in dynamic optimization [1] focuses on
population-based  optimizers, mostly evolutionary
algorithms (EAs). EAs are seen as suitable due to their
analogy with nature, which is itself a dynamic
environment [2], and their distributed and parallel nature

[3].

This paper examines the premise that a population-based
mechanics is suitable for dynamic optimization, as it will
be able to adapt quickly. If the population is diverse and
a change in the problem occurs, there will more than
likely be a member of the population sitting in a
promising area of the search space, allowing the
optimizer to quickly adapt to the change. Maintaining a
population might thus be seen as a memory for storing
solutions that have had a high quality in the recent past,
and can be used as a head start for optimising under the
new conditions.
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2 LITERATURE REVIEW

Further to the idea of a population as suitable for dynamic
optimization problems, there is realization in the literature
that diversity in the population is a desired characteristic
for dynamic optimisation, to enable adaptation after a
change in the environment. This is due to optimisation
and adaptation requiring different and opposing
behaviours in any population, i.e. optimisation requires
convergent behaviour [2].

In contrast, adaptive behaviour, as noted earlier in this
text, requires divergent behaviour in order to explore the
search space for a new optimum after a change has
occurred. A homogenous population offers no benefit
over a single solution, in terms of search space coverage,
or the chance of having a member near the new optimum.
Much of the research into optimizers for dynamic
environments aims at defining structures and methods for
either maintaining (e.g. [4], [S]) or (re)introducing (e.g.
[4]) such diversity into a population, either after a change
has occurred, or throughout the run.

For example, [6] acknowledge this fact saying that
“.improving  adaptiveness means  counteracting
convergence” because “polymorphism is a desirable
characteristic in a population, and diversity is important
to this”. They draw justification for this from both nature
and cybernetics. In nature, Darwin’s theory of survival of
the fittest seems to be at odds with the diversity found in
ecosystems where no single species dominates. In
biology, they point out, “...redundancy seems to be the
key word in structures like DNA, neural networks and
immune systems”. From cybernetics, they quote W. Ross
Ashby [7], one of the fathers of cybernetics and his
principle of selective variety where “The larger the
variety of configurations a system undergoes, the larger
the probability that at least one of these configurations
will be selectively retained”.



The above has lead to suggestions that EAs are inherently
good at dynamic optimization, especially regarding EA
designs that support population diversity. However, the
premise of the suitability of population-based models
assumes a larger population will receive a performance
increase in its adaptive ability as the optimizer will have a
greater coverage of the search space, assuming the
population is diversified; but this ignores additional costs.

A larger population will entail a greater cost in terms of
the computational overhead of evaluating its members.
The question is whether a time/quality trade off is
involved in population size (or any other diversity
enhancing mechanism), varying for different problems
and the different characteristics of the changes taking
place.

This paper aims to show that the design of a population-
based optimizer should treat population sizes as a variable
when dealing with dynamic optimization problems, that
does not necessarily relate to performance in an obvious
way. It therefore attempts to establish or refute the
suitability of an optimizer, in terms of adaptation, when
maintaining a diverse population of solutions.

3 EXPERIMENTAL SETUP

To investigate the issue above, EAs of a large and small
population size are compared against a single-solution
based heuristic over an oscillating knapsack problem
common in the literature (e.g. [4]). If population size is
considered as a design variable, there will be a variety of
influences over the choice of population size; including
factors such as problem instance, problem size, and
characteristics of the various changes that can take place.

It is obviously impossible to examine the performance of
population sizes over all these factors; therefore this
paper will focus on a subset drawn from a more extensive
study.

This study adopts an oscillating knapsack problem
common in the literature, containing 17 bits. This study
uses this small instance size but additionally extends the
problem to 1700-bits. Weights and values for all objects
are determined randomly, but lie in the range set in the
original problem [6]. Weights are thus set in the range
{1,20} and values are in the range {1,10}. The same
objects are used for each algorithm.

In dynamic optimization problems it is important to
consider the computational efforts needed by the
optimizer. There will be a finite amount of time in which
to find these solutions before the environment changes.
Most optimizers usually spend most of their time on
evaluating solutions for quality, at least in complicated
real-world problems. Therefore it is common to compare

the performance of algorithms using the number of fitness
function evaluations as a measure of time.

