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Introduction

The study of discrete isometry groups acting on Hadamard manifolds has been a subject

of continuing interest since group invariants allow to draw conclusions about the topology

and geometry of their quotient manifolds. An important example are fundamental groups

of compact manifolds. A remarkable theorem of Mostow says that closed hyperbolic

manifolds of dimension greater or equal than three are determined up to isometry by

their fundamental group.

An important tool to prove such rigidity theorems is the extension of the group action

to an appropriate compacti�cation of the Hadamard manifold. The structure of the so

obtained limit set and properties of certain equivariant measures on it are also intimately

related with the geodesic 
ow on the quotient manifold.

In the case of nonelementary discrete groups acting on real hyperbolic spaces, the theory

is rather well developped. A good survey is given in the book of P. J. Nicholls ( [N]).

In 1976, S. J. Patterson ( [P]) constructed a family of equivariant measures for fuchsian

groups in order to determine the Hausdor� dimension of their limit sets. Subsequently,

D. Sullivan ( [S]) extended his results to real hyperbolic spaces of arbitrary dimension.

He showed that the Hausdor� dimension of the limit set of a geometrically �nite group �

is given by its critical exponent Æ(�).

More recently, part of the theory has been generalized to discrete isometry groups of

Hadamard manifolds with pinched variable negative curvature (see for example [Y]), and

to Gromov hyperbolic spaces ( [Co]). K. Corlette ( [C]) generalized Sullivan's results on

the Hausdor� dimension to symmetric spaces of strictly negative curvature, using a family

of conformally equivalent subriemannian metrics on the sphere at in�nity.

For general Hadamard manifolds with tangent planes of zero sectional curvature, results

about the limit set of discrete isometry groups are sparse. A good introduction to the

subject as well as a description of individual isometries is given in the books of P. Eberlein

( [E]) and of W. Ballmann, M. Gromov, V. Schroeder ( [Ba], [BGS]). Beautiful examples

of such manifolds are provided by higher rank symmetric spaces of noncompact type,

which, due to their rich algebraic structure, allow more precise results concerning the

limit sets of discrete isometry groups.

The goal of this thesis is to give more insight into the dynamics of individual isometries

acting on symmetric spaces of higher rank, to describe geometrically the structure of

the limit sets of discrete isometry groups, and �nally to estimate their size in terms of

3



4 INTRODUCTION

certain equivariant measures. The main diÆculties we face in this context compared to

the situation in Hadamard manifolds with pinched negative curvature arise from the fact,

that the structure of the geometric boundary is much more complicated and the isometry

group does not act transitively on it. This seems to make impossible the de�nition of an

appropriate metric on the geometric boundary in the sense that the size of the shadow of

a ball in the space viewed from di�erent points is conformally the same.

Moreover, the incomplete picture we have about the dynamics of parabolic isometries

leads to diÆculties in the investigation of the structure of the limit set of discrete isometry

groups, which in general contain parabolics. Nevertheless, we are able to obtain precise

results using an approximation argument, which works for a large class of groups. We

call these groups nonelementary, since our de�nition generalizes the familiar notion of

nonelementary groups in the context of real hyperbolic spaces in a natural geometric way.

The thesis is organized as follows. The �rst two chapters are of introductory nature

and provide the basics about the algebraic structure of symmetric spaces, as well as

a precise description of the sphere at in�nity and the Furstenberg boundary endowed

with their natural topologies. We describe the local product structure of the geometric

boundary composed of a transversal factor and a direction unchanged under the action

of the isotropy group of some chosen base point. The third chapter introduces Buseman

functions and a family of (possibly nonsymmetric) pseudo distances, which will play an

important role in the sequel. It further contains some elementary geometric estimates.

In the second part of the work, results concerning the dynamics and structure of the limit

set are developped from a purely geometric point of view. Chapter 4 introduces the limit

set L�, characterizes the radial limit set Lrad

� and supplies a precise description of the

di�erent kinds of individual isometries.

In chapter 5, we investigate the dynamics of axial isometries in order to extend the well-

known results in Hadamard manifolds of pinched negative curvature to symmetric spaces

of higher rank. Since the isometry group does not act transitively on the geometric

boundary, it is not possible that a sequence of axial isometries maps all of the geometric

boundary to the limit of its attractive �xed points. Nonetheless, we are able to prove

similar dynamics for certain sequences of axial isometries and certain boundary subsets,

which will provide the key to Theorem 5.6, a natural construction of free groups far more

general than the Schottky group construction proposed by Y. Benoist in ( [Be]). The

following theorem gives an impression of the more extensive statement of Theorem 5.4.

Theorem 1 If (
j) is a suitably nondegenerate sequence of axial isometries such that

(
jx0) converges to a point � in the regular boundary, then a dense open subset of the

geometric boundary is mapped by the sequence (
j) to a neighborhood of a Weyl chamber

at in�nity which contains �.

We will see that for every sequence of axial isometries in a nonelementary group, there

exists a suitably nondegenerate sequence of axial isometries with the same attractive �xed

points. In fact, Proposition 5.11 states that every limit point of a discrete nonelementary

isometry group can be approximated by a sequence of axial isometries, and leads directly

to



INTRODUCTION 5

Theorem 2 If � � Isomo(X) is a nonelementary discrete isometry group of a symmetric

space X of noncompact type, then either the regular limit set L� \ @Xreg is empty or the

set of �xed points of axial isometries is a dense subset of the limit set L�.

It also provides a means to overcome the above mentioned diÆculties concerning parabolic

isometries and allows to deduce the important Theorems 5.14, 5.15 and 5.16 about the

structure of the limit set. The simpli�ed statements read as follows:

Theorem 3 If � � Isomo(X) is a nonelementary discrete group acting on a globally

symmetric space X of noncompact type with nonempty regular limit set, then the limit set

K�, considered as a subset of the Furstenberg boundary, is a minimal closed set under the

action of �, the geometric limit set is a product L�
�= K� � P�, where P� is the set of

directions of the limit points, and P� equals the closure of the set of translation directions

of axial isometries L� = fL(
) j 
 2 � ; 
 axial g.

For Zariski dense isometry groups, Theorem 3 has been proved by Y. Benoist ( [Be])

using algebraic methods. Similar results have also been obtained by Y. Guivarc'h ( [G]).

The advantage of our proofs is their geometric nature which allows to easily adapt the

methods to products of pinched Hadamard manifolds ( [DaK]). Furthermore, our notion of

nonelementary groups is more natural from a dynamical point of view and less restrictive

than Zariski density.

The �nal part of this thesis is dedicated to the construction and study of equivariant

measures supported on the limit set. According to Theorem A in ( [Al]), for Zariski

dense discrete groups � acting on a globally symmetric space G=K of higher rank, the

support of any Æ(�)-dimensional conformal density either lies in the singular boundary or is

contained in a unique G-invariant subset of the regular boundary. Since we are interested

in the size of the whole geometric limit set, the use of conformal densities, which serves

well in the case of Hadamard manifolds of pinched negative curvature, does not seem

appropriate. Introducing more degrees of freedom and replacing the critical exponent Æ(�)

by ÆG��(�), the exponent of growth of � in direction G�� � @X, we are able to construct

for any discrete group � and for every � 2 @X families of �-equivariant, absolutely

continuous orbital measures supported on the limit set. With minor restrictions on the

behaviour of the exponent of growth in a neighborhood of the considered direction which

are satis�ed at least for Zariski dense discrete groups � by a result due to J. F. Quint ( [Q]),

there exist parameters such that our �-equivariant, absolutely continuous orbital measures

are supported on the geometric limit set intersected with the given subset G �� � @X.

Depending on the parameters occuring in the Radon-Nikodym derivative, we call such a

family of measures a (b;���)-density.

In chapter 6, we de�ne the exponent of growth of � in every direction and work out

the details of the above construction using generalized Poincar�e series. For the sake of

illustration, we give precise parameters in the case of a few typical examples of discrete

isometry groups. We remark that independently, J. F. Quint ( [Q]) constructed a similar

class of generalized Patterson Sullivan measures by di�erent methods. His measures,

however, do not seem appropriate to estimate the Hausdor� dimension of the geometric

limit set, because they are all supported on the Furstenberg boundary and therefore lack

an essential piece of information concerning the geometry of �-orbits.



6 INTRODUCTION

In Chapter 7 we derive properties of (b;���)-densities invariant by nonelementary discrete
groups � � Isomo(X). Following P. Albuquerque ( [Al]), we prove our main tool, the

shadow lemma Theorem 7.6, in our more general situation. A �rst application gives an

upper bound for the exponent of growth ÆG��(�) in direction G �� � @X. If r denotes

the rank of X, and H1; H2; : : : ; Hr are certain linearly independent vectors in the tan-

gent space of a base point x0 2 X, this upper bound is determined by the parameters

b1; b2; : : : ; br and the direction H� of a (b;���)-density.

Theorem 4 If a (b;���)-density exists, then ÆG��(�) �
P

r

i=1 b
ihHi; H�i.

In certain cases, we also obtain a lower bound for the exponent of growth of � in direction

G�� � @X, and state

Theorem 5 If a (b;���)-density � with �x0(L
rad

� ) > 0 exists, then

ÆG��(�) =

rX
i=1

bihHi; H�i :

We further examine the atomic part of (b;���)-densities and prove

Theorem 6 A regular radial limit point of a nonelementary discrete isometry group � is

not a point mass for any (b;���)-density.

Next we address the question of ergodicity of a (b;���)-density �. If � is strongly nonele-

mentary and if every �-invariant subset of the radial limit set possesses a suitable density

point, then an application of Theorem 7.6, the shadow lemma, allows to conclude that �

acts ergodically on Lrad

� with respect to the measure class de�ned by �. It is not clear,

however, if such density points exist in the general case, because it seems diÆcult to

construct a Vitali cover from shadows.

The �nal section introduces Hausdor� measure using a conformal structure on the geo-

metric boundary as proposed by G. Knieper ( [Kn]). A �rst result is

Theorem 7 Let � � Isomo(X) be a discrete nonelementary subgroup and � 2 @Xreg.

Then

dimHd(L
rad

� \G��) � ÆG��(�) :

For a certain class of groups which we call radially cocompact, we even have equality.

Theorem 8 If � � Isomo(X) is a nonelementary discrete radially cocompact subgroup,

then the Hausdor� dimension of the radial limit set intersected with a given G-invariant

subset G�� � @X is equal to the exponent of growth ÆG��(�) in that direction.

The class of radially cocompact groups represents a natural generalization of the class

of cocompact lattices in G and includes for example the classical convex cocompact and

geometrically �nite groups acting on rank one symmetric spaces, as well as products of

convex cocompact or geometrically �nite groups acting on the corresponding product

manifold.



Chapter 1

Symmetric spaces

In this chapter, we will give a short review of the basic properties and the geometry of

symmetric spaces. We will also describe decompositions of semisimple Lie groups and Lie

algebras, which are intimitely related to the structure of symmetric spaces. The main

reference will be [H], chapters III, IV, V and IX. A more geometric description is given

in chapter 2 of [E].

1.1 The Riemannian structure

Let M be a Riemannian manifold, p 2M and N0 a symmetric neighborhood of the origin

in TpM such that the Riemannian exponential map exp
p
is a di�eomorphism of N0 onto

Np := expp(N0) �M . Then the mapping

sp : Np ! Np

q 7! expp(� exp�1
p
q)

is called the geodesic symmetry with respect to p 2M .

Definition 1.1 A symmetric space X is a complete, connected Riemannian manifold

such that for any point x 2 X the geodesic symmetry sx belongs to the isometry group

Isom(X) of X. If every geodesic symmetry in X is only a local isometry, X is called

locally symmetric, otherwise X is called globally symmetric.

It is well known that simply connected symmetric spaces are globally symmetric. Since

every locally symmetric space can be realized as a quotient of a globally symmetric space

X by a discrete subgroup of Isom(X), we will restrict our attention to globally symmetric

spaces.

The connected component G := Isomo(X) of the isometry group of X which contains

the identity acts transitively on X and can be equipped with a Lie group structure. The

geodesic symmetry at some point x0 inX de�nes an involutive automorphism � : G! G,

g 7! sx0gsx0, which descends to an involutive isomorphism � : g! g of the Lie algebra g

7



8 CHAPTER 1. SYMMETRIC SPACES

of G. This Cartan involution gives rise to a direct sum decomposition g = k� p in its +1

and �1 eigenspaces, �(k) = k , �(p) = �p.

The stabilizerK := StabG(x0) of x0 in G is a maximal compact subgroup with Lie algebra

k. The natural projection g 7! g �x0 induces an isomorphism of p to the tangent space

Tx0X. Via G-translation we may identify every tangent space in X with p.

The restriction of the Killing form of G

B : g� g ! R

(X1; X2) 7! Tr(adX1 Æ adX2)

to K is a negative de�nite bilinear form, since K is compact. The Cartan relations

[k; k] � k ; [k; p] � p ; [p; p] � k

imply B(k; p) = 0. Thus we may endow g with an Ad(K)-invariant bilinear form

hX1; X2i = �B(X1; �(X2)) :

The restriction to p of this bilinear form is positive de�nite and extends to a G-invariant

Riemannian metric on X. This Riemannian structure is independent of the choice of

x0 2 X (see [H], ch. IV, x3).

Definition 1.2 X is of noncompact type, if Isom(X) is noncompact.

In this case, the sectional curvature is nonpositive (see [H], ch. V, x3), and therefore the

Riemannian exponential map is a di�eomorphism from p to X.

1.2 Flats, Weyl chambers and the Weyl group

From here on, X will be a globally symmetric space of noncompact type. Then the

connected component G = Isomo(X) of its isometry group is a semisimple Lie group

without compact factor and with trivial center. Up to scaling in each factor, the metric

induced by the Killing form equals the original one. We use [H], chapter V, x6, as a
reference for this section.

Definition 1.3 The rank of X is the dimension of a maximal abelian subspace a � p

and is denoted by rank(X). We will abbreviate this number by the integer r.

Definition 1.4 An l-
at in X is an isometric imbedding of Rl into X, where l � r =

rank(X). An r-
at is called a maximal 
at or simply a 
at.

Maximal 
ats are G-translates of the set Ax0, where A = ea is a maximal abelian subgroup

of G, and 1-
ats are geodesics. If rank(X) = 1, 
ats coincide with geodesics.
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Definition 1.5 A geodesic is called regular if it lies in exactly one 
at, otherwise it is

called singular. A vector Y 2 p is regular, if the geodesic etY x0 is regular, and singular

otherwise.

Let asing denote the subset of singular vectors in a. In rank one spaces, all geodesics are

regular, and therefore asing = f0g.

Definition 1.6 An open Weyl chamber a+ in a is a connected component of a n asing.
An open Weyl chamber in X is a G-translate of the set ea

+

x0.

The Weyl group W of the pair (g; a) is the �nite group generated by re
ections at the

hyperplanes which bound a Weyl chamber a+ in a.

Note that the Weyl group is independent of the choice of a+ and acts simply transitively

on the set of Weyl chambers in a. It is isomorphic to the quotient M�=M , where M�

denotes the normalizer and M the centralizer of a in K.

Let w� be the unique element in W which maps the set a+ to

�a+ := f�H 2 a jH 2 a
+g :

We have w� �w� = id, and put a+1 = a+ \ a1, where a+ denotes the closure of a+ in a and

a1 � a the subset of elements of unit length.

Definition 1.7 The opposition involution � is de�ned as the map

� : a
+
1 ! a

+
1

H 7! �Ad(w�)H ;

We remark that � = id if and only if w� = �id.

1.3 Root spaces and the Iwasawa decomposition

For this section, we refer the reader to [H], chapter III, x4.

Definition 1.8 A root of the pair (g; a) is a nontrivial linear form � on a, for which

the subspace g� = fZ 2 g j ad(H)(Z) = �(H)Zg 6= f0g. g� is called a root space.

Since for any choice of maximal abelian subspace a � p the operators fad(H) jH 2 ag
commute and are selfadjoint, we obtain the root space decomposition of g in simultaneous

eigenspaces (see [H], chapter III, x4)

g = g0

M
�2�

g� :

Here � denotes the set of roots of the pair (g; a), g0 = fZ 2 g j ad(H)(Z) = 0g.
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The choice of a Weyl chamber a+ further determines subsets �+ and �� of � by

� 2 �� () ��(H) > 0 8H 2 a
+ :

An element in �+ will be called a positive root.

The set of roots � contains a fundamental set � = f�1; �2; : : : ; �rg with cardinality

#� = rank(X) = r and the following properties. � is a basis of the dual space a� of a,

no �i 2 � can be written as a sum of positive roots, and any root � 2 � can be written

in the form

� =

rX
i=1

ni�i or � = �
rX
i=1

ni�i

with integers ni � 0. The roots �1; �2; : : : ; �r are called simple roots of �.

The barycenter of a Weyl chamber a+ is the unique direction H� 2 a
+
1 such that for any

fundamental set of roots � = f�1; �2; : : : ; �rg we have �i(H�) = �j(H�) for all 1 � i; j � r.

If w� 6= �id, then H� is the unique �xed point of �.

From the sets �� we obtain the Lie algebras

n
� =

M
�2��

g� ;

which are nilpotent, because [g�; g�] � g�+� for �; � 2 �. We will call the corresponding

nilpotent Lie groups N� := en
� � G.

Theorem 1.9 ( [H], chapter IX, Theorem 1.3)

Let G be a connected semisimple Lie group. Then the map

N+ � A�K ! G

(n; a; k) 7! n�a�k

is a di�eomorphism onto G. It is called the Iwasawa decomposition of G.

If X is a globally symmetric space and G = Isomo(X), then an Iwasawa decomposition

G = N+AK gives rise to a di�eomorphismX �= N+Ax0, where x0 2 X is the unique point

stabilized by the maximal compact subgroup K � G. We therefore obtain horospherical

coordinates

X ! N+ � a

x = neHx0 7! (n;H) :

Here n 2 N+ is called the horospherical projection, and H 2 a the Iwasawa projection of

x 2 X.

The map
� : N+A ! X

n�a 7! nax0
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is a di�eomorphism from the solvable subgroup N+A � G onto X. Let da2 denote the

left invariant scalar product h�; �i from section 1.1 on a, and h� the left invariant scalar

product on N+ = exp(
P

�2�+ g�) which equals h�; �i on g� and is zero on g� for � 6= �.

The following formula follows directly from Proposition 4.3 in [B].

Proposition 1.10 The pullback metric ��g of the Riemannian metric g on X to the

solvable subgroup N+A of G is given by

ds2(n;a) =
1

2

X
�2�+

e�2�(log a) h� � da2 :

Here log(a) denotes the unique element in a with the property exp(log a) = a.

An easy consequence of this formula for the pullback metric is the following

Corollary 1.11 Let a1; a2 2 A. Then for any n 2 N+ n fidg we have

d(na1x0; a2x0) > d(a1x0; a2x0) :

We will call the orbits N+y, y 2 X, horocycles in X through y. If y = n0e
H0x0 in

horospherical coordinates, then N+y = N+eH0x0. The metric ds2
H0

of the submanifold

N+eH0x0 induced from the Riemannian metric of X can then be written as

ds2
H0

=
1

2

X
�2�+

e�2�(H0) h� :

Note that we also obtain a Riemannian distance dN on the nilpotent Lie group N+ from

the left invariant metric

dn2 :=
1

2

X
�2�+

h� :

Due to the fact that ds20 =
1
2

P
�2�+ h�, we have for all H 2 a and for all n 2 N+

d(neHx0; e
Hx0) � max

�2�+
e��(H)dN(n; id) :

1.4 The Cartan decomposition

Let X be a globally symmetric space, G = Isomo(X) and K � G a maximal compact

subgroup which stabilizes a unique point x0 in X. We call x0 2 X the base point of

X = G=K corresponding to K. Further let a+ � p �= Tx0X be an open Weyl chamber.

The following decomposition is called the Cartan decomposition of G.

Theorem 1.12 ( [H], chapter IX, Theorem 1.1)

We have G = Kea
+
K, i.e. each g 2 G can be written g = keHk0 where k; k0 2 K and

H 2 a+. Moreover, H = H(g) is unique.
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As a consequence, we obtain a surjective map

�0 : K � a+ ! X

(k;H) 7! keHx0 :

If x 2 X, there exists a unique element H 2 a+ such that x = keHx0 = �0(k;H) for some

k 2 K. We will call H the Cartan projection of x.

We remark that the map �0 is not injective, because (k1; H) and (k2; H) have the same

image in X if and only if k�11 k2 belongs to the centralizer of H in K. If H 2 a+ is

the Cartan projection of a point x 2 X, then every element k 2 K with the property

x = keHx0 will be called an angular projection of x.

Due to [H], chapter IX, Corollary 1.2, the map

� : K=M � a
+ ! Y

(kM;H) 7! keHx0

is a di�eomorphism onto a dense open submanifold Y � X.

Proposition 1.13 (see [L], section 3)

If � : G � G=K ! G=K denotes the natural action of G on the space G=K, and d� its

di�erential, then the pullback metric ��g of the Riemannian metric g on Y � G=K to

K=M � a
+ is given by

��g(k(s)M;H(s)) ((d�(k(s))Z1; H1); (d�(k(s))Z2; H2)) =

hH1; H2i+ hsinh adH(s)Z1; sinh adH(s)Z2i :

1.5 Geometric estimates

In this section, we prove a few useful geometric estimates for X = G=K in terms of a

given Cartan decomposition G = Kea
+
K. The following lemma can be found in [H].

Lemma 1.14 Let H1; H2 2 a+. Then for any k 2 K we have

hAd(k)H1; H2i � hH1; H2i :

Proof. Consider the map f : K ! R de�ned by f(k) = hAd(k)H1; H2i and suppose k0 is

a critical point of f . Then

8Z 2 k
d

dt

���
t=0

f(k0e
tZ) = 0 () 8Z 2 k :

0 =
d

dt

���
t=0
hAd(k0etZ)H1; H2i =

d

dt

���
t=0

B(Ad(k0)Ad(e
tZ)H1; H2)

= B(Ad(k0)
d

dt

��
t=0

(Ad(etZ)H1); H2)

= B(Ad(k0)(adZ)H1; H2) = B(Ad(k0)[Z;H1]; H2)

= B(Ad(k0)Z; [Ad(k0)H1; H2]) � 0
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since both Ad(k0)Z and [Ad(k0)H1; H2] belong to k and the restriction of the Killing form

B to the compact Lie algebra k is negative de�nite. Now

d

dt

���
t=0

f(k0e
tZ) = 0 8Z 2 k

implies [Ad(k0)H1; H2] = 0, which means that Ad(k0)H1 is contained in the normalizer

of H2 in p. Therefore k0w 2 fk 2 K jAd(k)H2 = H2g for some w 2 W , and we conclude

hAd(k0)H1; H2i = hAd(w�1)H1;Ad((k0w)
�1)H2i = hAd(w�1)H1; H2i.

Since H1; H2 2 a+, and the Weyl group W is generated by re
ections at the hyperplanes

which bound a
+, this number is maximal for w = id. Hence f assumes its maximum

value for k 2 fk 2 K jAd(k)H2 = H2g. 2

Let x0 2 X denote the base point of X = G=K corresponding to K, and � the Cartan

involution introduced in section 1.1. From the previous lemma, we deduce

Corollary 1.15 Let H1; H2 2 a+. Then for all k 2 K we have

d(keH1x0; e
H2x0) � d(eH1x0; e

H2x0) :

Proof. Let k 2 K arbitrary and put �(k) := \x0

�
keH1x0; e

H2x0
�
. By the previous lemma

we have

kH1kkH2k cos�(k) = hAd(k)H1; H2i � hH1; H2i : (1.1)

Comparison of the hinge \x0

�
keH1x0; e

H2x0
�
with the corresponding one in the Euclidian

plane of the same angle and sidelengths yields

d(keH1x0; e
H2x0)

2 � d(x0; ke
H1x0)

2 + d(x0; e
H2x0)

2 � 2d(x0; ke
H1x0)d(x0; e

H2x0) cos�(k)

= kH1k2 + kH2k2 � 2kH1kkH2k cos�(k) :

Since the geodesic triangle 4(x0; e
H1x0; e

H2x0) is contained in a totally geodesic subspace

of X isometric to the Euclidian plane, we conclude

d(eH1x0; e
H2x0)

2 = kH1 �H2k2 = kH1k2 + kH2k2 � 2hH1; H2i
(1:1)

� kH1k2 + kH2k2 � 2hAd(k)H1; H2i = kH1k2 + kH2k2

�2kH1kkH2k cos�(k) � d(keH1x0; e
H2x0)

2 : 2

The following estimate will be needed in section 7.5 to measure the Hausdor� dimension.

Lemma 1.16 Fix c > 0, H0 2 a
+
1 and put A0 := maxfk�k=�(H0) j� 2 �+g, where

k�k denotes the operator norm of � 2 a
�. Then there exists '0 = '(H0) 2 (0; �=4) and

R0 = R0(H0; c) > 0 such that the following holds:

If ' 2 (0; '0], H 2 a
+
1 with \(H;H0) < ', t � R0 and t0 := t(cos' � A0 sin') � 2A0c,

then for any k 2 K

d(keHtx0; e
a
+

x0) � c =) d(ket0H0x0; e
t0H0x0) � c :
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Proof. Put '0 := (2A0)
�1 = 1

2
minf�(H0)=k�k j� 2 �+g, let ' 2 (0; '0] and H 2 a

+
1

with \(H;H0) < ' � '0. Then kH � H0k2 = 2 � 2hH;H0i < '2, and by the Cauchy

Schwartz inequality

�(H) = �(H0) + �(H �H0) > �(H0)� k�k'0 � �(H0)=2 > 0 (1.2)

for any � 2 �+. We conclude H 2 a
+
1 .

Let " 2 (0; c) and t > 2c. By the assumption, there exists a curve � : [0; 1] ! X with

�(0) 2 ea
+

, �(1) = keHtx0, andZ 1

0

k _�(s)kds � c+ " < 2c : (1.3)

For s 2 [0; 1] we write �(s) = k(s)eH(s)x0 using the Cartan decomposition. By Corol-

lary 1.15, we have

2c > d(keHtx0; �(s)) � d(eHtx0; e
H(s)x0) = kHt�H(s)k ;

and again by the Cauchy Schwartz inequality and (1.2)

�(H(s)) � �(H0t) + �(Ht�H0t) + �(H(s)�Ht)

� t�(H0)� tk�k'� k�k2c � t�(H0)=2� 2ck�k

for any � 2 �+. This shows that if t � R0 := maxf4ck�k=�(H0) j� 2 �+g, then H(s)

belongs to a
+ for all s 2 [0; 1].

Recall from the previous section that � : G � G=K ! G=K denotes the natural action

of G on the space G=K, and d� its di�erential. For t � R0 and s 2 [0; 1] let Z(s) 2 k=m

such that
d

d�

���
�=s

k(�) = d�(k(s))Z(s) ;

and write

Z(s) =
X
�2�+

(Z�(s) + �Z�(s)) ; Z�(s) 2 g� :

Using the formula for the induced metric on K=M � a
+ given in Proposition 1.13, we

estimate for s 2 [0; 1]

2
X
�2�+

sinh2 �(H(s))hZ�(s); Z�(s)i � k _�(s)k2 : (1.4)

Put t0 := t(cos'� A0 sin')� 2A0c and let s 2 [0; 1]. We compute for all � 2 �+

�(H(s)) � �(Ht) + �(H(s)�Ht) > t�(H)� k�k2c
� thH;H0i�(H0)� t sin'k�k � k�k2c
� �(H0) (thH;H0i � t sin'A0 � A02c)

� �(H0) (t(cos'� A0 sin')� 2A0c) = t0�(H0) :
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The curve de�ned by c(s) = k(s)eH0t0x0 with k(s) as above joins e
H0t0x0 to ke

H0t0x0, and

for s 2 [0; 1] we calculate using (1.4)

k _c(s)k2 = 2
X
�2�+

sinh2 (t0�(H0)) hZ�(s); Z�(s)i

� 2
X
�2�+

sinh2 �(H(s))hZ�(s); Z�(s)i � k _�(s)k2 :

Hence d(keH0t0x0; e
H0t0x0) �

R 1

0
k _c(s)kds �

R 1
0
k _�(s)kds < c + " ; and the assertion

follows as "& 0. 2

1.6 The coset space SL(n;R )=SO(n)

For each integer n � 2, the Lie group G = SL(n;R) is simple with center fid;�idg,
and K = SO(n) is a maximal compact subgroup with Lie algebra k. Furthermore, the

involutive isomorphism � of the Lie algebra g of SL(n;R) de�ned by X 7! �X t satis�es

�k = k. The Cartan decomposition is given by the direct sum of k and the vector sub-

space p consisting of symmetric (n; n)-matrices with trace equal to zero. The coset space

SL(n;R)=SO(n) endowed with the left invariant metric determined by

hX1; X2i := Tr(X1X2) = �
1

2n
B(X1; �(X2)) ; X1; X2 2 p

is a globally symmetric space of noncompact type. Furthermore, by the Imbedding Theo-

rem 2.6.5 in [E], every globally symmetric space X of noncompact type can be imbedded

isometrically up to scaling on each irreducible De Rham factor in SL(n;R)=SO(n) as a

totally geodesic submanifold, where n equals the dimension of Isomo(X).

