Tragfähigkeit von Laubholzverbindungen mit stabförmigen Verbindungsmitteln

von

Jürgen Ehlbeck und Hartmut Werner

Versuchsanstalt für Stahl, Holz und Steine Abt. Ingenieurholzbau Universität Fridericiana Karlsruhe Univ.-Prof. Dr.-Ing. Jürgen Ehlbeck

Vorwort

Diese Arbeit entstand in den Jahren 1989 bis 1991 im Auftrage und mit Unterstützung der Entwicklungsgemeinschaft Holzbau (EGH) in der Deutschen Gesellschaft für Holzforschung (DGfH). Die finanziellen Mittel wurde vom Institut für Bautechnik, Berlin bereitgestellt.

Ziel dieses Forschungsprojekts war es, die Tragfähigkeit von Laubholzverbindungen mit stabförmigen Verbindungsmitteln in Abhängigkeit von verschiedenen Parametern zu untersuchen. Dabei war eine Verbesserung der Grundlagen für die Festlegung zulässiger Belastungen in der deutschen Normung ebenso von Bedeutung wie die Überprüfung der für die neuen Bemessungskonzepte in den international harmonisierten technischen Regeln vorgesehenen Bestimmungsgleichungen für die Tragfähigkeit derartiger Laubholzverbindungen.

Die Abwicklung des Forschungsauftrages wurde von Herrn Dipl.-Ing. H. WERNER eigenständig geleitet. Die Koordinierung der Versuchsdurchführung erfolgte durch Herrn G. RÜD, während für den Bau der Versuchseinrichtungen Herr H. HECK und für die Versuchsdurchführung selbst Herr J. LAFFERTHON verantwortlich waren. Insbesondere bei der Auswertung und Darstellung der Versuchsergebnisse war Herr cand. ing. A. BIBWURM tatkräftig beteiligt.

Allen Beteiligten sei für die Mitarbeit gedankt.

Jürgen Ehlbeck

Inhaltsverzeichnis

1	Ziel der Untersuchung	1
2	Auswertung des Schrifttums	3
3	Rechenmodell zur Bestimmung der Tragfähigkeit von Verbindungen mit stabförmigen Verbindungsmitteln	6
4	Lochleibungsfestigkeit verschiedener Laubhölzer	9
4.1	Experimentelle Bestimmung der Lochleibungs- festigkeit	9
4.2	Versuchsmaterial für die Lochleibungsversuche	14
4.3	Ergebnisse der Lochleibungsversuche	16
4.4	Relevante Einflußgrößen auf die Lochleibungs- festigkeit	21
4.4.1	Unterschied zwischen Zug- und Druckscher- belastung in Faserrichtung	22
4.4.2	Einfluß der Rohdichte	22
4.4.3	Einfluß des Verbindungsmitteldurchmessers	23
4.4.4	Einfluß des Winkels zwischen Kraft- und Holzfaser- richtung	25
4.4.5	Spaltempfindlichkeit	26
5	Biegewiderstand der Verbindungsmittel	28
5.1	Experimentelle Bestimmung des Fließmoments	28
5.2	Festigkeitskennwerte der Verbindungsmittel	29

5.2.1 5.2.2	Zugversuche nach DIN 50145 Biegeversuche	31 31
6	Zug- und Druckscherversuche an zweischnittigen Verbindungen mit verschiedenen Laubhölzern	35
6.1	Versuchsbezeichnung und Versuchsprogramm	35
6.2	Versuchsmaterial für die Zug- und Druckscher- versuche	37
6.3	Versuchsdurchführung	38
6.4	Ergebnisse der Zug- und Druckscherversuche	40
7	Einflüsse auf die Tragfähigkeit von Laubholz- verbindungen mit stabförmigen Verbindungs- mitteln - Vergleich mit dem Rechenmodell -	45
7.1	Unterschied zwischen Zug- und Druckscherbelastung	45
7.2	Einfluß des Verbindungsmitteldurchmessers und der Schlankheit	45
7.3	Einfluß des Stabdübelwerkstoffs	49
7.4	Einfluß der Profilierung des Verbindungsmittels	49
7.5	Vergleich des Rechenmodells mit den Versuchs- ergebnissen	52
8	Verformungsverhalten und Verschiebungsmodul von Laubholzverbindungen mit stabförmigen Verbindungsmitteln	57
9	Zusammenfassung	60
10	Schrifttum	64

126 Anlagen

1 Ziel der Untersuchung

In die Neufassung der DIN 1052 (Ausgabe April 1988) wurden zusätzlich zu den einheimischen Hölzern Eiche und Buche verschiedene außereuropäische Laubhölzer neu aufgenommen und zur Vereinfachung in drei Laubholzgruppen unterteilt. Zu den einzelnen Laubholzgruppen der DIN 1052 gehören:

Gruppe A	Eiche	(Quercus robur und Quercus petraea)
	Buche	(Fagus sylvatica)
	Teak	(Tectona grandis)
	Keruing (Yang)	(Gattung: Dipterocarpus)
Gruppe B	Afzelia	(Gattung: Afzelia)
	Merbau	(Gattung: Intsia)
	Angelique (Basralocus)	(Dicorynia guianensis und D. paraensis)
Gruppe C	Bongossi (Azobé)	(Lophira alata)
	Greenheart	(Ocotea rodiei)

Die zulässigen Spannunungen dieser außereuropäischen Laubhölzer wurden weitgehend den genormten Werten in anderen Ländern, wie z.B in den Niederlanden, angeglichen. Zum Teil wurden auch wesentlich niedrigere Werte angesetzt, wenn sie nicht durch Bauteilversuche belegt erschienen oder nicht kurzfristig nachgeprüft werden konnten. Über die Tragfähigkeit von Bolzenund Stabdübelverbindungen mit diesen in DIN 1052 neu aufgenommenen Hölzern liegen kaum Untersuchungen vor. In der Regel reicht eine Einordnung der Laubhölzer in Gruppen entsprechend ihrer Biege-, Druck- und Zugfestigkeit allein nicht aus, um die Tragfähigkeit der damit hergestellten Verbindungen zuverlässig beurteilen zu können. Bekanntlich hängt die Tragfähigkeit einer Verbindung nicht unerheblich von der Spaltbarkeit der jeweiligen Hölzer ab. Weiterhin sind die Werkstoffeigenschaften und die Oberflächenbeschaffenheit der verwendeten Stahlstifte von Bedeutung.

Im Zuge der Umstellung der technischen Baubestimmungen auf ein neues Bemessungskonzept werden außerdem charakteristische Werte der Lochleibungsfestigkeit der einzelnen Laubhölzer benötigt, um rechnerische Grund-

1

lagen für die Bestimmung der Tragfähigkeiten der Verbindungen bereitstellen zu können. Dabei ist auch der Einfluß des Winkels zwischen Kraft- und Faserrichtung zu untersuchen.

Die Verwendung von Tropenhölzern ist in die öffentliche Diskussion geraten. Von einigen Umweltschutzorganisationen wird sogar ein Boykott dieser Hölzer gefordert. Ein Verzicht auf deren Verwendung würde aber wenig zur Rettung der Regenwälder beitragen. Vielmehr sind die Ursachen und Folgen der bisherigen Vernichtung, wie z.B Wanderfeldbau und Brandrodung, zu beseitigen und die tropischen Regenwälder unter forstwirtschaftlichen Gesichtspunkten zu unterhalten. Hierzu sind gemeinsame Anstrengungen aller Beteiligten in den betroffenen Regionen und den anderen Erdteilen dringend erforderlich.

2 Auswertung des Schrifttums

Einer ausführliche Literaturrecherche über die Tragfähigkeit von Stabdübelverbindungen wurde bereits in dem Forschungsvorhaben von EHLBECK, WERNER 1989 durchgeführt und in dessen Abschlußbericht dokumentiert. Deshalb wird in diesem Abschnitt ausschließlich auf Literaturquellen bezug genommen, die speziell über Laubholzverbindungen und über die Lochleibungsfestigkeit von Laubhölzern berichten.

Die wichtigsten physikalischen und mechanischen Eigenschaften der in DIN 1052 aufgenommenen Laubhölzer sind z.B. in der MERKBLATTREIHE HOLZARTEN 1989 bzw. in GROSSER 1989 angegeben.

Bei den ersten systematischen Versuchen mit Nagelverbindungen von STOY 1930 wurde schon deutlich, daß die Lochleibungsfestigkeit einen großen Einfluß auf die Tragfähigkeit von Verbindungen mit stiftförmigen Verbindungsmitteln hat.

FAHLBUSCH 1949 machte Lochleibungsversuche mit Kiefer, Rotbuche, Esche, Buchenfurniersperrholz, Preßschichtholz und Homogenholz, die zu der damaligen Zeit im Flugzeugbau verwendet wurden. Als Lochleibungsfestigkeit bezeichnete er die Spannung bei einer plastischen Bolzenlochdeformation von 0,02d, wenn nicht vorher ein Zug-, Spalt- oder Scherbruch auftrat. Bei seiner Versuchsanordnung ermittelte er bei Zugbeanspruchung eine um etwa 20% geringere Lochleibungsfestigkeit als bei Druckbeanspruchung. Er gibt eine Abhängigkeit der Lochleibungsfestigkeit von der Druckfestigkeit, der Rohdichte, dem Winkel zwischen Kraft- und Faserrichtung, der Holzfeuchte und dem Bolzendurchmesser an. Der Einfluß des Winkels zwischen Kraft- und Faserrichtung kann danach mit Hilfe der Hankinson'schen Formel wie folgt abgeschätzt werden.

$$f_{h,\alpha} = \frac{f_{h,0} \cdot f_{h,90}}{f_{h,0} \cdot \sin^2 \alpha + f_{h,90} \cdot \cos^2 \alpha}$$
(2.1)

MACK 1960 fand, daß die Lochleibungsfestigkeit von feuchtem Eukalyptusholz (*Eucalyptus obliqua*) höher ist, als die Druckfestigkeit bei gleicher Holzfeuchte.

RODD 1973, 1988 untersuchte die Spannungen im Holz (Douglas fir *-Pseudot-saga menziesii-*) unter einem Dübel. Die speziell für diese Versuche gefertigten Dübel besaßen drei unterschiedliche Oberflächen (glatt, mittel, rauh).

Ergebnisse aus seinen Untersuchungen sind im folgenden kurz zusammengefaßt:

- Die Tragfähigkeit einer Verbindung mit rauhen Dübeln ist größer als diejenige mit glatten Dübeln und die Verbindung selbst neigt wegen der besseren Lastverteilung weniger zum Aufspalten.
- Die Kraft, die von einem Dübel übertragen wird, kann in zwei Komponenten aufgeteilt werden. Diese Kraft setzt sich aus der Druckbelastung auf eine bestimmte Aufstandsfläche und der Reibungskraft entlang der Lochwandung zusammen.

FOSCHI und BONAC 1977 fanden, daß die Lochleibungsspannungs-Verformungslinie von Versuchen gut durch folgende Beziehung angenähert werden kann:

$$\sigma_{h}(w) = (K_{2} + K_{3} \cdot w) \cdot (1 - \exp(-K_{1} \cdot \frac{w}{K_{2}}) \le f_{h}$$

$$(2.2)$$

mit $\sigma_{\rm h}(w)$ Lochleibungsspannung bei einer Verformung w

- w Verformung
- K₁ Steigung der Tangente im Ursprung
- K₂ Achsenabschnitt der Endtangente
- K₃ Steigung der Endtangente
- f_h Lochleibungsfestigkeit

In Großbritannien wurden in jüngerer Zeit eine Vielzahl von Untersuchungen auf dem Gebiet der Verbindungsmitteltechnik durchgeführt. An sieben verschiedenen Holzarten, darunter auch Laubhölzer, wurden Lochleibungsfestigkeiten ermittelt. Die Forschungsergebnisse sind in SMITH, WHALE 1987, RODD, ANDERSON, WHALE, SMITH 1987, HILSON, WHALE, POPE, SMITH 1987 und WHALE, SMITH, HILSON 1989 wiedergegeben. Zur Ermittlung der Lochleibungsfestigkeit und der Verformungscharakteristiken wurden Versuchseinrichtungen verwendet, die von WHALE und SMITH 1989 ausführlich beschrieben wurden. Die Erkenntnisse aus diesen Untersuchungen sind im folgenden zusammengefaßt:

- Die Last Verformungskurven können gut durch eine 3-parametrische Exponentialfunktion angepaßt werden.
- Die Lochleibungsfestigkeit wird signifikant durch die Rohdichte beeinflußt. Folgende empirische Abhängigkeiten der Lochleibungsfestigkeit von der Rohdichte wurden festgestellt:

Nägel in Nadelholz;	f_h	$= 0.09 \cdot \rho \cdot d^{-0.36}$	(2.3)
nicht vorgebohrte Nagellö	cher		
Nägel in Laubholz; vorgebohrte Nagellöcher	f_h	$= 0,13 \cdot \rho \cdot d^{-0,36}$	(2.4)
Bolzen und Stabdübel	$f_{h,\alpha}$	$= \frac{0,082 (1 - 0,01 \cdot d) \cdot \rho}{2,3 \cdot \sin^2 \alpha + \cos^2 \alpha}$	(2.5)
in Nadel- und Laubholz			

- Dabei sind einzusetzen: ρ in kg/m³; d in mm und f_h in N/mm²
- Hölzer mit größerer Rohdichte neigen mehr zum Aufspalten.

Untersuchungen an der Eidgen. Techn. Hochschule in Zürich von GEHRI, FONTANA 1983 an Stahl-Holz-Verbindungen mit Brettschichtholz aus Buche zeigten für kleine Stabdübeldurchmesser (d = 8 und 10 mm) eine um 70% bis 80% höhere Tragfähigkeit gegenüber gleich ausgebildeten Proben aus Fichtenholz. Das hohe Arbeitsvermögen des Buchenanschlusses wirkte sich dabei vorteilhaft aus. Parallel dazu wurden auch Versuche mit Stahl-Holz-Verbindungen aus Esche, Robinie und Bongossi durchgeführt. Die Tragfähigkeit der Verbindung mit Bongossi lag rund dreimal höher als bei einer vergleichbaren Nadelholzverbindung.

Eine geringe Anzahl von Versuchen mit Laubholzverbindungen wurde von EHLBECK, WERNER 1989 im Rahmen eines Forschungsprojekts durchgeführt. Dabei konnte für Bongossi eine deutliche Abhängigkeit der Lochleibungsfestigkeit vom Durchmesser nicht festgestellt werden. Gedämpfte Buche zeigte gegenüber den geprüften Laubhölzern ein anderes Bruch- und Verformungsverhalten.

3 Rechenmodell zur Bestimmung der Tragfähigkeit von Verbindungen mit stabförmigen Verbindungsmitteln

Die Tragfähigkeit von Verbindungen mit stiftförmigen Verbindungsmitteln wie Nägel, Bolzen, Stabdübel und Holzschrauben können mit Hilfe der Plastizitätstheorie berechnet werden. Diese Theorie wurde erstmals von JOHANSEN 1949 entwickelt und später von MOELLER 1951 und MEYER 1957 erweitert. Das Berechnungsmodell geht davon aus, daß sich sowohl der Stahl unter der Biegebeanspruchung als auch das Holz unter der Lochleibungsbeanspruchung ideal elastisch-plastisch verhalten. In den Bemessungsgleichungen aufgrund dieser Theorie werden alle wesentlichen Parameter mit Ausnahme der Spaltbarkeit der Hölzer und der Reibungseinflüsse berücksichtigt.

Die wichtigsten Einflußparameter auf die Tragfähigkeit von Verbindungen mit stiftförmigen Verbindungsmitteln sind:

- die Lochleibungsfestigkeit der an der Verbindung beteiligten Hölzer oder Holzwerkstoffe,
- die Geometrie der Verbindung,
- der Biegewiderstand der Verbindungsmittel,
- der Durchmesser der Verbindungsmittel,

wobei die Lochleibungsfestigkeit selbst abhängt von

- der Rohdichte der Hölzer oder Holzwerkstoffe,
- dem Verbindungsmitteldurchmesser,
- dem Winkel zwischen Kraft- und Holzfaserrichtung sowie
- den Verbindungsmittelabständen.

Der Bemessungswert der Tragfähigkeit pro Scherfläche für Holz-Holz-Verbindungen mit stabförmigen Verbindungsmitteln darf als kleinster Wert, der sich aus den folgenden Gleichungen ergibt, angenommen werden. Die verschiedenen Bruchursachen sind in den Bildern 3.1a bis k dargestellt, wobei die Formelzeichen wie folgt definiert sind:

t_1 und t_2	Holzdicken
f _{h,d,1}	Bemessungswert der Lochleibungsfestigkeit in t ₁
f _{h,d,2}	Bemessungswert der Lochleibungsfestigkeit in t ₂
M _{y,d}	Bemessungswert des Fließmomentes
d	Durchmesser des Verbindungsmittels
α=	$\frac{t_2}{t_1}$
$\beta =$	$\frac{f_{h,d,2}}{f_{h,d,1}}$

Bemessungswert der Tragfähigkeit eines Verbindungsmittels einer einschnittigen Verbindung

$$\int \mathbf{f}_{\mathbf{h},\mathbf{d},\mathbf{1}} \cdot \mathbf{t}_{\mathbf{1}} \cdot \mathbf{d} \tag{3.1a}$$

$$f_{h,d,2} \cdot t_2 \cdot d \tag{3.1b}$$

$$f_{h,d,2} \cdot t_2 \cdot d \qquad (3.1b)$$

$$\frac{f_{h,d,1} \cdot t_1 \cdot d}{1+\beta} \left[\sqrt{\beta + 2\beta^2 \left(1 + \alpha + \alpha^2\right) + \beta^3 \alpha^2} \cdot \beta \left(1 + \alpha\right)\right] (3.1c)$$

$$R_{d} = \min \left\{ \frac{f_{h,d,1} \cdot t_{1} \cdot d}{2 + \beta} \left[\sqrt{2\beta \left(1 + \beta\right) + \frac{4\beta \left(2 + \beta\right) M_{y,d}}{f_{h,d,1} \cdot d \cdot t_{1}^{2}}} - \beta \right]$$
(3.1d)

$$\frac{f_{h,d,1} \cdot t_2 \cdot d}{1 + 2\beta} \left[\sqrt{2\beta^2 (1 + \beta) + \frac{4\beta (1 + 2\beta) M_{y,d}}{f_{h,d,1} \cdot d \cdot t_2^2}} \cdot \beta \right]$$
(3.1e)

$$\sqrt{\frac{2\beta}{1+\beta}} \sqrt{2 \cdot M_{y,d} \cdot f_{h,d,1} \cdot d}$$
(3.1f)

·

Bemessungswert der Tragfähigkeit eines Verbindungsmittels einer zweischnittigen Verbindung

$$f_{h,d,1} \cdot t_1 \cdot d \tag{3.1g}$$

$$0.5 \cdot f_{h,d,2} \cdot t_2 \cdot d \tag{3.1h}$$

$$R_{d} = \min \left\{ \begin{array}{c} \frac{f_{h,d,1} \cdot t_{1} \cdot d}{2 + \beta} \left[\sqrt{2\beta \left(1 + \beta\right) + \frac{4\beta \left(2 + \beta\right) M_{y,d}}{f_{h,d,1} \cdot d \cdot t_{1}^{2}}} - \beta \right] \\ \sqrt{\frac{2\beta}{1 + \beta}} \sqrt{2 \cdot M_{y,d} \cdot f_{h,d,1} \cdot d} \end{array} \right.$$
(3.1k)

Bild 3.1 Schematische Darstellung der Bruchursachen

4 Lochleibungsfestigkeit verschiedener Laubhölzer

4.1 Experimentelle Bestimmung der Lochleibungsfestigkeit

Die Bestimmung der Lochleibungsfestigkeit der verschiedenen Holzarten erfolgt nach dem europäischen Normentwurf prEN 383 : 1990 "Holzbauwerke -Bestimmung der Lochleibungsfestigkeit". Die Lochleibungsfestigkeit ist eine Systemeigenschaft, da sie sowohl von dem Verbindungsmittel selbst, dessen Anordnung sowie die Art des Einbringens als auch vom Holz bzw. von der Holzart abhängig ist.

In dem o.g. EN-Entwurf ist die Lochleibungsfestigkeit definiert als die mittlere Spannung bei der Höchstlast unter einem steifen, geraden Verbindungsmittel, das in einem Rechteckprobekörper aus Holz oder Holzwerkstoff so eingebaut ist, daß die Verbindungsmittelachse rechtwinklig zur Probekörperoberfläche verläuft. Das Verbindungsmittel wird rechtwinklig zu seiner Achse belastet . Um eine gleichmäßige Spannungsverteilung unter dem Verbindungsmittel zu garantieren, sollte die Dicke t des Probekörpers etwa 2d betragen. Die Verbindungsmittel müssen, der Anwendung entsprechend, praxisgerecht eingebracht werden. Die Abmessungen der Probekörper zur Bestimmung der Lochleibungsfestigkeit unter einem Stabdübel oder Bolzen sind in Bild 4.1 dargestellt. Dabei wird zwischen den Belastungsarten Druck in Faserrichtung, Zug in Faserrichtung und Druck rechtwinklig zur Faserrichtung unterschieden. Die Grundanforderungen des Normentwurfs prEN 383 können auch auf andere Winkel zwischen Kraft und Faserrichtung angewendet werden. Bild 4.2 zeigt die Versuchsanordnung bei einer Zugbelastung in Faserrichtung, Bild 4.3 bei einer Druckbelastung in Faserrichtung. Die Höchstlast F_{max} ist definiert als die größte gemessene Last bevor die Eindrückung des Verbindungsmittels in den Versuchskörper 5 mm erreicht hat. Die Last wurde mit einer konstanten Vorschubgeschwindigkeit aufgebracht, die so angepaßt wurde, daß die Höchstlast innerhalb von 300+120 Sekunden erreicht war. Als Verbindungsmittel wurden blanke, kaltgeformte Stabdübel aus St 37 K verwendet, die in ein vorgebohrtes Loch eingebracht wurden. Die Durchmesser der Löcher entsprachen denen der Stabdübel.

9

Für die Holzarten Buche, Eiche, Teak (Laubholzgruppe A) Merbau, Afzelia (Laubholzgruppe B) und Bongossi (Laubholzgruppe C) wurden unter Berücksichtigung von Zug- und Druckbeanspruchung für die Stabdübeldurchmesser 8, 12, 16, 24 und 30 mm die Lochleibungsfestigkeiten in Faserrichtung bestimmt. **Tabelle 4.1** (Anlage 1) gibt eine Übersicht über die durchgeführten Lochleibungsversuche bei einer Belastung in Faserrichtung. In **Tabelle 4.2** (Anlage 1) sind die Abmessungen der Probekörper angegeben.

