
Early Stopping | but when?

Lutz Prechelt (prechelt@ira.uka.de)

Fakult�at f�ur Informatik; Universit�at Karlsruhe

D-76128 Karlsruhe; Germany

Abstract. Validation can be used to detect when over�tting starts dur-

ing supervised training of a neural network; training is then stopped

before convergence to avoid the over�tting (\early stopping"). The ex-

act criterion used for validation-based early stopping, however, is usually

chosen in an ad-hoc fashion or training is stopped interactively. This trick

describes how to select a stopping criterion in a systematic fashion; it

is a trick for either speeding learning procedures or improving gener-

alization, whichever is more important in the particular situation. An

empirical investigation on multi-layer perceptrons shows that there ex-

ists a tradeo� between training time and generalization: From the given

mix of 1296 training runs using di�erent 12 problems and 24 di�erent

network architectures I conclude slower stopping criteria allow for small

improvements in generalization (here: about 4% on average), but cost

much more training time (here: about factor 4 longer on average).

1 Early stopping is not quite as simple

1.1 Why early stopping?

When training a neural network, one is usually interested in obtaining a network
with optimal generalization performance. However, all standard neural network
architectures such as the fully connected multi-layer perceptron are prone to
over�tting [10]: While the network seems to get better and better, i.e., the error
on the training set decreases, at some point during training it actually begins to
get worse again, i.e., the error on unseen examples increases. The idealized ex-
pectation is that during training the generalization error of the network evolves
as shown in Figure 1. Typically the generalization error is estimated by a vali-
dation error, i.e., the average error on a validation set , a �xed set of examples
not from the training set.

There are basically two ways to �ght over�tting: reducing the number of
dimensions of the parameter space or reducing the e�ective size of each dimen-
sion. Techniques for reducing the number of parameters are greedy constructive
learning [7], pruning [5, 12, 14], or weight sharing [18]. Techniques for reducing
the size of each parameter dimension are regularization, such as weight decay
[13] and others [25], or early stopping [17]. See also [8, 20] for an overview and
[9] for an experimental comparison.

Early stopping is widely used because it is simple to understand and imple-
ment and has been reported to be superior to regularization methods in many
cases, e.g. in [9].



1.2 The basic early stopping technique

In most introductory papers on supervised neural network training one can �nd a
diagram similar to the one shown in Figure 1. It is claimed to show the evolution
over time of the per-example error on the training set and on a validation set
not used for training (the training error curve and the validation error curve).
Given this behavior, it is clear how to do early stopping using validation:

Training error
Validation error

Fig. 1. Idealized training and validation error curves. Vertical: errors; horizontal: time

1. Split the training data into a training set and a validation set, e.g. in a 2-to-1
proportion.

2. Train only on the training set and evaluate the per-example error on the
validation set once in a while, e.g. after every �fth epoch.

3. Stop training as soon as the error on the validation set is higher than it was
the last time it was checked.

4. Use the weights the network had in that previous step as the result of the
training run.

This approach uses the validation set to anticipate the behavior in real use (or
on a test set), assuming that the error on both will be similar: The validation
error is used as an estimate of the generalization error.

1.3 The uglyness of reality

However, for real neural network training the validation set error does not evolve
as smoothly as shown in Figure 1, but looks more like in Figure 2. See Section 4
for a rough explanation of this behavior. As we see, the validation error can still
go further down after it has begun to increase | plus in a realistic setting we
do never know the exact generalization error but estimate it by the validation
set error instead. There is no obvious rule for deciding when the minimum of



9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

0 50 100 150 200 250 300 350 400 450

Validation error (Glass dataset, 4+4 hidden)

Fig. 2. A real validation error curve. Vertical: validation set error; horizontal: time (in

training epochs).

the generalization error is obtained. Real validation error curves almost always
have more than one local minimum. The above curve exhibits as many as 16
local minima before severe over�tting begins at about epoch 400. Of these local
minima, 4 are the global minimum up to where they occur. The optimal stop-
ping point in this example would be epoch 205. Note that stopping in epoch
400 compared to stopping shortly after the �rst \deep" local minimum at epoch
45 trades an about sevenfold increase of learning time for an improvement of
validation set error by 1.1% (by �nding the minimum at epoch 205). If repre-
sentative data is used, the validation error is an unbiased estimate of the actual
network performance; so we expect a 1.1% decrease of the generalization error in
this case. Nevertheless, over�tting might sometimes go undetected because the
validation set is �nite and thus not perfectly representative of the problem.