An abelian subspace a of p is given by the diagonal matrices with trace zero, which shows

that the rank of SL(n;R)=SO(n) is r = n � 1. The standard choice of positive Weyl

chamber is

a
+ := fDiag(t1; t2; : : : ; tn) j t1 > t2 > : : : > tn;

nX
i=1

ti = 0g :

Identifying the dual space a� with a, the l-th simple root �l is given by

�l = Diag(d1; d2; : : : ; dn) ; where di = Æil � Æi;l+1 ; 1 � i � n :

The remaining roots occuring in �+ are given by all possible linear combinations

j+kX
i=j

�i ; where 1 � j � r � 1 ; 1 � k � r � j :

Let � denote the half sum of positive roots. In SL(n;R)=SO(n) we may write � in terms

of the simple roots

2� =

r�1X
j=1

r�jX
k=0

j+kX
i=j

�i :
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Chapter 2

The sphere at in�nity

In this chapter, we discuss the structure at in�nity of globally symmetric spaces of non-

compact type. Such spaces are in particular Hadamard manifolds, i.e. complete, simply

connected Riemannian manifolds of nonpositive sectional curvature. We �rst describe a

standard method to compactify Hadamard manifolds following reference [Ba], chapter II,

and then proceed by explaining di�erent aspects occurring in the special case of sym-

metric spaces. Our main references will be [BGS], appendix 5, [H], chapter IX, and [W],

chapter 1.2.

2.1 The geometric boundary

Let M be a complete Riemannian manifold. The restriction of a geodesic � : R !M to

the intervall [0;1) is called a geodesic ray with initial point �(0).

Definition 2.1 The geometric boundary @X of a globally symmetric space X of noncom-

pact type is de�ned as the set of equivalence classes of geodesic rays under the equivalence

relation

�1 � �2 :() d(�1(t); �2(t)) bounded :

An equivalence class will be denoted by �(1).

In order to topologize the space X := X [@X, we introduce the following sets. For " > 0;

R >> 1, x 2 X and � 2 @X let CR;"

x;�
� X be the truncated cone

CR;"

x;�
:= fy 2 X j d(x; y) > R ; d(�x;�(R); �x;y(R)) < "g

in X, where �x;y denotes the unique unit speed geodesic emanating from x 2 X passing

through y 2 X.

Definition 2.2 ( [Ba], chapter II)

The cone topology on X is the topology generated by the open sets in X and these truncated

cones.

17
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If not stated otherwise, convergence in X[@X will always mean convergence with respect

to the cone topology. The relative topology on @X turns the geometric boundary into a

topological space.

The action of an isometry g 2 Isom(X) of X extends naturally to a homeomorphism on

the geometric boundary, since isometries map geodesic rays to geodesic rays.

The geometric boundary is homeomorphic to the unit tangent space of an arbitrary point

in X. We remark that every Hadamard manifold can be compacti�ed in such a way.

Let X = G=K be a globally symmetric space of noncompact type with base point x0

corresponding to K. If a Cartan decomposition G = Kea
+
K is �xed, the writing (k;H)

with k 2 K and H 2 a
+
1 will denote the equivalence class of geodesic rays which contains

the geodesic ray � given by �(t) = keHtx0 = �0(k;Ht), t � 0. We remark that by the

properties of the map �0 de�ned in section 1.4, (k1; H) = (k2; H) in @X if and only if

k�11 k2 belongs to the centralizer of H in K.

For every � 2 @X, however, there exists exactly one element H = H� 2 a
+
1 which we

will call the Cartan projection of �. If k 2 K is an element with the property � = (k;H�),

we will call k an angular projection of �. Note that the action of G = Isomo(X) on the

geometric boundary leaves invariant the Cartan projections of boundary points.

If rank(X) � 2, then a+ consists of a regular and a singular part. The geometric boundary

therefore decomposes into a disjoint union

@X = @Xreg [ @Xsing :

We will give a precise description of the singular boundary in section 2.5.

2.2 The Furstenberg boundary

For the remainder of this chapter, X = G=K will be a globally symmetric space of

noncompact type. Note that the writing X = G=K depends on a base point x0 2 X, the

unique point in X stabilized by K. The following statements, however, remain true for

any choice of base point in X, because its stabilizer is then simply a conjugate of K in G.

Definition 2.3 Two Weyl chambers in X are called asymptotic if their Hausdor� dis-

tance is bounded.

The Furstenberg boundary @XF of X is de�ned as the set of equivalence classes of asymp-

totic Weyl chambers.

If G = Kea
+
K is a Cartan decompositon for X = G=K, and M denotes the centralizer

of a in K, we may identify the Furstenberg boundary with the homogeneous space K=M

using the projection
�B : @Xreg ! K=M

(k;H) 7! kM :
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Furthermore, we may endow K=M with the natural di�erentiable structure arising from

the Lie group structure of K. We obtain a topology on the Furstenberg boundary by the

requirement that @XF is di�eomorphic to K=M .

We remark that if two boundary points �; � 2 @X possess a common angular projection

k 2 K, then � and � belong to the closure of every Weyl chamber asymptotic to kM 2
K=M �= @XF . We say that � and � belong to the closure of a common Weyl chamber at

in�nity.

Note that for rank one symmetric spaces, the Furstenberg boundary coincides with the

geometric boundary as sets. Lemma 2.9 will further show, that in this case the topology

on K=M is equivalent to cone topology.

2.3 The Bruhat decomposition

We �x an Iwasawa decomposition G = N+AK as in section 1.3 and consider the closed

subgroup P =MAN+ � G. Since P equals the stabilizer of the unique equivalence class

of asymptotic Weyl chambers which contains ea
+

x0 � X, we may identify the Furstenberg

boundary @XF �= K=M with the homogeneous space G=P under the bijection

� : G=P ! K=M

gP 7! kM :

Here kM 2 K=M is uniquely determined by any element k in the Iwasawa decomposition

g = kan = (n�1a�1k�1)
�1
.

Definition 2.4 ( [W], chapter 1.2) A minimal parabolic subgroup of G is a conjugate

of the closed subgroup P = MAN+ in G. A parabolic subgroup is any subgroup of G

containing a minimal parabolic subgroup.

For a minimal parabolic subgroup P we have the Bruhat decomposition of G as a disjoint

union

G =
[
w2W

N+mwP =
[
w2W

UwmwP ;

where mw is an arbitrary representative of w in M�, and the sets Uw are the Lie group

exponentials of the subspaces

uw := n
+ \ Ad(mw)n

� � n
+ :

Note that the orbit corresponding to the element w� is parametrized by N+ = Uw�, and

the restriction of the above bijection � to N+w�P de�nes a map

� : N+ ! K=M

n 7! �(nw�P ) :
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Proposition 2.5 ( [H], chapter IX, Corollary 1.9)

The map � is a di�eomorphism onto an open submanifold of K=M whose complement

consists of �nitely many disjoint manifolds of strictly lower dimension.

This proposition implies that the orbit N+w�P is a dense and open submanifold of the

Furstenberg boundary @XF �= K=M . We will call a G-translate of the set N+w�P � G=P

a big cell in @XF �= K=M using the di�eomorphism �.

If n 2 N+, �(n) 2 K=M is the unique element such that the Weyl chamber �(n)ea
+

x0 is

asymptotic to the Weyl chamber ne�a
+

x0.

The choice of a subset � � � determines a standard face of type �

a
� := fH 2 a+ j�(H) = 0 8� 2 �g

in a. If h�i� � �� denotes the set of those � 2 �� which are linear combinations of the

elements of �, then its centralizer in K is a closed subgroup M� with Lie algebra

m� := m�
X

�2h�i+
(g� + g��) \ k :

We have a; = a+, M; =M , and if � � ~�, then a
~� is a vector subspace of a� and M� is

a closed subgroup of M~�. If W� =M� \W , the parabolic subgroup P� =M�AN
+ may

be written as

P� =
[

w2W�

PmwP :

P� is minimal if and only if � = ;. We remark that for any H 2 a
�
1 n

S
~�)� a

~�
1 , the

parabolic subgroup P� equals the stabilizer of (id; H) 2 @X.

The generalized Bruhat decomposition of G with respect to the parabolic subgroup P�

can now be written as a disjoint union

G =
[

w2W=W�

N+mwP� :

Again, the orbit corresponding to the class w�W� 2 W=W� has maximal dimension in

G=P� and may be parametrized by

N+
� = exp(n+�) ; where n

+
� :=

X
�2�+nh�i+

g� :

The G-translates of this orbit are sometimes called Schubert cells in G=P�. Note that for

� = � the decomposition is trivial because P� = G.

2.4 The generalized Iwasawa decomposition

Let X be a globally symmetric space of noncompact type, G = Isomo(X) and G = N+AK

an Iwasawa decomposition for G. The goal of this section is to generalize the well known

decomposition result of Iwasawa described in section 1.3.
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For any subset � � �, we introduce the homomorphisms

T� : P� ! G

g 7! limt!1 e�HtgeHt ; H 2 a
� arbitrary ;

where � � �. These homomorphisms exist by the following proposition, are well de�ned

and have kernel N+
� � N+ as may be easily checked.

Proposition 2.6 ( [E], Proposition 2.17.3)

Fix � � �, let H 2 a�. Then g 2 P� if and only if T� exists in G.

Using the notation Z� := fg 2 G jAd(g)H = H g for arbitrary H 2 a
�,

p� := a�
P

�2h�i+(g� + g��) \ p ; we restate

Proposition 2.7 ( [E], Proposition 2.17.5)

(1) N+
� is a connected normal subgroup of P�.

(2) T� has image Z� � P�.

(3) T� �xes every element of Z�. Moreover, Z� = M� �exp(p�) = exp(p�) �M� and

the decomposition of an element Z� into a product h �m, where h 2 exp(p�) and

m 2M�, is unique.

(4) P� = M� exp(p�)N
+
� = M�N

+
� exp(p�). The indicated decomposition of elements

of P� is unique.

(5) We have the generalized Iwasawa decomposition G = K exp(p�)N
+
� . The indicated

decomposition of elements of G is unique.

(6) Z� has �nitely many components.

We remark that Theorem 1.2.4.11 in [W] gives a slightly di�erent version of the generalized

Iwasawa decomposition.

2.5 The structure of the boundary

Let X = G=K be a globally symmetric space of noncompact type with base point x0 2 X

corresponding to K, and �x a Cartan decomposition G = Kea
+
K. Then every subset

� � � determines a homogeneous space K=M�, which, as in the case � = ;, can be

endowed with the natural di�erentiable structure arising from the Lie group structure

of K. Recall from section 2.3 that we also obtain a standard face of type �, a� � a+.

Putting

@X� = f(k;H) j k 2 K ; H 2 a
�
1 n

[
~�)�

a
~�
1 g ;
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the geometric boundary decomposes into a disjoint union

@X =
[
���

@X� :

Note that @X; = @Xreg and @X� = ;.

This decomposition allows to extend the projection �B from the regular boundary @Xreg

to the whole geometric boundary by the requirement that for any subset � � �

�B
���
@X�

: @X� ! K=M�

(k;H) 7! kM� :

We remark that for k0M� 2 K=M� every preimage (�B)�1(k0M�) is of the form (k;H) 2
@X� with k�1k0 2M� and H 2 a

�
1 n
S

~�)� a
~�
1 . The natural G-action on K=M� is given

by

g(kM�) := �B Æ g Æ (�B)�1(kM�) ; g 2 G ; kM� 2 K=M� : (2.1)

Note that the action does not depend on the choice of preimage of (�B)�1(kM�) 2 @X�,

because (k;H) = (k0; H) 2 @X� if and only if k�1k0 2 M�, and the Cartan projections

remain unchanged by the action of G.

The following equivalence will be useful in comparing the cone topology of X = X [ @X
with the topology on K=M�, � � �. By abuse of notation, kj ! k0 in K=M� wil+l

mean that the cosets kjM� converge to the coset k0M� 2 K=M�.

Lemma 2.8 Let � � �, H 2 a
�
1 and (kj) a sequence in K. Then kj ! id in K=M� if

and only if d(kje
Hx0; e

Hx0) tends to zero.

Proof. Fix � � �, H 2 a
�
1 . Suppose kj ! id in K=M�. By de�nition of the quotient

topology, there exists a sequence (mj) �M� such that kjmj converges to id 2 K. If

h :=
X

�2�+nh�i+
(g� + g��) \ k ;

we have the direct sum decomposition k = m� � h , where m� denotes the Lie algebra of

M�. Since the exponential map is a local di�eomorphism, there exist sequences (Zj) �
m�, (Yj) � h such that kjmj = exp(Zj + Yj) and (Zj + Yj)! 0 2 k as j !1. We write

Yj :=
P

�2�+nh�i+

�
Z
(j)
� + �Z

(j)
�

�
, where Z

(j)
� 2 g� and � denotes the Cartan involution.

For the following estimates we will use the norm k�k on g induced from the scalar product

introduced in section 1.1. Since the spaces m�, (g�+g��)\k, � 2 �+nh�i+, are orthogonal
to each other with respect to this norm, we conclude kZjk ! 0 and kZ(j)

� k, k�Z(j)
� k ! 0

for any � 2 �+ n h�i+. Now adH(Zj) = 0 implies

Xj := e�adH(Zj + Yj) = Zj + e�adHYj = Zj +
X

�2�+nh�i+

�
e��(H)Z(j)

�
+ e�(H)�Z(j)

�

�
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and therefore

kXjk � kZjk+
X

�2�+nh�i+

�
e��(H)kZ(j)

�
k+ e�(H)k�Z(j)

�
k
�
! 0 :

We conclude

d(kje
Hx0; e

Hx0) = d(kjmje
Hx0; e

Hx0) = d(e�Hkjmje
Hx0; x0) = d(eXjx0; x0)! 0 :

Conversely, suppose d(kje
Hx0; e

Hx0) tends to zero. For j 2 N , let Xj 2 g such that

e�Hkje
H = eXj and write

kj = exp

0
@Zj +

X
�2�+nh�i+

�
Z(j)
�

+ �Z(j)
�

�1A with Zj 2 m� ; Z
(j)
�
2 g� :

As before, we have

Xj = e�adH

0
@Zj +

X
�2�+nh�i+

�
Z(j)
�

+ �Z(j)
�

�1A =
X

�2�+nh�i+
cosh(�(H))

�
Z(j)
�

+ �Z(j)
�

�

+Zj �
X

�2�+nh�i+
sinh(�(H))

�
Z(j)
�
� �Z(j)

�

�
2 k� p :

Now d(eXjx0; x0)! 0 implies that Xj converges to an element in k, i.e. the component of

Xj in p tends to zero. This component is given by
P

�2�+nh�i+ sinh(�(H))
�
Z
(j)
� � �Z

(j)
�

�
.

Since the root spaces are orthogonal and �(H) > 0 for any � 2 �+ n h�i+, we conclude
that kZ(j)

� k ! 0 for any such �. This is equivalent to kj ! id in K=M�. 2

We are now able to state the following equivalence between the cone topology of X and

the topology of the di�erentiable manifold K=M�.

Lemma 2.9 Fix a Cartan decomposition G = Kea
+
K and let � � �. Then (yj) �

X [@X converges to � 2 @X� in the cone topology if and only if every sequence (kj) � K

of angular projections of (yj) converges to �
B(�) in K=M�, if the sequence of unit length

Cartan projections (Hj) � a
+
1 converges to the Cartan projection H� of � in a, and if

d(x0; yj)!1 as j !1.

Proof. Suppose (yj) � X converges to � 2 @X� in the cone topology. For j 2 N , let

kj 2 K be an angular projection, Hj 2 a
+
1 the unit length Cartan projection of yj. Now

yj ! � in the cone topology implies that for R >> 1 and " > 0 arbitrary, there exists

N0 2 N such that yj 2 CR;"

x0;�
for j > N0. In particular dj := d(x0; yj) > R for j > N0. If

H� denotes the Cartan projection and k� 2 K an angular projection of �, Corollary 1.15

gives

" > d(�x0;yj(R); �x0;�(R)) = d(kje
HjRx0; k�e

H�Rx0)

� d(eHjRx0; e
H�Rx0) = R�kHj �H�k ;
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which shows that Hj converges to H� in a. We further conclude

d(kje
H�Rx0; k�e

H�Rx0) � d(kje
H�Rx0; kje

HjRx0) + d(kje
HjRx0; k�e

H�Rx0)

� d(eH�Rx0; e
HjRx0) + d(�x0;yj (R); �x0;�(R)) < 2" :

This proves k�1
j
k� ! id 2 K=M� by the previous lemma.

Conversely, let (kj) � K be a sequence converging to k� in K=M�, (Hj) 2 a
+
1 a sequence

converging to H� in a and (dj) a sequence of positive numbers which tends to in�nity.

Let R >> 0, " > 0 arbitrary. We have to show the existence of N0 2 N such that for any

j > N0 we have d(x0; kje
Hjdjx0) > R and

d(kje
HjRx0; k�e

H�Rx0) < " :

The �rst claim follows from the fact that dj = d(x0; kje
Hjdjx0) tends to in�nity. For the

second claim, we calculate as before

d(kje
HjRx0; k�e

H�Rx0) � R�kHj �H�k+ d(kje
H�Rx0; k�e

H�Rx0) :

Since R is �xed, the claim follows from the fact that kHj �H�k ! 0 and with the above

lemma from kj ! k� in K=M�. 2

As in the previous section for the case � = ;, we will identify the homogeneous space

G=P�, � � �, with the component K=M� of �B(@X�) using the natural bijection

�� : G=P� ! K=M�

gP� 7! kM�

arising from the generalized Iwasawa decomposition. Its restriction to the big cellN+w�P� =

N+
�w�P� induces a map

�� : N+
� ! K=M�

n 7! ��(nw�P�) :

Proposition 1.2.4.10 of [W] shows, that the orbit N+w�P� = N+
�w�P� is dense and open

in G=P�. We will call the image of such a Schubert cell under the map �� a big cell in

K=M�. We further remark, that �� is a di�eomorphism onto an open submanifold of

K=M�.

Geometrically, if n 2 N+
� , then ��(n) 2 K=M� is the unique element such that for any

H 2 a
� the geodesic rays nw�e

Htx0 and ��(n)e
Htx0 are asymptotic.

2.6 The visibility sets at in�nity

In the case of a complete, simply connected Riemannian manifold with a negative upper

bound for the sectional curvature, any two points in the geometric boundary can be joined
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by a geodesic. If the tangent bundle contains planes with zero sectional curvature, this is

no longer true. Nevertheless, for globally symmetric spaces X of noncompact type, the

set of all points in the geometric boundary which can be joined to a given point � 2 @X

by a geodesic can be described in a simple way.

Definition 2.10 The visibility set at in�nity viewed from � 2 @X is the set

Vis1(�) := f� 2 @X j 9 geodesic � such that �(�1) = � ; �(1) = �g :

If rank(X) = 1, the sectional curvature of X has a negative upper bound. Thus � 2 @X

can be joined to any other point in @X by a geodesic, hence Vis1(�) = @X n f�g.

If rank(X) � 2, however, the sets Vis1(�), � 2 @X, are sparse in the geometric boundary.

We will therefore need to consider some larger sets.

Let X = G=K be a globally symmetric space of noncompact type with base point x0 2 X

corresponding to K and �x a Cartan decomposition G = Kea
+
K.

Definition 2.11 The Bruhat visibility set viewed from � 2 @X is the image of Vis1(�)

under the projection �B : @X !
S

���K=M�, i.e.

VisB(�) = �B(Vis1(�)) :

For regular points � 2 @Xreg, the subset VisB(�) � K=M can be identi�ed with the

set of equivalence classes of asymptotic Weyl chambers which possess a representative

C � X with the following property: There exists ageodesic � : R ! X with extremity

�(�1) = �, and the geodesic ray �(t), t � 0, is contained in C. In rank one symmetric

spaces, the Bruhat visibility sets coincide with the visibility sets at in�nity.

We remark that for �, � 2 @X, � 2 Vis1(�) is equivalent to � 2 Vis1(�). This also

implies the equivalence of �B(�) 2 VisB(�) and �B(�) 2 VisB(�).

The opposition involution � from De�nition 1.7 will play an important role in the sequel.

Definition 2.12 For any subset � � �, we de�ne the opposition set �� by the condition

� 2 �� : () �(�(H)) = 0 8H 2 a
� :

The standard face of type �� is then given by a�
�

= �(a�) and we have M�� = w�M�w
�1
� .

Note that �� = � if � = id.

Furthermore, if � = (id; H) 2 @X� we have �x0;�(�1) = (w�; �(H)) 2 @X��

, because

�x0;�(�t) = e�Htx0 = w�e
�Ad(w�)Htx0 = w�e

�(H)tx0. Using the natural extension of the

opposition involution to the geometric boundary

� : @X� ! @X��

(k;H) 7! (w�kw
�1
� ; �(H)) ;

this implies Vis1(���) � G�� � @X�.
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The following lemma will describe the visibility sets at in�nity in terms of the Bruhat

decomposition of G = Isomo(X). Given x 2 X and � 2 @X, there exists a Cartan

decomposition G = Kea
+
K such that K is the unique maximal compact subgroup which

stabilizes x, and id 2 K is an angular projection of � (see section 2.1). We will call this

decomposition a Cartan decomposition with respect to x and �.

Similarly, there exists an Iwasawa decomposition G = N+AK such that K is the unique

maximal compact subgroup which stabilizes x, and N+ is the nilpotent subgroup in

the stabilizer of a closed Weyl chamber at in�nity which contains �. We will call this

decomposition G = N+AK an Iwasawa decomposition with respect to x and �. Note

that if � 2 @Xsing, then N+ depends on the chosen Weyl chamber at in�nity, and we

might as well choose a conjugate of N+ by an element in the stabilizer K� � K of �.

Using the subsets N+
� � N+ and the maps �� de�ned at the end of section 2.5, the lemma

reads as follows.

Lemma 2.13 Let � 2 @X, G = Kea
+
K a Cartan decomposition with respect to some base

point x0 2 X and � 2 @X, and let � � � such that � 2 @X��

. Then

Vis1(�) = f(k; �(H�)) j kM� 2 ��(N
+
� )g :

Proof. Let k 2 K such that kM� = ��(n) with n 2 N+
� � N+. Put

�(t) := n�x0;�(�t) = ne�H�tx0 = nw�e
�(H�)tx0 :

Then �(�1) = � because N+ stabilizes �, and �(t) is asymptotic to ke�(H�)tx0 as t!1
by the property of the map ��. Hence �(1) = (k; �(H�)) which proves that (k; �(H�)) 2
Vis1(�).

Conversely, let � 2 Vis1(�) and take a geodesic � with extremities �(1) = � and

�(�1) = �. Since G acts transitively on X, there exists g 2 G such that �(0) = gx0. Us-

ing the generalized Iwasawa decomposition with respect to � � � and write gx0 = nbx0,

where n 2 N+
� and b 2 exp(p�). The geodesic �0 := (nb)�1� = b�1n�1� satis�es

�0(�1) = �(�1) = � because n and b stabilize �. Since �0(0) = x0 and � 2 @X��

, we

conclude �0(1) = �x0;�(�1) = (w�; �(H�)) 2 @X�. Since b also stabilizes �x0;�(�1) we

obtain � = �(1) = nb�0(1) = n�0(1) = (k; �(H�)), where k 2 K=M� is the unique ele-

ment such that n�0(t) = nw�e
�(H�)tx0 is asymptotic to ke

�(H�)tx0. Therefore kM� = ��(n)

which proves the claim. 2

Corollary 2.14 Let � 2 @X, G = Kea
+
K a Cartan decomposition with respect to some

base point x0 2 X and � 2 @X, and let � � � such that � 2 @X��

. Then � 2 Vis1(�) if

and only if there exists n 2 N+
� with the property n�x0;�(�1) = �.

Corollary 2.15 Let � 2 @X, G = Kea
+
K a Cartan decomposition with respect to some

base point x0 2 X and � 2 @X, and let � � � such that � 2 @X��

. Then the Bruhat

visibility set VisB(�) is the image under �� of the Schubert cell N+
�w�P� in G=P�.
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The following lemma and its corollary will be used in the construction of free groups in

section 5.2.

Lemma 2.16 For 1 � i � l let �i � � and �i 2 @X��
i . If � �

S
l

i=1�i, then

l\
i=1

VisB(�i) is a dense and open subset of K=M� :

Proof. We �x a Cartan decomposition G = Kea
+
K and let i 2 f1; 2; : : : ; lg. Let k 2 K

be an angular projection, H 2 a
��
i the Cartan projection of �i. Since ��

i
� ��, there

exists a point �i 2 @X��

such that �i and �i de�ne points in the closure of a common

Weyl chamber at in�nity. In particular, k is an angular projection of �i, and therefore

the natural projection of �B(�i) 2 K=M��
i
to K=M�� is equal to �B(�i). Consequently,

the natural projection of the subset VisB(�i) � K=M�i
to K=M� is equal to VisB(�i).

Now the set VisB(�i) = ��(N
+
� ) is a dense and open submanifold of K=M� and the claim

follows, because a �nite intersection of dense and open sets remains dense and open in

K=M�. 2

Corollary 2.17 If �1; �2; : : : ; �l 2 @Xreg, then the intersection
T

l

i=1Vis
B(�i) is a dense

and open subset of the Furstenberg boundary @XF �= K=M .

The following result is an easy consequence of the facts that the Bruhat visiblity sets are

open and the maps �� introduced in section 2.5 are di�eomorphisms.

Lemma 2.18 For � � � let � 2 @X� and � 2 Vis1(�). Then for any sequence (�j) �
G�� � @X� which converges to � in the cone topology, we have � 2 Vis1(�j) for all but

�nitely many j 2 N.

Proof. We choose a unit speed geodesic � in X such that �(�1) = � and �(1) = �. Fix

an Iwasawa decomposition G = N+AK and a Cartan decomposition G = Kea
+
K with

respect to x0 := �(0) 2 X and � 2 @X. If H 2 a
� denotes the Cartan projection of �, we

have � = (id; �(H)) and � = (w�; H).

For j 2 N let kj 2 K denote an angular projection of �j. The convergence of �j to �

implies the existence of N0 2 N such that for j > N0, kjM� is contained in an open

neighborhood of w�M� in K=M�. Since the map �� is a di�eomorphism from N+
� onto

a dense open submanifold of K=M� which contains w�M�, we have �
�1
� (kjM�) 2 N+

� if

j > N0. Since �j 2 G ��, we conclude �j 2 f(k;H) j kM� 2 ��(N
+
� )g = Vis1(�) by

Lemma 2.13 and therefore � 2 Vis1(�j) for any j > N0. 2

The last result of this section is a stronger version of the previous lemma and is proved

in [E], page 322.

Lemma 2.19 Let � be any unit speed geodesic in X. Then for any " > 0 there exists a

neighborhood U of the identity in G = Isomo(X) such that for arbitrary � 2 U ��(1) and

� 2 U ��(�1) there exists a geodesic � 2 X with

�(�1) = � ; �(1) = � and d(�(0); �) < " :
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Chapter 3

Directional distances and angles

In this chapter, we will introduce a family of (possibly nonsymmetric) pseudo distances

for globally symmetric spaces of noncompact type which will play a fundamental role in

our work. Since our construction relies on Buseman functions, we are going to recall their

de�nition and properties following [Ba], chapter II.

3.1 Buseman functions

Let X be a globally symmetric space of noncompact type. For z 2 X we consider the

continuous map

Bz : X �X ! R

(x; y) 7! d(x; z)� d(y; z) :

This map extends continuously to the boundary via

B�(x; y) := lim
s!1

�
d(x; �(s))� d(y; �(s))

�
;

where � is an arbitrary geodesic ray asymptotic to � 2 @X, and x; y 2 X. The maps Bv ;
v 2 X = X [ @X obviously satisfy the cocycle relation

Bv(x; z) = Bv(x; y) + Bv(y; z) 8 x; y; z 2 X ;

and the triangle inequality for the Riemannian distance yields

Bv(x; y) � d(x; y) 8 x; y 2 X :

For � 2 @X, y 2 X, the function

B�(�; y) : X ! R

x 7! B�(x; y)

is called the Busemann function centered at � based at y. It is independent of the chosen

ray �.

29
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Lemma 3.1 ( [Ba], chapter II)

Let (xn)n2N be a sequence in X. Then the following statements are equivalent.

(i) xn converges in the cone topology to � 2 @X.

(ii) The functions Bxn(�; y) converge in the space of continuous functions C0(X) to

B�(�; y) with respect to the topology of uniform convergence on compact sets.

We remark that the above de�nition of Buseman functions and Lemma 3.1 are valid for

every Hadamard manifold.

