
Appeared in Neural Networks 1998

Automatic Early Stopping Using Cross Validation:

Quantifying the Criteria

Lutz Prechelt (prechelt@ira.uka.de)
Fakult�at f�ur Informatik; Universit�at Karlsruhe

D-76128 Karlsruhe; Germany
Phone: +49/721/608-4068, Fax: -7343

December 12, 1997

Abstract

Cross validation can be used to detect when over�tting starts during supervised train-
ing of a neural network; training is then stopped before convergence to avoid the over-
�tting (\early stopping"). The exact criterion used for cross validation based early
stopping, however, is chosen in an ad-hoc fashion by most researchers or training is
stopped interactively. To aid a more well-founded selection of the stopping criterion,
14 di�erent automatic stopping criteria from 3 classes were evaluated empirically for
their e�ciency and e�ectiveness in 12 di�erent classi�cation and approximation tasks
using multi layer perceptrons with RPROP training. The experiments show that on
the average slower stopping criteria allow for small improvements in generalization (on
the order of 4%), but cost about factor 4 longer training time.

1



1 Training for generalization

When training a neural network, one is usually interested in obtaining a network with

optimal generalization performance. Generalization performance means small error on

examples not seen during training.

Because standard neural network architectures such as the fully connected multi layer

perceptron almost always have too large a parameter space, such architectures are prone

to over�tting (Geman, Bienenstock & Doursat, 1992). While the network seems to get

better and better (the error on the training set decreases), at some point during training

it actually begins to get worse again (the error on unseen examples increases).

There are basically two ways to �ght over�tting: reducing the number of dimensions of

the parameter space or reducing the e�ective size of each dimension. The parameters

are usually the connection weights in the network. The corresponding techniques used in

neural network training to reduce the number of parameters, i.e., the number of dimensions

of the parameter space, are greedy constructive learning (e.g. Fahlman & Lebiere, 1990),

pruning (e.g. Le Cun, Denker & Solla, 1990; Hassibi & Stork, 1992; Levin, Leen & Moody,

1994), or weight sharing (e.g. Nowlan & Hinton, 1992). The corresponding NN techniques

for reducing the size of each parameter dimension are regularization such as weight decay

(e.g. Krogh & Hertz, 1992) and others (e.g. Weigend, Rumelhart & Huberman, 1991) or

early stopping (Morgan & Bourlard, 1990). See also (Reed, 1993; Fiesler, 1994) for an

overview and (Finno�, Hergert & Zimmermann, 1993) for an experimental comparison.

Early stopping is widely used because it is simple to understand and implement and has

been reported to be superior to regularization methods in many cases, e.g. in (Finno�,

Hergert & Zimmermann, 1993). The method can be used either interactively, i.e., based

on human judgement, or automatically, i.e., based on some formal stopping criterion.

However, such automatic stopping criteria are usually chosen in an ad-hoc fashion today.

The present paper aims at providing some quantitative data to guide the selection among

automatic stopping criteria. The means to achieve this goal is an empirical investigation

of the behavior of 14 di�erent criteria on 12 di�erent learning problems.

The following sections discuss the problem of early stopping in general, formally introduce

three classes of stopping criteria, and then describe the idea, setup and results of the

experimental study that measured the e�ciency and the e�ectiveness of the criteria.

2 Ideal and real generalization curves

In most introductory papers on supervised neural network training one can �nd a diagram

similar to the one shown in �gure 1. It is claimed to show the evolution over time of the

per-example error on the training set and on a test set not used for training (the training

curve and the generalization curve). Given this behavior, it is clear how to do early

stopping using cross validation: (1) Split the training data into a training set and a cross

validation set, e.g. in a 2 to 1 proportion. (2) Train only on the training set and evaluate

the per-example error on the validation set once in a while, e.g. after every �fth epoch.

2



Training error
Validation error

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

0 50 100 150 200 250 300 350 400 450

Validation error (Glass dataset, 4+4 hidden)

Figure 1: (left) Idealized training and generalization error curves. Vertical: errors; hori-

zontal: time

Figure 2: (right) A real generalization error curve. Vertical: Validation set error; hori-

zontal: time (in training epochs).

(3) Stop training as soon as the error on the cross validation set is higher than it was the

last time it was checked. (4) Use the weights the network had in that previous step as the

result of the training run. This approach uses the cross validation set to anticipate the

behavior on the test set (or in real use), assuming that the error on both will be similar.