 I_z

Bild 4.1:Prüfkörper zur Bestimmung der Lochleibungsfestigkeit unter
einem Stabdübel bei unterschiedlichen Belastungsarten

Bild 4.2: Versuchsanordnung bei einer Zugbelastung in Faserrichtung

Bild 4.3: Versuchsanordnung bei einer Druckbelastung in Faserrichtung

Um den Einfluß des Winkels zwischen Kraft- und Holzfaserrichtung zu ermitteln, wurden in Anlehnung an den EN-Entwurf zur Bestimmung der Lochleibungsfestigkeit Versuche unter den Winkeln 30°, 45°, 60° und 90° mit den Laubhölzern Buche und Bongossi und den Verbindungsmitteldurchmessern 8, 16 und 30 mm durchgeführt. In **Tabelle 4.3** (Anlage 2) sind die Lochleibungsversuche bei einer Beanspruchung unter einem Winkel zur Holzfaserrichtung zusammengestellt. Als Probekörperform für alle Winkel wurde die für eine Beanspruchung rechtwinklig zur Faserrichtung nach prEN 383 gewählt (siehe **Bild 4.1**). Die Abmessungen der Probekörper sind in **Tabelle 4.4** (Anlage 2) angegeben. Den Versuchsaufbau für die einzelnen Winkelstellungen zeigen die **Bilder 4.4 - 4.7**. Dazu wurde speziell für diese Versuche eine schiefe Ebene gebaut, mit der die Winkelstufen 30°, 45° und 60° eingestellt werden können.

Bild 4.4: Versuchsanordnung bei einer Beanspruchung unter 30° zur Faserrichtung

Bild 4.5: Versuchsanordnung bei einer Beanspruchung unter 45° zur Faserrichtung

Bild 4.6: Versuchsanordnung bei einer Beanspruchung unter 60° zur Faserrichtung

Bild 4.7: Versuchsanordnung bei einer Beanspruchung rechtwinklig zur Faserrichtung

4.2 Versuchsmaterial für die Lochleibungsversuche

Die Laubhölzer der verschiedenen Laubholzgruppen wurden vom Holzhandel bezogen. Die Anlieferung der Hölzer Buche, Eiche, Teak und Afzelia erfolgte als Blockware, Merbau und Bongossi als Schnittholz. Die einzelne Holzarten wurden bei verschiedenen Holzhändlern aus unterschiedlichen Stämmen ausgesucht. Aus diesem Materialangebot wurden sowohl Versuchskörper für die Bauteilversuche als auch für die Lochleibungsversuche zugeschnitten. Zur Prüfung von Verbindungen mit mechanischen Verbindungsmitteln werden Anforderungen an die Rohdichte des Holzes gestellt. Die Auswahl des Holzes für die Probekörper erfolgte nach dem in DIN EN 28970 beschriebenen Verfahren 2. In Tabelle 4.5 sind die Rohdichtewerte der Hölzer getrennt nach den einzelnen Holzarten für die Lochleibungsversuche zusammengestellt. Das 5%-Fraktil der Rohdichte ρ_{05} wurde unter Annahme einer Gauß'schen Normalverteilung ermittelt. Die mittlere Rohdichte ρ_m aller Probekörper einer Holzart erfüllte die folgenden Bedingungen:

1,05
$$\rho_{05} < \rho_{\rm m} <$$
 1,25 ρ_{05}

Weiterhin soll die Rohdichte jedes einzelnen Probekörpers folgenden Bedingungen genügen:

$$0.9 \rho_{\rm m} < \rho < 1.1 \rho_{\rm m}$$

Diese Bedingungen wurden von den zwei Probekörpern A2/D/16/4 und A2/D/16/5 nicht eingehalten. Daher wurden die Versuchsergebnisse mit diesen Probekörpern bei der weiteren Auswertung nicht berücksichtigt. Bei den Probekörpern A1/Z/12/4 und A1/Z/12/5 führten örtliche Holzfehler zu einem frühzeitigen Aufspalten, sodaß die Prüfergebnisse dadurch stark beeinflußt wurden. Nach DIN EN 28970 sollten solche Probekörper aussortiert und nicht in die Auswertung mit einbezogen werden.

Holzart	Anzahl der		Rohdich	tewerte	Var koeff.	5%- Fraktil	$\frac{\rho_{\rm m}}{\rho_{05}}$		
	Werte	0,9 p _m	min.	ρ _m	max.	1,1 $\rho_{\rm m}$		ρ ₀₅	
							(%)	(kg/m^3)	
Buche (A1)	99	643	641	715	791	787	4,51	660	1,08
Eiche (A2)	20	648	596	720	767	792	6,06	650	1,11
Teak (A3)	5	586	638	652	664	717	1,49	-	-
Merbau (B1)	19	722	734	802	876	882	4,55	740	1,08
Afzelia (B2)	20	642	667	714	775	785	3,36	680	1,05
Bongossi (C)	50	966	1004	1075	1150	1181	3,54	1010	1,06

Tabelle 4.5:Rohdichtewerte der Hölzer für die Lochleibungsversuche
im Normalklima 20/65

Die Lagerung aller Hölzer zur Klimatisierung und die Durchführung der Versuche erfolgte im Prüflabor bei Normalklima DIN 50014 - 20/65-2. Es ist darauf hinzuweisen, daß in der Regel Bongossiholz beim Holzhandel nur mit hoher Holzfeuchte erhältlich ist. Die relativ kleinen Probekörper für die Lochleibungsversuche konnten jedoch schnell austrocknen, sodaß die Versuchsergebnisse nur für trockenes Bongossiholz gelten.

4.3 Ergebnisse der Lochleibungsversuche

Die Last-Verformungsdiagramme aller durchgeführten Lochleibungsversuche sind in den Anlagen 3 - 45 dargestellt. In **Tabelle 4.6 - 4.11** (Anlage 46 - 49) sind die Einzelergebnisse der Lochleibungsversuche bei einer Belastung in Faserrichtung, in **Tabelle 4.18 - 4.23** (Anlage 54 - 57) die Ergebnisse bei einer Belastung unter einem Winkel zur Faserrichtung zusammengestellt. In diesen Tabellen ist die Höchstlast F_{max} , wie in prEN 383 definiert, sowie die nach folgender Beziehung errechnete Lochleibungsfestigkeit angegeben:

$$f_{h} = \frac{F_{max}}{d \cdot t}$$
(4.1)

Weiterhin wurde in die Tabellen die Bruchursache aufgenommen. Die Bruchursache war entweder ein Aufspalten (siehe Bild 4.8) oder ein Lochleibungsversagen (siehe Bild 4.9). Bei der Bruchursache Spalten wurde angegeben bei wieviel mm Verformung das Versagen eintrat.

Aus dem Last-Verformungsdiagramm lassen sich die einzelnen Verformungswerte ermitteln und daraus der Anfangsbettungsmodul, der elastische Bettungsmodul und der Bettungsmodul wie folgt berechnen:

Anfangsverformung
$$w_i = w_{04}$$
(4.2)modifizierte Anfangsverformung $w_{i,mod} = \frac{4}{3} \cdot (w_{04} - w_{01})$ (4.3)elastische Verformung $w_e = \frac{2}{3} \cdot (w_{14} + w_{24} - w_{11} - w_{21})$ (4.4)Verformung bei 0,6 $\cdot F_{max}$ $w_{0,6}$ Verformung bei 0,8 $\cdot F_{max}$ $w_{0,8}$

Bild 4.8: Versagen des Probekörpers durch Aufspalten

Bild 4.9: Lochleibungsversagen

17

Anfangsbettungsmodul
$$K_i = \frac{0.4 \cdot f_{h,est}}{w_i}$$
 (4.5)

Bettungsmodul

$$K_{s} = \frac{0.4 \cdot f_{h,est}}{w_{i,mod}}$$
(4.6)

elastischer Bettungsmodul

$$K_{e} = \frac{0.4 \cdot f_{h,est}}{w_{e}}$$
(4.7)

Darin bedeuten w_{01} , w_{11} , w_{04} , w_{14} und w_{24} Verformungen bei in prEN 383 definierten Lastpunkten und $f_{h,est}$ die geschätzten Lochleibungsfestigkeiten, ermittelt aus der folgenden Beziehung:

$$f_{h,est} = \frac{F_{max,est}}{d \cdot t}$$
(4.8)

In Tabelle 4.12 - 4.17 (Anlage 50 - 53) sind die Einzelverschiebungsgrößen der Lochleibungsversuche bei einer Belastung in Faserrichtung, in Tabelle 4.24 -4.29 (Anlage 58 - 61) diejenigen bei einer Belastung unter einem Winkel zur Faserrichtung angegeben.

Die typische Last-Verformungskurve bei einer Belastung parallel der Faserrichtung hat in erster Näherung einen linear elastisch-plastischen Verlauf und erfüllt die Voraussetzungen der von JOHANSEN 1949 entwickelten Plastizitätstheorie. In einigen Fällen war jedoch ein plötzliches Aufspalten ohne große plastische Verformung zu beobachten. Dagegen zeigt die Last-Verformungskurve bei einer Belastung rechtwinklig zur Faserrichtung meist einen elastischen Verlauf bis zu einer Art Proportionalitätsgrenze, und danach einen flacheren kontinuierlichen Anstieg, ohne dabei eine eindeutige Bruchlast zu erreichen.

In **Tabelle 4.30** und **4.31** sind die Ergebnisse der Lochleibungsversuche mit den verschiedenen Laubhölzern zusammengefaßt. Es sind die Mittelwerte und die Variationskoeffizienten der Rohdichte und der Lochleibungsfestigkeit jeder Versuchsreihe angegeben. In der letzten Spalte ist der Quotient $f_{h,m}/\rho_m$ ablesbar.

Tabelle 4.30:Ergebnisse der Lochleibungsversuche bei einerBeanspruchung in Faserrichtung
(Mittelwerte und Variationskoeffizienten aus 3 - 5 Einzelversuchen)

Holzart	Bean- spruchung	Durch- messer d (mm)	Mittelwert Rohdichte $ ho_{m}$ (kg/m ³)	Variations- koeffizient (%)	Mittelwert f _{h,m} (N/mm²)	Variations- koeffizient (%)	$\frac{f_{h,m}}{\rho_m}$ $(\frac{N m^3}{(mm^2 kg)})$
Buche Buche Buche Buche Buche Buche Buche Buche	Druck Druck Druck Zug Zug Zug Zug Zug Zug	8 16 30 8 12 16 24 30	703 724 706 714 697 741 717 712	7,60 1,89 2,60 6,79 5,22 0,31 4,59 2,77	57,6 62,6 47,4 68,3 59,6 67,0 51,3 51,9	5,88 8.23 15,1 9,67 8,08 8,07 9,54 8,61	0,082 0,086 0,067 0,096 0,086 0,090 0,072 0,081
Eiche	Druck	8	722	0,20	63,4	3,28	0,088
Eiche	Druck	16	732	4,50	55,8	5,12	0,076
Eiche	Druck	30	734	2,54	58,8	3,57	0,080
Eiche	Zug	8	743	2,30	60,8	4,67	0,082
Teak	Zug	8	652	1,49	46,7	1,83	0,072
Merbau	Druck	8	797	2,51	69,7	5,51	0,087
Merbau	Zug	8	800	2,68	87,4	3,47	0,109
Merbau	Zug	16	771	4,91	60,9	7,25	0,079
Merbau	Zug	30	849	2,33	52,7	6,74	0,062
Afzelia	Druck	8	720	3,29	67,4	6,32	0,094
Afzelia	Zug	8	709	5,70	76,0	10,8	0,107
Afzelia	Zug	16	722	2,19	53,3	2,32	0,074
Afzelia	Zug	30	705	0,78	52,2	5,87	0,074
Bongossi	Druck	8	1030	1,65	107	6,62	0,103
Bongossi	Zug	8	1047	1,71	114	3,86	0,109
Bongossi	Zug	16	1097	1,84	86,1	4,79	0,079
Bongossi	Zug	30	1121	1,53	78,1	6,56	0,070

Tabelle 4.31:Ergebnisse der Lochleibungsversuche bei einer
Beanspruchung unter einem Winkel zur Faserrichtung
(Mittelwerte und Variationskoeffizienten aus 5 Einzelversuchen)

Holzart	Winkel a (°)	Durch- messer d (mm)	Mittelwert Rohdichte $ ho_{m}$ (kg/m ³)	Variations- koeffizient (%)	Mittelwert f _{h,m} (N/mm²)	Variations- koeffizient (%)	$\frac{f_{h,m}}{\rho_m}$ $(\frac{N m^3}{(mm^2 kg)})$
Buche Buche Buche Buche Buche Buche Buche Buche Buche Buche Buche	30° 30° 45° 45° 45° 60° 60° 60° 90° 90°	8 16 30 8 16 30 8 16 30 8 16 30	699 740 716 670 708 725 698 726 720 716 719 754	6,39 3,09 3,26 3,92 1,68 1,34 4,82 3,15 3,54 3,55 2,77 3,95	57,4 53,0 49,3 46,3 46,4 43,6 60,6 44,6 38,9 71,9 47,5 37,7	26,2 2,52 6,64 12,3 12,9 9,51 15,9 5,36 8,97 12,7 4,27 6,04	0,082 0,072 0,069 0,066 0,060 0,087 0,061 0,054 0,100 0,066 0,050
Bongossi Bongossi Bongossi Bongossi Bongossi Bongossi	30° 45° 60° 90° 90° 90°	16 16 16 8 16 30	1086 1081 1028 1067 1068 1123	3,80 1,87 0,44 1,77 2,07 2,32	84,7 85,1 91,9 95,2 91,1 61,9	10,7 4,96 3,51 5,25 14,0 6,35	0,078 0,079 0,089 0,089 0,085 0,085 0,055

4.4 Relevante Einflußgrößen auf die Lochleibungsfestigkeit

Das Festigkeitsverhalten eines Baustoffes wird durch sein Formänderungsgesetz, die Spannungs-Dehnungs-Beziehung, im eindimensionalen Fall die sogenannte Arbeitslinie, beschrieben. Bei der Lochleibungsfestigkeit wird das Problem der zweidimensional beanspruchten Lochwandung auf ein eindimensionales zurückgeführt. Betrachtet man die Stauchungen unter einem Verbindungsmittel bei einer Beanspruchung in Faserrichtung unter einem Meßprojektor, so kann man in erster Linie die Druckfalten in Faserrichtung, aber auch die Verdrängung des Holzes rechtwinklig dazu deutlich erkennen. Da hierbei die Druckbeanspruchung in Faserrichtung dominiert, sind ähnliche Gesetzmäßigkeiten wie bei der Druckfestigkeit zu vermuten.

Naturgemäß kann nicht die Gesamtheit des zur Verarbeitung kommenden Holzes, die sogenannte Grundgesamtheit, erfaßt werden, sondern nur eine geeignet ausgewählte Stichprobe. Da sich diese Untersuchung nicht nur auf eine einzelne Holzart beschränkt, wächst mit dem Aufwand aber auch die Unsicherheit beim "Schätzen" der allgemeinen Gesetzmäßigkeiten für die Grundgesamtheit. Zunächst werden diejenigen Holz- und Einwirkungskenngrößen festgelegt, die die Lochleibungsfestigkeit vorwiegend beeinflussen. Die Gesetzmäßigkeit des Verhaltens der Lochleibungsspannung und dessen Abhängigkeit von den Kenngrößen wird durch Auswerten aller vorhandenen Informationen erfaßt.

Die Lochleibungfestigkeit des Baustoffes Holz wird durch eine große Anzahl zufälliger und systematischer Einflüsse bestimmt, die entweder während der natürlichen Wachstumsphase des Baumes oder der Herstellung der Verbindung einwirken, oder die als unmittelbare oder mittelbare Einwirkungsgrößen (wie z.B. die Holzfeuchte oder die Oberflächenbeschaffenheit des Verbindungsmittels) vorhanden sind.

Im folgenden werden nur solche Einflüsse behandelt die sich nicht aus der Versuchsanordnung und -durchführung ergeben. Diese Einflüsse sind durch eine vorher beschriebene europäische Prüfvorschrift normiert. Aufgrund des unverhältnismäßigen Untersuchungsaufwandes können nicht alle Einflüsse abgedeckt werden. Die nicht erfaßten Einflüsse sind in den durch die Kenngrößen nicht erklärten Streuungen enthalten.

4.4.1 Unterschied zwischen Zug- und Druckbelastung in Faserrichtung

Im europäischen Normentwurf prEN 383 sind wegen der unterschiedlichen Lasteinleitung Lochleibungsversuche unter einer Druck- und einer Zugbeanspruchung in Faserrichtung vorgesehen. Hierbei unterscheiden sich die Probekörperformen insbesondere im Abstand vom Hirnholzende. Bei den durchgeführten Versuchen wurden bei Druckbeanspruchung in der Regel kleinere Lochleibungsfestigkeiten ermittelt als bei Zugbeanspruchung. In Tabelle 4.32 sind die vergleichbaren Ergebnisse der unterschiedlichen Beanspruchungsarten gegenübergestellt. Meist war ein frühzeitiges Aufspalten der Probekörper bei Druckbeanspruchung infolge des geringeren Abstandes des Verbindungsmittels vom Hirnholzende zu beobachten. Um diesem Effekt entgegenzuwirken, sollte der Abstand vom Hirnholzende bei den Probekörpern für Zug- und Druckbeanspruchung gleich groß sein. Diese Erkenntnisse wurden bei der weiteren Bearbeitung des europäischen Normentwurfs eingebracht. Es wurde vorgeschlagen, bei Probekörpern unter Druckbeanspruchung in Faserrichtung mit Stabdübeln und Bolzen als Verbindungsmittel den Abstand vom Hirnholzende von 3d (bisheriger Vorschlag) auf 7d zu vergrößern. Dadurch werden sich die Versuchsergebnisse einander annähern. Bei der weiteren Auswertung im Rahmen dieses Forschungsprojektes wurden in erster Linie die Ergebnisse aus den Zugversuchen berücksichtigt, da sich zukünftig die Probekörperform bei Druckbeanspruchung von der hier geprüften unterscheiden wird.

4.4.2 Einfluß der Rohdichte

Die Lochleibungsfestigkeit steigt unabhängig von der Holzart in etwa linear mit der Rohdichte der Laubhölzer an. Lineare Regressionen bei unterschiedlichen Durchmessern ergaben Korrelationskoeffienten zwischen 0,83 und 0,92.

Bei der Holzart Teak wurden, bezogen auf die Rohdichte, die geringsten Lochleibungsfestigkeiten ermittelt. Bei den wenigen Versuchen mit Teak wurde Holz poriger Qualität verwendet, dessen Festigkeitseigenschaften sich von den bekannten durchschnittlichen Werten dieser Holzart unterscheiden.

Holzart	Bean- spruchung	Durch- messer d (mm)	Mittelwert f _{h,m} (N/mm ²)	$\frac{f_{h,m}(Zug)}{f_{h,m}(Druck)}$
Buche	Zug	8	68,3	1,19
Buche	Druck	8	57,6	
Buche	Zug	16	67,0	1,07
Buche	Druck	16	62,6	
Buche	Zug	30	51,9	1,09
Buche	Druck	30	47,4	
Eiche	Zug	8	60,8	0,96
Eiche	Druck	8	63,4	
Merbau	Zug	8	87,4	1,25
Merbau	Druck	8	69,7	
Afzelia	Zug	8	76,0	1,13
Afzelia	Druck	8	67,4	
Bongossi	Zug	8	114	1,07
Bongossi	Druck	8	107	

Tabelle 4.32:Vergleich der Lochleibungsfestigkeiten $f_{h,m}$ bei Zug- und
Druckbeanspruchung in Faserrichtung

4.4.3 Einfluß des Verbindungsmitteldurchmessers

Die Versuchsergebnisse bestätigten die Abhängigkeit der Lochleibungsfestigkeit vom Durchmesser des Stabdübels. In Bild 4.10 und 4.11 sind die durch die Rohdichte ρ der einzelnen Versuchskörper normierten Werte der Lochleibungsfestigkeit f_h in Abhängigkeit vom Durchmesser d für eine Beanspruchung in Faserrichtung (Index "0") bzw. rechtwinklig zur Faserrichtung

Bild 4.10 Auf die Rohdichte bezogene Lochleibungsfestigkeit $\frac{f_{h,0}}{\rho}$ in Faserrichtung in Abhängigkeit vom Durchmesser d

Bild 4.11 Auf die Rohdichte bezogene Lochleibungsfestigkeit $\frac{t_{h,90}}{\rho}$ rechtwinklig zur Faserrichtung in Abhängigkeit vom Durchmesser d

(Index "90") dargestellt. Lineare Regressionen ergaben folgende Gleichungen:

Beanspruchung in Faserrichtung

 $f_{h,0,m} = 0,102 \cdot (1 - 0,01 \cdot d) \cdot \rho_m \qquad r = 0,68 \qquad (4.9)$

Beanspruchung rechtwinklig zur Faserrichtung

$$f_{h,90,m} = 0,102 \cdot (1 - 0,016 \cdot d) \cdot \rho_m \qquad r = 0,87 \qquad (4.10)$$

Der Index "m" kennzeichnet die jeweiligen Versuchsmittelwerte der betreffenden Eigenschaft.

Die Werte der Lochleibungsfestigkeiten streuen stärker als die der Rohdichte. Dies ist bei der Ermittlung der charakteristischen Werte (Index "k") der Lochleibungsfestigkeit zu berücksichtigen. In DIN 68364 sind für verschiedene Holzarten Variationskoeffizienten einiger Eigenschaften angegeben. Daraus kann für die Rohdichte der untersuchten Laubhölzer ein Variationskoeffizient von 8 % und für die Lochleibungsfestigkeit in Anlehnung an die Druckfestigkeit ein Wert von 15 % abgeschätzt werden. Somit ergibt sich unter Annahme einer Gauß'schen Normalverteilung die charakteristische Lochleibungsfestigkeit in Faserrichtung zu

$$f_{h,0,k} = 0,09 \cdot (1 - 0,01 \cdot d) \cdot \rho_k$$
(4.11)

und rechtwinklig zur Faserrichtung zu

$$f_{h,90,k} = 0,09 \cdot (1 - 0,016 \cdot d) \cdot \rho_k$$
(4.12)

4.4.4 Einfluß des Winkels zwischen Kraft- und Holzfaserrichtung

Entsprechend dem Verhalten des Holzes unter Druckbeanspruchung fällt auch die Lochleibungsfestigkeit mit wachsendem Winkel zwischen Last- und Faserrichtung ab. Dies ist um so ausgeprägter, je größer der Durchmesser des Verbindungsmittels ist. Als beste Anpassung hat sich die in vielen Ländern gebräuchliche Hankinson'sche Gleichung erwiesen. Sie lautet:

$$f_{h,\alpha} = \frac{f_{h,0}}{(\frac{f_{h,0}}{f_{h,90}} \cdot \sin^2 \alpha + \cos^2 \alpha)}$$
(4.13)

In Bild 4.12 - 4.14 sind diese Beziehung und die zugehörigen Versuchswerte für die Stabdübeldurchmesser d = 8; 16 und 30 mm in Abhängigkeit vom Winkel α dargestellt.

4.4.5 Spaltempfindlichkeit

Die Spaltempfindlichkeit der einzelnen Holzarten ist wie deren Querzugfestigkeit sehr unterschiedlich. Die tropischen Laubhölzer Teak, Merbau und Afzelia neigen mehr zum Spalten als die einheimischen Laubhölzer. Um die Spaltempfindlichkeit einzelner Holzarten zu untersuchen sind weitere Grundlagenforschungen notwendig, die aber den Rahmen dieses Forschungsprojektes sprengen.