If X is a globally symmetric space of noncompact type and G = Isomo(X), we obtain the

following formulas for the Buseman function.

Lemma 3.2 Let x 2 X and � 2 @X. Fix a Cartan decomposition G = Kea
+
K with

respect to x and �, and let H� denote the Cartan projection of �. Then for any H 2 a+

we have

B�(x; eHx) = hH�; Hi :

Proof. Let H 2 a+ arbitrary. We calculate

B�(x; eHx) = lim
s!1

�
d(x; �x;�(s))� d(eHx; �x;�(s))

�
= lim

s!1

�
s� d(eHx; eH�sx)

�
= lim

s!1

s2 � kH�s�Hk2

s+ kH�s�Hk
= lim

s!1

s2 � (s2 � 2shH�; Hi+ kHk2)
s+

p
s2 � 2shH�; Hi+ kHk2

= hH�; Hi : 2

For Buseman functions centered at regular boundary points, we obtain a formula for any

pair of points in X in terms of an appropriate Iwasawa decomposition for G.

Lemma 3.3 Let x, y 2 X and � 2 @Xreg. If G = N+AK is an Iwasawa decomposition

with respect to x and �, and H denotes the Iwasawa projection of y described in section 1.3,

then

B�(x; y) = hH�; Hi :
Here H� 2 a

+
1 denotes the Cartan projection of � with respect to a Cartan decomposition

determined by x and �.

Proof. Let y 2 X arbitrary, write y = neHx0 in horospherical coordinates corresponding

to the given Iwasawa decomposition. Then

B�(x; y) = lim
s!1

�
d(x; �x;�(s))� d(y; �x;�(s))

�
� lim

s!1

�
s� d(y; n�x;�(s))� d(neH�sx; eH�sx)

�
;

B�(x; y) � lim
s!1

�
s� d(y; n�x;�(s)) + d(neH�sx; eH�sx)

�
:

The term d(neH�sx; eH�sx) tends to zero as s ! 1, because n 2 N+ and therefore

e�H�sneH�s converges to id 2 N+. Furthermore, d(y; n�x;�(s)) = d(eHx; eH�sx), and the

calculation in the proof of the previous lemma allows to conclude

B�(x; y) = lims!1
�
s� d(eHx; eH�sx)

�
= hH�; Hi : 2
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3.2 The directional distance

This section will introduce an important family of (possibly nonsymmetric) pseudo dis-

tances which we will need throughout the whole work.

Definition 3.4 We de�ne the directional distance of the ordered pair (x; y) 2 X � X

with respect to � 2 @X by

BG�� : X �X ! R

(x; y) 7! BG��(x; y) = sup
g2G

Bg��(x; y) :

Note that the corresponding estimate for the Buseman functions implies

BG��(x; y) � d(x; y) 8 � 2 @X ; 8 x; y 2 X :

Lemma 3.5 For any � 2 @X, the directional distance BG�� is G-invariant.

Proof. Fix � 2 @X and let x; y 2 X. For any g 2 G we have

BG��(gx; gy) = sup
h2G

�
lim
t!1

(d(gx; h�(t))� d(gy; h�(t)))
�

= sup
h2G

�
lim
t!1

�
d(x; g�1h�(t))� d(y; g�1h�(t))

��
= BG��(x; y) ;

which shows that BG�� is G-invariant. 2

An easy consequence of the de�nition of BG�� and Corollary 1.15 is the following

Lemma 3.6 Let x; y 2 X and � 2 @X. Fix a Cartan decomposition G = Kea
+
K with

respect to x and �, and let H� denote the Cartan projection of � and ky an angular

projection of y. Then

BG��(x; y) = Bky�(x; y) :

Proof. Let H 2 a+ arbitrary. Using Corollary 1.15, we calculate for k 2 K

Bk�(x; eHx) = lim
s!1

�
d(x; �x;k�(s))� d(eHx; �x;k�(s))

�
= lim

s!1

�
d(x; keH�sx)� d(eHx; keH�sx)

�
� lim

s!1

�
d(x; eH�sx)� d(eHx; eH�sx)

�
= B�(x; eHx) :

The compactness of K and Bk�(x; eHx) = B�(x; eHx) for k = id imply

max
k2K

Bk�(x; eHx) = B�(x; eHx) :

Since K acts transitively on G��, we further deduce

BG��(x; eHx) = max
k2K

Bk�(x; eHx) = B�(x; eHx) :
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Now let y 2 X arbitrary, ky 2 K an angular projection andHy 2 a+ the Cartan projection

of y. By G-invariance and the calculations above we obtain

BG��(x; y) = BG��(x; kyeHyx) = BG��(k�1y x; eHyx) = BG��(x; eHyx)

= B�(x; eHyx) = Bky�(kyx; kye
Hyx) = Bky�(x; y) ;

where the �rst equality in the second line follows directly from the de�nition of the

Buseman function. 2

Proposition 3.7 For arbitrary � 2 @X, BG�� is a (possibly nonsymmetric) G-invariant

pseudo distance on X.

Proof. Fix � 2 @X and let x; y; z 2 X. The G-invariance was proved in Lemma 3.5.

The triangle inequality is an easy consequence of the cocycle relation

BG��(x; y) = sup
g2G

Bg�(x; y) = sup
g2G

(Bg�(x; z) + Bg�(z; y))

� sup
g2G

Bg�(x; z) + sup
g2G

Bg�(z; y) = BG��(x; z) + BG��(z; y) :

It remains to show that BG��(x; y) � 0. In order to do so, we �x a Cartan decomposition

G = Kea
+
K with respect to some base point x0 2 X and � 2 @X as above. Then for any

H 2 a+ we have by Lemma 3.6 and Lemma 3.2

BG��(x0; eHx0) = B�(x0; eHx0) = hH�; Hi � 0 ;

because two vectors in the closure of the same Weyl chamber cannot have an angle larger

than �=2. If x; y 2 X are arbitrary, then there exists g 2 G such that gx = x0. Using the

Cartan decomposition, we may write gy = keHx0 and obtain by G-invariance

BG��(x; y) = BG��(gx; gy) = BG��(x0; keHx0) = BG��(x0; eHx0) � 0 : 2

Lemma 3.8 For any � 2 @X, x; y 2 X we have BG��(y; x) = B�(G��)(x; y). In particular

BG�� is symmetric if and only if either the opposition involution � = id or G � � is the

barycentral boundary component.

Proof. Let � 2 @X and �x a Cartan decomposition G = Kea
+
K with respect to some

base point x0 2 X and � 2 @X. Since the directional distance is G-invariant, it suÆces to

prove the claim for x = x0 and y = eHx0, where H 2 a+. If H� 2 a
+
1 denotes the Cartan

projection of �, we obtain by G-invariance and Lemma 3.6

BG��(eHx0; x0) = BG��(x0; e�Hx0) = BG��(w�x0; e
�Ad(w�)Hx0) = hH�;�Ad(w�)Hi

= h�Ad(w�)H�; Hi = h�(H�); Hi = B�(G��)(x0; eHx0) :

In particular, the symmetry of BG�� is equivalent to hH�; Hi = h�(H�); Hi 8H 2 a+ ;

which proves the last assertion. 2
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Lemma 3.9 For � 2 @Xreg, BG�� is a (possibly nonsymmetric) distance.

Proof. The same arguments as in the proof of the previous lemma show that BG�� is a
distance if and only if for arbitrary H 2 a+

BG��(x0; eH �x0) = 0 =) H = 0 :

Now hH�; Hi = 0 implies H = 0 or H ? H�. Since � 2 @Xreg, the latter case cannot

occur. 2

3.3 Properties of the directional distance

The following lemma will characterize the directional distance in X = G=K in terms of a

Cartan decomposition G = Kea
+
K. Let x0 2 X be the unique point stabilized by K.

Lemma 3.10 Let � 2 @X, x; y 2 X, and g 2 G such that x = gx0. Then

BG��(x; y) = d(x; y) �max
k2K

cos\x(y; gk�) = d(x; y) � sup
h2G

cos\x(y; h�) :

Proof. We �rst prove the claim for x = x0, y = eHx0, where H 2 a+. Let H� 2 a
+
1 denote

the Cartan projection of �. Using Lemma 3.6, Lemma 3.2 and Lemma 1.14 , we calculate

BG��(x0; eHx0) = B�(x0; eHx0) = hH�; Hi
= max

k2K
hAd(k)H�; Hi = kHk �max

k2K
cos\x0

(eHx0; k�) :

Let x; y 2 X and g 2 G such that x = gx0. Then by the Cartan decomposition there

exists H 2 a+ such that y = geHx0. The equality \x(y; gk�) = \gx0
(geHx0; gk�) =

\x0
(eHx0; k�) and G-invariance imply

BG��(x; y) = BG��(x0; eHx0) = kHk �max
k2K

cos\x0
(eHx0; k�)

= d(x; y) �max
k2K

cos\x(y; gk�) = d(x; y) � sup
h2G

cos\x(y; h�) :

2

Similarly as in the case of the Riemannian distance in X = G=K, we may de�ne a Buse-

man function for the directional distance BG��, � 2 @X. Before we state Proposition 3.12,

we need a preliminary lemma.

Lemma 3.11 Let ~� � �, � � ~�, � 2 @X� and � 2 @X
~�. Suppose there exists a Weyl

chamber C0 � X such that � and � belong to the closure C0 of C0 in X. Then for any

Weyl chamber C � X, � 2 C implies � 2 C.
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Proof. Using the identi�cation @XF �= K=M , we let k0M 2 K=M denote the asymptote

class of C0 in @XF . Then � 2 C0 \@X� implies �B(�) = k0M�, and � 2 C0 \@X
~� implies

�B(�) = k0M~�.

Now let C � X be a Weyl chamber such that � 2 C \ @X�. If kM 2 K=M denotes

the asymptote class of C in @XF , we obtain �B(�) = kM� by the assumption. Therefore

k�1k0 2 M� which implies k�1k0 2 M~�, since M� is a closed subgroup of M~�. Hence

�B(�) = k0M� = kM�. 2

Proposition 3.12 Let (yn) � X be a sequence converging to � 2 @X in the cone topol-

ogy. Let � � � such that � 2 @X�, and ~� � �, ~� � �. Then for any � 2 @X
~�, the

functions

BG��(x0; yn)� BG��(�; yn)

converge in the space of continuous functions C0(X) endowed with the topology of uniform

convergence on compact sets to B��(x0; �) ; where �� 2 @X is the unique element in G � �
such that � and �� are points in the closure of a common Weyl chamber at in�nity..

Proof. Let x 2 X arbitrary, (yn) � X a sequence converging to �, and (kn) � K a

corresponding sequence of angular projections. By Lemma 3.6, we have

BG��(x0; yn) = Bkn�(x0; yn) 8n 2 N :

If k0 2 K denotes an angular projection of �, Lemma 2.9 shows that kn converges to k0
in K=M�. Since M� � M~� is a closed subgroup, this implies that kn converges to k0 in

K=M~�, and therefore kn� converges to a point k0� 2 G��. Since k0� and � have the same

angular projection, the closure of every Weyl chamber in X asymptotic to k0M contains

both k0� and �.

Similarly, there exists a sequence (�n) � G �� converging to a point �0 2 G �� with the

following properties.

BG��(x; yn) = B�n(x; yn) 8n 2 N ;

and there exists a Weyl chamber C � X such that � and �0 belong to the closure of C in

X. By the previous lemma, the closure of C also contains k0�, hence �0 = k0� = ��.

By de�nition of BG�� and the cocycle relation for the Buseman function we conclude

B��(x0; x) = lim
n!1

Bkn�(x0; x) = lim
n!1

(Bkn�(x0; yn)� Bkn�(x; yn))

� lim
n!1

(BG��(x0; yn)� BG��(x; yn))

� lim
n!1

(B�n(x0; yn)� B�n(x; yn)) = lim
n!1

B�n(x0; x) = B��(x0; x)

and therefore limn!1 (BG��(x0; yn)� BG��(x; yn)) = B��(x0; x).

The uniform convergence on compact sets is a consequence of Lemma 3.1 and Lemma 2.9

applied to the sequence zn := kne
hHn;H�iH�x0, where Hn 2 a+ denotes the Cartan projec-

tion of yn. 2



3.4. MAXIMAL SINGULAR DIRECTIONS AND ROOTS 35

3.4 Maximal singular directions and roots

For this section, we �x a Cartan decomposition G = Kea
+
K for X = G=K and choose

a fundamental set of roots �. Let x0 2 X denote the unique point stabilized by K. For

1 � i � r we put �i := � n f�ig. Then dim a
�i

= 1, and we give the following

Definition 3.13 The i-th maximal singular direction Hi 2 a
+
1 is the unique vector which

spans a
�i

. The boundary subset @X i := @X�i � @X is called the i-th maximal singular

boundary component.

These maximal singular boundary components give rise to the de�nition of special direc-

tional distances which we will need in chapters 6 and 7.

Definition 3.14 If �i 2 @X i, then G��i = @X i, and we de�ne the i-th singular distance

di : X �X ! [0;1)

(x; y) 7! BG��i(x; y) :

Since the set of maximal singular directions spans a and belongs to a+, every element

H 2 a+ can be written as a linear combination of the Hi with nonnegative coeÆcients,

which depend only on the root system of (g; a). We therefore introduce for 1 � i � r the

linear functionals
ci : a+ ! [0;1)

H 7! ci(H)

uniquely determined by the condition H =
P

r

i=1 c
i(H)Hi for H 2 a+. For Riemannian

products X = X1�X2�� � ��Xr of rank one symmetric spaces Xi, the maximal singular

directions form an orthonormal base and we have ci = hHi; �i. In this case the i-th singular
distance di(x; y) equals the distance in Xi of the projections of x and y to the factor Xi.

This implies di(x; y) = 0 for every pair of points x; y 2 X which project to the same point

in Xi.

For �xed i 2 f1; 2 : : : rg, we introduce the coeÆcients ql
i
, 1 � l � r, uniquely determined

by the equation hHi; �i =
P

r

l=1 q
l

i
�l. If H 2 a

+
1 denotes the Cartan projection of a point

y 2 X, we have the following formula for the maximal singular distances

di(x0; y) =

 
rX
l=1

ql
i
�l(H)

!
d(x0; y) ; 1 � i � r :

As an easy consequence of Proposition 3.12 concerning the Buseman functions for the

directional distance we obtain the following

Proposition 3.15 Let � � � arbitrary, and (yn) � X a sequence converging to � 2
@X� in the cone topology. Then for any i 2 f1; 2; : : : ; rg with � � �i, the functions

di(x0; yn)� di(�; yn) converge in the space of continuous functions C0(X) to B�i(x; �) with
respect to the topology of uniform convergence on compact sets. Here �i 2 @X i denotes the

unique element such that � and �i are points in the closure of a common Weyl chamber

at in�nity.
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3.5 The case SL(n;R )=SO(n)

In this section, we illustrate the above notions for SL(n;R)=SO(n), endowed with the

left invariant metric described in section 1.6. We use the standard choice of positive Weyl

chamber

a
+ = fDiag(t1; t2; : : : ; tn) j t1 > t2 > : : : > tn;

nX
i=1

ti = 0g ;

and, in order to get a more symmetric parametrization of a+, introduce the endomorphism

D : R
r ! a

x 7! Diag(d1(x); d2(x); : : : ; dn(x)) ;

where

di(x) =

rX
j=1

(r � j + 1)xj � (r + 1)

i�1X
j=1

xj =

rX
j=i

(r + 1)xj �
rX

j=1

jxj ; 1 � i � r : (3.1)

We remark that every element in a+ can be written as the image under D of a vector in

R
r with nonnegative components. The barycenter H� 2 a

+ is given by

H� =
D(1; 1; : : : ; 1)

kD(1; 1; : : : ; 1)k
;

the i-th maximal singular direction equals the image of the i-th standard base vector ei
in Rr under the map D divided by its norm

Hi =
D(ei)

kD(ei)k
:

If H = D(x) =
P

r

i=1 xiD(ei) 2 a+, we easily calculate

ci(H) = xikD(ei)k � 0 for 1 � i � r :

Lemma 3.16 Let H;H 0 2 a+ n f0g. Then hH;H 0i > 0 :

Proof. Since H;H 0 2 a+, there exist vectors x; y 2 Rr nf0g with nonnegative components
such that H = D(x) =

P
r

i=1 xiD(ei) and H 0 = D(y) =
P

r

i=1 yiD(ei). Then

hH;H 0i =
rX
l=1

rX
k=1

xlykhD(el); D(ek)i : (3.2)

We calculate hD(el); D(ek)i for 1 � l < k � r. Using (3.1) and n = r + 1, we obtain

hD(el); D(ek)i =

nX
i=1

di(el)di(ek) =

lX
i=1

(r + 1� l)(r + 1� k) +

kX
i=l+1

(�l)(r + 1� k)

+

nX
i=k+1

(�l)(�k) = l(n� l)(n� k)� (k � l)l(n� k) + (n� k)lk

= (n� k)(ln� l2 � kl + l2 + lk) = (n� k)ln � n > 0 :



3.6. ANGLE ESTIMATES IN SYMMETRIC SPACES 37

For 1 � k < l � r we have D(el); D(ek)i = hD(ek); D(el)i � 0 by the above argument, if

1 � k = l � r, then D(el); D(ek)i = kD(el)k2 > 0.

Now assume xlyk = 0 for all 1 � l; k � r. Since H 6= 0, there exists l0 2 f1; 2; : : : ; rg such
that xl0 6= 0. Then xl0yk = 0 for all 1 � k � r implies yk = 0 for any 1 � k � r which

is impossible by H 0 6= 0. Hence there exists k0 2 f1; 2; : : : ; rg such that xl0yk0 > 0. We

conclude from (3.2) hH;H 0i � xl0yk0hD(el0); D(ek0)i > 0 : 2

A consequence of the previous lemma and the proof of Lemma 3.9 is the following

Corollary 3.17 If X = SL(n;R)=SO(n), then for any � 2 @X, BG�� is a (possibly

nonsymmetric) distance.

3.6 Angle estimates in symmetric spaces

The last result of this chapter will be needed in chapters 6 and 7. For x; y 2 X, x 6= y,

and � 2 @X we put

\x(y;G��) := inf
g2G

\x(y; g�) :

Lemma 3.18 Let x; y; x; y 2 X, R := minfd(x; y); d(x; y)g, c := d(x; x) + d(y; y).

Suppose 0 � '1 < \x(y;G��) < '2 � �=4. Then

\x(y;G��) >
1

2
'1 if R �

12c

'2
1

;

\x(y;G��) < 2'2 if R �
4c

'2
2

:

Proof. We are going to use the estimate for the cosine

1�
'2

2
� cos' � 1�

'2

2
+
'4

24

which is valid for ' 2 [�5; 5]. Using the triangle inequality and the inequality 1
1�s � 1+2s

for s � 1
2
, we compute

cos\x(y;G��) =
BG��(x; y)
d(x; y)

�
BG��(x; y)

d(x; y)� d(x; x)� d(y; y)
+
BG��(x; x) + BG��(y; y)

d(x; y)

<
cos'1

1� C

R

+
c

R
� cos'1

�
1 +

2c

R

�
+

c

R
:

If R � 12c
'21

we further conclude

cos\x(y;G��) � 1�
'2
1

2
+
'4
1

24
+
2c

R
�
c'2

1

R
+

c'4
1

12R
+

c

R

� 1�
'2
1

4
+
'4
1

24
+

'6
1

144
� 1�

'2
1

8
� cos

'1

2
:



38 CHAPTER 3. DIRECTIONAL DISTANCES AND ANGLES

To prove the upper bound we estimate

cos\x(y;G��) =
BG��(x; y)
d(x; y)

�
BG��(x; y)

d(x; y) + d(x; x) + d(y; y)
�
BG��(x; x) + BG��(y; y)

d(x; y)

>
cos'2

1 + c

R

�
c

R
� cos'2

�
1�

c

R

�
�

c

R
;

since 1
1+s

� 1� s for s > �1. If R � 4c
'22

we obtain

cos\x(y;G��) � 1�
'2
2

2
�

c

R
+
c'2

2

2R
�

c

R
� 1�

'2
2

2
�
2c

R

� 1� '2
2 � 1� 2'2

2 +
2

3
'4
2 � cos(2'2): 2



Chapter 4

Dynamics of isometries

In this chapter, we de�ne the limit set of discrete isometry groups of globally symmetric

spaces X of noncompact type. We further introduce the radial limit set, an important

subset of the limit set.

We then give a geometric classi�cation and an algebraic characterization of individual

isometries, describe some of their dynamical properties and relate their �xed points to

the limit set.

4.1 The limit set

Definition 4.1 A subgroup � of the isometry group of a globally symmetric space X of

noncompact type is called discrete, if the orbit ��x of a point x 2 X is discrete in X.

The limit set L� of � is de�ned by L� := ��x \ @X ; x 2 X :

Remark. If ��x is discrete in X for some point x 2 X, then ��y is discrete in X for any

y 2 X. Furthermore, the limit set is independent of the choice of x 2 X.

Note that the above de�nitions can be extended to isometry groups of any Hadamard

manifold. For our purposes, we will need a precise description of the possible limit points

of discrete groups of isometries � � G = Isomo(X) in the case of a globally symmetric

space X of noncompact type.

Definition 4.2 The equivalence class [C] 2 @XF is called a radial limit Weyl chamber for

the action of �, if and only if there exists a sequence (
j) � � such that (
jx), x 2 X,

remains at a bounded distance of every Weyl chamber asymptotic to C.

We remark that the set of radial limit Weyl chambers equals the set L0� de�ned by P. Al-

buquerque ( [Al]). This notion, however, is too coarse for the study of the limit set in the

geometric boundary.

39
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Definition 4.3 We call a boundary point � 2 @X a radial limit point for the action

of �, if and only if there exists a sequence (
j) � � and a Weyl chamber C � X with

� 2 C \ @X such that for any y 2 X the sequence (
jy) remains at a bounded distance of

C and converges to � in the cone topology. The set of radial limit points in @X is called

the radial limit set of � and will be denoted by Lrad

� .

Notation. If x 2 X, � 2 @Xreg, let Cx;� � X denote the unique open Weyl chamber

with apex x which contains the geodesic ray �x;�, and Cx;� its closure in X.

We will now give equivalent de�nitions for radial limit points.

Lemma 4.4 Let x; y 2 X arbitrary. A boundary point � 2 @X belongs to the radial limit

set Lrad

� if and only if there exists a constant c > 0 and � 2 @Xreg such that � 2 Cx;� and

if for any ' > 0 in�nitely many 
 2 � satisfy

d(
y; Cx;�) < c and \x(
y;G��) < ' :

Proof. Let x; y 2 X arbitrary and � 2 Lrad

� . Then there exists a sequence (
j) � � and a

Weyl chamber C � X with � 2 C such that d(
jy; C) remains bounded and 
jy converges

to � in the cone topology. Choose � 2 C \ @Xreg. Then C is asymptotic to Cx;� and there

exists a constant c > 0 such that d(
jy; Cx;�) < c for all j 2 N .

Let ' 2 (0; �=4) arbitrary. The convergence of (
jy) to � implies that for any R >> 1,

" < R

2
' there exists N0 2 N such that for j > N0 we have d(x; 
jy) > R and

d(�x;
jy(R); �x;�(R)) < " <
R

2
' :

Using comparison with Euclidean geometry, we estimate

R2

4
'2 > d(�x;
jy(R); �x;�(R))

2 � R2 +R2 � 2R2 cos\x(
jy; �) ;

which, together with \x(
jy;G��) = infg2G\x(
jy; g�), implies

cos\x(
jy;G��) � cos\x(
jy; �) > 1�
1

8
'2

� 1�
1

2
'2 +

1

24
'4 > cos' :

Conversely, let � 2 @Xreg such that � 2 Cx;� \@X. By hypothesis, there exists a sequence

(
j) � � such that d(
jy; Cx;�) is bounded and \x(
jy;G��) ! 0 as j ! 1. It remains

to show that 
jy converges to � in the cone topology. Let R >> 1, " > 0 arbitrary and

put dj := d(x; 
jy). For j suÆciently large, we have d(x; 
jy) > R, because � is discrete.

Choose a sequence (�j) � Cx;� such that d(
jy; Cx;�) = d(
jy; �x;�j). Using the convexity

of the distance function and the fact, that the triangle �(x; �j; �) is 
at, we conclude

d(�x;
jy(R); �x;�(R)) � d(�x;
jy(R); �x;�j(R)) + d(�x;�j(R); �x;�(R))

�
R

dj
d(
jy; �x;�j(dj)) + R\x(�j; �) : (4.1)
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Next let tj > 0 such that d(
jy; �x;�j(tj)) = d(
jy; �x;�j). Then by the triangle inequality

dj = d(x; 
jy) � d(x; �x;�j(tj)) + d(�x;�j(tj); 
jy) � tj + c ;

and dj � tj � c, which gives

d(
jy; �x;�j(dj)) � d(
jy; �x;�j(tj)) + d(�x;�j(tj); �x;�j(dj)) � 2c :

Hence for j suÆciently large, we have R

dj
d(
jy; �x;�j(dj)) �

R

dj
2c < "

2
and R\x(�j; �) <

"

2
,

because \x(
jy;G��) = \x(�j; �) tends to zero as j !1. Hence (4.1) and the fact that

dj !1 as j !1 prove that 
jy converges to � in the cone topology. 2

The following corollary relates our de�niton of the radial limit set to a common de�ni-

tion in the case of Hadamard manifolds with a negative upper bound for the sectional

curvature.

Corollary 4.5 Let x; y 2 X arbitrary. If rank(X)=1, then � 2 Lrad

� if and only if there

exists a constant c > 0 such that in�nitely many 
 2 � satisfy

d(
y; �x;�) < c :

Proof. Let x; y 2 X arbitrary and � 2 Lrad

� . In rank one spaces, Weyl chambers reduce

to geodesic rays and the �rst condition in Lemma 4.4 therefore implies the assertion.

Conversely, if d(
y; �x;�) is bounded for in�nitely many 
 2 �, there exists a sequence

(
j) � � such that (
jy) remains at bounded distance of a geodesic ray asymptotic to �.

In particular, 
jy converges to � in the cone topology. 2

Given a Cartan decomposition G = Kea
+
K for X = G=K with respect to some point

x0 2 X, we have the following characterization of radial limit points.

Corollary 4.6 Let � � �. The boundary point � = (k�; H�) 2 @X� is a radial limit

point for the action of � if and only if there exists a constant c > 0 and m 2 M� such

that for any ' > 0 in�nitely many 
 2 � satisfy

d(
x0; k�mk
�1
�
ea

+

x0) < c and \(H
; H�) < ' :

Here H
 2 a
+
1 denotes the unit length Cartan projection of 
x0.

Proof. Let � 2 Lrad

� , � � � such that � 2 @X�, and ' 2 (0; �=4) arbitrary. Lemma 4.4

implies the existence of c > 0, a point � 2 @Xreg such that � 2 Cx0;� and in�nitely many


 2 � satisfy

d(
x0; Cx0;�) < c and \x0
(
x0; G��) < ' :

Furthermore, if k� 2 K denotes an angular projection of �, then � = (k�; H�) 2 Cx0;�
implies that k� belongs to the parabolic subgroup which stabilizes �. Hence k� = k�mk

�1
�

for some m 2M�. The �rst part of the statement now follows from Cx0;� = k�e
a
+

x0. For

the second assertion we simply remind of the fact cos\x0
(
x0; G��) = hH
; H�i :
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Conversely, let x; y 2 X, � � � such that � = (k�; H�) 2 @X�, and m 2 M�. By the

assumption, there exists a sequence (
j) � � with Cartan projections (Hj) � a+ such

that d(
jx0; k�mk
�1
�
ea

+

x0) < c for some constant c > 0, and hHj; H�i ! 1.

Choose H� 2 a
+
1 , put k� := k�mk

�1
�

and � := (k�; H�) 2 @Xreg. Then Cx0;� = k�e
a
+

x0,

and the Weyl chambers Cx0;� and Cx;� have bounded Hausdor� distance d � 0 since they

are asymptotic. Therefore

d(
jy; Cx;�) � d(
jy; 
jx0) + d(
jx0; Cx0;�) + d < d(y; x0) + c+ d =: c0 :

Using the directional distance from section 3.2, we further conclude from the triangle

inequality and the remark after De�nition 3.4

cos\x(
jy;G��) =
BG��(x; 
jy)
d(x; 
jy)

�
BG��(x0; 
jx0)� BG��(x0; x)� BG��(
jy; 
jx0)

d(x0; 
jx0) + d(x0; x) + d(x0; y)

�
hHj; H�i � d(x0;y)+d(x0;x)

d(x0;
jx0)

1 +
d(x0;y)+d(x0 ;x)

d(x0;
jx0)

! 1 as j !1 ;

hence the proof is complete. 2

4.2 Convergence in horospherical coordinates

Fix a Cartan decomposition G = Kea
+
K of X = G=K with respect to to the base point

x0 2 X and some regular boundary point. Let � � � denote a subset of some fundamental

set of roots �. Lemma 2.9 and its proof show, that a sequence (yj) � X[@X converges to

� = (k�; H�) 2 @X� in the cone topology, if and only if d(x0; yj)!1, if every sequence

of angular projections (kj) � K of (yj) converges to k� in K=M�, and if the sequence of

Cartan projections (Hj) � a
+
1 converges to H�.