However, the real situation is a lot more complex. Real generalization curves almost

always have more than one local minimum. (Baldi & Chauvin, 1991) showed for linear

networks with n inputs and n outputs that up to n such local minima are possible; for

multi layer networks, the situation is even worse. Thus, it is impossible in general to tell

from the beginning of the curve whether the global minimum has already been seen or

not, i.e., whether an increase in the generalization error indicates real over�tting or is

just intermittent. Such a situation is shown in �gure 2. This real generalization curve was

measured during training of a two hidden layer network on the glass1 problem (see below).

The curve exhibits as many as 16 local minima in the validation set error before severe

over�tting begins at about epoch 400; of these local minima, 4 are the global minimum

up to where they occur. The optimal stopping point in this example would be epoch

205. Note that stopping in epoch 400 compared to stopping shortly after the �rst \deep"

local minimum at epoch 45 trades an about sevenfold increase of learning time for an

improvement of validation set performance by 1.1% (by �nding the minimum at epoch

205). If representative training data is used, the validation error is an optimal estimation

of the actual network performance; so we expect a 1.1% decrease of the generalization

error in this case. Nevertheless, over�tting might sometimes go undetected because the

validation set is not perfectly representative of the problem.

Unfortunately, this or any other generalization curve is not typical in the sense that all

curves share the same qualitative behavior. Other curves might never reach a better

minimum than the �rst, or than, say, the third; the mountains and valleys in the curve

can be of very di�erent width, height, and shape. The only thing all curves seem to have

in common is that the di�erences between the �rst and the following local minima, if

any, are not huge. Theoretical analyses of the error curves cannot yet be done for the

interesting cases, e.g. multi layer perceptrons with sigmoid functions; today they are

3



possible for simpler cases only, namely for linear networks (Baldi & Chauvin, 1991; Wang

& Venkatesh, 1994).

As we see, choosing a stopping criterion predominantly involves a tradeo� between training

time and generalization error. However, some stopping criteria may typically �nd better

tradeo�s that others. This leads to the question which criterion to use with cross validation

to decide when to stop training. The present work provides empirical data in order to give

an answer.

3 Actual stopping criteria

There are a number of plausible stopping criteria. This work evaluates three classes of

them.

To formally describe the criteria, we need some de�nitions �rst. Let E be the objective

function (error function) of the training algorithm, for example the squared error. Then

Etr(t) is the average error per example over the training set, measured after epoch t. Eva(t)

is the corresponding error on the validation set and is used by the stopping criterion. Ete(t)

is the corresponding error on the test set; it is not known to the training algorithm but

characterizes the quality of the network resulting from training.

The value Eopt(t) is de�ned to be the lowest validation set error obtained in epochs up to

t:

Eopt(t) = min
t0�t

Eva(t
0)

Now we de�ne the generalization loss at epoch t to be the relative increase of the validation

error over the minimum-so-far (in percent):

GL(t) = 100 �

 
Eva(t)

Eopt(t)
� 1

!

A high generalization loss is one obvious candidate reason to stop training, because it

directly indicates over�tting. This leads us to the �rst class of stopping criteria: stop as

soon as the generalization loss exceeds a certain threshold. We de�ne the class GL� as

GL� : stop after �rst epoch t with GL(t) > �

However, we might want to suppress stopping if the training is still progressing very rapidly.

The reasoning behind this approach is that when the training error still decreases quickly,

generalization losses have higher chance to be \repaired"; we assume that over�tting does

not begin until the error decreases only slowly. To formalize this notion we de�ne a training

strip of length k to be a sequence of k epochs numbered n+1 : : : n+k where n is divisible

by k. The training progress (in per thousand) measured after such a training strip is then

Pk(t) = 1000 �

 Pt
t0=t�k+1Etr(t

0)

k �mintt0=t�k+1Etr(t0)
� 1

!

4



that is, \how much was the average training error during the strip larger than the mini-

mum training error during the strip?" Note that this progress measure is high for unstable

phases of training, where the training set error goes up instead of down. This is intended,

because many training algorithms sometimes produce such \jitter" by taking inappro-

priately large steps in weight space. The progress measure is, however, guaranteed to

approach zero in the long run unless the training is globally unstable (e.g. oscillating).