(Stabdübeldurchmesser d = 8 mm)

(Stabdübeldurchmesser d = 16 mm)

5 Biegewiderstand der Verbindungsmittel

5.1 Experimentelle Bestimmung des Fließmomentes

Einen wesentlichen Einfluß auf die Tragfähigkeit von Verbindungen mit stabförmigen Verbindungsmitteln bei Beanspruchung auf Abscheren hat der Biegewiderstand des Verbindungsmittels. Die Streckgrenze oder Zugfestigkeit des Stahls des Ausgangsmaterials eignen sich in der Regel nicht zur zuverlässigen Bestimmung des Fließmomentes, da einerseits die im Zugversuch ermittelten Kenngrößen sich nicht ohne weiteres auf eine Biegebeanspruchung übertragen lassen und andererseits die Verfestigung des Stahls infolge Kaltverformung bei der Herstellung der endgültigen Gestalt der Verbindungsmittel dabei nicht berücksichtigt wird. Weiterhin ist bei manchen Verbindungsmitteln, wie z.B. bei Gewindestangen, die Querschnittsgeometrie schwer zu erfassen, so daß sich das plastische Widerstandsmoment rechnerisch nicht eindeutig ermitteln läßt.

Auf Grundlage des Prinzips im Normentwurf prEN 409: 1990 (Holzbauwerke -Bestimmung des Fließmomentes von stiftförmigen Verbindungsmitteln - Nägel) wurde zur Bestimmung des Fließmomentes von stiftförmigen Verbindungsmitteln mit Durchmessern von 8 mm bis 30 mm ein Biegegerät (siehe Bild 5.1) mit finanzieller Unterstützung der Entwicklungsgemeinschaft Holzbau (EGH) entwickelt und gebaut. Konstruktionsdetails und Funktionsweise des Biegegeräts sind in EHLBECK, WERNER 1991 beschrieben.

Das Prinzip dieser Prüfung besteht darin, das zu prüfende Verbindungsmittel so zu belasten, daß sich die Lastpunkte entlang des Verbindungsmittels während der Prüfung nicht verändern. Diese Forderung kann mit der in **Bild 5.2** dargestellten Anordnung erfüllt werden. In Anlehnung an prEN 409 sollen die Abstände l_1 und l_3 zwischen den aufgebrachten Lasten und dem nächsten Auflagerpunkt (siehe **Bild 5.2**) mindestens 2d betragen, wobei d der Verbindungsmittelnenndurchmesser ist. Die freie Länge l_2 soll zwischen d und 3d betragen.

Die Drehachse ist so angeordnet, daß sich der rechte Winkel zwischen Pendelstab und Hebel um nicht mehr als 0,1 rad ändert. Der Hebel muß im Verhältnis zum Verbindungsmittel sehr steif sein. Das Fließmoment des Verbindungsmittels ist definiert als das Biegemoment bei der tatsächlichen Versagenslast, z.B. infolge spröden Bruches, die das Verbindungsmittel bei der Prüfung aufnehmen kann oder das Biegemoment bei einer Verformung des Verbindungsmittels von 45°. Der kleinere Wert ist dabei definitionsgemäß maßgebend.

5.2 Festigkeitskennwerte der Verbindungsmittel

Mit der beschriebenen Versuchseinrichtung wurden 39 Stabdübel und Gewindestangen mit unterschiedlichen Durchmessern und Stahlgüten gebogen und mit den im Zugversuch nach DIN 50145 ermittelten Festigkeitskennwerten verglichen. Die Stabdübel wurden aus Rundstahl gefertigt und die Gewindestangen von 1 m langen Stangen abgesägt. Aus verschiedenen Stangen wurde Material entnommen.

Bild 5.2: Prüfanordnung und Verbindungsmittelbelastung

30

5.2.1 Zugversuche nach DIN 50145

Aus dem entnommenen Material wurden runde Zugproben nach DIN 50125 hergestellt. Für verschiedene Durchmesser wurden bis zu fünf Zugversuche durchgeführt. Die Mittelwerte der Versuchsergebnisse sind in Tabelle 5.1 zusammengestellt.

Stahlqualität	Durch-	Ober-	Mittelwerte			
nach	messer	fläche	Streckgrenze	Zugfestigkeit	Bruchdehnung	
Herstellerangaben	d		β_{s}	β_z	Э	
	(mm)		(N/mm ²)	(N/mm²)	(%)	
St 37 K	8	blank	573	584	16	
St 37 K	16	blank	585	614	14	
St 37 K	24	blank	506	552	17	
St 37 K	30	blank	549	581	16	
9S20K	8	blank	737	739	8	

 Tabelle 5.1
 Festigkeitskennwerte des Stabdübelmaterials

Hieraus geht hervor, daß die Festigkeitskennwerte des blanken Materials merklich über den Anforderungen der Stahlgüte St 37 lagen.

5.2.2 Biegeversuche

Zur Bestimmung des Fließmomentes der Verbindungsmittel wurden die in **Tabelle 5.2** angegebenen Biegeversuche durchgeführt. Das Verbindungsmittel wurde so belastet, daß die Höchstlast in (30 ± 5) Sekunden erreicht wurde. **Bild 5.3** zeigt einen verbogenen Stabdübel im Biegegerät. Bei den Versuchen wurde jeweils eine freie Verbindungsmittellänge l_2 von 2d eingehalten. Die Form der Biegelinie des Verbindungsmittels bei Höchstlast im Biegeversuch entsprach etwa der in einer Verbindung unter Versagenslast (siehe Bild 5.4).

Tabelle 5.2:	Ergebnisse der	Verbindungsmittelbi	egeversuche
--------------	----------------	---------------------	-------------

Reihe	Verbindungs- mittel	Stahlgüte	Durch- messer d [mm]	Anzahl der Versuche	Fließ- moment M _y (Nm)	Var koeff. (%)	Fließ- spannung f _y (N/mm²)
1	Stabdübel	St 37 K	8	10	50,2	11,8	589
2	Stabdübel	9S20K	8	3	70,4	7,2	825
3	Stabdübel	St 37 K	16	10	441	4,0	647
4	Stabdübel	St 37 K	24	10	1364	1,8	592
5	Stabdübel	St 37 K	30	1	2962	-	658
6	Gewindestangen	Güte 8.8	M 16	5	413	2,9	885

Bild 5.3: Verbogener Stabdübel im Biegegerät

Bild 5.4: Verbogener Stabdübel aus einem Biegeversuch und in einer Verbindung

In **Bild 5.5** sind exemplarisch Kraft-Biegewinkel-Diagramme der Versuchsreihe 3 dargestellt. Man erkennt deutlich das elastisch-plastische Verhalten der stählernen Verbindungsmittel. In **Tabelle 5.2** sind die Mittelwerte und Variationskoeffizienten der Ergebnisse zusammengestellt. Bei der Ermittlung des Fließmomentes M_y wurde das Gewicht G_3 des Hebelarms, das an der Stelle von F_3 auf dem Verbindungsmittel lastet wie folgt berücksichtigt:

$$M_{y} = \max \begin{cases} F_{max} \cdot (l_{4} + l_{2}) - G_{3} \cdot l_{2} \\ \\ F_{max} \cdot l_{4} \end{cases}$$
(5.1)

mit $l_4 = 1,762 \text{ m}$; $l_2 = 2d$; $G_3 = 224 \text{ N}$

Aus dem Fließmoment wurde eine Fließspannung nach folgender Beziehung errechnet:

$$f_y = M_y / W_y \tag{5.2}$$

mit dem plastischen Widerstandsmoment

für Stabdübel
$$W_y = d^3/6$$
 bzw. für Gewindestangen $W_y = d_{sp}^3/6$.

Im durchplastizierten Zustand beeinflussen die Kerbspannungen in den Gewindestangen die Höhe des Fließmomentes nur wenig. Daher kann nach Untersuchungen von SCHEER, PEIL und NÖLLE 1988 in die Gleichung zur Ermittlung des plastischen Widerstandsmoments der Durchmesser d_{sp} eingesetzt werden, wobei d_{sp} der zur Berechnung des Spannungsquerschnittes verwendete Durchmesser ist.

Bild 5.5: Kraft - Biegewinkel - Diagramme (Stabdübel d = 16 mm St 37 K (blank)

Die aus den Fließmomenten errechneten Fließspannungen waren stets größer als die ermittelten Streckgrenzen des gleichen Materials. Vergleicht man die errechneten Fließspannungen mit den Nennwerten für die Streckgrenze bzw. der Zugfestigkeit des Ausgangsmaterials, so hat sich bestätigt, daß nur im Biegeversuch das Fließmoment eines Verbindungsmittels richtig bestimmt werden kann. Ausgehend von den Fließmomenten für handelsübliche Verbindungsmittel aus gewöhnlichem Stahl können jedoch bei einer ausreichenden Anzahl von Versuchen aus den o.g. Kennwerten des Stahls und der Geometrie des Verbindungsmittels Beziehungen für das Fließmoment abgeleitet werden.

6 Zug- und Druckscherversuche an zweischnittigen Verbindungen mit verschiedenen Laubhölzern

6.1 Versuchsbezeichnung und Versuchsprogramm

Das Trag- und Verformungsverhalten von Laubholzverbindungen mit Stabdübeln und Gewindestangen als Verbindungsmittel unter einer Belastung in Faserrichtung wurde an insgesamt 111 Prüfkörpern experimentell untersucht. Weiterhin wurden 15 Versuche aus einem früheren Forschungsprojekt (EHLBECK, WERNER 1989) bei der Auswertung berücksichtigt. Dabei wurden die Beanspruchungsart, der Verbindungsmitteldurchmesser, die Schlankheit, der Verbindungsmittelwerkstoff und -typ sowie die Holzart variiert. **Tabelle 6.1a und b** (Anlage 62 - 63) gibt eine Übersicht über die gesamten Zug- und Druckscherversuche. Für die Versuchsbezeichnung wurde das folgende Schema gewählt:

Die in Bild 6.1 dargestellten Versuchskörper wurden mit den Durchmessern d = 8; 16 und 30 mm sowie den Schlankheiten λ = 2; 4; 6 und 8 geprüft. Als Schlankheit wird das Verhältnis Mittelholzdicke zu Verbindungsmitteldurchmesser bezeichnet. Pro Anschluß wurden vier Verbindungsmittel mit den Mindestabständen nach DIN 1052 Teil 2 angeordnet. Das Verhältnis Seitenholzdicke t₁ zu Mittelholzdicke t₂ wurde bei allen Versuchen konstant gehalten (t₁/t₂ = 0,75).

In Tabelle 6.2 (Anlage 63) sind die Querschnittsabmessungen und die Verbindungsmittelabstände der Versuchskörper angegeben. Die Löcher wurden für Stabdübel mit dem Nenndurchmesser und für Gewindestangen mit etwa dem Flankendurchmesser (d.h. bei Gewindestange M 8 Bohrlochdurchmesser 7 mm und bei Gewindestange M16 Bohrlochdurchmesser 15 mm) gebohrt. Die Stabdübel wurden mit dem Hammer eingetrieben, dagegen wurden die Gewindestangen mit Hilfe eines Schlagschraubers eingedreht.

6.2 Versuchsmaterial für die Zug- und Druckscherversuche

Die Laubhölzer der verschiedenen Laubholzgruppen wurden vom Holzhandel bezogen. Die Anlieferung der Hölzer Buche, Eiche, Teak und Afzelia erfolgte als Blockware, Merbau und Bongossi als Schnittholz. Die einzelne Holzarten wurden bei verschiedenen Holzhändlern aus unterschiedlichen Stämmen ausgesucht. Aus diesem Materialangebot wurden Versuchskörper für die Zug- und Druckscherversuche zugeschnitten. Die Auswahl des Holzes für die Probekörper erfolgte nach dem in DIN EN 28970 beschriebenen Verfahren 2. In **Tabelle 6.3** sind die Rohdichtewerte der Hölzer getrennt nach den einzelnen Holzarten für die Lochleibungsversuche zusammengestellt. Das 5%-Fraktil der Rohdichte ρ_{05} wurde unter Annahme einer Gauß'schen Normalverteilung ermittelt. Die mittlere Rohdichte ρ_m aller Hölzer für die Bauteilversuche erfüllen die folgenden Bedingungen:

$$1,05 \ \rho_{05} < \rho_{\rm m} < 1,25 \ \rho_{05}$$

Weiterhin soll die Rohdichte jedes einzelnen Versuchsholzes folgenden Bedingungen genügen:

$$0.9 \rho_{\rm m} < \rho < 1.1 \rho_{\rm m}$$

Diese Bedingungen wurden bei Buche von drei Hölzern geringfügig überschritten. Bei Versuchsreihe A2-D 8/6 lagen die Rohdichtewerte der Hölzer in der Regel unter 0,9 ρ_m ; bei Versuchsreihe A2-Z 8/4 lagen die Rohdichtewerte der Mittelhölzer über 1,1 ρ_m . Die Ergebnisse dieser Versuchsreihen wurden aber bei der weiteren Auswertung mit einbezogen, da die Rohdichte dabei berücksicht wurde.

Holzart	Anzahl der		Rohdichtewerte (kg/m ³)					5%- Fraktil	$\frac{\rho_{\rm m}}{\rho_{05}}$
	Werte	0,9 p _m	min.	$ ho_{ m m}$	max.	1,1 $\rho_{\rm m}$		ρ ₀₅	
							(%)	(kg/m ³)	
Buche (A1)	129	630	628	700	799	770	5,53	636	1,10
Eiche (A2)	99	661	626	734	821	807	7,83	639	1,15
	:								
Merbau (B1)	81	751	755	834	881	917	3,68	783	1,06
Afzelia (B2)	63	662	688	736	806	810	4,08	687	1,07
Bongossi (C)	123	1017	1046	1130	1194	1243	3,23	1070	1,06

Tabelle 6.3:Rohdichtewerte der Hölzer für die Zug- und Druckscherversuche
im Normalklima 20/65

Die Lagerung aller Hölzer zur Klimatisierung und die Durchführung der Versuche erfolgte im Prüflabor bei Normalklima DIN 50014 - 20/65-2. Die Lufttrocknung von Bongossiholz geht naturgemäß besonders langsam vonstatten. Diesem Umstand ist bei der Herstellung von Verbindungen mit dieser Holzart Beachtung zu schenken.

6.3 Versuchsdurchführung

Die Durchführung der Versuche erfolgte nach DIN EN 26891. Bild 6.2 und 6.3 zeigen den Versuchsaufbau für Zug- bzw. Druckscherversuche. Für die Messung der Verschiebungen wurden induktive Wegaufnehmer verwendet. Die Meßwerterfassung erfolgte mit einer rechnergestützten Umschaltanlage (UPH 3200). Zur Auswertung der Meßdaten wurde ein Auswertungsprogramm entwickelt, weiterin wurde zur Darstellung der Versuchsergebnisse in graphischer Form ein spezielles EDV - Programm verwendet.

Bild 6.2 Zugscherkörper in der Prüfmaschine

Bild 6.3 Druckscherkörper in der Prüfmaschine

Die Versuche wurden mit 1 mm/min weggesteuert gefahren. Die Zugscherkörper wurden mittels Universalprüfmaschinen mit einer Maximalprüfkraft von 100 kN bzw. 250 kN auf Zug belastet. Die Druckscherkörper wurden unter einem Prüfrahmen mit einem bzw. zwei Druckzylindern (Höchstlast pro Kolben 400 kN) oder unter einer Universalprüfmaschine geprüft.

6.4 Ergebnisse der Zug - und Druckscherversuche

Die Kraft-Verschiebungsdiagramme aller durchgeführten Zugscherversuche sind in Anlage 64 - 87, die der Druckscherversuche in Anlage 88 - 110 dargestellt. Die aufgenommene Höchstlast $F_{u,s}$ pro Verbindungsmittel, die Last $F_{1,5}$ pro Verbindungsmittel bei einer Verschiebung von 1,5 mm sowie die zulässige Belastung zul N_{st} eines Stabdübels nach DIN 1052 Teil 2 und die Bruchursache für jeden Einzelversuch sind in den **Tabellen 6.4 - 6.11** (Anlage 111 - 117) zusammengestellt. In den **Tabellen 6.12 - 6.20** (Anlagen 118 - 126) sind die Einzelverschiebungen und die daraus errechneten Verschiebungsmoduln angegeben. Die Verschiebungswerte bzw. Verschiebungsmoduln wurden nach DIN EN 26891 : 1991 berechnet.

Es bedeuten:

Anfangsverschiebung	$\mathbf{v}_i = \mathbf{v}_{04}$	(6.1)
	4	

modifizierte Anfangsverschiebung $v_{i,mod}$	$=\frac{1}{3} \cdot (v_{04} - v_{01})$	(6.2)
--	--	-------

bleibende Anfangsverschiebung	vs	= v _i - v _{i,mod}	(6.3)
		~	

- elastische Verschiebung $v_e = \frac{2}{3} \cdot (v_{14} + v_{24} v_{11} v_{21})$ (6.4)
- mod. Verschiebung bei $0.6 \cdot F_{max}$ $v_{06,mod} = v_{26} v_{24} + v_{i,mod}$ (6.5)
- mod. Verschiebung bei $0.8 \cdot F_{\text{max}}$ $v_{08,\text{mod}} = v_{28} \cdot v_{24} + v_{i,\text{mod}}$ (6.6)

(6.7)

- Anfangs- Verschiebungsmodul $k_i = \frac{0.4 \cdot F_{est}}{v_i}$
- Verschiebungsmodul $k_s = \frac{0.4 \cdot F_{est}}{v_{i,mod}}$ (6.8)

 $v_{01}, v_{11}, v_{04}, v_{14}, v_{24}, v_{26}$ und v_{28} sind Verschiebungen bei in DIN EN 26891

definierten Lastpunkten, F_{max} die Höchstlast der Verbindung und F_{est} die geschätzte Höchstlast.

In den **Tabellen 6.21 - 6.23** sind die Mittelwerte und Variationskoeffizienten der Versuchsergebnisse aus den Zug- und Druckscherversuchen zusammengestellt. Hierin bedeuten:

d	Durchmesser des Verbindungsmittels
λ	Schlankheit
F _{u,s,m}	Mittelwert der Tragkraft pro Verbindungsmittel
zul N _{st}	zul. Belastung eines Stabdübels nach DIN 1052
V _{zulN}	Verschiebung bei zul N _{st}
k _{i.m}	Mittelwert des Anfangsverschiebungsmoduls pro
	Verbindungsmittel und Scherfläche
k _{s,m}	Mittelwert des Verschiebungsmoduls pro
	Verbindungsmittel und Scherfläche

Tabelle 6.21:Zusammenstellung der Mittelwerte und Variations-
koeffizienten der Versuchsergebnisse aus den
Zugscherversuchen
(Stabdübel aus St 37-K)

Versuchs- reihe	d (mm)	λ	F _{u,s,m} (kN)	Var koeff. (%)	zul N _{st} (kN)	$\frac{F_{u,s,m}}{zul N_{st}}$	v _{zul N} (mm)	k _{i,m} (<u>kN</u> (<u>mm</u>)	Var koeff. (%)	k _{s,m} (<u>kN</u> (<u>mm</u>)	Var koeff. (%)
A1-Z 8/2 A1-Z 8/4 A1-Z 8/8	8 8 8	2 4 8	6,12 10,8 19,5	6,01 4,11 8,67	1,25 2,50 3,84	4,90 4,31 5,09	0,20 0,29 0,36	3,16 4,32 5,39	13,7 5,27 18,5	3,17 4,04 4,78	20,6 4,89 20,8
A2-Z 8/2 A2-Z 8/4 A2-Z 8/6 A2-Z 8/8 A2-Z 16/2 A2-Z 16/4	8 8 8 16 16	2 4 6 8 2 4	6,86 11,3 13,8 16,0 16,7 35,6	3,74 11,3 12,3 8,06 20,4 17,6	1,25 2,50 3,74 3,84 4,99 9,98	5,49 4,53 3,69 4,17 3,45 3,57	0,21 0,22 0,44 0,41 0,20 0,36	3,03 5,57 4,23 4,69 12,5 13,7	5,10 14,2 17,2 2,58 25,3 3,02	3,41 5,18 3,90 4,13 11,3 12,5	5,15 14,3 18,6 2,18 27,4 3,16
B1-Z 8/2 B1-Z 8/4 B1-Z 8/8 B2-Z 8/2 B2-Z 16/2 B2-Z 16/4	8 8 8 16 16	2 4 8 2 2 4	6,68 9,91 15,4 7,15 24,4 43,9	7,51 2,34 3,00 1,55 2,47 3,47	1,61 3,23 4,16 1,61 6,45 9,57	4,15 3,07 3,70 4,44 3,78 7,47	0,23 0,38 0,36 0,23 0,18 0,29	3,54 4,23 5,80 3,46 18,2 16,4	9,73 30,5 7,05 4,42 6,07 10,1	4,64 4,51 5,96 4,27 16,4 14,8	9,44 36,7 3,05 3,88 5,87 9,02
C-Z 8/2 C-Z 8/4	8 8	2 4	10,7 15,1	8,50 7,39	2,50 4,99	4,26 3,03	0,13 0,20	9,86 12,4	13,6 2,98	9,31 11,3	14,0 3,21

Tabelle 6.22:Zusammenstellung der Mittelwerte und Variations-
koeffizienten der Versuchsergebnisse aus den
Druckscherversuchen
(Stabdübel aus St 37-K)

Versuchs- reihe	d (mm)	λ	F _{u,s,m} (kN)	Var koeff. (%)	zul N _{st} (kN)	$rac{F_{u,s,m}}{zul \; N_{st}}$	v _{zul N} (mm)	k _{i,m} (<u>kN</u>)	Var koeff. (%)	k _{s,m} (<u>kN</u>)	Var koeff. (%)
A1-D 8/2 A1-D 8/6 A1-D 16/2 A1-D 16/4 A1-D 30/2 A2-D 8/2 A2-D 8/6 A2-D 30/2	8 8 16 16 30 8 8 8 30	2 6 2 4 2 2 6 2	8,03 18,3 25,4 49,5 111 6,80 13,1 76,3	2,02 3,91 21,4 5,80 2,68 1,49 8,51 3,60	1,25 3,74 4,99 9,98 17,6 1,25 3,74 17,6	6,43 4,88 5,08 4,95 6,30 5,44 3,51 4,45	0,13 0,45 0,21 0,34 0,30 0,18 0,45 0,34	4,95 4,11 12,1 14,8 29,6 3,55 4,18 26,0	5,73 2,30 22,4 1,28 5,24 6,31 12,9 5,86	5,07 3,76 11,1 13,2 35,6 4,32 3,95 29,7	9,69 3,80 25,1 4,25 7,52 8,81 11,8 7,23
B1-D 8/2 B1-D 8/6 B1-D 16/2 B1-D 16/4 B1-D 30/2 B2-D 8/2 B2-D 8/6 B2-D 30/2	8 8 16 16 30 8 8 30	2 6 2 4 2 2 6 2	6,02 15,7 26,5 39,1 94,6 6,90 15,0 86,2	10,7 0,86 1,51 1,24 1,91 0,90 3,11 1,71	1,61 4,16 6,45 12,9 22,7 1,61 4,16 22,7	3,74 3,77 4,11 3,03 4,17 4,28 3,60 3,80	0,16 0,30 0,16 0,26 0,33 0,23 0,23 0,38 0,34	4,93 7,05 20,5 24,9 34,6 3,52 5,54 33,7	7,89 3,06 3,14 21,4 1,10 9,62 12,5 5,70	6,22 7,43 19,1 22,2 41,0 4,75 5,90 39,1	8,43 2,21 3,32 21,4 2,84 7,94 19,3 7,64
C-D 8/2 C-D 8/6 C-D 16/2 C-D 30/2	8 8 16 30	2 6 2 2	11,7 24,8 42,8 139	7,72 2,09 6,72 2,46	2,50 5,12 9,98 35,1	4,69 4,85 4,29 3,97	0,11 0,22 0,20 0,39	11,4 11,9 24,6 44,6	12,5 1,77 14,7 3,29	11,4 11,1 24,7 46,4	7,28 1,95 10,2 1,74

Tabelle 6.23:Zusammenstellung der Mittelwerte und Variations-
koeffizienten der Versuchsergebnisse aus den Zug- und
Druckscherversuchen
(Gewindestangen Stahlgüte 8.8 und Stabdübel aus Automaten-
stahl 9 S 20 K)

Versuchs- reihe	d (mm)	λ	F _{u,s,m} (kN)	Var koeff. (%)	k _{i,m} (<u>kN</u>)	Var koeff. (%)	k _{s,m} (<u>kN</u>)	Var koeff. (%)
M/A1-Z 8/2	8	2	7,92	6,70	2,72	2,97	2,57	5,64
M/A1-Z 8/4	8	4	14,4	10,9	2,90	3,04	2,58	4,94
M/A1-Z 8/6	8	6	20,2	0,77	2,69	26,0	2,34	29,5
M/A1-Z 8/8	8	8	21,9	5,62	2,40	12,8	2,02	5,01
M/C-D 16/2	16	2	40,9	4,48	15,4	8,40	14,6	8,64
M/C-D 16/6	16	6	87,8	1,89	13,4	6,14	12,4	6,88
M/C-D 16/8	16	8	99,7	2,76	15,0	7,99	13,1	8,28
AS/C-Z 8/4	8	4	15,4	9,28	13,0	2,20	12,2	4,44
AS/C-Z 8/6	8	6	19,2	15,4	8,93	10,7	7,91	10,7
AS/C-Z 8/8	8	8	19,9	4,76	8,30	3,89	7,32	3,79

Die Ursache des Versagens war entweder ein Aufspalten (siehe Bild 6.4) oder ein Lochleibungsversagen, d.h. die Verschiebung der Verbindung war größer 15 mm. Bei der Bruchursache Spalten wurde angegeben, bei wieviel mm Verschiebung das Versagen eintrat. Bei Schlankheit $\lambda = 2$ war meist ein frühzeitiges Aufspalten des Mittelholzes zu beobachten, bei größeren Schlankheiten war oft ein Versagen der Seitenhölzer festzustellen.