Similarly, every sequence of angular projections (kj) � K of a sequence (
jx) � X

remaining at bounded distance of a Weyl chamber in the asymptote class k0M 2 K=M �=
@XF , converges to k0M in K=M . We are now going to derive similiar properties for

sequences converging towards a radial limit point in terms of horospherical coordinates.

Lemma 4.7 Suppose (
jy) � X, y 2 X, is a sequence converging towards a radial limit

point � 2 @X at bounded distance of a Weyl chamber C � X with � 2 C. Fix an Iwasawa

decomposition G = N+AK with respect to x0 2 X and the asymptote class of C in @XF .

Then the horospherical projections (nj) � N+ and the Iwasawa projections (Hj) � a of

(
jy) satisfy

d(e�Hjnje
Hjx0; x0) � const ; kHjk ! 1 ; \x0

(eHjx0; �)! 0 as j !1 :

Proof. Let G = N+AK be the Iwasawa decomposition as in the statement of the lemma.

Since the Weyl chamber C0 := ea
+

x0 � X is asymptotic to C, the sequence (
jy) remains at
a bounded distance of C0. Hence there exists a constant c > 0 and a sequence (Hj) � a

+
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such that d(
jy; e
Hjx0) < c. Writing 
jy := nje

Hjx0 in horospherical coordinates, we

obtain by Lemma 1.11

d(eHjx0; e
Hjx0) � d(nje

Hjx0; e
Hjx0) < c

and therefore

d(nje
Hjx0; e

Hjx0) � d(nje
Hjx0; e

Hjx0) + d(eHjx0; e
Hjx0) < 2c ; (4.2)

which proves the �rst claim of the lemma.

We next show that kHjk ! 1. Suppose the contrary, and put a := supj2N kHjk. Then

d(x0; njx0) � d(x0; nje
Hjx0)� d(nje

Hjx0; njx0)

= d(x0; 
jy)� kHjk � d(x0; 
jy)� a ! 1 as j !1 : (4.3)

Let " > 0 arbitrary small. By (4.2), for any j 2 N there exists a curve cj : [0; 1] ! X,

cj(t) := n(t)eH(t)x0, such that cj(0) = eHjx0, cj(1) = nje
Hjx0 andZ 1

0

k _cj(t)kdt < d(eHjx0; nje
Hjx0) + " < 2c+ " :

In particular, we have kHj �H(t)k = d(eHjx0; e
H(t)x0) � d(eHjx0; cj(t)) < 2c + " for all

t 2 [0; 1], and therefore by the Cauchy Schwartz inequality

�(H(t)) = �(Hj) + �(H(t)�Hj) � k�k (kHjk+ kH(t)�Hjk)
� k�k (a + 2c+ ") 8� 2 �+ :

Put Zj(t) := DLn(t)�1
d

ds

��
s=t

n(s) 2 n
+, and a0 := max�2�+ k�k (a + 2c+ "). Using the

pullback metric ��g from section 1.3 on N+Ax0, we estimate

k _cj(t)k2 �
1

2
e�2a0hZj(t); Zj(t)i

and obtain by (4.3)

2c+ " > d(nje
Hjx0; e

Hjx0) + " � e�a0d(njx0; x0)!1 ;

a contradiction. We conclude kHjk ! 1.

The third assertion follows as in Lemma 2.9 from the fact that 
jy converges to � in the

cone topology. 2

Corollary 4.8 Let (
jy) � X, y 2 X, be a sequence converging to a radial limit point

� 2 @X at bounded distance of a Weyl chamber C � X such that � 2 C. Fix an Iwasawa

decomposition G = N+AK with respect to x0 2 X and the asymptote class of C in @XF ,

and write 
jy = nje
Hjx0 in horospherical coordinates. Then

dN(nj; id) � const � max
�2�+

e�(Hj ) as j !1 ;

where dN denotes the left invariant distance on N+ as described in section 1.3.
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Proof. Inequality (4.2) and the calculations in the proof of the previous lemma show that

for �j := max�2�+ �(Hj) and a := max�2�+ k�k(2c+ ") we have

2c+ " > d(nje
Hjx; eHjx) + " >

Z 1

0

k _cj(t)kdt �
1
p
2
e��j�a

Z 1

0

q
hZj(t); Zj(t)idt :

We conclude dN(nj; id) �
R 1
0

p
hZj(t); Zj(t)idt <

p
2e�jea(2c+ ") and therefore, by the

de�nition of �j,

dN(nj; id) � const �max�2�+ e�(Hj) as j !1. 2

4.3 Classi�cation of isometries

In this section, we classify geometrically individual isometries of a globally symmetric

space X of noncompact type. As in [BGS], chapter 6, we introduce the displacement

function of 
 2 Isom(X)

d
 : X ! R

x 7! d(x; 
x) :

Definition 4.9 Let 
 be a nontrivial isometry of X. We call 
 elliptic, if 
 �xes a point

in X, axial, if d
 assumes the in�mum and minx2X d
(x) > 0.

We call 
 strictly parabolic, if d
 does not assume the in�mum and infx2X d
(x) = 0, mixed

parabolic, if d
 does not assume the in�mum and infx2X d
(x) > 0.

A parabolic isometry is a strictly parabolic or a mixed parabolic isometry.

The following propositions summarize a few properties of individual isometries of a glob-

ally symmetric space X of noncompact type. The proofs can be found in [Ba], chapter II.

Proposition 4.10 ( [Ba], chapter II, Proposition 3.2) An isometry 
 2 Isom(X) n fidg
is elliptic if and only if 
 has a bounded orbit.

Proposition 4.11 ( [Ba], chapter II, Proposition 3.3) An isometry 
 2 Isom(X) n fidg
is axial if and only if there exists a unit speed geodesic � and a number l
 > 0 such that


(�(t)) = �(t + l
) for all t 2 R.

Proposition 4.12 ( [Ba], chapter II, Proposition 3.4) If 
 2 Isom(X)nfidg is parabolic,
then there exists a point � 2 @X such that 
 �xes � and B�(x; 
x) = 0 for all x 2 X.

We remark that the above de�nitions and propositions can be extended to isometries of

Hadamard manifolds. As a matter of fact, the statements in [Ba], chapter II, are given in

this more general context.

In the case of a globally symmetric space X = G=K of noncompact type, an Iwasawa

decomposition G = N+AK gives rise to a natural algebraic characterization of certain

individual isometries.
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Definition 4.13 An isometry 
 2 G n fidg is called elliptic, if it is conjugate to an

element in K, hyperbolic, if it is conjugate to an element in A, and unipotent, if it is

conjugate to an element in N+.

The following lemma relates these de�nitions to the geometric classi�cation as above.

Lemma 4.14 
 2 G n fidg is conjugate to an element in K if and only if 
 �xes a point

in X. Hyperbolic isometries are axial, unipotent isometries are strictly parabolic.

Proof. The �rst assertion is trivial, because the stabilizer of any point in X is conjugate

to K, the stabilizer of x0 2 X. The remaining assertions will be corollaries of Proposi-

tions 4.17 and 4.21. 2

4.4 Properties of parabolic isometries

In this section we recollect a few properties of parabolic isometries of a globally symmetric

space X = G=K of noncompact type with base point x0 2 X corresponding to K.

Proposition 4.12 implies that every parabolic isometry possesses a �xed point in @X� for

some subset � � �.

Definition 4.15 We call 
 �-parabolic, if 
 �xes a point in @X�, but not in @X
~� for

any ~� � �. If 
 �xes a regular point, we call 
 regular parabolic.

We remark that unipotent isometries are regular parabolic. If 
 is parabolic with �xed

point � 2 @X as in Proposition 4.12, then the limit set of the cyclic group h
i generated
by 
 is contained in the boundary of every horosphere centered at �.

Note that in rank one spaces X, a parabolic isometry 
 possesses a unique �xed point �

in the geometric boundary @X. Furthermore, for any � 2 @X the sequences (
j�) and

(
�j�) converge to � (see [DaK]). Since the geometric boundary is a disjoint union of

only two Bruhat cells @X = Vis1(�) [ f�g, this is equivalent to the statement that the

limits of (
j�) and (
�j�) do not belong to Vis1(�). Unfortunately, this remains no longer

true in higher rank symmetric spaces. For unipotent isometries, however, we have similar

dynamics on the geometric boundary.

Proposition 4.16 Let 
 be a unipotent isometry, and � 2 @X a �xed point of 
. Then

either 
 �xes �x0;�(�1), or, for any � 2 Vis1(��), the limits of the sequences (
j�),

(
�j�) � @X do not belong to Vis1(��).

Proof. Fix a Cartan decomposition G = Kea
+
K and an Iwasawa decompositon G =

N+AK of X = G=K with respect to x0 and �. Let � � � such that � 2 @X�. Then

the Cartan projection H� of � belongs to a
�
1 and 
 2 N+ n fidg. By Corollary 2.14,

� 2 Vis1(��) implies the existence of n0 2 N+
� such that � = n0�x0;��(�1). Write


 = exp(
X
�2�+

Y�) ; n0 = exp(
X

�2�+nh�i+
Z�) ; Y�; Z� 2 g� :
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Suppose Y� = 0 for all � 2 �+ nh�i+. Then for all H 2 a
� we have eH
e�H = 
, because

ad(H)Z = 0 for every Z 2
P

�2h�i+ g�. We conclude

d(�x0;�(�t); 
�x0;�(�t)) = d(x0; e
H�t
e�H�tx0) = d(x0; 
x0)

for any t 2 R. In particular, 
 �xes �x0;�(�1).

If 
 does not �x �x0;�(�1), we choose � 2 �+ n h�i+ such that k�k � k�k for any

� 2 �+ n h�i+ with the property Y� 6= 0. For j 2 N , we write


�jn0 = exp(
X
�2�+

Y (�j)
�

) ; Y (�j)
�

2 g� :

Then [g�; g�0] � g�+�0 8�; �0 2 �+ and the Campbell Hausdor� formula imply

Y
(�j)
�

= �jY� + Z� + f(n0) ;

where f(n0) 2 g� is a term consisting of successive Lie brackets of the Z�. In particular,

kf(n0)k is bounded, and therefore kY (j)

�
k and kY (�j)

�
k tend to in�nity as j ! 1. This

implies limj!1 
jn0 =2 N+
� and limj!1 
�jn0 =2 N+

� .

Suppose �+ := limj!1 
j� 2 Vis1(��). Then by Corollary 2.14, there exists n 2 N+
�

such that �+ = n�x0;��(�1). Since 
j� = 
jn0�x0;��(�1) this is impossible because

limj!1 
jn0 =2 N+
� . Analogously, we obtain limj!1 
�j� =2 Vis1(��). 2

Using Proposition 4.12 we will now give an equivalent de�nition for regular parabolic

isometries in terms of an Iwasawa decomposition G = N+AK.

Proposition 4.17 Let G = N+AK be an Iwasawa decomposition of G. An isometry


 2 Gnfidg is regular parabolic, if and only if 
 is conjugate to nam, where n 2 N+nfidg,
m 2 M and a 2 A such that hlog a;Hi = 0 for some H 2 a

+
1 . Here log a denotes the

unique element in a with the property exp(log a) = a.

Proof. Let 
 2 G be regular parabolic. Then 
 possesses a �xed point � = (k;H) 2 @Xreg

by Lemma 4.14 and Proposition 4.12. This implies that 
 belongs to the stabilizer of �,

i.e. k
k�1 2 P = MAN+. Write 
 = knamk�1 with n 2 N+, a 2 A and m 2 M . If

n = id, then Proposition 4.21 will show that 
 is axial in contradiction to our assumption.

Therefore n 6= id.

We further conclude from B�(x0; 
x0) = 0 using Lemma 3.3

0 = B�(x0; knamk�1x0) = Bk�1�(x0; nax0) = hH; log ai :

Conversely, let 
 = nam, where n 2 N+nfidg, m 2M and a 2 A such that hlog a;Hi = 0

for some H 2 a
+
1 . Suppose there exists x 2 X such that d(x; 
x) = infx2X d
(x). Write

x = ~n~ax0 in horospherical coordinates and consider the unit speed geodesic �(t) :=

~n~aeHtx0. We compute

d(�(t); 
�(t)) = d(~n~aeHtx0; nam~n~aeHtx0)

= d(x0; e
�Ht~a�1~n�1nam~nm�1~aeHtx0) = d(x0; n(t)ax0) ;
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where n(t) := e�Ht~a�1~n�1nam~nm�1a�1~aeHt 2 N+ for any t 2 R.

Suppose n(0) = id. Then n(t) = id for all t 2 R and we have d(�(t); 
�(t)) = d(x0; ax0)

for all t 2 R. In particular, 
 �xes �(�1) 2 @Xreg which is impossible by n 6= id. Hence

n(0) 2 N+ n fidg. Furthermore, we have n(t)! id as t!1, hence by Corollary 1.11,

lim
t!1

d(�(t); 
�(t)) < d(�(0); 
�(0)) = d(x; 
x) :

The continuity of the function t 7! d(�(t); 
�(t)) now implies the existence of t0 > 0 such

that

d(�(t0); 
�(t0)) < d(x; 
x) ;

a contradiction to the choice of x 2 X. Hence infx2X d
(x) is not assumed. 2

4.5 Description of axial isometries

We begin this section with a few de�nitions concerning axial isometries of a globally

symmetric space X of noncompact type.

Definition 4.18 Let 
 2 Isom(X) n fidg be axial. The number l
 := minx2X d(x; 
x) is

called the translation length of 
, the set Ax(
) := fx 2 X j d(x; 
x) = l
g is called the

axis of 
.

Ax(
) is invariant under the action of the cyclic group h
i and consists of the set of all

geodesics translated by 
. The geometric boundary of Ax(
) equals the set of �xed points

Fix(
) of 
 in X.

Since an axial isometry 
 translates along some geodesic, Fix(
) consists of at least two

points in the geometric boundary @X. We will see in the following chapter, that these

two �xed points play an important role in the study of the dynamics of axial isometries.

Definition 4.19 If x 2 X, we call the limit of the sequence (
jx) as j !1 the attractive

�xed point of 
, and the limit of (
�jx) as j !1 the repulsive �xed point of 
.

It can be easily shown that this de�nition is again independent of the choice of x 2 X.

Since axial isometries translate along some geodesic, for x 2 Ax(
) there exists an element

Y
 2 TxX such that


x = eY
x 2 Ax(
) :

As a consequence of the rich algebraic structure of symmetric spaces, we may further

distinguish di�erent kinds of axial isometries by means of a second characteristic besides

the translation length. Let X be a globally symmetric space of noncompact type, �x

a Cartan decomposition G = Kea
+
K of G = Isomo(X) and let x0 2 X be the unique

point stabilized by K. Then every unit speed geodesic � : R ! X can be written in the

following form with a unique vector H 2 a
+
1

�(t) = geHtx0 ; g 2 G :
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Hence there exists a unique element L(
) 2 a
+
1 such that 
x = geL(
) l
x0 for some g 2 G

with gx0 = x.

Definition 4.20 We call L(
) 2 a
+
1 the translation direction of 
. If L(
) 2 a

+
1 , then 


is called regular axial, if L(
) 2 a
�
1 n
S

~�)� a
~� ; then 
 is called �-axial.

We are now going to give an equivalent de�nition for axial isometries of a globally sym-

metric space X = G=K of noncompact type with base point x0 corresponding to K in

terms of an Iwasawa decomposition G = N+AK.

Proposition 4.21 An isometry 
 2 G n fidg is axial with translation length l
 if and

only if 
 is conjugate to eHl
m, where H 2 a
+
1 and m 2 fk 2 K jAd(k)H = Hg.

Furthermore, H 2 a
+
1 equals the translation direction of 
.

Proof. (compare [E], Proposition 2.19.18 (3)) Let 
 2 G be axial, and let � be a geodesic

in X translated by 
. We �rst treat the case �(0) = x0 and N+AM�(1) = �(1). Then

there exists H 2 a
+
1 such that �(t) = eHtx0 for all t 2 R. By hypothesis

(
eHt)x0 = 
�(t) = �(t+ l
) = eHteHl
x0

for all t 2 R. We obtain


eHt = eHteHl
k(t) ; k(t) 2 K 8 t 2 R : (4.4)

Let � denote the smallest subset of � such that H 2 a
�. Since 
 �xes �, the isometry

T�(
) := limt!1 e�Ht
eHt exists by Proposition 2.6. Hence (4.4) implies the existence of

m := limt!1 k(t) 2 K and therefore

T�(
) = eHl
m : (4.5)

Now eHl
 commutes with eHs for any s 2 R, and, by de�nition of the map T�, we obtain

for any s 2 R

e�HsT�(
)e
Hs = lim

t!1
e�Hse�Ht
eHteHs = lim

t0!1
e�Ht0
eHt0 = T�(
) :

By (4.5) the element m commutes with eHs for all s 2 R. Proposition 2.7 further implies

that n := 
 (T�(
))
�1 2 N+

� , and from (4.5) we deduce


 = neHl
m :

Since 
, eHl
 and m �x both � and �(�1), it follows that n �xes � and �(�1). The

convex function t 7! d(�(t); n�(t)) is therefore bounded above on R and hence constant.

From the fact that n 2 N+
� , we deduce

d(�(t); n�(t)) = d(eHtx0; ne
Htx0) = d(x0; e

�HtneHtx0)! 0 as t!1 :



4.5. DESCRIPTION OF AXIAL ISOMETRIES 49

Therefore n �xes every point of �, including x0. This implies n = id, because N+
� \M� =

fidg by the uniqueness of the generalized Iwasawa decomposition Proposition 2.7. We

obtain


 = eHl
m = meHl
 :

If the invariant geodesic � of 
 is arbitrary, there exists g 2 G such that g�(0) = x0 and

g�(t) 2 ea
+
x0 for all t > 0. Furthermore, 
�(t) = �(t+l
) implies that the isometry g
g

�1

possesses an invariant geodesic as in the �rst part of the proof. Hence 
 = g�1eHl
mg for

some H 2 a
+
1 and m 2 fk 2 K jAd(k)H = Hg.

Furthermore, for x := �(0) = g�1x0 2 Ax(
) we have


x = g�1eHl
gg�1x0 = g�1eHl
x0 ;

hence, by de�nition, H equals the translation length of 
.

Conversely, let 
 be conjugate to eHl
m as above. The proof of Proposition 2.19.18 (3)

in [E] shows that there exists a point x 2 X where the displacement functions of eHl


and m both assume their minimum. From H 6= 0 and l
 > 0 it follows that d
 assumes a

positive minimum in X. 2

Fix an Iwasawa decomposition G = N+AK of G = Isomo(X). The �nal result of this

chapter shows that the attractive and repulsive �xed points of a �-axial isometry belong

to certain boundary components and are special radial limit points.

Lemma 4.22 Let � � �, and h be a �-axial isometry. Then the attractive �xed point

h+ belongs to @X�, and the repulsive �xed point h� belongs to Vis1(h+) � @X��

. Fur-

thermore, there exists a constant c > 0 such that for any t > 0 there exist isometries


+; 
� 2 hhi with the property

d(
+x0; �x0;h+(t)) < c and d(
�x0; �x0;h�(t)) < c :

Proof. Let l > 0 denote the translation length, and L 2 a
�
1 the translation direction of h.

By Proposition 4.21 there exists g 2 G and m 2 M� such that h = geLlmg�1. We have

hj = gejLlmjg�1 and compute

dj := d(x0; h
jx0) � d(gx0; h

jgx0)� d(x0; gx0)� d(hjgx0; h
jx0)

� d(x0; e
jLlx0)� 2d(x0; gx0) = jl � 2d(x0; gx0)!1 as j !1 :

Using the generalized Iwasawa decomposition with respect to �, we write g = knb with

k 2 K, n 2 N+
� and b 2 exp(p�). Then b commutes with ejLl, and e�jLlnejLl ! id as

j !1.
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In order to prove that hjx0 converges to (k; L) 2 @X� in the cone topology, we let R >> 1

and " > 0 arbitrary. Using the convexity of the distance function, we calculate

d(keLRx0; �x0;hjx0(R)) �
R

dj

�
d(keLdjx0; ke

jLlx0) + d(kejLlx0; ge
jLlx0) + d(gejLlx0; h

jgx0)

+d(hjgx0; h
jx0)

�
=

R

dj

�
jdj � jlj+ d(x0; e

�jLlnejLlbx0)

+d(ejLlx0; e
jLlmjx0) + d(gx0; x0)

�
�

R

dj

�
d(x0; e

�jLlnejLlbx0) + 3d(x0; gx0)
�
;

because, by the triangle inequality, jl � dj � jl+2d(x0; gx0) and d(e
jLlx0; e

jLlmjx0) = 0.

Since dj !1 and d(x0; e
�jLlnejLlbx0)! d(x0; bx0) as j !1, we conclude

d(keLRx0; �x0;hjx0(R)) < "

for suÆciently large j. Hence h+ := limj!1 hjx0 = (k; L) 2 @X�.

We have

h�1 = (geLlmg�1)�1 = gm�1e�Llg�1 = gw�1
� e�(L)lw�m

�1w�1
� w�g

�1 = ~ge�(L)l ~m~g�1 ;

where ~g = gw�1
� 2 G, ~m = w�m

�1w�1
� 2 M��. Writing ~g = ~k~n~b in generalized Iwasawa

coordinates with respect to �� and applying the �rst part of the proof to the ��-axial

isometry h�1, we deduce that h� := limj!1 h�jx0 = (~k; �(L)) 2 @X��

.

Next let � be an invariant geodesic of h. Then hj�(t) = �(t + jl) for all j 2 Z, and

therefore hj�(0) converges to �(1), and h�j�(0) converges to �(�1) in the cone topology

as j ! 1. Since hj�(0) and hjx0 converge to the same point h+ 2 @X�, and h�j�(0),

h�1x0 both converge to h� 2 @X��

, we conclude that h� 2 Vis1(h+).

For the last assertion, let y 2 Ax(h) such that d(x0;Ax(h)) = d(x0; y) =: d. For t > 0 let

jt = [(2t + l)=2l], the largest integer smaller or equal than (2t + l)=2l. Then

d(hjtx0; �x0;h+(t)) � d(hjtx0; h
jty) + d(hjty; �y;h+(t)) + d(�y;h+(t); �x0;h+(t))

� d(x0; y) + jjtl � tj+ d(y; x0) � 2d+
l

2
=: c

Since c is independent of t > 0, the proof is complete. 2



Chapter 5

Geometry of the limit set

The goal of this section is to describe precisely the dynamics of axial isometries introduced

in the previous chapter. The main result is Theorem 5.4, which allows to draw conclusions

about the structure of the limit set and makes possible a natural construction of free

groups.

The most satisfying results about the structure of the limit set can be obtained for a

class of discrete isometry groups which we choose to call nonelementary. For Zariski

dense discrete subgroups of G, similar results have been proved by Y. Guivarc'h ( [G])

and by Y. Benoist [Be] using di�erent, more algebraic methods. Our Theorems 5.15 and

5.16 below are valid for groups which are not Zariski dense, as for example the discrete

subgroup of SL(3;R) acting on X = SL(3;R)=SO(3), generated by the elements0
@ en 0 0

0 1 0

0 0 e�n

1
A and

0
@ cosh n 0 � sinhn

0 1 0

� sinhn 0 coshn

1
A

for suÆciently large n.

Our proofs are inspired by ideas of F. Dal'bo who applied similar methods in the case

of products of pinched Hadamard manifolds ( [DaK]). We only use the geometry and

dynamics of axial isometries.

In this chapter, X will again denote a globally symmetric space of noncompact type and

G = Isomo(X).

5.1 Dynamics of axial isometries

In order to describe the dynamics of axial isometries, we introduce an auxiliary distance

for the Bruhat visibility sets VisB(�), � 2 @X, de�ned in section 2.6.

Let G = N+AK be an Iwasawa decomposition with respect to x 2 X arbitrary and

� 2 @X. Then � 2 @X��

for some subset � � �, and we may identify VisB(�) with the

submanifold N+
�x of X, where N+

� = exp(n+�) is the nilpotent subgroup of N+ de�ned in

51
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section 2.3. Proceeding as in section 1.3 for � = ;, let h� denote the left invariant scalar

product on N+
� which equals h�; �i from section 1.1 on g� and is zero on g� if � 6= �. We

then obtain an N+
� -invariant metric for the submanifold N+

�x of X

ds2
x;�

=
1

2

X
�2�+nh�i+

h� ;

which de�nes a distance dx;� on N+
�x

�= VisB(�). We remark that for y 2 X, the distance

dy;� is equivalent to the distance dx;� on Vis1(�). Furthermore, since the map �� is a

di�eomorphism from N+
� onto a dense open subset of K=M�, we easily deduce that the

topology induced by the distance dx;� on VisB(�) � K=M� is equivalent to the original

topology on K=M�.

The following lemma describes how this distance behaves under the action of an axial

isometry which translates the geodesic �x;�.

Lemma 5.1 Let � � � and h a �-axial isometry with translation length l > 0 and

translation direction L 2 a
�
1 . Further denote by h

+ the attractive and by h� the repulsive

�xed point of h. Then for any x 2 Ax(h) we have

8 � 2 Vis1(h+) dx;h+(h
�1�; h�) � e��+l �dx;h+(�; h�) ; �+ := min

�2�+nh�i+
�(L)

8 � 2 Vis1(h�) dx;h�(h�; h
+) � e���l �dx;h�(�; h+) ; �� := min

�2�+nh��i+
�(�(L))

Proof. We �x an Iwasawa decomposition G = N+AK with respect to x 2 Ax(h) and

h+ 2 @X�. Then there exists m 2 M� such that h = eLlm and � : R ! X de�ned by

�(t) = eLtx, t 2 R, is an invariant geodesic of h with �(1) = h+ and �(�1) = h� 2
@X��

. Now � 2 Vis1(h+) implies the existence of n 2 N+
� such that � = n�(�1).

Let " > 0 and c : [0; 1]! N+
�x a curve in the submanifold N+

�x with c(0) = x, c(1) = nx

and Z 1

0

k _c(t)k dt < dx;h+(�; h
�) + " :

For t 2 [0; 1], we write c(t) = n(t)x with n(t) 2 N+
� and put Z(t) := DLn(t)�1

d

ds

��
s=t

n(s) 2
n
+
�. Then, by de�nition of the metric, k _c(t)k2 = ds2

x;�
(Z(t); Z(t)).

Since h�1 �xes h� and h�1� corresponds to the element h�1nhx in N+
�x, the curve ch(t) =

h�1n(t)hx joins x to h�1nhx, hence

dx;h+(h
�1�; h�) �

Z 1

0

k _ch(t)k dt :

Here k _ch(t)k2 = ds2
x;�
(Ad(h�1)Z(t);Ad(h�1)Z(t)). Since N+

� normalizes P� and therefore

M� by Proposition 2.7, we conclude Ad(m)Z(t) 2 n
+
� for all t 2 [0; 1]. Furthermore,

ds2
x;�
(Ad(m�1)Z(t);Ad(m�1)Z(t)) = ds2

x;�
(Z(t); Z(t)) because the scalar product h�; �i on

g and hence h�, � 2 �+, is invariant by Ad(k). We conclude

ds2
x;�
(Ad(h�1)Z(t);Ad(h�1)Z(t)) = ds2

x;�
(Ad(e�Ll)Z(t);Ad(e�Ll)Z(t))

� max
�2�+nh�i+

e�2�(L)lds2
x;�
(Z(t); Z(t)) :
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Putting �0 := minf�(L) > � 2 �+ n h�i+g > 0 we summarize

dx;h+(h
�1�; h�) � e��0l

Z 1

0

k _c(t)k dt < e��0l
�
dx;h+(�; h

�) + "
�
;

and the �rst claim follows as " tends to zero.

For the second claim, we remark that h�1 is ��-axial with translation length l > 0 and

translation direction �(L) 2 a
��

. Furthermore, Ax(h) = Ax(h�1) and hence the assertion

follows from the �rst claim. 2

Corollary 5.2 Let h be an axial isometry and x 2 Ax(h). Then

8 � 2 Vis1(h+) lim
j!1

dx;h+(h
�j�; h�) = 0 ;

8 � 2 Vis1(h�) lim
j!1

dx;h�(h
j�; h+) = 0 :

We further have the following equivalence for sequences of axial isometries.

Lemma 5.3 Fix x 2 X and let (hj) be a sequence of axial isometries such that d(x;Ax(hj))

remains bounded as j ! 1. Then (hjx) � X converges to a boundary point � 2 @X in

the cone topology if and only if the sequence of attractive �xed points (h+
j
) � @X of (hj)

converges to � in the cone topology.