Now we can de�ne the second class of stopping criteria using the quotient of generalization

loss and progress:

PQ� : stop after �rst end-of-strip epoch t with
GL(t)

Pk(t)
> �

In the following we will always assume strips of length 5 and measure the cross validation

error only at the end of each strip.

A third class of stopping criteria relies only on the sign of the changes in the generalization

error. These criteria say \stop when the generalization error increased in s successive

strips":

UPs : stop after epoch t i� UPs�1 stops after epoch t� k andEva(t) > Eva(t� k)

UP1 : stop after �rst end-of-strip epoch t with Eva(t) > Eva(t� k)

The idea behind this de�nition is that when the validation error has increased not only once

but during s consecutive strips(!), we assume that such increases indicate the beginning

of �nal over�tting, independent of how large the increases actually are. The UP criteria

have the advantage that they measure change locally so that they can directly be used in

the context of pruning algorithms, where errors must be allowed to remain much higher

than previous minima over long training periods.

Note that none of these criteria can guarantee termination. We thus complement them

by the rule that training is stopped when the progress drops below 0.1 and also after at

most 3000 epochs.

All stopping criteria have in common the way they are used: They decide to stop at some

time t during training and the result of the training is then the set of weights that exhibited

the lowest validation error Eopt(t). Note that in order to implement this scheme, only one

duplicate weight set is needed.

4 Design of the study

For most e�cient use of training time we would be interested in knowing which of these

criteria will achieve how much generalization using how much training time on which

kinds of problems. However, as said before, no direct mathematical analysis of criteria

5



with respect to these factors is possible today. Therefore, we resort to studying the criteria

empirically.

To achieve a broad coverage, we use multiple di�erent network topologies, multiple di�er-

ent learning tasks, and multiple di�erent exemplars from each stopping criteria class. To

keep the experiment feasible, only one training algorithm is used.

We are interested in answering the following questions:

1. Training time: How long will training take with each criterion, i.e., how fast or slow

are they?

2. E�ciency: How much of this training time will be redundant, i.e., will occur after the

�nally found validation error minimum has been seen?

3. E�ectiveness: How good will the resulting network performance be?

4. Tradeo�s: Which criteria provide the best time-performance tradeo�?

5. Quanti�cation: How can the tradeo� be quanti�ed?

To �nd the answers we record for a large number of runs when each criterion would stop

and what the associated network performance would be.

To measure network performance, we partition each dataset into two disjoint parts: Train-

ing data and test data. The training data (and only that) is used for training the network;

the test data is used to estimate the network performance after training has �nished.

The training data is further subdivided into a training set of examples used to adjust the

network weights and a validation set of examples used to estimate network performance

during training as required by the stopping criteria. In the setup described below, the

validation set was never used for weight adjustment. This decision was made in order

to obtain pure stopping criteria results. In a real application this would be a waste of

training data and should be changed.

12 di�erent problems were used, all from the Proben1 NN benchmark set (Prechelt,

1994). These problems form a sample of a quite broad class of domains, but are of course

not universally representative of learning; see (Prechelt, 1994) for a discussion of how to

characterize the Proben1 domains.

5 Experimental setup

The stopping criteria examined were GL1, GL2, GL3, GL5, PQ0:5, PQ0:75, PQ1, PQ2,

PQ3, UP2, UP3, UP4, UP6, and UP8. A series of simulations using all of the above criteria

was run, in which all criteria where evaluated simultaneously, i.e., each single training run

returned one result for each of the criteria. This approach reduces the variance of the

estimation.

All runs were done using the RPROP training algorithm (Riedmiller & Braun, 1993)

using the squared error function and the parameters �+ = 1:1, �� = 0:5, �0 2 0:05 : : : 0:2

randomly per weight, �max = 50, �min = 0, initial weights �0:5 : : : 0:5 randomly. RPROP

is a fast backpropagation variant similar in spirit to quickprop (Fahlman, 1988). It is about

6



as fast as quickprop but more stable without adjustment of the parameters. RPROP

requires epoch learning, i.e., the weights are updated only once per epoch. Therefore, the

algorithm is fast without parameter tuning for small training sets but not recommendable

for large training sets. That no parameter tuning is necessary for RPROP also helps to

avoid the common methodological error of tuning parameters using the performance on

the test sets.