The change characteristics contain many variables [2];
e.g. the severity and frequency of the changes, whether it
is oscillating between states, or involves a linear form of
change, or perhaps a catastrophic change. This study
shall restrict itself to one of the more simple
characteristics, namely the frequency with which the
changes occur. Two speeds will be considered here,
changing every 1000 evaluations and every 10,000
evaluations.

There are four combinations of problem size and change
frequencies examining the effect of population on an
optimiser’s performance at adapting in dynamic
environments. All algorithms are run 30 times with the
mean result being reported, best quality solution found
since change being recorded 10 times per cycle, in
common with the literature.

3.1 FIRST-ASCENT HILL CLIMBER

The first ascent hill climber tests the neighbourhood in
positional order from the first bit to the last. It accepts or
moves to the first neighbour found which shows some
improvement in quality. Upon finding a local optimum,
the hill-climber shall restart from a random starting point.

3.2 EVOLUTIONARY ALGORITHMS

In preliminary experiments (not quoted here due to space
limitations), the authors found a steady state EA was
more often able to produce better results. For this study,
however, a generational EA is used as it is the more
common replacement strategy in the literature and the
relative results are still the same. The implementation
follows that in the sGA (Simple Genetic Algorithm)
described in [6], but adopts uniform crossover. A
population of 100 is adopted for the larger population
size, with a smaller population of 10 members.

3.3 OSCILLATING 0/1 KNAPSACK PROBLEM

The Oscillating 0/1 Knapsack problem is a common
dynamic problem from the literature [4] and is defined as
follows: given a set of n items, each of which has a
weight, W/[i], and a value, V'/i], and a knapsack which
has a constraint in the amount of weight it may contain,
C. The goal is to place objects in the knapsack such that
the value of the objects is maximized, while the weight
constraint is not exceeded. Each object may either be
placed in the knapsack, or not. Multiple copies do not
exist (hence the 0/1).



More formally, given a set of weights W/i] and values
V[i] for a set of objects i={1...... n}, and a capacity C,
the goal is to maximize

Z V'[i] such that the weight constraint Z W[il<C is
i1 i1
realised.

4 RESULTS

The small problem size, fast change case (Figure 1)
clearly shows that high diversity does not assist
adaptability. The large-population EA is inferior to both
the hill-climber and the small-population EA.
Interestingly this is the case dominantly used in the
literature for evaluating novel dynamic optimisers. There
is a pronounced quality dip for the large population EA
(also see Figure 4), corresponding to the only just re-
evaluated post-change EA population. If any memory of
useful features is being retained, its effects are weak.

The small problem size, slow change case (Figure 2)
shows the large-population EA attains the best quality
solutions over the period between changes. However
adaptability would seem to be a moot point in this case,
as one could arguably re-optimise from scratch so in this
case diversity is supporting thoroughness of search. If
speed of recovery is at a premium the hill-climber wins,
albeit at the expense of quality.

Figure 3 depicts the results of the large instance, fast
change case. Both EAs clearly outperform the hill-
climber, with only small differences in attained quality
and similar apparent adaptivity. This would suggest that
this is a better problem instance with which to evaluate
dynamic optimisers.

The large instance, slow change case (Figure 4) shows a
similar pattern to the previous case (Figure 3), but
without to dip in solution quality due to the large
recording interval.

5 CONCLUSION

The assumption that diversity is good for dynamic
optimization is not universally applicable. Results show
that population size has a complex effect on performance
when adapting to changing problems, even when
considering this simple, yet common, problem, and only
considering a single very simple, aspect of change,
namely the frequency of the changes.

The hill climber struggles with larger size problem due to
the large search space defeating it’s local view. It can
often, however, react more quickly, albeit often at the
expense of quality.

The EA copes with the larger problem more easily, yet
struggles with the faster change rate. Its distributed
nature would explain the first while the computational
overhead in maintaining the population goes someway to
explaining the later.

These differences also serve to highlight that the standard
benchmark may not be sufficient to compare dynamic
optimisers.

Investigation should clarify the time/quality trade-off
between population size and the characteristics of the
changes taking place.

Finally, the results here also suggest that focusing on the
development of dynamic EAs that implement diversity
and memory in a low-cost way would likely prove useful.
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Abstract

In time-dependent optimization problems the
main task for a problem solver 1s not to find
a good solution, but to track the moving best
solution. It is well-known that evolutionary
algorithms can cope with this requirement.
For the case of evolution strategies we demon-
strate that even a slight variation of the set-
tings of population sizes g and A may lead to
significantly different results. For the neces-
sary comparisons we define a new measure-
ment and present an approach to get signifi-
cant results.