Proof. Let (hj) be a sequence of axial isometries with attractive �xed points (h+
j
) � @X,

and c � 0 such that d(x;Ax(hj)) � c. For any j 2 N choose a point xj 2 Ax(hj) with the

property d(x; xj) � c, and put dj := d(x; hjx) = d(x; h�1
j
x).

First suppose hjx! �+ and let R >> 1, " > 0. By hypothesis, there exists N0 2 N such

that

d(�x;hjx(R); �x;�+(R)) <
"

2

for j > N0. Using the convexity of the distance function, we compute for j > N0

d(�
x;h

+
j
(R); �x;�+(R)) � d(�

x;h
+
j
(R); �x;hjx(R)) + d(�x;hjx(R); �x;�+(R))

�
R

dj
d(�

x;h
+
j
(dj); hjx) +

"

2
�

R

dj

�
d(�

x;h
+
j
(dj); �xj ;h+j

(dj)) + d(�
xj ;h

+
j
(dj); hjxj)

+d(hjxj; hjx)
�
+
"

2
�

R

dj
(d(x; xj) + 0 + d(xj; x)) +

"

2
� 2c

R

dj
+
"

2
:

Since dj !1 as j !1, this implies that h+
j
converges to �+ in the cone topology.

Conversely, suppose h+
j
! �+ and let R >> 1, " > 0. By hypothesis, we have

d(�
x;h

+
j
(R); �x;�+(R)) <

"

2
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for j suÆciently large. Again, the convexity of the distance function yields

d(�x;hjx(R); �x;�+(R)) � d(�x;hjx(R); �x;h+j
(R)) + d(�

x;h
+
j
(R); �x;�+(R))

�
R

dj
d(hjx; �x;h+j

(dj)) +
"

2
�

R

dj

�
d(hjx; hjxj) + d(hjxj; �xj ;h+j

(dj))

+d(�
xj ;h

+
j
(dj); �x;h+j

(dj)) +
"

2
�

R

dj
(d(x; xj) + 0 + d(xj; x)) +

"

2

� 2c
R

dj
+
"

2
< "

for j suÆciently large. This proves that hjx! �+. 2

For the remainder of this section, we �x a Cartan decomposition G = Kea
+
K and let

x0 2 X denote the unique point stabilized by K. Recall that for any � � �, the map

�B : @X� ! K=M� denotes the projection introduced in section 2.5. Our main result of

this section states that for certain sequences of axial isometries with attractive �xed points

converging to � 2 @X�, a dense and open subset of @X� is mapped to a neighborhood of

�B(�). We will see in section 5.4 that nonelementary groups contain many such sequences.

Theorem 5.4 Let � � � and (
j) a sequence of axial isometries such that 
jx0 converges

to a point �+ = (k+; H�) 2 @X�, and 
�1
j
x0 converges to �

� = (k�; �(H�)) 2 Vis1(�+) in

the cone topology. Suppose d(x0;Ax(
j)) is bounded as j !1. For ~� � � and H 2 a
~�
1 ,

we put �+ := (k+; H) and �� := (k�; �(H)). Then for any � 2 Vis1(��) there exist

integers nj, j 2 N , such that the sequence (

nj

j
�) converges to �+ in @X

~� : In particular,

if � 2 Vis1(��), then there exist integers nj, j 2 N, such that 

nj

j
� converges to �+.

Proof. Let � � � and suppose (
j)j2N is a sequence of axial isometries with the properties

stated in the theorem. Denote by 
+
j
= (k+

j
; Hj) the attractive �xed point and by 
�

j
=

(k�
j
; �(Hj)) the repulsive �xed point of 
j. Let ~� � �, H 2 a

~�
1 , and put h+

j
:= (k+

j
; H),

h�
j
:= (k�

j
; �(H)), �+ := (k+; H) and �� := (k�; �(H)) 2 Vis1(�+).

By the previous lemma, (
+
j
) converges to �+ in the cone topoloy, hence by Lemma 2.9,

(k+
j
M�) = (�B(
+

j
)) converges to k+M� = �B(�+) in K=M�, and (h+

j
) � G��+ converges

to �+ in the cone topology. Therefore Lemma 2.18 implies that h+
j
2 Vis1(��) for j

suÆciently large.

Since (
+
j
) converges to �+ 2 @X�, by Lemma 2.9 we further have kHj �H�k ! 0. Then

H� 2 a
�
1 implies

min
�2�+nh�i+

�(Hj) � �0 > 0

if j is suÆciently large. Let U � G��+ be an open neighborhood of �+. If � 2 Vis1(��),

then by Lemma 5.1 for any j 2 N there exists nj 2 N such that 

nj

j
� 2 U . We conclude

that 

nj

j
� converges to �+ in the cone topology. 2
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5.2 Construction of free groups

We will now apply the results of the previous section to construct Schottky groups, an in-

teresting kind of free and discrete isometry groups of in�nite covolume. Their construction

is based on the following

Lemma 5.5 (Klein's Criterium) (see [Ha])

Let G be a group acting on a set S, �1;�2 two subgroups of G, where �1 contains at

least three elements, and let � be the subgroup they generate. Assume that there exist two

nonempty subsets S1, S2 in S with S2 not included in S1 such that 
(S2) � S1 for all


 2 �1 n fidg and 
(S1) � S2 for all 
 2 �2 n fidg. Then � is isomorphic to the free

product �1 � �2

Recall from Corollary 2.17 that a �nite intersection of sets VisB(�j) � K=M , �j 2 @Xreg,

is a dense and open subset of K=M . The following theorem therefore describes a very

general construction of �nitely generated free groups.

Theorem 5.6 Let X = G=K be a globally symmetric space of noncompact type, and

f�+1 ; �
�
1 ; �

+
2 ; �

�
2 ; : : : ; �

+
l
; ��

l
g � @Xreg a set of 2l points with the properties

��
j
2 Vis1(�+

j
) ; �B(�+

j
) 2

l\
i=1

i6=j

�
VisB(�+

i
) \ VisB(��

i
)
�

for 1 � j � l :

Then there exist regular axial isometries 
j ,1 � j � l, such that 
+
j
= �+

j
and 
�

j
= ��

j
,

and pairwise disjoint open neighborhoods U+
j
; U�

j
� K=M of �B(�+

j
); �B(��

j
) such that


j(K=M n U�
j
) � U+

j
and 
�1

j
(K=M n U+

j
) � U�

j
:

In particular, the �nitely generated group h
1; 
2; : : : ; 
li � Isomo(X) is free and discrete.

Proof. Since for any j 2 f1; 2; : : : ; lg we have �+
j
2 @Xreg and ��

j
2 Vis1(�+

j
) � @Xreg,

there exist regular unit speed geodesics �j : R ! X such that �j(1) = �+
j
and �j(�1) =

��
j
for 1 � j � l. Let x0 2 X denote the base point of X = G=K and �x an Iwasawa

decomposition G = N+AK with respect to x0 and �
�
1 2 @Xreg. Then there exist n 2 N+,

a 2 A and H 2 a
+
1 such that �1(t) = naeHtx0 for all t 2 R. The isometry h1 :=

naeHa�1n�1 is regular axial and satis�es h1�1(t) = �1(t+1) for any t 2 R. In particular,

h1 possesses the attractive and repulsive �xed points h+1 = �1(1) = �+1 and h�1 =

�1(�1) = ��1 . Similarly, for all j 2 f2; : : : lg there exists a regular axial isometry hj such
that hj�j(t) = �j(t+ 1) for all t 2 R, and h+

j
= �+

j
, h�

j
= ��

j
.

We next choose open neighborhoods

U+
1 �

l\
i=2

�
VisB(�+

i
) \ VisB(��

i
)
�

of �B(�+1 ) ; and

U�
1 �

l\
i=2

�
VisB(�+

i
) \ VisB(��

i
)
�

of �B(��1 ) :
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We remark that by the properties of the Furstenberg visibility sets U+
1 � VisB(��1 ) and

U�
1 � VisB(�+1 ). By Corollary 5.2 there exists an integer k1 2 N such that hk11 (K=M n

U�
1 ) � U+

1 and h�k11 (K=M n U+
1 ) � U�

1 . Inductively, we choose open neighborhoods

U+
j+1; U

�
j+1 �

j\
i=1

�
VisB(�+

i
) n U�

i
\ VisB(��

i
) n U+

i

� l\
i=j+2

�
VisB(�+

i
) \ VisB(��

i
)
�

of �B(h+
j+1) and �B(h�

j+1) respectively, and let kj+1 2 N such that h
kj+1

j+1 (K=M n U�
j+1) �

U+
j+1 and h

�kj+1
j+1 (K=M n U+

j+1) � U�
j+1. Putting 
j := h

kj

j
for 1 � j � l, we have the

desired regular axial isometries and the corresponding open neighborhoods.

In order to apply Klein's Criterium, we put S1 := U+
1 [ U�

1 and S2 := U+
2 [ U�

2 . Since

the open neighborhoods U+
2 and U�

2 are contained in VisB(�+1 ) n U
�
1 \ VisB(��1 ) n U

+
1 we

conclude that h
1i �S2 � S1. Similarly U�
1 � VisB(�+2 ) n U

�
2 \ VisB(��2 ) n U

+
2 implies

h
2i�S1 � S2. Hence the group generated by 
1 and 
2 is free by Klein's Criterium.

For j 2 f2; : : : ; lg, let �j denote the group generated by the elements 
i for i � j. We put

S 0
j
:=

j[
i=1

�
U+
i
[ U�

i

�
; Sj+1 := U+

j+1 [ U�
j+1 :

Since Sj+1 �
T

j

i=1

�
VisB(�+

i
) n U�

i
\ VisB(��

i
) n U+

i

�
we have �2 �Sj+1 � S 0

j
. From

S 0
j
� VisB(�+

j+1) n U
�
j+1 \ VisB(��

j+1) n U
+
j+1

we further obtain h
j+1i�S 0j � Sj+1, and therefore the group �j+1 generated by the elements


i for i � j + 1, is free. We conclude inductively that h
1; 
2; : : : ; 
li is free.

Finally suppose � := h
1; 
2; : : : ; 
li is not discrete. Then there exists a sequence (hj) � �

converging to the identity. For j 2 N we write hj := a
(j)
1 a

(j)
2 : : : a

(j)

kj
as a reduced word,

i.e. a
(j)
i
2 f
1; 
�11 ; 
2; 


�1
2 : : : ; 
l; 


�1
l
g and a

(j)
i+1 6= (a

(j)
i
)�1 for 1 � i � kj. Passing to a

subsequence if necessary, we may assume that a
(j)
1 is the same element for all j 2 N , say 
"

i
,

where 1 � i � l and " 2 f+1;�1g. Let � 2 @X such that �B(�) 2 K=M n
S

l

i=1

�
U+
i
[U�

i

�
.

Then �B(hj�) is contained in U "

i
� K=M for all j 2 N , and (�B(hj�)) converges to

�B(�) =2 U "

i
, a contradiction. 2

5.3 Nonelementary groups

We are now going to generalize to symmetric spaces X = G=K of higher rank the notion

of \nonelementary groups" familiar in the context of isometry groups of real hyperbolic

spaces. We denote by x0 2 X the unique point stabilized by the maximal compact

subgroup K � G.
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Definition 5.7 A discrete subgroup � of the isometry group Isomo(X) is called nonele-

mentary if and only if L� 6= ; and if for any � 2 L�, � 2 G�� � @X we have

��� \ Vis1(��) 6= ; :

Otherwise � is called elementary.

Note that an abelian discrete group � � Isomo(X) of axial isometries is elementary,

because its limit set is contained in the boundary of the invariant maximal 
ats. Hence

��� = � for every � 2 L� which implies ��� = � =2 Vis1(��). The same argument shows,

that a discrete group � � Isomo(X) is elementary, if it is contained in the stabilizer of a

limit point. Nevertheless, there are many examples of nonelementary groups.

Example 5.8 If rank(X) = 1, then a discrete isometry group � � Isomo(X) is nonele-

mentary if it possesses in�nitely many limit points.

Proof. Since rank(X) = 1, we have � = id and G�� = @X, @X = Vis1(�) [ f�g for any
point � in the geometric boundary. Suppose � � G = Isomo(X) possesses in�nitely many

limit points, and assume there exists � 2 L� and � 2 @X such that ��� \ Vis1(�) = ;.
Then 
� = � for all 
 2 �, in particular � = �. This implies that every element in �

�xes �. Let �0 � � be a torsion free subgroup of �nite index which exists by Selberg's

Lemma. Since �0 does not contain elliptic elements, �0 contains only parabolic and axial

isometries which all �x �. By discreteness, the set of axial elements in �0 must all have

the same axis. We conclude that �0 possesses at most two limit points, hence � possesses

only �nitely many limit points, a contradiction. 2

Example 5.9 Free groups generated by regular axial isometries as in Theorem 5.6 are

nonelementary.

Proof. Let 
1; 
2; : : : ; 
l be the generators of � and U+
1 ; U

�
1 ; U

+
2 ; U

�
2 ; : : : U

+
l
; U�

l
� K=M

pairwise disjoint open sets as in the proof of Theorem 5.6. Let � 2 L�, � 2 G�� and choose
a generator 
"

k
with attractive �xed point �"

k
, where k 2 f1; 2; : : : ; lg and " 2 f+1;�1g,

such that �"
k
:= Cx0;�"k \ G � � satis�es �"

k
2 Vis1(��). By Lemma 2.18 there exists an

open neighborhood V � G �� of �"
k
such that � 2 Vis1(��) for all � 2 V , and therefore

V � Vis1(��). If � 2 Vis1(��"
k
), then by Lemma 5.1, (
"

k
)n� converges to �"

k
as n ! 1.

Hence there exists n0 2 N such that (
"
k
)n0� 2 V � Vis1(��). If � =2 Vis1(��"

k
), there

exists a generator 
i, i 6= k, and l 2 N such that (
i)
l� 2 Vis1(��). 2

The following lemma will be useful in the proof of Lemma 7.2.

Lemma 5.10 Let � � Isomo(X) be a nonelementary discrete group, and � � � such

that L� \ @X� 6= ;. Then for any � 2 @X� and for all � 2 G�� � @X� we have

L� \G�� �
[

2�

Vis1(�
�) :
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Proof. Let � � � with L� \@X� 6= ; and �x � 2 @X�. Let � 2 G�� � @X� and suppose

� 2 L� \ G��. Since � is nonelementary, there exists 
 2 � such that 
�1� 2 Vis1(��),

hence � 2 Vis1(�
�). 2

Since we do not know much about the dynamics of parabolic isometries, the description

of the limit set of discrete isometry groups, which in general contain parabolic isometries,

is diÆcult. The following proposition, however, states that every regular limit point of

a nonelementary group can be obtained from a sequence of axial isometries. This allows

to use the dynamics of axial isometries developped in section 5.1 in order to describe

the structure of the regular limit set. The proof is a slight modi�cation of the proof of

Proposition 4.5.14 in [E].

Proposition 5.11 Let � � G = Isomo(X) be a nonelementary discrete group. Then for

every � 2 L� \ @Xreg there exists a sequence of axial isometries (
j) � � such that 
jx0
converges to � and 
�1

j
x0 converges to a point in Vis1(�). Furthermore, d(x0;Ax(
j)) is

bounded as j !1.

Proof. Let � 2 L�\@Xreg and �x a Cartan decomposition G = Kea
+
K with respect to x0

and �. Let (hj) � � be a sequence such that hjx0 converges to � = (id; H). Then h�1
j
x0

converges to a point � = (k; �(H)). If �B(�) =2 VisB(�), there exists an element 
 2 �

such that �B(
�1�) 2 VisB(�), since � is nonelementary. The sequence (
j) := (hj
) � �

then satis�es

lim
j!1


jx0 = lim
j!1

hj
x0 = � ;

lim
j!1


�1
j
x0 = lim

j!1
(hj
)

�1x0 = lim
j!1


�1h�1
j

x0 = 
�1� 2 Vis1(�) :

This implies the existence of a unit speed geodesic � joining � to � := 
�1�.

Lemma 2.19 allows to choose a sequence (Uk) of neighborhoods in G of the identity such

that Uk+1 � Uk for all k 2 N , \k2NUk = fidg, and for any points �k 2 Uk�� and �k 2 Uk��
there exists a geodesic �k in X that joins �k to �k and satis�es d(�(0); �k) < 1=k for any

k 2 N . We show that for any k 2 N there exists an integer Nk such that for all j � Nk


j(Uk ��) � Uk �� ; and 
�1
j
(Uk ��) � Uk �� :

Put x := �(0) and �x k 2 N . Since the set Uk �� is an open subset of G ��, we �nd a

number ' > 0 so that any � 2 G�� with \x(�; �) < ' is contained in Uk ��. We choose

N 2 N such that for any j � N and for every y 2 Bx(2)

maxf\x(
jy; �);\y(

�1
j
x; �)g < '=2 : (5.1)

Finally let � 2 Uk �� be given and let y be a point on a geodesic joining � to � with

d(y; x) � 1=k. It follows that for j � N we have

\x(
j�; �) � \x(
j�; 
jy) + \x(
jy; �) < \

�1
j x

(�; y) + '=2
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by (5.1). Considering the triangle �(
�1
j
x; y; �), we obtain \



�1
j x

(�; y)+\y(

�1
j
x; �) � � :

From the fact that y is a point on the geodesic joining � to � we further conclude

\y(

�1
j
x; �) = � � \y(


�1
j
x; �) and with (5.1)

\x(
j�; �) � \y(

�1
j
x; �) + '=2 < ' :

This proves 
j(Uk ��) � Uk�� for any j � N by the choice of '. The proof of 
�1
j
(Uk ��) �

Uk �� is analogous.

We next show the existence of sequences (�j) � G �� converging to �, and (�j) � G ��
converging to � such that 
j�j = �j and 
j�j = �j for all j 2 N . If Uk is chosen such that

Uk �� is homeomorphic to a closed disk, the Brouwer �xed point theorem together with

the fact


j(Uk ��) � Uk �� ; and 
�1
j
(Uk ��) � Uk ��

shows that for any k 2 N the isometry 
j has �xed points in Uk � � and Uk �� for all

suÆciently large j. For any such j we choose a �xed point �j of 
j with the property

\x(�j; �) � \x(�; �) 8 � 2 G�� �xed by 
j :

Similarly we choose a �xed point �j such that

\x(�j; �) � \x(�; �) 8 � 2 G�� �xed by 
j :

We claim that the sequences (�j) and (�j) constructed as above converge to � and �

respectively. Given " > 0 we choose a neighborhood U in G of the identity such that

\x(�; �) < " for all � 2 U ��. The argument above shows that for suÆciently large j the

isometry 
j has a �xed point �j in U �� and hence \x(�j; �) � \x(�j; �) < " : Therefore

�j ! � and a similar argument gives �j ! �.

Since �; � 2 @Xreg, and �j 2 Uk��, �j 2 Uk �� for all suÆciently large j, there exist regular
geodesics �j joining �j to �j with the property d(�(0); �j) < 1=k. Since 
j �xes both

�j and �j for j suÆciently large, we conclude that 
j �xes both �j(1) and �j(�1). If

Fj � X denotes the unique maximal 
at which contains �j, then by Lemma 4.2.1a in [E],


jFj = Fj and the displacement function d
j is constant on Fj. Hence 
j translates every

geodesic joining some point xj 2 Fj to 
jxj 2 Fj, and therefore 
j is axial for suÆciently

large j.

Furthermore, we have

d(x0;Ax(
j)) � d(x0; �(0)) + 1 ;

because �j � Fj = Ax(
j). 2

As a consequence of the previous proof, we obtain the following

Theorem 5.12 If � � G = Isomo(X) is a nonelementary discrete group which possesses

a regular limit point, then the set of �xed points of axial isometries is a dense subset of

the limit set L�.

Proof. Let � 2 L� \@Xreg arbitrary. Then the proof of Proposition 5.11 shows that there

exists a sequence (
j) � � of axial isometries such that 
j has �xed points �j and �j as

above. In particular, �j converges to � as j !1. 2
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5.4 The structure of the limit set

We are �nally able to describe precisely the limit set of nonelementary discrete groups

acting on a globally symmetric space X = G=K of noncompact type. For this section,

we �x a Cartan decomposition G = Kea
+
K and let x0 2 X denote the unique point

stabilized by K.

Definition 5.13 The limit cone P� � a
+
1 of � is de�ned as the set of Cartan projections

of all elements in the geometric limit set L�. The projection K� := �B(L� \ @Xreg) �
K=M is called the transversal limit set.

Theorem 5.14 Let � � G = Isomo(X) be a nonelementary discrete group of isometries.

Then the transversal limit set K� is a minimal closed set under the action of �.

Proof. If L� \ @Xreg = ; there is nothing to prove. We therefore assume L� \ @Xreg 6= ;
which implies K� 6= ;.

Fix k0M 2 K�, and let kM 2 K� be arbitrary. Let �+ 2 L� \ @Xreg be a preimage

(�B)�1(kM) and denote by H 2 a
+
1 the Cartan projection of �+. Due to Proposition 5.11

there exists a sequence (
j) � � of axial isometries such that 
jx0 converges to �+ and


�1
j
x0 converges to a point �� 2 Vis1(�+) � @Xreg. Put �0 := (k0; H) with H 2 a

+
1 as

above. If k0M 2 VisB(��), then �0 2 Vis1(��) and, by Theorem 5.4, there exist integers

nj, j 2 N such that

lim
j!1



nj

j
�0 = �+ :

If k0M = �B(�0) =2 VisB(��), there exists 
 2 � such that �B(
�0) 2 VisB(��) because �

is nonelementary. Therefore 
�0 2 Vis1(��) and Theorem 5.4 garantees the existence of

integers nj, j 2 N such that

lim
j!1



nj

j
(
�0) = �+ :

Using the natural G-action (2.1) on K=M , this proves that �(k0M) = �B(��0) is dense

in K�. Since �(k0M) is the smallest �-invariant set in K=M , the closure �(k0M) = K�

is a minimal closed set under the action of �. 2

Theorem 5.15 Let � � G = Isomo(X) be a nonelementary discrete group of isometries.

Then the regular geometric limit set is isomorphic to the product K� � (P� \ a
+
1 ).

Proof. If L� \ @Xreg = ; there is nothing to prove. We therefore assume L� \ @Xreg 6= ;.
If � 2 L� \ @Xreg, then �B(�) 2 K� and the Cartanprojection of � belongs to P� \ a

+
1 .

Conversely, let kM 2 K� and H 2 P� \ a
+
1 . By de�nition of P�, there exists a sequence

(
j) � � such that the Cartan projections (Hj) � a+ of 
jx0 satisfy \(Hj; H) ! 0

as j ! 1. Furthermore, �0 := limj!1 
jx0 belongs to L� \ @Xreg and we may write

�0 = (k0; H) where k0M := �B(�0) 2 K�.
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By Theorem 5.14, K� = �(k0M) is a minimal closed set under the action of �, hence

kM 2 �(k0M) = �B(���0)

by (2.1). Since the action of Isomo(X) on the geometric boundary does not change

the Cartan projections, and there exists exactly one preimage � := (�B)�1(kM) with

the same Cartan projection H 2 a
+
1 as �0, the closure of � ��0 contains �. This proves

� 2 ���0 � L� \ @Xreg. 2

If 
 is an axial isometry, let L(
) 2 a
+
1 denote the translation direction of 
 from De�ni-

tion 4.20.

Theorem 5.16 Let � � G = Isomo(X) be a nonelementary discrete group of isometries,

and L� := fL(
) j 
 2 � ; 
 axial g � a
+
1 . Then P� = L�.

Proof. In order to prove P� � L�, we let H 2 L� arbitrary. Then there exists a sequence

(hj) � � of axial isometries with translation lengths lj and translation directions L(hj)

satisfying \L(hj); H)! 0 as j !1.

Suppose H =2 P�, and, for 
 2 �, let H
 denote the Cartan projection of 
x0. Then there

exists " > 0 such that \(H
; H) > " for all but �nitely many 
 2 �.

Put � = (id; H) 2 @X. For j 2 N , we let gj 2 G such that hj = gje
L(hj)ljg�1

j
, put

xj := gjx0 2 Ax(hj), and let nj be an integer greater than 2j�d(x0; xj)=lj. We abbreviate


j := h
nj

j
= gje

L(hj)ljnjg�1
j

and Hj := H
j
. By G-invariance of the directional distance,

Lemma 3.6 and Lemma 3.2 we obtain

BG��(xj; 
jxj) = BG��(g�1j xj; g
�1
j

jxj) = BG��(x0; eL(hj)ljnjx0)

= B�(x0; eL(hj)ljnjx0) = hL(hj)ljnj; Hi = ljnjhL(hj); Hi :

Since \(L(hj); H)! 0 by hypothesis, we conclude

BG��(xj; 
jxj)
d(xj; 
jxj)

=
ljnjhL(hj); Hi

ljnj
= hL(hj); Hi ! 1 :

Using again Lemma 3.2, Lemma 3.6 and the triangle inequality, we obtain

cos\(Hj; H) =
hHj; Hi
kHjk

=
B�(x0; eHjx0)

d(x0; 
jx0)
=
BG��(x0; eHjx0)

d(x0; 
jx0)

=
BG��(x0; 
jx0)
d(x0; 
jx0)

�
BG��(xj; 
jxj)� 2d(x0; xj)

d(xj; 
jxj) + 2d(x0; xj)

�
BG��(xj; 
jxj)

nj �lj
�
1� 1

j

1 + 1
j

! 1 as j !1 ;

a contradiction to our assumption.

Conversely, we �rst prove P� \ a
+
1 � L�. Let H 2 P� \ a

+
1 and put � = (id; H) 2 @Xreg.

By the assumption and the same arguments as above, there exists a sequence (hj) � �

such that
BG��(x0; hjx0)
d(x0; hjx0)

! 1 as j !1 :
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Set �+ := limj!1 hjx0 2 L� \ @Xreg and choose a sequence of axial isometries (
j) � �

as in Proposition 5.11 with the properties 
jx0 ! �+, 
�1
j
x0 ! �� 2 Vis1(�+) and

d(x0;Ax(
j)) � c for some constant c > 0. For j 2 N , we choose xj 2 Ax(
j) such that

d(x0; xj) � c. Then the translation length lj := l(
j) = d(xj; 
jxj) of 
j satis�es

lj � d(x0; 
jx0) � d(x0; xj) + d(xj; 
jxj) + d(
jxj; 
jx0)

= lj + 2d(x0; xj) � lj + 2c :

Hence the sequence of translation directions (L(
j)) � a
+
1 of (
jxj) satis�es

hL(
j); Hi =
1

d(xj; 
jxj)
sup
g2G

cos\xj
(
jxj; g�) =

1

lj
BG��(xj; 
jxj)

�
BG��(x0; 
jx0) + 2d(x0; 
jx0)

d(x0; 
jx0)� 2d(x0; xj)
�

BG��(x0;
jx0)
d(x0;
jx0)

+ 2c
d(x0;
jx0)

1� 2c
d(x0;
jx0)

! 1 ;

hL(
j); Hi �
BG��(x0; 
jx0)� 2d(x0; xj)

d(x0; 
jx0)
�
BG��(x0; 
jx0)
d(x0; 
jx0)

�
2c

d(x0; 
jx0)
! 1

as j !1. This yields \(L(
j); H)! 0 as j !1 and therefore H 2 L�.

Since the closure of P� \ a
+
1 equals P� and L� is a closed set in a

+
1 , we conclude

P� = P� \ a
+
1 � L� : 2



Chapter 6

Generalized Poincar�e series

In order to relate the critical exponent of the Poincar�e series to the Hausdor� dimension of

the limit set of Fuchsian groups, Patterson ( [P]) and Sullivan ( [S]) developped a theory

of conformal densities for real hyperbolic spaces. An extensive description of their work is

given in [N]. In 1996, P. Albuquerque extended part of this theory to arbitrary symmetric

spaces X = G=K of noncompact type. He showed that for Zariski dense subgroups �

of G, the support of any Æ(�)-dimensional conformal density either lies in @Xsing or is

contained in a unique G-invariant subset G�� � @Xreg (Theorem A in [Al]).

Inspired by the paper [Bu] of M. Burger, we are going to construct families of �-equivariant

measures on every G-invariant subset of the limit set. We will use the Patterson Sullivan

construction to obtain orbital measures with many degrees of freedom on the geometric

limit set. An important role plays the directional distribution of the number of orbit

points, which allows to single out those measures with support in a certain subsetG�� � @X

of the geometric boundary. We remark that similar measures have been constructed

independently by J. F. Quint ( [Q]) using di�erent methods. His measures, however,

are all supported on the Furstenberg boundary and therefore lack an essential piece of

information concerning the geometry of �-orbits.

As usual, X = G=K will be a globally symmetric space of noncompact type with geometric

boundary @X, x0 2 X the unique point stabilized by K, andM+(X) the cone of positive

�nite Borel measures on X [ @X. � � G will denote a discrete group of isometries of X.

