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Abstract

In this article we improve the butterfly and Loop’s al-
gorithm. As a result we obtain subdivision algorithms for
triangular nets which can be used to generateG1- andG2-
surfaces, respectively.
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1. Introduction

Subdivision algorithms are popular in CAGD since they
provide simple, efficient tools to generate arbitrary free
form surfaces. For example, the algorithms by Catmull and
Clark [3] and Loop [7] are generalizations of well-known
spline subdivision schemes. Therefore the surfaces pro-
duced by these algorithms are piecewise polynomial and at
ordinary points curvature continuous.

At extraordinary points however, the curvature is zero or
infinite. In general, singularities at extraordinary points is
an inherent phenomenon of subdivision, see [13, 12, 9].

The smoothness of a subdivision surface at its extraordi-
nary points depends on the spectral properties of the associ-
ated subdivision matrix.

Doo and Sabin [4] derived necessary conditions on the
eigenvalues. Ball and Storry [1, 2] made first rigorous in-
vestigations to prove the tangent plane continuity for a class
of Catmull/Clark type algorithms. Then Reif [11] observed
that tangent plane continuous surfaces may have local self-
intersections and introduced the characteristic map defined
by the subdominant eigenvectors. Moreover, for all station-
ary subdivision schemes he derived necessary and sufficient
conditions which guarantee that the limiting surface is regu-
lar, i.e. tangent plane continuous without local penetrations.

Finally, in [8] Reif’s characteristic map is used to para-
metrize the subdivision surface. With this parametrization
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it is possible to extent Reif’s result and to obtain for all sta-
tionary subdivision schemes necessary and sufficient condi-
tions which guarantee that the limiting surface is a regular
Gk-surface.

Doo and Sabin [4], Ball and Storry [2] and Loop [7] used
the smoothness criteria to find among certain variations of
the Catmull/Clark and Loop’s algorithm the best. However,
these best algorithms still produce curvature discontinuous
surfaces, see e.g. [2].

In [10] we took a different approach. Instead of vary-
ing the subdivision rules within some bounds which are set
heuristically, we changed the spectrum of the subdivision
matrix so as to obtain the desired properties. Using the
G2-characterization in [8] we derived aG2-subdivision al-
gorithm from the Catmull/Clark algorithm (which does not
produce infinite curvatures), see [10].

Here we provide similar improvements, aG1- and aG2-
algorithm based on the butterfly and Loop’s algorithm.

2. Loop’s algorithm

Loop’s algorithm generalizes the subdivision algorithm
for surfaces expressed in terms of the symmetric quartic box
spline over a regular triangulation ofIR2. It generates from
any triangular netN0 a new netN1, whose vertices are clas-
sified as E- and V-vertices.

Computing the weighted averages of the four vertices of
any two triangles inN0 sharing a common edge with the
weights shown in Figure 1 gives the E-vertices. Similarly
computing the weighted averages of all vertices of all tri-
angles inN0 around any vertex with the weights shown in
Figure 1 gives the V-vertices. Forn = 6 Loop chooses
�(6) = 5=8 since this corresponds to box spline subdivi-
sion.

The new netN1 is obtained by connecting for all tri-
angles ofN0 the associated three E-vertices and for all
edges ofN0 the associated E-vertices with both associated
V-vertices. By the same procedure a next netN2 is obtained
fromN1 and so on.
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Figure 1. The masks of the Loop algorithm –
the V-mask is illustrated for n = 6.

Note that a vertex of any netNi; i � 1; is extraordi-
nary, i.e. an interior vertex with valence6= 6, if it is a
V-vertex associated with an extraordinary vertex ofNi�1.
Thus the number of extraordinary vertices is constant for
all netsNi; i � 0; and these vertices are separated by more
and more ordinary vertices asi grows.

In particular ifN0 is a regular triangular net, i.e. without
extraordinary vertices, Loop’s algorithm coincides with the
subdivision algorithm for quartic box spline surfaces. Thus
also for an arbitrary netN0 the sequenceNi converges to
a piecewise quartic surface with one extraordinary point for
each extraordinary vertex ofN0. The limiting surface is a
C2-surface everywhere except at its extraordinary points.

Loop’s analysis shows that the limitingsurface has a con-
tinuous tangent plane at its extraordinary points for a certain
range of�’s, see [7] .

3. The butterfly algorithm

The butterfly algorithm of Dyn et al. [5] generates a se-
quence of triangular netsNi; i � 0; similar to Loop’s al-
gorithm. Only the masks used to compute the E- and V-
vertices are different. They are given in Figure 2.
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Figure 2. The masks of the butterfly algorithm.

A sequence of netsNi obtained by the butterfly algo-
rithm with small positive! converges to a surface that is
differentiable everywhere except at its extraordinary points
of valence 3 [5, 6] andn � 8.