1 INTRODUCTION

Evolutionary algorithms (EA) belong to a class of
problem solvers which mimic the information process-
ing within natural systems. The most important repre-
sentatives of EA are evolution strategies (ES), genetic
algorithms (GA) and evolutionary programming (EP).

For dynamic optimization tasks often special variants
of EA are recommended (for an overview see [5]). In
the lack of problem-specific knowledge standard EA
are commonly used. An overview of the self-adaptive
evolution strategies used here can be found in [2,3].
We use the comma selection in which the p best off-
spring form the new parental population. The number
of different step sizes is n, = n.

Although primary investigations in this area were done
[1,6, 8], particularly in evolution strategies a theoreti-
cal foundation of population sizes is still outstanding.
Following a heuristic rule many authors recommend a
(15,100)-ES as a good choice [2]. In the following ex-
periments we try to estimate the influence of different
population sizes on the results.

Branke divides several types of dynamism [4,5]. He
emphasizes that in dynamic environments usually the
main task is not to find the optimum only once.
Instead, it is essential to follow the optimum with
high accuracy. In this study we concentrate on time-
dependent optimization problems in which the opti-
mum changes in constant time (mostly after every gen-
eration) with a moderate severity. We extend the well-
known sphere model to a time-dependent optimization
problem

n
min f(z,1) = minZ(mi —xh)?,
i=1
where t denotes the time, z = (z1,...,2,) € R" the
current solution and z' = (z%,..., z}) the optimizer

at time ¢.

Because we are only interested in tracking the opti-
mum, the period to find the optimum for the first time
is not considered here.

2 COMPARING TWO OR MORE
STRATEGIES

Fig. 1 shows a common single run of an ES in a
dynamic environment. After a few generations (the
searching period) the EA has found a solution with a
certain accuracy. Due to statistical fluctuations in the
following generations (the tracking period) the func-
tion values oscillate around this value.

A single run of one strategy is not sufficient to get
meaningful results. We reduce the random influences
by taking the median (0.5-quantile) of repeated runs.
In contrast to the mean the median is more robust
against statistical outliers. To get an impression of
the statistical fluctuations fig. 2 shows in addition to
the median the 0.05- and 0.95-quantiles of 50 runs of
the same experiment. Adding these quantiles leads
to an approximative 90% confidence interval for the
function value of every generation of a single run.
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Figs.1,2. Results of a (15,100)-ES on the dynamic
sphere with n = 30. The optimum moved every gener-
ation in one dimension with a constant s = 0.1. Fig.2
shows the 0.05-, 0.5- and 0.95-quantiles of the best

function values of every generation of 50 runs.

For a simple comparison of two strategies we need a
single measurement for every strategy. Although sev-
eral attempts have been made [9] we define a new mea-
surement. It is obvious that in dynamic environments
the process of optimization is infinity. Due to self-
evident reasons we have to restrict our investigations
to a limited time horizon.

We calculate a measurement for a single strategy in the
following way. In every single run and every genera-
tion we write out the best function value of the current
population. Repeating every strategy 50 times we get
for every generation 50 function values. Afterwards,
we take for every generation the median of these 50
function values and get a median run. The mean of
this median run during the tracking period serves as
the tracking measurement M, xy, which we call the
average best function value. Fig. 3 demonstrates our
approach. In this example the average best function
value of the generations from 1000 to 2000 is approxi-
mately M(15’100) =0.032.

As an alternative we use a (10, 100)-ES on the same
problem. Fig. 4 shows the median runs for both strate-

generations.

Figure 3: The median function value of generations
1000 — 2000 of 50 runs of a (15,100)-ES on the dy-
namic sphere with n = 30. The optimum moved every
generation in one dimension with a constant s = 0.1.
Additionally, the horizontal line shows the mean of
the 1001 plotted values, which we call the average best
function value.

gies. In this figure we see a noticeable better perfor-
mance of the variant with g = 10. The respective
tracking measurement is M(19,100) = 0.012.

best function

generations.

Figure 5: Boxplot of
mean function values

Figs. 4, 5. Comparison of 50 runs of a (10, 100)- and
a (15,100)-ES on the dynamic sphere with n = 30.
The optimum moved every generation in one dimen-
sion with a constant s = 0.1.

