
KOMET { A System for the Integration of

Heterogeneous Information Sources

J. Calmet, S. Jekutsch, P. Kullmann, J. Sch�u

Institut f�ur Algorithmen und Kognitive Systeme (IAKS)
Fakult�at f�ur Informatik, Universit�at Karlsruhe

Am Fasanengarten 5, 76131 Karlsruhe, Germany

fcalmet,jekutsch,kullmann,schueg@ira.uka.de

Abstract. We present KOMET, an architecture for the intelligent inte-

gration of heterogeneous information sources. It is based on the idea of a

mediator, which is an independent software layer between an application
and various knowledge sources which need to be accessed. We present

an especially suitable logic-based language for encoding typical media-

tion tasks like conditional preference strategies, schema integration or
data inconsistency resolution. Using annotated logic, KOMET is able to

perform various common types of reasoning, such as probabilistic, fuzzy,

paraconsistent and certain types of temporal and spatial reasoning. In
combination with an extensible type system and the embedding of ex-

ternal knowledge sources as constraint domains, our mediation language

o�ers a rich framework, which not only facilitates access to structured
information, but as well supports unstructured and semi-structured in-

formation. A number of examples show the practical application of our

approach.

Keywords: Intelligent Information Systems, Knowledge Integration, Mediator

1 Introduction

The evolution of technology in the last couple of decades has led to a vast

increase of information that is easily accessible with computers. But using all this

information in connection is nearly impossible due to this very process yielding

a broad variety of hardware platforms, operating systems, data management

systems and data formats. Many information retrieval tasks are based on a

multitude of information which is highly scattered among di�erent information

systems and services. To do a forecast on stock quotes one needs data on current

and previous quotes, both normally available on completely di�erent information

systems.

The idea of such a so-called mediator system was �rst introduced by Wieder-

hold [Wie92]. His architecture makes use of a central component which facilitates

the access to di�erent knowledge sources without impairing the autonomy and

heterogeneity of the involved sources. This approach has much in common with

the federated database approach. But in contrast to federated database sys-

tems, the mediator approach uses a broader concept of information source. Not

only traditional databases with di�erent data models are considered as sources,

but also unstructured information like world wide web pages, software packages

like computer algebra systems, spreadsheet calculators or pattern recognition

software and knowledge-based sources like expert systems or neural nets. Infor-

mation sources are coupled to the mediator using wrapper or translator modules

which map queries in the mediator format to queries in the source- speci�c query

language (Figure 1). Another major task of these components is the transfor-

mation of the retrieved data from the source-speci�c representation into the

mediator data model.

In this paper we present KOMET, a shell for developing dedicated media-

tors by means of a declarative language. There are few projects which deal with

information integration in a comparable generality. Closely related projects in

this �eld of research are HERMES [AE95] and TSIMMIS [PGMU96]. HERMES

also uses annotated logic for the mediatory knowledge base, but uses a di�erent

approach for the query translation. Its rule-rewriting approach requires much

more a priori anticipation of the kind of queries that might occur. Only queries

for which corresponding templates have been established can be send to a data

source. The language of HERMES does not support negation and is not as exi-

ble in its type system. To the best of our knowledge, KOMET is the �rst system

that implements the evaluation of the well-founded semantics for annotated logic

programs. TSIMMIS emphasizes the integration of semi-structured information

sources. It makes use of a special data model for representing this information.

In our opinion, this approach has the major drawback that even though struc-

tured information can be represented, its processing is far less e�cient than

would be possible by retaining the structure. We have deliberately chosen a

structured approach, since it adequately supports structured data sources in

terms of e�ciency. At the same time our framework facilitates the integration of

unstructured and semi-structured information due to its extensible type system.

In the sequel, �rst the architecture and language of the KOMET system are

described. The third section gives some examples that show the practical use

of the KOMET language. Section four describes how unstructured and semi-

structured information can be represented and processed in our framework. Fi-

nally, the conclusions section discusses future directions of our work.

2 KOMET { A Mediator System Based on Annotated

Logic

The KOMET (Karlsruhe OpenMEdiator Technology) system1 is a knowledge-

based mediator shell for intelligent information integration. From the user's per-

spective, the system provides a set of views on the underlying data. On the basis

of these views, the user can pose queries to the system in a uniform way without

having to consider the location and format of the underlying knowledge. The

basic KOMET architecture is depicted in �gure 1.