At extraordinary points of valencen � 8 the surface is
tangent plane continuous but it has self-intersections and
therefore is not regular. We checked this for several!.
However, in the sequel we always work with! = 1=32.

Variations of the butterfly algorithm have been proposed
by Zorin et al. [16]. However, the smoothness of the lim-
iting surfaces obtained by these variations has not yet been
investigated.

4. A smoothness condition

In Sections 5 and 6 we present modifications of Loop’s
and the butterfly algorithm givingG2- or G1-surfaces in
the limit. The method used to derive these modifications
is based on theGk-analysis of subdivision schemes given in
[8] and can also be used for subdivision schemes for quadri-
lateral nets [10].

For more details we need to recall a result from [8]. We
present it in the theorem below for anysubdivision scheme
S that is identical with the butterfly or Loop’s algorithm
except that E- and V-masks may be different.

We assume that the limiting surface associated with any
initial triangular netN0 obtained by the subdivision scheme
S hasCk-parametrizations around all its ordinary points.

Extraordinary points are isolated as observed in Section
2. Therefore, to analyze the smoothness of the limiting sur-
face at extraordinary points it suffices to consider a sub-
netM0 of N0 consisting of one extraordinary vertex sur-
rounded by sayr0 rings of ordinary vertices as illustrated in
Figure 3 forr0 = 3.

Figure 3. A net with one extraordinary ver-
tex of valence 5 (marked by �) surrounded by
r0 = 3 rings of ordinary vertices.



Further letM1 be the largest subnet ofN1 whose ver-
tices depend only onM0. This netM1 also has only one
extraordinary vertex surrounded by sayr1 rings of ordinary
vertices.

Note thatr1 is roughly twice as lage asr0. For example
in Loop’s algorithmr1 = 5 if r0 = 3 and in the butterfly
algorithmr1 = 6 if r0 = 4.

Let r0 be so large thatr1 � r0 � 1. Then discard-
ing the r1 � r0 outer rings ofM1 gives a netK1 with
the same size and connectedness asM0. Letm1; : : : ;mm

andk1; : : : ;km denote the vertices ofM0 andK1, respec-
tively. Since the verticeski are affine combinations of the
mj, there is anm�m matrixA such that

[k1 : : : km]t = A[m1 : : :mm]t:

Let s0 denote the limiting surface associated withM0

under the subdivision schemeS. ApplyingS toM1 gives
the same limiting surfaces0, but the surfaces1 associated
with the subnetK1 is smaller and only a part ofs0. Taking
s1 away froms0 gives the here so-calledfirst surface ring
associated withM0.

Now we are able to present the following theorem which
is proven in more general form in [8]:

Theorem 4.1 Let A have them (possibly complex) eigen-
values1; �; �; �; : : : ; �, where1 > j�j � j�j � : : : � j�j
and assume two eigenvectorsc andd associated with the
double eigenvalue�. If the first surface ring of the net given
by [c1 : : :cm]t = [cd] is regular without self-intersections
and

j�jk > j�j; k � 1; (4.1)

then the limiting surface is aGk-surface for almost all ini-
tial netsM0. (More precisely, the limiting surface is a
Gk-surface for all initial netsM0 whose expansion by the
eigenvectors ofA involvesc in one andd in a second coor-
dinate.)

The eigenvalue condition (4.1) goes back to Doo and Sabin
[4]. The first surface ring associated with the eigenvectors
c andd is called thecharacteristic map ofA by Reif who
used it to prove this Theorem fork = 1 [11].

If the limiting surface in Theorem 4.1 is aCk-manifold,
k � 2, then the extraordinary point is a flat point. This
fact is also true for more general subdivision schemes, see
[11, 9].

5. Modifications of Loop’s algorithm

The subdivision matrixA of Loop’s algorithm associ-
ated with an extraordinary vertex of valencen has a single
dominant eigenvalue1 and satisfies theG1-conditions of
Theorem 4.1 [7, 15], but not theG2-condition [14]. To ob-
tain a subdivision matrixA0 that represents a modification

of Loop’s algorithm satisfying theG2-condition we diago-
nalize the matrixA,

A = V �V �1; where� = diag(1; �; �; �; : : :; �);

change the modal matrix� to

�0 = diag(1; �; �; �0; : : : ; �0); wherej�0j; : : : ; j�0j < �2;

and compute the new subdivision matrix as

A0 = V �0V �1:

Lemma 5.1 The matricesA andA0 have the same charac-
teristic maps.