Trotz des frühzeitigen Aufspaltens der Versuchskörper waren die Sicherheiten gegenüber der zul. Belastung nach DIN 1052 verhältnismäßig groß.

7 Einflüsse auf die Tragfähigkeit von Laubholzverbindungen mit stabförmigen Verbindungsmitteln -Vergleich der Versuchsergebnisse mit dem Rechenmodell-

7.1 Unterschied zwischen Zug- und Druckscherbelastung

Zwischen Zug- und Druckscherbeanspruchung war bezüglich der Tragfähigkeit kein so großer Unterschied wie bei Stabdübelverbindungen mit Nadelholz festzustellen. In Tabelle 7.1 sind die Tragkräfte der unterschiedlichen Beanspruchungsarten gegenübergestellt. Die Versuchsergebnisse die in der Tabelle *kursiv* gedruckt sind, wurden aus EHLBECK, WERNER 1989 entnommen. Im Mittel war die Tragkraft bei Zugscherbeanspruchung geringer als bei Druckscherbelastung. Die günstigere Krafteinleitung bei reiner Druckscherbeanspruchung wird teilweise durch größere Spaltgefahr infolge der geringeren Abstände vom Hirnholzende ausgeglichen.

7.2 Einfluß des Verbindungsmitteldurchmessers und der Schlankheit

Die Lochleibungsfestigkeit hängt insbesondere von der Rohdichte des Holzes und vom Durchmesser des Verbindungsmittels ab (siehe Abschnitt 4). Ferner wird die Tragfähigkeit einer Verbindung durch die Abstände der Verbindungsmittel bestimmt, da bei kleinen Abständen untereinander und vom Hirnholzende die Neigung zum Aufspalten wächst. Somit kann auf Grund des frühzeitigen Aufspaltens der Versuchskörper bei den Schlankheiten $\lambda = 2$ und $\lambda = 4$ die Lochleibungsfestigkeit oft nicht voll ausgenutzt werden. Dagegen sind bei den Schlankheiten $\lambda = 6$ und $\lambda = 8$ mehr Tragreserven zu erwarten.

Setzt man die tatsächlich festgestellte Höchstlast und die geometrischen Größen eines jeden Versuchskörpers sowie das Fließmoment der Stabdübel in die nach $f_{h,1}$ aufgelösten Gleichungen 3.1g - 3.1k des Rechenmodells ein, so ergibt der größte errechnete Wert aus den vier Gleichungen die maßgebende Lochleibungsspannung. Dabei wurde die unterschiedliche Rohdichte der einzelnen Hölzer der Versuchskörper berücksichtigt. Vergleicht man diesen Wert mit der

Versuchsreil	ne Holzart	Bean- spruchung	Durch- messer d (mm)	λ	Mittelwert Tragkraft F _{u,s,m}	$\frac{F_{u,s,m}(Zug)}{F_{u,s,m}(Druck)}$
A1-Z 8/2	Buche	Zug	8	2	6,12	0,76
A1-D 8/2	Buche	Druck	8	2	8,03	
<i>A/U 1/6</i>	<i>Buche</i>	<i>Zug</i>	8	6	<i>16,4</i>	0,90
A1-D 8/6	Buche	Druck	8	6	18,3	
A2-Z 8/2	Eiche	Zug	8	2	6,86	1,01
A2-D 8/2	Eiche	Druck	8	2	6,80	
A2-Z 8/6	Eiche	Zug	8	6	13,8	1,05
A2-D 8/6	Eiche	Druck	8	6	13,1	
B1-Z 8/2	Merbau	Zug	8	2	6,68	1,11
B1-D 8/2	Merbau	Druck	8	2	6,02	
B2-Z 8/2	Afzelia	Zug	8	2	7,15	1,04
B2-D 8/2	Afzelia	Druck	8	2	6,90	
<i>B/U 1/6</i>	<i>Afzelia</i>	<i>Zug</i>	8	6	<i>14,5</i>	0,97
B2-D 8/6	Afzelia	Druck	8	6	15,0	
C-Z 8/2	Bongossi	Zug	8	2	10,7	0,92
C-D 8/2	Bongossi	Druck	8	2	11,7	
<i>C/U 1/6</i>	<i>Bongossi</i>	Zug	8	6	<i>16,6</i>	0,67
C-D 8/6	Bongossi	Druck	8	6	24,8	

Tabelle 7.1:Vergleich der Tragfähigkeiten bei Zug- und
Druckscherbeanspruchung

im Lochleibungsversuch (siehe Abschnitt 4) ermittelten Lochleibungsfestigkeit, so zeigt sich wegen der größeren Spaltempfindlichkeit von dünneren Hölzern eine Abhängigkeit von der Holzdicke t. Die lineare Regression ergab folgende Geradengleichung für das Verhältnis Lochleibungsfestigkeit errechnet mit Hilfe des Rechenmodells zur Lochleibungsfestigkeit aus den Lochleibungsversuchen: Seitenholz

$$k_{a,1} = \frac{f_{h,1}(\text{Rechenmodell})}{f_h(\text{Lochleibungsversuch})} = 0.09 \cdot \frac{t_1}{d} + 0.6 \qquad r = 0.62 \quad (7.1)$$

Mittelholz

$$k_{a,2} = \frac{f_{h,2}(\text{Rechenmodell})}{f_{h}(\text{Lochleibungsversuch})} = 0.07 \cdot \frac{t_{2}}{d} + 0.6 \qquad r = 0.62 \quad (7.2)$$

Dieser k_a - Faktor gilt nur für die Mindestabstände der Verbindungsmittel nach DIN 1052 Teil 2. Bei größeren Verbindungsmittelabständen sind günstigere Werte zu erwarten. Zur Problematik der Spaltempfindlichkeit von Verbindungen ist nach diesen Erkenntnissen eine weitere Grundlagenforschung erforderlich, um die empirisch gefundene Abhängigkeit auch theoretisch zu erfassen und bei praktischen Dimensionierungsaufgaben im Holzbau nutzbar zu machen.

Wertet man die oben angegebenen Gleichungen für unterschiedliche Schlankheiten aus, so ergeben sich folgende Werte für $k_{a,2}$:

Schlankheit λ	2	4	6	8
k _{a,2}	0,74	0,88	1,02	1,16

Im EUROCODE 5 - Entwurf ist für die Mindestabstände nach DIN 1052 ein k_a - Faktor von 0,85 unabhängig von der Schlankheit vorgeschlagen worden.

Daß sich bei den Stabdübeln entsprechend der Plastizitätstheorie unterschiedliche Biegelinien ausbilden, zeigt **Bild 7.1**. Bei der Schlankheit $\lambda = 2$ und $\lambda = 4$ sind die Stabdübel nach Erreichen der Höchstlast nicht bzw. kaum verformt. Dagegen zeigen die Verbindungsmittel bei den Schlankheiten $\lambda = 6$ und $\lambda = 8$ größere Verformungen, jedoch mit unterschiedlichen Fließzonen.

Bei gleichen geometrischen Bedingungen können sich bei verschiedenen Laubhölzern infolge der unterschiedlichen Lochleibungsfestigkeiten auch unterschiedliche Biegelinien einstellen. Bild 7.2 zeigt aufgespaltene Versuchskörper mit Schlankheit $\lambda = 6$ aus Buche und aus Bongossi jeweils mit Stabdübeln d = 16 mm. Dies bestätigt die Plastizitätstheorie nach Johansen.

Bild 7.1: Aufgespaltene Versuchskörper aus Buche (Schlankheit $\lambda = 2$; 4; 6 und 8)

Bild 7.2: Aufgespaltene Versuchskörper aus Buche und Bongossi (Schlankheit $\lambda = 6$; Stabdübeldurchmesser d = 16 mm)

7.3 Einfluß des Stabdübelwerkstoffs

Im Rechenmodell wird die Werkstoffeigenschaft des Verbindungsmittels durch das Fließmoment bzw. die Fließspannung berücksichtigt. Es bestätigte sich, daß die Tragfähigkeit von Anschlüssen mit Stabdübeln höherer Stahlgüte insbesondere bei größeren Schlankheiten positiv beeinflußt wird. Die Versuchsergebnisse stimmen mit den rechnerisch ermittelten Tragfähigkeiten gut überein (siehe **Tabelle 7.3 und 7.4**).

7.4 Einfluß der Profilierung des Verbindungsmittels

Bei den Versuchen mit Gewindestangen als Verbindungsmittel war bei größeren Schlankheiten ein Einhängeeffekt zu beobachten (siehe Bild 7.3), wodurch die Tragfähigkeit gesteigert werden konnte. Weiterhin neigten die Versuchskörper durch das Eindrehen der Gewindestange und der besseren Lastverteilung entlang der Bohrlochwandung weniger zum Aufspalten.

Bild 7.3Last - Verschiebungsdiagramm eines Zugscherversuchs
Holzart:Holzart:Buche
Schlankheit: $\lambda = 8$
Verbindungsmittel:Gewindestangen M8 Güte 8.8

In **Tabelle 7.2** sind die im Versuch ermittelten Tragfähigkeiten von Verbindungen mit Gewindestangen mit denen von Verbindungen mit glattschaftigen Stabdübeln verglichen. Die Fließmomente der beiden Verbindungsmitteltypen waren etwa gleich groß.

Versuchsreihe	Holzart	Bean- spruchung	Durch- messer d (mm)	λ	Mittelwert Tragkraft F _{u,s,m}	$\frac{F_{u,s,m}(\text{Gew.})}{F_{u,s,m}(\text{Stabd.})}$
M/A1-Z 8/2	Buche	Zug	8	2	7,92	1,29
A1-Z 8/2	Buche	Zug	8	2	6,12	
M/A1-Z 8/4	Buche	Zug	8	4	14,4	1,33
A1-Z 8/4	Buche	Zug	8	4	10,8	
M/A1-Z 8/6	Buche	Zug	8	6	20,2	1,23
<i>A/U 1/6</i>	<i>Buche</i>	Zug	8	6	<i>16,4</i>	
M/A1-Z 8/8	Buche	Zug	8	8	21,9	1,12
A1-Z 8/8	Buche	Zug	8	8	19,5	
M/C-D 16/2	Bongossi	Druck	16	2	40,9	0,96
C-D 16/2	Bongossi	Druck	16	2	42,8	
M/C-D 16/6	Bongossi	Druck	16	6	87,8	1,15
<i>C/U -D 2/6</i>	<i>Bongossi</i>	Druck	<i>16</i>	6	<i>76,5</i>	

Tabelle 7.2:Vergleich der Tragfähigkeiten von Verbindungen mit
Gewindestangen und mit glattschaftigen Stabdübeln

Die Bilder 7.4 und 7.5 zeigen aufgespaltene Versuchskörper mit Gewindestangen als Verbindungsmittel. Entsprechend den geometrischen Verhältnissen bilden sich unterschiedliche Biegelinien aus. Um die mechanische Verankerung der Verbindungsmittel im Holz in einem Rechenmodell zu berücksichtigen muß die Größe der Verankerungskräfte und deren Verteilung entlang dem Verbindungsmittel bekannt sein. In einem weiteren Forschungsprojekt sollen Antworten auf diese Fragen gefunden werden.

Bild 7.4: Aufgespaltene Versuchskörper aus Buche mit Gewindestangen als Verbindungsmittel (Schlankheit $\lambda = 2$ und 4)

Bild 7.5: Aufgespaltene Versuchskörper aus Buche mit Gewindestangen als Verbindungsmittel (Schlankheit $\lambda = 6$ und 8)

7.5 Vergleich des Rechenmodells mit den Versuchsergebnissen

Im Folgenden werden die Ergebnisse der Bauteilversuche unter einer Belastung in Faserrichtung mit dem in Abschnitt 3 beschriebenen Rechenmodell zur Bestimmung der Tragfähigkeit von Verbindungen mit stabförmigen Verbindungsmitteln und unter Berücksichtigung der gewonnenen Erkenntnisse über die verschiedenen Einflußfaktoren verglichen. In **Tabelle 7.3 und 7.4** sind die rechnerischen Tragfähigkeiten R_u bzw. R_k den Versuchshöchslasten $F_{u,ss}$ je Verbindungsmittel und Scherfläche gegenübergestrellt. Die in der Tabelle angegebenen Werte stellen dabei jeweils die Mittelwerte jeder Versuchsreihe dar.

Zur Bestimmung der rechnerischen Tragfähigkeit R_u wurden folgende Annahmen getroffen:

- Für die Fließmomente M_{y,m} der Verbindungsmittel wurden die Mittelwerte der Tabelle 5.2 eingesetzt.
- Die Lochleibungsfestigkeit wurde mit der in Abschnitt 4 gefundenen Beziehung, multipliziert mit dem k_a - Faktor, bestimmt.

Seitenholz

$$f_{h,0,m} = k_{a,1} \cdot 0,102 \cdot (1 - 0,01 \cdot d) \cdot \rho_{m,1}$$

$$k_{a,1} = 0,09 \cdot \frac{t_1}{d} + 0,6$$
(7.3)

Mittelholz

$$f_{h,0,m} = k_{a,2} \cdot 0,102 \cdot (1 - 0,01 \cdot d) \cdot \rho_{m,2}$$

$$k_{a,2} = -0,07 \cdot \frac{t_2}{d} + 0,6$$
(7.4)

			·····		
Versuchsreihe	Mittelwert F _{u,ss}	R _u	$rac{F_{u,ss}}{R_u}$	R _k	$\frac{F_{u,ss}}{R_k}$
	[kN]	[kN]		[kN]	
A1-7 8/2	3.06	3.01	1.02	2.48	1.24
Δ1.7 8/A	5 30	5 41	1,02	4 13	1 21
Δ1.78/8	0.67	7.02	1.00	551	1,51
A1-2010	9,07	1,52	1,64	5,51	1,70
A2-Z 8/2	3.43	3.25	1.05	2.49	1.38
A2-Z 8/4	5.66	6.00	0.94	4.14	1.37
A2-Z 8/6	6.90	7.23	0.95	5.18	1.33
A2-Z 8/8	7,98	8.12	0.98	5.52	1.45
A2-Z 16/2	8.35	11.1	0.75	9.09	0.92
A2-Z 16/4	17.8	22.5	0.79	15.5	1,15
	-,,-	,0	3,12	20,0	
B1-Z 8/2	3,34	3,63	0,92	3,05	1,10
B1-Z 8/4	4,95	6,18	0,80	4,82	1,03
B1-Z 8/8	7,70	8,44	0,91	6,11	1,26
B2-Z 8/2	3,57	3,41	1,05	2,68	1,34
B2-Z 16/2	12,2	12,2	1,00	9,77	1,25
B2-Z 16/4	22,0	21,9	1,00	16,3	1,34
C-Z 8/2	5,32	4,79	1,11	4,17	1,28
C-Z 8/4	7,57	7,96	0,95	6,17	1,23
				-	
AS/C-Z 8/4	7,70	8,64	0,89	6,88	1,12
AS/C-Z 8/6	9,61	11,0	0,87	8,54	1,12
AS/C-Z 8/8	9,93	11,7	0,85	9,10	1,09
				-	

Tabelle 7.3:Gegenüberstellung der Versuchshöchstlast je Verbindungsmittel
und Scherfuge mit der rechnerischen Tragfähigkeit R_u bzw.R_k
Mittelwerte der Zugscherversuche

Tabelle 7.4:Gegenüberstellung der Versuchshöchstlast je Verbindungsmittel
und Scherfuge mit der rechnerischen Tragfähigkeit R_u bzw.R_kMittelwerte der Druckscherversuche

Versuchsreihe	Mittelwert F _{u,ss} [kN]	R _u [kN]	$rac{F_{u,ss}}{R_u}$	R _k [kN]	$rac{F_{u,ss}}{R_k}$
A1-D 8/2 A1-D 8/6 A1-D 16/2 A1-D 16/4 A1-D 30/2 A2-D 8/2 A2-D 8/6 A2-D 30/2 B1-D 8/2 B1-D 8/6 B1-D 8/6	4,02 9,13 12,7 24,7 55,3 3,40 6,56 38,2 3,01 7,85 13,2	3,35 7,12 11,6 21,5 34,9 3,32 6,98 34,3 3,77 8,04 13.0	1,20 1,28 1,10 1,15 1,58 1,03 0,94 1,11 0,80 0,98 1,02	2,48 5,17 9,05 15,4 26,5 2,49 5,18 26,6 3,05 5,74	1,62 1,77 1,40 1,60 2,09 1,37 1,27 1,43 0,99 1,37 1,19
B1-D 16/4	19,5	24,2	0,81	18,0	1,09
B1-D 30/2	47,3	41,8	1,13	32,6	1,45
B2-D 8/2	3,45	3,20	1,08	2,68	1,29
B2-D 8/6	7,48	7,38	1,01	5,37	1,39
B2-D 30/2	43,1	34,3	1,26	28,6	1,51
C-D 8/2	5,86	4,78	1,23	4,17	1,41
C-D 8/6	12,4	9,28	1,34	6,71	1,85
C-D 16/2	21,4	18,5	1,16	15,2	1,41
C-D 30/2	69,7	55,2	1,26	44,6	1,56

Zur Bestimmung eines charakteristischen Wertes der Tragfähigkeit R_k wurden folgende Annahmen getroffen:

 Die charakteristischen Fließmomente M_{y,k} der Verbindungsmittel wurden aus den gewährleisteten mechanischen Eigenschaften von Blankstahl (DIN 1652) und Automatenstahl (DIN 1651) wie folgt berechnet:

$$M_{y,k} = \frac{(f_t + f_y) \cdot d^3}{12}$$
(7.5)

f_t Zugfestigkeit des Verbindungsmittels

f_v Streck- bzw. Dehngrenze des Verbindungsmittels

Die charakteristische Lochleibungsfestigkeit wurde mit der in Abschnitt 4 gefundenen Beziehung, multipliziert mit dem k_a - Faktor, bestimmt. In die Gleichung wurde das 5% - Fraktil der Rohdichte aus **Tabelle 6.3** eingesetzt.

Seitenholz

$$f_{h,0,k} = k_{a,1} \cdot 0.09 \cdot (1 - 0.01 \cdot d) \cdot \rho_{05}$$

$$k_{a,1} = -0.09 \cdot \frac{t_1}{d} + 0.6$$
(7.6)

Mittelholz

$$f_{h,0,k} = k_{a,2} \cdot 0.09 \cdot (1 - 0.01 \cdot d) \cdot \rho_{05}$$

$$k_{a,2} = -0.07 \cdot \frac{t_2}{d} + 0.6$$
(7.7)

Bild 7.6 zeigt einen direkten Vergleich der Versuchshöchstlasten $F_{u,ss}$ mit den rechnerischen Tragfähigkeiten R_u . In Bild 7.7 ist graphisch der Verhältniswert $F_{u,ss}/R_u$ in Abhängigkeit von der Schlankheit λ dargestellt.

Für die Gesamtmenge der 120 Versuche mit glattschaftigen Stabdübel ergaben sich dabei für den Quotienten $F_{u,ss}/R_u$:

Mittelwert	1,04
Standardabweichung	0,18
Variationskoeffizient	17,5 %

Bild 7.8 zeigt eine graphische Darstellung des Verhältnisses $F_{u,ss}/R_k$ in Abhängigkeit von der Schlankheit λ . 5 von 120 Einzelwerten (4,2 %) waren kleiner als der charakteristische Wert der Tragfähigkeit.

Bild 7.6: Vergleich der Versuchshöchstlast $F_{u,ss}$ mit den rechnerischen Tragfähigkeiten R_u

Bild 7.7 Verhältnis $F_{u,ss}/R_u$ in Abhängigkeit von der Schlankheit λ (120 Einzelwerte)

Bild 7.8 Verhältnis $F_{u,ss}/R_k$ in Abhängigkeit von der Schlankheit λ

8 Verformungsverhalten und Verschiebungsmodul von Laubholzverbindungen mit stabförmigen Verbindungsmitteln

Für den Gebrauchstauglichkeitsnachweis sowie zur Berücksichtigung der Nachgiebigkeit einer Verbindung werden Angaben über den Verschiebungsmodul benötigt. Die Auswertung der Versuche ergab, daß die Verschiebungen unter den zulässigen Belastungen nach DIN 1052 Teil 2 stets kleiner waren als der in DIN 1052 Teil 2 Tabelle 13 angegebene Wert von 0,67 mm für Verbindungen mit Laubholz.

Stellt man den nach DIN EN 26891 errechneten Verschiebungsmodul k_s und den Anfangsverschiebungsmodul k_i pro Verbindungsmittel und Scherfläche für Laubhölzer in Abhägigkeit vom Durchmesser d dar (siehe Bild 8.1 und 8.2), so lassen sich die Versuchswerte mit Hilfe der Geraden

$$k_s = (1,8 \cdot d - 7,5) \cdot \rho$$
 $r = 0,97$ (8.1)

$$k_i = (1,6 \cdot d - 5,2) \cdot \rho$$
 $r = 0,96$ (8.2)

$$k_s$$
; k_i in (N/mm) d in (mm) ρ in (kg/m³)

anpassen. Dabei wurde die Rohdichte eines jeden Versuchskörpers individuell berücksichtigt.