The 12 problems have between 8 and 120 inputs, between 1 and 19 outputs, and between

214 and 7200 examples. All inputs and outputs are normalized to range 0. . . 1. 8 of the

problems are classi�cation tasks using 1-of-n output encoding (cancer, card, diabetes, gene,

glass, heart, horse, soybean, and thyroid), 3 are approximation tasks (building, are, and

hearta); all problems are real datasets from realistic application domains.

The examples of each problem were partitioned into training (50%), validation (25%),

and test set (25% of examples) in three di�erent random ways, resulting in 36 datasets.

Each of these datasets was trained with 12 di�erent feedforward network topologies: one

hidden layer networks with 2, 4, 8, 16, 24, or 32 hidden nodes and two hidden layer

networks with 2+2, 4+2, 4+4, 8+4, 8+8, or 16+8 hidden nodes in the �rst+second

hidden layer, respectively; all these networks were fully connected including all possible

shortcut connections. For each of the network topologies and each dataset, two runs were

made with linear output units and one with sigmoidal output units using the activation

function f(x) = x=(1+ jxj). A popular rule of thumb recommends to always use sigmoidal

output units for classi�cation tasks and linear output units for regression (approximation)

tasks. This rule was not applied since it is too far from always being good; see (Prechelt,

1994).

Altogether, 1296 training runs were made for the comparison, giving 18144 stopping cri-

teria performance records for the 14 criteria. 270 of these records (or 1.5%) from 125

di�erent runs reached the 3000 epoch limit instead of using the stopping criterion itself.

6 Results and discussion

The results for each stopping criterion averaged over all 1296 runs are shown in table 1.

I will now explain and interpret the entries in the table. Please note that much of the

discussion is biased by the particular collection of criteria chosen for the study.

Basic de�nitions: For each run, we de�ne Ev(C) as the minimum validation set error

found until criterion C indicates to stop; it is the error after epoch number tm(C) (read:

\time of minimum"). Et(C) is the corresponding test set error and characterizes network

performance. Stopping occurs after epoch ts(C) (read: \time of stop"). A best criterion

Ĉ of a particular run is one with minimum ts of all those (among the examined) with

minimum Ev, i.e., a criterion that found the best validation set error fastest. There may

be several best, because multiple criteria may stop at the same epoch. Note that the

criterion Ĉ does not really exist as such in general because it changes from run to run. C

is called good in a particular run if Ev(C) = Ev(Ĉ), i.e., if it is among those that found the

lowest validation set error, no matter how fast or slow. We now discuss the �ve questions

raised above.

7



training time e�ciency and e�ectiveness

C Sĉ(C) SGL2
(C) r(C) Bĉ(C) BGL2

(C) Pg(C)

UP2 0.792 0.766 0.277 1.055 1.024 0.587

GL1 0.956 0.823 0.308 1.044 1.010 ?0.680

UP3 1.010 1.264 0.419 ?1.026 1.003 0.631

GL2 1.237 1.000 0.514 1.034 1.000 ?0.723

UP4 1.243 1.566 0.599 ?1.020 0.997 0.666

PQ0:5 1.253 1.334 0.663 1.027 1.002 0.658

PQ0:75 1.466 1.614 0.863 1.021 0.998 0.682

GL3 1.550 1.450 0.712 1.025 0.994 ?0.748

PQ1 1.635 1.796 1.038 1.018 0.994 0.704

UP6 1.786 2.381 1.125 ?1.012 0.990 0.737

GL5 2.014 2.013 1.162 1.021 0.991 ?0.772

PQ2 2.184 2.510 1.636 1.012 0.990 0.768

UP8 2.485 3.259 1.823 1.010 0.988 0.759

PQ3 2.614 3.095 2.140 1.009 0.988 0.800

Table 1: Behavior of stopping criteria. SGL2
(C) is normalized training time, BGL2

(C) is

normalized test error (both relative to GL2). For further description please refer to the

text.

1. Training time: The slowness of a criterion C in a run, relative to another criterion

x is Sx(C) := ts(C)=ts(x), i.e., the relative total training time. As we see, the times

relative to a �xed criterion as shown in column SGL2
(C) vary by more than a factor of

4. Therefore, the decision for a particular stopping criterion inuences training times

dramatically, even if one considers only the range of criteria used here. In contrast,

even the slowest criteria train only about 2.5 times as long as the fastest criterion of

each run that �nds the same result, as indicated in column S
Ĉ
(C). This shows that

the training times are not completely unreasonable even for the slower criteria, but

do indeed pay o� to some degree.

