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Introduction

The study of discrete isometry groups acting on Hadamard manifolds has been a subject
of continuing interest since group invariants allow to draw conclusions about the topology
and geometry of their quotient manifolds. An important example are fundamental groups
of compact manifolds. A remarkable theorem of Mostow says that closed hyperbolic
manifolds of dimension greater or equal than three are determined up to isometry by
their fundamental group.

An important tool to prove such rigidity theorems is the extension of the group action
to an appropriate compactification of the Hadamard manifold. The structure of the so
obtained limit set and properties of certain equivariant measures on it are also intimately
related with the geodesic flow on the quotient manifold.

In the case of nonelementary discrete groups acting on real hyperbolic spaces, the theory
is rather well developped. A good survey is given in the book of P. J. Nicholls ( [N]).
In 1976, S. J. Patterson ( [P]) constructed a family of equivariant measures for fuchsian
groups in order to determine the Hausdorff dimension of their limit sets. Subsequently,
D. Sullivan ( [S]) extended his results to real hyperbolic spaces of arbitrary dimension.
He showed that the Hausdorff dimension of the limit set of a geometrically finite group I'
is given by its critical exponent 6(I).

More recently, part of the theory has been generalized to discrete isometry groups of
Hadamard manifolds with pinched variable negative curvature (see for example [Y]), and
to Gromov hyperbolic spaces ( [Col). K. Corlette ( [C]) generalized Sullivan’s results on
the Hausdorff dimension to symmetric spaces of strictly negative curvature, using a family
of conformally equivalent subriemannian metrics on the sphere at infinity.

For general Hadamard manifolds with tangent planes of zero sectional curvature, results
about the limit set of discrete isometry groups are sparse. A good introduction to the
subject as well as a description of individual isometries is given in the books of P. Eberlein
( [E]) and of W. Ballmann, M. Gromov, V. Schroeder ( [Ba], [BGS]). Beautiful examples
of such manifolds are provided by higher rank symmetric spaces of noncompact type,
which, due to their rich algebraic structure, allow more precise results concerning the
limit sets of discrete isometry groups.

The goal of this thesis is to give more insight into the dynamics of individual isometries
acting on symmetric spaces of higher rank, to describe geometrically the structure of
the limit sets of discrete isometry groups, and finally to estimate their size in terms of
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certain equivariant measures. The main difficulties we face in this context compared to
the situation in Hadamard manifolds with pinched negative curvature arise from the fact,
that the structure of the geometric boundary is much more complicated and the isometry
group does not act transitively on it. This seems to make impossible the definition of an
appropriate metric on the geometric boundary in the sense that the size of the shadow of
a ball in the space viewed from different points is conformally the same.

Moreover, the incomplete picture we have about the dynamics of parabolic isometries
leads to difficulties in the investigation of the structure of the limit set of discrete isometry
groups, which in general contain parabolics. Nevertheless, we are able to obtain precise
results using an approximation argument, which works for a large class of groups. We
call these groups nonelementary, since our definition generalizes the familiar notion of
nonelementary groups in the context of real hyperbolic spaces in a natural geometric way.

The thesis is organized as follows. The first two chapters are of introductory nature
and provide the basics about the algebraic structure of symmetric spaces, as well as
a precise description of the sphere at infinity and the Furstenberg boundary endowed
with their natural topologies. We describe the local product structure of the geometric
boundary composed of a transversal factor and a direction unchanged under the action
of the isotropy group of some chosen base point. The third chapter introduces Buseman
functions and a family of (possibly nonsymmetric) pseudo distances, which will play an
important role in the sequel. It further contains some elementary geometric estimates.

In the second part of the work, results concerning the dynamics and structure of the limit
set are developped from a purely geometric point of view. Chapter 4 introduces the limit
set Lr, characterizes the radial limit set L7® and supplies a precise description of the
different kinds of individual isometries.

In chapter 5, we investigate the dynamics of axial isometries in order to extend the well-
known results in Hadamard manifolds of pinched negative curvature to symmetric spaces
of higher rank. Since the isometry group does not act transitively on the geometric
boundary, it is not possible that a sequence of axial isometries maps all of the geometric
boundary to the limit of its attractive fixed points. Nonetheless, we are able to prove
similar dynamics for certain sequences of axial isometries and certain boundary subsets,
which will provide the key to Theorem 5.6, a natural construction of free groups far more
general than the Schottky group construction proposed by Y. Benoist in ( [Be]). The
following theorem gives an impression of the more extensive statement of Theorem 5.4.

THEOREM 1 If (v;) is a suitably nondegenerate sequence of awial isometries such that
(vjzo) converges to a point £ in the regular boundary, then a dense open subset of the
geometric boundary is mapped by the sequence (7y;) to a neighborhood of a Weyl chamber
at infinity which contains &.

We will see that for every sequence of axial isometries in a nonelementary group, there
exists a suitably nondegenerate sequence of axial isometries with the same attractive fixed
points. In fact, Proposition 5.11 states that every limit point of a discrete nonelementary
isometry group can be approximated by a sequence of axial isometries, and leads directly
to
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THEOREM 2 IfT' C Isom®(X) is a nonelementary discrete isometry group of a symmetric
space X of noncompact type, then either the reqular limit set Ly N OX"™ is empty or the
set of fixed points of axial isometries is a dense subset of the limit set L.

It also provides a means to overcome the above mentioned difficulties concerning parabolic
isometries and allows to deduce the important Theorems 5.14, 5.15 and 5.16 about the
structure of the limit set. The simplified statements read as follows:

THEOREM 3 If I' C Isom®(X) is a nonelementary discrete group acting on a globally
symmetric space X of noncompact type with nonempty reqular limit set, then the limit set
Ky, considered as a subset of the Furstenberg boundary, is a minimal closed set under the
action of I', the geometric limit set is a product Lr = Kp x Pr, where Pr is the set of
directions of the limit points, and Pr equals the closure of the set of translation directions
of axial isometries Lr = {L(y)| v €T, v azxial}.

For Zariski dense isometry groups, Theorem 3 has been proved by Y. Benoist ( [Be])
using algebraic methods. Similar results have also been obtained by Y. Guivarc’h ( [G]).
The advantage of our proofs is their geometric nature which allows to easily adapt the
methods to products of pinched Hadamard manifolds ( [DaK]). Furthermore, our notion of
nonelementary groups is more natural from a dynamical point of view and less restrictive
than Zariski density.

The final part of this thesis is dedicated to the construction and study of equivariant
measures supported on the limit set. According to Theorem A in ( [Al]), for Zariski
dense discrete groups I' acting on a globally symmetric space G/K of higher rank, the
support of any §(I")-dimensional conformal density either lies in the singular boundary or is
contained in a unique G-invariant subset of the regular boundary. Since we are interested
in the size of the whole geometric limit set, the use of conformal densities, which serves
well in the case of Hadamard manifolds of pinched negative curvature, does not seem
appropriate. Introducing more degrees of freedom and replacing the critical exponent §(I")
by d¢.¢(I'), the exponent of growth of I' in direction G-§ C 0X, we are able to construct
for any discrete group I' and for every ¢ € 0X families of ['-equivariant, absolutely
continuous orbital measures supported on the limit set. With minor restrictions on the
behaviour of the exponent of growth in a neighborhood of the considered direction which
are satisfied at least for Zariski dense discrete groups I' by a result due to J. F. Quint ( [Q]),
there exist parameters such that our I'-equivariant, absolutely continuous orbital measures
are supported on the geometric limit set intersected with the given subset G-¢ C 0X.
Depending on the parameters occuring in the Radon-Nikodym derivative, we call such a
family of measures a (b, I'-£)-density.

In chapter 6, we define the exponent of growth of I' in every direction and work out
the details of the above construction using generalized Poincaré series. For the sake of
illustration, we give precise parameters in the case of a few typical examples of discrete
isometry groups. We remark that independently, J. F. Quint ( [Q]) constructed a similar
class of generalized Patterson Sullivan measures by different methods. His measures,
however, do not seem appropriate to estimate the Hausdorff dimension of the geometric
limit set, because they are all supported on the Furstenberg boundary and therefore lack
an essential piece of information concerning the geometry of I'-orbits.
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In Chapter 7 we derive properties of (b, I':{)-densities invariant by nonelementary discrete
groups I' C Isom°(X). Following P. Albuquerque ( [Al]), we prove our main tool, the
shadow lemma Theorem 7.6, in our more general situation. A first application gives an
upper bound for the exponent of growth d¢.¢(I') in direction G-& C 0X. If r denotes
the rank of X, and Hy, Hy, ..., H, are certain linearly independent vectors in the tan-
gent space of a base point xy € X, this upper bound is determined by the parameters
b', 0%, ...,b" and the direction He of a (b,['-€)-density.

THEOREM 4 If a (b,T-&)-density exists, then dg.e(T') <> .i_ b'(H;, He).

In certain cases, we also obtain a lower bound for the exponent of growth of I" in direction
G-¢£ C 0X, and state

THEOREM 5 If a (b,I'-&)-density p with ., (L7 > 0 ezists, then
Sae(T) = V' (H;, He).
i=1

We further examine the atomic part of (b,I'-£)-densities and prove

THEOREM 6 A regular radial limit point of a nonelementary discrete isometry group I is
not a point mass for any (b, I'-&)-density.

Next we address the question of ergodicity of a (b, I'-¢)-density p. If T is strongly nonele-
mentary and if every ['-invariant subset of the radial limit set possesses a suitable density
point, then an application of Theorem 7.6, the shadow lemma, allows to conclude that T"
acts ergodically on LT with respect to the measure class defined by p. It is not clear,
however, if such density points exist in the general case, because it seems difficult to
construct a Vitali cover from shadows.

The final section introduces Hausdorff measure using a conformal structure on the geo-
metric boundary as proposed by G. Knieper ( [Kn]). A first result is

THEOREM 7 Let I' C Isom°(X) be a discrete nonelementary subgroup and & € 0X"9.
Then
dide(L?ad N Gf) S (Sgg(r) .

For a certain class of groups which we call radially cocompact, we even have equality.

THEOREM 8 IfI' C Isom°(X) is a nonelementary discrete radially cocompact subgroup,
then the Hausdorff dimension of the radial limit set intersected with a given G-invariant
subset G-& C 0X is equal to the exponent of growth d¢.¢(I') in that direction.

The class of radially cocompact groups represents a natural generalization of the class
of cocompact lattices in G and includes for example the classical convex cocompact and
geometrically finite groups acting on rank one symmetric spaces, as well as products of
convex cocompact or geometrically finite groups acting on the corresponding product
manifold.



Chapter 1

Symmetric spaces

In this chapter, we will give a short review of the basic properties and the geometry of
symmetric spaces. We will also describe decompositions of semisimple Lie groups and Lie
algebras, which are intimitely related to the structure of symmetric spaces. The main
reference will be [H], chapters III, IV, V and IX. A more geometric description is given
in chapter 2 of [E].

1.1 The Riemannian structure

Let M be a Riemannian manifold, p € M and N, a symmetric neighborhood of the origin
in T, M such that the Riemannian exponential map exp, is a diffeomorphism of Ny onto
N, := exp,(Np) C M. Then the mapping

sp o Ny — N,
q — exp,(—exp,’q)

is called the geodesic symmetry with respect to p € M.

DEFINITION 1.1 A symmetric space X s a complete, connected Riemannian manifold
such that for any point v € X the geodesic symmetry s, belongs to the isometry group
Isom(X) of X. If every geodesic symmetry in X is only a local isometry, X is called
locally symmetric, otherwise X s called globally symmetric.

It is well known that simply connected symmetric spaces are globally symmetric. Since
every locally symmetric space can be realized as a quotient of a globally symmetric space
X by a discrete subgroup of Isom(X ), we will restrict our attention to globally symmetric
spaces.

The connected component G := Isom’(X) of the isometry group of X which contains
the identity acts transitively on X and can be equipped with a Lie group structure. The
geodesic symmetry at some point zy in X defines an involutive automorphism o : G — G,
g — Sz,95z,, which descends to an involutive isomorphism 6 : g — g of the Lie algebra g

7
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of G. This Cartan involution gives rise to a direct sum decomposition g = € ® p in its +1
and —1 eigenspaces, 0(¢) =€, 0(p) = —p.

The stabilizer K := Stabg(z) of 2o in G is a maximal compact subgroup with Lie algebra
t. The natural projection g — ¢-xy induces an isomorphism of p to the tangent space
T,,X. Via G-translation we may identify every tangent space in X with p.

The restriction of the Killing form of G

B: gxg — R
(Xl,XQ) — Tr(aXmoang)

to K is a negative definite bilinear form, since K is compact. The Cartan relations
egce,  [EplSp, [pplCE
imply B(¢,p) = 0. Thus we may endow g with an Ad(K)-invariant bilinear form

(X1, Xs) = —B(X1,0(X5)) .

The restriction to p of this bilinear form is positive definite and extends to a G-invariant
Riemannian metric on X. This Riemannian structure is independent of the choice of
zo € X (see [H], ch. IV, §3).

DEFINITION 1.2 X is of noncompact type, if Isom(X) is noncompact.

In this case, the sectional curvature is nonpositive (see [H], ch. V, §3), and therefore the
Riemannian exponential map is a diffeomorphism from p to X.

1.2 Flats, Weyl chambers and the Weyl group

From here on, X will be a globally symmetric space of noncompact type. Then the
connected component G = Isom’(X) of its isometry group is a semisimple Lie group
without compact factor and with trivial center. Up to scaling in each factor, the metric
induced by the Killing form equals the original one. We use [H], chapter V, §6, as a
reference for this section.

DEFINITION 1.3 The rank of X s the dimension of a maximal abelian subspace a C p
and is denoted by rank(X). We will abbreviate this number by the integer r.

DEFINITION 1.4 An [-flat in X is an isometric imbedding of R into X, where | < r =
rank(X). An r-flat is called a maximal flat or simply o flat.

Maximal flats are G-translates of the set Axg, where A = e® is a maximal abelian subgroup
of G, and 1-flats are geodesics. If rank(X) = 1, flats coincide with geodesics.
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DEFINITION 1.5 A geodesic is called regular if it lies in exactly one flat, otherwise it is
called singular. A wvector Y € p is reqular, if the geodesic e xq is reqular, and singular
otherwise.

Let a*™ denote the subset of singular vectors in a. In rank one spaces, all geodesics are
regular, and therefore a*™9 = {0}.

DEFINITION 1.6 An open Weyl chamber a* in a is a connected component of a '\ a*™.
An open Weyl chamber in X is a G-translate of the set e* xy.

The Weyl group W of the pair (g,a) is the finite group generated by reflections at the
hyperplanes which bound a Weyl chamber at in a.

Note that the Weyl group is independent of the choice of a™ and acts simply transitively
on the set of Weyl chambers in a. It is isomorphic to the quotient M*/M, where M*
denotes the normalizer and M the centralizer of a in K.

Let w, be the unique element in W which maps the set a® to
—at:={-He€a|Heca"}.

We have w,-w, = id, and put E = at N ay, where at denotes the closure of at in a and
a; C a the subset of elements of unit length.

DEFINITION 1.7 The opposition involution ¢ s defined as the map
v:oaf — af

H — —Ad(w,)H,

We remark that + = id if and only if w, = —id.

1.3 Root spaces and the Iwasawa decomposition

For this section, we refer the reader to [H], chapter III, §4.

DEFINITION 1.8 A root of the pair (g,a) is a nontrivial linear form « on a, for which
the subspace go ={Z € g|ad(H)(Z) = a(H)Z} # {0}. ga is called a root space.

Since for any choice of maximal abelian subspace a C p the operators {ad(H) | H € a}
commute and are selfadjoint, we obtain the root space decomposition of g in simultaneous
eigenspaces (see [H|, chapter III, §4)

g=00 Paa.
aEy

Here ¥ denotes the set of roots of the pair (g, a), go = {Z € g |ad(H)(Z) = 0}.
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The choice of a Weyl chamber a* further determines subsets ¥* and ¥~ of ¥ by
a€YF < 4a(H)>0 VHca".

An element in X7 will be called a positive root.

The set of roots ¥ contains a fundamental set ¥ = {ay,ay,...,qa,} with cardinality
#7T = rank(X) = r and the following properties. T is a basis of the dual space a* of a,
no «; € T can be written as a sum of positive roots, and any root o € ¥ can be written

in the form ., .,
a:Zniai or a:—Zniai
i=1 i=1
with integers n; > 0. The roots ay, as, ..., a, are called simple roots of >.

The barycenter of a Weyl chamber a* is the unique direction H, € a; such that for any
fundamental set of roots T = {1, aw, ..., o, } we have o;(H,) = «;(H,) forall1 <i,j <r.
If w, # —id, then H, is the unique fixed point of ¢.

From the sets ¥* we obtain the Lie algebras

ni: @gaa

acy*

which are nilpotent, because [ga, 93] C ga+s for a, § € X. We will call the corresponding
nilpotent Lie groups N* := e" C G.

THEOREM 1.9 ( [H], chapter IX, Theorem 1.3)
Let G be a connected semisimple Lie group. Then the map

NTxAxK — G
(n,a,k) — n-ak

s a diffeomorphism onto G. It is called the lwasawa decomposition of G.

If X is a globally symmetric space and G = Isom°(X), then an Iwasawa decomposition
G = NTAK gives rise to a diffeomorphism X = N+t Az, where zy € X is the unique point
stabilized by the maximal compact subgroup K C G. We therefore obtain horospherical
coordinates

X — Nfxa
v=mne'zy — (n,H).

Here n € N7 is called the horospherical projection, and H € a the lwasawa projection of
r e X.

The map
w: NTA — X
n-a +— naxg
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is a diffecomorphism from the solvable subgroup NTA C G onto X. Let da? denote the
left invariant scalar product (-,-) from section 1.1 on a, and h, the left invariant scalar
product on N* = exp(d_ .5+ §a) Which equals (-,-) on g, and is zero on gz for 3 # a.
The following formula follows directly from Proposition 4.3 in [B].

ProprPoOSITION 1.10 The pullback metric u*g of the Riemannian metric g on X to the
solvable subgroup N*A of G is given by

1
ds%n,a) =3 E e 20089) b @ da?.
aEext

Here log(a) denotes the unique element in a with the property exp(loga) = a.
An easy consequence of this formula for the pullback metric is the following

COROLLARY 1.11 Let ay,a3 € A. Then for any n € N\ {id} we have

d(nayxg, asxy) > d(a1xy, aszy) .

We will call the orbits NTy, y € X, horocycles in X through y. If y = ngefozy in
horospherical coordinates, then Nty = NTefox,. The metric ds%o of the submanifold
N*tetoz, induced from the Riemannian metric of X can then be written as

1
dst, = 3 Z e~2alHo) p

actt

Note that we also obtain a Riemannian distance dy on the nilpotent Lie group N* from
the left invariant metric 1
2 ._
dn® = - > ha.

acxt

Due to the fact that dsj = 1> s ha, we have for all H € a and for alln € N*

d(ne zy, e z¢) < max e’a(H)dN(n, id) .
aext

1.4 The Cartan decomposition

Let X be a globally symmetric space, G = Isom?(X) and K C G a maximal compact
subgroup which stabilizes a unique point xy in X. We call xg € X the base point of
X = G/K corresponding to K. Further let a* C p = T, X be an open Weyl chamber.
The following decomposition is called the Cartan decomposition of G.

THEOREM 1.12 ( [H], chapter IX, Theorem 1.1)

We have G = Ke"'K, i.e. each g € G can be written g = ke k' where k, k' € K and
H € at. Moreover, H = H(g) is unique.
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As a consequence, we obtain a surjective map
Dy : Kxat — X
(k,H) + ke,

If z € X, there exists a unique element H € at such that z = keflzy = ®(k, H) for some
k € K. We will call H the Cartan projection of x.

We remark that the map ®, is not injective, because (ki, H) and (ko, H) have the same
image in X if and only if % 'k; belongs to the centralizer of H in K. If H € at is
the Cartan projection of a point x € X, then every element k£ € K with the property
r = ket xy will be called an angular projection of .

Due to [H], chapter IX, Corollary 1.2, the map
o: K/Mxat — Y
(EM,H) +— ke'x

is a diffeomorphism onto a dense open submanifold Y C X.

PROPOSITION 1.13 (see [L], section 3)
If T: G xG/K — G/K denotes the natural action of G on the space G/K, and dt its
differential, then the pullback metric ®*g of the Riemannian metric g on Y C G/K to
K/M x a*t is given by
q)*g(k(s)M,H(s)) ((dT(k(S))Zb Hl), (dT(k(S))ZQ, HQ)) =
(Hy, Hy) + (sinhadH(s)Z;,sinh ad H (s)Zs) .

1.5 Geometric estimates

In this section, we prove a few useful geometric estimates for X = G/K in terms of a

given Cartan decomposition G = Ke®* K. The following lemma can be found in [H].

LEMMA 1.14 Let H,, H, € a*. Then for any k € K we have
(Ad(k)H,, Hy) < (Hy, H>) .

Proof. Consider the map f : K — R defined by f(k) = (Ad(k)H;, Hy) and suppose kg is
a critical point of f. Then

d
vzet ol flkt")=0 = vzer:
dt li=o0
_ 4 tz _4d tz
' = dt‘t:0<Ad(k0€ VA1, H) = dt t:oB(Ad(kO)Ad(e )Hy, Ha)
d
- B(Ad(ko)_‘t:o(Ad(etz)HI)aH2)

d
= B(Ad(ko)(zde)Hl, H,) = B(Ad(ko)|Z, Hy], Hy)
A

B(Ad(ko) Z, [Ad(ko) Hy, Hy]) < 0
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since both Ad(ky)Z and [Ad(ky)H, H2) belong to € and the restriction of the Killing form
B to the compact Lie algebra € is negative definite. Now

d

dt li=o
implies [Ad(ko)H1, Hy] = 0, which means that Ad(ky)H; is contained in the normalizer

of Hy in p. Therefore kyw € {k € K | Ad(k)Hy = H,} for some w € W, and we conclude
<Ad(k0)H1,HQ> = (Ad(w*I)Hl,Ad((kgw)*l)H2> = <Ad(w71)H1, H2>

Since H, Hy € a*, and the Weyl group W is generated by reflections at the hyperplanes
which bound a™, this number is maximal for w = id. Hence f assumes its maximum

value for k € {k € K |Ad(k)H, = H,}. O

flkoe'”) =0 VZct

Let o € X denote the base point of X = G/K corresponding to K, and 6 the Cartan
involution introduced in section 1.1. From the previous lemma, we deduce

COROLLARY 1.15 Let Hy,H, € at. Then for all k € K we have

d(ke xg, e x9) > d(e zy, e22y) .

Proof. Let k € K arbitrary and put a(k) := £, (ke zy, e"21,). By the previous lemma
we have

[H[l[| H2]| cos a(k) = (Ad(k)Hy, Hy) < (Hy, H) . (1.1)

Comparison of the hinge Z,, (ke xq, e™?2q) with the corresponding one in the Euclidian
plane of the same angle and sidelengths yields

d(keag, e™x0)? > d(wy, ke 20)? 4 d(w0, e220)? — 2d(0, ke 20)d (30, e224) cos a(k)

= [ Hill* + [ Ha||* — 2| Hu[[|| H2| cos (k) .

Since the geodesic triangle A(xq, ez, ef22) is contained in a totally geodesic subspace
of X isometric to the Euclidian plane, we conclude

d(eMmy, e™m0)* = ||Hy — Hol|* = || Hi||” + ||Hal|* — 2(H:, Ha)
(1.1)
< | H|)? + | Hol|? = 2(Ad(k)Hy, Ho) = ||Hy||” + || Ha|”
—2||H, ||| Ha|| cos a(k) < d(kefr1xg, ef2a4)2. 0

The following estimate will be needed in section 7.5 to measure the Hausdorff dimension.

LEMMA 1.16 Fiz ¢ > 0, Hy € af and put Ay := max{||a||/a(Hy) |a € T}, where
||| denotes the operator norm of o € a*. Then there exists oy = @(Hy) € (0,7/4) and
Ry = Ry(Hy, c) > 0 such that the following holds:

If o € (0,0], H € E with Z(H, Hy) < ¢, t > Ry and ty := t(cos ¢ — Agsin ) — 2Ac,
then for any k € K

d(ke™tzq, e o) < ¢ = d(keoHog,, eoog) < ¢,
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Proof. Put @y := (24,)"" = Lmin{a(Hy)/|a|| |a € £*}, let ¢ € (0,¢) and H € af
with Z(H, Hy) < ¢ < ¢p. Then ||H — Hy||* = 2 — 2(H, Hy) < ¢*, and by the Cauchy
Schwartz inequality

a(H) = a(Hy) + a(H — Hy) > a(Hy) — ||allo > a(Hy)/2 > 0 (1.2)

for any o € ©*. We conclude H € aj .

Let € € (0,¢) and ¢t > 2c. By the assumption, there exists a curve x : [0,1] — X with
k(0) € e, k(1) = keM'zy, and

1
/0 lis(s)|[ds < e+ = < 2c. (1.3)

For s € [0,1] we write x(s) = k(s)ef(®)x; using the Cartan decomposition. By Corol-
lary 1.15, we have

2¢ > d(keff'zg, k(s)) > d(ef'ag, e Day) = |Ht — H(s)]|
and again by the Cauchy Schwartz inequality and (1.2)

a(H(s)) > a(Hot)+ a(Ht — Hot) + a(H(s) — Ht)

>
> ta(Hy) — tllafle — [lal[2¢ = ta(H,) /2 — 2¢||a|]

for any @ € ¥*. This shows that if ¢ > Ry := max{4c||a||/a(Hy) |« € X}, then H(s)
belongs to a't for all s € [0,1].