1 http://iaks-www.ira.uka.de/iaks-calmet/research/kamel-komet/

Inference Engine

Optimizer

Data Dictionary

Manager

Manager

Result Cache

External Query

Subgoal

Connection

TranslatorTranslatorTranslator

Src3Src2Src1

Application

Mediator

Fig. 1. Mediator Architecture.

The heart of our system is an e�cient engine for evaluating annotated logic

programs under the well-founded semantics, enhanced with constraints for in-

tegrating external knowledge sources. The engine uses SLG resolution [CW93]

which has following advantages over other evaluation procedures:

{ SLG resolution is a partial deduction procedure, consisting of several fun-

damental transformations. A query is transformed step by step into a set of

answers. The use of transformations seperates logical issues of query evalu-

ation from procedural ones.

{ SLG resolution is sound and complete with respect to the well-founded par-

tial model for all non-oundering queries.

{ The computation rule for selecting a literal from a rule body as well as the

control strategy for selecting transformations to apply are arbitrary.

{ It avoids both positive and negative loops and always terminates for pro-

grams with the bounded-term-size property [CW93].

{ For function-free programs, it has polynomial time data complexity for well-

founded negation.

Similar to OLDT resolution2, tabulation is used to avoid redundant compu-

tations. It is additionally needed to guarantee termination. We have extended

SLG resolution for processing of annotated logic programs with a many-sorted

type system.

Besides the inference engine, the KOMET system core comprises the Subgoal

Result Cache, the External Query Manager with a Connection Manager, the

Optimizer and the Data Dictionary. The Subgoal Result Cache is used for tab-

ulation during the resolution process. A bu�ering strategy keeps query results

2 Ordered Linear resolution for De�nite clauses with Tabulation

across queries if suitable. The External Query Manager appears as a constraint

solver in the mediator. It decomposes constraint parts of clauses with the help

of the Optimizer and sends partial conjunctive constraints to the Translators

which correspond to individual information sources. The Connection Manager

coordinates and monitors network access. The Data Dictionary contains meta

data about all registered information sources, relations, functions and data types.

Systems predicates allow the access of this information and thus facilitate meta

reasoning.

The integration of arbitrary information sources into a mediator system

requires transformations on di�erent levels. On the semantic level the source-

speci�c schema needs to be transformed into a schema useful for the mediation

task. In our framework, this is done by the inference engine using schema integra-

tion rules. On the data representation level information needs to be transformed

from the source-speci�c data model into the common data model and vice versa.

Figure 2 illustrates the levels of integration.

federated

schema model architecture

Src

translation

mediatormediator-

common
data-

export-

local local

Fig. 2. Translation of model and schema

In our architecture translation connotes transformation of queries posed by

the inference engine into the source-speci�c query language (e.g. SQL) as well

as the involved data model transformations. We have developed an environment

for rapid implementation of query translators for arbitrary types of informa-

tion sources [CJS97]. Based on compiler techniques, it uses rules which describe

how the constructs of the mediator language are mapped to the native language

constructs of a speci�c source. This approach can be used to build translator

hierarchies and allows the reuse of certain translator functionality. In the re-

mainder of this paper, we will focus on how the KOMET language can be used

to handle typical mediation tasks.

3 The KOMET Language

The KOMET language is a declarative language which implements a many-

sorted annotated logic [KS92] with a high degree of exibility. It provides a

set of basic data types and truth value sets which can be extended using a

programming interface. The KOMET language de�nes the common data model.

In annotated logic, each fact has a truth value appended to it. Annotated

logic only imposes some restrictions on the algebraic structure wihich the set

of truth values has to form. This property allows to choose among a number

of common logics, which range from two-valued logic to fuzzy logic and certain

types of temporal and spatial logic. In this sense, annotated logic is generic.

A KOMET program is made up of a set of constant symbols, variable sym-

bols, function symbols and predicate symbols. Since KOMET is based on anno-

tated logic, each predicate declaration requires the assignment of a truth value

type.

STRING and FOUR are prede�ned data and truth value types, respectively.

