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Abstract itis possible to extent Reif’s result and to obtain for all sta-
tionary subdivision schemegcessary and sufficient condi-

In this article we improve the butterfly and Loop’s al- tions which guarantee that the limiting surface is a regular
gorithm. As a result we obtain subdivision algorithms for G*-surface.
triangular nets which can be used to generate and G- Doo and Sabin [4], Ball and Storry [2] and Loop [7] used
surfaces, respectively. the smoothness criteria to find among certain variations of

the Catmull/Clark and Loop’s algorithm the best. However,

Keywords: Subdivision, interpolatory subdivision, these best algorithms still produce curvature discontinuous
Loop’s algorithm, butterfly algorithm. surfaces, see e.g. [2].

In [10] we took a different approach. Instead of vary-
ing the subdivision rules within some bounds which are set
heuristically, we changed the spectrum of the subdivision
o ) . . matrix so as to obtain the desired properties. Using the

Subdivision algorithms are popular in CAGD since they 2_cnaracterization in [8] we derived@?-subdivision al-
provide simple, efficient tools to generate arbitrary free qorithm from the Catmull/Clark algorithm (which does not
form surfaces. For example, the algorithms by Catmull and produce infinite curvatures), see [10].

Clark [3] and Loop [7] are generalizations of well-known Here we provide similar improvements(&- and aG?-

spline subdivision schemes. Therefore the @b pro-  4g0rithm based on the butterfly and Loop’s algorithm.
duced by these algorithms are piecewise polynomial and at

ordinary points curvature continuous.
At extraordinary points however, the curvature is zero or

infinite. In general, singularities at extraordinary points is , , i . ,
an inherent phenomenon of subdivision, see [13, 12, 9]. Loop’s algorithm generallzes the subd|V|3|qn algor.|thm
The smoothness of a subdivision surface at its extraordi-'0" SUrfaces expressed in terms of the symmetric quartic box

nary points depends on the spectral properties of the associSP!in€ over a regular triangulation 5. It generates from
ated subdivision matrix. any triangular netV; a new netV7, whose vertices are clas-

Doo and Sabin [4] derived necessary conditions on the Sified as E- and V-vertices. ,
eigenvalues. Ball and Storry [1, 2] made first rigorous in- Compu'_[lng the ‘_Ne'ghtEd averages of the four vert|ces of
vestigations to prove the tangent plane continuity for aclass@y tr\]/vo trr:angle_s '”_’Vo shanqg a Cr:)mmon gdge W|_th_|th?
of Catmull/Clark type algorithms. Then Reif [11] observed welg tS_ shown in .Flgure 1 gives the E-vertlc_es. Simi arly
that tangent plane continuous sazés may have local self-  cOMPuting the weighted averages of all vertices of all tri-
intersections and introduced the characteristic map definec?n9!€s INVo arom;\nd any vertex with 'Te weights Ehown n
by the subdominant eigenvectors. Moreover, for all station- F'g“ril gives t er:(-vertlces. For = 6 Loo;:i.c 00ses
ary subdivision schemes he derivegtassary and sufficient ©(6) = 5/8 since this corresponds to box spline subdivi-
conditions which guarantee that the limiting surface is regu- sion.

lar, i.e. tangent plane continuous without local penetrations. The new net\; is optained by connecf[ing for all tri-
Finally, in [8] Reif's characteristic map is used to para- angles of Ay the associated three E-vertices and for all

metrize the subdivision swa€e. With this parametrization edges of\, the associated E-vertices with both associated
V-vertices. By the same procedure a nexthgis obtained
I Supported by DFG grant # PR 565/1-1 from A} and so on.

1. Introduction

2. Loop’s algorithm
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Figure 1. The masks of the Loop algorithm —
the V-mask is illustrated for n = 6.

Note that a vertex of any net;,: > 1, is extraordi-
nary, i.e. an interior vertex with valencg 6, if it is a
V-vertex associated with an extraordinary vertexAof ;.
Thus the number of extraordinary vertices is constant for
all netsV;, ¢ > 0, and these vertices are separated by more
and more ordinary vertices agrows.

In particular if Ay is a regular triangular net, i.e. without
extraordinary vertices, Loop’s algorithm coincides with the
subdivision algorithm for quartic box spline saces. Thus
also for an arbitrary neV; the sequenceV; converges to
a piecewise quartic surface with one extraordinary point for
each extraordinary vertex d¢f. The limiting surface is a
C?-surface everywhere except at its extraordinary points.