Recall from the previous section that 7: G x G/K — G/K denotes the natural action
of G on the space G/K, and dr its differential. For ¢ > Ry and s € [0,1] let Z(s) € &¢/m

such that
d

do

k(o) = dr(k(s))Z(s),

g=S§
and write

Z(s) =Y (Zals) +0Za(5)) ,  Zals) € ga-

acxt

Using the formula for the induced metric on K/M X a* given in Proposition 1.13, we
estimate for s € [0, 1]

2 ) sinh® a(H(s)){Za(s), Za(s)) < [l (s)]. (1.4)

aext

Put ¢y := t(cos p — Agsinp) — 2Apc and let s € [0, 1]. We compute for all & € X+

a(H(s)) = a(Ht)+a(H(s) — Ht) > ta(H) — |of2¢
t(H, Ho)a(Ho) — tsin pflaf| — [|o]|2¢
a(Hy) (t(H, Hy) — tsin pAy — Ap2c)

a(Ho) (t(cos p — Agsinp) — 2Agc) = toa(Ho) -

vV IV IV IV
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The curve defined by c(s) = k(s)efx, with k(s) as above joins ez to kef*x,, and
for s € [0, 1] we calculate using (1.4)

le(s)[F = 2 ) sinh® (tya(Ho)) (Zals), Za(s))

acxt

< 2 ) sinh® a(H(s))(Za(s), Za(s)) < [l (s)]*.

Hence d(kefory, efolorg) < [V|é(s)||ds < [i |l(s)||ds < ¢+ ¢, and the assertion
follows as ¢ 0. O

1.6 The coset space SL(n,R)/SO(n)

For each integer n > 2, the Lie group G = SL(n,R) is simple with center {id, —id},
and K = SO(n) is a maximal compact subgroup with Lie algebra ¢. Furthermore, the
involutive isomorphism 6 of the Lie algebra g of SL(n,R) defined by X — — X" satisfies
0t = £. The Cartan decomposition is given by the direct sum of € and the vector sub-
space p consisting of symmetric (n,n)-matrices with trace equal to zero. The coset space
SL(n,R)/SO(n) endowed with the left invariant metric determined by

1
<X1,X2> = TI'(XlXQ) = —%B(Xl,e(Xg)), Xl,XQ € p

is a globally symmetric space of noncompact type. Furthermore, by the Imbedding Theo-
rem 2.6.5 in [E], every globally symmetric space X of noncompact type can be imbedded
isometrically up to scaling on each irreducible De Rham factor in SL(n,R)/SO(n) as a
totally geodesic submanifold, where n equals the dimension of Isom°(X).

An abelian subspace a of p is given by the diagonal matrices with trace zero, which shows
that the rank of SL(n,R)/SO(n) is r = n — 1. The standard choice of positive Weyl

chamber is
n

at = {Diag(ti, ta,.. ., ta) |1 >t > ... > ty, Y t; =0},

i=1
Identifying the dual space a* with a, the [-th simple root «; is given by
o = Diag(dl, dg, ey dn) y where dz = 5@'! — 5i,l+1 y 1 S 1 S n.

The remaining roots occuring in X" are given by all possible linear combinations

j+k

Zai, where 1<j<r—1,1<k<r—j.

i=j
Let p denote the half sum of positive roots. In SL(n,R)/SO(n) we may write p in terms
of the simple roots

—_
<

T

r— Jj+k
2p = Q; .

1 0 ¢

.

Il
=
Il
Il

J J
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Chapter 2

The sphere at infinity

In this chapter, we discuss the structure at infinity of globally symmetric spaces of non-
compact type. Such spaces are in particular Hadamard manifolds, i.e. complete, simply
connected Riemannian manifolds of nonpositive sectional curvature. We first describe a
standard method to compactify Hadamard manifolds following reference [Ba], chapter II,
and then proceed by explaining different aspects occurring in the special case of sym-
metric spaces. Our main references will be [BGS]|, appendix 5, [H], chapter IX, and [W],
chapter 1.2.

2.1 The geometric boundary

Let M be a complete Riemannian manifold. The restriction of a geodesic 0 : R — M to
the intervall [0, c0) is called a geodesic ray with initial point o(0).

DEFINITION 2.1 The geometric boundary 0.X of a globally symmetric space X of noncom-
pact type is defined as the set of equivalence classes of geodesic rays under the equivalence
relation

o~ 0oy <= d(oy(t),02(t)) bounded.

An equivalence class will be denoted by (o).
In order to topologize the space X := XU 0X, we introduce the following sets. For e > 0,
R>>1,z€ X and n € 0X let ij C X be the truncated cone

Ci’; ={y € X |d(z,y) > R, d(o,,(R),0,,(R)) <&}

in X, where 04,y denotes the unique unit speed geodesic emanating from x € X passing
through y € X.

DEFINITION 2.2 ( [Baj, chapter I1)
The cone topology on X s the topology generated by the open sets in X and these truncated
cones.

17
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If not stated otherwise, convergence in X U0X will always mean convergence with respect
to the cone topology. The relative topology on 0X turns the geometric boundary into a
topological space.

The action of an isometry g € Isom(X) of X extends naturally to a homeomorphism on
the geometric boundary, since isometries map geodesic rays to geodesic rays.

The geometric boundary is homeomorphic to the unit tangent space of an arbitrary point
in X. We remark that every Hadamard manifold can be compactified in such a way.

Let X = G/K be a globally symmetric space of noncompact type with base point g
corresponding to K. If a Cartan decomposition G = Ke* K is fixed, the writing (k, H)
with £ € K and H € a] will denote the equivalence class of geodesic rays which contains
the geodesic ray o given by o(t) = kef'xy = ®y(k, Ht), t > 0. We remark that by the
properties of the map ®, defined in section 1.4, (ki, H) = (ko, H) in 0X if and only if
k7 'ky belongs to the centralizer of H in K.

For every £ € 90X, however, there exists exactly one element H = H; € af which we
will call the Cartan projection of . If £ € K is an element with the property & = (k, He),
we will call £ an angular projection of £&. Note that the action of G = Isom°(X) on the
geometric boundary leaves invariant the Cartan projections of boundary points.

If rank (X)) > 2, then a* consists of a regular and a singular part. The geometric boundary
therefore decomposes into a disjoint union

0X = 90X UoX*"I

We will give a precise description of the singular boundary in section 2.5.

2.2 The Furstenberg boundary

For the remainder of this chapter, X = G/K will be a globally symmetric space of
noncompact type. Note that the writing X = G/K depends on a base point zy € X, the
unique point in X stabilized by K. The following statements, however, remain true for
any choice of base point in X, because its stabilizer is then simply a conjugate of K in G.

DEFINITION 2.3 Two Weyl chambers in X are called asymptotic if their Hausdorff dis-
tance is bounded.

The Furstenberg boundary X of X is defined as the set of equivalence classes of asymp-
totic Weyl chambers.

If G = Ke*" K is a Cartan decompositon for X = G/K, and M denotes the centralizer
of a in K, we may identify the Furstenberg boundary with the homogeneous space K /M
using the projection
7B X' — K/M
(k,H) — kM.
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Furthermore, we may endow K /M with the natural differentiable structure arising from
the Lie group structure of K. We obtain a topology on the Furstenberg boundary by the
requirement that X is diffeomorphic to K /M.

We remark that if two boundary points £, € 90X possess a common angular projection
k € K, then & and n belong to the closure of every Weyl chamber asymptotic to kM €
K/M = 0X¥. We say that £ and n belong to the closure of a common Weyl chamber at
infinity.

Note that for rank one symmetric spaces, the Furstenberg boundary coincides with the
geometric boundary as sets. Lemma 2.9 will further show, that in this case the topology
on K /M is equivalent to cone topology.

2.3 The Bruhat decomposition

We fix an Iwasawa decomposition G = NTAK as in section 1.3 and consider the closed
subgroup P = MAN™T C G. Since P equals the stabilizer of the unique equivalence class
of asymptotic Weyl chambers which contains e*" zy C X, we may identify the Furstenberg
boundary X = K /M with the homogeneous space G/P under the bijection

E: G/P — K/M
gP — kM.

Here kM € K/M is uniquely determined by any element £ in the Iwasawa decomposition
g=kan = (n"ta k1)

DEFINITION 2.4 ( [W], chapter 1.2) A minimal parabolic subgroup of G is a conjugate
of the closed subgroup P = MANTY in G. A parabolic subgroup is any subgroup of G
containing a minimal parabolic subgroup.

For a minimal parabolic subgroup P we have the Bruhat decomposition of G as a disjoint
union

G=|JNm,P= ] Um,P,

weW weW

where m,, is an arbitrary representative of w in M*, and the sets U, are the Lie group
exponentials of the subspaces

U, :=n" NAd(m,)n” Cn'.

Note that the orbit corresponding to the element w, is parametrized by N* = U,,., and
the restriction of the above bijection & to NTw,P defines a map

k: Nt — K/M
n +— E(hw,P).
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ProposITION 2.5 ( [H], chapter IX, Corollary 1.9)
The map k is a diffeomorphism onto an open submanifold of K/M whose complement
consists of finitely many disjoint manifolds of strictly lower dimension.

This proposition implies that the orbit NTw,P is a dense and open submanifold of the
Furstenberg boundary dX* = K/M. We will call a G-translate of the set NTw,P C G/P
a big cell in X' = K/M using the diffeomorphism .

If n € NT, k(n) € K/M is the unique element such that the Weyl chamber s(n)e® zy is

asymptotic to the Weyl chamber ne=*" .

The choice of a subset ® C T determines a standard face of type ©
®:={Hcat|a(H)=0 Yac O}

in a. If (©)* C X% denotes the set of those o € X* which are linear combinations of the
elements of O, then its centralizer in K is a closed subgroup Mg with Lie algebra

Mo :=md Z (o +9-a)NE.

ac(0)t+

We have a® = aF, My = M, and if © C O, then a© is a vector subspace of a® and Mg is
a closed subgroup of Mg. If Wo = Mg NW, the parabolic subgroup Pg = Mg AN may
be written as
Po= | ) Pm,P.
weWeg
Pg is minimal if and only if © = 0. We remark that for any H € af \ Ugog af, the
parabolic subgroup Py equals the stabilizer of (id, H) € 0X. -

The generalized Bruhat decomposition of G with respect to the parabolic subgroup Pg
can now be written as a disjoint union

G= |J N'muPo.

weEW/We

Again, the orbit corresponding to the class w.,Wg € W/Wg has maximal dimension in
G/ Po and may be parametrized by

Ng =exp(ng), where nf := Z Go -
aeXt\(e)F

The G-translates of this orbit are sometimes called Schubert cells in G/Pg. Note that for
© =T the decomposition is trivial because Py = G.

2.4 The generalized Iwasawa decomposition

Let X be a globally symmetric space of noncompact type, G = Isom’(X) and G = NTAK
an Iwasawa decomposition for G. The goal of this section is to generalize the well known
decomposition result of Iwasawa described in section 1.3.
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For any subset ©® C T, we introduce the homomorphisms

To : Py — G
g +— limy,o e Mtgeflt H € a® arbitrary,

where © C 1. These homomorphisms exist by the following proposition, are well defined
and have kernel N C N as may be easily checked.

PROPOSITION 2.6 ( [E], Proposition 2.17.3)
Fix© C Y, let H € ag. Then g € Py if and only if Te exists in G.

Using the notation Zg :={g € G |Ad(g)H = H } for arbitrary H € a®,
Po :=0a® D, o+ (Ga + 8-a) NP, We restate

ProposITION 2.7 ( [E], Proposition 2.17.5)

(1) N& is a connected normal subgroup of Pg.
(2) To has image Zo C Po.

(3) To fizes every element of Zg. Moreover, Zg = Meg-exp(po) = exp(po)- Mo and
the decomposition of an element Zg into a product h-m, where h € exp(pe) and
m € Mg, is unique.

(4) Po = Mg exp(pe)Ng = MoNg exp(pe). The indicated decomposition of elements
of Po is unique.

(5) We have the generalized Iwasawa decomposition G = K exp(pe)Ng. The indicated
decomposition of elements of G is unique.

(6) Zg has finitely many components.

We remark that Theorem 1.2.4.11 in [W] gives a slightly different version of the generalized
Iwasawa decomposition.

2.5 The structure of the boundary

Let X = G/K be a globally symmetric space of noncompact type with base point zy € X

corresponding to K, and fix a Cartan decomposition G = Ke® K. Then every subset
© C T determines a homogeneous space K /Mg, which, as in the case ©® = (), can be
endowed with the natural differentiable structure arising from the Lie group structure
of K. Recall from section 2.3 that we also obtain a standard face of type ©, a® C a*.
Putting ~
0X® ={(k,H) |[ke K, Heaf\ | al},
620
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the geometric boundary decomposes into a disjoint union

OX = UaX@.

Clan |

Note that 9X? = X7 and X7 = (.

This decomposition allows to extend the projection 72 from the regular boundary 9.X"¢
to the whole geometric boundary by the requirement that for any subset © C T

B : 0X® — K/Mg
(k,H) — kMg .

We remark that for koMe € K /Mg every preimage (77)~!(kgMe) is of the form (k, H) €
0X® with k~'kg € Mg and H € a? \ Jg-e aY. The natural G-action on K/Mg is given
by -

g(kMo) ;=P ogo (7P) (kMs), g€ G, kMo € K/Ms . (2.1)
Note that the action does not depend on the choice of preimage of (78) "} (kMg) € 0X©,
because (k,H) = (k', H) € 0X® if and only if k¥ 'k" € Mg, and the Cartan projections
remain unchanged by the action of G.
The following equivalence will be useful in comparing the cone topology of X = X U 0X

with the topology on K/Mg, © C Y. By abuse of notation, k; — k¢ in K/Meg wil+l
mean that the cosets k; Mg converge to the coset kgMe € K/Me.

LEMMA 2.8 Let © C Y, H € af and (k;) a sequence in K. Then k; — id in K/Mg if
and only if d(kje"xq,e"xy) tends to zero.

Proof. Fix © C Y, H € af. Suppose k; — id in K/Mg. By definition of the quotient
topology, there exists a sequence (m;) C Mg such that k;m; converges to id € K. If

b= Z (ga+g,a)ﬂé,

acs+\(0)+

we have the direct sum decomposition € = mg @ b, where mg denotes the Lie algebra of
Me. Since the exponential map is a local diffeomorphism, there exist sequences (Z;) C
me, (Y;) C b such that k;m; = exp(Z; +Y;) and (Z; +Y;) = 0 € L as j — oo. We write
Y= Zaez+\(®>+ (Z,S;j) + HZéj)), where Z,g;j) € go and # denotes the Cartan involution.

For the following estimates we will use the norm ||-|| on g induced from the scalar product
introduced in section 1.1. Since the spaces meg, (ga+9-o)NE, @ € T\ (O), are orthogonal

to each other with respect to this norm, we conclude ||Z;|| — 0 and ||Z,g;j)||, ||GZéj)|| —0
for any o € ¥*\ (©)". Now adH(Z;) = 0 implies

Xj=e Mz, 4+ V) =Zj+ e MY, =25+ > (e ZD) 4 2200
aeD+\(0)+



2.5. THE STRUCTURE OF THE BOUNDARY 23

and therefore

XG0 <0zl + Y2 (e UZPY + e j0Z]) — 0.

acxt\(O)+
We conclude
d(kje" xg, e o) = d(kjmje zg, e 20) = d(e™ " kymje xg, 20) = d(e*izq, 29) — 0.

Conversely, suppose d(k;e”xq,e"xq) tends to zero. For j € N, let X; € g such that
e ket = e and write

ki=exp | Zi+ > (29 +020) with Z; € mg, ZY) € ga.
a€s+\(O)*

As before, we have

X, = e |z 4 Z (Zg>+ezg>) = > cosh(a(H)) (29 +02)
aext\(0 aext\(O)*
T S sabla) (29 - 029) < rar.
acZt\(e)t

Now d(e*izg, x9) — 0 implies that X; converges to an element in €, i.e. the component of
X in p tends to zero. This component is given by >°, s+ )+ sinh(a(H)) (Z(gj) — HZéj)).
Since the root spaces are orthogonal and a(H) > 0 for any o € ¥\ (©)™, we conclude
that ||Z || — 0 for any such «. This is equivalent to k; — id in K/Me. O

We are now able to state the following equivalence between the cone topology of X and
the topology of the differentiable manifold K /Meg.

LEMMA 2.9 Fiz a Cartan decomposition G = Ke* K and let © C Y. Then (y;) C
X UOX converges ton € 0X® in the cone topology if and only if every sequence (k;) C K
of angular projections of (y;) converges to w?(n) in K/Me, if the sequence of unit length
Cartan projections (H;) C af converges to the Cartan projection H, of n in a, and if
d(zo,y;) = 00 as j — oo.

Proof. Suppose (y;) C X converges to n € 0X® in the cone topology. For j € N, let
k; € K be an angular projection, H; € af the unit length Cartan projection of y;. Now
y; — 1 in the cone topology implies that for R >> 1 and € > 0 arbitrary, there exists
Ny € N such that y; € Cfogn for j > Ny. In particular d; := d(xy,y;) > R for j > Ny. If

H,, denotes the Cartan projection and k, € K an angular projection of 1, Corollary 1.15
gives
€ d(afvo,yj (R), 040,4(R)) = d(kjeHjR.’L‘(), kneHﬂRxO)

>
> d(e"ifxq, e ry) = R-||H; — H,|,
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which shows that H; converges to H,, in a. We further conclude

d(kje" g, ke ) d(kje"™ " xy, kje"ifag) + d(kje'i g, ke )

<
< d(ef g, eflifag) + A(Ogg,y; (R), 0o n(R)) < 2.

This proves kj_lk,, — id € K /Mg by the previous lemma.

Conversely, let (k;) C K be a sequence converging to k, in K/Me, (H;) € a; a sequence
converging to H, in a and (d;) a sequence of positive numbers which tends to infinity.
Let R >> 0, £ > 0 arbitrary. We have to show the existence of Ny € N such that for any
j > Np we have d(zg, kje"i%zy) > R and

d(kje"i%zq, ke ag) < €.

The first claim follows from the fact that d; = d(z, k;je™i% zy) tends to infinity. For the
second claim, we calculate as before

d(kje"ifxy, ke r0) < R-||H; — Hy|| + d(kje"™ " xq, ke ") .

Since R is fixed, the claim follows from the fact that ||H; — H,|| — 0 and with the above
lemma from k; — k, in K/Me. O

As in the previous section for the case © = (), we will identify the homogeneous space
G/Pes, © C Y, with the component K/Mg of 78(0X®) using the natural bijection

Ko : G/P@ — K/MO
gP@ — kM@
arising from the generalized Iwasawa decomposition. Its restriction to the big cell NTw, Py =
Ngw, Py induces a map
ke : Ng — K/Mg
n +— FRe(nw,Pg).

Proposition 1.2.4.10 of [W] shows, that the orbit NTw,Pg = N3w.Peg is dense and open
in G/Pg. We will call the image of such a Schubert cell under the map Ko a big cell in
K/Mg. We further remark, that ke is a diffeomorphism onto an open submanifold of
K/Msg.

Geometrically, if n € N3, then kg(n) € K/Mg is the unique element such that for any
H € a® the geodesic rays nw.ef'zy and ke (n)ef'zy are asymptotic.

2.6 The visibility sets at infinity

In the case of a complete, simply connected Riemannian manifold with a negative upper
bound for the sectional curvature, any two points in the geometric boundary can be joined
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by a geodesic. If the tangent bundle contains planes with zero sectional curvature, this is
no longer true. Nevertheless, for globally symmetric spaces X of noncompact type, the
set of all points in the geometric boundary which can be joined to a given point £ € 0X
by a geodesic can be described in a simple way.

DEFINITION 2.10 The visibility set at infinity viewed from & € 0X s the set

Vis®(§) := {n € 0X | 3 geodesic o such that o(—o0) =&, 0(00) =n}.

If rank(X') = 1, the sectional curvature of X has a negative upper bound. Thus £ € 0X
can be joined to any other point in 0X by a geodesic, hence Vis™(£) = 0X \ {£}.

If rank(X') > 2, however, the sets Vis™ (&), £ € 0X, are sparse in the geometric boundary.
We will therefore need to consider some larger sets.

Let X = G/K be a globally symmetric space of noncompact type with base point zp € X
corresponding to K and fix a Cartan decomposition G = Ke* K.

DEFINITION 2.11 The Bruhat visibility set viewed from & € 0X is the image of Vis™ ()
under the projection P : 0X — Ugcy K/Me, i.c.

Vis? (&) = 7P (Vis®(€)) .

For regular points £ € 90X, the subset Vis®(¢) € K/M can be identified with the
set of equivalence classes of asymptotic Weyl chambers which possess a representative
C C X with the following property: There exists ageodesic o : R — X with extremity
o(—o0) = &, and the geodesic ray o(t), t > 0, is contained in C. In rank one symmetric
spaces, the Bruhat visibility sets coincide with the visibility sets at infinity.

We remark that for & n € 90X, n € Vis™(§) is equivalent to & € Vis™(n). This also
implies the equivalence of 72(n) € Vis”?(£) and 72(¢) € Vis®(n).

The opposition involution ¢ from Definition 1.7 will play an important role in the sequel.

DEFINITION 2.12 For any subset © C Y, we define the opposition set ©* by the condition

a€0" <= al(H)=0 VHEca®.

The standard face of type ©* is then given by a® = +(a®) and we have Mo- = w, Meow, *.
Note that ©* = © if 1 = id.

Furthermore, if £ = (id, H) € 0X® we have o, ¢(—o0) = (w.,(H)) € 0X®, because
Orpe(—t) = ety = we Wty — g etz Using the natural extension of the
opposition involution to the geometric boundary
L 0X® — 0X®
(k, H) — (wkw ', o(H)),

this implies Vis®(.-€) C G-£ C 0X°.



26 CHAPTER 2. THE SPHERE AT INFINITY

The following lemma will describe the visibility sets at infinity in terms of the Bruhat
decomposition of G = Isom’(X). Given z € X and £ € 0X, there exists a Cartan

decomposition G = Ke*" K such that K is the unique maximal compact subgroup which
stabilizes z, and id € K is an angular projection of £ (see section 2.1). We will call this
decomposition a Cartan decomposition with respect to x and &.

Similarly, there exists an Iwasawa decomposition G = NTAK such that K is the unique
maximal compact subgroup which stabilizes z, and N* is the nilpotent subgroup in
the stabilizer of a closed Weyl chamber at infinity which contains £. We will call this
decomposition G = NTAK an Iwasawa decomposition with respect to x and . Note
that if £ € 0X*"9, then N* depends on the chosen Weyl chamber at infinity, and we
might as well choose a conjugate of N* by an element in the stabilizer K¢ C K of &.

Using the subsets N¢ C NT and the maps kg defined at the end of section 2.5, the lemma
reads as follows.

LEMMA 2.13 Let& € 0X, G = Ke"" K a Cartan decomposition with respect to some base
point o € X and £ € 0X, and let © C Y such that £ € 0X© . Then

Vis™(€) = {(k, (He)) | kMo € ro(Ng)} -

Proof. Let k € K such that kMg = ke(n) with n € N§ C N*. Put

Hetp o = pa, e o)t g,

o(t) == noy,e(—t) =ne”
Then o(—o00) = & because N7 stabilizes £, and () is asymptotic to ke'He)zy as t — oo
by the property of the map k. Hence o(o0) = (k, t(He)) which proves that (k,(He)) €
Vis™(§).
Conversely, let n € Vis™(¢) and take a geodesic o with extremities o(oc0) = 7 and
o(—o0) = £. Since G acts transitively on X, there exists ¢ € G such that o(0) = gxy. Us-
ing the generalized Iwasawa decomposition with respect to © C T and write gxy = nbxy,
where n € Ng and b € exp(pe). The geodesic oy := (nb)~'oc = b~ 'n"'o satisfies
09(—00) = o(—o0) = £ because n and b stabilize £. Since 04(0) = 29 and € € X®, we
conclude og(00) = 04, ¢(—00) = (ws, t(H)) € 0X©. Since b also stabilizes o, ¢(—00) we
obtain 17 = o(00) = nboy(00) = nog(oo) = (k,t(He)), where k € K/Mg is the unique ele-
ment such that noy(t) = nw,ee)gy is asymptotic to ke!#e)tzy. Therefore kMg = ke (n)
which proves the claim. O

COROLLARY 2.14 Let & € 0X, G = Ke"" K a Cartan decomposition with respect to some
base point o € X and € € X, and let © C Y such that £ € X®" . Then n € Vis™(€) if
and only if there exists n € Ng with the property noy, ¢(—oo) = 1.

COROLLARY 2.15 Let& € 0X, G = Ke* K a Cartan decomposition with respect to some
base point xy € X and £ € 0X, and let © C Y such that £ € 0X® . Then the Bruhat
visibility set Vis® (&) is the image under ke of the Schubert cell Ndw,Peo in G/ Po.



2.6. THE VISIBILITY SETS AT INFINITY 27

The following lemma and its corollary will be used in the construction of free groups in
section 5.2.

LEMMA 2.16 For1<i<llet©®; CY and & € 0X® . If© D Ui.:l O;, then

!
ﬂ Vis?(&) is a dense and open subset of K /Mg .

=1

Proof. We fix a Cartan decomposition G = Ke* K and let i € {1,2,...,1}. Let k € K
be an angular projection, H € a® the Cartan projection of &. Since ©f C ©, there
exists a point 7; € 9X®©" such that & and 7; define points in the closure of a common
Weyl chamber at infinity. In particular, £ is an angular projection of 7;, and therefore
the natural projection of 77(&;) € K/Me- to K/Me- is equal to 77 (1;). Consequently,
the natural projection of the subset Vis?(¢) € K/Me, to K/Mg is equal to Vis”(n;).
Now the set Vis”?(n;) = ko (Ng) is a dense and open submanifold of K /Mg and the claim
follows, because a finite intersection of dense and open sets remains dense and open in
K/Msg. O

COROLLARY 2.17 If&,&,...,& € 0X"Y, then the intersection ﬂi.:l Vis? (&) is a dense
and open subset of the Furstenberg boundary 0X' = K /M.