2. E�ciency: The redundancy of a criterion can be de�ned as r(C) := (ts(C)=tm(C))�1.

It characterizes how long the training continues after the �nal solution has been found.

r(C) = 0 would be perfect, r(C) = 1 means that the criterion trains twice as long as

necessary. Low values indicate e�cient criteria. As we see, the slower a criterion is,

the less e�cient it tends to get. Even the fastest criteria \waste" about one �fth of

overall training time. The slower criteria train more than twice as long as would be

necessary for �nding the same solution.

3. E�ectiveness: We de�ne the badness of a criterion C in a run relative to another

criterion x as Bx(C) := Et(C)=Et(x), i.e., its relative error on the test set. Pg(C) is

the fraction of the 1296 runs in which C was a good criterion. This is an estimate

for the probability that C is good in a run. As we see from the Pg column, even the

fastest criteria are fairly e�ective. They reach a result as good as the best-of-that-run

criteria in about 60% of the cases. On the other hand, even the slowest criteria are

not at all infallible; they achieve about 80%. So to obtain the best possible results, a

conjunction of all three criteria classes has to be used. However, Pg says nothing about

how far from the optimum the remaining runs are. Columns B
Ĉ
(C) and BGL2

(C)

8



indicate that these di�erences are usually rather small: column BGL2
(C) shows that

even the criteria with the lowest error achieve only about 1% lower error on the

average than the relatively fast criterion GL2. In column B
(̂C
(C) we see that even

several only modestly slow criteria have just about 2% higher error on the average

than the best criteria of the same run.

4. Best tradeo�s: Despite the common overall trend, some criteria may be more cost-

e�ective than others, i.e., provide better tradeo�s between training time and resulting

network performance. ColumnBĉ of the table suggests that the best tradeo�s between

test set performance and training time are (in order of increasing willingness to spend

lots of training time) UP3, UP4, and UP6, if one wants to minimize the expected

network performance from a single run. If on the other hand one wants to make

several runs and pick the network that seems to be best (based on its validation set

error), Pg is the relevant metric and the GL criteria are preferable. The criteria with

best tradeo�s are marked with a star in the table. Figure 3 illustrates these results.

The upper curve corresponds to column B
Ĉ
of the table (plotted against column S

Ĉ
);

local minima indicate criteria with the best tradeo�s. The lower curve corresponds

to column Pg; local maxima indicate the criteria with the best tradeo�s.

500

600

700

800

900

1000

1100

1200

1000 1500 2000 2500
Slowness

Badness
Pg

Figure 3: Badness B
Ĉ
(C) and Pg against slowness S

Ĉ
(C) of criteria

5. Quanti�cation: From columns SGL2
(C) and BGL2

(C) we can quantify the tradeo�

involved in the selection of a stopping criterion as follows: In the range of criteria

examined we can roughly trade a 4% decrease in test set error (from 1.024 to 0.988)

for an about fourfold increase in training time (from 0.766 to 3.095). Within this

range, some criteria are somewhat better than others, but no panacea exists among

the criteria examined in this study.

I also tried to �nd out whether similar results hold for more specialized circumstances such

as only large or only small networks, only large or only small data sets or only particular

learning problems. To do this, a factor analysis was performed by reviewing appropriate

subsets of the data separately. The results indicate that generally the same trends hold

for specialized circumstances within the limits of the study. One notable exception was

the fact that for very small networks the PQ criteria are more cost-e�ective than both

the GL and the UP criteria for minimizing B
Ĉ
(C). An explanation of this lies in the fact

9



that such small networks do not over�t severely; in this case it is advantageous to take

training progress into account as an additional factor to determine when to stop training.

7 Conclusion and further work

This work studied three classes of stopping criteria, namely GL, UP , and PQ on a variety

of learning problems. The results indicate that \slower" criteria, which stop later than

others, on the average indeed lead to improved generalization compared to \faster" ones.

However, the training time that has to be expended for such improvements is signi�cant.

Systematic di�erences between the criteria classes, if any, are insigni�cant.