FOUR comprises t (true), f (false), u (unknown) and c (contradiction). For

simplicity we will use this truth value type for the following examples. Example

1 shows how recursive clauses allow us to calculate the transitive closure of a

predicate which is not possible with plain SQL. Due to the use of well- founded

semantics, recursive clauses which contain negation are also allowed. For the pro-

gram in the following example, the query isAncestor(X,Y):[t] would return

the three results (X=Paul,Y=Ann),(X=Ann,Y=Mary) and (X=Paul,Y=Mary).

Example 1. Clauses

#predicates

isChild(STRING,STRING):[FOUR]

isAncestor(STRING,STRING):[FOUR]

#clauses

isAncestor(X,Y):[t] <- isChild(Y,X):[t]

isAncestor(X,Y):[t] <- isAncestor(X,Z):[t] & isChild(Y,Z):[t]

isChild('Ann','Paul'):[t]

isChild('Mary','Ann'):[t]

To be able to limit the data which de�nes a derived predicate, KOMET

allows the use of constraints which can be constructed form constraint rela-

tions and functions. In our system, constraint relations have the general form

domain::function(argumentlist) and can be used in the conjunction of a clause

body. Naturally, each data type such as ULONG provides a number of prede�ned

domain functions and relations for the basic boolean and mathematical opera-

tors. Each data type and each truth value type therefore represents a constraint

domain in the KOMET system.

The KOMET system looks at an external knowledge source also as a con-

straint domain which supplies a set of functions and relations which represent

the knowledge that is available from the knowledge source. Following example

shows how databases can be introduced.

Example 2. Mediator program

#domains

DB1 = ODBC(MyDb.CFG)

DB2 = DDBC(HisDb.CFG)

#predicates

Address1(STRING,STRING,STRING):[REAL01]

Address2(STRING,STRING,STRING):[FOUR]

Names DB1(STRING,STRING):[FOUR]

#clauses

Address1(X,Y,Z):[1.0] <- DB1::ADDRESS(X,Y,Z)

Address1(X,Y,Z):[0.5] <- DB2::ADDRESS(X,Y,Z)

Names DB1(X,Y):[t] <- DB1::ADDRESS(X,Y,Z)

Address2(X,Y,Z):[t] <- DB1::ADDRESS(X,Y,Z)

Address2(X,Y,Z):[t] <- DB2::ADDRESS(X,Y,Z) &

not Names DB1(X,Y):[t]

MyDb.CFG refers to a con�guration �le which lists the available functions

and predicates. The information in this �le is called export schema (see �gure

2) of an information source, expressed in the common data model of KOMET.

Dependent on the knowledge source, this �le may also contain information on

how these functions are mapped onto the functionality of the knowledge source.

Example 2 shows how to build a mediator for two telephone databases which

contain conicting data. DB1 is assumed to be reliable whereas we are not con�-

dent in DB2. The mediator program shows two possibilities for resolving possible

conicts. The de�nition of Address1 does not suppress any data, it just appends

a truth value to each data set, depending on its origin. The predicate Address2

will prefer the telephone number from DB1 if there is an entry in both databases

for one person. This way, incorrect entries will not be visible at all.

4 Mediation Examples Using the KOMET Approach

In the following we will show how typical mediation tasks can be expressed in

the KOMET framework using clauses and annotations. For the sake of a shorter

and clearer presentation, we use a slightly simpli�ed syntax and avoid obvious

declarations in this section.

Knowledge Inconsistencies

In a mediatory environment, it may be necessary to distinct knowledge from dif-

ferent sources. It is useful to rename the predicates so that objects from di�erent

knowledge sources are disjoint. Any identities between predicates must then be

reestablished explicitly. The annotation lattice P(fSrc1; : : : ; Srcng) with the

usual subset ordering is introduced for this purpose, where Srci is an identi�er

for an external domain.

In the following we provide two examples how annotated logic may help:

{ Conict solving: Using lattices like FOUR3 it is possible to represent clauses

3 consisting of ? = unknown, t = true, f = false and > = inconsistent

which explicitly state how to deal with conicting knowledge, e.g.

buy stock(IBM) : [fmg; f] buy stock(IBM) : [fSrc1; Src2g;>]

If the knowledge sources Src1 and Src2 disagree (>) on whether to buy IBM,

the mediator (m) rather should be careful about it.