The following result is an easy consequence of the facts that the Bruhat visiblity sets are
open and the maps kg introduced in section 2.5 are diffeomorphisms.

LEMMA 2.18 For © C T let n € 0X® and £ € Vis™(n). Then for any sequence (n;) C
G-n C 0X® which converges to n in the cone topology, we have & € Vis™(n;) for all but
finitely many j € N.

Proof. We choose a unit speed geodesic o in X such that o(—o00) = £ and o(c0) = 7. Fix

an Iwasawa decomposition G = NtAK and a Cartan decomposition G = Ke*" K with
respect to g := 0(0) € X and £ € 0X. If H € a® denotes the Cartan projection of 7, we
have £ = (id, «(H)) and n = (w,, H).

For j € N let k; € K denote an angular projection of 7;. The convergence of n; to n
implies the existence of Ny € N such that for j > Ny, k;Mg is contained in an open
neighborhood of w,Mg in K/Mg. Since the map kg is a diffeomorphism from Ng onto
a dense open submanifold of K/Mg which contains w, Mg, we have rg' (k;Mg) € Ng if
j > Np. Since n; € G-n, we conclude n; € {(k,H) |kMe € ro(Ng)} = Vis®(§) by
Lemma 2.13 and therefore £ € Vis®(n;) for any j > Np. O
The last result of this section is a stronger version of the previous lemma and is proved
in [E], page 322.

LEMMA 2.19 Let & be any unit speed geodesic in X. Then for any ¢ > 0 there exists a
neighborhood U of the identity in G = Isom’(X) such that for arbitrary n € U-G(o0) and
£ € U-5(—o0) there exists a geodesic o € X with

o(—o0)=n, o(0)=¢ and d(T(0),0) <e.
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Chapter 3

Directional distances and angles

In this chapter, we will introduce a family of (possibly nonsymmetric) pseudo distances
for globally symmetric spaces of noncompact type which will play a fundamental role in
our work. Since our construction relies on Buseman functions, we are going to recall their
definition and properties following [Bal, chapter II.

3.1 Buseman functions
Let X be a globally symmetric space of noncompact type. For z € X we consider the
continuous map

B,: XxX — R

This map extends continuously to the boundary via
Bﬂ(xa y) = slggo (d([l), U(S)) - d(ya O(S))) )

where o is an arbitrary geodesic ray asymptotic to n € 0.X, and =,y € X. The maps B, ,
v € X = X U0X obviously satisfy the cocycle relation

By(x,2) = By(x,y) + Buy(y,2) Va,y,2€X,
and the triangle inequality for the Riemannian distance yields
By(z,y) <d(z,y) Vr,yeX.
For £ € 0X, y € X, the function

Bg(',y)i X =2 R
r = Be(x,y)

is called the Busemann function centered at £ based at y. It is independent of the chosen
ray o.

29
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LeEmMA 3.1 ( [Ba/, chapter II)
Let (z,)nen be a sequence in X. Then the following statements are equivalent.
(i) x, converges in the cone topology to n € 0X.

(i) The functions By, (-,y) converge in the space of continuous functions C°(X) to
Bn(-, y) with respect to the topology of uniform convergence on compact sets.

We remark that the above definition of Buseman functions and Lemma 3.1 are valid for
every Hadamard manifold.

If X is a globally symmetric space of noncompact type and G = Isom?(X), we obtain the
following formulas for the Buseman function.

LEMMA 3.2 Let z € X and & € 0X. Fix a Cartan decomposition G = Ke" K with
respect to v and &, and let He denote the Cartan projection of §. Then for any H € a*
we have

Be(z,ef'z) = (He, H) .
Proof. Let H € at arbitrary. We calculate
H.\ _ 1 g H o _ g H.. _Hes
Be(z, e ) slg& (d(z,05¢(s)) — d(e"x,0,£(5))) sll)rgo (s — d(ez,e"s°x))
s e HIP s (s 2s{H H) + | H)
= lim m
% [Hes — I~ 5% s+ /57— 25(H H) + [H]P
= (H¢, H). O

For Buseman functions centered at regular boundary points, we obtain a formula for any
pair of points in X in terms of an appropriate [wasawa decomposition for G.

LEMMA 3.3 Letz, y € X and £ € 0X™. If G = NTAK is an Twasawa decomposition
with respect to x and &, and H denotes the Iwasawa projection of y described in section 1.3,
then

Be(z,y) = (He, H).
Here H € a denotes the Cartan projection of & with respect to a Cartan decomposition
determined by x and &.

Proof. Let y € X arbitrary, write y = nefl

to the given Iwasawa decomposition. Then
Be(z,y) = lim (d(z,00¢(s)) — d(y,00¢(5)))

Zo in horospherical coordinates corresponding

§—00
i — Hgs Hgs
> lim (s = d(y,noug(s) = d(ne""z, "))
Be(w,y) < lim (s — d(y, noue(s)) + d(neez, e"e*w)) .
S§— 00

The term d(nefs*z, efe*r) tends to zero as s — oo, because n € Nt and therefore
e~ Hespeltles converges to id € NT. Furthermore, d(y, no,¢(s)) = d(e”z,e”¢5z), and the
calculation in the proof of the previous lemma allows to conclude

Be(z,y) = lim, o0 (s — d(e"z, efe°z)) = (He, H) . O
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3.2 The directional distance

This section will introduce an important family of (possibly nonsymmetric) pseudo dis-
tances which we will need throughout the whole work.

DEFINITION 3.4 We define the directional distance of the ordered pair (x,y) € X x X
with respect to & € 0X by

Bg.g X xX - R
(z,y) — Bge(x,y) = supBye(z,y).
geqG

Note that the corresponding estimate for the Buseman functions implies

Bae(z,y) <d(z,y) VEEOX, Va,ye X.
LEMMA 3.5 For any § € 0X, the directional distance Bg.¢ is G-invariant.

Proof. Fix £ € 0X and let x,y € X. For any g € G we have

Boelgr,gy) = sup (lim (d(gw, ho(t)) — d(gy, ho (1))

heG t—o0

— sup (lirn (d(z, g~ ha (t)) — d(y, g—lha(t)))) = Beela,y),

heaq t—o00
which shows that Bg. is G-invariant. O

An easy consequence of the definition of Bg.e and Corollary 1.15 is the following

LEMMA 3.6 Let x,y € X and £ € 0X. Fiz a Cartan decomposition G = Ke" K with
respect to x and &, and let He denote the Cartan projection of & and k, an angular
projection of y. Then

Ba.e(x,y) = Bre(x,y) .

Proof. Let H € at arbitrary. Using Corollary 1.15, we calculate for k € K

Bkﬁ(xa eHx) = sll)rgo (d(xa Uw,k&(s)) - d(eHx, Uw,k&(s)))
— : Hes o H Hes
sll)rgo (d(z, ke''s*z) — d(e" z, ke"¢*x))
< lim (d(z,e"°z) — d(e"z,e""¢°x)) = Be(w,e"z).
§—>00

The compactness of K and By (x, e x) = Be(x, e x) for k = id imply

%?[?ka(x’ ez) = Be(w,e"x).

Since K acts transitively on G-&, we further deduce

Bo.e(v,eflz) = I&&I?(Bkg(x, elz) = Be(w, e ).
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Now let y € X arbitrary, k, € K an angular projection and H, € at the Cartan projection
of y. By G-invariance and the calculations above we obtain
Boe(r,y) = Beaelw, keflva) = ng(kflx ea) = Ba.e(w, e x)
= Be(z,e ya:) By, e(kyx, ky el v7) = By,e(T,y),

where the first equality in the second line follows directly from the definition of the
Buseman function. a

PROPOSITION 3.7 For arbitrary £ € 0X, Ba.¢ is a (possibly nonsymmetric) G-invariant
pseudo distance on X.

Proof. Fix £ € 0X and let z,y,z € X. The G-invariance was proved in Lemma 3.5.

The triangle inequality is an easy consequence of the cocycle relation

Bae(w,y) = supBye(w,y) =sup (Bye(w, 2) + Bye(z,9))
geG geG

< sup Bye(x, 2) +sup Bye(z,y) = Bae(x, z2) + Bae(z,y) -
geG geG

It remains to show that Bg.¢(z,y) > 0. In order to do so, we fix a Cartan decomposition

G= Ee“TK with respect to some base point o € X and £ € X as above. Then for any
H € at we have by Lemma 3.6 and Lemma 3.2

Bg.g(.’lf(),eH.’L’g) = B£(170,€H$0) = (H¢,H) >0,

because two vectors in the closure of the same Weyl chamber cannot have an angle larger
than 7/2. If 2,y € X are arbitrary, then there exists g € G such that gz = xy. Using the
Cartan decomposition, we may write gy = ke 2, and obtain by G-invariance

Be.c(z,y) = Ba.e(9, gy) = Ba.e(wo, kel ) = Be.ge(zo, efg) > 0. O

LEMMA 3.8 For any £ € 0X, x,y € X we have Bg.¢(y,r) = Bya.e(x,y). In particular
Ba.e is symmetric if and only if either the opposition involution ¢ = id or G-§ is the
barycentral boundary component.

Proof. Let £ € 0X and fix a Cartan decomposition G = Ke® K with respect to some
base point zy € X and £ € 9X. Since the directional distance is G-invariant, it suffices to
prove the claim for © = z¢ and y = ez, where H € at. If H; € af denotes the Cartan
projection of £, we obtain by G-invariance and Lemma 3.6

Ba.e(eao,20) = Baelwo, e M) = Bae(waae, e 24 g0y = (He, —Ad(w,)H)
= (~Ad(w.)He, H) = (((He), H) = B¢ (w0, ¢y

In particular, the symmetry of Bg. is equivalent to (He, H) = (1(H¢),H) VH € at,
which proves the last assertion. O
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LEMMA 3.9 For & € 0X", Bg.¢ is a (possibly nonsymmetric) distance.

Proof. The same arguments as in the proof of the previous lemma show that Bg.¢ is a
distance if and only if for arbitrary H € at

Bae(zg, e z) =0 = H=0.

Now (H¢, H) = 0 implies H = 0 or H 1 H. Since £ € 0X"%, the latter case cannot
occur. O

3.3 Properties of the directional distance

The following lemma will characterize the directional distance in X = G//K in terms of a
Cartan decomposition G = Ke* K. Let 7y € X be the unique point stabilized by K.

LEMMA 3.10 Let £ € 0X, x,y € X, and g € G such that x = gxy. Then

Ba.e(x,y) =d(x,y) - nax cos Loy, gk&) = d(z,y) - }s;;g cos Z(y, hE) .

Proof. We first prove the claim for x = g, y = ez, where H € a*+. Let H, € E denote
the Cartan projection of . Using Lemma 3.6, Lemma 3.2 and Lemma 1.14 , we calculate

Ba.e(zo, e xy) = Be(wo,ex¢) = (He, H)
— — . H
= max (Ad(k)H¢, H) = || H|| max cos Ly (€720, kE) .

Let z,y € X and g € G such that © = gxo. Then by the Cartan decomposition there
exists H € at such that y = gef'zy. The equality Z,(y, gk&) = ZLyu, (g€ 20, gk&) =
Lo (e zg, kE) and G-invariance imply

Baoe(r,y) = Beaelwo,exg) = ||H]|| -max cos Z o€ g, kE)
= d(z,y) - max cos Z;(y, gk&) = d(x,y) - sup cos Z(y, h&) .
keK heG

O

Similarly as in the case of the Riemannian distance in X = G//K, we may define a Buse-
man function for the directional distance Bg.¢, £ € 0X. Before we state Proposition 3.12,
we need a preliminary lemma.

LEMMA 3.11 Let O C Y, 0 CO, ne dX® and € 8Xé._ Suppose there exists a Weyl
chamber Co C X such that  and & belong to the closure Cy of Co in X. Then for any
Weyl chamber C C X, n € C implies £ € C.
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Proof. Using the identification 0X* = K /M, we let kM € K/M denote the asymptote
class of Cy in XT. Then n € CoNAX® implies 72(n) = koMo, and £ € CoNIX® implies
(&) = koM.

Now let C C X be a Weyl chamber such that n € CN9dX®. If kM € K/M denotes
the asymptote class of C in 9X¥', we obtain 72(n) = kMg by the assumption. Therefore
k~'ky € Mg which implies k~'ky € Mg, since Mg is a closed subgroup of Mg. Hence
7P (€) = koMo = kMo. 0

PROPOSITION 3.12 Let (y,) C X be a sequence converging to n € 0X in the cone topol-
ogy. Let © C Y such that n € 0X®, and © D ©, © C Y. Then for any & € 0X®, the
functions

Ba.e(x0, yn) — Bae(+, yn)

converge in the space of continuous functions C°(X) endowed with the topology of uniform
convergence on compact sets to Be, (2o,-) , where &, € 0X is the unique element in G - ¢
such that n and &, are points in the closure of a common Weyl chamber at infinity..

Proof. Let x € X arbitrary, (y,) C X a sequence converging to 7, and (k,) C K a
corresponding sequence of angular projections. By Lemma 3.6, we have

Be.e(xo0,Yn) = Brpe(zo,yn) Vn e N.

If ky € K denotes an angular projection of 1, Lemma 2.9 shows that k, converges to ky
in K/Mg. Since Mg C Mg is a closed subgroup, this implies that k, converges to kg in
K /Mg, and therefore k,& converges to a point k& € G-£. Since ko and n have the same
angular projection, the closure of every Weyl chamber in X asymptotic to kgM contains
both ko€ and 7.

Similarly, there exists a sequence (&,) C G-£ converging to a point & € G-£ with the
following properties.
Ba.e(x,yn) = Be, (z,y,) VneN,

and there exists a Weyl chamber C C X such that 7 and & belong to the closure of C in
X. By the previous lemma, the closure of C also contains £y§, hence §, = ko§ = &,.

By definition of Bg.¢ and the cocycle relation for the Buseman function we conclude

Be, (w0, )

lim By, ¢(2o, ) = lim (Br,e(0, Yn) — Br,e(, yn))

n—0o0

nh_}I{.lo (B(;.g(ib'o, yn) - BG’{(*T: yn))

Y

v

nlg{)lo (Bﬁn (-’Ifo,yn) - Bgn(l‘,yn)) = nlg{)lo Bﬁn (.’L‘g,l‘) = Bﬁn (.’L‘g,.’L‘)

and therefore limy, o (Ba.¢(20, yn) — Ba.¢(2,yn)) = Be, (w0, x).

The uniform convergence on compact sets is a consequence of Lemma 3.1 and Lemma 2.9
applied to the sequence z, := kyelfmHelHey where H, € at denotes the Cartan projec-
tion of y,. O
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3.4 Maximal singular directions and roots

For this section, we fix a Cartan decomposition G = Ke*' K for X = G/K and choose
a fundamental set of roots T. Let xy € X denote the unique point stabilized by K. For
1 <i<rweput ©:=7T\{w}. Then dima® = 1, and we give the following

DEFINITION 3.13 The i-th maximal singular direction H; € E is the unique vector which
spans a®'. The boundary subset 0X* := 0X® C 0X is called the i-th maximal singular
boundary component.

These maximal singular boundary components give rise to the definition of special direc-
tional distances which we will need in chapters 6 and 7.

DEFINITION 3.14 If & € 0X', then G-& = 0X*, and we define the i-th singular distance
di: X xX — [0,00)
(x,y) = BG-gi(Jf,y) .

Since the set of maximal singular directions spans a and belongs to a*, every element
H € at can be written as a linear combination of the H; with nonnegative coefficients,
which depend only on the root system of (g, a). We therefore introduce for 1 <i < r the
linear functionals .

¢ at — [0,00)
— ¢(H)
uniquely determined by the condition H = > ¢/(H)H; for H € a*. For Riemannian
products X = X; x X, x --- x X, of rank one symmetric spaces X;, the maximal singular
directions form an orthonormal base and we have ¢* = (H;,-). In this case the i-th singular
distance d;(x,y) equals the distance in X; of the projections of z and y to the factor Xj.
This implies d;(z,y) = 0 for every pair of points z,y € X which project to the same point
in Xz

sl

For fixed i € {1,2...7}, we introduce the coefficients ¢!, 1 <1 < r, uniquely determined
by the equation (H;,-) = >, ¢lay. If H € @] denotes the Cartan projection of a point
y € X, we have the following formula for the maximal singular distances

di(zo,y) = (Zqﬁ al(H)> d(zo,y), 1<i<r.

As an easy consequence of Proposition 3.12 concerning the Buseman functions for the
directional distance we obtain the following

PROPOSITION 3.15 Let © C Y arbitrary, and (y,) C X a sequence converging to n €
0X® in the cone topology. Then for any i € {1,2,...,7} with © C ©°, the functions
di(0, yn) — di(+, yn) converge in the space of continuous functions C°(X) to By, (z,-) with
respect to the topology of uniform convergence on compact sets. Heren; € 0X* denotes the
unique element such that n and n; are points in the closure of a common Weyl chamber
at infinity.



36 CHAPTER 3. DIRECTIONAL DISTANCES AND ANGLES
3.5 The case SL(n,R)/SO(n)

In this section, we illustrate the above notions for SL(n,R)/SO(n), endowed with the
left invariant metric described in section 1.6. We use the standard choice of positive Weyl
chamber

n
at = {Diag(ti, to, ..., 1) [t1 > ta > ... >ty Y ;=0

and, in order to get a more symmetric parametrization of a*, introduce the endomorphism
D : R — a
x +— Diag(di(x),day(x), ..., d.(2)),

di(z) = Z(r—y—i—l —(r+1) ij Zr+1 Z]x], 1<i<r. (3.1)

j=1 j=t

We remark that every element in at can be written as the image under D of a vector in
R" with nonnegative components. The barycenter H, € a* is given by

D(1,1,...,1)
|D(1,1,...,1)]|’

the i-th maximal singular direction equals the image of the i-th standard base vector e;
in R" under the map D divided by its norm

_ D(ey)
= 1D

If H=D(x) =Y, ;D(e;) € at, we easily calculate
c'(H) = z;||D(e;)|| >0 for 1<i<r.

H, =

LeEMMA 3.16 Let H,H' € at\ {0}. Then (H,H')>0.

Proof. Since H, H' € a*, there exist vectors z,y € R" \ {0} with nonnegative components
such that H = D(z) =Y, x;D(e;) and H' = D(y) = 3., y;D(e;). Then

=D awn(D(er), Dlew)) (3.2)

=1 k=1
We calculate (D(e;), D(e)) for 1 <1 < k <r. Using (3.1) and n = r + 1, we obtain

(D(e;), D(eg)) = Z di(e)d;(ex) = Z(r F1=D(r+1—Fk) + .Z (=D)(r+1—k)
+Z In—0D(n—k)— (k—=Dln—k)+ (n— k)lk

i=k+1
= m—kK)(In—-P—-k+PF+1k)=n—-k)JIn>n>0.
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For 1 < k <1 <r we have D(¢), D(ex)) = (D(ex), D(e;)) > 0 by the above argument, if
1 <k=1<r, then D(e),D(ex)) = |[|D(e))||* > 0.

Now assume x;y, = 0 for all 1 <[,k < r. Since H # 0, there exists [ € {1,2,...,r} such
that x;, # 0. Then z;,y, = 0 for all 1 < k < r implies y; = 0 for any 1 < k£ < r which
is impossible by H' # 0. Hence there exists ky € {1,2,...,r} such that z;,y;, > 0. We
conclude from (3.2) (H,H') > x1,yx,(D(ey,), D(ex,)) > 0. O

A consequence of the previous lemma and the proof of Lemma 3.9 is the following

COROLLARY 3.17 If X = SL(n,R)/SO(n), then for any & € 0X, B¢ is a (possibly
nonsymmetric) distance.

3.6 Angle estimates in symmetric spaces

The last result of this chapter will be needed in chapters 6 and 7. For x,y € X, © # y,
and £ € 0X we put

LEMMA 3.18 Let z,y,7,7 € X, R :=min{d(z,y),d(7,7)}, ¢ :==d(z,T) + d(y,7).
Suppose 0 < 1 < Lz(7,G-€) < po < w/4. Then

1 ) 12¢
éa;(yaGg) > 5()01 Zf RZ o
Y1
. 4e
éa;(yaGg) <2()02 Zf R > 5 -
Y2
Proof. We are going to use the estimate for the cosine
2 2 4
¥ ¥ ¥
1- =< <1-— =4 =
g S siT e Ty

which is valid for ¢ € [—5,5]. Using the triangle inequality and the inequality 1%8 < 1+2s
for s < %, we compute

Beg.e(x,y) Ba.«(T,7) Ba.e(x,T) + Ba.e(y, y)
/ . = <
cs LG8 = TRy S i@y —dwr) —dwy) T )
cosp; ¢ 2c c
° < 1+2)+ =,
< 1_%+R_Cos<p1( +R)+R

IfR> % we further conclude

2 L2 e? et e
03 LG9 £ 1=+t E T T Rt R
2 4 6 2
< 1—ﬁ+ﬁ+ﬂ<l—ﬁ<00sﬂ_

4 24 144 — 8 2
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To prove the upper bound we estimate

Be.g(z,y) B;.e(T,7) Ba.e(,@) + Bae(U,y)
cos Z,(y, G- = > _ — —
(v, G-8) d(z,y) d(T,79) + d(x, %) + d(y,7) d(z,y)
Ccospy ¢ c c
> 1) =
> Tyz pzewl-p g

since ﬁ >1—sfors>—1. If R> 4 we obtain
s v5

2 2 2
V5 c cps c w5 2
Loy GE) > 1B L e oy ¥ 2
cos Loy, G-) 2 > RYer RS 2 R

2
> 1—¢5 > 1= 205+ 3¢y > cos(2ps).



Chapter 4

Dynamics of isometries

In this chapter, we define the limit set of discrete isometry groups of globally symmetric
spaces X of noncompact type. We further introduce the radial limit set, an important
subset of the limit set.

We then give a geometric classification and an algebraic characterization of individual
isometries, describe some of their dynamical properties and relate their fixed points to
the limit set.

4.1 The limit set

DEFINITION 4.1 A subgroup I' of the isometry group of a globally symmetric space X of
noncompact type is called discrete, if the orbit I'-x of a point x € X s discrete in X.

The limit set Ly of I is defined by Ly :=T-zNoX, xze€X.

REMARK. If T"-x is discrete in X for some point x € X, then I'-y is discrete in X for any
y € X. Furthermore, the limit set is independent of the choice of x € X.

Note that the above definitions can be extended to isometry groups of any Hadamard
manifold. For our purposes, we will need a precise description of the possible limit points
of discrete groups of isometries I' C G = Isom’(X) in the case of a globally symmetric
space X of noncompact type.

DEFINITION 4.2 The equivalence class [C] € X' is called a radial limit Weyl chamber for
the action of I', if and only if there exists a sequence (v;) C I' such that (v;z), © € X,
remains at a bounded distance of every Weyl chamber asymptotic to C.

We remark that the set of radial limit Weyl chambers equals the set L. defined by P. Al-

buquerque ( [Al]). This notion, however, is too coarse for the study of the limit set in the
geometric boundary.

39
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DEFINITION 4.3 We call a boundary point & € 0X a radial limit point for the action
of ', if and only if there exists a sequence (v;) C I' and a Weyl chamber C C X with
£ € CNOX such that for any y € X the sequence (y;y) remains at a bounded distance of
C and converges to £ in the cone topology. The set of radial limit points in 0X is called
the radial limit set of I’ and will be denoted by L1

NotaTiON. If 2 € X, n € 0X", let C,,, C X denote the unique open Weyl chamber
with apex x which contains the geodesic ray o,,, and C,, its closure in X.

We will now give equivalent definitions for radial limit points.

LEMMA 4.4 Let z,y € X arbitrary. A boundary point § € 0X belongs to the radial limit
set LT if and only if there exists a constant ¢ > 0 and n € 0X" such that & € Cy,, and
if for any ¢ > 0 infinitely many v € I satisfy

d(vy,Cyy) <c and Lo(vy,G-&) < .

Proof. Let z,y € X arbitrary and £ € L1*. Then there exists a sequence (v;) C [ and a
Weyl chamber C C X with ¢ € C such that d(v;y,C) remains bounded and -,y converges
to £ in the cone topology. Choose n € CNOX". Then C is asymptotic to C.,, and there
exists a constant ¢ > 0 such that d(v;y,Cy;,) < ¢ for all j € N.

Let ¢ € (0,7/4) arbitrary. The convergence of (v,y) to £ implies that for any R >> 1,
e < % ¢ there exists Ny € N such that for j > Ny we have d(z,7;y) > R and

R
d(ama"/jy(R)aaz,g(R)) <e< 5 ®.

Using comparison with Euclidean geometry, we estimate
2

Z<P2 > d(02,,y(R), o.¢(R))? > R* + R? — 2R? cos Z,(vy,§),

which, together with Z,(v;y, G-§) = inf e L (759, 9€), implies

1
cos Zy(vy, G-§) > cos Zy(vy,€) > 1 — §<p2
> 1ol
- = — cos .
=z 2‘10 2490 ¥

Conversely, let n € 0X"% such that £ € Ew,n N0X. By hypothesis, there exists a sequence
(v;) € I' such that d(v;y,Cs,) is bounded and Z,(v;y,G-§) — 0 as j — oo. It remains
to show that ~;y converges to { in the cone topology. Let R >> 1, ¢ > 0 arbitrary and
put d; := d(z,,y). For j sufficiently large, we have d(z,v;y) > R, because I' is discrete.
Choose a sequence (;) C Cy,y such that d(v;y,Cpy) = d(7;y, 0u,). Using the convexity
of the distance function and the fact, that the triangle A(x,&;,€) is flat, we conclude

A0y (R), 00(R)) < d(00,7,y(R), 00 g; (R)) + d(02,¢;(R), 00(R))

< 20, 0ne () + R, (4.1)
J
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Next let ¢; > 0 such that d(v;y, 0s,(t;)) = d(7vjy,04¢;). Then by the triangle inequality

dj = d(x,v5y) < d(w,00¢,(t;) + d(owg (t;), vy) < tj +c,

and d; > t; — ¢, which gives

d(VjY, Oz g; (d)) < d(jy, Ong; () + d(0wg; (1), 00 (dj)) < 2c.