Figure 4: Median runs

To decide if this difference is significant much more
work is needed. For every generation we sort all 50
values (one of each run) and calculate each possible
a-quantile (o €  {0,1/49,2/49,3/49,...,47/49,
48/49,1}). For a fixed a we combine the a-quantiles
of every generation to a a-quantile run. E.g., the 0-
quantiles of every generation make the worst run and
the median run arises from the 0.5-quantiles. Be aware
that every a-quantile run may be compounded of val-
ues of different real runs.

After this we calculate for every a-quantile run the
mean function value during the tracking period. By
this manner we get 50 different mean function values.
One for the best run (1-quantile), one for the second
best run (48/49-quantile), ..., and one for the worst
run (0-quantile).

Now, we have for every strategy a random sample of
the mean function value during the tracking period.
Fig. 5 shows the boxplots of these samples of size 50
each. The non-overlapping notches of the boxplots
show that the median of the function values reached by
the (10, 100)-ES is significant (at the 5%-level) better
than the one of the (15, 100)-ES.

3 EXPERIMENTAL RESULTS

In the following experiments we minimize the dynamic
sphere with n = 30. We compare the average best
function values in the tracking period reached by ES
with different population sizes g and A. The popula-
tion sizes vary for u = {1, 2, 3, 4, 5, 8, 10, 15, 20, 30,
40} and for A = {40, 50, 60, 70, 80, 90, 100, 120, 140,
160, 180, 200, 240, 280}. In sect. 3.2 some strategies
were run with a higher A.

In sect. 3.1 we run every ES for 2000 generations,



which is enough for the considered function class. To
reduce the searching period we start the EA near the
optimum. In every case the searching period is com-
pleted after 1000 generations and the tracking period
is in action. In sect. 3.2 we run each strategy over
600,000 function evaluations. There, the tracking pe-
riod is always in action after 300,000 function evalua-
tions.

3.1 CONSTANT NUMBER OF
GENERATIONS

In figs. 6 and 7 we see the average best function value of
several (u, A)-ES. The optimum moved in one dimen-

average best function value

x M
number of parents (mu)

Figure 6: s =0.1.

average best function value

= M
number of parents (mu)

Figure 7: s = 1.0.

Figs. 6, 7. The average best function value of selected
(£, A)-ES on the dynamic sphere with n = 30. The op-
timum moved every generation in one dimension with
a constant s = 0.1 and s = 1.0. All strategies were
run 2000 generations.

sion with a severity of s = 0.1 and s = 1.0 at every
generation. Therefore, the total covered distance was
s-g = 200 and s-g = 2000 respectively. For the reason
of clarity, in the figures the curves for some A are sup-
pressed. In both cases the best performance is reached
with p = 3 parents.

Figs. 8 and 9 show the results if the optimum moves
in all dimensions. In this situation it is beneficial to
use more than three parents. Now, the ES gains from
a higher diversity. But, if u is too large (and thus the
selection pressure A/u is very low) the performance
reduces with increasing pu.

average best function value

) M
number of parents (mu)

Figure 8: s =0.1.

average best function value

x M
number of parents (mu)

Figure 9: s = 1.0.

Figs. 8,9. The average best function value of selected
(1, A)-ES on the dynamic sphere with n = 30. The op-
timum moved every generation in all dimensions with
a constant s = 0.1 and s = 1.0. All strategies were
run 2000 generations.

Although the severity is identical the function values
reached in the case of one moving dimension are con-
spicuous better than in the case of n moving dimen-
sions. An assumption for this behavior may result
from the common method how the mutation of the
step sizes and the object variables

o} = o;exp(roNo(0,1) + 7N;(0,1)), z} = z; + o;N; (0,1)

is performed. Assume, that the step sizes have nearly
their optimal values. Then, for the case of one mov-
ing dimension the step sizes are nearly o1 = 1,09 =
...0n, = € with € small. For the case of n moving di-
mensions they are nearly oy = ... 1/n+e.
Depending on 7y and 7 a possible change of o; >> ¢ by
a factor ¢ have a higher negative effect on the function

=0, =

value than the same percentage change of o; & ¢. In
this sense, in the first case only one step size is “frag-
ile”. In the second case all n step sizes are fragile.

3.2 CONSTANT NUMBER OF FUNCTION
EVALUATIONS

In the following experiments we hold the number of
function evaluations constant (600,000) and vary the
number of generations. To get comparable results we
keep the total covered distance equal for every strat-
egy. E.g., a (15,100)-ES with severity s = 0.1 will



cover in 6000 generations a total distance of 600. In
the case of a (8, 50)-ES we double the number of gener-
ations and have two choices. On the one hand we may
halve the covered distance for one generation. On the
other hand we may hold the severity constant but dou-
ble the changing frequency to every second generation.
In both cases after 600,000 function evaluations we get
the same total covered distance of 600.