Der Wert der bleibenden Anfangsverschiebung (Schlupf) war oft negativ da die Last - Verchiebungskurven meist konvex anstiegen. Er war aber in der Regel nicht größer als 0,1 mm.

Für einen Gebrauchstauglichkeitsnachweis von Stabdübelverbindungen mit Laubhölzern wird vereinfachend vorgeschlagen, den Verschiebungsmodul k pro Verbindungsmittel und Scherfläche wie folgt anzunehmen:

$$k = 1,25 \cdot d \cdot \rho$$
(8.3)

$$k \text{ in (N/mm) } d \text{ in (mm) } \rho \text{ in (kg/m^3)}$$

Zur Verdeutlichung wurde diese Beziehung in Bild 8.2 eingezeichnet.

Bild 8.1: Auf die Rohdichte bezogener Verschiebungsmodul $\frac{k_s}{\rho}$ in Abhängigkeit vom Durchmesser d

Bild 8.1: Auf die Rohdichte bezogener Anfangs-Verschiebungsmodul $\frac{k_i}{\rho}$ in Abhängigkeit vom Durchmesser d

Nach Untersuchungen von EHLBECK, WERNER 1988 kann vereinfachend der Verschiebungsmodul k pro Verbindungsmittel und Scherfläche für den Gebrauchstauglichkeitsnachweis von Stabdübelverbindungen mit <u>Nadelhölzern</u> zu

$$\mathbf{k} = \mathbf{d} \cdot \boldsymbol{\rho} \tag{8.4}$$

k in (N/mm) d in (mm) ρ in (kg/m³)

angenommen werden.

Die beiden Gleichungen (8.3) und (8.4) können genügend genau durch die Beziehung

$$\mathbf{k} = -\frac{\rho^{1,5}}{20} \cdot \mathbf{d} \tag{8.5}$$

k in (N/mm) d in (mm)
$$\rho$$
 in (kg/m³)

ersetzt werden.

In der folgenden Tabelle sind diese Beziehungen für verschiedene Rohdichten ausgewertet.

	Nadelholz			Laubholz			
ρ (kg/m³)	350 	400 	450 	500	600	700	800
$\frac{\rho^{1,5}}{20}$	327	400	477	559 I	735 I	929 	1131
1 , 25 · ρ			_	625	750	875	1000

9 Zusammenfassung

Nach dem neuen Bemessungskonzept des EUROCODE 5 werden charakteristische Werte der Lochleibungsfestigkeit benötigt, um rechnerische Grundlagen für die Bestimmung der Tragfähigkeit von Verbindungen bereitstellen zu können. Daher wurde für verschiedene Laubhölzer die Lochleibungsfestigkeit nach dem europäischen Normentwurf prEN 383 : 1990 bestimmt.

Im Folgenden sind die Ergebnisse aus den Lochleibungsversuchen kurz zusammengefaßt:

Im europäischen Normentwurf prEN 383 sind Lochleibungsversuche unter einer Druck- und einer Zugbeanspruchung in Faserrichtung vorgesehen. Bei den durchgeführten Versuchen wurden bei Druckbeanspruchung in der Regel kleinere Lochleibungsfestigkeiten ermittelt als bei Zugbeanspruchung. Meist war ein frühzeitiges Aufspalten der Probekörper bei Druckbeanspruchung infolge des geringeren Abstandes des Verbindungsmittels vom Hirnholzende zu beobachten. Um diesem Effekt entgegenzuwirken, sollte der Abstand vom Hirnholzende bei den Probekörpern für Zug- und Druckbeanspruchung gleich groß sein.

Die Spaltempfindlichkeit der einzelnen Holzarten ist unterschiedlich. Die tropischen Laubhölzer Teak, Merbau und Afzelia neigen mehr zum Spalten als die einheimischen Laubhölzer.

Die Lochleibungsfestigkeit steigt unabhängig von der Holzart in etwa linear mit der Rohdichte der Laubhölzer an. Bei der Holzart Teak wurden, bezogen auf die Rohdichte, die geringsten Lochleibungsfestigkeiten ermittelt.

Die Versuchsergebnisse bestätigten die Abhängigkeit der Lochleibungsfestigkeit vom Durchmesser des Stabdübels. Lineare Regressionen ergaben folgende Gleichungen:

Beanspruchung in Faserrichtung

 $f_{h,0,m} = 0,102 \cdot (1 - 0,01 \cdot d) \cdot \rho_m$

Beanspruchung rechtwinklig zur Faserrichtung

$$f_{h,90,m} = 0,102 \cdot (1 - 0,016 \cdot d) \cdot \rho_m$$

Der Index "m" kennzeichnet die jeweiligen Versuchsmittelwerte der betreffenden Eigenschaft. Die Werte der Lochleibungsfestigkeiten streuen stärker als die der Rohdichte. Dies ist bei der Ermittlung der charakteristischen Werte (Index "k") der Lochleibungsfestigkeit zu berücksichtigen. Es ergibt sich unter Annahme einer Gauß'schen Normalverteilung die charakteristische Lochleibungsfestigkeit in Faserrichtung zu

$$f_{h,0,k} = 0,09 \cdot (1 - 0,01 \cdot d) \cdot \rho_k$$

und rechtwinklig zur Faserrichtung zu

$$f_{h,90,k} = 0,09 \cdot (1 - 0,016 \cdot d) \cdot \rho_k$$

Entsprechend dem Verhalten des Holzes unter Druckbeanspruchung fällt auch die Lochleibungsfestigkeit mit wachsendem Winkel zwischen Kraft- und Faserrichtung ab. Dies ist um so ausgeprägter, je größer der Durchmesser des Verbindungsmittels ist. Als beste Anpassung hat sich die in vielen Ländern gebräuchliche Hankinson'sche Gleichung erwiesen.

Einen wesentlichen Einfluß auf die Tragfähigkeit von Verbindungen mit stabförmigen Verbindungsmitteln bei Beanspruchung auf Abscheren hat der Biegewiderstand des Verbindungsmittels. Zur Bestimmung des Fließmomentes von stiftförmigen Verbindungsmitteln mit Durchmessern von 8 mm bis 30 mm wurde ein Biegegerät entwickelt und gebaut. Mit diesem Gerät wurden Biegeversuche mit Stabdübeln und Gewindestangen durchgeführt. Dabei waren die aus den Fließmomenten errechneten Fließspannungen stets größer als die im Zugversuch ermittelten Streckgrenzen. Bei Gewindestangen ist bei der Berechnung der Fließspannung aus dem experimentell bestimmten Fließmoment der Spannungsquerschnitt maßgebend.

Das Trag- und Verformungsverhalten von Laubholzverbindungen mit Stabdübeln und Gewindestangen als Verbindungsmittel unter einer Belastung in Faserrichtung wurde an 111 Prüfkörpern experimentell untersucht. Dabei wurden die Beanspruchungsart, der Verbindungsmitteldurchmesser, die Schlankheit, der Verbindungsmittelwerkstoff und -typ sowie die Holzart variiert.

Trotz des frühzeitigen Aufspaltens der Versuchskörper, insbesondere bei geringen Schlankheiten, waren die Sicherheiten gegenüber der zul. Belastung nach DIN 1052 verhältnismäßig groß. Durch eine genauere Beschreibung des Tragverhaltens von Verbindungen mit stiftförmigen Verbindungsmitteln, wie es im EUROCODE 5 vorgesehen ist, kann das unterschiedliche Sicherheitsniveau zu anderen Verbindungen ausgeglichen werden.

Zwischen Zug- und Druckscherbeanspruchung war bezüglich der Tragfähigkeit von Laubholzverbindungen kein so großer Unterschied wie bei Stabdübelverbindungen mit Nadelholz festzustellen.

Die Tragfähigkeit einer Verbindung wird auch durch die Abstände der Verbindungsmittel bestimmt, da die Hölzer bei kleinen Abständen der Verbindungsmittel untereinander und vom Hirnholzende mehr zum Aufspalten neigen als bei größeren Abständen. Somit kann auf Grund des frühzeitigen Aufspaltens der Versuchskörper insbesondere bei geringen Schlankheiten die Lochleibungsfestigkeit nicht voll ausgenutzt werden. Dagegen sind bei großen Schlankheiten mehr Tragreserven zu erwarten.

Es zeigte sich wegen der größeren Spaltempfindlichkeit von dünneren Hölzern eine Abhängigkeit der aus Bauteilversuchen rechnerisch ermittelten Lochleibungsfestigkeit von der Holzdicke t. Somit müßte die aus genormten Versuchen (prEN 383) ermittelte Lochleibungsfestigkeit mit einem Faktor k_a multipliziert werden, um den Einfluß der Spaltempfindlichkeit und der Verbindungsmittelabstände zu berücksichtigen. Lineare Regressionen ergaben folgende Geradengleichungen für den k_a -Faktor :

Seitenholz: $k_{a,1} = 0,09$

$$t_{a,1} = 0,09 \cdot \frac{t_1}{d} + 0,6$$

Mittelholz: $k_{a,2} = 0.07 \cdot \frac{t_2}{d} + 0.6$

Dieser k_a - Faktor gilt nur für die Mindestabstände der Verbindungsmittel nach DIN 1052 Teil 2. Bei größeren Verbindungsmittelabständen sind günstigere Werte zu erwarten. Zur Problematik der Spaltempfindlichkeit von Verbindungen ist weitere Grundlagenforschung erforderlich, um die empirisch gefundene Abhängigkeit theoretisch besser erfassen zu können.

Bei den Versuchen mit Gewindestangen als Verbindungsmittel war bei größeren Schlankheiten ein Einhängeeffekt zu beobachten, wodurch die Tragfähigkeit gesteigert werden konnte. Weiterhin neigten die Versuchskörper durch das Eindrehen der Gewindestange und der besseren Lastverteilung entlang der Bohrlochwandung weniger zum Aufspalten.

Für einen Gebrauchstauglichkeitsnachweis von Stabdübelverbindungen mit Laubhölzern wird vereinfachend vorgeschlagen, den Verschiebungsmodul k pro Verbindungsmittel und Scherfläche wie folgt anzunehmen:

$$\mathbf{k} = -\frac{\rho^{1,5}}{20} \cdot \mathbf{d}$$

k in (N/mm) d in (mm) ρ in (kg/m³)

Beim Vergleich der Ergebnisse der Bauteilversuche mit dem in Abschnitt 3 beschriebenen Rechenmodell zur Bestimmung der Tragfähigkeit von Verbindungen mit stabförmigen Verbindungsmitteln und unter Berücksichtigung der gewonnenen Erkenntnisse über die verschiedenen Einflußfaktoren ergab sich eine gute Übereinstimmung.

10 Schrifttum

- Ehlbeck, J.; Werner, H. 1988 : Design of joints with laterally loaded dowels -Proposals for improving the design rules in the CIB-Code and draft EUROCODE 5. In: Proceedings of the CIB-W18A - meeting, Parksville, Kanada, Paper 21-7-4
- Ehlbeck, J.; Werner, H. 1989 : Tragverhalten von Stabdübeln in Brettschichtholz und Vollholz verschiedener Holzarten bei unterschiedlichen Rißlinienanordnungen. Karlsruhe: Versuchsanstalt für Stahl Holz und Steine, Abt. Ingenieurholzbau, Universität Karlsruhe(TH). -Forschungsbericht
- Ehlbeck, J.; Werner, H. 1991 : Biegegerät zur Prüfung von stabförmigen Verbindungsmitteln. Karlsruhe: Versuchsanstalt für Stahl Holz und Steine, Abt. Ingenieurholzbau, Universität Karlsruhe(TH). -Forschungsbericht
- Fahlbusch, H. 1949 : Ein Beitrag zur Frage der Tragfähigkeit von Bolzen in Holz bei statischer Belastung. Braunschweig: Institut für Maschinenkonstruktion und Leichtbau, Technische Hochschule Braunschweig, Bericht-Nr. 49-9
- Foschi, R.O.; Bonac, T. 1977 : Load-slip characteristics for connections with common nails. In: Wood Science 9(1977), Nr.3, S.118-123
- Gehri,E.; Fontana, M. 1983 : Tragverhalten von Passbolzen in Holz-Holz-Verbindungen. Zürich: Baustatik und Stahlbau, ETH Zürich, Schweiz, Publikation Nr.83-1
- Grosser, D. 1989 : Einheimische Nutzhölzer und ihre Verwendungsmöglichkeiten. In: Informationsdienst Holz, Hrsg.: Entwicklungsgemeinschaft Holzbau in der DGfH, München u. CMA, Bonn

- Hilson, B.O.; Whale, L.R.J.; Pope, D.J.; Smith, I. 1987 : Characteristic properties of nailed and bolted joints under short-term lateral load: Part 3 Analysis and interpretation of embedment test data in terms of density related trends. In: Journal of the Institute of Wood Science, Vol. 11, Nr. 2, S.65-71
- Johansen, K. W. 1949 : Theory of timber connections. In: International Association for Bridge and Structural Engineering, Vol. 9, S.249-262
- Mack, J.J. 1960: The strength of nailed timber joints. I. CSIRO, Division of Forest Products Technological Paper, No.9-10, Melbourne, Australien
- Merkblattreihe Holzarten 1989: Blatt 4 Afzelia; Blatt 7 Azobe (Bongossi); Blatt 35 Angelique; Blatt 33 Merbau; Blatt 42 Teak; Blatt 48 Keruing; Blatt 87 Greenheart. In: Informationsdienst Holz, Hrsg.: Verein Deutscher Holzeinfuhrhäuser e.V., Hamburg u. Arbeitsgemeinschaft Holz e.V., Düsseldorf
- Meyer, A. 1957 : Die Tragfähigkeit von Nagelverbindungen bei statischer Belastung. In: Holz als Roh- und Werkstoff 15(1957), Nr.2, S.96-109
- Möller, T. 1951 : En ny metod för beräkning av spikförband. Göteborg: Chalmers Tekniska Hoegskola Handlingar, Nr. 117, Schweden
- Rodd, P. D. 1973 : The analysis of timber joints made with circular dowel connectors. Sussex: University of Sussex.-Dissertation
- Rodd, P.D. 1988 : Timber joints made with improved circular dowel fasteners. In: Proceedings of the International Conference on Timber Engineering, Seattle, USA, Vol. 1, S. 26-37
- Rodd, P.D.; Anderson, C.; Whale, L.R.J.; Smith, I. 1987 : Characteristic properties of nailed and bolted joints under short-term lateral load: Part 2 Embedment test apparatus for wood and wood-based sheet material. In: Journal of the Institute of Wood Science, Vol. 11, Nr. 2, S. 60-64
- Scheer, J.; Peil, U.; Nölle, H. 1988 : Schrauben mit planmäßiger Biegebeanspruchung. In: Der Stahlbau 57(1988), Nr.8, S.273-245

- Smith, I.; Whale, L.R.J. 1987 : Characteristic properties of nailed and bolted joints under short-term lateral load: Part 1 - Research philosophy and test programme. In: Journal of the Institute of Wood Science, Vol. 11, Nr. 2, S.53-59
- Stoy, W. 1930 : Über Versuche mit Drahtstiften als Holzverbindungsmittel. In: Deutsche Bauzeitschrift (1930)
- Whale, L.R.J.; Smith, I. 1989 : A method for measuring the embedding characteristics of wood and wood-based materials. In: Materials and Structures 22(1989), S.403-410
- Whale, L.R.J.; Smith, I.; Hilson, B.O. 1989 : Characteristic properties of nailed and bolted joints under short-term lateral load: Part 4 - Influence of testing mode and fastener diameter upon embedment test data. In: Journal of the Institute of Wood Science, Vol. 11, Nr. 5, S.156-161

 \sum 125 Versuche

Tabelle 4.1: Zusammenstellung der Lochleibungsversuche (Beanspruchung in Faserrichtung)

Durchm.	Dicke t	Holzart					
[mm]	[mm]	A1	A2	A3	B1	B2	С
8	16	A1/Z/8 A1/D/8	A2/Z/8 A2/D/8	A3/Z/8	B1/Z/8 B1/D/8	B2/Z/8 B2/D/8	C/Z/8 C/D/8
12	24	A1/Z/12					
16	32	A1/Z/16 A1/D/16	A2/D/16		B1/Z/16	B2/Z/16	C/Z/16
24	48	A1/Z/24					
30	60	A1/Z/30 A1/D/30	A2/D/30		B1/Z/30	B2/Z/30	C/Z/30

5 Einzelversuche pro Versuchsreihe

Bezeichnung der Holzarten:

Art der Beanspruchung: A1: Buche B1: Merbau C: Bongossi Z:= Zugbeanspruchung A2: Eiche B2: Afzelia D:= Druckbeanspruchung A3: Teak

Abmessungen der Probekörper Tabelle 4.2: (Beanspruchung in Faserrichtung)

Abmessungen	Durchmesser d [mm]					
[mm]	8	12	16	24	30	
3d	24	36	48	72	90	
7d	56	84	112	168	210	
30d	240	360	480	720	900	
b	48	72	96	144	180	
l _z	400	540	700	1000	1200	
l ^d	80	120	160	240	300	
t	16	24	32	48	60	
α d [mm]	30°	45°	60°	90°		
-------------	-----------------------	-----------------------	-----------------------	-----------------------		
8	A1/30°/8	A1/45°/8	A1/60°/8	A1/90°/8 C/90°/8		
16	A1/30°/16 C/30°/16	A1/45°/16 C/45°/16	A1/60°/16 C/60°/16	A1/90°/16 C/90°/16		
30	A1/30°/30	A1/45°/30	A1/60°/30	A1/90°/30 C/90°/30		

Tabelle 4.3:Zusammenstellung der Lochleibungsversuche
(Beanspruchung unter einem Winkel zur Faserrichtung)

5 Einzelversuche pro Versuchsreihe

Holzarten:

A1:= Buche C:= Bongossi

Tabelle 4.4:	Abmessungen der Probekörper			
	(Beanspruchung unter einem Winkel zur Faserrichtung)			

Abmessungen	Durchmesser d [mm]			
[mm]	8	16	30	
2d	16	32	60	
4d	32	64	120	
7d	56	112	210	
b	48	96	180	
l	112	224	420	
t	16	32	60	

 \sum 90 Versuche

3

.

Last-Verformungsdiagramme Lochleibungsversuche B1/Z/30

e deservice and a second

and the second second

-

.

.

Last-Verformungsdiagramme Lochleibungsversuche A1/45/30

Verformung w (mm)

Verformung w (mm)

Verformung w (mm)

Versuch Nr.	d [mm]	ρ [kg/m ³]	F _{max} [kN]	f _h [N/mm ²]	Bruchursache
A1/D/8/1 A1/D/8/2 A1/D/8/3 A1/D/8/4 A1/D/8/5	8 8 8 8	691 760 759 654 653	7.29 7.96 7.59 7.21 6.80	57.0 62.2 59.3 56.3 53.1	L S(4,5) S(3,3) L L
A1/D/16/1 A1/D/16/2 A1/D/16/3 A1/D/16/4 A1/D/16/5	16 16 16 16 16	732 738 723 702 726	32.75 33.24 32.55 27.44 34.15	64.0 64.9 63.6 53.6 66.7	$\overset{L}{\overset{L}{\underset{L}{\overset{L}{\underset{L}{\overset{L}{\underset{L}{S(2,3)}{\underset{L}{\overset{L}{\underset{L}{\overset{L}{\underset{L}{\overset{L}{\underset{L}{L$
A1/D/30/1 A1/D/30/2 A1/D/30/3 A1/D/30/4 A1/D/30/5	30 30 30 30 30 30	725 686 724 690 703	89.92 70.87 99.03 72.36 94.30	50.0 39.4 55.0 40.2 52.4	S(1,9) S(1,7) S(3,7) S(2,0) L
A1/Z/8/1 A1/Z/8/2 A1/Z/8/3 A1/Z/8/4 A1/Z/8/5	8 8 8 8	658 718 708 791 697	7.48 9.43 8.35 8.92 9.52	58.5 73.7 65.2 69.7 74.4	L L L L L
A1/Z/12/1 A1/Z/12/2 A1/Z/12/3 A1/Z/12/4 A1/Z/12/5	12 12 12 12 12 12	718 718 655 641 684	19.56 16.91 15.01 11.58 12.56	67.9 58.7 52.1 40.2 43.6	L S(4,4) S(4,5) S(2,1) S(1,9)
A1/Z/16/1 A1/Z/16/2 A1/Z/16/3 A1/Z/16/4 A1/Z/16/5	16 16 16 16 16	741 739 738 744 741	31.32 33.40 33.78 34.19 38.85	61.2 65.2 66.0 66.8 75.9	S(2,9) L S(4,9) S(4,8) L
A1/Z/24/1 A1/Z/24/2 A1/Z/24/3 A1/Z/24/4 A1/Z/24/5	24 24 24 24 24 24	697 773 717 690 709	59.40 66.33 58.94 50.54 60.27	51.6 57.6 51.2 43.9 52.3	L S(4,3) S(4,9) L L L
A1/Z/30/1 A1/Z/30/2 A1/Z/30/3 A1/Z/30/4 A1/Z/30/5	30 30 30 30 30 30	695 735 700 698 732	93.16 99.89 99.51 80.08 94.79	51.8 55.5 55.3 44.5 52.7	L L S(4,1) L
1					1

Tabelle 4.6:Einzelergebnisse der Lochleibungsversuche bei einer Belastung in
Faserrichtung (Holzart: Buche)

Spalten bei .,. mm Verformung Lochleibungsversagen (Verformung größer 5mm)

S(.,.) L

Versuch Nr.	d [mm]	р [kg/m ³]	F _{max} [kN]	f _h [N/mm ²]	Bruchursache
A2/D/8/1 A2/D/8/2 A2/D/8/3 A2/D/8/4 A2/D/8/5	8 724 8 723 8 721 8 721 8 721 8 721		7.74 8.30 8.25 7.94 8.36	60.5 64.8 64.4 62.0 65.3	S(4,4) S(4,7) L L L
A2/D/16/1 A2/D/16/2 A2/D/16/3 A2/D/16/4 A2/D/16/5	16 16 16 16 16	712 736 749 596 604	28.2 28.4 29.1 24.7 25.2	55.1 55.4 56.7 48.2 49.2	L L L L
A2/D/30/1 A2/D/30/2 A2/D/30/3 A2/D/30/4 A2/D/30/5	30 30 30 30 30 30	727 726 723 767 726	102 103 108 111 107	56.4 57.0 59.7 61.4 59.7	L L L L L
A2/Z/8/1 A2/Z/8/2 A2/Z/8/3 A2/Z/8/4 A2/Z/8/5	8 8 8 8	716 747 750 762 739	7.64 7.21 7.96 8.03 8.08	59.7 56.3 62.2 62.7 63.1	S(4,4) L L L L L

Tabelle 4.7:Einzelergebnisse der Lochleibungsversuche bei einer Belastung in
Faserrichtung (Holzart: Eiche)

Tabelle 4.8:	Einzelergebniss	e der Lochleibungsversuche bei einer Belastung in
	Faserrichtung	(Holzart: Teak)