6.1 Exponential growth in direction G��

Let x; y 2 X, � 2 @X and 
 2 �. Recall from section 3.6 that

\x(
y;G��) = inf
g2G

\x(
y; g�) for 
y 6= x :

If 
y = x, which is true for only �nitely many 
 2 � by the discreteness of �, we put

\x(
y;G��) = 0 :

63
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Using this convention, for ' > 0 and s � 0 the series

Qs;'

G��(x; y) =
X

2�

\x(
y;G��)<'

e�sd(x;
y)

is well de�ned. Its critical exponent Æ'
G��(x; y) is the unique real number such thatQ

s;'

G��(x; y)

converges if s > Æ
'

G��(x; y) and diverges if s < Æ
'

G��(x; y). Note that by the triangle

inequality, the series X

2�

\x(
y;G��)<'

e�sd(x0;
x0)

possesses the same criticial exponent as Qs;'

G��(x; y).

This critical exponent can also be interpreted as an exponential growth rate of the number

of orbit points close in direction to G��

�N
'

G��(x; y;R) = #f
 2 � jR� 1 � d(x; 
y) < R ; \x(
y;G��) < 'g ;

because an easy calculation shows that

Æ'
G��(x; y) = lim sup

R!1

log�N'

G��(x; y;R)

R
:

Definition 6.1 The number ÆG��(�) := lim inf'!0 Æ
'

G��(x0; x0) is called the exponent of

growth of � in direction G��.

Lemma 6.2 For any x; y 2 X we have ÆG��(�) = lim inf'!0 Æ
'

G��(x; y).

Proof. Choose x; y 2 X arbitrary and put c := d(x0; x) + d(x0; y). Let ('j) & 0 be a

sequence of positive numbers, 'j � �=4. Suppose 
 2 � satis�es d(x0; 
x0) � 4c
'2j

and

d(x; 
y) � 4c
'2j

for suÆciently large j. Then applying Lemma 3.18 twice gives

\x0
(
x0; G��) < 'j=2 =) \x(
y;G��) < 'j =) \x0

(
x0; G��) < 2'j ;

and we conclude Æ
'j=2

G�� (x0; x0) � Æ
'j

G��(x; y) � Æ
2'j
G�� (x0; x0) : Taking the limit inferior as

j !1 �nishes the proof. 2

Lemma 6.3 If L� \G�� 6= ;, then ÆG��(�) � 0.

Proof. Suppose L� \G�� 6= ;. Then for any ' > 0, there exist in�nitely many 
 2 � with

the property \x0
(
x0; G��) < '. In particularX


2�

\x0(
x0;G��)<'

1 = Q 0;'
G�� (x0; x0)

diverges, hence Æ
'

G��(x0; x0) � 0. We conclude ÆG��(�) = lim inf'!0 Æ
'

G��(x0; x0) � 0. 2
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Proposition 6.4 Let (�j) � @X be a sequence converging to � 2 @X. Then

lim sup
j!1

ÆG��j (�) � ÆG��(�) :

Proof. Let '0 2 (0; �=2). Then �j ! � implies \x0
(�j; G � �) < '0=2 for j suÆciently

large. Let ' 2 (0; '0=2) and 
 2 � such that \x0
(
x0; G��j) < '. Then

\x0
(
x0; G��) < '+ '0=2 < '0 ;

which proves Æ'
G��j(x0; x0) � Æ'0

G��(x0; x0), and therefore

ÆG��j(�) = lim inf
'!0

Æ
'

G��j (x0; x0) � Æ
'0

G��(x0; x0) :

We conclude

lim sup
j!1

ÆG��j (�) � Æ
'0

G��(x0; x0) ; hence

lim sup
j!1

ÆG��j (�) = lim inf
'0!0

�
lim sup
j!1

ÆG��j(�)

�
� lim inf

'0!0
Æ'0
G��(x0; x0) = ÆG��(�) : 2

Remark. If rank(X) = 1 or ' > �=2, then the series Qs;'

G��(x; y), � 2 @X, reduces to the

familiar Poincar�e series X

2�

e�sd(x;
y) :

The critical exponent of this series is called the critical exponent of � and will be denoted

by Æ(�). In particular, we have ÆG��(�) � Æ(�) for any � 2 @X.

6.2 The region of convergence

Let d denote the Riemannian distance, BG��, � 2 @X, and di, 1 � i � r, the direc-

tional distances introduced in sections 3.2 and 3.4. We observe that for any r-tuple

b = (b1; b2; : : : ; br) 2 Rr , G�� � @X and � � 0 �xed, the series

P s;b;�

G�� (x; y) =
X

2�

e�s
�Pr

i=1 b
i
di(x;
y)+�(d(x;
y)�BG��(x;
y))

�

possesses a critical exponent which is independent of x; y 2 X by the triangle inequalities

for d, BG�� and d1, d2; : : : dr.

For any subset G�� � @X and � � 0, we may therefore de�ne a region of convergence

R�

G�� := fb = (b1; b2; : : : br) jP s;b;�

G�� (x0; x0) has critical exponent s � 1g � R
r :

This region possesses the following properties.
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Lemma 6.5 If � � � 0, then R�

G�� � R� 0

G��.

Proof. Let � � � 0, b 2 R�

G��. Then for any 
 2 �

e�s
�Pr

i=1 b
idi(x0;
x0)+�

0(d(x0;
x0)�BG��(x0;
x0))
�
� e�s

�Pr
i=1 b

idi(x0;
x0)+�(d(x0;
x0)�BG��(x0;
x0))
�

and therefore P s;b;�
0

G�� (x0; x0) � P s;b;�

G�� (x0; x0). Hence P s;b;�
0

G�� (x0; x0) converges if s > 1. In

particular, P s;b;� 0

G�� (x0; x0) has critical exponent less than or equal to 1. 2

Lemma 6.6 For any � � 0, the region R�

G�� is convex.

Proof. Let � � 0, a; b 2 R�

G�� and t 2 [0; 1]. For 
 2 �, we abbreviate

(ta + (1� t)b)
 :=
P

r

i=1(ta
i + (1� t)bi)di(x0; 
x0) + � (d(x0; 
x0)� BG��(x0; 
x0)) :

Then by H�older's inequality

X

2�

e�s(ta
i+(1�t)bi)
 =

X

2�

e�sta
e�s(1�t)b
 �

 X

2�

e�sa


!t X

2�

e�sb


!1�t

:

The latter sum converges if s > 1, hence ta+ (1� t)b 2 R�

G��. 2

In order to describe the region of convergence more precisely, we prove the following

proposition concerning convergence and divergence of certain series.

Proposition 6.7 Let x; y 2 X, � 2 @X and D � @X an open set with respect to the

cone topology. Put �D := f
 2 � j\x(
y;G�D) := infg2G inf�2D \x(
y; g�) = 0g.

Then for all s; � 2 R, and (b1; b2; : : : ; br) 2 Rr we have the following implications:

(1) If there exists �0 2 D such that

s
�P

r

i=1 b
i cos\x(�0; @X

i) + � (1� cos\x(�0; G��))
�
< ÆG��0(�) ; then the series

X

2�D

e�s
�Pr

i=1 b
i
di(x;
y)+�(d(x;
y)�BG��(x;
y))

�
diverges :

(2) If s
�P

r

i=1 b
i cos\x(�; @X

i) + � (1� cos\x(�;G��))
�
> ÆG��(�) for all � 2 D,

then X

2�D

e�s
�Pr

i=1 b
idi(x;
y)+�(d(x;
y)�BG��(x;
y))

�
converges :
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Proof.

(1) Let �0 2 D such that s
�P

r

i=1 b
i cos\x(�0; @X

i)+� (1� cos\x(�0; G��))
�
< ÆG��0(�) :

Since ÆG��0(�) = lim inf'!0 Æ
'

G��0(x; y), there exists ' 2 (0; �=4) and s0 2 R such

that for any 
 2 �D with \x(
y;G��0) < ' we have

s
� rX
i=1

bi cos\x(
y; @X
i) + � (1� cos\x(
y;G��))

�
< s0 < Æ'

G��0(x; y) :

By Lemma 3.10 we have

di(x; 
y) = d(x; 
y) cos\x(
y; @X
i) ; 1 � i � r ;

BG��(x; y) = d(x; 
y) cos\x(
y;G��) : (6.1)

Therefore X

2�D

e�s(
Pr

i=1 b
idi(x;
y)+�(d(x;
y)�BG��(x;
y)))

�
X

2�D

\x(
y;G��)<'

e�s(
Pr

i=1 b
i cos\x(
y;@X

i)+�(1�cos\x(
y;G��)))d(x;
y)

>
X

2�D

\x(
y;G��)<'

e�s0d(x;
y) ;

and the latter sum diverges since s0 < Æ'
G��0 .

(2) Let �0 2 D and �x a Cartan decomposition G = Kea
+
K with respect to x and �.

Let H�; H0 2 a
+
1 denote the Cartan projections of � and �0. The condition

ÆG��0(�) < s
� rX
i=1

bi cos\x(�0; @X
i) + � (1� cos\x(�0; G��))

�

is equivalent to ÆG��0(�) < s
�P

r

i=1 b
ihHi; H0i+ �

2
kH� �H0k2

�
=: s(H0) :

Since ÆG��0(�) = lim inf'!0 Æ
'

G��0(x; y), there exists '00 2 (0; �=4) and s0 < s(H0)

such that

Æ
'00

G��0(x; y) < s0 < s(H0) : (6.2)

For � 2 @X and ' > 0 we put SG��(') := f� 2 @X j \x(�; G ��) < 'g. The

continuity of the function

s : a1 ! R ; H 7! s

 
rX
i=1

bihHi; Hi+
�

2
kH� �Hk2

!

and inequality (6.2) imply the existence of '0 < '00 such that for any � 2 SG��0('0)

with Cartan projection H� 2 a
+
1 , we have s0 < s(H�). Hence

Æ
'0

G��0 � Æ
'
0
0

G��0 < s0 < s(H�) 8 � 2 SG��0('0) :
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We now choose a sequence (�j) � D and corresponding sequences (sj) � R
+ and

('j) � R
+ such that for any � 2 SG��j ('j) with Cartan projection H� 2 a

+
1 we have

Æ
'j

G��j (x; y) < sj < s(H�) ;

and G�D � G�D �
[
j2N

SG��j ('j) :

Since G�D is a compact subset of the geometric boundary, we may extract a �nite

covering
S

l

j=1 SG��j('j) , and conclude using equations (6.1)

X

2�D

e�s
�Pr

i=1 b
idi(x;
y)+�(d(x;
y)�BG��(x;
y))

�

�
lX

j=1

X

2�

\x(
y;G��j)<'j

e�sd(x;
y)
�Pr

i=1 b
i cos\x(
y;@X

i)+�(1�cos\x(
y;G��))
�

�
lX

j=1

X

2�

\x(
y;G��j)<'j

e�sjd(x;
y) <1 ;

because sj > Æ
'j

G��j for 1 � j � l. 2

For the remainder of this section we �x a Cartan decomposition G = Kea
+
K with respect

to x0 2 X and some regular boundary point. The proof of the previous proposition allows

to deduce

Corollary 6.8 Let D � @X be an open set with respect to the cone topology, and

�D := f
 2 � j\x(
y;G �D) := infg2G inf�2D \x(
y; g�) = 0g as before. For 
 2 � let

H
 2 a
+
1 denote the unit length Cartan projection of 
x0.

If s : a+1 ! R is a continuous function with the property s(H�) > ÆG��(�) for all � 2 D

with Cartan projection H� 2 a
+
1 , then the seriesX


2�D

e�s(H
)d(x0;
x0) converges :

The following two results relate the region of convergence R�

G�� to the exponent of growth

in direction G��.

Lemma 6.9 Let � 2 @X and � � 0. If H� 2 a
+
1 denotes the Cartan projection of � and

(b1; b2; : : : br) 2 R�

G��, then
P

r

i=1 b
ihHi; H�i � ÆG��(�) :

Proof. Recall that hHi; H�i = cos\x0
(�; @X i) for 1 � i � r, and cos\x0

(�; G��) = 1. IfP
r

i=1 b
ihHi; H�i < ÆG��(�); then there exists s > 1 such that

s

 
rX
i=1

bi cos\x0
(�; @X i) + �

�
1� cos\x0

(�; G��)
�!

< ÆG��(�) :
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Applying Proposition 6.7 (1) to D = @X, we conclude that

X

2�

e
�s
�Pr

i=1 b
i
di(x0;
x0)+�

�
d(x0;
x0)�BG��(x0;
x0)

��

diverges, in contradiction to (b1; b2; : : : br) 2 R�

G��. 2

Notation. For � 2 @X and ' > 0 we put SG��(') := f� 2 @X j \x0
(�;G��) < 'g :

Proposition 6.10 Let � 2 @X, � � 0 and b = (b1; b2; : : : br) 2 @R�

G�� with bi � 0 for

1 � i � r. If H� 2 a
+
1 denotes the Cartan projection of �, then

(1) For any � = (k;H) 2 @X we have
P

r

i=1 b
ihHi; Hi+ �

2
kH� �Hk2 � ÆG��(�).

(2) There exists �� 2 SG��(
p
3Æ(�)=�) with Cartan projection H� 2 a

+
1 such that

rX
i=1

bihHi; H� i+
�

2
kH� �H�k2 � ÆG��� (�) :

Proof. The �rst claim of the statement follows as in the previous lemma from Proposi-

tion 6.7 (1).

For � 2 @X and � � 0, b 2 @R�

G�� implies that for any s < 1 the seriesX

2�

e�s
�Pr

i=1 b
i
di(x;
y)+�(d(x;
y)�BG��(x;
y))

�

diverges. By Proposition 6.7 (2), there exists �� 2 @X with Cartan projection H� 2 a
+
1

so that

s

 
rX
i=1

bihHi; H� i+
�

2
kH� �H�k2

!
� ÆG��� (�) :

Taking the limit as s % 1, we obtain
P

r

i=1 b
ihHi; H� i + �

2
kH� � H�k2 � ÆG��� (�) ; and

since
P

r

i=1 b
ihHi; H� i � 0, we deduce

� (1� hH�; H� i) =
�

2
kH� �H�k2 � ÆG��� (�) :

Writing ' := \x0
(�� ; G��) 2 [0; �=2] and using the fact that hH�; H� i = cos' < 1�'2=3,

we conclude �'2=3 < ÆG��� (�) � Æ(�). Hence ' = \x0
(�� ; G��) <

p
3Æ(�)=� . 2

6.3 The Patterson Sullivan construction

Let � 2 @X such that G�� \ L� 6= ;, � � 0 and b = (b1; b2; : : : br) 2 @R�

G��. Recall that

BG�� and di, 1 � i � r, are the directional and maximal singular distances introduced in

sections 3.2 and 3.4. For 
 2 �, we abbreviate

b
 :=

rX
i=1

bidi(x0; 
x0) + � (d(x0; 
x0)� BG��(x0; 
x0)) :
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Lemma 6.11 (Patterson, [P])

There exists a positive increasing function h on [0;1) such that

(i) 	s =
P


2� e
�sb
h(b
) has exponent of convergence s = 1 and diverges at s = 1.

(ii) For any " > 0 there exists r0 > 0 such that for r � r0 and t > 1

h(rt) � t"h(r) :

Following the original idea of Patterson ( [P]), we construct a family of orbital measures

on X in the following way. If D denotes the unit Dirac point measure, we put for x 2 X

and s > 1

�s
x
:=

1

	s

X

2�

e�s
�Pr

i=1 b
i
di(x;
x0)+�(d(x;
x0)�BG��(x;
x0))

�
h(b
)D(
x0) :

These measures are �-equivariant by construction and absolutely continuous with respect

to each other. Note that they also depend on G�� � @X, � � 0 and b = (b1; b2; : : : ; br) 2
@R�

G��. For 
 2 � and x; y 2 X we put

q
(y; x) :=

rX
i=1

bi
�
di(y; 
x0)� di(x; 
x0)

�
(6.3)

+ �
�
d(y; 
x0)� d(x; 
x0)� BG��(y; 
x0) + BG��(x; 
x0)

�
:

Then for s > 1, the Radon-Nikodym derivative is given by

d�s
x

d�s
y

: ��x0 ! R


x0 7! esq
(y;x) :

Let (C0(X); k � k1) denote the space of real valued continuous functions on X with norm

kfk1 = maxfjf(x)j
�� x 2 Xg, f 2 C0(X). We endow the cone M+(X) of positive �nite

Borel measures on X with the pseudo metric

�(�1; �2) := supf
�� Z

X

f d�1 �
Z
X

f d�2
�� ��� f 2 C0(X) ; kfk1 = 1g ; �1; �2 2 M+(X) ;

and obtain the following

Lemma 6.12 Let � 2 @X with G �� \ L� 6= ;, � � 0 and b = (b1; b2; : : : ; br) 2 @R�

G��.

Then the family of maps F(G ��; �; b) := fx 7! �s
x
j 1 < s � 2g from X to M+(X) is

equicontinuous.

Proof. Let x; y 2 X. For 
 2 � we use the abbreviation q
(y; x) from (6.3), kbk1 :=P
r

i=1 jb
ij and estimate

jq
(y; x)j �
rX

i=1

bidi(y; x) + 2�d(y; x) � d(x; y) (jjbjj1 + 2�) : (6.4)
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If s 2 (1; 2] and f 2 C0(X), the inequality j1� e�tj � ejtj � 1, t 2 R, yields��� Z
X

f d�s
x
�
Z
X

f d�s
y

���
�

1

	s

X

2�

e�s
�Pr

i=1 b
idi(x;
x0)+�(d(x;
x0)�BG��(x;
x0))

�
h(b
)jf(
x0)j �

��1� e�sq
(y;x)
��

�
kfk1
	s

X

2�

e�sb
e�sq
(x;x0)h(b
)
�
esjq
(y;x)j � 1

�
:

Since f 2 C0(X) was arbitrary, s � 2 and
P


2� e
�sb
h(b
) = 	s, we conclude using (6.4)

�(�s
x
; �s

y
) � e2d(x0;x)(jjbjj1+2�) �

�
e2d(x;y)(jjbjj1+2�) � 1

�
:

This proves that F(G��; �; b) is equicontinuous. 2

Lemma 6.13 Let � 2 @X with G��\L� 6= ;, � � 0 and b = (b1; b2; : : : ; br) 2 @R�

G��. Then

for any x 2 X there exists a sequence (sn) & 1 such that the measures �sn
x
� M+(X)

converge weakly to a measure �x := �x(G��; �; b) as n!1.

Proof. The compactness of the space X implies that every sequence of measures in

M+(X) possesses a weakly convergent subsequence. 2

The theorem of Arzel�a Ascoli ( [K], Theorem 7.17, p. 233) now allows to conclude that

F(G��; �; b) is relatively compact in the space of continuous maps C(X;M+(X)) endowed

with the topology of uniform convergence on compact sets. From the de�nition of (�s
x
)x2X

it follows, that every accumulation point � = �(G ��; �; b) = (�x)x2X of F(G ��; �; b) as
s& 1 takes its values in M+(@X).

The following proposition will provide the key ingredient in the construction of orbital

measures with support in a single orbit G�� � @X in section 6.4. Recall that for ' > 0

SG��(') := f� 2 @X j \x0
(�;G��) < 'g :

Proposition 6.14 Fix � 2 @X and suppose there exists b = (b1; b2; : : : ; br) 2 R
r and

'0 2 (0; �=4) such that

rX
i=1

bihHi; H�i = ÆG��(�) ; and

rX
i=1

bihHi; H�i � ÆG��(�) 8 � 2 SG��('0) with Cartan projection H� 2 a
+
1 :

Then there exists �0 = �0(b; '0) � 0 such that for all � � �0 and for all ' > 0X

2�

\x0(
x0;G��)>'

e�b
h(b
) <1 ;

where b
 and h are as in Proposition 6.11.
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Proof. Let kbk1 :=
P

r

i=1 jb
ij, ' 2 (0; '0], and put

D1 := f� 2 @X j'=2 < \x0
(�;G��) < '0g ;

D2 := f� 2 @X j\x0
(�;G��) > '0=2g :

By property (ii) of the function h in Lemma 6.11, there exists r0 = r0(') > 0 such that for

r � r0 and t > 1 we have h(rt) � (t)'
2

h(r). Let R = R(') > 0 such that d(x0; 
x0) > R

implies b
 > r0 and

d(x0; 
x0)
�
kbk1 + 2'2 + 2Æ(�)

�
< minfed(x0;
x0); eÆ(�)d(x0;
x0)g : (6.5)

Then for 
 2 � with d(x0; 
x0) > R we have

h(b
) = h
� b

r0
r0
�
�
�
b


r0

�'2

h(r0) =
h(r0)

(r0)'
2 e

'2 log b
 :

For 
 2 � we put �
 := �x0;
x0(1) 2 @X and let H
 2 a
+
1 denote the unit length Cartan

projection of 
x0.

If 
 2 �D1
, then hH�; H
i < cos '

2
< 1� '2=12 ; and we obtain using equations (6.1)

b
 = d(x0; 
x0)
� rX

i=1

bihHi; H
i+ �
�
1� hH�; H
i

��

> d(x0; 
x0)
� rX
i=1

bihHi; H
i+
�'2

12

�
> d(x0; 
x0)

� rX
i=1

bihHi; H
i+ 2'2
�

if � > 24. Since the function f(t) := t � '2 log t ; t > 0, is monotone increasing, we

conclude for 
 2 �D1
with d(x0; 
x0) > R

f(b
) > d(x0; 
x0)
� rX
i=1

bihHi; H
i+ 2'2
�
� '2 log

�
d(x0; 
x0)

� rX
i=1

bihHi; H
i+ 2'2
��

> d(x0; 
x0)
� rX
i=1

bihHi; H
i+ 2'2 � '2
�
= d(x0; 
x0)

� rX
i=1

bihHi; H
i+ '2
�
;

where we used inequality (6.5) in the second step. For � 2 @X with Cartan projection

H 2 a
+
1 we put s(H) :=

P
r

i=1 b
ihHi; Hi+ '2: We estimate

X

2�D1

d(x0;
x0)>R

e�b
h(b
) �
h(r0)

(r0)'
2

X

2�D1

d(x0;
x0)>R

e�b
+'
2 log b
 =

h(r0)

(r0)'
2

X

2�D1

d(x0;
x0)>R

e�f(b
)

<
h(r0)

(r0)'
2

X

2�D1

d(x0;
x0)>R

e�s(H
)d(x0;
x0) <
h(r0)

(r0)'
2

X

2D1

e�s(H
)d(x0 ;
x0) :

This sum converges by Corollary 6.8 applied to D1 and the continous function s on a
+
1 .
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If 
 2 �D2
, then hH�; H
i < cos '0

2
< 1 � '2

0=12 : Using the Cauchy Schwarz inequality,

kH� �H
k � 2, we further obtain

rX
i=1

bihHi; H
i =

rX
i=1

bihHi; H�i+
rX
i=1

bihHi; H
 �H�i

� ÆG��(�)� k
rX
i=1

biHik�kH� �H
k � ÆG��(�)� 2jjbjj1

from the assumption
P

r

i=1 b
ihHi; H�i = ÆG��(�). If � � 12 (2Æ(�)� ÆG��(�) + 2jjbjj1) ='2

0,

we have
b
 = d(x0; 
x0)

� rX
i=1

bihHi; H
i+ �(1� hH�; H
i)
�

> d(x0; 
x0)
�
ÆG��(�)� 2jjbjj1 +

�'2
0

12

�
> 2Æ(�)d(x0; 
x0) :

As above we conclude for 
 2 �D2
with d(x0; 
x0) > R

f(b
) > 2Æ(�)d(x0; 
x0)� '2 log
�
2Æ(�)d(x0; 
x0)

�
> d(x0; 
x0)

�
2Æ(�)� '2Æ(�)

�
by inequality (6.5). Hence

X

2�D2

d(x0;
x0)>R

e�b
h(b
) �
h(r0)

(r0)'
2

X

2�D2

d(x0;
x0)>R

e�f(b
 ) <
h(r0)

(r0)'
2

X

2�

e�(2�'
2)Æ(�)d(x0 ;
x0) ;

which converges since '2 � '2
0 < 1. From the fact thatX


2�

d(x0;
x0)�R

e�b
h(b
) <1 ;

we conclude that for any � � �0 := maxf12 (2Æ(�)� ÆG��(�) + 2jjbjj1) ='2
0 ; 24gX


2�

\x0 (
x0;G��)>'

e�b
h(b
) <
X

2�D1

e�b
h(b
) +
X

2�D2

e�b
h(b
) <1 :

If ' � '0, then \x0
(
x0; G��) > ' implies \x0

(
x0; G��) > '0 and the claim follows. 2

The proof of the following proposition is based on a result of J. F. Quint ( [Q]).

Proposition 6.15 If � � G is a Zariski dense subgroup, then the conditions of Propo-

sition 6.14 are satis�ed for every � 2 L� \ @X with '0 > 0 arbitrary.

Proof. Let � � G be Zariski dense, �x � 2 @X and let H� 2 a
+
1 denote the Cartan

projection of �. By a result of J. F. Quint ( [Q]), the function

	 : a! R ; H 7! kHk�ÆG��(�) ; where � = (id; H) 2 @X ;
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is concave. Hence there exists a linear functional � 2 a
� with the properties

�(H�) = 	(H�) ; and �(H) � 	(H) 8H 2 a :

Since the maximal singular directions H1; H2; : : : ; Hr 2 a
+
1 provide a basis for a, there

exist coeÆcients b1; b2; : : : ; br 2 R such that � = h
P

r

i=1 b
iHi; �i. We conclude

rX
i=1

bihHi; H�i = ÆG��(�) ; and

rX
i=1

bihHi; H�i � 	(H�) = ÆG��(�)

for any � 2 @X with Cartan projection H� 2 a
+
1 . 2

6.4 (b;���)-densities

Recall from section 3.4 that for any � 2 @X the point �i 2 @X i denotes the unique

element in the i-th maximal singular boundary component @X i such that � and �i are

points in the closure of a common Weyl chamber at in�nity.

Definition 6.16 Let b = (b1; b2; : : : br) 2 Rr . A �-invariant b-density is a continuous map

� : X ! M+(@X)

x 7! �x

with the properties

(i) supp(�x0) � L� ;

(ii) 
 � �x = �
�1x for any 
 2 � ; x 2 X ;

(iii)
d�x

d�x0
(�) = e

Pr
i=1 b

iB�i (x0;x) for any x 2 X ; � 2 supp(�x0) :

A (b;���)-density � is a �-invariant b-density with supp(�x0) � L� \G��.

Remark. Let H� denote the Cartan projection of �, and ci, 1 � i � r, the linear

functionals de�ned in section 3.4. A (b;���)-density is an �-dimensional conformal density
with support in G�� (see [Al]) if and only if

bi = ��ci(H�) for 1 � i � r :

We now �x � 2 @X such that G �� \ L� 6= ;. In order to obtain a (b;� ��)-density, we
require that b = (b1; b2; : : : br) 2 Rr and '0 2 (0; �=4) satisfy the conditions necessary for

Proposition 6.14. We �x � = �0(b; '0) and consider the corresponding family F(G��; �; b)
as in Lemma 6.12. Then F(G��; �; b) is relatively compact in the space of continuous maps
C(X;M+(X)) endowed with the topology of uniform convergence on compact sets by the

argument at the end of the previous section. The following proposition characterizes the

possible accumulation points of this family F(G��; �; b).
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Proposition 6.17 Every accumulation point � = �(G��; �; b) of the family F(G��; �; b)
in C(X;M+(X)) is a (b;���)-density.

Proof. Let (�x)x2X be an accumulation point of F(G � �; �; b) in C(X;M+(X)). By

construction, the measures �x, x 2 X, are �-equivariant and supported on the limit set

L�. Proposition 6.14 further implies supp(�x0) � L� \G��. It therefore suÆces to prove

d�x

d�x0
(�) = e

Pr
i=1 b

iB�i(x0;x) for any x 2 X ; � 2 supp(�x0) :

Lemma 3.12 shows that if a sequence (yn) � X converges to a point � 2 G�� � @X in the

cone topology, then d(x; yn)� d(�; yn)! B�(x; �), BG��(x; yn)� BG��(�; yn)! B�(x; �) and
di(x; yn)� di(�; yn)! B�i(x; �) ; i = 1; 2; : : : r, uniformly on compact sets.

Thus for any constant c � 0 and for arbitrary " > 0, there exist R > 0, ' > 0 such that

for any 
 2 � with d(x0; 
x0) > R and \x0
(
x0; �) < ', and for any x 2 Bx0

(c)

jB�(x0; x)� d(x0; 
x0) + d(x; 
x0)j < " ; jB�(x0; x)� BG��(x0; 
x0) + BG��(x; 
x0)j < " ;

and jB�i(x0; x)� di(x0; 
x0) + di(x; 
x0)j < " ; i = 1; 2; : : : r : (6.6)

Let " > 0 arbitrary, �x x 2 X, put c := d(x0; x) and choose R > 0 and ' > 0 as above.