Fig. 10 shows the results of several (p,A)-ES with

average best function value

0 M » =
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Figure 10: One moving dimension.

average best function value
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Figure 11: All moving dimensions.

Figs.10,11. The average best function value of sev-
eral (u, A)-ES (with A/p = 10) on the dynamic sphere
with n = 30. The optimum moved in one dimension
and in all dimensions. The moving frequency was al-
tered by AF € {1,2,3,5,10,20}. The total covered
distance was 600 and every strategy was run 600,000
function evaluations.

A/p = 10 when the optimum moved in one dimen-
sion. Every strategy was run for 600,000 function
This results in g = 600,000/X gener-
ations. The moving frequency AF was altered by
{1,2,3,5,10,20}. For every strategy the severity s,
per generation was set to a value that the total cov-
ered distance siotqr = sg - g/AF was 600. In our case

this rule leads to s; = 1/1000 - A - AF.

evaluations.

The best results are obtained when the optimum
moves every generation (AF = 1). With growing AF
the average best function value increases. The almost
best function value is reached with a (2,20)-ES. The
comparatively bad performance for g = 1 may follow
from the missing recombination.

When the optimum moves in all dimensions the sit-
uation is a little bit different. Fig. 11 shows that a
(20, 200)-ES reached the best performance. Obviously
as already seen in fig. 8 the ES suffers from a too small
diversity. Overall, for the problem class used fig. 11 ad-
vises to choose p between 10 and 30. But for a deeper
insight more investigations are needed.

To see if the differences of several strategies are signif-
icant we calculate the boxplots. Fig. 12 shows the re-

1= 2 |BETR4T
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Figure 12: One moving Figure 13: All moving

dimension. dimensions.

Figs. 12, 13. Boxplot of the 50 mean function values
of a (10,100)-, (20,200)- and a (30,300)-ES on the
dynamic sphere with n = 30. The optimum moved
every (AF = 1) or every second (AF = 2) generation
in one dimension and in all dimensions. The total
covered distance was 600 and all strategies were run
600,000 function evaluations.

sults for moving in one dimension. The differences be-
tween the medians are significant because the notches
of the different boxplots don’t overlap.

In opposite to this, fig. 13 shows the results for moving
in all dimensions. At first, the figure shows a variety
of strong outliers (marked by circles above the top of
a box). This is particularly the case for 4 = 10. Addi-
tional, for this moving type the average best function
value for yr = 20 is better than the one for g = 10. But
as the notches of both boxplots overlap the differences

are not significant.

Last, we examine the progress of several ES depend-
ing on the selection pressure A/u. Fig. 14 shows the
average best function value for the case of one mov-
ing dimension. The best results are obtained with a
(2,20)-ES. For all u the associated curve decrease with
increasing selection pressure. To estimate if this holds
for much higher fractions A\/u we need additional ex-
periments with a higher selection pressure. But in
most of such experiments much more than 300,000
function evaluations are necessary to reach the track-
ing period.

Whereas fig. 15 shows the same for the case that the
optimum changes in all dimensions. It seems to be the
best choice to choose a combination with 4 < A/u <5.
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Figs.14,15. The average best function value of sev-
eral (u,A)-ES on the dynamic sphere with n = 30.
The optimum moved every generation in one dimen-
sion and in all dimensions. Every strategy was run
600,000 function evaluations and the total covered dis-
tance was 600.

The optimal number of parents seems to lie between
10 and 30. In both cases for a deeper insight further
investigations are needed.

4 CONCLUSIONS

In this article we presented the results of several exper-
iments of different evolution strategies on the dynamic
sphere model. We developed a new method for com-
paring two or more strategies.

It shows that the optimal population sizes depend on
several factors. Beside others the moving type has
a non-negligible effect. The experiments suggest a
higher number of parents if the optimum moves in ev-
ery dimension.

For clearer recommendations we need more experi-
ments. This holds especially for other problem dimen-
sions than the used one here. Optimizing another ob-
jective function than the sphere model would probably
lead to different results. Last but not least tests with
miscellaneous dynamic types must be performed. But
these time-consuming experiments belong to further
studies.
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