Proof The eigenvectors associated with� are the same for
A andA0. They define a planar control netN0. Subdividing
N0 by Loop’s algorithm and also by the modification results
both times in the same sequence of netsNi. The extraordi-
nary vertex and its three surrounding rings of control points
inNi are scaled versions ofN0. The other control points of
Ni are computed by the subdivision rules for regular nets.
Thus Loop’s algorithm and its modification applied toN0

produce the same surface in the limit. 2

The symmetry of Loop’s scheme means that the sub-
division matrixA is block-circulant. Therefore a discrete
Fourier transformation can be used to analyze the spectral
properties ofA.

If n = 3, the matrixA has the subdominant eigenvalue
� = 1=4 and exactly six eigenvalues with modulus in the
half-open interval[j�j2; j�j). These are the two triple eigen-
values1=8 and1=16. Changing just these triple eigenvalues
to the triple eigenvalues1=8 + "1 and1=16 + "2, respec-
tively, such that1=8 + "1 and1=16 + "2 are less thanj�j2,
results in a matrixA0, which represents the same masks as
the original matrixA except for the E- and V-masks shown
in Figure 4, where
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Figure 4. The E- and V-masks of the modified
Loop algorithm near a vertex of valence n= 3.
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If n � 4, the matrixA hask := b(n � 1)=2c � 1 dou-
ble eigenvalues besides�. We denote these eigenvalues by
�1; : : : ; �k and assumej�1j � : : : � j�kj. Furthermore,
any eigenvalue ofA with modulus in the half-open interval
[j�j2; j�j) is one of these double eigenvalues�i but not vice
versa.

Changing just these double eigenvalues�i to the double
eigenvalues�i + �i results in a matrixA0, which represents
the same masks as the original matrix except for the E-mask
illustrated in Figure 5, where
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Figure 5. The E-masks of the modified Loop
algorithm near the vertices of valence n � 4

illustrated for n = 8.

Note that Loop’s masks, see Figure 1, are obtained if all
�’s and"’s are zero.

Figure 6 shows an example. The surface at the top is
generated using Loop’s algorithm while the one at the bot-
tom is produced with the above modified masks, where
�1 = 0:03755 and �2 = : : : ; �k = 0. The surfaces

are shown with the visualization of their Gaussian curva-
ture. This curvature is not a discrete approximation ob-
tained from the subdivided control net. We used the piece-
wise quartic parametrization of the surface to compute the
Gaussian curvature. The common control net of both sur-
faces is given in Figure 7.
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Figure 6. Visualization of the Gaussian cur-
vature of the surface generated from the net
shown in Figure 7 by Loop’s algorithm (top)
and our modification (bottom).

Figure 7. Topview of the control net used for
Figure 6. It lies on a parabolic cylinder.



Remark 5.2 The eigenvalues ofA with modulus less than
j�j2 need not be changed. However, the masks of the modi-
fied algorithms have negative weights, see (5.2). Therefore
the eigenvalues with modulus< �2 can be changed so as to
obtain larger negative weights.

Remark 5.3 In some cases better looking surfaces are ob-
tained if Loop’s algorithm is gradually modified after each
subdivision iteration. For example, the sequence of nets
Ni; i = 0; : : : ; 6; leading to the surface shown in Figure 8
(bottom left) has been obtained by Loop’s algorithm modi-
fied with"1 = 2"2 =

p
i=384 when applied to the netNi.

The adaptive linear combination of Loop’s and our scheme
produces a surface with a more even curvature distribution
and without infinite curvature.

In further iterations we would chose"1 and"2 constant
as in step 6. Note that the modified subdivision matrix sat-
isfies the conditions of Theorem 4.1 fori � 2.
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Figure 8. Visualization of the Gaussian cur-
vature of the surface generated from the net
shown in Figure 9 by Loop’s algorithm (top
left), our modified scheme (top right) and an
adaptive linear combination of Loop’s and our
scheme (bottom left).

Figure 9. Topview of the control net used for
Figure 8. It lies on a hyperbolic paraboloid.

6. Modifications of the butterfly algorithm

A limiting surface obtained by the butterfly algorithm is
not differentiable at extraordinary points, in general.

For an extraordinary point of valence 3, this is due to
the fact that the associated subdivision matrixA has a triple
subdominant eigenvalue�, see [5]. Two of these eigenval-
ues are associated with eigenvectors forming a regular in-
jective characteristic map. As in Section 5 we change the
third eigenvalue� to� � 0:01.

For an extraordinary point of valencen � 8 the char-
acteristic map of the subdivision matrixA overlaps itself.
Since the matrices are block circulant they have a discrete
Fourier transform, which helps to understand what hap-
pens: The subdominant eigenvalues forn � 8 correspond
to higher frequencies than one. Luckily both eigenvectors
associated with the largest eigenvalue of frequency one (it
is a double real eigenvalue, here denoted by�) represent the
control net of a regular injective surface ring.