Versuch	d	р	F _{max}	f _h	Bruchursache
Nr.	[mm]	[kg/m ³]	[kN]	[N/mm ²]	
A3/Z/8/1	8	651	5.96	46.6	S(2,6)
A3/Z/8/2	8	638	6.10	47.7	S(2,6)
A3/Z/8/3	8	651	5.89	46.0	S(2,6)
A3/Z/8/4	8	658	6.07	47.4	S(3,5)
A3/Z/8/5	8	664	5.85	45.7	S(2,1)

S(.,.) L Spalten bei .,. mm Verformung Lochleibungsversagen (Verformung größer 5mm)

Versuch	d	ρ	F _{max}	f _h	Bruchursache
Nr.	[mm]	[kg/m ³]	[kN]	[N/mm ²]	
B1/D/8/1 B1/D/8/2 B1/D/8/3 B1/D/8/3 B1/D/8/4 B1/D/8/5	8 8 8 8 8	819 819 781 786 781	9.17 9.48 9.17 8.40 8.41	71.6 74.1 71.6 65.6 65.7	S(1,5) S(2,1) S(1,6) S(2,2) S(1,8)
B1/Z/8/1 B1/Z/8/2 B1/Z/8/3 B1/Z/8/3 B1/Z/8/4 B1/Z/8/5	8 8 8 8 8	794 814 829 775 788	10.6 11.5 11.1 11.2 11.5	82.7 90.0 87.0 87.1 90.1	S(2,8) S(1,6) S(1,1) S(1,9) S(1,5)
B1/Z/16/1	16	835	34.3	67.0	S(0,6)
B1/Z/16/2	16	734	32.4	63.2	S(1,6)
B1/Z/16/3	16	759	28.5	55.6	S(1,8)
B1/Z/16/4	16	763	30.7	59.9	S(1,7)
B1/Z/16/5	16	763	29.9	58.5	S(2,1)
B1/Z/30/1	30	829	89.3	49.6	S(2,4)
B1/Z/30/2	30	844	90.1	50.0	S(4,8)
B1/Z/30/3	30	845	97.2	54.0	S(3,7)
B1/Z/30/4	30	876	103	57.1	S(2,1)

Tabelle 4.9:	Einzelergebnisse der Lochleibungsversuche bei einer Belastung in	n
	Faserrichtung (Holzart:Merbau)	

Einzelergebnisse der Lochleibungsversuche bei einer Belastung in Faserrichtung (Holzart: Afzelia) Tabelle 4.10:

Versuch	d	ρ	F _{max}	f _h	Bruchursache
Nr.	[mm]	[kg/m ³]	[kN]	[N/mm ²]	
B2/D/8/1	88888	721	8.61	67.3	S(1,9)
B2/D/8/2		721	8.15	63.7	S(2,3)
B2/D/8/3		686	8.07	63.1	S(2,1)
B2/D/8/4		721	8.94	69.8	S(2,8)
B2/D/8/5		753	9.37	73.2	S(2,0)
B2/Z/8/1 B2/Z/8/2 B2/Z/8/3 B2/Z/8/4 B2/Z/8/5	8 8 8 8 8 8 8	690 703 667 708 775	9.39 9.50 8.85 9.36 11.6	73.4 74.2 69.1 73.1 90.3	S(2,2) S(3,6) S(3,8) S(3,4) S(2,9)
B2/Z/16/1	16	721	28.1	54.8	S(1,7)
B2/Z/16/2	16	699	27.1	52.9	S(3,0)
B2/Z/16/3	16	735	27.7	54.1	S(2,8)
B2/Z/16/4	16	739	26.4	51.6	S(1,8)
B2/Z/16/5	16	718	27.1	53.0	S(2,3)
B2/Z/30/1	30	714	92.8	51.5	S(3,0)
B2/Z/30/2	30	703	89.2	49.5	S(2,4)
B2/Z/30/3	30	706	88.7	49.3	S(3,6)
B2/Z/30/4	30	699	99.0	55.0	S(4,1)
B2/Z/30/5	30	705	101	65.9	S(3,2)

S(.,.) L

Spalten bei .,. mm Verformung Lochleibungsversagen (Verformung größer 5mm)

Versuch	d	ρ	F _{max}	f _h	Bruchursache
Nr.	[mm]	[kg/m ³]	[kN]	[N/mm ²]	
C/D/8/1 C/D/8/2 C/D/8/3 C/D/8/4 C/D/8/5	8 8 8 8 8	1000 1040 1030 1050 1030	13.1 14.5 14.6 13.5 12.5	102 113 114 106 97.7	S(2,3) S(2,5) S(2,5) S(2,5) S(2,4) S(2,3)
C/Z/8/1	8	1050	14.7	115	S(2,5)
C/Z/8/2	8	1060	14.3	112	S(2,5)
C/Z/8/3	8	1060	14.7	115	S(3,0)
C/Z/8/4	8	1050	15.4	120	S(3,9)
C/Z/8/5	8	1020	13.8	108	S(2,4)
C/Z/16/1	16	1130	44.7	87.4	$\begin{array}{c} S(2,1) \\ S(4,1) \\ S(2,9) \\ S(2,8) \\ S(3,1) \end{array}$
C/Z/16/2	16	1120	45.5	88.9	
C/Z/16/3	16	1110	41.4	80.8	
C/Z/16/4	16	1160	42.4	82.8	
C/Z/16/5	16	1160	46.4	90.6	
C/Z/30/1 C/Z/30/2 C/Z/30/3 C/Z/30/4 C/Z/30/5	30 30 30 30 30 30	1170 1150 1170 1180 1140	126 139 144 152 142	70.8 77.3 80.2 84.2 78.6	L L S(4,6) S(3,9) L

Tabelle 4.11: Einzelergebnisse der Lochleibungsversuche bei einer Belastung in Faserrichtung (Holzart: Bongossi)

S(.,.) L

Spalten bei .,. mm Verformung

Lochleibungsversagen (Verformung größer 5mm)

Tabelle 4.12:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung in Faserrichtung (Holzart: Buche)

Versuch	w _i	^w i,mod	w _s	w _e	^w 06	w ₀₈	K _i	K _s	K _e
Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm ³]	[N/mm ³]	[N/mm ³]
A1/D/8/1	0.34	0.22	0.12	0.00	0.53	0.85	64.3	101	0.00
A1/D/8/2	0.26	0.25	0.01	0.11	0.45	0.77	84.1	85.9	204
A1/D/8/3	0.31	0.25	0.06	0.07	0.48	0.75	70.1	88.1	277
A1/D/8/4	0.39	0.38	0.03	0.17	0.53	0.77	56.6	57.3	132
A1/D/8/5	0.42	0.32	0.10	0.06	0.56	0.88	52.1	67.3	373
A1/D/16/1	0.86	0.47	0.39	0.35	1.06	1.55	31.7	58.4	77.9
A1/D/16/2	0.83	0.43	0.39	0.37	1.03	1.51	33.1	63.5	76.3
A1/D/16/3	0.87	0.44	0.43	0.31	1.06	1.50	31.3	61.9	91.3
A1/D/16/4	0.54	0.44	0.11	0.32	0.68	0.91	50.2	62.7	90.4
A1/D/16/5	0.81	0.55	0.26	0.40	1.07	1.58	34.0	50.1	72.2
A1/D/30/1	0.33	0.28	$0.05 \\ 0.06 \\ 0.08 \\ 0.09 \\ 0.13$	0.21	0.37	0.52	80.3	94.1	120
A1/D/30/2	0.42	0.36		0.21	0.41	0.00	63.9	74.1	119
A1/D/30/3	0.34	0.25		0.18	0.40	0.58	79.5	106	154
A1/D/30/4	0.46	0.37		0.28	0.41	0.58	57.9	72.5	98.2
A1/D/30/5	0.45	0.32		0.23	0.52	0.92	59.2	83.2	119
A1/Z/8/1 A1/Z/8/2 A1/Z/8/3 A1/Z/8/4 A1/Z/8/5	0.16 0.13 0.13 0.12 0.14	0.15 0.12 0.12 0.10 0.12	0.01 0.01 0.01 0.01 0.03	0.11 0.10 0.09 0.09 0.13	0.25 0.25 0.21 0.21 0.21 0.28	0.44 0.47 0.33 0.39 0.54	147 186 186 204 162	158 203 203 227 200	198 238 262 266 183
A1/Z/12/1	0.18	0.20	-0.02	0.14	0.39	0.94	122	111	158
A1/Z/12/2	0.14	0.14	0.00	0.14	0.26	0.52	164	160	162
A1/Z/12/3	0.20	0.21	-0.01	0.12	0.34	0.83	114	108	165
A1/Z/12/4	0.20	0.22	-0.02	0.18	0.25	0.43	110	101	121
A1/Z/12/5	0.20	0.21	-0.01	0.16	0.29	0.43	111	107	143
A1/Z/16/1	0.16	0.17	0.00	0.15	0.30	0.60	143	141	145
A1/Z/16/2	0.19	0.21	-0.02	0.16	0.36	0.73	123	113	133
A1/Z/16/3	0.23	0.25	-0.02	0.14	0.55	1.04	103	93.8	143
A1/Z/16/4	0.24	0.26	-0.02	0.16	0.48	0.89	96.3	88.8	135
A1/Z/16/5	0.18	0.19	-0.01	0.12	0.43	0.94	128	122	179
A1/Z/24/1	0.24	0.24	0.00	0.19	0.33	0.51	95.7	94.2	124
A1/Z/24/2	0.23	0.21	0.02	0.15	0.35	0.52	98.0	107	155
A1/Z/24/3	0.32	0.30	0.07	0.28	0.42	0.65	69.6	75.5	80.6
A1/Z/24/4	0.30	0.30	0.01	0.21	0.38	0.56	74.4	76.2	107
A1/Z/24/5	0.29	0.29	0.00	0.24	0.41	0.70	78.7	78.5	97.8
A1/Z/30/1	0.30	0.26	0.04	0.21	0.41	0.65	73.9	84.0	106
A1/Z/30/2	0.34	0.29	0.05	0.26	0.50	0.89	65.6	75.7	88.4
A1/Z/30/3	0.33	0.32	0.02	0.24	0.52	1.13	66.8	70.4	92.6
A1/Z/30/4	0.45	0.41	0.04	0.27	0.56	1.32	49.4	54.1	78.3
A1/Z/30/5	0.31	0.27	0.04	0.20	0.44	0.72	71.0	80.9	110

Tabelle 4.13:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung in Faserrichtung (Holzart: Eiche)

Versuch	w _i	w _{i,mod}	w _s	w _e	^W 06	w ₀₈	K _i	K _s	K _c
Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm ³]	[N/mm ³]	[N/mm ³]
A2/D/8/1	0.46	0.40	0.06	0.21	0.52	0.92	68.0	79.1	146
A2/D/8/2	0.52	0.32	0.20	0.22	0.65	0.88	60.1	96.2	171
A2/D/8/3	0.51	0.42	0.09	0.15	0.60	0.79	61.2	74.5	206
A2/D/8/4	0.51	0.39	0.11	0.21	0.62	0.83	61.6	79.1	144
A2/D/8/5	0.35	0.33	0.02	0.18	0.49	0.71	89.9	94.3	170
A2/D/16/1	0.89	0.54	0.35	0.32	1.03	1.34	30.8	50.7	85.3
A2/D/16/2	0.66	0.45	0.20	0.39	0.87	1.32	41.7	60.2	77.2
A2/D/16/3	0.69	0.39	0.30	0.32	0.82	1.21	39.4	69.5	89.5
A2/D/16/4	0.87	0.50	0.37	0.36	0.93	1.13	31.4	54.7	78.6
A2/D/16/5	0.77	0.45	0.32	0.29	0.86	1.03	35.6	61.2	96.3
A2/D/30/1	0.35	0.30	0.05	0.20	0.43	0.64	75.1	87.7	128
A2/D/30/2	0.32	0.26	0.06	0.18	0.39	0.61	84.1	104	153
A2/D/30/3	0.27	0.24	0.03	0.17	0.36	0.61	99.0	110	150
A2/D/30/4	0.30	0.25	0.06	0.18	0.42	0.70	88.1	108	151
A2/D/30/5	0.30	0.23	0.07	0.14	0.40	0.58	88.8	115	173
A2/Z/8/1 A2/Z/8/2 A2/Z/8/3 A2/Z/8/4 A2/Z/8/5	0.15 0.15 0.14 0.16 0.14	0.15 0.16 0.13 0.13 0.13	0.00 0.00 0.03 0.01	0.13 0.13 0.13 0.11 0.11	0.22 0.23 0.23 0.25 0.22	0.34 0.54 0.46 0.40 0.32	158 152 172 147 172	154 150 178 176 180	183 179 181 216 208

Tabelle 4.14:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung in Faserrichtung (Holzart: Teak)

.

Versuch	w _i	w _{i,mod}	w _s	w _e	^w 06	w ₀₈	K _i	K _s	K _e
Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm ³]	[N/mm ³]	[N/mm ³]
A3/Z/8/1	0.18	0.18	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \end{array}$	0.14	0.21	0.29	130	132	167
A3/Z/8/2	0.16	0.16		0.11	0.19	0.26	145	149	205
A3/Z/8/3	0.18	0.17		0.12	0.21	0.28	134	138	187
A3/Z/8/4	0.17	0.17		0.14	0.20	0.30	137	140	172
A3/Z/8/5	0.16	0.16		0.14	0.19	0.24	143	146	172

	bei	i einer B	elastung	; in Faseri	richtung (Holzart:	Merbau)		
Versuch	w _i	w _{i,mod}	w _s	w _e	^w %	^W 08	K _i	K _s	K _e
Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm ³]	[N/mm ³]	[N/mm ³]
B1/D/8/1	0.48	0.30	0.18	0.16	0.60	0.80	64.6	104	142
B1/D/8/2	0.46	0.37	0.09	0.19	0.62	0.88	67.6	85.1	119
B1/D/8/3	0.40	0.31	0.09	0.21	0.52	0.71	77.8	101	160
B1/D/8/4	0.44	0.26	0.18	0.19	0.54	0.69	71.8	121	176
B1/D/8/5	0.53	0.30	0.23	0.20	0.64	0.82	58.6	103	155
B1/Z/8/1 B1/Z/8/2 B1/Z/8/3 B1/Z/8/4 B1/Z/8/5	0.10 0.12 0.12 0.12 0.12 0.12	$\begin{array}{c} 0.08 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \end{array}$	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \end{array}$	0.06 0.09 0.11 0.09 0.10	0.20 0.24 0.25 0.24 0.26	0.27 0.32 0.34 0.32 0.36	245 199 193 202 189	281 217 212 221 221 220	368 257 214 251 233
B1/Z/16/1	0.13	0.15	-0.01	0.11	0.24	0.33	175	160	198
B1/Z/16/2	0.16	0.15	0.01	0.08	0.29	0.41	147	160	240
B1/Z/16/3	0.17	0.18	-0.01	0.13	0.26	0.38	139	130	185
B1/Z/16/4	0.16	0.16	0.00	0.11	0.29	0.44	148	145	175
B1/Z/16/5	0.19	0.20	-0.01	0.12	0.31	0.48	121	116	164
B1/Z/30/1	0.29	0.24	0.05	0.17	0.38	0.52	75.7	92.5	125
B1/Z/30/2	0.26	0.25	0.00	0.20	0.34	0.51	86.8	87.9	115
B1/Z/30/3	0.28	0.25	0.03	0.19	0.40	0.61	79.3	87.9	117
B1/Z/30/4	0.29	0.26	0.02	0.15	0.43	0.60	77.6	85.0	147

Tabelle 4.15:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung in Faserrichtung (Holzart: Merbau)

Tabelle 4.16:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung in Faserrichtung (Holzart: Afzelia)

Versuch	w _i	w _{i,mod}	w _s	w _e	^W 06	w ₀₈	K _i	K _s	K _c
Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm ³]	[N/mm ³]	[N/mm ³]
B2/D/8/1	0.41	0.29	0.12	0.20	0.52	0.75	75.5	108	165
B2/D/8/2	0.43	0.32	0.11	0.23	0.58	0.84	72.4	96.3	147
B2/D/8/3	0.30	0.26	0.04	0.15	0.40	0.61	104	118	178
B2/D/8/4	0.52	0.42	0.10	0.21	0.69	0.98	60.0	74.4	151
B2/D/8/5	0.41	0.33	0.08	0.18	0.56	0.78	76.5	95.5	149
B2/Z/8/1 B2/Z/8/2 B2/Z/8/3 B2/Z/8/4 B2/Z/8/5	0.11 0.13 0.13 0.11 0.12	0.09 0.11 0.12 0.11 0.10	0.02 0.01 0.01 0.00 0.03	0.09 0.07 0.08 0.10 0.09	0.22 0.22 0.22 0.22 0.22 0.25	0.33 0.32 0.31 0.36 0.33	213 184 181 206 191	272 206 191 206 244	276 352 279 249 259
B2/Z/16/1	0.16	0.19	-0.03	$\begin{array}{c} 0.11 \\ 0.17 \\ 0.13 \\ 0.08 \\ 0.12 \end{array}$	0.26	0.43	144	122	207
B2/Z/16/2	0.26	0.25	0.01		0.37	0.67	91,4	114	135
B2/Z/16/3	0.24	0.24	0.00		0.40	0.63	96.1	96.8	176
B2/Z/16/4	0.19	0.18	0.01		0.25	0.39	125	130	263
B2/Z/16/5	0.20	0.21	0.00		0.31	0.51	115	113	162
B2/Z/30/1	0.28	0.25	0.03	0.20	0.37	0.51	79.5	87.8	112
B2/Z/30/2	0.30	0.28	0.02	0.20	0.39	0.56	74.4	79.0	112
B2/Z/30/3	0.28	0.26	0.02	0.24	0.35	0.53	80.2	87.1	99.2
B2/Z/30/4	0.27	0.25	0.03	0.17	0.40	0.57	81.5	90.1	114
B2/Z/30/5	0.26	0.24	0.03	0.19	0.39	0.60	84.0	94.1	112

Tabelle 4.17:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung in Faserrichtung (Holzart: Bongossi)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Versuch	w _i	w _{i,mod}	w _s	w _e	w ₀₆	w ₀₈	K _i	K _s	K _e
	Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm ³]	[N/mm ³]	[N/mm ³]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C/D/8/1	0.49	0.38	0.11	0.25	0.77	1.09	64.3	82.8	127
	C/D/8/2	0.50	0.31	0.20	0.19	0.87	1.22	61.9	102	178
	C/D/8/3	0.40	0.27	0.13	0.26	0.73	1.04	77.4	114	122
	C/D/8/4	0.57	0.52	0.04	0.38	0.97	1.37	55.3	60.1	84.0
	C/D/8/5	0.50	0.41	0.09	0.29	0.83	1.17	63.0	76.6	112
C/Z/30/4 0.24 0.23 0.01 0.10 0.56 1.14 0.28 0.60 1.14	C/Z/8/1 C/Z/8/2 C/Z/8/3 C/Z/8/4 C/Z/8/5 C/Z/16/1 C/Z/16/2 C/Z/16/3 C/Z/16/4 C/Z/16/5 C/Z/30/1 C/Z/30/2 C/Z/30/3 C/Z/30/4	0.13 0.13 0.17 0.15 0.13 0.12 0.11 0.15 0.12 0.20 0.26 0.26 0.27 0.24	0.11 0.13 0.18 0.14 0.13 0.13 0.13 0.11 0.16 0.10 0.21 0.26 0.25 0.25 0.23	0.01 0.00 -0.01 0.01 0.01 -0.01 -0.02 0.02 -0.01 0.00 0.01 0.02 0.01	0.09 0.12 0.14 0.11 0.11 0.09 0.07 0.12 0.10 0.14 0.21 0.20 0.14 0.19	0.34 0.30 0.40 0.36 0.33 0.32 0.38 0.39 0.34 0.50 0.53 0.59 0.66 0.55	1.42 0.58 0.73 0.64 0.62 0.60 0.90 0.70 0.61 0.84 1.20 1.08 1.57	187 179 135 154 175 197 209 160 192 117 86.9 84.5 82.1 92 8	206 178 128 166 187 185 217 143 230 112 86.4 87.8 88.8 96.0	250 194 171 204 213 233 338 185 232 158 106 114 137 114

Tabelle 4.18:	Ergebnisse der Lochleibu zur Faserrichtung	ngsversuche bei einer	Belastung unter	einem	Winkel
	(Holzart: Buche	Stabdübeldurchmess	ser d = 8 mm)		

Versuch	d	σ	F _{max}	f _h	Bruchursache
Nr.	[mm]	[kg/m ³]	[kN]	[N/mm ²]	
A1/30/8/1	8	676	8.38	65.5	L
A1/30/8/2	8	750	7.66	59.8	L
A1/30/8/3	8	744	10.1	79.1	L
A1/30/8/4	8	652	5.54	43.3	L
A1/30/8/5	8	674	5.60	43.8	L
A1/45/8/1 A1/45/8/2 A1/45/8/3 A1/45/8/4 A1/45/8/5	8 8 8 8	700 698 651 651 651	5.89 7.05 6.26 5.23 5.71	46.0 55.1 48.9 40.9 44.6	L L L L L
A1/60/8/1	8	746	9.42	73.6	L
A1/60/8/2	8	698	6.97	54.5	L
A1/60/8/3	8	696	8.93	69.7	L
A1/60/8/4	8	651	7.15	55.8	L
A1/60/8/5	8	698	6.52	50.9	L
A1/90/8/1 A1/90/8/2 A1/90/8/3 A1/90/8/4 A1/90/8/5	8 8 8 8	698 698 749 739 698	8.62 7.80 10.0 10.7 8.97	67.4 60.9 78.4 83.9 70.1	L L S(4,8) L

S(.,.) L

Spalten bei .,. mm Verformung Lochleibungsversagen (Verformung größer 5mm)

Ergebnisse der Lochleibungsversuche bei einer Belastung unter einem Winkel zur Faserrichtung (Holzart: Buche Stabdübeldurchmesser d = 16 mm) Tabelle 4.19:

Versuch	d	d σ F _{max}		f _h	Bruchursache
Nr.	[mm]	[mm] [kg/m ³] [kN]		[N/mm ²]	
A1/30/16/1	16	733	28.4	55.5	L
A1/30/16/2	16	724	27.1	53.0	L
A1/30/16/3	16	736	27.4	53.5	L
A1/30/16/4	16	727	26.8	52.3	L
A1/30/16/5	16	780	27.0	52.7	L
A1/45/16/1	16	716	26.8	52.3	L
A1/45/16/2	16	692	21.1	41.3	S(4,9)
A1/45/16/3	16	709	22.9	44.7	L
A1/45/16/4	16	701	21.1	41.2	L
A1/45/16/5	16	722	27.4	53.5	L
A1/60/16/1	16	737	22.7	44.4	L
A1/60/16/2	16	713	22.1	43.1	L
A1/60/16/3	16	698	22.0	42.8	L
A1/60/16/4	16	726	22.4	43.8	L
A1/60/16/5	16	758	24.9	48.7	L
A1/90/16/1	16	751	24.5	47.8	L
A1/90/16/2	16	721	24.4	47.6	L
A1/90/16/3	16	719	24.6	48.0	L
A1/90/16/4	16	708	25.1	48.9	L
A1/90/16/5	16	698	26.5	51.8	L

S(.,.) L

Spalten bei .,. mm Verformung Lochleibungsversagen (Verformung größer 5mm)

Tabelle 4.20:Ergebnisse der Lochleibungsversuche bei einer Belastung unter einem Winkel
zur Faserrichtung
(Holzart: BucheStabdübeldurchmesser d = 30 mm)