It remains an open question whether and how the above results apply to other training

algorithms, other error functions, and in particular other problem domains. Future work

should address these issues in order to provide clear quantitative engineering rules for

network construction using early stopping. In particular, a theory should be built that

quantitatively explains the empirical data. Such a theory would then have to be validated

by further empirical studies. Only such a theory can overcome the inherent limitation of

empirical work: the di�culty in generalizing the results to other situations.

For training setups similar to the one used in this work, the following rules can be used

to select a stopping criterion:

1. Use fast stopping criteria unless small improvements of network performance (e.g.

4%) are worth large increases of training time (e.g. factor 4).

2. To maximize the probability of �nding a \good" solution (as opposed to maximizing

the average quality of solutions), use a GL criterion.

3. To minimize the average quality of solutions, use a PQ criterion if the network over�ts

only very little or an UP criterion otherwise.

References

Baldi, P. and Chauvin, Y. (1991). Temporal evolution of generalization during learning

in linear networks. Neural Computation, 3:589{603.

Cowan, J. D., Tesauro, G., and Alspector, J., editors (1994). Advances in Neural Infor-

mation Processing Systems 6, San Mateo, CA. Morgan Kaufman Publishers Inc.

Cun, Y. L., Denker, J. S., and Solla, S. A. (1990). Optimal brain damage. In (Touretzky,

1990), pages 598{605.

(e�esler@idiap.ch), Fiesler, E. (1994). Comparative bibliography of ontogenic neural net-

works. (submitted for publication).

Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation net-

works. Technical Report CMU-CS-88-162, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA.

10



Fahlman, S. E. and Lebiere, C. (1990). The Cascade-Correlation learning architecture. In

(Touretzky, 1990), pages 524{532.

Finno�, W., Hergert, F., and Zimmermann, H. G. (1993). Improving model selection by

nonconvergent methods. Neural Networks, 6:771{783.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the

bias/variance dilemma. Neural Computation, 4:1{58.

Hanson, S. J., Cowan, J. D., and Giles, C. L., editors (1993). Advances in Neural Infor-

mation Processing Systems 5, San Mateo, CA. Morgan Kaufman Publishers Inc.

Hassibi, B. and Stork, D. G. (1993). Second order derivatives for network pruning: Optimal

brain surgeon. In (Hanson et al., 1993), pages 164{171.

Krogh, A. and Hertz, J. A. (1992). A simple weight decay can improve generalization. In

(Moody et al., 1992), pages 950{957.

Levin, A. U., Leen, T. K., and Moody, J. E. (1994). Fast pruning using principal compo-

nents. In (Cowan et al., 1994).

Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors (1991). Advances in Neural

Information Processing Systems 3, San Mateo, CA. Morgan Kaufman Publishers Inc.

Moody, J. E., Hanson, S. J., and Lippmann, R. P., editors (1992). Advances in Neural

Information Processing Systems 4, San Mateo, CA. Morgan Kaufman Publishers Inc.

Morgan, N. and Bourlard, H. (1990). Generalization and parameter estimation in feedfor-

ward nets: Some experiments. In (Touretzky, 1990), pages 630{637.

Nowlan, S. J. and Hinton, G. E. (1992). Simplifying neural networks by soft weight-sharing.

Neural Computation, 4(4):473{493.

Prechelt, L. (1994). PROBEN1 | A set of benchmarks and benchmarking rules for neural

network training algorithms. Technical Report 21/94, Fakult�at f�ur Informatik, Univer-

sit�at Karlsruhe, Germany. Anonymous FTP: /pub/papers/techreports/1994/1994-

21.ps.gz on ftp.ira.uka.de.

Reed, R. (1993). Pruning algorithms | a survey. IEEE Transactions on Neural Networks,

4(5):740{746.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropaga-

tion learning: The RPROP algorithm. In Proc. of the IEEE Intl. Conf. on Neural

Networks, pages 586{591, San Francisco, CA.

Touretzky, D. S., editor (1990). Advances in Neural Information Processing Systems 2,

San Mateo, CA. Morgan Kaufman Publishers Inc.

Wang, C., Venkatesh, S. S., and Judd, J. S. (1994). Optimal stopping and e�ective machine

complexity in learning. In (Cowan et al., 1994).

11



Weigend, A. S., Rumelhart, D. E., and Huberman, B. A. (1991). Generalization by

weight-elimination with application to forecasting. In (Lippmann et al., 1991), pages

875{882.

12