Put
�1 := f
 2 � j d(x0; 
x0) � R g ;
�2 := f
 2 � j\x0

(
x0; G��) > '=2 g ;
�3 := f
 2 � j d(x0; 
x0) > R0 and \x0

(
x0; G��) < ' g :

Note that if 
 2 �3, then there exists an element �
 2 G�� such that �x0;
x0(1) and �

are points in the closure of a common Weyl chamber at in�nity, and \x0

(
x0; �
) < '.

Using q
 from (6.3) and inequalities (6.6), we estimate for 
 2 �3

q
(x0; x) �
rX
i=1

bi
�
B(�
 )i(x0; x) + "

�
+ �
�
B�
 (x0; x) + "

�B�
 (x0; x) + "
�
�

rX
i=1

biB(�
 )i(x0; x) + (kbk1 + 2�)" ;

q
(x0; x) �
rX
i=1

biB(�
 )i(x0; x) + (kbk1 � 2�)" : (6.7)

For any f 2 C0(X), s 2 (1; 2], we have

��� Z
X

f(�) d�s
x0
(�) �

Z
X

f(�) e
Pr

i=1 b
iB�i (x0;x) d�s

x
(�)
���

�
1

	s

X

2�

jf(
x0)j � e�sb
h(b
) �
��1� e

Pr
i=1 b

i(di(x0;
x0)�di(x;
x0))+sq
(x0;x)
�� :
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The triangle inequality and inequality (6.4) imply that for any 
 2 �

�� rX
i=1

bi
�
di(x0; 
x0)� di(x; 
x0)

�
+ sq
(x0; x)

�� � kbk1d(x0; x) + sd(x0; x) (jjbjj1 + 2�) :

This proves that for x 2 Bx0
(c) and s � 2, the term

��1� e
Pr

i=1 b
i(di(x0;
x0)�di(x;
x0))+sq
(x0;x)

��
� ej

Pr
i=1 b

i(di(x0;
x0)�di(x;
x0))+sq
(x0;x)j � 1 � ec(3jjbjj1+4�) � 1

is bounded above by a constant A = A(c; b; �).

If 
 2 �3 and �
 2 G�� such that \x0
(
x0; �
) < ', we deduce from (6.6) and (6.7)

rX
i=1

biB(�
 )i(x0; x) + sq
(x0; x) � (1� s)

rX
i=1

biB(�
 )i(x0; x) + s(kbk1 + 2�)"

� (1� s)kbk1c+ s(kbk1 + 2�)" ;
rX

i=1

biB(�
 )i(x0; x) + sq
(x0; x) � (1� s)kbk1c� s(kbk1 + 2�)" ;

and therefore lims&1

��1� e
Pr

i=1 b
iB(�
 )i(x0;x)+sq
(x0;x)

�� � e"(kbk1+2�) � 1. We conclude

��� Z
X

f(�) d�s
x0
(�)�

Z
X

f(�) e
Pr

i=1 b
iB�i (x0;x) d�s

x
(�)
��� � kfk1

	s

�X

2�1

e�b
h(b
)A +

+
X

2�2

e�sb
h(b
)A +
X

2�3

e�sb
h(b
)
��1� e

Pr
i=1 b

iB(�
 )i (x0;x)+sq
(x0;x)
��� :

Now the �rst term tends to zero as s& 1 since
P


2�1 e
�sb
h(b
) converges for any s � 0

by the �niteness of �1. By Proposition 6.14,
P


2�2 e
�b
h(b
) converges, hence the second

term tends to zero as s & 1. For the last term, we have
P


2�3 e
�sb
h(b
) � 	s for any

s > 1, therefore

lim
s&1

��� Z
X

f(�) d�s
x0
(�)�

Z
X

f(�) e
Pr

i=1 b
iB�i (x0;x) d�s

x
(�)
���

= 0 + 0 + kfk1
�
e"(kbk1+2�) � 1

�
= kfk1

�
e"(kbk1+2�) � 1

�
:

The claim follows taking the limit as "& 0. 2

6.5 Illustrating examples

Example 1. The �rst important kind of example we consider in this section are lattices

in SL(n;R) acting on the symmetric space X = SL(n;R)=SO(n) described in section 1.6.
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The calculation in [A] shows, that for these �nite covolume subgroups the exponent of

growth in a direction G�� is equal to �, evaluated on the Cartan projection H� of �,

ÆG��(�) = �(H�) :

Since � is a linear functional on a and the maximal singular directions H1; H2; : : : ; Hr form

a basis of a, there exist parameters b1; b2; : : : ; br 2 R such that
P

r

i=1 b
ihHi; Hi = �(H) for

any H 2 a. This implies that for any � 2 @X the conditions necessary for Proposition 6.14

are satis�ed for arbitrary '0 > 0 with the same tuple b = (b1; b2; : : : ; br). Using � � �0(b)

according to that proposition, we are able to construct a (b;���)-density for every � 2 @X.

We are going to calculate the parameters b1; b2; : : : br 2 R in the case G = SL(3;R) and

G = SL(4;R). In SL(3;R)=SO(3), the maximal singular directions are given by

H1 =
D(e1)

kD(e1)k
=

Diag(2;�1;�1)
p
6

; H2 =
D(e2)

kD(e2)k
=

Diag(1; 1;�2)
p
6

:

Identifying a with its dual space a�, we may write � = �1+�2 = Diag(1; 0;�1). We solve

the system of linear equations

b1H1 + b2H2 = �

and obtain the unique solution b1 =
q

2
3
, b2 =

q
2
3
. For the barycenter

H� =
D(1; 1)

kD(1; 1)k
=

D(1; 1)

3
p
2

=
Diag(1; 0;�1)

p
2

2 a
+
1

we have c1(H�) = 1=
p
3 = c2(H�), hence b

i =
p
2 ci(H�) for i = 1; 2. This shows that for

� = (id; H�) 2 @X our (b;���)-density is a conformal density of dimension
p
2 = �(H�).

Since the critical exponent of a lattice equals �(H�), this conformal density is exactly the

Æ(�)-dimensional conformal density constructed by P. Albuquerque ( [Al]).

In SL(4;R)=SO(4) we have the three maximal singular directions

H1 =
Diag(3;�1;�1;�1)

2
p
3

; H2 =
Diag(1; 1;�1;�1)

2
; H3 =

Diag(1; 1; 1;�3)
2
p
3

:

In this case, we may write � = (3�1 + 4�2 + 3�3) =2 = Diag(3; 1;�1;�3)=2, and the

system of linear equations

b1H1 + b2H2 + b3H3 = �

possesses the unique solution b1 =
p
3
2
, b2 = 1, b3 =

p
3
2
. The barycenter

H� =
D(1; 1; 1)

kD(1; 1; 1)k
=
D(1; 1; 1)

4
p
5

=
Diag(3; 1;�1;�3)

2
p
5

2 a
+
1

satis�es

c1(H�) = 2
p
3

1

4
p
5
=

p
3

2
p
5
= c3(H�) ; c2(H�) =

1
p
5
;

hence bi =
p
5 ci(H�), i = 1; 2; 3. Again, for � = (id; H�) 2 @X, our (b;���)-density is a

conformal density of dimension
p
5 = �(H�) = Æ(�).
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Example 2. Another class of examples are lattices in SL(m;R) imbedded in the upper

left corner of SL(n;R) for n > m. Such groups are not Zariski dense and there exist

many subsets G �� � @X which do not contain limit points. If we imbed for example a

lattice in SL(3;R) in SL(4;R), the Cartan projections H of the subsets G �� � @X in

X = SL(4;R)=SO(4) which contain limit points belong to either one of the sets

a+ : =
nDiag(2�1 + �2;��1 + �2; 0;��1 � 2�2)p

6
p
�21 + �1�2 + �22

j �1 � 0; �2 � �1 ;
o
;

a� : =
nDiag(2�1 + �2; 0;��1 + �2;��1 � 2�2)p

6
p
�21 + �1�2 + �22

j �2 � 0; �1 > �2

o
:

In terms of the simple roots �1, �2, �3 in SL(4;R)=SO(4), we have

a+ = fH 2 a
+
1 j�1(H) + 2�2(H) = �3(H)g ;

a� = fH 2 a
+
1 j�1(H)� 2�2(H) = �3(H)g :

We obtain

ÆG��(�) =
4�1 + 5�2p

6
p
�21 + �1�2 + �22

; 0 � �1 � �2 ;

if the Cartan projection of � belongs to a+,

ÆG��(�) =
5�1 + 4�2p

6
p
�21 + �1�2 + �22

; �1 > �2 � 0 ;

if the Cartan projection of � belongs to a�, and ÆG��(�) � 0 otherwise. The conditions

for b1; b2; b3 in a subset G�� � @X with Cartan projection H 2 a+ [ a+ read

b1hH1; Hi+ b2hH2; Hi+ b3hH3; Hi = ÆG��(�) :

This leads to the following systems of linear equations

8

2
p
3
b1 +

2

2
b2 +

4

2
p
3
b3 = 4 and

4

2
p
3
b1 +

4

2
b2 +

8

2
p
3
b3 = 5 ; if H 2 a+ ;

8

2
p
3
b1 +

4

2
b2 +

4

2
p
3
b3 = 5 and

4

2
p
3
b1 +

2

2
b2 +

8

2
p
3
b3 = 4 ; if H 2 a� :

Their solutions are given by

b1 =

p
3

2
; b2 +

2
p
3
b3 = 2 ; if H 2 a+ ;

2
p
3
b1 + b2 = 2 ; b3 =

p
3

2
; if H 2 a� :

In both cases, there exists a one-dimensional vector space of solutions for the parameters

b1; b2; b3 which satisfy the conditions necessary for Proposition 6.14 for some '0 > 0. Using

� � �0(b; '0), we may therefore construct (b;� ��)-densities for every subset G �� � @X

which contains limit points.
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Example 3. Let X = G=K be a symmetric space of noncompact type, and G = Kea
+
K

a Cartan decomposition. For free groups generated by regular axial elements, we know

from Theorem 5.16 that the limit cone P� is contained in a subset of a+1 . Using the

fact that such groups are Zariski dense and applying Proposition 6.15, we conclude that

for every subset G � � � @X with Cartan projection H� 2 P�, there exist parameters

b1; b2; : : : ; br such that the conditions of Proposition 6.14 are satis�ed for any '0 > 0. The

construction of a (b;� ��)-density for every � 2 @X with Cartan projection H� 2 P� is

therefore possible.

Example 4. Our last example considers products X = X1 �X2 of rank one symmetric

spaces. If �1 � Isomo(X1), �2 � Isomo(X2) are convex cocompact groups with critical

exponents Æ1; Æ2, we know from Theorem 6.2.5 in [Y] that there exists a constant C > 1

such that

1

C
eÆiR � #f
i 2 �i jR� 1 � d(xi; 
ixi) < Rg � CeÆiR ; i = 1; 2 : (6.8)

We are now going to examine the action of the product group � = �1 � �2 � Isomo(X)

on the product manifoldX. In this case, a+ is isomorphic to the �rst quadrant in R2 , and

we may identify the i-th maximal singular direction with the i-th standard basis vector in

R
2 . Given a subset G�� � @X, we may therefore write H� = (cos �; sin �) with � 2 [0; �=2].

Using the estimates (6.8) and putting x0 := (x1; x2), �
 := arctan (d(x2; 
2x2)=d(x1; 
1x1))

for 
 2 �, we estimate the number of orbit points

�N'

G��(x0; x0;R) = #f
 2 � jR� 1 � d(x0; 
x0) < R ; \x0
(
x0; G��) < 'g

= #f(
1; 
2) 2 � jR� 1 �
p
d(x1; 
1x1)2 + d(x2; 
2x2)2 < R ;

j�
 � �j < 'g
� #f(
1; 
2) 2 � jR� 1 � d(x1; 
1x1)= cos �
 < R ;

R� 1 � d(x2; 
2x2)= sin �
 < R ; j�
 � �j < 'g
� C2 �R exp (Æ1R cos(� + ')) exp (Æ2R sin(� + ')) :

As a lower bound, we obtain

�N'

G��(x0; x0;R) � #f(
1; 
2) 2 � jR� 1 � d(x1; 
1x1)= cos � < R ;

R� 1 � d(x2; 
2x2)= sin � < Rg

�
1

C2
� exp (Æ1R cos �) exp (Æ2R sin �)

and therefore conclude ÆG��(�) = Æ1 cos � + Æ2 sin �.

In order to construct a (b;���)-density, we solve the linear equation

b1 cos � + b2 sin � = ÆG��(�) = Æ1 cos � + Æ2 sin �

and obtain b1 = Æ1, b
2 = Æ2 as a solution. As above, the conditions necessary for Proposi-

tion 6.14 are satis�ed for any '0 > 0 with the same tuple b = (b1; b2) = (Æ1; Æ2) for every

subset G�� � @X. Using � � �0(b) according to that proposition, we are able to construct

a (b;���)-density for every � 2 @X.
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In order to �nd a subset G �� � @X with Cartan projection H 2 a+ which supports a

conformal density, we require H := (cos�; sin�) to satisfy bi = �ci(H), i = 1; 2, for some

� > 0. This is equivalent to Æ1 = � cos�, Æ2 = � sin�, which implies �2 = Æ21 + Æ22 , hence

H = (Æ1; Æ2)=
p
Æ21 + Æ22 . From Example 4.6 in [Al] we know that Æ(�) =

p
Æ21 + Æ22, which

shows that our (b;���)-density restricted to the subset G�� � @X with Cartan projection

H = (Æ1; Æ2)=Æ(�) is the Æ(�)-dimensional conformal density constructed in that example.



Chapter 7

Measures on the limit set

Let X be a globally symmetric space of noncompact type and G = Isomo(X). In this

chapter, we derive properties of (b;� ��)-densities invariant by a nonelementary discrete

group � � G. Our main tool will be Theorem 7.6, the shadow lemma, a generalization

of Theorem 3.3 in [Al] valid for conformal densities invariant by a Zariski dense discrete

isometry group. For any � 2 @X, this theorem yields a relation between the parameters

of a (b;� � �)-density and the exponent of growth in direction G��.

We then deal with the atomic part of the measure and prove that the radial limit set does

not contain any atoms. We further address the question of ergodicity and give a general

argument following [Al] and [N], provided that every subset of the radial limit set with

positive measure contains a density point. The �nal section of this chapter introduces an

appropriate notion of Hausdor� measure and Hausdor� dimension on each G-invariant

subset G�� � @X in order to estimate the size of the radial limit set in G��. Our results
are most precise for a class of groups which we call radially cocompact. In this case,

the Hausdor� dimension of the radial limit set in a given subset G �� � @X equals the

exponent of growth in direction G�� .

7.1 The shadow lemma

Let X be a globally symmetric space of noncompact type and G = Isomo(X). The goal

of this section is to generalize Theorem 3.3 in [Al] to (b;� � �)-densities invariant by a

nonelementary discrete group � � G = Isomo(X).

Definition 7.1 For a subset B � X and a point x 2 X n B the Furstenberg shadow

S(x : B) � @X is de�ned as the set of those points in the geometric boundary which

belong to the closure of all Weyl chambers with apex x which intersect B.

The shadow at in�nity of B viewed from x =2 B is de�ned by

shx(B) = f� 2 @X
�� 9 t > 0 : �x;�(t) 2 Bg :

81
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If ' > 0 is an angle, then the '-shadow at in�nity of B viewed from x is de�ned by

sh'
x
(B) = f� 2 @X

�� � 2 S(x : B) and \x(�;G��) < 'g :

The following lemma extends Lemma 3.4 in [Al] valid for \generic" groups to the larger

class of nonelementary groups introduced in chapter 4.1.

Lemma 7.2 Let � � G = Isomo(X) be a nonelementary discrete subgroup and � 2 @X.

Further let � be a measure supported on L� \ G �� � @X and F � @X a �-invariant

measurable set with 0 < �(F ) < 1. Then there exist constants "0 > 0 and q > 0 such

that for every Borel set E contained in the "0-neighborhood of G�� n Vis1(��), � 2 G��,
we have

�(E \ F ) � q < �(F ) � mass(�) :

Proof. Let d := supf�(F \ G�� n Vis1(��)) j � 2 G��g � �(F ) be the supremum of the

�-measure of complements of big cells in G �� intersected with F . This supremum is in

fact a maximum, because a sequence G �� n Vis1(��j), �j 2 G ��, has an accumulation

point with respect to the Hausdor� topology which is itself a set G�� n Vis1(��0), where
�0 := limj!1 �j 2 G��.

Suppose d = �(F ). Then there exists � 2 G�� such that �(F \ (G�� nVis1(��))) = �(F ).

Since F is �-invariant, we have

�
�

(F \ (G�� n Vis1(��)))

�
= �
�
F \ (G�� n Vis1(�
�))

�
= �(F ) 8 
 2 � ;

hence �(F \ Vis1(�
�)) = 0 for all 
 2 �, because G � � equals the disjoint union of

G�� n Vis1(�
�) and Vis1(�
�). By the assumption that � is nonelementary we obtain

from Lemma 5.10

L� \G�� �
[

2�

Vis1(�
�) ;

and, since � is supported on L� \G��,

�(F ) = �(F \ L�) � �
�
F \

[

2�

Vis1(�
�)
�
�
X

2�

�(F \ Vis1(�
�)) = 0 :

We conclude d < �(F ) and put q := 1
2
(�(F )+d) > 0. Let ("j)j2N be a sequence of positive

numbers with limit zero, and suppose there exists a sequence (Ej)j2N of "j-neighborhoods

of sets G�� n Vis1(��j) such that �(F \ Ej) > q. Then a subsequence (Ejl
)l2N converges

in the Hausdor� topology to a set G�� n Vis1(��0), �0 2 G��, with

�(F \G�� n Vis1(��0)) � q > d ;

in contradiction to the de�nition of d. 2

We are now going to give a generalization of Lemma 3.5 in [Al] which is crucial for the

proof of Theorem 7.6.
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Lemma 7.3 Fix y 2 X and � 2 @X. Then for any "0 > 0 there exists a constant c0 > 0

with the following property:

For every c > c0 and for any x 2 X nBy(c), the set G��n (S(x : By(c))\G��) is contained

in the "0-neighborhood of a set G�� n Vis1(��), � 2 G��.

Proof. Let � be a geodesic in X with �(1) = � 2 G�� and �x an Iwasawa decomposition

G = N+AK with respect to �(0), �(�1). Then G �� = G �� � @X� for some subset

� � �, and the subgroup N� := exp(
P

�2h�i g�) � N+ stabilizes �(1). Note that if

� = ;, then N� = fidg.

For r > 0 we put N(r) := fn 2 N+ j 9 t � 0 such that nN��(t) 2 By(r)g :

�(�1)

�t

n�(1)

�(�t) &%
'$

y

�(1)

Since [r>0N(r) = N+, for any " > 0 there exists a number r0 > 0 such that the set

G�� nN(r0)�� is contained in an "-neighborhood of G�� nN+�. For n 2 N(r0) and t > 0

we consider the geodesic ray �t emanating from �(�t) and asymptotic to n�(1). Since

nN� stabilizes �(�1), there exists t0 = t0(") such that d(�t; nN��) < " for t > t0. This

implies that for t > t0, the ray �t intersects By(r0 + "), and therefore

N(r0)�� � S(�(�t) : By(r0 + ")) :

By Corollary 2.14 we have N+ �� = Vis1(�(�1). Choosing c0 := maxft0; r0 + "g and

using the fact that S(x : By(c)) � S(x : By(c
0)) for c0 > c, we conclude that for any c > c0

and for arbitrary x 2 X with d(y; x) � c

N(r0)�� � S(x : By(c)) \G�� :

The assertion now follows from the density of the open set N+w�P� in G=P�. 2

Lemma 7.4 Let c > 0, x; z 2 X with d(x; z) > c, and � 2 @X. Then

8 � 2 G�� \ S(x : Bz(c)) : 0 � BG��(x; z)� B�(x; z) < 2c :

Proof. Let � 2 G�� \ S(x : Bz(c)) and �x a Cartan decomposition G = Kea
+
K and an

Iwasawa decompositon G = N+AK with respect to x and �. Then for any k 2 K we

have k� 2 G�� \ S(x : Bkz(c)) and

Bk�(x; z) = B�(x; k�1z) ; BG��(x; z) = BG��(x; k�1z) :

It therefore suÆces to prove the claim for z = eHx, H 2 a+. If H� 2 a
+
1 denotes the

Cartan projection of �, we obtain from Lemma 3.2

B�(x; z) = B�(x; eHx) = hH;H�i :
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Let y 2 Bz(c) and write y = keH
0

x, where k 2 K is an angular projection and H 0 2 a
+
1

the Cartan projection of y. Let H� 2 a
+
1 denote the Cartan projection of �. Using the

equality Bk�(x; y) = B�(x; eH
0

x) = B�(x; z) + B�(z; eH
0

x)

we conclude

0 � BG��(x; z)� B�(x; z) = BG��(x; z)� Bk�(x; y) + Bk�(x; y)� B�(x; z)
= hH;H�i � B�(x; eH

0

x) + B�(x; z) + B�(z; eH
0

x)� B�(x; z)

� hH�; H �H 0i+ d(z; eH
0

x)
CSU

� kH �H 0k+ d(z; y)

= d(eHx; eH
0

x) + d(z; y) � 2d(z; y) < 2c 2

Corollary 7.5 Let c > 0, x; z 2 X with d(x; z) > c. Then

8 �i 2 @X i \ S(x : Bz(c)) : 0 � di(x; z)� B�i(x; z) < 2c :

Let X = G=K be a globally symmetric space of noncompact type with base point x0 2 X

corresponding to K. We are now going to give an extended version of Theorem 3.3 in [Al],

valid for (b;���)-densities and measurable sets invariant by a discrete nonelementary group
of isometries.

Theorem 7.6 (Shadow Lemma) Let � � Isomo(X) be a discrete nonelementary sub-

group, � 2 @X, � a (b;���)-density. Then there exists a constant c0 > 0 such that for any

c > c0 and for every �-invariant measurable set F � @X with �x0(F ) > 0 there exists a

constant D(c) > 1 with the property

1

D(c)
e�
Pr

i=1 b
idi(x0;
x0) � �x0 (S(x0 : B
x0

(c)) \ F ) � D(c)e�
Pr

i=1 b
idi(x0;
x0) :

Proof. Let c0 > 0 as in Lemma 7.3, corresponding to "0 > 0 in Lemma 7.2. For c > c0
and 
 2 � such that d(x0; 
x0) > c we have

�x0(F ) � �x0(S(

�1x0 : Bx0

(c)) \ F ) � �x0(F )� q > 0 : (7.1)

The properties (ii) and (iii) of a (b;���)-density and the �-invariance of F imply

�x0(S(

�1x0 : Bx0

(c)) \ F ) = �x0(

�1S(x0 : B
x0

(c)) \ F )

= 
�1 � �x0(S(x0 : B
x0
(c)) \ F ) = �
x0(S(x0 : B
x0

(c)) \ F )

=

Z
S(x0:B
x0

(c))\F
d�
x0(�)�

d�x0
d�
x0

(�)�e
Pr

i=1 b
iB�i(x0;
x0)

=

Z
S(x0:B
x0

(c))\F
e
Pr

i=1 b
iB�i (x0;
x0)d�x0(�) :

By Corollary 7.5, e�2rc exp
�P

r

i=1 b
idi(x0; 
x0)

�
�x0(S(x0 : B
x0

(c)) \ F )

< �x0(S(

�1x0 : Bx0

(c)) \ F ) � exp
�P

r

i=1 b
idi(x0; 
x0)

�
�x0(S(x0 : B
x0

(c)) \ F ) :

Equation (7.1) now allows to conclude

exp
�
�
P

r

i=1 b
idi(x0; 
x0)

�
(�x0(F )� q) � �x0(S(x0 : B
x0

(c)) \ F )

� exp
�
�
P

r

i=1 b
idi(x0; 
x0)

�
e2rc ��x0(F ) : 2
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7.2 Relation to the exponent of growth

For this section, we �x a Cartan decomposition G = Kea
+
K for X = G=K and let x0

denote the unique point in X stabilized by K. The following applications of Theorem 7.6,

the shadow lemma, yield relations between the exponent of growth in a direction G�� and
the parameters of a (b;���)-density.

Theorem 7.7 Let � 2 @X and H� 2 a
+
1 the Cartan projection of �. If a (b;���)-density

exists, then ÆG��(�) �
P

r

i=1 b
ihHi; H�i :

Proof. Suppose � is a (b;���)-density with support in G�� � @X. Let c > c0 + 1 with

c0 as in Theorem 7.6, ' > 0 and R >> 1 arbitrary. We only need N(')Rr�1 balls of

radius 1 in eax0 � X to cover the set feRHx0 jH 2 a1 ; \(H;H�) < 'g, and N(') is

independent of R. Since � is discrete, a 2c-neighborhood of any of these balls contains

a uniformly bounded number Mc of elements of ��x0. The compactness of the group K

implies the existence of a constant A > 0 such that every point in G�� is contained in at

most AMcN(')Rr�1 sets sh'
x0
(B
x0

(c)), 
 2 �0, where

�0 := f
 2 � j\x0
(
x0; G � �) < '; R� 1 � d(x0; 
x0) < Rg, and thereforeX

2�0

�x0(sh
'

x0
(B
x0

(c))) �McAN(')Rr�1�x0(G��) :

Furthermore, for any 
 2 �0 the unit length Cartan projection H
 2 a
+
1 of 
x0 satis�es

hHi; H
 �H�i � kH
 �H�k =
p
2� 2 cos' � ', which implies

rX
i=1

bidi(x0; 
x0) � d(x0; 
x0)
� rX
i=1

bihHi; H�i+ kbk1'
�
:

Using Theorem 7.6 and �N'

G�� from section 6.1, we conclude

�N'

G��(x0; x0;R)
1

D(c)
e�
Pr

i=1 b
ihHi;H�iR �

X

2�0

1

D(c)
e�
Pr

i=1 b
idi(x0;
x0)+'kbk1d(x0;
x0)

� e'kbk1R
X

2�0

�x0(sh
'

x0
(B
x0

(c))) � e'kbk1RMcAN(')Rr�1�x0(G��) :

Hence Æ'
G��(x0; x0) � lim sup

R!1

1

R
log
�
D(c)McAN(')�x0(G��)R

r�1 �

� exp(

rX
i=1

bihHi; H�iR + 'kbk1R)
�
=

rX
i=1

bihHi; H�i+ 'kbk1

and the claim follows as '& 0. 2

Furthermore, if a (b;���)-density gives positive measure to the radial limit set, then the

exponent of growth in direction G�� is completely determined by its parameters.

Theorem 7.8 Let � 2 @X and H� 2 a
+
1 the Cartan projection of �. If a (b;���)-density

gives positive measure to Lrad

� , then ÆG��(�) =
P

r

i=1 b
ihHi; H�i :
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Proof. Suppose � is a (b;���)-density with support G�� � @X such that �x0(L
rad

� ) > 0,

and let c > c0 with c0 as in Theorem 7.6. By de�nition of the radial limit set,

Lrad

� \G�� �
\
R>0

\
'>0

[

2�

d(x0;
x0)>R

\x0
(
x0;G��)<'

sh'
x0
(B
x0

(c)) :

Let ' > 0 and R > c arbitrary, put �0 := f
 2 � j d(x0; 
x0) > R; \x0
(
x0; G��) < 'g.

Hence
Lrad

� \G�� �
[

2�0

sh'
x0
(B
x0

(c)) ;

and we estimate 0 < �x0(L
rad

� ) = �x0(L
rad

� \G��)

�
X

2�0

�x0(sh
'

x0
(B
x0

(c))) � D(c)
X

2�0

e�
Pr

i=1 b
i
di(x0;
x0) :

This implies that for any ' > 0 the tail of the seriesX

2�

\x0 (
x0;G��)<'

e�
Pr

i=1 b
i
di(x0;
x0)

does not tend to zero. Therefore the sum above diverges and by Proposition 6.7 (2), there

exists � 2 SG��(') with Cartan projection H� 2 a
+
1 , such that

P
r

i=1 b
ihHi; H�i � ÆG��(�).

Taking the limit as ' & 0, we conclude
P

r

i=1 b
ihHi; H�i � ÆG��(�). The assertion now

follows from the previous theorem. 2

7.3 The atomic part of the measure

Lemma 7.9 Let � � G = Isomo(X) be a nonelementary discrete group, � 2 @X and � a

(b;���)-density. If � 2 G�� is a point mass and �� its stabilizer, then for any 
 2 �� and

x 2 X we have
rX
i=1

biB�i(x; 
x) = 0 :

In particular, if 
1; 
2 2 � are representatives of the same coset in �=��, then

rX
i=1

biB�i(x; 

�1
1 x) =

rX
i=1

biB�i(x; 

�1
2 x) :

Proof. If 
 2 ��, then for x 2 X we have by �-equivariance

�x(�) = �x(

�1�) = �
x(�) :

From the assumption that � is a point mass and property (iii) in De�nition 6.16 we

conclude

1 =
�
x(�)

�x(�)
= e

Pr
i=1 b

iB�i (x;
x) ;
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hence
P

r

i=1 b
iB�i(x; 
x) = 0 for any 
 2 ��.