{ Preference of sources: The following clauses express a preference of a source

with respect to a particular single proposition. It is a somewhat complicated

case: Src1's value is more reliable in the case that it di�ers by no more than

10 from the value of Src2. In the other case, Src2's value needs to be stored

as the mediators opinion about the salary.

Salary(Name; Sal) : [fSrc1g; t] DB1 :: Salary(Name; Sal)

Salary(Name; Sal) : [fSrc2g; t] DB2 :: Salary(Name; Sal)

Salary(Name; Sal) : [fmg; t] Abs(Sal � Sal2) � 10 &

Salary(Name; Sal) : [fSrc1g; t] &

Salary(Name; Sal2) : [fSrc2g; t]

Salary(Name; Sal2) : [fmg; t] Abs(Sal � Sal2) > 10 &

Salary(Name; Sal) : [fSrc1g; t] &

Salary(Name; Sal2) : [fSrc2g; t]

Semantic Similarities

A relation Professor(Id;Name) in the domain DB1 and Secretary(Id;Name)

in the domain DB2 may be generalized in the context of the university adminis-

tration o�ce:

Staff(Id;Name) : [fmg; t] DB1 :: Professor(Id;Name)

Staff(Id;Name) : [fmg; t] DB2 :: Secretary(Id;Name)

There is also the possibility to express semantic proximity by means of fuzzy

values [SK93].

Domain Incompatibilities

{ Synonyms: In two di�erent knowledge sources the identity between attributes

may be established by the following clauses:

Employee(Id) : [fmg; t] DB1 :: Employee(Id;Name)

Employee(Id) : [fmg; t] DB2 :: Personnel(Id;Name)

{ Data Representation Conicts: Suppose that in the above example in the

DB1 database the Id is de�ned as a 9 digit integer whereas the Id in DB2

may be de�ned as a String. Thus, data conversion is required by means of

a constraint function Convert Str to Int which is provided by the domain

SYS:

Employee(Id) : [fmg; t] DB2 :: Personnel(Name; SId) &

Id = SY S :: Convert Str to Int(SId):

Schema Conicts

{ Schema Isomorphism Conicts: In this conict, semantically similar entities

have a di�erent number of attributes.

Instructor(No; Phone) : [t] DB1 :: Instructor(SS; Phone)

Instructor(No; Phone1) : [t] DB2 :: Instructor(SS; Phone1; Phone2)

{ Missing Data Item Conict: Analogously default values can be de�ned, or

values might be calculated if they are missing in one source.

5 Unstructured and Semi-structured Information

One goal in the development of KOMET was to support di�erent types of infor-

mation sources in the most e�cient manner. This can be achieved by exploiting

a source's characteristics and abilities as far as possible. A structured approach

has the advantage that it can e�ciently support well-structured information

which is the case for a large part of the available information. At the same time,

our structured approach allows the support of unstructured and semi-structured

information as it is exible enough for representing and processing these types

of information. The key feature for this capability is the extensible type system

of KOMET.

5.1 Unstructured Information

A basic KOMET type can be regarded as an abstract data type for which func-

tions and relations have to be de�ned according to a certain minimal program-

ming interface. Additional functions and relations can be incorporated into the

KOMET type and used in the constraint part of clauses. However, KOMET

has no knowledge of the internal structure of a data type4. This property is

the basis for incorporation of unstructured information. Consider a text archive

where each text is stored in an individual �le. Additionally, assume we have

a text analysis software package which scans texts for a number of keywords.

For use in KOMET, we would create a new data type TEXT, which can e.g. be

constructed from an existing C++-class. For the implementation of this type

we have the choice of storing the text itself in a data item or using some kind

of handle like a �le name. Next, we must construct a constraint domain which

allows us to access the texts �les of the archive. Finally, we can add a relation

CONTAINS to this domain, which takes a list of keywords and a text as arguments

and determines whether the text contains all of them or not.

4 A special case are types which have been de�ned in a mediator program with the

KOMET language

Example 3. Unstructured information

#sorts

KEYLIST = LIST(STRING)

#predicates

Search(TEXT,KEYLIST):[FOUR]

#clauses

Search(X,Y):[t] <- ARCH::FETCH(X) & ARCH::CONTAINS(Y,X)

The above example shows a mediator program that retrieves all texts that

contain a list of keywords. Note, that the internal representation has no inuence

on the coding of the mediator program. It does inuence the implementations

of the involved relations though. It is up to the calling application to interpret

data items of type TEXT appropriately.