Loop’s analysis shows that the limiting surface has a con-
tinuous tangent plane at its extraordinary points for a certain
range ofa’s, see [7] .

3. The butterfly algorithm

The butterfly algorithm of Dyn et al. [5] generates a se-
quence of triangular net§;,: > 0, similar to Loop’s al-
gorithm. Only the masks used to compute the E- and V-
vertices are different. They are given in Figure 2.
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Figure 2. The masks of the butterfly algorithm.

A sequence of netd/; obtained by the butterfly algo-
rithm with small positivev converges to a surface that is
differentiable everywhere except at its extraordinary points
of valence 3 [5, 6] ana > 8.

At extraordinary points of valence > 8 the surface is
tangent plane continuous but it has self-intersections and
therefore is not regular. We checked this for several
However, in the sequel we always work with= 1/32.

Variations of the butterfly algorithm have been proposed
by Zorin et al. [16]. However, the smoothness of the lim-
iting surfaces obtained by these variations has not yet been
investigated.

4. A smoothness condition

In Sections 5 and 6 we present modifications of Loop’s
and the butterfly algorithm giving/?- or G*-surfaces in
the limit. The method used to derive these modifications
is based on the* -analysis of subdivision schemes given in
[8] and can also be used for subdivision schemes for quadri-
lateral nets [10].

For more details we need to recall a result from [8]. We
present it in the theorem below for amybdivision scheme
S that is identical with the butterfly or Loop’s algorithm
except that E- and V-masks may be different.

We assume that the limiting surface associated with any
initial triangular netV, obtained by the subdivision scheme
S hasC*-parametrizations around all its ordinary points.

Extraordinary points are isolated as observed in Section
2. Therefore, to analyze the smoothness of the limiting sur-
face at extraordinary points it suffices to consider a sub-
net M, of Ny consisting of one extraordinary vertex sur-
rounded by say, rings of ordinary vertices as illustrated in
Figure 3 forrg = 3.

Figure 3. A net with one extraordinary ver-
tex of valence 5 (marked by ) surrounded by
ro = 3 rings of ordinary vertices.



Further letM; be the largest subnet df; whose ver-
tices depend only o ,. This netM; also has only one
extraordinary vertex surrounded by sayrings of ordinary
vertices.

Note thatr; is roughly twice as lage as. For example
in Loop’s algorithmry; = 5 if 7o = 3 and in the butterfly
algorithmry = 6 if ro = 4.

Let 7, be so large that; — »; > 1. Then discard-
ing ther; — ry outer rings of M gives a netC; with
the same size and connectednesd s Letm;, ..., m,,
andky, . . ., k,, denote the vertices 0¥1, andK 1, respec-
tively. Since the verticek; are affine combinations of the
m, there is ann x m matrix A such that

ki ...

Let s, denote the limiting surface associated witi,
under the subdivision schende Applying S to M gives
the same limiting surfacsy, but the surface; associated
with the subnek’; is smaller and only a part &f,. Taking
s; away froms, gives the here so-callditst surface ring
associated with\1,.

Now we are able to present the following theorem which
is proven in more general form in [8]:

Theorem 4.1 Let A have them (possibly complex) eigen-
valuesl, A\, Ay, ..., ¢, wherel > |A| > |u| > ... > |C]
and assume two eigenvectarsand d associated with the
double eigenvalug. If the first surface ring of the net given
by[e; ...en]t = [cd]is regular without self-intersections
and

AP > Jul, k>1, (4.1)

then the limiting surface is &”*-surface for almost all ini-
tial nets M. (More precisely, the limiting surface is a
G*-surface for all initial netsM, whose expansion by the
eigenvectors oft involvesc in one andd in a second coor-
dinate.)

The eigenvalue condition (4.1) goes back to Doo and Sabin
[4]. The first surface ring associated with the eigenvectors

c andd is called thecharacteristic map oft by Reif who
used it to prove this Theorem fér= 1 [11].

If the limiting surface in Theorem 4.1 is@"*-manifold,
k > 2, then the extraordinary point is a flat point. This

fact is also true for more general subdivision schemes, see

[11, 9].
5. Modifications of Loop’s algorithm

The subdivision matrix4 of Loop’s algorithm associ-
ated with an extraordinary vertex of valenedas a single
dominant eigenvalug¢ and satisfies thé&''-conditions of
Theorem 4.1 [7, 15], but not th&?-condition [14]. To ob-
tain a subdivision matrixd’ that represents a modification

of Loop’s algorithm satisfying thé/?-condition we diago-
nalize the matrix4,

A=VAV~'  whereA =diag1, )\, x, ..., (),
change the modal matrix to
A =diag1,\ A, 1, . .., ¢"),  where|y/|, ... |¢| < A%,

and compute the new subdivision matrix as
A =VANVT

Lemma 5.1 The matricest and A’ have the same charac-
teristic maps.