Hence for j sufficiently large, we have %d(yjy,ax,gj(dj)) < d—EQc < sand RZ.(&,6) <35,
J J

because Z,(v,y, G-§) = Z;(§;,&) tends to zero as j — oo. Hence (4.1) and the fact that

d; — o0 as j — oo prove that v,y converges to £ in the cone topology. O

The following corollary relates our definiton of the radial limit set to a common defini-
tion in the case of Hadamard manifolds with a negative upper bound for the sectional
curvature.

COROLLARY 4.5 Let x,y € X arbitrary. If rank(X )=1, then & € L if and only if there
exists a constant ¢ > 0 such that infinitely many v € T satisfy

d(vy,o4¢) < c.

Proof. Let z,y € X arbitrary and & € LF%. In rank one spaces, Weyl chambers reduce
to geodesic rays and the first condition in Lemma 4.4 therefore implies the assertion.
Conversely, if d(yy,o,¢) is bounded for infinitely many v € I', there exists a sequence
(7;) C I' such that (;y) remains at bounded distance of a geodesic ray asymptotic to &.
In particular, v,y converges to § in the cone topology. 4

Given a Cartan decomposition G = Ke" K for X = G/K with respect to some point
xo € X, we have the following characterization of radial limit points.

COROLLARY 4.6 Let © C Y. The boundary point & = (ke, He) € 0X© is a radial limit
point for the action of I' if and only if there exists a constant ¢ > 0 and m € Mg such
that for any ¢ > 0 infinitely many v € ' satisfy

d('yxg,kgmkgle“+a:0) <c and Z(H, He) <.
Here H, € E denotes the unit length Cartan projection of yxy.

Proof. Let £ € Lj*, © C Y such that £ € X©, and ¢ € (0,7/4) arbitrary. Lemma 4.4
implies the existence of ¢ > 0, a point n € X" such that £ € C,,,, and infinitely many
v € I satisfy

d(vxo,Cpypy) < ¢ and Loy (70, G-€) < .

Furthermore, if k, € K denotes an angular projection of 7, then & = (k¢, He) € Cay
implies that k, belongs to the parabolic subgroup which stabilizes £. Hence k, = kemk; !

for some m € Mg. The first part of the statement now follows from Cy, , = kne“+x0. For
the second assertion we simply remind of the fact cosZ,,(yxo, G-§) = (H.,, H) .
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Conversely, let z,y € X, © C Y such that £ = (k¢, He) € 0X©, and m € Me. By the
assumption, there exists a sequence (;) C I' with Cartan projections (H;) C at such
that d(v;zo, kgmkgle“+x0) < ¢ for some constant ¢ > 0, and (H;, He) — 1.

Choose H, € af, put k, := kgmkgl and 7 := (ky, H,) € 0X79. Then Cy,, = kne* o,
and the Weyl chambers C,, ,, and C,, have bounded Hausdorff distance d > 0 since they
are asymptotic. Therefore

d(7iy, Cam) < d(vjy,vjw0) + d(7j20, Cagy) + d < d(y, z0) + ¢+ d =: ¢p.

Using the directional distance from section 3.2, we further conclude from the triangle
inequality and the remark after Definition 3.4

cos (v, G-6) = Bee(@,759) < Bae(wo, 7%0) = Bae(xo, %) = Bae(v39, 7%0)

d(x,vy) d(xo,vjz0) + d(xo, ) + d(z0,Y)
d(xo,y)+d(xo,x
<Hj7 H£> — 4 c?(;:/(z,wg?og : 1 .
Lt deogitdwoay 0+ 88100
d(xO,ijxO)
hence the proof is complete. O

4.2 Convergence in horospherical coordinates

Fix a Cartan decomposition G = Ke*" K of X = G//K with respect to to the base point
xo € X and some regular boundary point. Let © C T denote a subset of some fundamental
set of roots Y. Lemma 2.9 and its proof show, that a sequence (y;) C XUJX converges to
¢ = (ke, He) € 0X® in the cone topology, if and only if d(zg,y;) — oo, if every sequence
of angular projections (k;) C K of (y;) converges to k¢ in K/Mg, and if the sequence of
Cartan projections (H;) C af converges to H.

Similarly, every sequence of angular projections (k;) C K of a sequence (y;z) C X
remaining at bounded distance of a Weyl chamber in the asymptote class koM € K/M =
OXT, converges to koM in K/M. We are now going to derive similiar properties for
sequences converging towards a radial limit point in terms of horospherical coordinates.

LEMMA 4.7 Suppose (v;y) C X, y € X, is a sequence converging towards a radial limit
point £ € 0X at bounded distance of a Weyl chamber C C X with £ € C. Fiz an Iwasawa
decomposition G = Nt AK with respect to xy € X and the asymptote class of C in OXT.
Then the horospherical projections (n;) C N and the Iwasawa projections (H;) C a of

(vjy) satisfy
d(e Tinjetizg, x) < const, |H;|| — o0, Lo (€izg, &) =0 as j— 0.
Proof. Let G = NTAK be the Iwasawa decomposition as in the statement of the lemma.

Since the Weyl chamber Cy := ¢ ¢ C X is asymptotic to C, the sequence (;y) remains at
a bounded distance of Cy. Hence there exists a constant ¢ > 0 and a sequence (H;) C a*
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such that d(yjy,eﬁixo) < ¢. Writing v;y := njefizg in horospherical coordinates, we
obtain by Lemma 1.11

d(e"izg, eMizg) < d(n;e'izg, eizg) < ¢
and therefore
d(njeHJ'xg, efizy) < d(njerxg, eﬁfaso) + d(eﬁfxg, efizy) < 2¢, (4.2)

which proves the first claim of the lemma.

We next show that [|H;|| — co. Suppose the contrary, and put a := sup,cy ||H;]|. Then
d(zo,njre) > d(xo,nie"i o) — d(njei zg, njxg)
= d(xo,vy) — |Hj|| > d(zo,vjy) —a — o0 as j—00. (4.3)

Let ¢ > 0 arbitrary small. By (4.2), for any j € N there exists a curve ¢; : [0,1] — X,
¢;(t) := n(t)e Wy, such that ¢;(0) = efizg, ¢;(1) = njelizy and

1
/ I¢;(t)||dt < d(e"izg,njeizg) +e < 2¢+e.
0

In particular, we have |H; — H(t)| = d(eizg, efWxy) < d(eflizg, ¢j(t)) < 2¢ +¢ for all
t € [0,1], and therefore by the Cauchy Schwartz inequality
a(H(1)) = a(H;)+o(H(t) = Hj) < [lof| (1H;]] + [|H () — H;l])
< | (@4 2¢+ ¢) VaeXt.
Put Z;(t) = DLn(t)fld%‘s:tn(s) € n', and ap := maxgeyn+ ||| (@ + 2¢+¢€). Using the
pullback metric p*g from section 1.3 on Nt Az, we estimate

1

1O = Se*(Z;(), Z;(t))

and obtain by (4.3)
2c+¢e > d(njerxg, efigy) +e > e “d(njxy, x9) = 00,

a contradiction. We conclude || H;|| — oo.

The third assertion follows as in Lemma 2.9 from the fact that v;y converges to § in the
cone topology. O

COROLLARY 4.8 Let (v;y) C X, y € X, be a sequence converging to a radial limit point
¢ € 0X at bounded distance of a Weyl chamber C C X such that & € C. Fix an Twasawa
decomposition G = Nt AK with respect to xy € X and the asymptote class of C in 0XT,

and write vy = njeizy in horospherical coordinates. Then
dy(n;,id) < const - max *7) as j— o0,
acxt

where dy denotes the left invariant distance on NT as described in section 1.5.
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Proof. Inequality (4.2) and the calculations in the proof of the previous lemma show that
for a; := max,ex+ a(H;) and a := max,ex+ ||| (2¢ + ) we have

2c+e > d(nje Jxefx)+5>/ |I€; (¢ ||dt>—e - /\/

We conclude dy(nj,id) < fol V{Zi([t), Z;(t))dt < V/2e%e*(2c + ¢) and therefore, by the
definition of «y,

dy(nj,id) < const - maxges+ e®) as j — oo, a

4.3 Classification of isometries

In this section, we classify geometrically individual isometries of a globally symmetric
space X of noncompact type. As in [BGS], chapter 6, we introduce the displacement
function of v € Isom(X)
dy : X —- R
r — d(z,yx).

DEFINITION 4.9 Let v be a nontrivial isometry of X. We call 7y elliptic, if v fizes a point
in X, axial, if d, assumes the infimum and mingex d,(z) > 0.

We call -y strictly parabolic, if d, does not assume the infimum and inf,c x d,(z) = 0, mixed
parabolic, if d, does not assume the infimum and infyex d,(z) > 0.

A parabolic isometry is a strictly parabolic or a mized parabolic isometry.

The following propositions summarize a few properties of individual isometries of a glob-
ally symmetric space X of noncompact type. The proofs can be found in [Ba], chapter II.

PROPOSITION 4.10 ( [Ba/, chapter II, Proposition 3.2) An isometry v € Isom(X) \ {id}
is elliptic if and only if v has a bounded orbit.

PrROPOSITION 4.11 ( [Ba/, chapter II, Proposition 3.3) An isometry v € Isom(X) \ {id}
is axial if and only if there exists a unit speed geodesic o and a number I, > 0 such that
v(o(t)) =o(t+1,) forallt € R

PROPOSITION 4.12 ([Ba/, chapter II, Proposition 3.4) If v € Isom(X)\{id} is parabolic,
then there exists a point n € 0X such that v fizes n and B, (z,yx) =0 for all v € X.

We remark that the above definitions and propositions can be extended to isometries of
Hadamard manifolds. As a matter of fact, the statements in [Ba], chapter II, are given in
this more general context.

In the case of a globally symmetric space X = G/K of noncompact type, an Iwasawa
decomposition G = NTAK gives rise to a natural algebraic characterization of certain
individual isometries.
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DEFINITION 4.13 An isometry v € G\ {id} is called elliptic, if it is conjugate to an
element in K, hyperbolic, if it is conjugate to an element in A, and unipotent, if it is
conjugate to an element in N7,

The following lemma relates these definitions to the geometric classification as above.

LEMMA 4.14 v € G\ {id} is conjugate to an element in K if and only if v fizes a point
in X. Hyperbolic isometries are axial, unipotent isometries are strictly parabolic.

Proof. The first assertion is trivial, because the stabilizer of any point in X is conjugate
to K, the stabilizer of o € X. The remaining assertions will be corollaries of Proposi-
tions 4.17 and 4.21. a

4.4 Properties of parabolic isometries

In this section we recollect a few properties of parabolic isometries of a globally symmetric
space X = G/K of noncompact type with base point zy € X corresponding to K.
Proposition 4.12 implies that every parabolic isometry possesses a fixed point in 0X© for
some subset © C T.

DEFINITION 4.15 We call v ©-parabolic, if v fizes a point in 0X®, but not in dX® for
any © C ©. If v fizes a regular point, we call v regular parabolic.

We remark that unipotent isometries are regular parabolic. If v is parabolic with fixed
point n € 0X as in Proposition 4.12, then the limit set of the cyclic group () generated
by 7 is contained in the boundary of every horosphere centered at 7.

Note that in rank one spaces X, a parabolic isometry 7 possesses a unique fixed point 7
in the geometric boundary dX. Furthermore, for any £ € X the sequences (7€) and
(v77€) converge to n (see [DaK]). Since the geometric boundary is a disjoint union of
only two Bruhat cells 0X = Vis®(n) U {n}, this is equivalent to the statement that the
limits of (7€) and (v 7€) do not belong to Vis™(n). Unfortunately, this remains no longer
true in higher rank symmetric spaces. For unipotent isometries, however, we have similar
dynamics on the geometric boundary.

PROPOSITION 4.16 Let v be a unipotent isometry, and n € 0X a fixed point of v. Then
either v fizes 040 ,(—00), or, for any & € Vis™(un), the limits of the sequences (7€),
(y7€) C 0X do not belong to Vis™(in).

Proof. Fix a Cartan decomposition G = Ke* K and an Iwasawa decompositon G =
NTAK of X = G/K with respect to x5 and 7. Let © C Y such that n € 0X®. Then
the Cartan projection H, of n belongs to af and v € NT \ {id}. By Corollary 2.14,
¢ € Vis™(un) implies the existence of ng € Ng such that & = ngoy, .,(—00). Write

Y= exp( Z Ya) , TNo = eXp( Z Za) , Yo, Zo € ga -

acxst aeXt\(0)*+
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Suppose Y, = 0 for all o € ¥+ \ (©)*. Then for all H € a® we have e ve= = v, because
ad(H)Z = 0 for every Z € 3 gy+ Ga- We conclude

A(apn(—1); Va0, (—1)) = d(zo, """ ve™ 1" 30) = d(wo, Y0)
for any ¢t € R. In particular, v fixes o4, ,(—00).

If v does not fix o4,,(—00), we choose § € ¥\ (©)" such that ||3|| < ||| for any
a € X1\ (0)T with the property Y, # 0. For j € N, we write

Y1y = exp( Z YEDy o yE) e g,

acext

Then [ga, §o'] € ot Y, o’ € X1 and the Campbell Hausdorff formula imply
VI = )Y + Zs + f(no),

where f(ng) € gg is a term consisting of successive Lie brackets of the Z,. In particular,
| f(no)|| is bounded, and therefore ||Yﬂ(j)|| and ||Y/8(7j)|| tend to infinity as j — oo. This
implies lim;_,00 ¥/ng & Ng and lim; o 7 7ng ¢ Ng .

Suppose £ := lim; ,c7/E € Vis®(wn). Then by Corollary 2.14, there exists n € Ng
such that &* = nogym(—00). Since V€ = 1/ngoy,,,(—o0) this is impossible because
lim; o 7/no ¢ Ng. Analogously, we obtain lim;_,., 7 7€ & Vis™(un). O

Using Proposition 4.12 we will now give an equivalent definition for regular parabolic
isometries in terms of an Iwasawa decomposition G = N*tAK.

PROPOSITION 4.17 Let G = NTAK be an Iwasawa decomposition of G. An isometry
v € G\{id} is regular parabolic, if and only if v is conjugate to nam, where n € N\ {id},
m € M and a € A such that {loga, H) = 0 for some H € af. Here loga denotes the
unique element in a with the property exp(loga) = a.

Proof. Let v € G be regular parabolic. Then ~y possesses a fixed point n = (k, H) € 0X"
by Lemma 4.14 and Proposition 4.12. This implies that v belongs to the stabilizer of 7,
ie. kyk=' € P = MAN*. Write v = knamk~! withn € N*, a € A and m € M. If
n = id, then Proposition 4.21 will show that v is axial in contradiction to our assumption.
Therefore n # id.

We further conclude from B, (x¢, yzy) = 0 using Lemma 3.3

0 = B, (w0, knamk™"zy) = By-1, (w0, naze) = (H,loga) .

Conversely, let v = nam, where n € N*\{id}, m € M and a € A such that (loga, H) =0
for some H € af. Suppose there exists © € X such that d(z,yz) = inf,ex d,(z). Write
r = naxy in horospherical coordinates and consider the unit speed geodesic o(t) :=

naeftxy. We compute

Htxo)

= d(zg, e 'a 'n tnamam e zy) = d(zo, (t)ax) ,

d(o(t),yo(t)) = d(rae™ sy, namnae
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where n1(t) := e~ "'a" " 'namnm~a"'ae”" € N* for any t € R.

Suppose 77(0) = id. Then 7(t) = id for all ¢ € R and we have d(o(t),yo(t)) = d(xo, ax)
for all t € R In particular, v fixes o(—o00) € 0X"% which is impossible by n # id. Hence
n(0) € N*\ {id}. Furthermore, we have m(¢t) — id as ¢ — oo, hence by Corollary 1.11,

Jim d(o(1),70(1) < d(o(0),70(0)) = d(z,72).

The continuity of the function ¢ — d(o(t), yo(t)) now implies the existence of t, > 0 such
that
d(o(to),yo(to)) < d(x, ),

a contradiction to the choice of x € X. Hence inf,cx d,(z) is not assumed. O

4.5 Description of axial isometries

We begin this section with a few definitions concerning axial isometries of a globally
symmetric space X of noncompact type.

DEFINITION 4.18 Let v € Isom(X) \ {id} be azial. The number [, := mingey d(z, yx) is
called the translation length of 7, the set Axz(y) = {z € X |d(z,vx) = 1,} is called the

axis of .

Ax(7y) is invariant under the action of the cyclic group (y) and consists of the set of all
geodesics translated by 7. The geometric boundary of Ax(v) equals the set of fixed points
Fix(y) of v in X.

Since an axial isometry v translates along some geodesic, Fix(y) consists of at least two

points in the geometric boundary 0X. We will see in the following chapter, that these
two fixed points play an important role in the study of the dynamics of axial isometries.

DEFINITION 4.19 Ifz € X, we call the limit of the sequence (77 x) as j — oo the attractive
fixed point of 7y, and the limit of (y™7x) as j — oo the repulsive fixed point of 7.

It can be easily shown that this definition is again independent of the choice of x € X.
Since axial isometries translate along some geodesic, for x € Ax(7) there exists an element
Y, € T, X such that

o = ez € Ax(7).

As a consequence of the rich algebraic structure of symmetric spaces, we may further
distinguish different kinds of axial isometries by means of a second characteristic besides
the translation length. Let X be a globally symmetric space of noncompact type, fix
a Cartan decomposition G = Ke*" K of G = Isom’(X) and let 7y € X be the unique
point stabilized by K. Then every unit speed geodesic 0 : R — X can be written in the
following form with a unique vector H € a;

o(t) = ge'zy, ¢g€G.
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Hence there exists a unique element L(y) € E such that vz = ge b, for some g € G
with gzg = x.

DEFINITION 4.20 We call L(v) € af the translation direction of . If L(v) € af, then vy
is called regular axial, if L(7) € a? \ Ug-e 02, then 7 is called O-axial.

We are now going to give an equivalent definition for axial isometries of a globally sym-
metric space X = G/K of noncompact type with base point xy corresponding to K in
terms of an Iwasawa decomposition G = N*TAK.

PROPOSITION 4.21 An isometry v € G\ {1_d} is azial with translation length 1, if and
only if v is conjugate to eT"m, where H € af and m € {k € K |Ad(k)H = H}.

Furthermore, H € E equals the translation direction of .

Proof. (compare [E], Proposition 2.19.18 (3)) Let v € G be axial, and let o be a geodesic
in X translated by . We first treat the case 0(0) = 2o and NTAMo(c0) = o(o0). Then

there exists H € E such that o(t) = ez, for all + € R. By hypothesis
(ve"™) o = yo(t) = o(t +1,) = el
for all £ € R. We obtain
yellt = ettty (1) k(t)e K VteR. (4.4)

Let © denote the smallest subset of T such that H € a®. Since 7 fixes ¢, the isometry
To(7) := limy_,o e Hlyelt exists by Proposition 2.6. Hence (4.4) implies the existence of
m :=limy_, k(t) € K and therefore

To(y) = em. (4.5)

Now e commutes with e”® for any s € R, and, by definition of the map Ty, we obtain
for any s € R

_ . _ _ . g ’
e T (v)e™ = lim e Tse ™ Mlyefle!s = lim e ' ye' = Ty (vy) .
t—o0 t'—00

By (4.5) the element m commutes with e?* for all s € R. Proposition 2.7 further implies
that n := v (Te(7)) " € NJ, and from (4.5) we deduce

’y:neHl”m.

Since v, e and m fix both & and o(—o0), it follows that n fixes £ and o(—o00). The
convex function ¢ — d(o(t),no(t)) is therefore bounded above on R and hence constant.
From the fact that n € Ng, we deduce

d(o(t),no(t)) = d(e'zo, ne'zy) = d(zy, e 'ne'zq) — 0 as t — oo.
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Therefore n fixes every point of o, including zy. This implies n = id, because N3 N Mg =
{id} by the uniqueness of the generalized Iwasawa decomposition Proposition 2.7. We
obtain

v = eflm = mefllr

If the invariant geodesic o of v is arbitrary, there exists g € G such that go(0) = z¢ and
go(t) € e*"xg for all t > 0. Furthermore, yo(t) = o(t+1,) implies that the isometry gyg~!
possesses an invariant geodesic as in the first part of the proof. Hence v = g tefllvmg for

some H € af and m € {k € K |Ad(k)H = H}.

Furthermore, for z := o(0) = g 'zp € Ax(7) we have
yo =g legg ey =g e ay,

hence, by definition, H equals the translation length of ~.

Conversely, let v be conjugate to e/m as above. The proof of Proposition 2.19.18 (3)
in [E] shows that there exists a point * € X where the displacement functions of e’
and m both assume their minimum. From H # 0 and [, > 0 it follows that d, assumes a
positive minimum in X. O

Fix an Iwasawa decomposition G = NTAK of G = Isom°(X). The final result of this
chapter shows that the attractive and repulsive fixed points of a ©-axial isometry belong
to certain boundary components and are special radial limit points.

LEMMA 4.22 Let © C Y, and h be a O-azial isometry. Then the attractive fized point
h* belongs to 0X®, and the repulsive fized point h~ belongs to Vis®(h*) C 0X© . Fur-
thermore, there exists a constant ¢ > 0 such that for any t > 0 there exist isometries
Y4,7- € (h) with the property

d(y420, O pt(t)) < c and d(y—20, 04y (1)) < c.

Proof. Let [ > 0 denote the translation length, and L € a? the translation direction of A.
By Proposition 4.21 there exists g € G and m € Mg such that h = ge'mg='. We have
hi = ged'mJ g~ and compute

d; = d(zy, W xo) > d(gzo, b gx0) — d(0, gT0) — d(h? g0, h 20)
> d(xg, M xy) — 2d(z0, gro) = jl — 2d(z9, g20) — 00 a8 j — 00.

Using the generalized Iwasawa decomposition with respect to ©, we write g = knb with
ke K,n e Ng and b € exp(pe). Then b commutes with /!, and e 7%nel™ — id as
J — 0.



50 CHAPTER 4. DYNAMICS OF ISOMETRIES

In order to prove that h/xq converges to (k, L) € 0X® in the cone topology, we let R >> 1
and ¢ > 0 arbitrary. Using the convexity of the distance function, we calculate

d(keLRﬂﬁo, on,hjwo(R)) < g(d(keLdjxoa keleﬂﬁo) + d(kemxoa ge‘juxo) + d(gej”gco, h‘jgﬂﬁo)
J

+d(W gz, W 39)) = §(|dj — jl| + d(zo, e " nelHbay)
j
+d(e’ o, €M m! 14) + d(go, 19))

< (d(zo, e "' ne’™bxy) + 3d(o, gz0)) ,

S

because, by the triangle inequality, j1 < d; < jl+ 2d(xg, gzo) and d(e?™xg, e?mizg) = 0.

Since d; — oo and d(xg, e 7 neltbg) — d(zg, bzg) as j — oo, we conclude
d(keLRxﬂa Oxo,hizo (R)) <e

for sufficiently large j. Hence h™ :=lim;_, h/xo = (k, L) € 0X©.
We have

Bl — (ge”mg_l)_l — gmle Lyl = gw*—leL(L)l

w*m_lw*_lw*g_1 = ge mg ",
where § = gw,' € G, m = w,n ‘w, ! € Mo-. Writing § = knb in generalized Iwasawa
coordinates with respect to ©* and applying the first part of the proof to the ©*-axial
isometry h~!', we deduce that h™ :=lim; o h/zy = (k, (L)) € 0X®".

Next let o be an invariant geodesic of h. Then hic(t) = o(t + jl) for all j € Z, and
therefore h/o(0) converges to o(oc), and h~7a(0) converges to o(—0o0) in the cone topology
as j — oo. Since hio(0) and hizy converge to the same point h* € dX®, and h=7c(0),
h=1x both converge to h~ € 9X®", we conclude that h~ € Vis™(h').

For the last assertion, let y € Ax(h) such that d(zg, Ax(h)) = d(xy,y) =: d. For t > 0 let
Ji = [(2t +1)/2l], the largest integer smaller or equal than (2t + [)/2[. Then

d(h" w0, 000+ (1) < d(W o, W'y) + d(W'y, 0, (1)) + A0y 44 (£), 0+ (1)
l
< d(@o, y) + |jel =t + d(y, o) < 2d + 5 =i ¢

Since ¢ is independent of ¢t > 0, the proof is complete. O



Chapter 5

Geometry of the limit set

The goal of this section is to describe precisely the dynamics of axial isometries introduced
in the previous chapter. The main result is Theorem 5.4, which allows to draw conclusions
about the structure of the limit set and makes possible a natural construction of free
groups.

The most satisfying results about the structure of the limit set can be obtained for a
class of discrete isometry groups which we choose to call nonelementary. For Zariski
dense discrete subgroups of G, similar results have been proved by Y. Guivarc’h ( [G])
and by Y. Benoist [Be| using different, more algebraic methods. Our Theorems 5.15 and
5.16 below are valid for groups which are not Zariski dense, as for example the discrete
subgroup of SL(3,R) acting on X = SL(3,R)/SO(3), generated by the elements

e 0 0 coshn 0 —sinhn
0 1 0 and 0 1 0
0 0 e™ —sinhn 0 coshn

for sufficiently large n.

Our proofs are inspired by ideas of F. Dal’bo who applied similar methods in the case
of products of pinched Hadamard manifolds ( [DaK]). We only use the geometry and
dynamics of axial isometries.