Unfortunately, the above or any other validation error curve is not typical

in the sense that all curves share the same qualitative behavior. Other curves
might never reach a better minimum than the �rst, or than, say, the third; the
mountains and valleys in the curve can be of very di�erent width, height, and
shape. The only thing all curves seem to have in common is that the di�erences
between the �rst and the following local minima are not huge.

As we see, choosing a stopping criterion predominantly involves a tradeo�
between training time and generalization error. However, some stopping criteria
may typically �nd better tradeo�s that others. This leads to the question of
which criterion to use with cross validation to decide when to stop training.
This is why we need the present trick: To tell us how to really do early stopping.

2 How to do early stopping best

What we need is a predicate that tells us when to stop training. We call such
a predicate a stopping criterion. Among all possible stopping criteria we are



searching for those which yield the lowest generalization error and also for those
with the best \price-performance ratio", i.e., that require the least training for a
given generalization error or that (on average) result in the lowest generalization
error for a certain training time.

2.1 Some classes of stopping criteria

There are a number of plausible stopping criteria and this work considers three
classes of them. To formally describe the criteria, we need some de�nitions �rst.
Let E be the objective function (error function) of the training algorithm, for
example the squared error. Then Etr(t), the training set error (for short: train-
ing error), is the average error per example over the training set, measured after
epoch t. Eva(t), the validation error, is the corresponding error on the validation
set and is used by the stopping criterion. Ete(t), the test error, is the correspond-
ing error on the test set; it is not known to the training algorithm but estimates
the generalization error and thus benchmarks the quality of the network result-
ing from training. In real life, the generalization error is usually unknown and
only the validation error can be used to estimate it.

The value Eopt(t) is de�ned to be the lowest validation set error obtained in
epochs up to t:

Eopt(t) := min
t0�t

Eva(t
0)

Now we de�ne the generalization loss at epoch t to be the relative increase of
the validation error over the minimum-so-far (in percent):

GL(t) = 100 �

�
Eva(t)

Eopt(t)
� 1

�

High generalization loss is one obvious candidate reason to stop training, be-
cause it directly indicates over�tting. This leads us to the �rst class of stop-
ping criteria: stop as soon as the generalization loss exceeds a certain

threshold. We de�ne the class GL� as

GL� : stop after �rst epoch t with GL(t) > �

However, we might want to suppress stopping if the training is still progressing
very rapidly. The reasoning behind this approach is that when the training error
still decreases quickly, generalization losses have higher chance to be \repaired";
we assume that often over�tting does not begin until the error decreases only
slowly. To formalize this notion we de�ne a training strip of length k to be a
sequence of k epochs numbered n + 1 : : : n + k where n is divisible by k. The
training progress (in per thousand) measured after such a training strip is then

Pk(t) := 1000 �

 Pt
t0=t�k+1Etr(t

0)

k �mintt0=t�k+1Etr(t0)
� 1

!

that is, \how much was the average training error during the strip larger than
the minimum training error during the strip?" Note that this progress measure is



high for unstable phases of training, where the training set error goes up instead
of down. This is intended, because many training algorithms sometimes produce
such \jitter" by taking inappropriately large steps in weight space. The progress
measure is, however, guaranteed to approach zero in the long run unless the
training is globally unstable (e.g. oscillating).

Now we can de�ne the second class of stopping criteria: use the quo-

tient of generalization loss and progress.

PQ� : stop after �rst end-of-strip epoch t with
GL(t)

Pk(t)
> �

In the following we will always assume strips of length 5 and measure the vali-
dation error only at the end of each strip.