Thus we change the eigenvalues with modulus in(1; j�j)
to � � 0:01 as in Section 5 so that� becomes the subdomi-
nant eigenvalue.

Together these changes lead to a modification of the but-
terfly algorithm for! = 1=32 which is presented by the
same masks except for the masks given in Figure 11, where
the weights�i; �i; 
i are given in Table 10.

Figure 12 shows an example. The surface at the top is
generated using the butterfly scheme while the one at the
bottom is produced with the above modified masks. Note
that the surface at the top has self-intersections while the
surface at the bottom as well as the common control net of
both surfaces, see Figure 13, have no self-intersections.

Remark 6.1 The surface obtained by the modified butter-
fly algorithm does not interpolate all vertices of the initial
control net. However, if we use the butterfly algorithm in the
first iteration and the modification in all further iterations,
all vertices of the initial net are interpolated.



n = 3 n = 8

�0; : : ; �6 �0; : : ; �6 
0; : : ; 
6 �0; : : ; �14 �0; : : ; �14 
0; : : ; 
13
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�0:031515
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�0:024256
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0:000000
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n = 9 n = 10

�0; : : ; �15 �0; : : ; �15 
0; : : ; 
15 �0; : : ; �17 �0; : : ; �17 
0; : : ; 
16

0:500000

0:489067

�0:000112

�0:030342

0:060601

�0:000019

�0:000592

�0:020976

0:000105

�0:001113

0:005466

0:000056

0:000205

�0:008374

�0:000086

0:001184

0:000000

0:978322

�0:000223

0:001799

�0:003764

�0:000038

�0:001174

0:020370

0:000209

�0:002207

0:010838

0:000111

0:000407

�0:016606

�0:000170

0:002349

0:062500

0:064383

0:486686

�0:031386

0:000327

�0:022560

0:000089

�0:001769

0:016331

0:000168

�0:000941

�0:003017

�0:000031

0:001442

�0:017379

�0:000178

0:500000

0:487959

�0:000137

�0:030139

0:058779

�0:000042

�0:000424

�0:021509

0:000110

�0:001372

0:009740

0:000110

�0:000424

�0:003720

�0:000042

0:001110

�0:012040

�0:000137

0:000000

0:976213

�0:000270

0:002193

�0:007350

�0:000083

�0:000837

0:019243

0:000219

�0:002710

0:019243

0:000219

�0:000837

�0:007350

�0:000083

0:002193

�0:023786
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0:062500

0:064752

0:484007

�0:031432

0:000696

�0:025141
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�0:001822

0:019767

0:000225

�0:001822

0:006108
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0:000696

�0:015992
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n = 11 n = 12

�0; : : ; �18 �0; : : ; �18 
0; : : ; 
18 �0; : : ; �20 �0; : : ; �20 
0; : : ; 
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0:500000

0:488152

�0:000147

�0:030063

0:057578

�0:000061

�0:000200

�0:023491
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�0:001353

0:011368
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0:000000
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0:015393
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�0:002685

0:022553

0:000280
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0:003345
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0:001162

�0:019774

�0:000245

0:002799

0:062500

0:064883

0:483163

�0:031459

0:000989

�0:028401

0:000035

�0:001560

0:019202

0:000238

�0:002286

0:013105

0:000162

�0:000339

�0:008313

�0:000103

0:002004

�0:020013

�0:000248

0:500000

0:479428

�0:000235

�0:029375

0:056948

�0:000074

�0:000684

�0:016230

0:000160

�0:001874

0:011103

0:000148

�0:000505

�0:003915

�0:000012

0:000684

�0:005551

�0:000074

0:000505

�0:001636

�0:000062

0:000000

0:958659

�0:000472

0:003762

�0:011103

�0:000148

�0:001382

0:030236

0:000323

�0:003762

0:022207

0:000297

�0:000996

�0:008028

�0:000025

0:001382

�0:011103

�0:000148

0:000996

�0:003075

�0:000122

0:062500

0:066361

0:473093

�0:031566

0:001189

�0:020999

0:000093

�0:002671

0:026906

0:000316

�0:002379

0:006405

0:000129

0:000292

�0:010250

�0:000093

0:001189

�0:006405

�0:000129

0:000897

Table 10. The weights of the masks of the
modified butterfly algorithm for n = 3 and
n = 8; : : : ; 12.
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Figure 11. The E- and V-masks of the modified
butterfly algorithm near a vertex of valence
n = 8.

Figure 12. The surface generated from the net
shown in Figure 13 by the butterfly scheme
(top) and our modification (bottom).



Figure 13. The control net used for Figure 12.
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tors,Curves and Surfaces, pages 411–414. Academic Press,
Boston, 1991.

[14] G. Umlauf. Verbesserung der Glattheitsordnung von Unter-
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