In this chapter, X will again denote a globally symmetric space of noncompact type and
G = Isom’(X).

5.1 Dynamics of axial isometries

In order to describe the dynamics of axial isometries, we introduce an auxiliary distance
for the Bruhat visibility sets Vis®(¢), ¢ € 0X, defined in section 2.6.

Let G = NTAK be an Iwasawa decomposition with respect to x € X arbitrary and
¢ € 0X. Then £ € 0X®© for some subset © C Y, and we may identify Vis?(¢) with the
submanifold Ngz of X, where Ng = exp(ng) is the nilpotent subgroup of N* defined in

ol



52 CHAPTER 5. GEOMETRY OF THE LIMIT SET

section 2.3. Proceeding as in section 1.3 for © = (), let h, denote the left invariant scalar
product on Ng which equals (-, -) from section 1.1 on g, and is zero on gg if 3 # . We
then obtain an Ng-invariant metric for the submanifold Nz of X

ds?, = % > ha,

acx+\(0)+

which defines a distance d, ¢ on Ngz & Vis? (€). We remark that for y € X, the distance
dy¢ is equivalent to the distance d,¢ on Vis™(§). Furthermore, since the map kg is a
diffeomorphism from Ng onto a dense open subset of K/Mg, we easily deduce that the
topology induced by the distance d,¢ on Vis®(¢) C K/Mg is equivalent to the original
topology on K/Mg.

The following lemma describes how this distance behaves under the action of an axial
isometry which translates the geodesic o, .

LEMMA 5.1 Let © C T and h a ©O-axial isometry with translation length | > 0 and
translation direction L € af. Further denote by h* the attractive and by h~ the repulsive
fized point of h. Then for any x € Az(h) we have

- 00 (1 + -1 — —ayl — . :
V& e Vis™(h™) dept(h & hT) <e edyp+(Eh7), ay = aez@{?@w a(L)
VEe Vis®(h™ dyjp-(hE,hT) < e @ tedy - (& RY _i= i L
EE V() (6N S ¢l (€17), o= _min  a((D)

Proof. We fix an Iwasawa decomposition G = NTAK with respect to x € Ax(h) and
h* € 0X©. Then there exists m € Mg such that h = e*'m and 0 : R — X defined by
o(t) = ez, t € R, is an invariant geodesic of h with o(cc) = h' and o(—o00) = h™ €
0X®". Now £ € Vis®(h') implies the existence of n € Ng such that & = no(—o0).

Let € > 0 and ¢ : [0,1] = Ngx a curve in the submanifold Ngx with ¢(0) = z, ¢(1) = nx
and

1
Anwmm<@w@m>+s

For t € [0,1], we write ¢(t) = n(t)x with n(t) € Ng and put Z(t) := DLy
ng. Then, by definition of the metric, [|¢(t)||* = ds2 (Z(t), Z(t)).

Since h™! fixes A~ and h™'¢ corresponds to the element h™'nhz in Ngz, the curve ¢, (t) =
h='n(t)hz joins x to h~'nhz, hence

_n(s) €

Ay (h1€, h7) /n%|wt

Here ||c,(t)]|* = ds2 ((Ad(h")Z(t), Ad(h™")Z(t)). Since Ng normalizes Pg and therefore
Mg by Proposmon 2 7, we conclude Ad(m)Z(t) € ng for all ¢ € [0,1]. Furthermore,
ds? ((Ad(m™")Z(t), Ad(m™")Z(t)) = ds’ ((Z(t), Z(t)) because the scalar product (-,-) on
g and hence h,, o € X7, is invariant by Ad(k). We conclude

dsg ((Ad(h1)Z(t), Ad(h1)Z(t)) = ds;¢(Ad(e ’“)Z() d(e ™) Z(1))
< max e Wldsl (Z(t), Z(1)).

acs+\(0)+
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Putting o := min{a(L) > a € X7\ (©)T} > 0 we summarize

1
dppr (R 7)) < em 0! / le(t)|| dt < e (dyp+(§,h7) +¢)
0

and the first claim follows as € tends to zero.

For the second claim, we remark that 2! is ©*-axial with translation length [ > 0 and
translation direction +(L) € a® . Furthermore, Ax(h) = Ax(h~!) and hence the assertion
follows from the first claim. O

COROLLARY 5.2 Let h be an axial isometry and x € Axz(h). Then
VE e Vis®(ht) lm dy i+ (h 7€ h7) =0,
J—00
VEE Vis*(h) lim d, ;- ('€, h*) = 0.
j—00

We further have the following equivalence for sequences of axial isometries.

LEMMA 5.3 Fizx € X and let (h;) be a sequence of azial isometries such that d(x, Az(h;))
remains bounded as j — oo. Then (hjx) C X converges to a boundary point £ € 0X in
the cone topology if and only if the sequence of attractive fized points (hj) C 0X of (hy)
converges to € in the cone topology.

Proof. Let (h;) be a sequence of axial isometries with attractive fixed points (b)) C 90X,
and ¢ > 0 such that d(x, Ax(h;)) < c. For any j € N choose a point z; € Ax(h;) with the
property d(z,z;) < ¢, and put d; := d(z, hjz) = d(z, hj_lx).
First suppose hjz — £ and let R >> 1, ¢ > 0. By hypothesis, there exists Ny € N such
that

d(aw,h]—w(R)v Ogt+ (R)) <

DN ™

for 5 > Ny. Using the convexity of the distance function, we compute for 7 > Ny

(0, p+ (R), 00+ (R)) < d(0, p+(R), 0upja(R)) + d(00pe(R), 0w er (R))

R € R
< d—jd(%,h;(dj), hjz) + 5 S d—j(d(%,hj(dj);ij,hj(dj)) +d(og, 5t (dg), hiz;)
€ R € R ¢
+d(hjzj, hjz)) + = < — (d(z,2;) + 0+ d(zj,z)) + = < 2c— + .
2 = 4 2 d; 2

Since d; — 00 as j — oo, this implies that h;r converges to 1 in the cone topology.

Conversely, suppose hj+ — &7 and let R >> 1, £ > 0. By hypothesis, we have

d(o-al:,h].+ (R)7 Ozt (R)) <

DO ™
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for j sufficiently large. Again, the convexity of the distance function yields

d(02p0(R), 0 e+ (R)) < d(00,2(R), 0,54 (R)) + d(0, 5+ (R), 00 g+ (R))

R
< (e, 0,0 () +

R
; < —(d(hjz, hjz;) + d(hjz;, ij,hj(dj))
J

d.:

Do | ™

J
(04, 1 (d5), 0, (7)) + 5 <

5 (d(z,z;) + 0+ d(zj,x)) + %

S

< 20§+§<€
- d; 2

for j sufficiently large. This proves that h;z — 7. O

For the remainder of this section, we fix a Cartan decomposition G = Ke* K and let
xo € X denote the unique point stabilized by K. Recall that for any © C T, the map
P 0X® — K/Mg denotes the projection introduced in section 2.5. Our main result of
this section states that for certain sequences of axial isometries with attractive fixed points
converging to £ € 9X®, a dense and open subset of 9X© is mapped to a neighborhood of
7B (€). We will see in section 5.4 that nonelementary groups contain many such sequences.

THEOREM 5.4 Let © C Y and (v;) a sequence of axial isometries such that vy;zo converges
to a point & = (K, He) € 0X©, and ;' xo converges to & = (k™ u(He)) € Vis™(£T) in
the cone topology. Suppose d(xo, Az(v;)) is bounded as j — oco. For ©D>0Oand H € a?,
we put nt = (kY H) and n~ = (k7,u(H)). Then for any ¢ € Vis™(n~) there exist
integers nj, j € N, such that the sequence (*yf]() converges to nt in dX® . In particular,
if ¢ € Vis™(£7), then there exist integers nj, j € N, such that 7}”( converges to £T.

Proof. Let © C Y and suppose (7;);en is a sequence of axial isometries with the properties
stated in the theorem. Denote by ;" = (k;’, Hj) the attractive fixed point and by v; =
(k7 ,t(Hj)) the repulsive fixed point of ;. Let © D20, H € a?, and put hi = (kj,H),
hj = (k;,u(H)), n* = (k*, H) and 5~ := (k7,u(H)) € Vis™(nT).

By the previous lemma, (fy;’) converges to 1 in the cone topoloy, hence by Lemma 2.9,
(kj Mo) = (7P (7;")) converges to k* Mg = n7(£7) in K/Me, and (hj) C G-n* converges
to nT in the cone topology. Therefore Lemma 2.18 implies that h;“ € Vis®(n~) for j
sufficiently large.

Since (v;) converges to £ € 9X®, by Lemma 2.9 we further have ||H; — He|| — 0. Then
H; € af implies

aeg{}{?@w a(Hj) > ap >0

if 7 is sufficiently large. Let U C G-n" be an open neighborhood of n*. If { € Vis®(n™),
then by Lemma 5.1 for any j € N there exists n; € N such that 7?( € U. We conclude
that 7}”{ converges to nT in the cone topology. a
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5.2 Construction of free groups

We will now apply the results of the previous section to construct Schottky groups, an in-
teresting kind of free and discrete isometry groups of infinite covolume. Their construction
is based on the following

LEMMA 5.5 (KLEIN’S CRITERIUM) (see [Haj)

Let G be a group acting on a set S, I'1,Iy two subgroups of G, where I'1 contains at
least three elements, and let I' be the subgroup they generate. Assume that there exist two
nonempty subsets Sy, Sy in S with Sy not included in Sy such that v(S;) C Sy for all
v € Iy \ {id} and y(S1) C Sy for all v € Ty \ {id}. Then I' is isomorphic to the free
product I'y x I'y

Recall from Corollary 2.17 that a finite intersection of sets Vis”(&;) C K/M, & € X",
is a dense and open subset of K/M. The following theorem therefore describes a very
general construction of finitely generated free groups.

THEOREM 5.6 Let X = G/K be a globally symmetric space of noncompact type, and
261,89, ,...,§,& 1 C a set o points wi e properties
1, 60.65,6 NS 0X"e t of 2l points with th ti

l
& eVise(&), ) e (Vis® (&) nVis?(§)  for 1<j<I.

i=1

i£]

Then there exist reqular azial isometries v; ,1 < j <[, such that 'yj+ = §j+ and ;=
and pairwise disjoint open neighborhoods U;", U C K/M of (&), 75 (£5) such that

VRS

w(E/M\U7)CcUf  and 7Y (K/M\US) CU; .
In particular, the finitely generated group (1,7, ..., ) C Isom’(X) is free and discrete.

Proof. Since for any j € {1,2,...,1} we have {f € X" and &; € Vis™(¢]) C 90X,
there exist regular unit speed geodesics o; : R — X such that o;(c0) = & and 0(—o0) =
§ for 1 < j <[ Let zg € X denote the base point of X = G/K and fix an Iwasawa
decomposition G = Nt AK with respect to xy and £ € 0X". Then there exist n € N7,
a € Aand H € af such that o,(t) = naefl'zy for all t € R The isometry h; :=
naea™'n~! is regular axial and satisfies hyo(t) = 01(t + 1) for any ¢ € R. In particular,
hi possesses the attractive and repulsive fixed points h{ = oi(c0) = & and h; =
o1(—o0) =&, . Similarly, for all j € {2,...1} there exists a regular axial isometry h; such
that hjo;(t) = o;(t+ 1) for all t € R, and h =&, hj =&

We next choose open neighborhoods

[
U < () (Vis(&) nVis?(&)) of (&), and

=2

U < [(VisP(g) nVis?(&)) of 7%(&).

=2
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We remark that by the properties of the Furstenberg visibility sets U, C Vis”(¢[) and
U c VisP(¢). By Corollary 5.2 there exists an integer k; € N such that A (KM O\

U7) C Ui and A" (K/M \ U{) C Uy . Inductively, we choose open neighborhoods

Ui Upin © () (Vs"(€)\ T nVisB€) \TF) () (Vis“ () n Vis(6)

i=1 i=j+2
of 7%(h},,) and ¥ (h;,,) respectively, and let k;;; € N such that h?iﬁl(K/M \U;1) C
U, and h 5" (K/M\ Uj,,) C Us,,. Putting 7; := Ay for 1 < j < I, we have the

desired regular axial isometries and the corresponding open neighborhoods.

In order to apply Klein’s Criterium, we put S; := U;" UU; and S, := Uy UU, . Since
the open neighborhoods Uy and U, are contained in Vis”(£) \ U, N Vis®(&,) \ U] we

conclude that (y,)-S, C S;. Similarly U c Vis?(&) \ Uy N Vis® (&) \ U™ implies
(72)+S1 C Ss. Hence the group generated by 7, and 7, is free by Klein’s Criterium.

For j € {2,...,1}, let I'; denote the group generated by the elements ~; for i < j. We put

J

Si=JWruur),  Si=UfL 0.

j j
i=1
Since S;11 C N, (VisB(fj) \ U= nVis? (&) \U—f) we have I'y-S;1 C Si. From

St VisP(65,,) \ Upyy N VisP(67,,) \ UL,

we further obtain (y; 1)} C Sj11, and therefore the group I'j,; generated by the elements
7v; for i < j 41, is free. We conclude inductively that (yy,ve,...,v) is free.

Finally suppose I' := (1,72, ..., ) is not discrete. Then there exists a sequence (h;) C T

converging to the identity. For j € N we write h; := agj)a(‘j) e ag) as a reduced word,

J

ie. az(j) € {v, Y27 v} and agi)l + (al(j))’1 for 1 < ¢ < k;. Passing to a
subsequence if necessary, we may assume that agj )is the same element for all J €N, say 75,
where 1 <i <lande € {+1,—1}. Let 5 € dX such that 7% (1) € K/M\._, (U;Fuu;).
Then 7%(h;n) is contained in Uf C K/M for all j € N, and (7”(h;n)) converges to

7P (n) ¢ UE, a contradiction. O

5.3 Nonelementary groups

We are now going to generalize to symmetric spaces X = G/K of higher rank the notion
of “nonelementary groups” familiar in the context of isometry groups of real hyperbolic
spaces. We denote by xy € X the unique point stabilized by the maximal compact
subgroup K C G.
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DEFINITION 5.7 A discrete subgroup T' of the isometry group Isom®(X) is called nonele-
mentary if and only if Ly # O and if for any £ € Ly, n € G-§ C 0X we have

LN Vis®(n) 0.

Otherwise 1" is called elementary.

Note that an abelian discrete group I' C Isom?(X) of axial isometries is elementary,
because its limit set is contained in the boundary of the invariant maximal flats. Hence
[-& =& for every € € Ly which implies I'-§ = £ ¢ Vis®™(.£). The same argument shows,
that a discrete group I' C Isom®(X) is elementary, if it is contained in the stabilizer of a
limit point. Nevertheless, there are many examples of nonelementary groups.

EXAMPLE 5.8 If rank(X) = 1, then a discrete isometry group I' C Isom’(X) is nonele-
mentary if it possesses infinitely many limit points.

Proof. Since rank(X) = 1, we have + = id and G-¢ = 90X, 90X = Vis™(¢) U {C} for any
point ¢ in the geometric boundary. Suppose I' C G = Isom®(X) possesses infinitely many
limit points, and assume there exists £ € Lp and n € dX such that T'-£ N Vis™(n) = 0.
Then v¢ = n for all v € T', in particular & = 7. This implies that every element in T"
fixes £. Let I" C I be a torsion free subgroup of finite index which exists by Selberg’s
Lemma. Since I'" does not contain elliptic elements, I'' contains only parabolic and axial
isometries which all fix £. By discreteness, the set of axial elements in I’ must all have
the same axis. We conclude that I'" possesses at most two limit points, hence I" possesses
only finitely many limit points, a contradiction. O

ExXAMPLE 5.9 Free groups generated by regular azial isometries as in Theorem 5.6 are
nonelementary.

Proof. Let 71,72, ...,% be the generators of ' and U, U, , Uy, Uy ,... U, U C K/M
pairwise disjoint open sets as in the proof of Theorem 5.6. Let £ € Ly, n € G- and choose
a generator v; with attractive fixed point (f, where k € {1,2,...,l} and € € {+1,—1},
such that & := gzo,gg N G-¢ satisfies & € Vis™(1n). By Lemma 2.18 there exists an
open neighborhood V' C G-¢ of & such that ( € Vis™(in) for all ( € V, and therefore
V C Vis™ (). If £ € Vis™(£,©), then by Lemma 5.1, (7;)"§ converges to & as n — o0.
Hence there exists ng € N such that (75)"0¢ € V. C Vis™(n). If & ¢ Vis™ (£, °), there
exists a generator 7;, i # k, and [ € N such that (y;)'¢ € Vis™(un). O

The following lemma will be useful in the proof of Lemma 7.2.

LEMMA 5.10 Let I' C Isom?(X) be a nonelementary discrete group, and © C Y such
that Ly N 0X® # 0. Then for any € € 0X® and for alln € G-£ C 0X® we have

LrNnG-€C U Vis™ (vyn) .

yel’
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Proof. Let © C T with Lr N0X® # () and fix £ € 0X®. Let n € G-¢ C 0X® and suppose
¢ € Ly NG-£. Since I' is nonelementary, there exists v € I' such that y='¢ € Vis™(1p),
hence ¢ € Vis™(1yn). O

Since we do not know much about the dynamics of parabolic isometries, the description
of the limit set of discrete isometry groups, which in general contain parabolic isometries,
is difficult. The following proposition, however, states that every regular limit point of
a nonelementary group can be obtained from a sequence of axial isometries. This allows
to use the dynamics of axial isometries developped in section 5.1 in order to describe
the structure of the regular limit set. The proof is a slight modification of the proof of
Proposition 4.5.14 in [E].

PROPOSITION 5.11 LetI' C G = Isom’(X) be a nonelementary discrete group. Then for
every & € Lp N OX" there exists a sequence of axial isometries (v;) C I' such that v;xo
converges to £ and 7;1x0 converges to a point in Vis™(£). Furthermore, d(xo, Az(7;)) is
bounded as j — 0.

Proof. Let £ € LrN9X"® and fix a Cartan decomposition G = Ke®*" K with respect to x
and €. Let (h;) C T be a sequence such that hjzo converges to £ = (id, H). Then h; 'z
converges to a point ¢ = (k,(H)). If 78(¢) ¢ Vis®(€), there exists an element y € T
such that 72 (y7¢) € Vis”(¢), since T is nonelementary. The sequence (v;) := (hjy) CT
then satisfies

lim y;zo = lim hjyzo =¢,

j—00 j—00
lim 7]71330 = lim (hjy) 'zo = lim 'y*lhj*lya:g =y ¢ e Vis™(€).
j—00 j—00 j—00

This implies the existence of a unit speed geodesic o joining £ to n := v (.

Lemma 2.19 allows to choose a sequence (Uy) of neighborhoods in G of the identity such
that Ugy1 C Uy, for all k € N, NgenUy = {id}, and for any points &, € Uy-€ and n;, € Uy-n
there exists a geodesic oy in X that joins & to 7 and satisfies d(o(0), 0x) < 1/k for any
k € N. We show that for any k£ € N there exists an integer Ny such that for all j > N,

v (U-€) CU-€, and 47 (Upn) € Ugeny.

Put z := 0(0) and fix k¥ € N. Since the set Uy-£ is an open subset of G-&, we find a
number ¢ > 0 so that any ¢ € G-& with £,(£,() < ¢ is contained in Ug-£. We choose
N € N such that for any j > N and for every y € B,(2)

max{Z,(v,v,§), Ly(%fla;,n)} < /2. (5.1)

Finally let ¢ € Uy-€ be given and let y be a point on a geodesic joining 1 to ( with
d(y,z) < 1/k. It follows that for j > N we have

Za(156:€) < Za(Gv5y) + La(139,8) < £,-1,(Gy) + 9/2
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by (5.1). Considering the triangle A('yj’la:, Y, (), we obtain £ -1 ((, y)+4y(7j’la:, ()<m.
J

From the fact that y is a point on the geodesic joining 1 to ¢ we further conclude
Zy(v;'w,¢) =7 — Zy(v; 'w,n) and with (5.1)

This proves 7;(Ug-§) C Uy-€ for any j > N by the choice of ¢. The proof of 7]71(Uk-77) C
Uy -n is analogous.

We next show the existence of sequences (§;) C G-& converging to &, and (n;) C G-n
converging to n such that v;§; = &; and ~;n; = n; for all j € N. If Uy, is chosen such that
Ur-€ is homeomorphic to a closed disk, the Brouwer fixed point theorem together with
the fact

Yj(Ug-€) € Up-§, and 7;1(Uk-77) C Ukn
shows that for any £ € N the isometry 7; has fixed points in U, -£ and Uy -n for all
sufficiently large j. For any such j we choose a fixed point §; of v; with the property

Lo(85,8) < £2(C6) V(e G-¢ fixed by ;.

Similarly we choose a fixed point 7; such that
La(njsn) < Zo(C,m) V¢ € G fixed by ;.

We claim that the sequences (&) and (n;) constructed as above converge to & and 7
respectively. Given € > 0 we choose a neighborhood U in G of the identity such that
Z:(C,€) < e forall ( € U-£. The argument above shows that for sufficiently large j the
isometry -y, has a fixed point ¢; in U-§ and hence Z,(§;,€) < Z,((;,€) < €. Therefore
§; — & and a similar argument gives n; — 7.

Since £, € 0X"Y, and §; € Uy-&, n; € Uy-n for all sufficiently large j, there exist regular
geodesics o joining &; to n; with the property d(c(0),0;) < 1/k. Since 7; fixes both
¢; and n; for j sufficiently large, we conclude that v; fixes both o;(c0) and oj(—o00). If
F; C X denotes the unique maximal flat which contains o;, then by Lemma 4.2.1a in [E],
v Fj = Fj and the displacement function d,, is constant on Fj. Hence ~; translates every
geodesic joining some point x; € Fj to v;z; € Fj, and therefore v; is axial for sufficiently
large j.

Furthermore, we have

d(zo, Ax(7;)) < d(zg,0(0)) + 1,

because 0; C Fj = Ax(y;). O

As a consequence of the previous proof, we obtain the following

THEOREM 5.12 IfT' C G = Isom°(X) is a nonelementary discrete group which possesses

a reqular limit point, then the set of fized points of axial isometries is a dense subset of
the limit set Lr.

Proof. Let £ € Ly N0X" arbitrary. Then the proof of Proposition 5.11 shows that there
exists a sequence (7;) C I' of axial isometries such that ; has fixed points &; and 7; as
above. In particular, {; converges to § as j — oo. O



60 CHAPTER 5. GEOMETRY OF THE LIMIT SET

5.4 The structure of the limit set

We are finally able to describe precisely the limit set of nonelementary discrete groups
acting on a globally symmetric space X = G/K of noncompact type. For this section,

we fix a Cartan decomposition G = Ke" K and let xo € X denote the unique point
stabilized by K.

DEFINITION 5.13 The limit cone Pr C E of I' is defined as the set of Cartan projections
of all elements in the geometric limit set Ly. The projection Kt := 7P (Lpr N 9X"9) C
K /M is called the transversal limit set.

THEOREM 5.14 LetT' C G = Isom°(X) be a nonelementary discrete group of isometries.
Then the transversal limit set Kr is a minimal closed set under the action of I

Proof. If Ly N 0X"% = () there is nothing to prove. We therefore assume Ly N 90X"% # ()
which implies Kr # ().

Fix koM € Kr, and let kM € Kr be arbitrary. Let £ € Lr N 90X be a preimage
(7B)~' (kM) and denote by H € a] the Cartan projection of £*. Due to Proposition 5.11
there exists a sequence (7;) C ' of axial isometries such that v;x¢ converges to £+ and
~; "o converges to a point £ € Vis™(£T) C 0X™. Put & := (ko, H) with H € af as
above. If koM € Vis®(£7), then & € Vis™(¢7) and, by Theorem 5.4, there exist integers
n;, J € N such that

lim 776 = €.
j—oo

If koM = 75 (&) ¢ Vis®(£7), there exists v € T such that 77(v&y) € Vis?(¢7) because T’
is nonelementary Therefore v&, € Vis™(£7) and Theorem 5.4 garantees the existence of
integers n;, j € N such that

lim ;7 (&) = &€+
j—o0

Using the natural G-action (2.1) on K /M, this proves that T'(koM) = 7P(T'&,) is dense
in Kr. Since I'(kgM) is the smallest I'-invariant set in K /M, the closure I'(koM) = Kp
is a minimal closed set under the action of I'. a

THEOREM 5.15 Let ' C G = Isom°(X) be a nonelementary discrete group of isometries.
Then the reqular geometric limit set is isomorphic to the product Ky x (PN ay).

Proof. If Ly N9X" = () there is nothing to prove. We therefore assume Ly N9X"% # ().
If £ € Ly N0X™9, then 78(€) € Ky and the Cartanprojection of £ belongs to Pr N aj .

Conversely, let kM € Ki and H € Pr N a]. By definition of P, there exists a sequence
(v;) € T such that the Cartan projections (H;) C at of vz satisfy Z(H;, H) — 0
as j — oo. Furthermore, & := lim; o v;x¢ belongs to Ly N 0X" and we may write
60 (ko, ) where koM (&)) € KF
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By Theorem 5.14, Kt = I'(kyM) is a minimal closed set under the action of I, hence
kM € T'(koM) = 7% (T-&)

by (2.1). Since the action of Isom’(X) on the geometric boundary does not change

the Cartan projections, and there exists exactly one preimage ¢ := (7)"1(kM) with
the same Cartan projection H € a as &, the closure of I'-& contains &. This proves
Eel & CLrnoXTe. O

If v is an axial isometry, let L(y) € af denote the translation direction of 5 from Defini-
tion 4.20.

THEOREM 5.16 Let ' C G = Isom°(X) be a nonelementary discrete group of isometries,

)
and Ly = {L(y)| vy €T, v avial} C af . Then Pr = Lr.