A completely di�erent kind of stopping criterion relies only on the sign of
the changes in the generalization error. We de�ne the third class of stopping

criteria: stop when the generalization error increased in s successive

strips.

UPs : stop after epoch t i� UPs�1 stops after epoch t� k and

Eva(t) > Eva(t� k)

UP1 : stop after �rst end-of-strip epoch t with Eva(t) > Eva(t� k)

The idea behind this de�nition is that when the validation error has increased not
only once but during s consecutive strips, we assume that such increases indicate
the beginning of �nal over�tting, independent of how large the increases actually
are. The UP criteria have the advantage of measuring change locally so that they
can be used in the context of pruning algorithms, where errors must be allowed
to remain much higher than previous minima over long training periods.

None of these criteria alone can guarantee termination. We thus complement
them by the rule that training is stopped when the progress drops below 0.1 or
after at most 3000 epochs.

All stopping criteria are used in the same way: They decide to stop at some
time t during training and the result of the training is then the set of weights that
exhibited the lowest validation error Eopt(t). Note that in order to implement
this scheme, only one duplicate weight set is needed.

2.2 The trick: Criterion selection rules

These three classes of stopping criteria GL, UP , and PQ were evaluated on a

variety of learning problems as described in Section 3 below. The results indi-
cate that \slower" criteria, which stop later than others, on the average lead to
improved generalization compared to \faster" ones. However, the training time
that has to be expended for such improvements is rather large on average and
also varies dramatically when slow criteria are used. The systematic di�erences
between the criteria classes are only small.

For training setups similar to the one used in this work, the following rules
can be used for selecting a stopping criterion:



1. Use fast stopping criteria unless small improvements of network performance
(e.g. 4%) are worth large increases of training time (e.g. factor 4).

2. To maximize the probability of �nding a \good" solution (as opposed to
maximizing the average quality of solutions), use a GL criterion.

3. To maximize the average quality of solutions, use a PQ criterion if the net-
work over�ts only very little or an UP criterion otherwise.

3 Where and how well does this trick work?

As no mathematical analysis of the properties of stopping criteria is possible
today (see Section 4 for the state of the art), we resort to an experimental eval-
uation.

We want to �nd out which criteria will achieve how much generalization
using how much training time on which kinds of problems. To achieve broad
coverage, we use 12 di�erent network topologies, 12 di�erent learning tasks, and
14 di�erent stopping criteria. To keep the experiment feasible, only one training
algorithm is used.

3.1 Concrete questions

To derive and evaluate the stopping criteria selection rules presented above we
need to answer the following questions:

1. Training time: How long will training take with each criterion, i.e., how fast

or slow are they?
2. E�ciency: How much of this training time will be redundant, i.e., will occur

after the to-be-chosen validation error minimum has been seen?
3. E�ectiveness: How good will the resulting network performance be?
4. Robustness: How sensitive are the above qualities of a criterion to changes

of the learning problem, network topology, or initial conditions?
5. Tradeo�s: Which criteria provide the best time-performance tradeo�?
6. Quanti�cation: How can the tradeo� be quanti�ed?

The answers will directly lead to the rules already presented above in Section 2.2.
To �nd the answers to the questions we record for a large number of runs when
each criterion would stop and what the associated network performance would
be.

3.2 Experimental setup

Approach: To measure network performance, we partition each dataset into
two disjoint parts: Training data and test data. The training data is further
subdivided into a training set of examples used to adjust the network weights
and a validation set of examples used to estimate network performance during
training as required by the stopping criteria. The validation set is never used
for weight adjustment. This decision was made in order to obtain pure stopping



criteria results. In contrast, in a real application one would include the validation
set examples in the training set and retrain from scratch after a reasonable
stopping time has been computed.

Stopping criteria: The stopping criteria examined were GL1, GL2, GL3,
GL5, PQ0:5, PQ0:75, PQ1, PQ2, PQ3, UP2, UP3, UP4, UP6, and UP8. All
criteria where evaluated simultaneously, i.e., each single training run returned
one result for each of the criteria. This approach reduces the variance of the
estimation.