Proof The eigenvectors associated witlare the same for
AandA’. They define a planar control n&f,. Subdividing

No by Loop’s algorithm and also by the modification results
both times in the same sequence of n€ts The extraordi-
nary vertex and its three surrounding rings of control points
in \V; are scaled versions @f;. The other control points of
N; are computed by the subdivision rules for regular nets.
Thus Loop’s algorithm and its modification applied A&
produce the same surface in the limit. |

The symmetry of Loop’s scheme means that the sub-
division matrix A is block-circulant. Therefore a discrete
Fourier transformation can be used to analyze the spectral
properties ofA.

If n = 3, the matrix4 has the subdominant eigenvalue
A = 1/4 and exactly six eigenvalues with modulus in the
half-open interval|A|%, |A|). These are the two triple eigen-
valuesl /8 and1/16. Changing just these triple eigenvalues
to the triple eigenvalue$/8 + ¢, and1/16 + ¢4, respec-
tively, such thafl /8 + ¢, and1/16 + ¢, are less thap\|?,
results in a matrix4’, which represents the same masks as
the original matrix4 except for the E- and V-masks shown
in Figure 4, where

0

0
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Figure 4. The E- and V-masks of the modified
Loop algorithm near a vertex of valence  n = 3.



are shown with the visualization of their Gaussian curva-

Bo = 5-— SBacT) ture. This curvature is not a discrete approximation ob-
o= 24 %’ tajned frorr_1 the subdi\{ideq control net. We used thecei
8y = L_g wise quartic parametrization of the surface to compute the
@ (200-11)¢, Gaussian curvature. The common control net of both sur-
Ps = = 6(2a—1) > faces is given in Figure 7.
o €~ gty + %’
o= i+ GEt + Sieest
Y2 = % — &2,
Y3 = = —e1+ey,
1 (2a—2)e; (32a—11)eq
74 16 ~ BZa-1) _ 3(16a-7) °
If n > 4, the matrixA hask := |(n — 1)/2] — 1 dou- —

ble eigenvalues besideés We denote these eigenvalues by . 0.4

Hi, ..., p and assuméuy| > ... > |ug|. Furthermore,

any eigenvalue oft with modulus in the half-open interval

[IAI%, |A]) is one of these double eigenvalygsbut not vice 0.0

versa.
Changing just these double eigenvalyeso the double
eigenvalueg:; + J; results in a matrixd’, which represents
the same masks as the original matrix except for the E-mask -0.4
illustrated in Figure 5, where

2 2mi(j + 1) . I-08
ozz_fl—i—n;é]cos( " ),2_0,...,Ln/2J
(5.2)
and
3/8 i=0
F=4 18 if i=1.
0 i>2

Figure 6. Visualization of the Gaussian cur-
vature of the surface generated from the net
shown in Figure 7 by Loop’s algorithm (top)
and our modification (bottom).

Figure 5. The E-masks of the modified Loop
algorithm near the vertices of valence n > 4
illustrated for n = 8.

Note that Loop’s masks, see Figure 1, are obtained if all
d’s ande’s are zero.

Figure 6 shows an example. The surface at the top is
generated using Loop’s algorithm while the one at the bot-  Figure 7. Topview of the control net used for
tom is produced with the above modified masks, where Figure 6. It lies on a parabolic cylinder.

6, = 0.03755 andé, = ...,0, = 0. The surfaces



Remark 5.2 The eigenvalues of with modulus less than

|A]? need not be changed. However, the masks of the modi-
fied algorithms have negative weights, see (5.2). Therefore

the eigenvalues with modulus\? can be changed so as to
obtain larger negative weights.

Remark 5.3 In some cases better looking surfaces are ob-
tained if Loop’s algorithm is gradually modified after each

subdivision iteration. For example, the sequence of nets

Ni,i=0,...,6, leading to the surface shown in Figure 8
(bottom left) has been obtained by Loop’s algorithm modi-
fied withe; = 2¢5 = /7/384 when applied to the neV;.
The adaptive linear combination of Loop’s and our scheme
produces a surface with a more even curvature distribution
and without infinite curvature.