5.2 Semi-structured Information

The KOMET type system can as well be used for representing semi-structured

information. Together with some functions and relations for access, processing

and aggregation we are able to process this kind of information in our framework

in a similar manner as described in related projects [PGMU96]. The following

simple example shows how this could be achieved. FLEXTYPE denotes a data type

which can hold di�erent data types and corresponds to the pair (type,value).

Example 4. Semi-structured information

#sorts

OBJECT = STRUCT(OID:STRING,LABEL:STRING,DATA:FLEXTYPE)

#predicates

Address(OBJECT):[FOUR]

#clauses

Address(OBJECT::MERGE(A1,A2)):[t] <-

SRC1::FETCH(A1) & SRC2::FETCH(A2)

OBJECT::EQ(A1,'LastName',A2,'LastName')

The MERGE function merges two objects of type set into one new object of type

set and assigns a new unique object identi�er to it. Relation EQ takes two objects

of type set and checks two of its elements which are referenced by their label

for equality. The given program demonstrates how semi-structured objects from

di�erent sources may be merged in the mediator. Clearly, many other operations

necessary for integration can be realized in our framework.

6 Conclusions

In this paper we presented the KOMET environment for building mediators. Its

language and architecture is well suited to serve typical mediation tasks in a

heterogeneous environment. The language has formal semantics and is declar-

ative, which supports easy construction of the mediatory knowledge base. The

extensible type system together with the felxible concept for accessing exter-

nal knowledge also facilitates processing of unstructured and semi-structured

information.

KOMET will be applied in the project STEM5 which aims at developing a

software system to assist land managers in environmentally sensitive areas with

long term sustainable decisions.

The core functionality described in this paper has been realized in a proto-

typical system. It is coded in C++ and runs under the Solaris and Windows op-

erating systems. A graphical front end for debugging mediator clauses [CDJS96]

and for semi-automatic construction of schema integration clauses have also been

realized. Theoretical work has been done on view maintenance in a mediator ar-

chitecture [Sch95].

Future work will focus on di�erent aspects of query optimization and secu-

rity in mediator systems. On the knowledge level we will investigate knowledge

acquisition and use of common ontologies in the mediator context.

References

[AE95] S. Adal� and R. Emery. A uniform framework for integrating knowledge in

heterogenous knowledge systems. In Proc. 11th IEEE International Con-

ference on Data Engineering, pages 513{521, Taipei, Taiwan, March 1995.
[CDJS96] J. Calmet, D. Debertin, S. Jekutsch, and J. Sch�u. An executable graphical

representation of mediatory information systems. In Proc. 12th IEEE In-

ternational Conference on Data Engineering, pages 124{131, New Orleans,
March 1996.

[CJS97] J. Calmet, S. Jekutsch, and J. Sch�u. A generic query-translation framework

for a mediator architecture. In Proc. 13th International Conference on Data
Engineering, Birmingham, U.K., pages 434{443, April 1997.

[CW93] W. Chen and D. S. Warren. Query evaluation under the well-founded se-

mantics. In Proceedings of the 12th Annual ACM Symposium on Principles

of Database Systems, pages 168{179. ACM, ACM Press, 1993.

[KS92] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic

programming. Journal of Logic Programming, 12(1):335{367, 1992.
[PGMU96] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker: A

mediation system based on declarative speci�cations. In Proc. 12th Inter-

national Conference on Data Engineering, pages 132{141. IEEE Computer
Society, February 1996.

[Sch95] J. Sch�u. Updates and Query-Processing in a Mediator Architecture. PhD

thesis, Universit�at Karlsruhe, 1995.
[SK93] A. Sheth and V. Kashyap. So far (schematically) yet so near (semantically).

In D. K. Hsiao, E. J. Neuhold, and R. Sacks-Davis, editors, Interoperable

Database Systems, pages 283{312. IFIP, Elsevier Science Pubslihers, 1993.
[Wie92] G. Wiederhold. Mediators in the architecture of future information sys-

tems. IEEE Computer, 25(3):38{49, March 1992.

5 http://www.cogsci.ed.ac.uk/ stem/

This article was processed using the LATEX macro package with LLNCS style