Learning tasks: Twelve di�erent problems were used, all from the Proben1
NN benchmark set [19]. All problems are real datasets from realistic application
domains; they form a sample of a broad class of domains, but none of them
exhibits extreme nonlinearity. The problems have between 8 and 120 inputs,
between 1 and 19 outputs, and between 214 and 7200 examples. All inputs and
outputs are normalized to range 0. . . 1. Nine of the problems are classi�cation
tasks using 1-of-n output encoding (cancer, card, diabetes, gene, glass, heart,

horse, soybean, and thyroid), three are approximation tasks (building, 
are, and
hearta).

Datasets and network architectures: The examples of each problem were
partitioned into training (50%), validation (25%), and test set (25% of examples)
in three di�erent random ways, resulting in 36 datasets. Each of these datasets
was trained with 12 di�erent feedforward network topologies: one hidden layer
networks with 2, 4, 8, 16, 24, or 32 hidden nodes and two hidden layer networks
with 2+2, 4+2, 4+4, 8+4, 8+8, or 16+8 hidden nodes in the �rst+second hidden
layer, respectively; all these networks were fully connected including all possible
shortcut connections. For each of the network topologies and each dataset, two
runs were made with linear output units and one with sigmoidal output units
using the activation function f(x) = x=(1 + jxj).

Training algorithm: All runs were done using the RPROP training al-
gorithm [21] using the squared error function and the parameters �+ = 1:1,
�� = 0:5, �0 2 0:05 : : :0:2 randomly per weight, �max = 50, �min = 0, initial
weights �0:5 : : :0:5 randomly. RPROP is a fast backpropagation variant that is
about as fast as quickprop [6] but more stable without adjustment of the param-
eters. RPROP requires epoch learning, i.e., the weights are updated only once
per epoch. Therefore, the algorithm is fast without parameter tuning for small
training sets but not recommendable for large training sets. Lack of parameter
tuning helps to avoid the common methodological error of tuning parameters
using the test error.

3.3 Experiment results

Altogether, 1296 training runs were made for the comparison, giving 18144 stop-
ping criteria performance records for the 14 criteria. 270 of these records (or
1.5%) from 125 di�erent runs reached the 3000 epoch limit instead of using the
stopping criterion itself.

The results for each stopping criterion averaged over all 1296 runs are shown
in Table 1. Figure 3 describes the variance embedded in the means given in the



table. I will now explain and then interpret the entries in both, table and �gure.
Note that the discussion is biased by the particular collection of criteria chosen
for the study.

De�nitions: For each run, we de�ne Eva(C) as the minimum validation
error found until criterion C indicates to stop; it is the error after epoch number
tm(C) (read: \time of minimum"). Ete(C) is the corresponding test error and
characterizes network performance. Stopping occurs after epoch ts(C) (read:
\time of stop"). A best criterion Ĉ of a particular run is one with minimum ts of
all those (among the examined) with minimum Eva, i.e., a criterion that found
the best validation error fastest. There may be several best, because multiple
criteria may stop at the same epoch. Note that there is no single criterion Ĉ

because Ĉ changes from run to run. C is called good in a particular run if
Eva(C) = Eva(Ĉ), i.e., if it is among those that found the lowest validation set
error, no matter how fast or slow.