In further iterations we would chosg ande, constant
as in step 6. Note that the modified subdivision matrix sat-
isfies the conditions of Theorem 4.1 far 2.

m 0.5
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Figure 8. Visualization of the Gaussian cur-
vature of the surface generated from the net
shown in Figure 9 by Loop’s algorithm (top
left), our modified scheme (top right) and an
adaptive linear combination of Loop’s and our
scheme (bottom left).

Figure 9. Topview of the control net used for
Figure 8. It lies on a hyperbolic paraboloid.

6. Modifications of the butterfly algorithm

A limiting surface obtained by the butterfly algorithm is
not differentiable at extraordinary points, in general.

For an extraordinary point of valence 3, this is due to
the fact that the associated subdivision mattikas a triple
subdominant eigenvaluk see [5]. Two of these eigenval-
ues are associated with eigenvectors forming a regular in-
jective characteristic map. As in Section 5 we change the
third eigenvalue\ to A — 0.01.

For an extraordinary point of valenee > 8 the char-
acteristic map of the subdivision matrikx overlaps itself.
Since the matrices are block circulant they have a discrete
Fourier transform, which helps to understand what hap-
pens: The subdominant eigenvalues+#or 8 correspond
to higher frequencies than one. Luckily both eigenvectors
associated with the largest eigenvalue of frequency one (it
is a double real eigenvalue, here denoted epresent the
control net of a regular injective surface ring.

Thus we change the eigenvalues with modulug inv|)
tor — 0.01 as in Section 5 so thatbecomes the subdomi-
nant eigenvalue.

Together these changes lead to a modification of the but-
terfly algorithm forw 1/32 which is presented by the
same masks except for the masks given in Figure 11, where
the weightsy;, 3;,4; are given in Table 10.

Figure 12 shows an example. The surface at the top is
generated using the butterfly scheme while the one at the
bottom is produced with the above modified masks. Note
that the surface at the top has self-intersections while the
surface at the bottom as well as the common control net of
both surfaces, see Figure 13, have no self-intersections.

Remark 6.1 The surface obtained by the modified butter-
fly algorithm does not interpolate all vertices of the initial
control net. However, if we use the butterfly algorithmin the
first iteration and the modification in all further iterations,
all vertices of the initial net are interpolated.



n = n— 8
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0.500000 0.000000
0.493006 0.985866 0 062500
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—0.000592 —0.001174 0.000089 | —0.021509 0.019243 0 000069
—0.020976  0.020370 —0.001769 0.000110  0.000219 _D'DDI§2§
0.000105 0.000209 0.016331 | —0.001372 —o0.002710 01976
—0.001113 —0.002207 0.000168 0.009740  0.019243 _g:gggzgg
0.005466 0.010838 —0.000941 0.000110  0.000219 ~ "0 o
0.000056  0.000111 —0.003017 | —0.000424 —0.000837 o' co0 o
0.000205  0.000407 —0.000031 | —0.003720 —0.007350 o' oo 0o
—0.008374 —0.016606 0.001442 | —0.000042 —0.000083 _ "0 o
—0.000086 —0.000170 —0.017379 0.001110  0.002193 '
0.001184 0.002349 —0.000178 | —0.012040 —0.023786 — 0 000182
—0.000137 —o0.000270 °-002252
ag, .-, a18 Bos-->B18 Y0r--5Y18 |@0s- -5 @20 Bos- > B20 Yo, o> V1o
0.500000 0.000000
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—0.001353 —0.002685 0.000238 0.011103  0.022207 0'0003;5
0.011368 0.022553 —0.002286 0.000148 0.000297 0002379
0.000141 0.000280 0.013105 | —0.000505 —0.000996 g:ggg;‘gg
—0.000923 —0.001832 0.000162 | —0.003915 —0.008028 "0 o0
0.001686  0.003345 —0.000339 | —0.000012 —0.000025 _ o' 005 &
0.000020 0.000041 —0.008313 0.000684  0.001382 _ "0 cU
0.000586  0.001162 —0.000103 | —0.005551 —0.011103 ~ 0" oo
—0.009967 —0.019774  0.002004 | —0.000074 —0.000148 _ "0 o
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Table 10. The weights of the masks of the
modified butterfly algorithm for
n==,8,...,12.

n =

3 and

V-mask

Figure 11. The E- and V-masks of the modified
butterfly algorithm near a vertex of valence
n = 8.

a

,

Figure 12. The surface generated from the net
shown in Figure 13 by the butterfly scheme
(top) and our modification (bottom).



Figure 13. The control net used for Figure 12.
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