Versuch	d	σ	F _{max}	f _h	Bruchursache
Nr.	[mm]	[kg/m ³]	[kN]	[N/mm ²]	
A1/30/30/1	30	729	83.0	46.1	L
A1/30/30/2	30	722	93.7	52.0	S(2,7)
A1/30/30/3	30	731	86.5	48.1	L
A1/30/30/4	30	675	84.5	46.9	L
A1/30/30/5	30	724	98.4	54.6	L
A1/45/30/1	30	711	120	66.4	L
A1/45/30/2	30	727	83.6	46.5	L
A1/45/30/4	30	734	76.0	42.2	L
A1/45/30/5	30	727	82.7	45.9	L
A1/60/30/1 A1/60/30/2 A1/60/30/3 A1/60/30/4 A1/60/30/5	30 30 30 30 30 30	700 710 707 764 718	71.8 68.1 83.3 81.3 67.6	39.9 37.9 46.3 45.1 37.6	L L L L L
A1/90/30/1	30	784	63.8	35.5	L
A1/90/30/2	30	787	66.6	37.0	L
A1/90/30/3	30	745	74.5	41.4	L
A1/90/30/4	30	734	72.7	40.4	L
A1/90/30/5	30	721	69.2	38.4	L

Tabelle 4.21:Ergebnisse der Lochleibungsversuche bei einer Belastung unter einem Winkel
zur Faserrichtung
(Holzart: BongossiStabdübeldurchmesser d = 8 mm)

Versuch	d	σ	F _{max}	f _h	Bruchursache
Nr.	[mm]	[kg/m ³]	[kN]	[N/mm ²]	
C/90/8/1	8	1070	12.1	94.9	L
C/90/8/2	8	1080	13.2	103	L
C/90/8/3	8	1070	12.6	98.4	S(4,6)
C/90/8/4	8	1080	12.1	94.3	L
C/90/8/5	8	1030	12.4	96.8	L

S(.,.) L Spalten bei .,. mm Verformung

Lochleibungsversagen (Verformung größer 5mm)

Tabelle 4.22:	Ergebnisse der Lochlei	bungsversuche bei einer Belastung unter einem Winkel
	zur Faserrichtung	-
	(Holzart: Bongossi	Stabdübeldurchmesser $d = 16 \text{ mm}$)

Versuch Nr.	d [mm]	σ [kg/m ³]	F _{max} [kN]	f _h [N/mm ²]	Bruchursache
C/30/16/1 C/30/16/2 C/30/16/3 C/30/16/4 C/30/16/5	16 16 16 16 16	1120 1150 1140 1140 1050	43.2 41.9 40.1 41.2 51.4	84.4 81.8 78.4 80.5 101	L L S(4,9) L
C/45/16/1 C/45/16/2 C/45/16/3 C/45/16/4 C/45/16/5	16 16 16 16 16	1080 1120 1120 1120 1120 1130	49.9 41.8 44.7 42.5 43.4	97.4 81.6 87.2 83.1 84.8	L L L L
C/60/16/1 C/60/16/2 C/60/16/3 C/60/16/4 C/60/16/5	16 16 16 16 16	1060 1060 1070 1060 1060	45.3 46.2 47.1 47.1 49.7	88.5 90.3 92.0 92.1 97.1	L L L L L
C/90/16/1 C/90/16/2 C/90/16/3 C/90/16/4 C/90/16/5	16 16 16 16 16	1060 1110 1120 1110 1100	56.1 49.5 50.7 37.9 42.9	110 96.6 98.9 74.0 83.9	L L L L L
	1			1	1

Tabelle 4.23:Ergebnisse der Lochleibungsversuche bei einer Belastung unter einem Winkel
zur Faserrichtung
(Holzart: BongossiStabdübeldurchmesser d = 30 mm)

Versuch	d	σ	F _{max}	f _h	Bruchursache
Nr.	[mm]	[kg/m ³]	[kN]	[N/mm ²]	
C/90/30/1 C/90/30/2 C/90/30/3 C/90/30/4 C/90/30/5	30 30 30 30 30 30	1170 1190 1160 1110 1170	107 113 109 116 127	59.3 62.6 60.4 64.4 70.4	S(4,8) L L L L

Spalten bei .,. mm Verformung

Lochleibungsversagen (Verformung größer 5mm)

Tabelle 4.24:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung unter einem Winkel zur Faserrichtung
(Holzart: BucheStabdübeldurchmesser: d = 8mm)

Versuch Nr.	w _i [mm]	^w i,mod [mm]	w _s [mm]	w _e [mm]	^W 06 [mm]	w ₀₈ [mm]	K _i [N/mm ³]	K _s [N/mm ³]	K _e [N/mm ³]
A1/30/8/1	1.26	0.67	0.58	0.45	1.45	2.40	24.9	46.4	68.8
A1/30/8/2	1.51	0.64	0.87	0.42	1.63	2.10	20.6	48.8	71.4
A1/30/8/3	1.12	0.55	0.56	0.53	1.39	1.95	28.0	56.7	61.5
A1/30/8/4	1.51	1.09	0.42	0.51	1.19	1.70	20.7	28.6	60.0
A1/30/8/5	1.54	1.13	0.40	0.54	1.54	1.77	20.4	27.6	57.9
A1/45/8/1	1.67	1.54	0.12	0.66	1.79	2.14	18.8	20.3	49.0
A1/45/8/2	1.50	0.82	0.68	0.47	1.59	1.97	20.8	38.2	65.3
A1/45/8/3	2.34	0.83	1.51	0.45	2.28	2.78	13.3	37.6	69.6
A1/45/8/4	1.80	1.26	0.54	0.52	2.01	2.17	17.3	24.8	59.0
A1/45/8/5	1.58	1.10	0.48	0.51	1.70	1.95	19.8	28.5	59.1
A1/60/8/1	0.88	0.55	0.34	0.41	1.16	2.24	35.3	57.0	77.8
A1/60/8/2	1.15	0.69	0.47	0.44	1.22	1.72	27.1	45.5	69.7
A1/60/8/3	0.91	0.58	0.33	0.42	1.12	1.72	34.5	54.2	76.9
A1/60/8/4	1.14	0.85	0.29	0.42	0.00	2.11	27.5	36.9	73.0
A1/60/8/5	1.45	0.97	0.47	0.44	0.00	2.34	21.6	32.2	70.2
A1/90/8/1	0.72	0.61	0.10	0.37	1.04	2.26	43.7	51.1	86.2
A1/90/8/2	1.41	1.02	0.38	0.45	1.81	3.66	22.2	30.6	65.3
A1/90/8/3	0.85	0.64	0.21	0.41	1.42	2.65	36.7	48.8	76.2
A1/90/8/4	0.94	0.64	0.30	0.49	1.69	2.89	33.3	48.7	62.9
A1/90/8/5	0.75	0.59	0.15	0.46	1.00	2.05	42.0	52.5	83.6

Tabelle 4.25:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung unter einem Winkel zur Faserrichtung
(Holzart: BucheStabdübeldurchmesser: d = 16mm)

Versuch Nr.	w _i [mm]	w _{i,mod} [mm]	w _s [mm]	w _e [mm]	^W 06 [mm]	w ₀₈ [mm]	K _i [N/mm ³]	K _s [N/mm ³]	K _e [N/mm ³]
A1/30/16/1	0.71	0.40	0.31	0.31	1.05	1.65	27.6	49.2	67.2
A1/30/16/2	0.82	0.40	0.42	0.36	1.16	1.82	23.7	48.3	57.3
A1/30/16/3	0.87	0.48	0.39	0.39	1.23	1.93	22.4	40.4	51.7
A1/30/16/4	0.70	0.41	0.30	0.30	1.02	1.55	27.8	48.1	65.7
A1/30/16/5	0.71	0.44	0.27	0.27	0.98	1.49	27.5	44.2	74.8
A1/45/16/1	0.74	0.53	0.21	0.39	1.07	1.77	26.3	36.8	52.5
A1/45/16/2	0.94	0.76	0.18	0.39	1.13	1.72	20.8	25.7	44.4
A1/45/16/3	0.90	0.73	0.18	0.48	1.17	1.94	21.7	26.9	40.3
A1/45/16/4	0.82	0.68	0.14	0.47	1.08	1.88	23.8	28.7	41.7
A1/45/16/5	0.65	0.52	0.13	0.36	1.02	1.73	30.1	37.7	54.0
									-
A1/60/16/1	0.94	0.71	0.23	0.31	1.31	2.38	20.8	27.5	60.9
A1/60/16/2	0.70	0.61	0.09	0.54	0.87	2.00	27.9	32.0	41.9
A1/60/16/3	0.79	0.61	0.18	0.44	1.06	2.00	24.7	31.8	40.9
A1/60/16/4	0.72	0.58	0.13	0.50	1.03	2.06	27.3	33.6	38.5
A1/60/16/5	0.63	0.55	0.09	0.26	1.15	2.59	30.8	35.6	63.1
			0.02	0.20			2010		
A1/90/16/1	1.34	1.01	0.34	0.61	1.77	3.05	14.6	19.4	31.7
A1/90/16/2	1.15	0.83	0.32	0.78	1.78	3.33	17.0	23.6	34.0
A1/90/16/3	1.05	0.71	0.34	0.47	1.71	3.30	18.6	27.4	43.4
A1/90/16/4	1.37	1.15	0.22	0.54	1.54	3.25	14.3	16.9	41.9
A1/90/16/5	0.94	0.58	0.36	0.35	1 41	3.04	20.7	33.7	56.2
			0.50	0.55	****	5.04	20.7	55.7	

Tabelle 4.26:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung unter einem Winkel zur Faserrichtung
(Holzart: BucheStabdübeldurchmesser: d = 30mm)

Versuch Nr.	w _i [mm]	w _{i,mod} [mm]	w _s [mm]	w _e [mm]	^w % [mm]	w ₀₈ [mm]	K _i [N/mm ³]	K _s [N/mm ³]	K _e [N/mm ³]
A1/30/30/1	0.88	0.53	0.35	0.36	1.13	1.50	20.3	33.7	49.7
A1/30/30/2	0.61	0.42	0.19	0.37	0.97	1.45	29.0	41.9	48.6
A1/30/30/3	0.50	0.43	0.07	0.36	0.76	1,21	35.6	41.4	49.0
A1/30/30/4	· 0.53	0.40	0.12	0.34	0.85	1.64	33.9	44.1	51.6
A1/30/30/5	0.52	0.40	0.12	0.27	0.95	1.95	34.1	44.3	57.7
A1/45/20/1	0.64	0.49	0.16	0.42	0.09	1.02	277	27.2	12.0
A1/45/30/1	0.04	0.46	0.10	0.42	0.98	1,90	10.9	37.2	45.0
A1/43/30/2	1.00	0.51	0.39	0.56	1.20	1.91	19.0	34.9	47.9
A1/45/30/4	1.08	0.00	0.41	0.54	1.55	2.20	10.5	20.0	29.0
A1/45/50/5	0.90	0.47	0.45	0.47	1,45	1,99	19.0	51.1	.50.9
A1/60/30/1	0.95	0.58	0.37	0.44	1.20	2.18	18.7	30.7	42.0
A1/60/30/2	1.15	0.78	0.37	0.53	1.47	2.50	15.5	22.9	34.5
A1/60/30/3	0.67	0.66	0.01	0.55	0.94	2.02	26.7	27.0	33.2
A1/60/30/4	0.73	0.50	0.23	0.44	1.07	2.21	24.4	35.5	40.2
A1/60/30/5	0.99	0.84	0.14	0.60	1.26	2.47	18.0	21.1	27.3
Δ1/90/30/1	0.35	0.20	0.06	0.15	0.69	2 27	378	46 1	90.6
$\Delta 1/90/30/1$	0.35	0.29	0.00	0.15	0.00	2.57	43.2	513	90.0
$\Delta 1/90/30/2$	0.51	0.20	0.05	0.13	0.67	1.00	46.1	61.8	63.5
Δ1/90/30/3	0.23	0.22	0.07	0.21	0.00	2.36	211	20.6	44.7
Δ1/00/30/4	0.45	0.45	0.02	0.25	0.97	2.30	30.5	47.0 79.4	20.7
	0.17	0.47	-0.05	0.54	0.75	£ ل., <i>ن</i>		20.7	37.1

Tabelle 4.27:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung unter einem Winkel zur Faserrichtung
(Holzart: BongossiStabdübeldurchmesser: d = 8mm)

Versuch	w _i	w _{i,mod}	w _s	w _e	^w 06	w ₀₈	K _i	K _s	K _e
Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm ³]	[N/mm ³]	[N/mm ³]
C/90/8/1	0.91	0.56	0.35	0.39	1.37	2.30	34.3	55.4	82.0
C/90/8/2	0.98	0.73	0.25	0.42	2.04	3.09	31.8	42.6	81.4
C/90/8/3	1.05	0.71	0.35	0.45	1.95	3.08	29.6	44.1	71.6
C/90/8/4	1.16	0.86	0.30	0.53	1.99	3.16	26.9	36.5	60.6
C/90/8/5	1.25	0.63	0.61	0.48	2.08	3.14	25.1	49.3	70.2

Tabelle 4.28:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung unter einem Winkel zur Faserrichtung
(Holzart: Bongossi Stabdübeldurchmesser: d = 16mm)

Versuch Nr.	w _i [mm]	w _{i,mod} [mm]	w _s [mm]	w _e [mm]	w ₀₆ [mm]	w ₀₈ [mm]	K _i [N/mm ³]	K _s [N/mm ³]	K _e [N/mm ³]
C/30/16/1	0.73	0.46	0.28	0.36	1.33	2.22	32.0	51.2	66.5
C/30/16/2	0.93	0.54	0.39	0.41	1.57	2.46	25.1	43.5	55.8
C/30/16/3	0.73	0.64	0.10	0.45	1.29	1.95	32.0	36.8	50.7
C/30/16/4	0.78	0.46	0.32	0.39	1.23	1.71	29.9	51.1	61.5
C/30/16/5	0.86	0.51	0.35	0.38	1.63	2.39	27.1	45.6	64.5
C/45/16/1	0.62	0.41	0.21	0.21	1 22	235	37.0	577	70.5
C/45/16/2	0.02	0.57	0.15	0.21	1.2.5	2.33	37.3	40.0	60.2
C/45/16/3	0.72	0.50	0.12	0.50	1.51	2.15	267	47.0	58.0
C/45/16/4	0.72	0.59	0.13	0.31	1.05	2.00	32.5	39.8	63.6
C/45/16/5	0.72	0.59	0.19	0.40	1.59	2.88	29.8	39.5	58.4
- / / / -									
C/60/16/1	0.53	0.43	0.10	0.33	1.19	2.22	44.0	54.6	69.0
C/60/16/2	0.60	0.43	0.16	0.32	1.28	2.53	39.3	54.1	74.3
C/60/16/3	0.93	0.48	0.45	0.27	1.69	2.95	25.1	49.1	84.3
C/60/16/4	0.45	0.40	0.05	0.24	1.18	2.52	52.2	59.3	85.0
C/60/16/5	0.88	0.55	0.33	0.42	1.82	2.93	26.6	42.8	57.2
C/90/16/1	0.44	0.37	0.07	0.39	1.93	3.44	53.0	62.8	63.3
C/90/16/2	0.94	0.63	0.30	0.47	2.38	3.63	25.0	37.0	52.3
C/90/16/3	0.81	0.69	0.12	0.38	2.12	3.51	28.9	34.1	53.9
C/90/16/4	1.02	0.72	0.31	0.46	2.12	3.51	22.9	32.7	47.7
C/90/16/5	0.99	0.63	0.36	0.39	2.22	3.57	23.8	37.4	55.1

Tabelle 4.29:Zusammenstellung der Einzelverschiebungsgrößen der Lochleibungsversuche
bei einer Belastung unter einem Winkel zur Faserrichtung
(Holzart: BongossiStabdübeldurchmesser: d = 30mm)

Versuch	w _i	w _{i,mod}	w _s	w _e	w ₀₆	w ₀₈	K _i	K _s	K _e
Nr.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm ³]	[N/mm ³]	[N/mm ³]
C/90/30/1	0.28	0.27	0.02	0.26	1.30	2.79	46.9	49.9	51.9
C/90/30/2	0.66	0.31	0.34	0.30	1.68	3.05	20.4	42.5	44.4
C/90/30/3	0.86	0.45	0.40	0.26	2.00	3.28	15.6	29.4	51.0
C/90/30/4	0.82	0.42	0.39	0.25	1.89	3.21	16.4	31.7	55.1
C/90/30/5	0.61	0.52	0.09	0.28	2.01	3.26	22.0	25.7	47.2

Tabelle 6.1a: Versuchsprogramm

Zug - und Druckscherversuche mit nichtversetzter Stabdübelanordnung (Stabdübel aus St 37-K)

Laubholz Buche (A1)								
Durchmesser	$\lambda = 2$	$\lambda = 4$	$\lambda = 6$	$\lambda = 8$				
8	A1-Z 8/2/1-3 A1-D 8/2/1-3	A1-Z 8/4/1-3	A1-D 8/6/1-3	A1-Z 8/8/1-3				
16	A1-D 16/2/1-3	A1-D 16/4/1-3						
30	A1-D 30/2/1-3							
		Laubholz Eiche (A2)					
8	A2-Z 8/2/1-3 A2-D 8/2/1-3	A2-Z 8/4/1-3	A2-Z 8/6/1-3 A2-D 8/6/1-3	A2-Z 8/8/1-3				
16	A2-Z 16/2/1-3	A2-Z 16/4/1-3						
30	A2-D 30/2/1-3							
		Laubholz Merbau (l	B1)					
8	B1-Z 8/2/1-3 B1-D 8/2/1-3	B1-Z 8/4/1-3	B1-D 8/6/1-3	B1-Z 8/8/1-3				
16	B1-D 16/2/1-3	B1-D 16/4/1-3						
30	B1-D 30/2/1-3							
		Laubholz Afzelia (B	2)					
8	B2-Z 8/2/1-3 B2-D 8/2/1-3		B2-D 8/6/1-3					
16	B2-Z 16/2/1-3	B2-Z 16/4/1-3						
30	B2-D 30/2/1-3							
		Laubholz Bongossi	(C)					
8	C-Z 8/2/1-3 C-D 8/2/1-3	C-Z 8/4/1-3	C/D 8/6/1-3					
16	C-D 16/2/1-3			ſ				
30	C-D 30/2/1-3							

 Σ 111 Versuche

Tabelle 6.1b:Versuchsprogramm

Zug - und Druckscherversuche mit Stabdübel unterschiedlicher Stahlgüte und Oberflächenbeschaffenheit (nicht versetzte Stabdübelanordnung)

Durchmesser	$\lambda = 2$	$\lambda = 4$	$\lambda = 6$	$\lambda = 8$				
Automate	enstahl 9 S 20 K (blank) Holza	Holzart: Bongossi (C)					
8		AS/C-Z 8/4/1-3	AS/C-Z 8/6/1-3	AS/C-Z 8/8/1-3				
M - Gewi	ndestangen Güte 8.8	Holzart: Buche (A1) u. Bongossi (C)						
8	M/A1-Z 8/2/1-3	M/A1-Z 8/4/1-3	M/A1-Z 8/6/1-3	M/A1-Z 8/8/1-3				
16	M/C-D 16/2/1-3		M/C-D 16/6/1-3	M/C-D 16/8/1-3				

Σ 30 Versuche

Tabelle 6.2: Abmessungen der Zug- und Druckscherkörper

Stabdübel -durch-	Schlank- heitsgrad	Mittelholz -dicke	Seitenholz -dicke	Breite	Verbindungsmittelabstände			tände (mm	(mm)		
d	$\lambda = \frac{t_2}{d}$	t ₂	t ₁	Ь	unterei	nander	Hirnho	olzende	Rand		
(mm)		(mm)	(mm)	(mm)	a ₁ = 5d	a ₂ = 3d	beanspr. $a_{3,t} = 6d$	nicht beanspr. a _{3,c} = 3d	a ₄ = 3d		
8	2 4 6 8	16 32 48 64	12 24 36 48	75 75 75 75	40 40 40 40	25 25 25 25 25	50 50 50 50	25 25 25 -	25 25 25 25 25		
16	2 4 6	32 64 96	24 48 72	150 150 150	80 80 80	50 50 50	100 100 -	50 50 50	50 50 50		
30	2 6	60 180	45 135	270 270	150 150	90 90	-	90 90	90 90		

oberer Anschluss

unterer Anschluss

Zugscherversuch A1-Z 8/2/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche A1-Z 8/2

oberer Anschluss

unterer Anschluss

Zugscherversuch A1-Z 8/4/1

oberer Anschluss

unterer Anschluss

Zugscherversuch A1-Z 8/4/2

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche A1-Z 8/4

Zugscherversuch A1-Z 8/4/3

oberer Anschluss

unterer Anschluss

Zugscherversuch A1-Z 8/8/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

unterer Anschluss

Zugscherversuch A1-Z 8/8/2

Last-Verschiebungsdiagramme Zugscherversuche A1-Z 8/8

oberer Anschluss

unterer Anschluss

Zugscherversuch A2-Z 8/2/1

oberer Anschluss

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche A2-Z 8/2

oberer Anschluss

unferer Anschluss

Zugscherversuch A2-Z 8/4/1

oberer Anschluss

•

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche A2-Z 8/4

oberer Anschluss

unterer Anschluss

Zugscherversuch A2-Z 8/6/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

unterer Anschluss

```
Zugscherversuch A2-Z 8/6/2
```

Last-Verschiebungsdiagramme Zugscherversuche A2-Z 8/6

oberer Anschluss

unterer Anschluss

Zugscherversuch A2-Z 8/8/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

unterer Anschluss

Zugscherversuch A2-Z 8/8/2

Last-Verschiebungsdiagramme Zugscherversuche A2-Z 8/8

• .

oberer Anschluss

۰.

unterer Anschluss

Zugscherversuch A2-Z 16/2/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

unterer Anschluss

```
Zugscherversuch A2-Z 16/2/2
```

Last-Verschiebungsdiagramme Zugscherversuche A2-Z 16/2

• •

oberer Anschluss

• •

unterer Anschluss

Zugscherversuch A2-Z 16/4/1

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche A2-Z 16/4

2

oberer Anschluss

unferer Anschluss

Zugscherversuch B1-Z 8/2/1

oberer Anschluss

Zugscherversuch B1-Z 8/2/2

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche B1-Z 8/2

oberer Anschluss

unterer Anschluss

Zugscherversuch B1-Z 8/4/1

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche B1-Z 8/4

oberer Anschluss

unterer Anschluss

Zugscherversuch B1-Z 8/8/1

oberer Anschluss

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche B1-Z 8/8

.

oberer Anschluss

ł

unterer Anschluss

Zugscherversuch B2-Z 8/2/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

Zugscherversuch B2-Z 8/2/2

Last-Verschiebungsdiagramme Zugscherversuche B2-Z 8/2

• ,

oberer Anschluss

unterer Anschluss

Zugscherversuch B2-Z 16/2/1

unterer Anschluss

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche B2-Z 16/2

• ,

oberer Anschluss

unterer Anschluss

Zugscherversuch B2-Z 18/4/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche B2-Z 16/4