3.4 Discussion: Answers to the questions

We now discuss the questions raised in Section 3.1.
1. Training time: The slowness of a criterion C in a run, relative to another

criterion x is Sx(C) := ts(C)=ts(x), i.e., the relative total training time. As we
see, the times relative to a �xed criterion as shown in column SGL2

(C) vary by
more than factor 4. Therefore, the decision for a particular stopping criterion
in
uences training times dramatically, even if one considers only the range of cri-
teria used here. In contrast, even the slowest criteria train only about 2.5 times

training time e�ciency and e�ectiveness

C Sĉ(C) SGL2 (C) r(C) Bĉ(C) BGL2 (C) Pg(C)

UP2 0.792 0.766 0.277 1.055 1.024 0.587

GL1 0.956 0.823 0.308 1.044 1.010 ?0.680

UP3 1.010 1.264 0.419 ?1.026 1.003 0.631

GL2 1.237 1.000 0.514 1.034 1.000 ?0.723

UP4 1.243 1.566 0.599 ?1.020 0.997 0.666

PQ0:5 1.253 1.334 0.663 1.027 1.002 0.658

PQ0:75 1.466 1.614 0.863 1.021 0.998 0.682

GL3 1.550 1.450 ?0.712 1.025 0.994 ?0.748

PQ1 1.635 1.796 1.038 1.018 0.994 0.704

UP6 1.786 2.381 1.125 ?1.012 0.990 0.737

GL5 2.014 2.013 1.162 1.021 0.991 ?0.772

PQ2 2.184 2.510 1.636 1.012 0.990 0.768

UP8 2.485 3.259 1.823 ?1.010 0.988 0.759

PQ3 2.614 3.095 2.140 1.009 0.988 0.800

Table 1. Behavior of stopping criteria. SGL2 is normalized training time, BGL2 is

normalized test error (both relative to GL2). r is the training time redundancy, Pg is

the probability of �nding a good solution. For further description please refer to the

text.



0
2

4
6

8
sl

ow
ne

ss

GL1
GL2

GL3
GL5

PQ0.5
PQ0.75

PQ1
PQ2

PQ3
UP2

UP3
UP4

UP6
UP8

0
5

10
re

du
nd

an
cy

GL1
GL2

GL3
GL5

PQ0.5
PQ0.75

PQ1
PQ2

PQ3
UP2

UP3
UP4

UP6
UP8

0.
8

1.
2

1.
6

ba
dn

es
s

GL1
GL2

GL3
GL5

PQ0.5
PQ0.75

PQ1
PQ2

PQ3
UP2

UP3
UP4

UP6
UP8

Fig. 3. Variance of slowness SĈ(C) (top), redundancy r(C) (middle), and badness

BĈ(C) (bottom) for each pair of learning problem and stopping criterion. In each of the

168 columns, the dot represents the mean computed from 108 runs: learning problem

and stopping criterion are �xed, while three other parameters are varied (12 topologies

� 3 runs � 3 dataset variants). The length of the line is twice the standard deviation

within these 108 values. Within each block of dot-line plots, the plots represent (in

order) the problems building, cancer, card, diabetes, 
are, gene, glass, heart, hearta,

horse, soybean, thyroid. The horizontal line marks the median of the means. Note:

When comparing the criteria groups, remember that overall the PQ criteria chosen are

slower than the others. It is unfair to compare, for example, PQ0:5 to GL1 and UP2.



as long as the fastest criterion of each run that �nds the same result, as indi-
cated in column S

Ĉ
(C). This shows that the training times are not completely

unreasonable even for the slower criteria, but do indeed pay o� to some degree.

2. E�ciency: The redundancy of a criterion can be de�ned as r(C) :=
(ts(C)=tm(C)) � 1. It characterizes how long the training continues after the
�nal solution has been seen. r(C) = 0 would be perfect, r(C) = 1 means that
the criterion trains twice as long as necessary. Low values indicate e�cient cri-
teria. As we see, the slower a criterion is, the less e�cient it tends to get. Even
the fastest criteria \waste" about one �fth of their overall training time. The
slower criteria train twice as long as necessary to �nd the same solution.