Let 
1; 
2 2 � such that 
1�� = 
2�� 2 �=��. Then 

�1
2 
1 2 �� and we obtain from aboveP

r

i=1 b
iB�i(x; 


�1
1 x) =

P
r

i=1 b
iB�i(x; 


�1
2 
1


�1
1 x) =

P
r

i=1 b
iB�i(x; 


�1
2 x) : 2

Let x0 2 X denote the base point of X = G=K corresponding to K.

Lemma 7.10 Let � � G = Isomo(X) be a nonelementary discrete subgroup, and � 2 G��
a point mass for a (b;���)-density �. Then the sumX

e
Pr

i=1 b
iB�i(x0;


�1x0)

taken over a system of coset representatives of �=�� converges.

Proof. If 
1 and 
2 are representatives of di�erent cosets in �=��, then 
1� 6= 
2� and so,

by �-equivariance and since �x0 is a �nite measure,X
�
�1x0(�) =

X
�x0(
�) � �x0(G��) <1 :

By property (iii) in De�nition 6.16 and the assumption that � is a point mass we conclude

that the sum X
e
Pr

i=1 b
iB�i(x0;


�1x0) =
X �
�1x0(�)

�x0(�)
=

1

�x0(�)

X
�
�1x0(�)

taken over a system of coset representatives of �=�� converges. 2

Theorem 7.11 If � � G = Isomo(X) is a nonelementary discrete group and � 2 @X

such that ÆG��(�) > 0, then a radial limit point � 2 G�� � @X is not a point mass for any

(b;���)-density.

Proof. Suppose � is a (b;���)-density, and � 2 Lrad

� \G��. Fix a Cartan decomposition

G = Kea
+
K and an Iwasawa decomposition G = N+AK with respect to x0 and �, and let

H� 2 a
+
1 denote the Cartan projection of �. By Theorem 7.7 we have

P
r

i=1 b
ihHi; H�i �

ÆG��(�) > 0 :

Put " := ÆG��(�)=kbk1 > 0. Since � 2 Lrad

� \G��, there exists a sequence (
j) � � such that

the Iwasawa projections H
j
of 
jx0 satisfy \(H
j

; H�) < "=2, hence k
H
j

kH
j
k �H�k < "=2.

Then, using the Cauchy Schwartz inequality, we compute

rX
i=1

biB�i(x0; 
jx0) =

rX
i=1

bihHi; H
j
i = kH
j

k
� rX
i=1

bihHi; H�i+
rX
i=1

bihHi;
H
j

kH
j
k
�H�i

�
> kH
j

k (ÆG��(�)� kbk1"=2) = kH
j
kÆG��(�)=2 ! 1;

because ÆG��(�) > 0 and kH
j
k ! 1 as j !1. We may therefore extract a subsequence

(
k) := (
jk) � � such that
P

r

i=1 b
iB�i(x0; 
kx0) is strictly increasing to in�nity as

j !1.
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Assume now � is a point mass for �x0 and suppose there exist l; j 2 N , l 6= j such that


�1
l
�� = 
�1

j
��. Then by Lemma 7.9 we have

rX
i=1

biB�i(x0; 
jx0) =
rX
i=1

biB�i(x0; 
lx0) ;

in contradiction to the choice of the subsequence (
k). Hence 

�1
l
�� 6= 
�1

j
�� for all l 6= j,

and the sum over a system of coset representatives of �=�� is bounded below byX
k2N

e
Pr

i=1 b
iB�i(x0;
kx0)

and therefore diverges in contradiction to Lemma 7.10. We conclude that � cannot be a

point mass for �x0. 2

7.4 Ergodicity discussion

The main result Theorem 7.15 of this section generalizes Theorem 5.6 in [Al]. Suppose

every �-invariant subset of the radial limit set in G�� � @X with positive measure contains

a density point with respect to a covering by shadows. Then our theorem implies that �

acts ergodically on Lrad

� with respect to the measure class de�ned by �. It is not clear,

however, if this condition is satis�ed, because it seems impossible to construct a Vitali

cover from shadows in the general case. The following de�nition is again a generalization

of Zariski dense groups.

Definition 7.12 A discrete subgroup � � Isomo(X) is called strongly nonelementary if

L� 6= ; and if for any � � � with L� \ @X� 6= ; there exists a �-axial isometry h 2 �

with attractive and repulsive �xed points h+; h� and the following property:

For every � 2 @X�, Y := K=M� n VisB(��), there exists 
 2 � such that


Y \ �B(L� \ @X�) � VisB(�h+) \ VisB(h�) :

Lemma 7.13 If � is strongly nonelementary, then for any � � � with L� \ @X� 6= ;
and for every � 2 @X�, Y := K=M� n VisB(��), there exists a sequence (
j) � � such

that the sets 
jY are pairwise disjoint.

Proof. Suppose � is strongly nonelementary, let � � � such that L� \ @X� 6= ;,
and h a �-axial isometry as in the de�nition. Let � 2 G �h� � @X��

arbitrary, put

V := G�h+ n Vis1(�) and choose 
 2 � such that


(�B(V )) \ �B(L� \ @X�) � VisB(�h+) \ VisB(h�) :

Then 
V \ L� � Vis1(�h+) \ Vis1(h�), and since h+ =2 Vis1(�h+) we have h+ =2 
V .

Consider the distance dx0;h� on Vis1(h�) from section 5.1 and put

t0 := maxfdx0;h�(�; h
+) j � 2 
V g ; t1 := minfdx0;h�(�; h

+) j � 2 
V g :
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Let l > 0 denote the translation length and L 2 a
�
1 the translation direction of h. By

Lemma 5.1

dx0;h�(h�; h
+) � e��0l �dx;h�(�; h+) ; �0 := min

�2�+nh��i+
�(�(L)) :

Let j1 2 N be the smallest integer greater than log(t0=t1)=(�0l). Then for any � 2 V we

have

dx0;h�(h
j1�; h+) � e�j1�0l �dx;h�(�; h+) <

t1

t0
�t0 = t1 ;

which proves hj1
V \ 
V = ;. Next put t2 := minfdx0;h�(hj1�; h+) j � 2 
V g and let

j2 2 N be the smallest integer greater than log(t0=t2)=(�0l). We conclude

dx0;h�(h
j2�; h+) � e�j2�0l �dx;h�(�; h+) <

t2

t0
�t0 = t2

for any � 2 
V , hence hj2
V \ hj1
V = ; and hj2
V \ 
V = ;. Then inductively, if

tk > 0 and jk 2 N have been chosen, we put tk+1 := minfdx0;h�(hjk�; h+) j � 2 
V g
and let jk+1 2 N be the smallest integer greater than log(t0=tk)=(�0l). This process does

not terminate after �nitely many steps, because for � 6= h+ we have hj� 6= h+ for all

j 2 N . We obtain a decreasing sequence (tk)& 0, an increasing sequence (jk) � N and a

sequence (
k) := (
�1hjk
) � � with the property 
kV \ 
lV = ; for k; l 2 N , k 6= l. 2

The following statement will be essential in the proof of Theorem 7.15.

Lemma 7.14 Let � � G = Isomo(X) be a strongly nonelementary discrete group, � � �

and � 2 @X�. If � is a measure of �nite total mass such that supp(�) � L� \ G �� is

�-invariant, then for any " > 0 and every � 2 G�� we have

�(
Y ) < " ; where Y = G�� n Vis1(��) :

Proof. Suppose there exists " > 0 and � 2 G�� such that Y := G�� n Vis1(��) satis�es
�(
 �Y ) > " 8 
 2 �. In particular, id 2 � implies �(Y ) � " and therefore Y \ L� 6= ;.

Since � is strongly nonelementary, by the previous lemma there exists a sequence (
j) � �

such that 
kY \ 
lY = ; for all k 6= l. Hence

�(G��) �
X
j2N

�(
jY )!1 ;

a contradiction to the �niteness of �. 2

Theorem 7.15 Let � � G = Isomo(X) be a strongly nonelementary discrete group of

isometries, � 2 @X� such that ÆG��(�) > 0, and � a (b;� ��)-density. Then for every

�-invariant subset A � Lrad

� which possesses a point � 2 A with the property

lim
j!1

�x0(S(x0 : B
jx0
(c)) \ A)

�x0(S(x0 : B
jx0
(c)) \ Lrad

� )
= 1

for some sequence (
jx0) � X converging to �, and c > c0 as in Theorem 7.6, either

�x0(A) = 0 or �x0(A) = �x0(L
rad

� ).
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Proof. Suppose �x0(A) > 0, let � 2 A, c > c0, (
j) � � such that 
jx0 converges to � and

lim
j!1

�x0(S(x0 : B
jx0
(c)) \ Lrad

� n A)
�x0(S(x0 : B
jx0

(c)) \ Lrad

� )
= 0 : (7.2)

Passing to a subsequence if necessary, (
�1
j
x0) � X converges to a point � 2 �(G ��),

put Y := G�� n Vis1(�). Given " > 0, Lemma 7.14 implies the existence of 
 2 � such

that �x0(
Y ) < ". Since �x0 is nonatomic in Lrad

� by Theorem 7.11, there exists an open

neighborhood U of 
Y such that �x0(U) < �x0(
Y ) + " < 2".

Furthermore, 
�1
j
x0 ! � and Lemma 7.3 imply the existence of c00 > c, such that for

c0 > c00 and j suÆciently large, the set G�� n (S(
�1
j
x0 : Bx0

(c0))\G��) is contained in the

open neighborhood 
�1U of Y = G�� n Vis1(�). Hence G�� n 
S(
�1
j
x0 : Bx0

(c0)) � U ;

and therefore

�x0(
S(

�1
j
x0 : Bx0

(c0)) \ Lrad

� ) > �x0(L
rad

� )� 2" : (7.3)

We compute

�x0(
S(

�1
j
x0 : Bx0

(c0)) \ Lrad

� n A))
�x0(
(S(
jx0 : Bx0

(c0)) \ Lrad

� )
=
�x0(



�1
j
(S(x0 : B
jx0

(c0)) \ Lrad

� n A))
�x0(



�1
j
(S(x0 : B
jx0

(c0)) \ Lrad

� )

=
�(

�1j )�1x0

(S(x0 : B
jx0
(c0)) \ Lrad

� n A)

�(

�1j )�1x0
(S(x0 : B
jx0

(c0)) \ Lrad

� )
=

�
j
�1x0(S(x0 : B
jx0
(c0)) \ Lrad

� n A)
�
j
�1x0(S(x0 : B
jx0

(c0)) \ Lrad

� )

=

R
S(x0:B
jx0

(c0))\Lrad
�

nA d�
j
�1x0(�)R
S(x0:B
jx0

(c0))\Lrad
�

d�
j
�1x0(�)
=

R
S(x0:B
jx0

(c0))\Lrad
�

nA e
Pr

i=1 b
iB�i (x0;
j


�1
x0)d�x0(�)R

S(x0:B
jx0
(c0))\Lrad

�

e
Pr

i=1 b
iB�i (x0;
j


�1x0)d�x0(�)

�
e
Pr

i=1 b
i
di(x0;
j


�1
x0)�x0(S(x0 : B
jx0

(c0)) \ Lrad

� n A)
e
Pr

i=1 b
idi(x0;
j
�1x0)�2rc0�x0(S(x0 : B
jx0

(c0)) \ Lrad

� )

=
�x0(S(x0 : B
jx0

(c0)) \ Lrad

� n A)
e�2rc0�x0(S(x0 : B
jx0

(c0)) \ Lrad

� )
:

Now c0 > c implies �x0(S(x0 : B
jx0
(c0)) \ Lrad

� ) � �x0(S(x0 : B
jx0
(c)) \ Lrad

� ) , and

since A is �-invariant, Lrad

� n A � @X is �-invariant and either �x0(A) = �x0(L
rad

� ) or

�x0(L
rad

� nA) > 0. In the �rst case we are done, otherwise the shadow lemma Theorem 7.6

with F := Lrad

� n A yields

�x0(S(x0 : B
jx0
(c0)) \ Lrad

� n A) � D(c0)e�
Pr

i=1 b
i
di(x0;
jx0)

� D(c0)D(c)�x0(S(x0 : B
jx0
(c)) \ Lrad

� n A) :

For suÆciently large j 2 N we therefore obtain from (7.2)

�x0(S(x0 : B
jx0
(c0)) \ Lrad

� n A)
e�2rc

0
�x0(S(x0 : B
jx0

(c0)) \ Lrad

� )
�

D(c0)D(c)�x0(S(x0 : B
jx0
(c)) \ Lrad

� n A)
e�2rc

0
�x0(S(x0 : B
jx0

(c)) \ Lrad

� )
< "
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and conclude

�x0(A) � �x0(
S(

�1
j
x0 : Bx0

(c0)) \ A)

= �x0(
S(

�1
j
x0 : Bx0

(c0)) \ Lrad

� )� �x0(
S(

�1
j
x0 : Bx0

(c0)) \ Lrad

� n A)

> (1� ")�x0(
S(

�1
j
x0 : Bx0

(c0)) \ Lrad

� )
(7:3)

> (1� ")
�
�x0(L

rad

� )� 2"
�
:

Letting "& 0 we obtain �x0(A) � �x0(L
rad

� ). 2

7.5 Hausdor� measure

We will follow the idea of G. Knieper ( [Kn], chapter 4) in order to de�ne Hausdor�

measure on the G-invariant subsets of the limit set.

For � 2 @X, c > 0 and 0 < r < e�c we call the set

Bc

r
(�) := f� 2 @X j d(�x0;�(� log r); �x0;�(� log r)) < cg

a c-ball of radius r centered at �. Using this conformal structure, we de�ne as in the case of

metric spaces a Hausdor� measure and Hausdor� dimension on the geometric boundary.

Definition 7.16 Let E be a Borel subset of @X,

Hd�
"
(E) = inff

X
r�
i
jE �

[
Bc

�i
(ri); ri < "g :

The �-dimensional Hausdor� measure of E is de�ned by Hd�(E) = lim
"!0

Hd�

"
(E) ;

the Hausdor� dimension of E is the number dimHd(E) = inff� � 0 jHd�(E) <1g :

For the remainder of this chapter, we �x a Cartan decomposition G = Kea
+
K for X =

G=K, and let x0 2 X denote the unique point stabilized by K. Lemma 1.16 allows to give

a relation between shadows at in�nity and c-balls. For y 2 Kea
+

x0 � X, let Cx0;y � X

denote the unique Weyl chamber with apex x0 which contains y.

Lemma 7.17 Let c > 0, � 2 @Xreg with Cartan projection H� 2 a
+
1 . Then there exists

'0 2 (0; �=4) and R0 > 0 such that with A0 := maxfk�k=�(H�) j� 2 �+g the following

holds:

If ' � '0, y 2 X with d(x0; y) � R0, r := exp
�
� d(x0; y)(cos'� A0 sin') + 2A0c

�
and

� := Cx0;y \G��, then
sh'

x0
(By(c)) \G�� � Bc

r
(�) :

Proof. For c > 0 and H� 2 a
+
1 let '0 2 (0; �=4) and R0 > 0 be the constants as in

Lemma 1.16. Let ' 2 (0; '0], choose y 2 X with t := d(x0; y) � R0 and let ky 2 K

denote an angular projection of y. If \x0
(y;G��) � ', then sh'

x0
(By(c)) \ G�� = ; and

the claim is trivial. If \x0
(y;G��) < ', then the unit length Cartan projection Hy 2 a

+
1
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of y satis�es \Hy; H�) < ' and belongs to a
+
1 by equation (1.2). Hence � = Cx0;y \ G��

is well de�ned, and � = (ky; H�). If � := (k;H�) 2 sh'
x0
(By(c)) \G��, then

d(k�1kye
Hytx0; e

a
+

x0) = d(kye
Hytx0; ke

a
+

x0) = d(y; Cx0;�) < c :

Put t0 := t(cos'� A0 sin')� 2A0c. We obtain from Lemma 1.16

d(�x0;�(t0); �x0;�(t0)) = d(k�1kye
H�t0x0; e

H�t0x0) < c ;

and conclude � 2 Bc

r
(�) for r = e�t0 . 2

The above inclusions now yield an upper bound for the Hausdor� dimension of the radial

limit set.

Theorem 7.18 If � � Isomo(X) is a discrete nonelementary group and � 2 @Xreg, then

the Hausdor� dimension of the radial limit set in G�� � @X is bounded above by ÆG��(�).

Proof. Fix � 2 @Xreg with Cartan projection H� 2 a
+
1 , and c > 3c0 with c0 > 0 as in

Theorem 7.6. By de�nition of the radial limit set,

Lrad

� \G�� �
\
R>0

\
'>0

[

2�

d(x0;
x0)>R

\x0(
x0;G��)<'

sh'
x0
(B
x0

(c)) :

Fix '0 2 (0; �=4) and R0 > 0 as in the assertion of the previous lemma and abbreviate

A0 := maxfk�k=�(H�) j� 2 �+g. Let " 2 (0; e�R0) and ' 2 (0; '0] arbitrary, and put

�0 := f
 2 � j d(x0; 
x0) > � log ";\x0
(
x0; G��) < 'g. For 
 2 �0, let �
 := Cx0;
x0 \G��,

and
r
 := exp

�
� d(x0; 
x0)(cos'� A0 sin') + 2A0c

�
:

Then by the previous lemma we have sh'
x0
(B
x0

(c) \G�� � Br
 (�
) for all 
 2 �0, hence

Lrad

� \G�� �
[

2�0

Br
 (�
) :

Using the de�nition of Hd�

"
we estimate

Hd�
"
(Lrad

� \G��) �
X

2�0

r�


=
X

2�0

e��
�
d(x0;
x0)(cos'�A0 sin')�2A0c

�

� e2�A0c
X

2�0

e��(cos'�A0 sin')d(x0 ;
jx0) :

Recall from section 6.1 that Qs;'

G��(x0; x0) =
X

2�

\x0(
x0;G��)<'

e�sd(x0;
x0)

converges for s > Æ'
G��(x0; x0). If s0 := �(cos'� A0 sin') > Æ'

G��(x0; x0), we have

Hd�
"
(Lrad

� \G��) � e2�A0cQ
s0;'

G�� (x0; x0) :
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This shows that for � > Æ'
G��(x0; x0)=(cos'� A0 sin'), Hd

�

"
(Lrad

� \G��) is �nite. Taking
the limit as '& 0 shows that the same is true for � > ÆG��(�). Letting "& 0, we obtain

Hd�(Lrad

� \G��) <1 if � > ÆG��(�), hence dimHd(L
rad

� \G � �) � ÆG��(�). 2

For certain discrete subgroups of Isomo(X), the existence of a (b;���)-density � together

with Theorem 7.6 allows to also obtain a lower bound for the Hausdor� dimension of the

radial limit set.

Definition 7.19 A nonelementary discrete group � � Isomo(X) is called radially cocom-

pact, if and only if there exists a constant c > 0 such that for any � 2 Lrad

� and for all

t > 0 there exists an element 
 2 � with

d(
x0; �x0;�(t)) < c :

The most familiar radially cocompact groups are convex cocompact and geometrically

�nite isometry groups of real hyperbolic spaces, as well as uniform lattices acting on

symmetric spaces of higher rank. A further example is given by products of convex

cocompact groups acting on the Riemannian product of rank one symmetric spaces of

noncompact type.

Theorem 7.20 Let � � G = Isomo(X) be radially cocompact, � 2 @X with Cartan

projection H� 2 a
+
1 and � a (b;� ��)-density. Then there exists a constant C0 > 0 such

that for any Borel subset E � @X

Hd�(E) � C0 � �x0(E) ; � =

rX
i=1

bihHi; H�i :

Proof. Fix c > c0, let " > 0, s > 0 arbitrary, and choose a cover of E by balls Bc

rj
(�j),

rj < ", such that with � :=
P

r

i=1 b
ihHi; H�i Hd�

"
(E) �

X
j2N

r�
j
� s :

If Bc

rj
(�j) \ Lrad

� = ;, we do not need Bc

rj
(�j) to cover E � Lrad

� , otherwise we choose

�j 2 Bc

rj
(�j) \ Lrad

� . Since � is radially cocompact, there exists 
j 2 � such that

d(
jx0; �x0;�j (� log rj)) � c. This implies d(x0; 
jx0) � � log rj � c ; and for any ' > 0

sh'
x0
(B
jx0

(3c)) � Bc

rj
(�j). We conclude using � =

P
r

i=1 b
ihHi; H�i

E �
[
j2N

sh'
x0
(B
jx0

(3c)) ;

�x0(E) � �x0(
[
j2N

sh'
x0
(B
j�x0(3c)) �

X
j2N

�x0(sh
'

x0
(B
j�x0(3c))

� D(3c)
X
j2N

e�
Pr

i=1 b
i
di(x0;
j�x0) � D(3c)

X
j2N

e�d(x0;
j�x0)�

� D(3c)
X
j2N

e�(log rj+c) � D(3c)e�c
X
j2N

r�
j

� D(3c)e�c (Hd�

"
(E) + s) :

The claim now follows as s& 0 and "& 0. 2
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Theorem 7.21 Let � � G = Isomo(X) be radially cocompact, � 2 @X and � a (b;���)-
density. Then

dimHd(L
rad

� \G � �) = ÆG��(�) :

Proof. Let � 2 @X with Cartan projection H� 2 a
+
1 and � a (b;���)-density. From the

previous theorem we deduce that for � :=
P

r

i=1 b
ihHi; H�i

Hd�(Lrad

� \G��) � C0�x0(L
rad

� ) � 0 ;

hence dimHd(L
rad

� \G � �) � � =
P

r

i=1 b
ihHi; H�i � ÆG��(�) by Theorem 7.7.

If � 2 @Xreg, then the assertion follows directly from Theorem 7.18. Suppose � =2 @Xreg,

�x c > 2c0 with c0 > 0 as in Theorem 7.6, let " > 0 arbitrary and

�0 := f
 2 � j d(x0; 
x0) > � log "; d(
x0; �x0;�) � c=2 for some � 2 G��g :

For 
 2 �0, we put �
 := Cx0;
x0 \G�� and r
 := exp
�
� d(x0; 
x0)

�
. Then

Lrad

� \G�� �
[

2�0

Br
 (�
) ;

and we estimate Hd�
"
(Lrad

� \G��) �
X

2�0

r�


=
X

2�0

e��d(x0 ;
x0) � Q�;'

G��(x0; x0) :

This number is �nite if � > Æ'
G��(x0; x0). Taking the limit as '& 0 shows that the same

is true for � > ÆG��(�), and letting "& 0, we conclude that Hd�(Lrad

� \G��) is bounded
for � > ÆG��(�), hence dimHd(L

rad

� \G � �) � ÆG��(�). 2

Using the results of section 6.5, we deduce the following two corollaries.

Corollary 7.22 Let X = SL(n;R)=SO(n), and � � SL(n;R) a cocompact lattice.

Then for any � 2 @X with Cartan projection H� 2 a
+
1 we have

dimHd(L
rad

� \G � �) = �(H�) :

Corollary 7.23 Let X = X1 �X2 be the Riemannian product of rank one symmetric

spaces, �1 � Isomo(X1), �2 � Isomo(X2) convex cocompact groups with critical exponents

Æ1, Æ2, and � = �1 � �2 � G = Isomo(X). Then for any � 2 @X with Cartan projection

H� = cos �H1 + sin �H2, � 2 [0; �=2], we have

dimHd(L
rad

� \G � �) = Æ1 cos � + Æ2 sin � :



Bibliography

[A] P. Albuquerque, Mesures de Patterson-Sullivan dans les espaces symmetriques de

rang superieure, Th�ese (1997)

[Al] P. Albuquerque, Patterson-Sullivan theory in higher rank symmetric spaces,

Geom. Funct. Anal. 9 (1999), 1-28

[Ba] W. Ballmann, Lectures on Spaces of Nonpositive Curvature, DMV Seminar, Band 25,

Birkhuser, Basel (1995)

[BGS] W. Ballmann, M. Gromov, V. Schroeder, Manifolds of Nonpositive Curvature,

Progr. Math. vol. 61, Birkhuser, Boston MA (1985)

[Ba] H. Bauer, Mass- und Integrationstheorie, de Gruyter, Berlin, New York (1990)

[Be] Y. Benoist, Propri�et�es asymptotiques des groupes lin�eaires I, Geom. Funct. Anal. 7

(1997), 1-47

[B] A. Borel, Some metric properties of arithmetic quotients of symmetric spaces and an

extension theorem, J. Di�. Geom. 6 (1972), 543-560

[Bu] M. Burger, Intersection, the Manhattan Curve, and Patterson-Sullivan Theory in

rank 2, Int. Math. Res. Not. 7 (1993), 217-225

[ChE] J. Cheeger, B. Ebin, Comparison Theorems in Riemannian Geometry, North Hol-

land, Amsterdam (1975)

[Co] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique

au sens de Gromov, Paci�c J. of Math. 149, no. 2 (1993), 241-270

[C] K. Corlette, Hausdor� dimensions of limit sets I, Invent. Math. 102 (1990), 521-542

[Da] F. Dal'bo, G�eometrie d� une famille de groupes agissant sur le produit de deux

vari�et�es d� Hadamard, Sem. th�eorie spec. et geom. (1996-97), 85-98

[DaK] F. Dal'bo, I. Kim, Ergodic geometry on the product of Hadamard manifolds,

Preprint (2000)

[E] P. Eberlein, Geometry of Non-Positively Curved Manifolds, Chicago Lectures in

Math., U. Chicago Press, Chicago-London (1996)

[Fl] W. J. Floyd, Group Completions and Limit Sets of Kleinian Groups, Invent. Math. 57

(1980), 205-218

[GH] E. Ghys, P. de la Harpe (ed), Sur les Groupes Hyperboliques d'apr�es Mikhael Gro-

mov, Progr. Math. vol. 83, Birkhuser, Boston MA (1990)

95



96 BIBLIOGRAPHY

[G] Y. Guivarc'h, Produits de matrices al�eatoires et applications, Erg. Th. Dyn. Syst. 10

(1990), 483-512

[Ha] P. de la Harpe, Free Groups in Linear Groups, Enseign. Math. 29 (1983), 129-144

[H] S. Helgason, Di�erential Geometry, Lie groups, and Symmetric Spaces, Academic

Press, New York (1978)

[K] J. L. Kelley, General Topology, D. Van Nostrand Company, Inc., Toronto-New York-

London (1955)

[Kn] G. Knieper, On the asymptotic geometry of nonpositively curved manifolds,

Geom. Funct. Anal. 7 (1997), 755-782

[L] E. Leuzinger, Les lois des sinus des espaces sym�etriques S de rang 1 et l'application

moment de T �S., C.R.Acad. Sci. Paris S�er. I Math. 312 (1991), no. 8, 605-608

[N] P. J. Nicholls, The ergodic theory of discrete groups, Cambridge Univ. Press, LMS

lecture note series 143, (1989)

[P] S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273

[Pe1] P. Peterson, Gromov-Hausdor� Convergence of Metric Spaces, Proc. of Symposia

in Pure Math. 54, Part 3 (1993)

[Pe2] P. Peterson, Riemannian Geometry, Grad. Texts in Math. , vol. 171, Springer Ver-

lag, New York (1991)

[Q] J. F. Quint, Mesures de Patterson-Sullivan dans les espaces symmetriques de rang

superieure, Th�ese (2001)

[S] D. Sullivan, The density at in�nity of a discrete group of hyperbolic motions,

Publ. Math. I.H.E.S. 50 (1979), 419-450

[W] G. Warner, Harmonic Analysis on Semisimple Lie Groups I, Springer-Verlag, Berlin,

Heidelberg, New York (1972)

[Y] C. B. Yue, The ergodic theory of discrete isomentry groups on manifolds of variable

negative curvature, Trans. of A. M. S. 348, no. 12 (1996), 4965-5005

[Zi] R. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathemat-

ics 81, Birkh�auser, Boston MA (1984)



Lebenslauf

Anschrift: Gabriele Link

Tennesseeallee 169

76 149 Karlsruhe

gabriele.link@math.uni-karlsruhe.de

Geburtsdatum: 02.07.1971

Geburtsort: Rottweil a. N.

Familienstand: ledig

Schulbildung

08/1977 { 07/1981 Grundschule Dotternhausen

08/1981 { 05/1990 Gymnasium Balingen

16.05.1990 Abitur

Studium

10/1990 { 02/1998 Studium der Physik an der

Universit�at Karlsruhe

26.02.1998 Diplom in Physik

10/1992 { 09/1998 Parallelstudium der Mathematik

an der Universit�at Karlsruhe

25.09.1998 Diplom in Mathematik

Berufst�atigkeit

seit 10/1998 Wissenschaftliche Angestellte am

Mathematischen Institut II der

Universit�at Karlsruhe