Proof. In order to prove Pr D Lp, we let H € Lp arbitrary. Then there exists a sequence
(h;) C T of axial isometries with translation lengths [; and translation directions L(h;)
satisfying ZL(h;), H) — 0 as j — oo.

Suppose H ¢ Pp, and, for v € I, let H, denote the Cartan projection of yxy. Then there
exists € > 0 such that Z(H,, H) > ¢ for all but finitely many vy € I

Put £ = (id,H) € 0X. For j € N, we let g; € G such that h; = gjeL(hf)lJ'gj_l, put
z; = g;jxo € Ax(h;), and let n; be an integer greater than 2j-d(xo, x;)/l;. We abbreviate
v = hy = gjethlinig t and Hy := H, . By G-invariance of the directional distance,
Lemma 3.6 and Lemma 3.2 we obtain

Ba.g(xj, vjzj) = BG-f(gflxja gfl%'xj) = Bg.¢(o, el hidlini g3,
= Be(xo, """ zg) = (L(hy)lyny, H) = Lng(L(hy), H) .
Since Z(L(h;), H) — 0 by hypothesis, we conclude

Ba.e(zi,vix; Lin;(L(h;),H
Gg([l’,‘],’)/]l‘]) — ]77,]( ( J)7 > — <L(h]),H> 1.
d(w,752;5) Ljn;

Using again Lemma 3.2, Lemma 3.6 and the triangle inequality, we obtain
(H;, H) _ Be (o, eflizy) _ Be.¢ (o, eMizg)
|| Hj]| d(zo,7;70) d(xo,7;70)
Bae(o,75%0) o Baelw;, 7525) = 2d(x0, 75)
d(xo,vjro) —  d(wj, ) + 2d(2o, )

1
Bag(xj,v575) 1 =35

> —
nj-lj 1+3

cos Z(H;, H)

— 1 asj — o0,

a contradiction to our assumption.

Conversely, we first prove Pr Naj C Lp. Let H € PrNa and put & = (id, H) € 0X"*.
By the assumption and the same arguments as above, there exists a sequence (h;) C T’
such that

B(;.g(a?o, hjx’g)

—+1 asj—o0.
d(x’g,hja?o)
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Set £ = lim;_,o hjzg € Lr NOX™ and choose a sequence of axial isometries (y,;) C T
as in Proposition 5.11 with the properties vz — &7, ’)/;1.'170 — £ € Vis™®(¢h) and
d(zo, Ax(7)) < ¢ for some constant ¢ > 0. For j € N, we choose z; € Ax(v;) such that
d(zo,z;) < c. Then the translation length [, := [(v;) = d(x},v;x;) of v; satisfies

lj <d(xg,vjme) < d(xo,x;)+ d(z;,v25) + d(vzj, vizo)
lj 4+ 2d(zg,z;) <l +2c.

Hence the sequence of translation directions (L(v;)) C af of (vjx;) satisfies

1 1

L(v;),H) = ————sup cosZ,.(vjx;, 9§) = —Ba.e(x;, vv;
< ( J) > d(xj,’ijj) o a:,( Jvy ) lj 6( Jr 13 J)
Bg.¢(xo,7jT0) 2¢

BG-g(an'ijO)+2d(x077j330) < d(fL’O:"/jIJO) d(z0,7jT0) 1

d(z0,vjz0) — 2d(z0, x;) 1 - s ’

(L(y;), H) > Be.¢(xo, viT0) — 2d(xo, x;) > Ba.¢(o, vjT0) 2¢ 1
d(zo, Vo) d(zo,7;T0) d(zo,7;%0)

as j — oo. This yields Z(L(v;), H) — 0 as j — oo and therefore H € Lr.

Since the closure of PrN af equals P and Lr is a closed set in E, we conclude
Pp:Ppﬂafgzp. O



Chapter 6

(Generalized Poincaré series

In order to relate the critical exponent of the Poincaré series to the Hausdorff dimension of
the limit set of Fuchsian groups, Patterson ( [P]) and Sullivan ( [S]) developped a theory
of conformal densities for real hyperbolic spaces. An extensive description of their work is
given in [N]. In 1996, P. Albuquerque extended part of this theory to arbitrary symmetric
spaces X = G/K of noncompact type. He showed that for Zariski dense subgroups I'
of G, the support of any §(I')-dimensional conformal density either lies in dX*™ or is
contained in a unique G-invariant subset G-§ C 90X (Theorem A in [Al]).

Inspired by the paper [Bu| of M. Burger, we are going to construct families of I'-equivariant
measures on every G-invariant subset of the limit set. We will use the Patterson Sullivan
construction to obtain orbital measures with many degrees of freedom on the geometric
limit set. An important role plays the directional distribution of the number of orbit
points, which allows to single out those measures with support in a certain subset G¢ C 0.X
of the geometric boundary. We remark that similar measures have been constructed
independently by J. F. Quint ( [Q]) using different methods. His measures, however,
are all supported on the Furstenberg boundary and therefore lack an essential piece of
information concerning the geometry of I'-orbits.

Asusual, X = G/K will be a globally symmetric space of noncompact type with geometric
boundary 0X, zy € X the unique point stabilized by K, and M™(X) the cone of positive
finite Borel measures on X U0X. I' C G will denote a discrete group of isometries of X.

6.1 Exponential growth in direction G-¢

Let x,y € X, £ € 0X and v € I'. Recall from section 3.6 that

Lo(7y, G-§) = Inf Zo(yy,98) for yy # .
If vy = x, which is true for only finitely many v € I by the discreteness of I', we put
Lo(vy,G-£) =0.

63
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Using this convention, for ¢ > 0 and s > 0 the series

Qtlwy) = ), etow

yer
Lz (1y,G-€)<p

is well defined. Its critical exponent 07, (, y) is the unique real number such that Q% (z, y)
converges if s > 05,(v,y) and diverges if s < §5.(7,y). Note that by the triangle

inequality, the series
Z ¢ sd(wo,70)

yer
Za(7y,G-§)<p
possesses the same criticial exponent as Qg 5(a: ).

This critical exponent can also be interpreted as an exponential growth rate of the number
of orbit points close in direction to G-

ANE (z,y;R) = #{y €T |R—1 < d(z,vy) < R, Zo(7y,G-€) < ¢},
because an easy calculation shows that

log AN/ (z,y; R
06.¢(7,y) = lim sup BANG (v, ) :
R—o00 R

DEFINITION 6.1 The number 0¢.¢(I') := liminf,_,, (585(%,3:0) is called the exponent of
growth of I in direction G-£.

LEMMA 6.2 For any x,y € X we have d¢.¢(I') = liminf, o 05 (2, y).

Proof. Choose z,y € X arbitrary and put ¢ := d(xo,x) + d(zo,y). Let (p;) \y 0 b
sequence of positive numbers, ¢; < 7/4. Suppose v € I' satisfies d(xo,fyazo) > % and
J

d(z,vy) > % for sufficiently large j. Then applying Lemma 3.18 twice gives
J

Loy(V20,G-€) < @j/2 = Lo(vy, G-§) <p; = Lo (Y20, G-€) < 295,

and we conclude 52]:5/2(3307330) < 522(17,9) < 52;‘,7; (%9, o) . Taking the limit inferior as
J — oo finishes the proof. 0

LEMMA 6.3 [f LrnN Gé‘ 7§ @, then 5G§(F) > 0.

Proof. Suppose Lr NG-£ # (). Then for any ¢ > 0, there exist infinitely many v € T" with
the property Z,,(vzo, G-£) < ¢. In particular

> 1=QgE (w0, x0)
yer
410 ("/IO ,G'§)<L,0

diverges, hence ¢ (7o, 70) > 0. We conclude d¢.¢(I') = lim inf,, o 05 (w0, 70) > 0. O
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PROPOSITION 6.4 Let (§;) C 0X be a sequence converging to & € 0X. Then

limsup dg.¢, (I') < dae(T)

J—00

Proof. Let ¢y € (0,7/2). Then & — £ implies Z,,(&;,G - §) < /2 for j sufficiently
large. Let ¢ € (0,¢0/2) and v € I such that Z,,(yzy, G-&;) < . Then

ZLaoo(720, G-€) < @+ ©0/2 < o,

which proves (58,5 (g, xp) < 62?5(%,3:0), and therefore
dgg, (L) = lig;iglf 0c.e; (0, o) < 0¢e (%o, o) -
We conclude

limsupdg.e (I) < 05 (v0,70), hence

J—00
i ) = < = O
h;rif;lp da.g; () llg)l_l)IOlf (hirisogp da.g; (T )> llg)l_l}nf oy £(xg, zg) = 0ce(I).

REMARK. If rank(X) =1 or ¢ > 7/2, then the series Q3% (7,y), § € 90X, reduces to the
familiar Poincaré series
Z e—sd(x,'yy) .

yel

The critical exponent of this series is called the critical exponent of I' and will be denoted
by 6(I'). In particular, we have d¢.¢(I') < 6(I") for any & € 0X.

6.2 The region of convergence

Let d denote the Riemannian distance, Bg.e, £ € 0X, and d;, 1 < 7 < r, the direc-
tional distances introduced in sections 3.2 and 3.4. We observe that for any r-tuple
b= (b4,0%...,0") e R", G-£ C 90X and 7 > 0 fixed, the series

PCS;ZT . y Z - SIb w7y)+T(d(IIJ,’Yy)*BG-§(fIJ,Vy)))
vyel

possesses a critical exponent which is independent of z,y € X by the triangle inequalities
for d, Ba.e and dy, do, . . . d,.

For any subset G-£ C 0X and 7 > 0, we may therefore define a region of convergence
Rie :={b=(b",0°,...0") |Pé’,b5’7(a:0, zp) has critical exponent s <1} CR".

This region possesses the following properties.
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LEMMA 6.5 If 7 < 7', then R, C R
Proof. Let T < 7', b € Rf;¢. Then for any v € I

o= (01 bidi(wo,0m0)+7 (d(wo,130)~Bae(w0,720)) ) < =5 (71 bidi (w0,7w0)+7(d(w0,720)~Beg (w0,720)) )

and therefore Pé’,Z’T’ (g, ) < Pé’_Z’T(a:O,xO). Hence Pé’,l’g’T,(a:O,xg) converges if s > 1. In

particular, Pé’.bg’T, (xg, zp) has critical exponent less than or equal to 1. O
LEMMA 6.6 For any T > 0, the region R, is conves.

Proof. Let 7 > 0, a,b € Rf¢ and t € [0,1]. For v € I', we abbreviate
(ta + (1 = t)b), := D1 (ta* + (1 — t)b")d;(x0, yo) + 7 (d(0, Y20) — Bae(@o, y20)) -
Then by Holder’s inequality

t 1-t
E :efs (ta’+(1—t)b'), E :efstaye s(1—t)by < <§ 650‘7) (E 65177) .

el el ver ver

The latter sum converges if s > 1, hence ta + (1 — )b € R O

In order to describe the region of convergence more precisely, we prove the following
proposition concerning convergence and divergence of certain series.

PROPOSITION 6.7 Let z,y € X, £ € 0X and D C 0X an open set with respect to the
cone topology. Put I'p :={y €T |Zy(vy,G-D) :=inf,eq inf,cp Z:(vy, gn) = 0}.
Then for all s,7 € R, and (b',0,...,0") € R" we have the following implications:

(1) If there exists ny € D such that
s( iy b cos Zy (o, 0X7) 4+ 7 (1 — cos Zy(mo, G-€))) < O (T') , then the series

3 e~ (Sis i@y tr(dem)Bos@m))  giverges.

v€l'D

(2) If s(>0i_, bt cos Zy(n, aXi) + 7 (1 = cos Zy(n,G+€))) > 6G.y(T') for alln € D,
then
Z e~ i1 b ,vy)+7(d(xﬁy)—3c-5(wﬁy))) converges.

Y€l'p
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Proof.

(1) Letno € Dsuch that s( 7, b" cos Zy(mo, 0X*)+7 (1 — cos Ly (19, G-€)) ) < O (T') -

Since dg.q (I') = liminf, 064, (v, y), there exists ¢ € (0,7/4) and sy € R such
that for any v € I'p with Z,(yy, G-nmp) < ¢ we have

S(Zbi cos Ly (7Y, 0X") + 7 (1 — cos Ly (vy, G-€)) ) < s < 0., (,y) -

i=1
By Lemma 3.10 we have

di(z,vy) = d(z,vy)cos L. (yy,0X"), 1<i<r,
Bee(w,y) = d(x,vy)cos Zy(vy,G-€). (6.1)
Therefore
Z o5 (i tdi(@yy)+r(d(w,y)—Beg(x.y)))

Y€l'p
= Z o5 (i1 b cos L (79,0X ) +7(1—cos Lo (19,GE)) ) d(z,7y)

v€l'p
Ly (7y,G-€) <y

> Z e—sod(x:’ﬂ/) ,

yel'p
Lz (7y,G-€) <@

and the latter sum diverges since sp < 06, .

(2) Let 1o € D and fix a Cartan decomposition G = Ke* K with respect to = and €.

Let He, Hy € af denote the Cartan projections of & and 7. The condition

Scan (L) < ()b cos Zo(no, 0X') + 7 (1 = cos Lo (np, G-€)) )
=1
is equivalent t0 g.,, () < s(Y_i_, b'(H;, Ho) + Z||He — Hol|?) =: s(Ho) .

Since dg.(I') = liminf, o6&, (2,y), there exists ¢ € (0,7/4) and sq < s(Ho)
such that ,
(52?770 (x,y) < sp < s(Hy). (6.2)

For n € 0X and ¢ > 0 we put Sg,(¢) = {¢ € 0X | Z,(¢(,G-n) < ¢}. The
continuity of the function

s: a — R, Hr—>s(Zbi<Hi,H>+%||H§—H||2>
=1

and inequality (6.2) imply the existence of ¢y < ¢ such that for any n € Sq., (o)
with Cartan projection H, € af, we have sy < s(H,). Hence

Oimy < 0ty < 50 < s(Hy) V1 € S (p0) -
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We now choose a sequence (n;) C D and corresponding sequences (s;) C R and
(¢;) C€ R such that for any 1 € Sg., (¢;) with Cartan projection H, € ai we have

6((’;’]:77]- (‘Thy) < Sj < S(Hﬂ) )
and  G-DCG-DC|JSau (o).
jEN
Since G-D is a compact subset of the geometric boundary, we may extract a finite
covering U;Zl S¢.n; (¢;) , and conclude using equations (6.1)

Z 6*5( f=1bidi(wny)H(d(wny)fBa-g(w,"/y)))

Y€l'p
< Z Z €*5d($,’7y)(zf:1 bt COSZz("/y,axi)+T(lchSLz('yy,G.g)))
Jj=1 yer
L (vy,Gnj)<ej
[
< Z Z e sid@m) < o
j=1 ~yer
Lz (vy,Gnj)<p;
because s; > 52% for1 <j <L .

For the remainder of this section we fix a Cartan decomposition G = K " K with respect
to g € X and some regular boundary point. The proof of the previous proposition allows
to deduce

COROLLARY 6.8 Let D C 0X be an open set with respect to the cone topology, and
I'p :={y el |Z((yy, G D) :=inf,cqinf,cp Z,(vy, gn) = 0} as before. For v € T let
H, € af denote the unit length Cartan projection of yxy.

If s : af — R is a continuous function with the property s(H,) > dg.y(L) for alln € D

with Cartan projection H, € E, then the series

g e~ () d(zo,7z0) coOnverges.

Yel'p

The following two results relate the region of convergence R, to the exponent of growth
in direction G-£.

LEMMA 6.9 Let £ € 0X and T > 0. If He € E denotes the Cartan projection of & and
(b1, 0%,...0") € Re.¢ then i 0(H;, He) > be(T).

Proof. Recall that (H;, He) = cos £, (£,0X") for 1 < i <7, and cos Z,,(§,G-€) = 1. If
S b'(H;, He) < dg¢(D), then there exists s > 1 such that

=1

s (Z b cos Ly (€, 0X") 4+ 7(1 — cos Ly, (&, G-{))) < bge(l) .
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Applying Proposition 6.7 (1) to D = 0X, we conclude that

Z 75( _1 b'di(wo,yzo)+T (d(IO,’YfBO)*BG’-g(fL’OF/IO)))
e
vyel

diverges, in contradiction to (b',0?,...0") € Ri.e- O

NOTATION. For £ € 0X and ¢ > 0 we put Sg.e(p) :={n € 0X | Ly (n,G-£) < ¢}.
PROPOSITION 6.10 Let & € X, 7 > 0 and b = (b',0%,...0") € ORG with b* > 0 for
1 <i<r. If He € af denotes the Cartan projection of &, then

(1) For any n= (k,H) € 0X we have >_._, 0'(H;, H) + ||He — H||> > 6¢.,(T).

(2) There exists n, € Sg.e(1/30(I')/T) with Cartan projection H, € af such that

. T
> V(Hi Hy)+ 3 1He = Ho|l” < b6, ().
Proof. The first claim of the statement follows as in the previous lemma from Proposi-

tion 6.7 (1).
For £ € 90X and 7 > 0, b € IR, implies that for any s <1 the series

Z 6*5 _ bdi(a ) (d(ey) - Bec(zm)))

vyel

diverges. By Proposition 6.7 (2), there exists 7, € 0X with Cartan projection H, € E

so that
. T
V(H; H,)+ —||H — H.||?> | < ¢ (T).
s(?( , >+2||g ||>_Gnr()

Taking the limit as s 1, we obtain .. | b'(H;, H;) + Z||He — H||* < ¢, (T'), and
since >.i_ b"(H;, H;) > 0, we deduce

-
7 (1~ (He, Hr)) = 5 || He — H.||* < 0, (T) -

Writing ¢ := Zy, (-, G-€) € [0,7/2] and using the fact that (He, H,) = cosp < 1 —¢?/3,
we conclude 7¢?/3 < 6g.p,, (I') < §(T). Hence ¢ = 2, (n,,G-€) < 1/36() /7. O

6.3 The Patterson Sullivan construction

Let & € OX such that G-§ N Ly # 0, 7 > 0 and b = (b, 0%,...0") € ORE. Recall that
Ba.e and d;, 1 <4 <r, are the directional and maximal singular distances introduced in
sections 3.2 and 3.4. For v € ', we abbreviate

by = Zbidi(l‘o,’)ﬂl‘o) + 7 (d(xo, yT0) — Ba.e(o, 720)) -

=1
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LEMMA 6.11 (Patterson, [P])

There exists a positive increasing function h on [0,00) such that

(1) U&= Zver e**h(b,) has exponent of convergence s =1 and diverges at s = 1.
(i) For any e > 0 there exists ro > 0 such that for r > ry and t > 1

h(rt) < t°h(r).

Following the original idea of Patterson ( [P]), we construct a family of orbital measures
on X in the following way. If D denotes the unit Dirac point measure, we put for z € X
and s > 1

[ = % efs(zle bidi(:D,"/ivo)‘FT(d(:E,"/:Eo)*BG.g(:L’,’yCL’O))) h(b’y)D(’ﬂUg) )

yel’

These measures are ['-equivariant by construction and absolutely continuous with respect
to each other. Note that they also depend on G-£ C X, 7> 0and b= (b',0?,...,b") €
ORG.¢ Fory € I'and z,y € X we put

4y, x) = Zbi(di(y,’}/.’lfo)—di(.’lf,’)/l‘o)) (6.3)

+7(d(y, yo) — d(x, v0) — Bae(y, v20) + Bag(x, y10)) -
Then for s > 1, the Radon-Nikodym derivative is given by
dpiz

: F'ZU[] — R
dp
yrg et W)
Let (C°(X), || |ls) denote the space of real valued continuous functions on X with norm

[ flloe = max{|f(z)| |z € X}, f € C°(X). We endow the cone M*(X) of positive finite
Borel measures on X with the pseudo metric

plaroge) = supf] [ du = [ f da] [ £ € VT 1l =1} i € MPX),

and obtain the following

LEMMA 6.12 Let £ € 0X with G-§NLp # 0, 7> 0 and b = (b',0%,...,0") € ORG..
Then the family of maps F(G-&,1,b) = {x — p | 1 <s <2} from X to MH(X) is
equicontinuous.

Proof. Let x,y € X. For v € I we use the abbreviation ¢,(y,z) from (6.3), ||b||; :=
>or_ [b'] and estimate

|07 (y, 2)| < Zbidz’(yw) +27d(y, x) < d(z,y) ([[bl] + 27) . (6.4)
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If s € (1,2] and f € C°(X), the inequality |1 —e~!| < el —1,t € R, yields

/fdux [t

< o~ (S v asrzo) alasiao) Bocz00)) b, )| ()] - |1 — 2020

\I;s
yel’

||{II||SOO ZB_Sb'Y@_sq'Y(x’xO)h(bfy) (65“17(?/;17)‘ _ ]_) .

yer
Since f € C°(X) was arbitrary, s < 2 and > er € P h(by) = ¥*, we conclude using (6.4)

P, 15) < 2oz, (2 blieen) _ 1)

This proves that F (G-, ,b) is equicontinuous. a

LEMMA 6.13 Let & € 0X with GENLp #0, 7> 0 andb= (0',0%,...,0") € ORG. Then
for any x € X there erists a sequence (s,) 1 such that the measures psr C M*(X)
converge weakly to a measure pi, = p(G-&,7,b) as n — oo.

Proof. The compactness of the space X implies that every sequence of measures in
MT(X) possesses a weakly convergent subsequence. O

The theorem of Arzela Ascoli ( [K], Theorem 7.17, p. 233) now allows to conclude that
F(G-€,7,b) is relatively compact in the space of continuous maps C(X, M*(X)) endowed
with the topology of uniform convergence on compact sets. From the definition of (1),ex
it follows, that every accumulation point p = u(G-&,7,b) = (tz)zex of F(G-£,1,b) as
s\ 1 takes its values in M*(9X).

The following proposition will provide the key ingredient in the construction of orbital
measures with support in a single orbit G-¢ C 0X in section 6.4. Recall that for ¢ > 0

Saelp) :={n € 0X | Luy(n, G-§) <}
PROPOSITION 6.14 Fiz £ € 0X and suppose there exists b = (b4, 0?,...,0") € R" and
o € (0,7/4) such that
Zbl<HZ,H§> = 5@.§(F), and

Zbi(Hl-, H,) > 6an() V1€ Sae(po) with Cartan projection H, € af |

Then there ezists 7o = T9(b, o) > 0 such that for all T > 19 and for all ¢ > 0

Z e "h(b,) < 00,
yer

410 ("/IO 7G£) >¢

where by and h are as in Proposition 6.11.
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Proof. Let ||b]|, := Y_i_, [b'], ¢ € (0, ¢o], and put

Dy = {n€dX |p/2< Ly(n,G-€) < g0},
Dy = {n€0X |Zy(n,G &) > po/2}.
By property (ii) of the function / in Lemma 6.11, there exists 1o = r(¢) > 0 such that for

r > 1o and t > 1 we have h(rt) < (£)?°h(r). Let R = R(p) > 0 such that d(zo, vze) > R
implies b, > r and

d(wo,720) (||bll1 + 2¢* + 26()) < min{edorw0) dMdlrorz0)y (6.5)

Then for v € I with d(zg,yx¢) > R we have

h(by) = h( ) < (b—V)whj(ro) = Mro) ont,

To (7“0)90

For v € I we put 1, := 04,,44,(00) € 0X and let H,, € af denote the unit length Cartan
projection of .

If v € Ip,, then (He, H,) < cos% < 1—¢?/12, and we obtain using equations (6.1)
b = d(a:o,'yxg)(Zbi<Hi, H)+7(1- (Hf,H7>))
i=1

r ) 2 T )
> d(w, ’yxg)(Zbl(Hi, H,) + %) > d(:ro,*y:ro)(Zb%Hi, H,) +2¢°)

i=1 =1

if 7 > 24. Since the function f(t) := ¢t — ¢*logt, ¢t > 0, is monotone increasing, we
conclude for v € I'p, with d(xg,vyxo) > R

f(by) > d(mo,ﬂyxo)(Zb%Hi, H,) + 2(,02) — ?log (d(xg,yxo)(z:bi(Hi, H,) + 2@2)>

i=1 1=1
> d([ﬂo,’Y[L‘o)(sz<HM H’Y> + 2802 - 902) = d(]“077x0)(zbl<HM H’Y> + 902) )
i=1 i=1

where we used inequality (6.5) in the second step. For n € 9X with Cartan projection
H € af we put s(H):=>"7_ b'(H;, H) + p*. We estimate

_ h(TO) _ 2 h(?"o) _

b by+p?loghy _ f(by)
e "h(b < — e TPy — — e v
)DERSUTSIEIUIS CONSS

7€Tp, 7€lp, 7€Tp,

d(zo,7z0)>R d(zo,7T0)>R d(zo,7z0)>R

< h(ro) Z o= s(Hy)d(zovz0) h(ro) Ze—s(H,,)d(azo,fyazo)‘

(ro)*” (ro)?” vED;

'yEFDl
d(zo,yx0)>R

This sum converges by Corollary 6.8 applied to D; and the continous function s on E.
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If v € I'p,, then (H¢, H,) < cos 9 < 1 — ¢§/12. Using the Cauchy Schwarz inequality,
|He — Hy|| < 2, we further obtain

> V(H, H) = Y U(H, He)+ > V(H;, H, — He)
1=1 1=1 1=1

> 0ge(l) = | YV Hl- | He — Hyll = dae (1) — 2] oll:

=1

from the assumption .. b"(H;, He) = 6g.¢(D). If 7 > 12(26(T) — dg.e(T) + 2]|b]]1) /3,
we have -

b, = d(xo,yxo)(Zbi<Hi,H7>+T(1—<H§,H7>))
> d(x0, v20) (O (T) — 2[|b]]; + Tl—gﬂ) > 26(T)d(x0, 7o) -

As above we conclude for v € I'p, with d(xg, vze) > R
f(by) > 25(D)d(wg, vx9) — ¢* log (25(F)d(w0,7x0))
> d(zo,720) (20(T) — ¢*6(T))
by inequality (6.5). Hence

R 5 il

7€FD2 ’YEFD2 yel
d(zo,720)>R d(zo,7x0)>R

which converges since ¢? < p3 < 1. From the fact that

Z e "h(b,) < 00,
yer
d(zo,yx0)<R
we conclude that for any 7 > 75 := max{12 (26(I") — dg.¢(T') + 2||b||1) /3 , 24}
> ehb,) < D ehb)+ > e h(b,) < oo
Vel v€lp, v€lp,

4z0 (7x07G'£)>W

If o > o, then Z, (yzo, G-€) > ¢ implies £, (yzo, G-£) > ¢y and the claim follows. O

The proof of the following proposition is based on a result of J. F. Quint ( [Q]).