3. E�ectiveness: We de�ne the badness of a criterion C in a run relative to
another criterion x as Bx(C) := Ete(C)=Ete(x), i.e., its relative error on the
test set. Pg(C) is the fraction of the 1296 runs in which C was a good criterion.
This is an estimate of the probability that C is good in a run. As we see from
the Pg column, even the fastest criteria are fairly e�ective. They reach a result
as good as the best (of the same run) in about 60% of the cases. On the other
hand, even the slowest criteria are not at all infallible; they achieve about 80%.
However, Pg says nothing about how far from the optimum the non-good runs
are. Columns B

Ĉ
(C) and BGL2

(C) indicate that these di�erences are usually
rather small: column BGL2

(C) shows that even the criteria with the lowest error
achieve only about 1% lower error on the average than the relatively fast criterion
GL2. In column B

Ĉ
(C) we see that several only modestly slow criteria have just

about 2% higher error on the average than the best criteria of the same run. For
obtaining the lowest possible generalization error, independent of training time,
it appears that one has to use an extreme criterion such as GL50 or even use a
conjunction of all three criteria classes with high parameter values.

4. Robustness: We call a criterion robust to the degree that its performance
is independent of the learning problem and the learning environment (network
topology, initial conditions etc.). Optimal robustness would mean that in Fig-
ure 3 all dots within a block are at the same height (problem independence) and
all lines have length zero (environment independence). Note that slowness and
badness are measured relative to the best criterion of the same program run. We
observe the following:

{ With respect to slowness and redundancy, slower criteria are much less robust
than faster ones. In particular the PQ criteria are quite sensitive to the
learning problem, with the card and horse problems being worst in this
experimental setting.

{ With respect to badness, the picture is completely di�erent: slower criteria
tend to be slightly more robust than slower ones. PQ criteria are a little
more robust than the others while GL criteria are signi�cantly less robust.
All criteria are more or less instable for the building, cancer, and thyroid
problems. In particular, all GL criteria have huge problems with the building
problem, whose dataset 1 is the only one that is partitioned non-randomly;
it uses chronological order of examples, see [19]. The slower variants of the
other criteria types are nicely robust in this case.



{ Similar statements apply when one analyzes the in
uence of only large or
only small network topologies separately (not shown in any �gure or table).
One notable exception was the fact that for networks with very few hidden
nodes the PQ criteria are more cost-e�ective than both the GL and the
UP criteria for minimizing B

Ĉ
(C). The explanation may be that such small

networks do not over�t severely; in this case it is advantageous to take train-
ing progress into account as an additional factor to determine when to stop
training.

Overall, fast criteria improve the predictability of the training time, while slow
ones improve the predictability of the solution quality.

5. Best tradeo�s: Despite the common overall trend, some criteria may be
more cost-e�ective than others, i.e., provide better tradeo�s between training
time and resulting network performance. Column Bĉ of the table suggests that
the best tradeo�s between test error and training time are (in order of increasing
willingness to spend lots of training time) UP3, UP4, and UP6, if one wants to
minimize the expected network performance from a single run. These criteria are
also robust. If on the other hand one wants to make several runs and pick the
network that seems to be best (based on its validation error), Pg is the relevant
metric and the GL criteria are preferable. The best tradeo�s are marked with a
star in the table. Figure 4 illustrates these results. The upper curve corresponds

500

600

700

800

900

1000

1100

1200

1000 1500 2000 2500
Slowness

Badness
Pg

Fig. 4. Badness BĈ(C) and Pg against slowness SĈ(C) of criteria

to column B
Ĉ
of the table (plotted against column S

Ĉ
); local minima indicate

criteria with the best tradeo�s. The lower curve corresponds to column Pg ; local
maxima indicate the criteria with the best tradeo�s. All measurements are scaled
by 1000.



6. Quanti�cation: From columns SGL2
(C) and BGL2

(C) we can quantify the
tradeo� involved in the selection of a stopping criterion as follows: In the range
of criteria examined we can roughly trade a 4% decrease in test error (from 1.024
to 0.988) for an about fourfold increase in training time (from 0.766 to 3.095).
Within this range, some criteria are somewhat better than others, but there is
no panacea.

3.5 Generalization of these results

It is di�cult to say whether or how these results apply to di�erent contexts
than those of the above evaluation. Speculating though, I would expect that the
behavior of the stopping criteria

{ is similar for other learning rules, unless they frequently make rather extreme
steps in parameter space,

{ is similar for other error functions, unless they are discontinuous,

{ is similar for other learning tasks, as long as they are in the same ballpark
with respect to their nonlinearity, number of inputs and outputs, and amount
of available training data.

Note however, that at least with respect to the learning task deviations do oc-
cur (see Figure 3). More research is needed to describe which properties of the
learning tasks lead to which di�erences in stopping criteria behavior.

4 Why this works

Detailed theoretical analyses of the error curves cannot yet be done for the
most interesting cases such as sigmoidal multi-layer perceptrons trained on a
modest number of examples; today they are possible for restricted scenarios
only [1, 2, 3, 24] and do usually not aim at �nding the optimal stopping crite-
rion in a way comparable to the present work. However, a simpli�cation of the
analysis performed by Wang et al. [24] or the alternative view induced by the
bias/variance decomposition of the error as described by Geman et al. [10] can
give some insights why early stopping behaves as it does.

At the beginning of training (phase I), the error is dominated by what Wang
et al. call the approximation error | the network has hardly learned anything
and is still very biased. During training this part of the error is further and

further reduced. At the same time, however, another component of the error
increases: the complexity error that is induced by the increasing variance of the
network model as the possible magnitude and diversity of the weights grows.
If we train long enough, the error will be dominated by the complexity error
(phase III). Therefore, there is a phase during training, when the approximation
and complexity (or: bias and variance) components of the error compete but
none of them dominates (phase II). See Amari et al. [1, 2] for yet another view
of the training process, using a geometrical interpretation. The task of early



stopping as described in the present work is to detect when phase II ends and
the dominance of the variance part begins.

Published theoretical results on early stopping appear to provide some nice
techniques for practical application: Wang et al. [24] o�er a method for comput-
ing the stopping point based on complexity considerations | without using a
separate validation set at all. This could save precious training examples. Amari
et al. [1, 2] compute the optimal split proportion of training data into training
and validation set.

On the other hand, unfortunately, the practical applicability of these theo-
retical analyses is severely restricted. Wang et al.'s analysis applies to networks
where only output weights are being trained; no hidden layer training is cap-
tured. It is unclear to what degree the results apply to the multi-layer networks
considered here. Amari et al.'s analysis applies to the asymptotic case of very
many training examples. The analysis does not give advice on stopping criteria;
it shows that early stopping is not useful when very many examples are avail-
able but does not cover the much more frequent case when training examples
are scarce.

There are several other theoretical works on early stopping, but none of
them answers our practical questions. Thus, given these theoretic results, one is
still left with making a good stopping decision for practical cases of multilayer
networks with only few training examples and faced with a complicated evolution
of the validation set error as shown in Figure 2. This is why the present empirical
investigation was necessary.

The jagged form of the validation error curve during phase II arises because
neither bias nor variance change monotonically, let alone smoothly. The bias
error component may change abruptly because training algorithms never per-
form gradient descent, but take �nite steps in parameter space that sometimes
have severe results. The observed variance error component may change abruptly
because, �rst, the validation set error is only an estimate of the actual general-
ization error and, second, the e�ect of a parameter change may be very di�erent
in di�erent parts of parameter space.

Quantitatively, the di�erent error minima that occur during phase II are
quite close together in terms of size, but may be rather far apart in terms of
training epoch. The exact validation error behavior seems rather unpredictable
when only a short left section of the error curve is given. The behavior is also
very di�erent for di�erent training situations.

For these reasons no class of stopping criteria has any big advantage over
another (on average, for the mix of situations considered here), but scaling the
same criterion to be slower always tends to gain a little generalization.



References

1. S. Amari, N. Murata, K.-R. M�uller, M. Finke, and H. Yang. Statistical theory of

overtraining - is cross-validation e�ective? In [23], pages 176{182, 1996.

2. S. Amari, N. Murata, K.-R. M�uller, M. Finke, and H. Yang. Aymptotic statistical

theory of overtraining and cross-validation. IEEE Trans. on Neural Networks,

8(5):985{996, September 1997.