PROPOSITION 6.15 If ' C G is a Zariski dense subgroup, then the conditions of Propo-
sition 6.14 are satisfied for every & € Ly N OX with ¢y > 0 arbitrary.

Proof. Let I' C G be Zariski dense, fix £ € 0X and let H; € E denote the Cartan
projection of £. By a result of J. F. Quint ( [Q]), the function

UV: a—R, H— ||H||-0G.,(I'), where n=(id,H) € 0X,
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is concave. Hence there exists a linear functional ® € a* with the properties
®(He) =V(He), and @(H)>V¥(H) VHEe€aq.

Since the maximal singular directions Hy, Hs,..., H, € E provide a basis for a, there
exist coefficients b',b?,...,0" € R such that ® = (3°/_, b"H;,-). We conclude

> V(H;, He) = 66.¢(T), and Y 0/(H;, Hy) > U(H,) = 66,(T)
=1 =1

for any n € 0X with Cartan projection H,, € E. O

6.4 (b,I'-¢)-densities

Recall from section 3.4 that for any n € 0X the point 7; € 0X* denotes the unique
element in the i-th maximal singular boundary component dX* such that n and 7; are
points in the closure of a common Weyl chamber at infinity.

DEFINITION 6.16 Let b= (b*,0?%,...b") € R". A [-invariant b-density is a continuous map

p: X — M (0X)
e S

with the properties

(0)  supp(pa,) < Lr,
(i0) v *py = py-1, foranyyel, v e X,

d -
(4ii) d;/jx () = eXi= "Bt for any x € X, 1 € supp(js,) -
zo

A (b,T-€)-density p is a ['-invariant b-density with supp(piz,) € Lr N G-£.

REMARK. Let H; denote the Cartan projection of &, and ¢’, 1 < ¢ < r, the linear
functionals defined in section 3.4. A (b, [€)-density is an a-dimensional conformal density
with support in G-§ (see [Al]) if and only if

V' =a-c'(He) for 1<i<r.

We now fix £ € dX such that G- N Ly # (). In order to obtain a (b, I'-&)-density, we
require that b = (b',b%,...0") € R" and ¢y € (0,7/4) satisfy the conditions necessary for
Proposition 6.14. We fix 7 = 79(b, o) and consider the corresponding family F (G-, 7, b)
as in Lemma 6.12. Then F(G, 7,b) is relatively compact in the space of continuous maps
C(X, M*(X)) endowed with the topology of uniform convergence on compact sets by the
argument at the end of the previous section. The following proposition characterizes the
possible accumulation points of this family F(G-¢, 7, b).
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PROPOSITION 6.17 Every accumulation point pn = u(G-&,7,b) of the family F(G-&,1,b)
in C(X, M (X)) is a (b, '-&)-density.

Proof. Let (u)zex be an accumulation point of F(G-&,7,b) in C(X, M*(X)). By
construction, the measures u,, * € X, are ['-equivariant and supported on the limit set
Ly. Proposition 6.14 further implies supp(jiz,) € Lr N G-€. It therefore suffices to prove

d T T i

T () = X VB forany 1€ X, 1€ supp(jis,)

A,
Lemma 3.12 shows that if a sequence (y,) C X converges to a point n € G- C 90X in the
cone topology, then d(z,y,) — d(-,yn) = By(z,"), Ba.e(x, yn) — Bae(-, yn) — By(x,) and
di(x,yn) — di(-,yn) = By, (x,-), i =1,2,...r, uniformly on compact sets.
Thus for any constant ¢ > 0 and for arbitrary € > 0, there exist R > 0, ¢ > 0 such that
for any v € I' with d(zg,yz9) > R and Z,,(vx¢,n) < ¢, and for any x € B,,(c)

|By (w0, x) — d(xo, vw0) + d(x,vm0)| <, [By(wo,2) = Bae(wo, ¥20) + Baee(w, yo)| < €,
and |B,,(zg, x) — di(wo, vx0) + di(x, 720)| < €, i=1,2,...7. (6.6)

Let ¢ > 0 arbitrary, fix z € X, put ¢ := d(x¢,x) and choose R > 0 and ¢ > 0 as above.
Put

r, = {’)/ el |d(370,')/x0) < R}7
Ty = {y €T [ ZLu(ym,G-€) > ¢/2},
I3 = {yel|d(wo,vwo) > Ry and Ly, (v20,G-§) <0},

Note that if 7y € I';, then there exists an element 1, € G-£ such that 04, ,4,(00) and n,
are points in the closure of a common Weyl chamber at infinity, and Z,,(yzo,n,) < ¢.
Using ¢, from (6.3) and inequalities (6.6), we estimate for v € I';

(o, @ Zbl Ao, )+€) —|—T(B,H(a:0,x)+e
— B, (0, sz (o, @) + ([[bl]L + 27)e,
(w0, w) = Y VB, (wo,x) + (||l — 27)e. (6.7)
=1

For any f € C°(X), s € (1,2], we have

| sy s /f Sl ens) s )|

@ Z |f(f)/aj0)| . eiSb'Yh(b’y) . ‘1 _ 62;:1 bi(di(wo,'ya;o)fdi(az,'ya;o))+sq7(wo,:1;) .
vyel



76 CHAPTER 6. GENERALIZED POINCARE SERIES

The triangle inequality and inequality (6.4) imply that for any v € T’
sz i(20, v20) — di(w, v29)) + 5¢,(20, 2)| < [|b]l1d(x0, %) + sd(z0, T) (|[b]]1 + 27)

This proves that for z € B,,(c) and s < 2, the term

1 — eXi=t bi(di(woﬁl’o)*di(w,vwo))Jrsqw(Io,w)‘

< elzle bi(di(wo,y20)—ds (z,720))+50y (20,T)| _ 1 < cGlbllitdr) _ 4

is bounded above by a constant A = A(c, b, 7).
If vy € I's and 7, € G-£ such that Z,,(yxo,n,) < ¢, we deduce from (6.6) and (6.7)

z:bB,h To, T) + sqy(xo,z) < (1 —2) ZbB,h xo, ) + s(||b]|1 + 27)e
< (1—8)||b||10+5(||b||1+2T)€a

sz o (@0,2) + 50, (20,2) = (1= 3)[bllac — s([[b]l +20)e.

and therefore limg 4 ‘1 — ezzzlbiB("v)i(IO’“:)“q”(mo’w)‘ < efblli+27) _ 1 We conclude

[ s [ o) Savoninn | < Wl (37 i,
. vely
+ Z e—sb’Yh(bA/)A + Z 6_Sb"h(b’y)‘1 — eXi=t b'B(y,),; (€0,2)+5¢(z0,x) ‘) ‘

Y€l v€T3

Now the first term tends to zero as s \, 1 since > . e **7h(b,) converges for any s > 0
by the finiteness of I';. By Proposition 6.14, > ., e " h(b,) converges, hence the second

term tends to zero as s \, 1. For the last term, we have > . e h(b,) < U* for any
s > 1, therefore

lim /f(n) duio(n)—/f(n) =1 VB (o) gyt (i )‘
s\l Jx
= 0404 [Iflloo (27 = 1) = Il (27 — 1)
The claim follows taking the limit as ¢ 0. O

6.5 Illustrating examples

ExaMPLE 1. The first important kind of example we consider in this section are lattices
in SL(n,R) acting on the symmetric space X = SL(n,R)/SO(n) described in section 1.6.
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The calculation in [A] shows, that for these finite covolume subgroups the exponent of
growth in a direction G-§ is equal to p, evaluated on the Cartan projection H of &,

06.¢(I') = p(He) -

Since p is a linear functional on a and the maximal singular directions Hy, H,, ..., H, form
a basis of a, there exist parameters b', 0%, ... 0" € R such that Y., b'(H;, H) = p(H) for
any H € a. This implies that for any £ € 90X the conditions necessary for Proposition 6.14
are satisfied for arbitrary ¢y > 0 with the same tuple b = (b',b%,...,b"). Using 7 > 79(b)
according to that proposition, we are able to construct a (b, I:€)-density for every £ € 90X.

We are going to calculate the parameters b',b% ...0" € R in the case G = SL(3,R) and
G = SL(4,R). In SL(3,R)/SO(3), the maximal singular directions are given by
_ D(el) _ Dl&g(2, _17 _1) _ D(62) _ Dlag(la 17 _2)

1 D(e1)]] V6 ’ 1D (e2)| V6 '

Identifying a with its dual space a*, we may write p = oy + @y = Diag(1,0, —1). We solve
the system of linear equations

H,

H,

V' H, + b’ H, = p
and obtain the unique solution b' = \/g, b = \/g For the barycenter

H, = €af

D@Dl 3vz V2

we have c'(H,) = 1/v/3 = ¢?(H,), hence b° = v/2 ¢’(H,) for i = 1,2. This shows that for
¢ = (id, H,) € 90X our (b,I'-¢)-density is a conformal density of dimension v/2 = p(H,).
Since the critical exponent of a lattice equals p(H.,), this conformal density is exactly the
§(I')-dimensional conformal density constructed by P. Albuquerque ( [Al]).

In SL(4,R)/SO(4) we have the three maximal singular directions

D(1,1)  D(1,1) _ Diag(1,0,-1)
1,1

Diag(3, —1,-1,—1) Diag(1,1,-1,-1) Diag(1,1,1,—3)
= ) H2 - ) H3 = .
23 2 2/3

In this case, we may write p = (304 +4ae + 3a3) /2 = Diag(3,1,—1,—-3)/2, and the
system of linear equations

H,

b'H, +b*Hy + b Hs = p
possesses the unique solution b' = ?, =1, = ? The barycenter

D(1,1,1)  D(1,1,1) Diag(3,1, -1, -3)

H, = -
I1D(1, 1, 1)]] 45 2V/5

satisfies

LB s, e -

NN
hence b' = /5 ¢/(H.,), i = 1,2,3. Again, for ¢ = (id, H,) € 0X, our (b,['-£)-density is a
conformal density of dimension /5 = p(H,) = 6(T).

c'(H,) =2V3
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EXAMPLE 2. Another class of examples are lattices in SL(m,R) imbedded in the upper
left corner of SL(n,R) for n > m. Such groups are not Zariski dense and there exist
many subsets G-¢ C 0X which do not contain limit points. If we imbed for example a
lattice in SL(3,R) in SL(4,R), the Cartan projections H of the subsets G-¢{ C 0X in
X = SL(4,R)/SO(4) which contain limit points belong to either one of the sets

{Diag@ﬁl + Bo, =1+ (2,0, =1 — 23)
V6\/37 + 12 + 33

a . = {Diag(2ﬁl + 82,0, —B1 + B2, =1 — 203)
V6\/37 + 12 + 33

In terms of the simple roots ay, s, az in SL(4,R)/SO(4), we have

ay

|ﬁ1207ﬁ22517}7

|5220;51>52}-

a, = {H€af|a(H)+2a(H)=a3(H)},

a. = {Heal |o(H)—20(H)=as(H)}.
We obtain 16, + 55
See(T) = S , 0< B < B,
V6\/ B2+ B2 + B3
if the Cartan projection of ¢ belongs to a.,
501 + 40,
6G§(F): ) ﬁ1>ﬁ2207
V6B + B2 + B3

if the Cartan projection of { belongs to a_, and 0¢.¢(I') < 0 otherwise. The conditions
for b, %, b in a subset G-£ C 0X with Cartan projection H € a, U a, read

b (Hy, H) + b*(Hy, H) + b*(Hs, H) = 6.¢(T) .

This leads to the following systems of linear equations

8 2 4 4 4 8
— b+ 2+ —bp* =4 and —=b+-bP+—¥ =5, ifHea,,
2v3 2 23 2v/3 2 23 i

8 4 4 4 2 8
— b+ P+ —b*=5 and —=b'+bP+—b =4, ifHea_.
23 2 2V/3 2V/3 2 23

Their solutions are given by

:é, b2+ib3:2, if He€a,, 2

2 V3 V3
In both cases, there exists a one-dimensional vector space of solutions for the parameters
bL, b?, b3 which satisfy the conditions necessary for Proposition 6.14 for some ¢, > 0. Using
7 > 7o(b, o), we may therefore construct (b,I'-&)-densities for every subset G-& C 0X
which contains limit points.

b b1+b2:2,b3:§,ifHea.
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ExAMPLE 3. Let X = G/K be a symmetric space of noncompact type, and G = Ke"'K
a Cartan decomposition. For free groups generated by regular axial elements, we know
from Theorem 5.16 that the limit cone Pp is contained in a subset of a. Using the
fact that such groups are Zariski dense and applying Proposition 6.15, we conclude that
for every subset G'-§ C 0X with Cartan projection He € Pp, there exist parameters
bL, b2, ..., b" such that the conditions of Proposition 6.14 are satisfied for any ¢y > 0. The
construction of a (b,I'-€)-density for every £ € 0X with Cartan projection He € Pr is
therefore possible.

ExaAMPLE 4. Our last example considers products X = X; x Xy of rank one symmetric
spaces. If Iy C Isom?(Xy), 'y C Isom?(X3) are convex cocompact groups with critical
exponents dy, d3, we know from Theorem 6.2.5 in [Y] that there exists a constant C' > 1
such that

1
G Sy e | R—1 <d(w; yiw) < R} <O, i=1,2. (6.8)

We are now going to examine the action of the product group I' = I'; x I'y C Isom°(X)
on the product manifold X. In this case, aT is isomorphic to the first quadrant in R?, and
we may identify the i-th maximal singular direction with the i-th standard basis vector in
R?. Given a subset G-£ C 90X, we may therefore write He = (cos 6, sin §) with 6 € [0, 7/2].
Using the estimates (6.8) and putting xy := (21, x2), 0, := arctan (d(z2, v222)/d(z1, 7121))
for v € I', we estimate the number of orbit points

ANE (0,205 R) = #{y €T [R—1<d(wo,720) < R, ZLuy(y20,G-€) < 9}

= #{(n,72) €T |R—1 < Vd(wy, 1111)? + d(w2, 7222)% < R,
|6 — 0] < ¢}

< #Hn,r) €l |R-1<d(z1,n121)/cosb, < R,
R —1 < d(z2,72x2)/sinf, < R, |6, — 0] < ¢}

< C?-Rexp (0 Rcos(0 + @) exp (S, Rsin(0 + ) .

As a lower bound, we obtain
ANE (w0, z0; R) > #{(711,72) €T |R—1 < d(x1, na1)/ cosd < R,
R —1 < d(xg,ve13)/sinf < R}

1
> 2 oXP (01 R cos B) exp (0o R sin 6)

and therefore conclude d¢.¢(I') = 07 cos§ + dosin 6.

In order to construct a (b, I'-&)-density, we solve the linear equation
b' cos O + b?sin @ = §g.¢(I') = §; cos @ + dysin 0

and obtain b' = d;, b?> = J, as a solution. As above, the conditions necessary for Proposi-
tion 6.14 are satisfied for any g > 0 with the same tuple b = (b',b?) = (1, d2) for every
subset G-§ C 0X. Using 7 > 79(b) according to that proposition, we are able to construct
a (b, I'-&)-density for every £ € 0X.
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In order to find a subset G-& C 90X with Cartan projection H € aT which supports a
conformal density, we require H := (cos ¢, sin ¢) to satisfy b* = ac'(H), i = 1,2, for some
a > 0. This is equivalent to §; = acos @, do = asin ¢, which implies o? = §? + 62, hence
H = (61,02)/+/0% + 62. From Example 4.6 in [Al] we know that 6(I") = /0% + 62, which
shows that our (b, ['-£)-density restricted to the subset G- C 0X with Cartan projection
H = (01,92)/0(T) is the 6(I')-dimensional conformal density constructed in that example.



Chapter 7

Measures on the limit set

Let X be a globally symmetric space of noncompact type and G = Isom?(X). In this
chapter, we derive properties of (b, ['-&)-densities invariant by a nonelementary discrete
group I' C G. Our main tool will be Theorem 7.6, the shadow lemma, a generalization
of Theorem 3.3 in [Al] valid for conformal densities invariant by a Zariski dense discrete
isometry group. For any & € 0X, this theorem yields a relation between the parameters
of a (b, I - £)-density and the exponent of growth in direction G-£.

We then deal with the atomic part of the measure and prove that the radial limit set does
not contain any atoms. We further address the question of ergodicity and give a general
argument following [Al] and [N], provided that every subset of the radial limit set with
positive measure contains a density point. The final section of this chapter introduces an
appropriate notion of Hausdorff measure and Hausdorff dimension on each G-invariant
subset GG-& C 0X in order to estimate the size of the radial limit set in G-£. Our results
are most precise for a class of groups which we call radially cocompact. In this case,
the Hausdorff dimension of the radial limit set in a given subset G-& C 0X equals the
exponent of growth in direction G-¢ .

7.1 The shadow lemma

Let X be a globally symmetric space of noncompact type and G = Isom’(X). The goal
of this section is to generalize Theorem 3.3 in [Al] to (b,I'-¢)-densities invariant by a
nonelementary discrete group I' C G = Isom®(X).

DEFINITION 7.1 For a subset B C X and a point &+ € X \ B the Furstenberg shadow
S(z : B) C 0X is defined as the set of those points in the geometric boundary which
belong to the closure of all Weyl chambers with apex x which intersect B.

The shadow at infinity of B viewed from x ¢ B is defined by
shy(B) ={n€0X | 3t > 0: o,,(t) € B}.

81
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If ¢ > 0 is an angle, then the p-shadow at infinity of B viewed from x is defined by

sh{(B) ={n€dX |ne S(x:B) and Z,(n,G-&) < ¢}.

The following lemma extends Lemma 3.4 in [Al] valid for “generic” groups to the larger
class of nonelementary groups introduced in chapter 4.1.

LEMMA 7.2 Let I' C G = Isom°(X) be a nonelementary discrete subgroup and & € 0X.
Further let v be a measure supported on Lr N G-£& C 0X and F C 0X a I'-invariant
measurable set with 0 < v(F) < oo. Then there exist constants ey > 0 and ¢ > 0 such
that for every Borel set E contained in the £g-neighborhood of G-£\ Vis™ (i), n € G-,
we have

vV(ENF) <q<v(F)<mass(v).

Proof. Let d := sup{v(FNG-£\ Vis™(tn)) |n € G-} < v(F) be the supremum of the
v-measure of complements of big cells in G-¢ intersected with F'. This supremum is in
fact a maximum, because a sequence G-£ \ Vis™(un;), n; € G-, has an accumulation
point with respect to the Hausdorff topology which is itself a set G-£ \ Vis®(u1), where
no = lim;_ . 1n; € G-§.

Suppose d = v(F'). Then there exists n € G-£ such that v(F N (G-£\ Vis™(wn))) = v(F).
Since F'is ['-invariant, we have

v(y(F N (G-£\ Vis®(in)))) = v(F N (G-£\ Vis®(1yn))) =v(F) VyeT,

hence v(F N Vis™(1yn)) = 0 for all v € T, because G- equals the disjoint union of
G-&\ Vis®(vyn) and Vis™(t1yn). By the assumption that ' is nonelementary we obtain
from Lemma 5.10

LrNnG-€C U Vis™(tyn),

yer

and, since v is supported on Lr N G-&,

v(F)=v(FNLy) <v(Fn U Vis®(1yn)) < ZV(F NVis®(1yn)) = 0.

~yer ~er

We conclude d < v(F) and put ¢ := 1(v(F)+d) > 0. Let (g;) en be a sequence of positive
numbers with limit zero, and suppose there exists a sequence (E;);en of €;-neighborhoods
of sets G-& \ Vis™(un;) such that v(F N E;) > q. Then a subsequence (E},)en converges
in the Hausdorff topology to a set G-&\ Vis™(unp), no € G-&, with

v(FNG-£\Vis™(unp)) > q¢>d,
in contradiction to the definition of d. O

We are now going to give a generalization of Lemma 3.5 in [Al] which is crucial for the
proof of Theorem 7.6.
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LEMMA 7.3 Fizy € X and £ € 0X. Then for any o > 0 there exists a constant ¢y > 0
with the following property:

For every ¢ > ¢y and for any x € X \ By(c), the set G-\ (S(x : By(c))NG-€) is contained
in the eqg-neighborhood of a set G-&\ Vis™(tn), n € G-£.

Proof. Let o be a geodesic in X with o(c0) = ¢ € G-£ and fix an Iwasawa decomposition
G = NtAK with respect to o(0), o(—o00). Then G-¢ = G-£& C 9X® for some subset
© C T, and the subgroup N, := exp(}_ /oy 8a) C N stabilizes o(cc). Note that if
© =0, then N, = {id}.

For r > 0 we put N(r) :={n € N* |3t >0 such that nN,o(t) € B,(r)}.

no(oo)

Ot

o(—o0) T f o(o0)

Since U,~oN(r) = NT, for any ¢ > 0 there exists a number 7, > 0 such that the set
G-\ N(ro)-C is contained in an e-neighborhood of G-¢\ N*¢. For n € N(ry) and ¢ > 0
we consider the geodesic ray o; emanating from o(—t) and asymptotic to no(oo). Since

nN, stabilizes o(—00), there exists ty = to(¢) such that d(oy, nN,0) < ¢ for t > t;. This
implies that for ¢ > ¢, the ray o; intersects By (ro + ¢), and therefore

N(ro)-¢ C S(o(—t) : By(ro+¢)).

By Corollary 2.14 we have N*-( = Vis®(o(—o00). Choosing ¢y := max{ty, 7o + ¢} and
using the fact that S(x : By(c)) C S(z : By(c')) for ¢ > ¢, we conclude that for any ¢ > ¢
and for arbitrary x € X with d(y,z) > ¢

N(ro)-¢ C S(x: By(c)) NG-€.

The assertion now follows from the density of the open set N*w, Py in G/Pe. O

LEMMA 7.4 Let ¢ >0, x,z € X with d(z,z) > ¢, and £ € 0X. Then
VneG-£nS(x: By(e)) - 0 < Bgelz,2) — By(z,2) < 2c.

Proof. Let n € G-¢N S(x : B,(c)) and fix a Cartan decomposition G = Ke* K and an
Iwasawa decompositon G = NTAK with respect to  and 7. Then for any £ € K we
have kn € G-£N S(x : By,(c)) and

By, (z,2) = B,(z, k™ '2), Bae(z,2) = Bae(z, k7 'z2).

It therefore suffices to prove the claim for = = eflz, H € at. If H, € E denotes the
Cartan projection of 1, we obtain from Lemma 3.2

B,(z,2) = B,(z,e"x) = (H,H,) .
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Let y € B,(c) and write y = ke"'x, where k € K is an angular projection and H' € Z
the Cartan projection of y. Let He € af denote the Cartan projection of . Using the

equality Biy(2,y) = By(x,ef'x) = B, (z, 2) + B, (2, x)
we conclude
0 < Bge(z,z) — By(z,2) = Bael(x, 2) — Biy(z, y) + By (z,y) — B, (x, 2)
= (H,H¢) — By(z,¢e"'z) + B, (x 2) + By(z, e x) — By(x, 2)

(He, H — H') + d(z,e" 1) § |H — H'|| + d(z,y)
= d(e"z,e™'z) +d(z,y) < 2d(z,y) < 2¢c O

COROLLARY 7.5 Let ¢ >0, x,z € X with d(x,z) > c¢. Then
Vn, € 0X'NS(x: B,(c)) : 0 <di(z, z) — By,(z,2) < 2c.

Let X = G/K be a globally symmetric space of noncompact type with base point zy € X
corresponding to K. We are now going to give an extended version of Theorem 3.3 in [Al],
valid for (b, I'€)-densities and measurable sets invariant by a discrete nonelementary group
of isometries.

THEOREM 7.6 (SHADOW LEMMA) Let I' C Isom®(X) be a discrete nonelementary sub-
group, £ € 0X, p a (b,I'-€)-density. Then there exists a constant ¢y > 0 such that for any
¢ > ¢y and for every '-invariant measurable set F' C 0X with p,,(F) > 0 there ezists a
constant D(c) > 1 with the property

1

D( )67 =tz < M (S(20 : Bygo(c)) N F) < Dc)e” i=1 V'di(w0,720)
c

Proof. Let ¢y > 0 as in Lemma 7.3, corresponding to £y > 0 in Lemma 7.2. For ¢ > ¢
and v € I such that d(xy,yzo) > ¢ we have

pao (F) 2 i (S(77 20 Bay () N F) 2 10y (F) — ¢ > 0. (7.1)
The properties (ii) and (iii) of a (b, I'-£)-density and the I'-invariance of F imply
pao (S (v 0+ Bug(€)) N F) = piay (v 1S (@0 1 Byay(c)) N F)
=7 " g (S (0 1 By (€)) N F) = f (S(30 + Brag(€)) N F)

dpty P
- ity ) s (3 ¥ B0
S(z0:Byzg (c))NF Hyzg

- it B A i (7).
S(x0:Byz (c))NF

By Corollary 7.5, e *exp ( D_r_, bidi(z0, Y20)) ttay (S (0 : Byao(¢)) N F)
< (S 50 Bao()) NF) < exp (0, 6ei(20,700)) o (S(0 : Boag(€)) N F).
Equation (7.1) now allows to conclude
exp (= 2oi_y 'di(0, 720)) (fay (F) = @) < g (S (20 : Bray(¢)) N F)
< exp (= Do, Bdi(0, ¥20)) €7 iy (F) - O
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7.2 Relation to the exponent of growth

For this section, we fix a Cartan decomposition G = Ke*' K for X = G/K and let
denote the unique point in X stabilized by K. The following applications of Theorem 7.6,
the shadow lemma, yield relations between the exponent of growth in a direction G-£ and
the parameters of a (b, I'-£)-density.