3. Pierre Baldi and Yves Chauvin. Temporal evolution of generalization during learn-

ing in linear networks. Neural Computation, 3:589{603, 1991.

4. Jack D. Cowan, Gerald Tesauro, and J. Alspector, editors. Advances in Neural

Information Processing Systems 6, San Mateo, CA, 1994. Morgan Kaufman Pub-

lishers Inc.

5. Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In [22],

pages 598{605, 1990.

6. Scott E. Fahlman. An empirical study of learning speed in back-propagation net-

works. Technical Report CMU-CS-88-162, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, September 1988.

7. Scott E. Fahlman and Christian Lebiere. The Cascade-Correlation learning archi-

tecture. In [22], pages 524{532, 1990.

8. Emile Fiesler (e�esler@idiap.ch). Comparative bibliography of ontogenic neural

networks. (submitted for publication), 1994.

9. William Finno�, Ferdinand Hergert, and Hans Georg Zimmermann. Improving

model selection by nonconvergent methods. Neural Networks, 6:771{783, 1993.

10. Stuart Geman, Elie Bienenstock, and Ren�e Doursat. Neural networks and the

bias/variance dilemma. Neural Computation, 4:1{58, 1992.

11. Stephen J. Hanson, Jack D. Cowan, and C. Lee Giles, editors. Advances in Neu-

ral Information Processing Systems 5, San Mateo, CA, 1993. Morgan Kaufman

Publishers Inc.

12. Babak Hassibi and David G. Stork. Second order derivatives for network pruning:

Optimal brain surgeon. In [11], pages 164{171, 1993.

13. Anders Krogh and John A. Hertz. A simple weight decay can improve generaliza-

tion. In [16], pages 950{957, 1992.

14. Asriel U. Levin, Todd K. Leen, and John E. Moody. Fast pruning using principal

components. In [4], 1994.

15. Richard P. Lippmann, John E. Moody, and David S. Touretzky, editors. Advances

in Neural Information Processing Systems 3, San Mateo, CA, 1991. Morgan Kauf-

man Publishers Inc.

16. John E. Moody, Stephen J. Hanson, and Richard P. Lippmann, editors. Advances

in Neural Information Processing Systems 4, San Mateo, CA, 1992. Morgan Kauf-

man Publishers Inc.

17. N. Morgan and H. Bourlard. Generalization and parameter estimation in feedfor-

ward nets: Some experiments. In [22], pages 630{637, 1990.

18. Steven J. Nowlan and Geo�rey E. Hinton. Simplifying neural networks by soft

weight-sharing. Neural Computation, 4(4):473{493, 1992.

19. Lutz Prechelt. PROBEN1 | A set of benchmarks and benchmarking rules for neu-

ral network training algorithms. Technical Report 21/94, Fakult�at f�ur Informatik,

Universit�at Karlsruhe, Germany, September 1994. Anonymous FTP: /pub/pa-

pers/techreports/1994/1994-21.ps.gz on ftp.ira.uka.de.

20. Russel Reed. Pruning algorithms | a survey. IEEE Transactions on Neural

Networks, 4(5):740{746, 1993.



21. Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster back-

propagation learning: The RPROP algorithm. In Proc. of the IEEE Intl. Conf. on

Neural Networks, pages 586{591, San Francisco, CA, April 1993.

22. David S. Touretzky, editor. Advances in Neural Information Processing Systems

2, San Mateo, CA, 1990. Morgan Kaufman Publishers Inc.

23. D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors. Advances in Neural

Information Processing Systems 8, Cambridge, MA, 1996. MIT Press.

24. Changfeng Wang, Santosh S. Venkatesh, and J. Stephen Judd. Optimal stopping

and e�ective machine complexity in learning. In [4], 1994.

25. Andreas S. Weigend, David E. Rumelhart, and Bernardo A. Huberman. General-

ization by weight-elimination with application to forecasting. In [15], pages 875{

882, 1991.

This article was processed using the LATEX macro package with LLNCS style