THEOREM 7.7 Let §{ € 0X and He € E the Cartan projection of . If a (b,T-&)-density
exists, then dq.e(T) < Y. 0'(H;, He) .

Proof. Suppose p is a (b, I'-§)-density with support in G- C 0X. Let ¢ > ¢o + 1 with
c¢o as in Theorem 7.6, ¢ > 0 and R >> 1 arbitrary. We only need N(¢)R" ' balls of
radius 1 in ey C X to cover the set {efzy |H € a; , Z(H, He) < ¢}, and N(p) is
independent of R. Since I' is discrete, a 2¢c-neighborhood of any of these balls contains
a uniformly bounded number M, of elements of I'-x,. The compactness of the group K
implies the existence of a constant A > 0 such that every point in G-£ is contained in at
most AM N (p)R'~! sets sh? (B,g,(c)), v € I'g, where

Lo :={yel|ZLy(yry,G-§) < ¢, R—1<d(x,yx9) < R}, and therefore
Z Haqg (Shfo (Bva:o () < MCAN((p)RPlqu (G-€).

v€lo

Furthermore, for any v € T'y the unit length Cartan projection H, € E of yxy satisfies
(H;,H, — He) <||H, — He|]| = /2 —2cosp < ¢, which implies

Zbidi(ﬂﬁoﬁxo) < d(xoﬁﬂﬁo)(zbi(Hi; He) + [Ibll1) -

=1 =1

Using Theorem 7.6 and ANE‘;,g from section 6.1, we conclude

ANE (0, 50; R) L s vmngr < 3 L S0, bdi@osmo)+elibldizono)

D(e) = 2D
< @AY g (S, (Brao () < e PIHEMAN () B 110y (G-6).
7€l
1
Hence 06.¢(T0,70) < limsup = log (D(C)MCAN(QO)MIO(G{)R’"’1 :
R—oo
exp(Y_ U (Hi, He) R+ pllb][1R) ) = S b'(H;, He) + llbls
i=1 i=1

and the claim follows as ¢ ™\ 0. O

Furthermore, if a (b, I'-£)-density gives positive measure to the radial limit set, then the
exponent of growth in direction G-¢ is completely determined by its parameters.

THEOREM 7.8 Let { € 0X and He € E the Cartan projection of . If a (b,T-&)-density
gives positive measure to L7, then 6¢.¢(T') = >.7_| b'(H;, He) .
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Proof. Suppose j is a (b,['-€)-density with support G-£ C X such that p,, (L7) > 0,
and let ¢ > ¢y with ¢y as in Theorem 7.6. By definition of the radial limit set,

incgec N U shi(Brlo).

R>0 >0 yer
d(zqg,yzg)>R
ZLag(720,GE)<p

Let ¢ > 0 and R > c arbitrary, put IV := {y € " | d(zo, yx0) > R, Zsy(y20,G-§) < ¢}.
Hence
L;ad NG-§C U Shfo (Bvxo (C)) )

yelr
and we estimate 0 < fay (L7 = o (LT N G -€)

< Z [izo (s, (Bya, (€))) < D(c) Z e~ Xiz1V'di(zoyz0)

yel’ yel’

This implies that for any ¢ > 0 the tail of the series

Z e~ SOy bidi(wo,ywo)

yel
Lo (Y20,G-E)<p

does not tend to zero. Therefore the sum above diverges and by Proposition 6.7 (2), there
exists 17 € Se.¢(p) with Cartan projection H, € af, such that >, b"(H;, H,) < d¢.,(D).
Taking the limit as ¢ N\, 0, we conclude Yi_ b*(H;, He) < ¢.¢(T). The assertion now
follows from the previous theorem. O

7.3 The atomic part of the measure

LEMMA 7.9 Let I' C G = Isom°(X) be a nonelementary discrete group, £ € 0X and p a
(b,1-&)-density. If n € G-£ is a point mass and ', its stabilizer, then for any v € I';, and

xz € X we have
S ) =0

In particular, if v1,7v2 € I' are representatives of the same coset in I'/T,, then
T
>_VBy (v Zbl (w7 "
i=1

Proof. If v € I, then for x € X we have by I'-equivariance

12(n) = pa(v™'0) = p140(n) -

From the assumption that 1 is a point mass and property (iii) in Definition 6.16 we
conclude
1= /L’Yfl?(n) —e Ty b By, (z,y2)
f1z(1) ’
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hence Y. 0B, (x,yx) = 0 for any v € T,
Let 71,72 € I such that 1T, = 7, € T'/T,,. Then 7, 'y, € T, and we obtain from above
Z;:l szTh (33, 71_137) = 22:1 ble (:L', 72_17171_155) = ZZ:I blBTh (ZL’, 72_137) ' O

Let zp € X denote the base point of X = G/K corresponding to K.

LEMMA 7.10 LetT' C G = Isom’(X) be a nonelementary discrete subgroup, and n € G-£
a point mass for a (b,T'-§)-density . Then the sum

E o2 i=1 b"Bn; (w07 'xo0)
taken over a system of coset representatives of F/F,, converges.

Proof. If v, and v, are representatives of different cosets in I'/I,, then ;1 # ~.n and so,
by ['-equivariance and since i, is a finite measure,

ZM’YﬂIo(n) = Z/La:o(f)/n) < ,szO(G'f) < 00.

By property (iii) in Definition 6.16 and the assumption that 7 is a point mass we conclude
that the sum

Z e :‘:1 biB,H(:Do,'y_ICEO) — Z M771Q70 (;7) _ 1 Z /_,[/,Y—lwo (77)

fa () Hao(n)

taken over a system of coset representatives of I'/I';, converges. 4

THEOREM 7.11 If I' C G = Isom°(X) is a nonelementary discrete group and & € 0X
such that 0¢.¢(I') > 0, then a radial limit point n € G-§ C 0X is not a point mass for any
(b, I'-&)-density.

Proof. Suppose p is a (b, I'-&)-density, and n € Li* N G-¢. Fix a Cartan decomposition
G = K_e‘”K and an Iwasawa decomposition G = NTAK with respect to zy and 7, and let
H¢ € af denote the Cartan projection of £&. By Theorem 7.7 we have Y. | b'(H;, He) >
(Sg.g(F) > 0.

Put ¢ := dg.¢(L)/||b]]s > 0. Since n € L{** NG, there exists a sequence (y;) C I such that
the Iwasawa projections H,; of vz, satisfy Z(H,,, H¢) < /2, hence “Hgﬁ — He|| < ¢/2.
Then, using the Cauchy Schwartz inequality, we compute ’

T ) T ) r ) T ) H )
E :blB i(.’lf@,’ijo) = E :bl<Hi7H’YJ‘> = ||H’YJ||( § :bZ<Hi7H§> + E bl<Hl= ||H%|| - H§>)
i=1 i=1 i=1 i=1 i

> ||:Hv]-|| (5G-5(F)—I|b||1€/2)_=||H7j||5c~g(1“)/2 — 00,

because dg.¢(I') > 0 and ||H,,|| — oo as j — co. We may therefore extract a subsequence
(vk) := (v5,) C I such that > 0By, (zo, vkxo) is strictly increasing to infinity as
J — 0.
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Assume now 7 is a point mass for p,, and suppose there exist [,j € N, [ # j such that
yl’an = fyj’an. Then by Lemma 7.9 we have

Z b'B (0, Vj%0) = Z biBm (20, Mo) ,
i=1

=1

in contradiction to the choice of the subsequence (7). Hence 7, 'T',, # fyj’an for all I # 7,
and the sum over a system of coset representatives of I'/T", is bounded below by

E ei=1 b* By, (zo,7kw0)
keN

and therefore diverges in contradiction to Lemma 7.10. We conclude that 1 cannot be a
point mass for p,,. O

7.4 Ergodicity discussion

The main result Theorem 7.15 of this section generalizes Theorem 5.6 in [Al]. Suppose
every ['-invariant subset of the radial limit set in G-¢ C 0.X with positive measure contains
a density point with respect to a covering by shadows. Then our theorem implies that I’
acts ergodically on LT with respect to the measure class defined by p. It is not clear,
however, if this condition is satisfied, because it seems impossible to construct a Vitali
cover from shadows in the general case. The following definition is again a generalization
of Zariski dense groups.

DEFINITION 7.12 A discrete subgroup I' C Isom®(X) is called strongly nonelementary if
Lr # 0 and if for any © C Y with Lt N 0X® £ 0 there exists a O-axial isometry h € T
with attractive and repulsive fized points h™, h™ and the following property:

For every n € 0X®, Y := K/Mg \ Vis®(tn), there exists v € T' such that
Y N8 (Lr noX®) C VisP(th) N VisP(h7) .
LEMMA 7.13 If T is strongly nonelementary, then for any © C Y with Lr N 0X®© #

and for every n € 0X®, Y := K/Mg \ Vis” (i), there exists a sequence (y;) C T' such
that the sets v;Y are pairwise disjoint.

Proof. Suppose I' is strongly nonelementary, let © C Y such that Lp N 0X® # 0,
and h a ©-axial isometry as in the definition. Let n € G-h~ C 9X®©  arbitrary, put
V:i= G-k \ Vis™(n) and choose v € T" such that

(@B (V) naB(Lr n0X°®) C Vis?(uh ™) N Vis?(h7) .

Then vV N Ly C Vis™(th™) N Vis™(h™), and since h™ ¢ Vis*™(1h™) we have h™ ¢ vV
Consider the distance d,, - on Vis®™(h~) from section 5.1 and put

to := max{dy, - (§,h7) [E€VY, = min{dgn-(§,h7) [ €9V}
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Let [ > 0 denote the translation length and L € af the translation direction of h. By
Lemma 5.1

dwo,h_ (h&, h+) S eia()l'dw,h_ (67 h+) 9 Qg 1= min " O!(I,(L)) .

aext\(0%)
Let j; € N be the smallest integer greater than log(to/t1)/(apl). Then for any £ € V' we

have y
o i~ (W€, WY) < €190 dy (6, 1) < Zoto = 1,
0

which proves h'7V N4V = (. Next put ¢, := min{d,, - (W', h") |£ € 7V} and let
J2 € N be the smallest integer greater than log(ty/t2)/(cl). We conclude

, . t
g - (W26, W) < €700 dy o (6,17) < 2oty = 1
0

for any & € vV, hence h24V N hi'yV = () and h2yV N~V = . Then inductively, if
ty > 0 and jp € N have been chosen, we put t;1 := min{d,, »- (R/*&, k%) |€ € 7V}
and let jr.1 € N be the smallest integer greater than log(ty/tx)/(agl). This process does
not terminate after finitely many steps, because for & # h™ we have hi¢ # h* for all
J € N. We obtain a decreasing sequence (tx) N\ 0, an increasing sequence (jz) C N and a
sequence () := (v 'h/*y) C I with the property 1V NV =0 for k,l e N, k#1. O

The following statement will be essential in the proof of Theorem 7.15.

LEMMA 7.14 LetT' C G = Isom’(X) be a strongly nonelementary discrete group, © C T
and £ € 0X®. If v is a measure of finite total mass such that supp(v) C Lyr N G-€ is
[-invariant, then for any € > 0 and every n € G- we have

v(7Y) <e, where Y =G-&\ Vis™®(in).

Proof. Suppose there exists € > 0 and n € G-£ such that Y := G-&\ Vis®™(un) satisfies
v(vY) >e Vv el In particular, id € I" implies v(Y) > ¢ and therefore Y N Ly # (.

Since I' is strongly nonelementary, by the previous lemma there exists a sequence (y;) C T’
such that 1Y N~ Y = 0 for all k£ # . Hence

v(G-&) > Zl/('yjY) — 00,

a contradiction to the finiteness of v. O

THEOREM 7.15 Let I' C G = Isom?(X) be a strongly nonelementary discrete group of
isometries, £ € 0X® such that 6g.¢(T) > 0, and p a (b,T'-£)-density. Then for every
C-invariant subset A C LT which possesses a point n € A with the property

i (S0 Bya(@)NA)
1 rad\
3790 e (S(@0 : By (€)) N LE)

for some sequence (v;z9) C X converging to n, and ¢ > ¢y as in Theorem 7.6, either
fg (A) = 0 07 piyg(A) = iy (LF*).
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Proof. Suppose jiz(A) > 0, let n € A, ¢ > ¢y, (7;) C I' such that v,z converges to n and

y S - B . N Lrad A
hm 2 0( (‘TO i O(C)) r \d ) =0. (72)
i ds SR V75 (S(l‘o : B’ijo (C)) N L )

Passing to a subsequence if necessary, (’)/j_lx(]) C X converges to a point ( € +(G-§),
put Y := G-€\ Vis™(({). Given £ > 0, Lemma 7.14 implies the existence of 7 € I" such
that fi,,(7Y) < €. Since p, is nonatomic in L7* by Theorem 7.11, there exists an open
neighborhood U of 7Y such that 11,,(U) < pg, (1Y) + € < 2e.

Furthermore, ')/;13/'0 — (¢ and Lemma 7.3 imply the existence of ¢, > ¢, such that for
¢ > ¢, and j sufficiently large, the set G-\ (S(’}/j_l.'lf() : By, () NG-€) is contained in the
open neighborhood 7~'U of Y = G-£ \ Vis®((). Hence G-£\ vS(v; 'xo : By, (c)) C U,
and therefore

Pao (VS (75 0 + By (¢')) ML) > pray (L) — 2 . (7.3)

We compute

pao (VS (77 "0 1 Bay (€)) NLEY N A)) g (775 (S (@0 2 Byyag () N LF \ A))

1o (Y(S (Vjo = Buo(¢)) VL) gy (7757 (S (w0 2 By (¢)) N L1
_ /L(Wfl)*lwo(s(xo : Bwo(cl)) N L\ A) _ H’Yj’Y’lxo(S(xO : ija:o(cl)) n L?ad \ A)
M(Wj_l)*laro(s(xo t Byjay (¢)) N L) Pgr1ao (S (@0 * By (¢')) N LE)

TR -1
fS(xo:B»Yj$0(C’))ﬂL;ad\A d/,bfyjfyflxo (77) B fS(a:o:B»yij (C’))I"]L;‘ad\A 62@:1 b Bm (1707'7]7 IO)d/“LfL’O (77)

T

fS(W:Bv]-zO(C'))ﬁLF“d d/“L’Yj"/_lcno (77) fS(QJoIByj 2o (¢/))NLy2d ezi:1 biBy, (%Nj’y*lxo)duxo (77)

Pl )1 (S By () 0 L 4
eXiz1 bidi(zo,y v wo)=2rd |y (G (g By () N Lyod)
fg (S (w0 2 Bajao (¢')) N LT\ A)
€72 14y (S(20 1 Byyao(¢)) N LE™)

IN

Now ¢ > c implies jiz,(S(z0 1 Bya0(c’)) N L) > g0 (S(zo - Byy(c)) N Lrady - and
since A is [-invariant, L7% \ A C 90X is [-invariant and either gz, (A) = pg, (L) or
fzo (L7 A) > 0. In the first case we are done, otherwise the shadow lemma Theorem 7.6
with F := L7ed\ A yields

D(C’)@f i bid;(z0,v5%0)
D(¢)D(¢)pray (S (w0 : By (€)) N LE™ \ A)

Pag (S (0 * By () N L™\ A)

IAIA

For sufficiently large j € N we therefore obtain from (7.2)

o (S (20 2 Baya () N L\ A) - D) D()ptay (S (@0 : By () 0 L™\ A)

/ ra — —2rc/ ra <€
e~?re :U’OCO(S(‘TO : B’Yﬂio(d)) N LF d) e~? /LIO(S(ZEO : B’Yﬂio(c)) N LF d)
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and conclude

aold) 2 1z, (107 0 Bro(€)) 1 4)
oo (1507 0+ Buy(¢)) 1 L) = ey (15007 0 Bry(¢)) 1 L2\ 4)

> (1= ) (5075 0 < By (@) N L5 5 (1= ) (g (L5) — 26) .

Letting £ \, 0 we obtain i, (A) > pg, (LF?). O

7.5 Hausdorff measure

We will follow the idea of G. Knieper ( [Kn], chapter 4) in order to define Hausdorff
measure on the G-invariant subsets of the limit set.

For £ € 0X, ¢>0and 0 <r < e ¢ we call the set

B(&) = {n € 0X [ d(0u,(—10gT), 00 ¢ (= log 7)) < c}

a c-ball of radius r centered at £&. Using this conformal structure, we define as in the case of
metric spaces a Hausdorff measure and Hausdorff dimension on the geometric boundary.

DEFINITION 7.16 Let E be a Borel subset of 0X,

HA2(E) = inf{> r¢|E C | JBg(ri), ri <}

The a-dimensional Hausdorff measure of E is defined by HA“(E) = liH(l) Hd*(F),
E—r

the Hausdorff dimension of E is the number dimpq(E) = inf{a > 0|Hd*(E) < oo}.

For the remainder of this chapter, we fix a Cartan decomposition G = Ke*' K for X =
G/K, and let zy € X denote the unique point stabilized by K. Lemma 1.16 allows to give
a relation between shadows at infinity and c-balls. For y € Ke* 2y C X, let Croy C X
denote the unique Weyl chamber with apex zy which contains y.

LEMMA 7.17 Let ¢ > 0, £ € 0X" with Cartan projection He € af. Then there exists
o € (0,7/4) and Ry > 0 such that with Ay := max{||a||/a(H) | € X1} the following
holds:

If ¢ < o, y € X with d(zo,y) > Ry, 1 :=exp ( — d(zo,y)(cos ¢ — Agsin @) + 2A4pc) and

n = a,l;o,y NG-&, then
shi, (By(c)) N G-£ € Bi(n) .

Proof. For ¢ > 0 and H € af let py € (0,7/4) and Ry > 0 be the constants as in
Lemma 1.16. Let ¢ € (0, ], choose y € X with t := d(zo,y) > Ry and let k, € K
denote an angular projection of y. If Z,(y, G-§) > ¢, then shy (By(c)) NG-§ = 0 and

the claim is trivial. If Z, (y,G-§) < ¢, then the unit length Cartan projection H, € E
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of y satisfies ZH,, He) < ¢ and belongs to a; by equation (1.2). Hence n = Cpy, N G-E
is well defined, and 1 = (ky, H¢). 1f ¢ := (k, He) € shy (B,(c)) N G-&, then

d(kilkyeHytxO,e“Jr:ro) = d(k,ev'xy, ke o) = d(y,Cuoc) < C.
Put ¢y := t(cos ¢ — Apsinp) — 2A45c. We obtain from Lemma 1.16
A(Oryn(t0), Ouoc(to)) = d(k kye™eomy, efelory) < e,
and conclude ¢ € B¢(n) for r = e~ . O

The above inclusions now yield an upper bound for the Hausdorff dimension of the radial
limit set.

THEOREM 7.18 IfT' C Isom®(X) is a discrete nonelementary group and § € 0X", then
the Hausdorff dimension of the radial limit set in G-§ C 0X is bounded above by d¢.¢(T).

Proof. Fix £ € 0X" with Cartan projection He € af, and ¢ > 3¢y with ¢g > 0 as in
Theorem 7.6. By definition of the radial limit set,

LnG-¢c ) N U shf(Bia(c).

R>0 >0 yer
d(zg,vzg)>R
ZLag(720,GE)<p

Fix ¢y € (0,7/4) and Ry > 0 as in the assertion of the previous lemma and abbreviate
Ay := max{||al|/a(H¢) | € X} Let ¢ € (0,¢ ™) and ¢ € (0, o] arbitrary, and put
[":={y el |d(zg,vx0) > —loge, Ly, (v30,G-€) < @}. Fory € I, let &, := Cpy yuy N G-E,
and ry = exp ( — d(zo, Y0)(cos ¢ — Agsin @) + 24,c) .

Then by the previous lemma we have shf (B, (c) NG-£ C B, (&,) for all v € I, hence

L;adﬂG'fg U Bry(g'y)'

yer

Using the definition of Hd* we estimate

Hdg(L?ad N Gf) < Z T,O; — Z efa(d(:zzo,'ywo)(cos p—Apsin np)f2A0c)

yel’ yel’
< 62cu40c Z efa(cos p—Apsin)d(zo,v;jT0) )
yer’
Recall from section 6.1 that Qg?‘;(xo, Ty) = § : o~ sd(zo,720)

v€er
LIEO ("/IO aG'§)<§0

converges for s > 8¢ (o, zo). If 59 := a(cos p — Agsin ) > 67 (20, 29), we have

HAZ (L N G-€) < e*40°Qeof (o, o) -
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This shows that for o > 0§ (20, z0)/(cos ¢ — Agsin @), HAZ (L{* N G-€) is finite. Taking
the limit as ¢ ~\, 0 shows that the same is true for a > d¢.¢(I"). Letting ¢ \, 0, we obtain
Hda(L;ad N Gf) < oo ifa> (Sg.g(F), hence dide(L%ad NG - f) < (Sgg(r) a

For certain discrete subgroups of Isom?(X), the existence of a (b, ['-§)-density u together
with Theorem 7.6 allows to also obtain a lower bound for the Hausdorff dimension of the
radial limit set.

DEFINITION 7.19 A nonelementary discrete group I' C Isom®(X) is called radially cocom-
pact, if and only if there exists a constant ¢ > 0 such that for any n € L1 and for all
t > 0 there exists an element v € I' with

d(’Y‘TU: Uwo,ﬂ(t)) <c.

The most familiar radially cocompact groups are convex cocompact and geometrically
finite isometry groups of real hyperbolic spaces, as well as uniform lattices acting on
symmetric spaces of higher rank. A further example is given by products of convex
cocompact groups acting on the Riemannian product of rank one symmetric spaces of
noncompact type.

THEOREM 7.20 Let I' C G = Isom’(X) be radially cocompact, & € 0X with Cartan

projection He € E and p a (b,T-&)-density. Then there exists a constant Cy > 0 such
that for any Borel subset E C 0X

HA*(E) > Cy - 1 (E), =Y b'(H; H).

i=1
Proof. Fix ¢ > ¢y, let ¢ > 0, s > 0 arbitrary, and choose a cover of F by balls Bﬁj (nj),
rj < e, such that with « :=>"._| 0"(H;, He) HA*(E) > era s
jeN
It By (n;) N Lr# =, we do not need By (nj) to cover E C L7 otherwise we choose

& € By (n;) N Lred. Since I' is radially cocompact, there exists v; € I' such that
d(7jT0, Oy g; (—logr;)) < . This implies d(xo, vjz0) > —logr; — ¢, and for any ¢ > 0
shi (By;40(3¢)) 2 By, (1;). We conclude using o = Y77, b'(H,;, H)

ECUsh B4 (3¢))

JEN
Hao(E) < (L 0%, (Brja (3¢) < sty (sh?, (By e (3¢))
JEN JEN
< D(3e) ) e TimVdilmam) < p(3e) Y e
JEN JEN
< D(3c) Zea(l‘)grﬁc) < D(BC)eaCZr?
jEN jEN

< D(3¢)e* (HAZ(F) + s) .
The claim now follows as s \, 0 and £ 0. ad
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THEOREM 7.21 Let I' C G = Isom°(X) be radially cocompact, £ € 0X and p a (b,I-&)-
density. Then
dide(L?ad NG - f) = (5G§(F) .

Proof. Let & € 0X with Cartan projection H € E and p a (b,['-€)-density. From the
previous theorem we deduce that for o := >\ | b"(H;, H)

HA* (L 1 G-€) > Coptag (I32) <0,

hence dimyuq(Lf NG -€) > a =Y b'(H;, He) > d¢.¢(T") by Theorem 7.7.

If € € 0X"9 then the assertion follows directly from Theorem 7.18. Suppose & ¢ 0X"Y,
fix ¢ > 2¢y with ¢y > 0 as in Theorem 7.6, let £ > 0 arbitrary and

I'":={y el |d(zy,yzry) > —loge, d(yxo,04,,) < ¢/2 for some n € G-£} .

For v € I, we put &, := Cypuo N G-€ and 1, := exp ( — d(zy, ’yxo)) . Then
Linagec | B,(&),
yel”

and we estimate HA* (LN G-€) < Z re = Z emUw0m0) < QR (30, mp) -
yel’ yel’

This number is finite if o > ¢ (o, ). Taking the limit as ¢ \, 0 shows that the same

is true for a > dg.¢(I'), and letting £ \, 0, we conclude that Hd*(L{* N G-£) is bounded
for a > 6g.¢(I), hence dimpq (L7 NG - £) < dg.¢(T). O

Using the results of section 6.5, we deduce the following two corollaries.

COROLLARY 7.22 Let X = SL(n,R)/SO(n), and I' C SL(n,R) a cocompact lattice.
Then for any & € 0X with Cartan projection He € af we have

dimpg (L1 NG - &) = p(Hy) .

COROLLARY 7.23 Let X = X; x Xy be the Riemannian product of rank one symmetric
spaces, I'y C Isom®(X1), ['y C Isom®(Xs) convex cocompact groups with critical exponents
01, 02, and T =T x 'y C G = Isom°(X). Then for any £ € 0X with Cartan projection
H¢ = cosOH, + sin0H,, 6 € [0,7/2], we have

dimy (L{** NG - €) = §) cos O + Sy sin 6.
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