è

oberer Anschluss

unterer Anschluss

Zugscherversuch C-Z 8/2/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

unterer Anschluss

```
Zugscherversuch C-Z 8/2/2
```

Last-Verschiebungsdiagramme Zugscherversuche C-Z 8/2

oberer Anschluss

unterer Anschluss

Zugscherversuch C-Z 8/4/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche C-Z 8/4

oberer Anschluss

unterer Anschluss

Zugscherversuch AS/C-Z 8/4/1

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche AS/C-Z 8/4

oberer Anschluss

unterer Anschluss

Zugscherversuch AS/C-Z 8/6/1

oberer Anschluss

Zugscherversuch AS/C-Z 8/6/2

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche AS/C-Z 8/6

oberer Anschluss

unterer Anschluss

Zugscherversuch AS/C-Z 8/8/1

oberer Anschluss

Zugscherversuch AS/C-Z 8/8/2

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche AS/C-Z 8/8

oberer Anschluss

unterer Anschluss

Zugscherversuch M/A1-Z 8/2/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche M/A1-Z 8/2

Zugscherversuch M/A1-Z 8/2/2

oberer Anschluss

unterer Anschluss

Zugscherversuch M/A1-Z 8/4/1

oberer Anschluss

unterer Anschluss

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche M/A1-Z 8/4

Anlage 86

oberer Anschluss

unterer Anschluss

Zugscherversuch M/A1-Z 8/6/1

oberer Anschluss

unterer Anschluss

Zugscherversuch M/A1-Z 8/6/2

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche M/A1-Z 8/6

Anlage 87

oberer Anschluss

unterer Anschluss

Zugscherversuch M/A1-Z 8/8/1

oberer Anschluss

unterer Anschluss

Last-Verschiebungsdiagramme Zugscherversuche M/A1-Z 8/8

Last-Verschiebungsdiagramme Druckscherversuche A1-D 16/4

Last-Verschiebungsdiagramme Druckscherversuche B1-D 8/2

Last-Verschiebungsdiagramme Druckscherversuche B1-D 8/6

Last-Verschiebungsdiagramme Druckscherversuche B1-D 16/2

Last-Verschiebungsdiagramme Druckscherversuche B1-D 16/4

Anlage 100

Last-Verschiebungsdiagramme Druckscherversuche B1-D 30/2

Last-Verschiebungsdiagramme Druckscherversuche B2-D 8/2

Anlage 101

ž

Last-Verschiebungsdiagramme Druckscherversuche B2-D 30/2

Last-Verschiebungsdiagramme Druckscherversuche C-D 16/2

Last-Verschiebungsdiagramme Druckscherversuche C-D 30/2

Last-Verschiebungsdiagramme Druckscherversuche M/C-D 16/2

Tabelle 6.4:	Zusammenstellung der Einzelergebnisse der Zug-
	scherversuche mit Buche (A1) und Eiche (A2)
	(Stabdübel aus St 37-K)

Versuch	d [mm]	λ	F _{u,s} [kN]	F _{1,5} [kN]	zul N _{st} [kN]	Bruch- ursache
A1-Z 8/2/1	8	2	6,54	6,03	1,25	S(1,5)
A1-Z 8/2/2	8	2	5,97	2,73	1,25	S(1,5)
A1-Z 8/2/3	8	2	5,86	5,39	1,25	S(2,3)
A1-Z 8/4/1	8	4	10,7	7,76	2,50	S(5,5)
A1-Z 8/4/2	8	4	10,4	7,70	2,50	S(5,0)
A1-Z 8/4/3	8	4	11,3	7,35	2,50	S(9,5)
A1-Z 8/8/1	8	8	18,2	10,7	3,84	S(12,0)
A1-Z 8/8/2	8	8	18,9	9,99	3,84	L
A1-Z 8/8/3	8	8	20,9	11,4	3,84	L
A2-Z 8/2/1	8	2	6,56	5,97	1,25	S(2,5)
A2-Z 8/2/2	8	2	7,04	6,22	1,25	S(3,0)
A2-Z 8/2/3	8	2	6,97	5,90	1,25	S(4,0)
A2-Z 8/4/1	8	4	10,4	8,07	2,50	S(4,0)
A2-Z 8/4/2	8	4	10,8	7,99	2,50	S(4,5)
A2-Z 8/4/3	8	4	12,9	8,90	2,50	S(8,0)
A2-Z 8/6/1	8	6	15,7	9,57	3,74	S(13,0)
A2-Z 8/6/2	8	6	12,5	7,75	3,74	S(9,0)
A2-Z 8/6/3	8	6	13,2	8,11	3,74	S(8,5)
A2-Z 8/8/1	8	8	16,4	9,48	3,84	S(7,5)
A2-Z 8/8/2	8	8	14,5	9,75	3,84	S(5,2)
A2-Z 8/8/3	8	8	17,0	9,34	3,84	S(11,0)
A2-Z 16/2/1	16	2	20,6	-	4,99	S(1,4)
A2-Z 16/2/2	16	2	15,2		4,99	S(1,0)
A2-Z 16/2/3	16	2	14,3		4,99	S(0,5)
A2-Z 16/4/1	16	4	29,9	27,1	9,98	S(1,5)
A2-Z 16/4/2	16	4	42,3	27,8	9,98	S(6,0)
A2-Z 16/4/3	16	4	34,7	28,6	9,98	S(2,5)

S(.,.) L

Tabelle 6.5:

Zusammenstellung der Einzelergebnisse der Zug-scherversuche mit Merbau (B1) und Afzelia (B2) (Stabdübel aus St 37-K)

Versuch	d [mm]	λ	F _{u,s} [kN]	F _{1,5} [kN]	zul N _{st} [kN]	Bruch- ursache
B1-Z 8/4/1	8	4	9,79	8,69	3,23	S(2,0)
B1-Z 8/4/2	8	4	10,2	9,18	3,23	S(2,0)
B1-Z 8/4/3	8	4	9,76	8,95	3,23	S(2,0)
B1-Z 8/2/1	8	2	6,15	-	1,61	S(1,3)
B1-Z 8/2/2	8	2	6,75		1,61	S(0,9)
B1-Z 8/2/3	8	2	7,15		1,61	S(1,2)
B1-Z 8/8/1	8	8	15,6	12,1	4,16	S(5,0)
B1-Z 8/8/2	8	8	14,9	12,0	4,16	S(4,0)
B1-Z 8/8/3	8	8	15,8	11,7	4,16	S(6,5)
B2-Z 8/2/1	8	2	7,19	7,10	1,61	S(1,4)
B2-Z 8/2/2	8	2	7,23		1,61	S(1,5)
B2-Z 8/2/3	8	2	7,02		1,61	S(1,3)
B2-Z 16/4/1 B2-Z 16/4/2 B2-Z 16/4/3	16 16 16	4 4 4	43,4 42,7 45,6	31,5 32,0 31,5	12,9 12,9 12,9	S(4,3) S(5,2)
B2-Z 16/2/1	16	2	24,4	0,00	6,45	S(1,0)
B2-Z 16/2/2	16	2	23,8	11,6	6,45	S(1,1)
B2-Z 16/2/3	16	2	25,0	0,00	6,45	S(1,3)

S(.,.) L

Zusammenstellung der Einzelergebnisse der Druck-scherversuche mit Bongossi (C) (Stabdübel aus St 37-K) Tabelle 6.6:

Versuch	d [mm]	λ	F _{u,s} [kN]	F _{1,5} [kN]	zul N _{st} [kN]	Bruch- ursache
C-Z 8/2/1 C-Z 8/2/2 C-Z 8/2/3	8 8 8	2 2 2	9,63 11,0 11,3	10,4 10,4	2,50 2,50 2,50	S(1,0) S(1,8) S(2,5)
C-Z 8/4/1 C-Z 8/4/2 C-Z 8/4/3	8 8 8	4 4 4	15,2 16,2 14,0	13,2 13,5 13,5	4,99 4,99 4,99	S(2,8) S(4,5) S(1,5)

Zusammenstellung der Einzelergebnisse der Zug-scherversuche mit Bongossi (C) (Stabdübel aus Automatenstahl 9 S 20 K) Tabelle 6.7:

Versuch	d [mm]	λ	F _{u,s} [kN]	F _{1,5} [kN]	zul N _{st} [kN]	Bruch- ursache
AS/C-Z 8/6/1	8	6	21,3	15,4	5,12	S(6,5)
AS/C-Z 8/6/2	8	6	15,8	14,0	5,12	S(5,5)
AS/C-Z 8/6/3	8	6	20,6	15,6	5,12	S(6,2)
AS/C-Z 8/4/1	8	4	14,4	14,0	4,99	S(1,5)
AS/C-Z 8/4/2	8	4	14,9	14,6	4,99	S(2,0)
AS/C-Z 8/4/3	8	4	17,0	15,0	4,99	S(3,5)
AS/C-Z 8/8/1	8	8	20,9	15,3	5,12	S(7,0)
AS/C-Z 8/8/2	8	8	19,0	15,7	5,12	S(5,0)
AS/C-Z 8/8/3	8	8	19,6	15,7	5,12	S(7,2)

S(.,.) L

						
Versuch	d [mm]	λ	F _{u,s} [kN]	F _{1,5} [kN]	zul N _{st} [kN]	Bruch- ursache
M/A1-Z 8/2/1	8	2	8,53	6,05	1,25	S(4,5)
M/A1-Z 8/2/2	8	2	7,61	6,02	1,25	S(2,7)
M/A1-Z 8/2/3	8	2	7,61	5,67	1,25	S(2,3)
M/A1-Z 8/4/1	8	4	12,6	6,88	2,50	S(6,5)
M/A1-Z 8/4/2	8	4	15,0	7,00	2,50	S(10,0)
M/A1-Z 8/4/3	8	4	15,5	6,60	2,50	L
M/A1-Z 8/6/1	8	6	20,0	7,73	3,74	L
M/A1-Z 8/6/2	8	6	19,8	7,76	3,74	L
M/A1-Z 8/6/3	8	6	20,2	7,81	3,74	S(13,0)
M/A1-Z 8/8/1	8	8	22,1	6,83	3,84	L
M/A1-Z 8/8/2	8	8	22,3	7,97	3,84	L
M/A1-Z 8/8/3	8	8	20,9	7,43	3,84	L
M/C-D 16/2/1	16	2	42,0	33,7	9,98	S(4,0)
M/C-D 16/2/2	16	2	38,8	34,4	9,98	S(3,5)
M/C-D 16/2/3	16	2	41,9	33,2	9,98	S(3,0)
M/C-D 16/6/1	16	6	87,2	36,3	20,8	L
M/C-D 16/6/2	16	6	86,6	35,1	20,8	L
M/C-D 16/6/3	16	6	89,7	37,9	20,8	L
M/C-D 16/8/1	16	8	96,8	36,2	20,5	L
M/C-D 16/8/2	16	8	105	39,7	20,5	L
M/C-D 16/8/3	16	8	131	38,3	20,5	L

Tabelle 6.8:

Zusammenstellung der Einzelergebnisse der Zug- und Druckscherversuche mit Buche (A1) und Bongossi (C) (Gewindestangen Stahlgüte 8.8)

S(.,.) L

	T	· ····	y		r ·	r
Versuch	d [mm]	λ	F _{u,s} [kN]	F _{1,5} [kN]	zul N _{st} [kN]	Bruch- ursache
A1-D 8/2/1	8	2	8,08	7,51	1,25	S(2,5)
A1-D 8/2/2	8	2	8,17	7,54	1,25	S(3,0)
A1-D 8/2/3	8	2	7,86	7,44	1,25	S(2,5)
A1-D 8/6/1	8	6	17,5	9,03	3,74	S(13,0)
A1-D 8/6/2	8	6	21,8	8,89	3,74	L
A1-D 8/6/3	8	6	21,6	9,26	3,74	L
A1-D 16/2/1	16	2	31,5	25,8	4,99	S(4,5)
A1-D 16/2/2	16	2	23,4	20,9	4,99	S(2,0)
A1-D 16/2/3	16	2	21,2	20,7	4,99	S(1,5)
A1-D 16/4/1	16	4	61,7	32,1	9,98	L
A1-D 16/4/2	16	4	49,7	30,4	9,98	S(14,0)
A1-D 16/4/3	16	4	46,3	29,9	9,98	L
A1-D 30/2/1	30	2	114	88,3	17,6	S(8,0)
A1-D 30/2/2	30	2	111	86,1	17,6	S(10,7)
A1-D 30/2/3	30	2	108	82,4	17,6	S(9,7)
A2-D 8/2/1	8	2	6,68	6,47	1,25	S(3,2)
A2-D 8/2/2	8	2	6,84	6,49	1,25	S(2,9)
A2-D 8/2/3	8	2	6,87	6,60	1,25	S(2,8)
A2-D 8/6/1	8	6	13,8	8,61	3,74	S(8,0)
A2-D 8/6/2	8	6	11,8	8,35	3,74	S(7,0)
A2-D 8/6/3	8	6	13,7	9,81	3,74	S(7,0)
A2-D 30/2/1	30	2	74,1	68,0	17,6	S(2,5)
A2-D 30/2/2	30	2	75,5	72,7	17,6	S(2,0)
A2-D 30/2/3	30	2	79,4	72,2	17,6	S(3,5)

Zusammenstellung der Einzelergebnisse der Druck-scherversuche mit Buche (A1) und Eiche (A2) (Stabdübel aus St 37-K)

S(.,.) L

Tabelle 6.9:

Tabelle 6.10:

Zusammenstellung der Einzelergebnisse der Druck-scherversuche mit Merbau (B1) und Afzelia (B2) (Stabdübel aus St 37-K)

Versuch	d [mm]	λ	F _{u,s} [kN]	F _{1,5} [kN]	zul N _{st} [kN]	Bruch- ursache
B1-D 8/2/1	8	2	6,33	-	1,61	S(0,7)
B1-D 8/2/2	8	2	5,28		1,61	S(0,6)
B1-D 8/2/3	8	2	6,45		1,61	S(0,7)
B1-D 8/6/1	8	6	15,6	13,7	4,16	S(4,0)
B1-D 8/6/2	8	6	15,9	14,2	4,16	S(4,0)
B1-D 8/6/3	8	6	15,7	14,2	4,16	S(4,5)
B1-D 16/2/1	16	2	26,4	26,3	6,45	S(2,0)
B1-D 16/2/2	16	2	26,1	25,7	6,45	S(1,5)
B1-D 16/2/3	16	2	26,9	26,9	6,45	S(1,5)
B1-D 16/4/1	16	4	39,1	38,8	12,9	S(1,5)
B1-D 16/4/2	16	4	39,6	37,9	12,9	S(2,0)
B1-D 16/4/3	16	4	38,6	38,4	12,9	S(1,5)
B1-D 30/2/1	30	2	93,3	93,3	22,7	S(1,5)
B1-D 30/2/2	30	2	96,7	94,1	22,7	S(1,7)
B1-D 30/2/3	30	2	94,0	92,8	22,7	S(1,7)
B2-D 8/2/1	8	2	6,97	•	1,61	S(1,3)
B2-D 8/2/2	8	2	6,85		1,61	S(1,2)
B2-D 8/2/3	8	2	6,87		1,61	S(1,4)
B2-D 8/6/1	8	6	14,5	10,9	4,16	S(5,5)
B2-D 8/6/2	8	6	15,1	11,6	4,16	S(5,0)
B2-D 8/6/3	8	6	15,4	11,0	4,16	S(6,0)
B2-D 30/2/1	30	2	85,2	81,4	22,7	S(1,7)
B2-D 30/2/2	30	2	87,9	86,2	22,7	S(1,6)
B2-D 30/2/3	30	2	85,5	81,3	22,7	S(1,9)

S(.,.) L

	(Stabuuber	aus St.	5/•K)			
Versuc	h d [mm]	λ	F _{u,s} [kN]	F _{1,5} [kN]	zul N _{st} [kN]	Bruch- ursache
C-D 8/2 C-D 8/2 C-D 8/2	/1 8 /2 8 /3 8	2 2 2	10,7 12,0 12,4	11,3 11,5	2,50 2,50 2,50	S(1,0) S(2,5) S(3,0)
C-D 8/6 C-D 8/6 C-D 8/6	1 8 1/2 8 1/3 8	6 6 6	24,5 24,6 25,4	15,8 16,5 16,8	5,12 5,12 5,12 5,12	S(12,3) S(11,5) S(9,2)
C-D 16/2 C-D 16/2 C-D 16/2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2 2	45,4 39,7 43,4	39,7 37,9 40,4	9,98 9,98 9,98 9,98	S(3,0) S(3,5) S(2,7)
C-D 30/2 C-D 30/2 C-D 30/2	2/1 30 2/2 30 2/3 30	2 2 2	137 143 138	15,3 14,6 17,3	35,1 35,1 35,1	S(4,0) S(6,0) S(8,0)

Zusammenstellung der Einzelergebnisse der Druck-scherversuche mit Bongossi (C) (Stabdübel aus St 37-K) Tabelle 6.11:

S(.,.)	
LÚ	

Tabelle 6.12:Zusammenstellung der Einzelverschiebungsgrößen der
Zugscherversuche mit Buche (A1)
(Stabdübel aus St 37-K)

Versuch	Anschluß	v _i [mm]	V _{i,mod} [mm]	V _s [mm]	V _e [mm]	V _{06,mod} [mm]	V _{08,mod} [mm]	k _i [kN/mm]	k _s [kN/mm]
A1-Z 8/2/1 A1-Z 8/2/2 A1-Z 8/2/3	oben unten oben unten oben unten	0,39 0,47 0,54 0,41 0,53 0,58	0,36 0,44 0,54 0,41 0,57 0,64	0,03 0,02 0,00 0,00 -0,04 -0,06	0,20 0,23 0,25 0,21 0,23 0,24	0,48 0,64 0,63 0,49 0,67 0,75	0,79 1,13 1,04 0,73 1,12 1,19	3,90 3,23 2,78 3,64 2,82 2,59	4,19 3,38 2,78 3,67 2,63 2,34
A1-Z 8/4/1 A1-Z 8/4/2 A1-Z 8/4/3	oben unten oben unten oben unten	0,42 0,51 0,48 0,40 0,48 0,50	0,46 0,54 0,54 0,42 0,50 0,55	-0,03 -0,04 -0,05 -0,02 -0,02 -0,05	0,27 0,29 0,29 0,26 0,29 0,29	0,84 1,06 0,61 0,48 0,85 0,96	1,80 2,46 1,02 0,73 1,79 1,99	4,72 3,93 4,13 4,96 4,16 4,02	4,40 3,67 3,73 4,74 4,02 3,66
A1-Z 8/8/1 A1-Z 8/8/2 A1-Z 8/8/3	oben unten oben unten oben unten	0,88 0,81 0,56 0,68 0,49 0,43	1,01 0,93 0,65 0,77 0,53 0,47	-0,13 -0,11 -0,09 -0,09 -0,04 -0,04	0,47 0,45 0,33 0,40 0,46 0,43	1,78 1,58 1,96 2,20 1,57 1,87	5,12 3,98 6,03 6,28 5,88 6,73	4,56 4,93 5,40 4,39 6,16 6,92	3,97 4,32 4,63 3,90 5,69 6,32

Tabelle 6.13:	Zusammenstellung der Einzelverschiebungsgrößen der Zugscherversuche mit Eiche (A2) (Stabdübel aus St 37-K)	
Tabene 0.15:	Zugscherversuche mit Eiche (A2) (Stabdübel aus St 37-K)	

Versuch	Anschluß	V _i [mm]	V _{i,mod} [mm]	V _s [mm]	V _e [mm]	V _{06,mod} [mm]	V _{08,mod} [mm]	k _i [kN/mm]	k _s [kN/mm]
		()	[]	[]	[]	[]	[,		[·/]
A2-Z 8/2/1 A2-Z 8/2/2	oben unten oben	0,49 0,46 0,49	0,44 0,44 0,44	0,05 0,02 0,05	0,24 0,24 0,27	0,60 0,61 0,64	1,00 1,06 1,11	3,04 3,23 3,08	3,39 3,40 3,42
A2-Z 8/2/3	oben unten	0,48 0,50 0,56	0,40 0,45 0,47	0,08 0,04 0,09	0,24 0,26 0,28	0,58 0,66 0,68	0,98 1,18 1,21	3,02 2,68	3,77 3,31 3,18
A2-Z 8/4/1 A2-Z 8/4/2	oben unten oben	0,31 0,35 0,35	0,34 0,38 0,38	-0,03 -0,03 -0,03	0,22 0,22 0,24	0,77 0,77 0,88	1,77 1,59 2,00	5,61 5,04 5,03	5,15 4,66 4,61
A2-Z 8/4/3	unten oben unten	0,36 0,31 0,24	0,38 0,32 0,26	-0,02 -0,01 -0,03	0,24 0,20 0,17	0,86 1,08 0,89	1,88 2,78 2,40	4,82 5,58 7,32	4,61 5,40 6,62
A2-Z 8/6/1 A2-Z 8/6/2	oben unten oben	0,53 0,46 0,64	0,54 0,52 0,67	-0,01 -0,05 -0,04	0,35 0,28 0,37	1,51 1,39 1,24	3,93 3,41 2,72	4,73 5,39 3,91	4,61 4,85 3,71
A2-Z 8/6/3	unten oben unten	0,70 0,63 0,66	0,79 0,68 0,75	-0,08 -0,05 -0,08	0,38 0,36 0,32	1,60 1,40 1,47	3,42 2,94 3,05	3,56 3,99 3,77	3,18 3,67 3,35
A2-Z 8/8/1	oben unten oben	0,51 0,88 0.58	0,58 0,98 0.67	-0,07 -0,10 -0.09	0,36 0,53 0 39	1,30 2,01 1 16	3,29 4,07 2,33	5,89 3,39 5,18	5,21 3,05 4,49
A2-Z 8/8/3	unten oben unten	0,67 0,55 0,79	0,76 0,62 0,92	-0,09 -0,06 -0,13	0,45 0,40 0,51	1,31 1,52 2,35	2,66 4,01 5,27	4,48 5,42 3,79	3,96 4,85 3,24
A2-Z 16/2/1	oben unten	0, 39 0,46	0,43 0,51	-0,04 -0,05	0,26 0,29	0,51	0,89 0,90	14,1	12,7 10,9
A2-Z 16/2/2 A2-Z 16/2/3	unten oben unten	0,85 0,48 0,37 0,34	0,94 0,54 0,41 0,37	-0,11 -0,07 -0,03 -0,03	0,50 0,29 0,32 0,28	0,85 0,48 0,33 0,30	0,60 0,43 0,39	11,6 14,7 16,0	10,2 13,5 14,8
A2-Z 16/4/1	oben unten	0,56 0,66	0,61 0,74	-0,04 -0,08	0,42 0,40	0,64 0,77	0,91 1,16	15,1 12,8	14,0 11,5
A2-Z 16/4/2 A2-Z 16/4/3	oben unten oben unten	0,80 0,54 0,62 0,60	0,90 0,58 0,68 0,66	-0,10 -0,04 -0,06 -0,06	0,46 0,37 0,41 0,37	1,58 1,00 0,,91 0,85	2,77 2,11 1,49 1,41	10,6 15,7 13,6 14,1	9,44 14,6 12,5 12,8

Tabelle 6.14:Zusammenstellung der Einzelverschiebungsgrößen der
Zugscherversuche mit Merbau (B1) und Afzelia (B2)
(Stabdübel aus St 37-K)

Versuch	Anschluß	V _i [mm]	V _{i,mod} [mm]	V _s [mm]	V _e [mm]	V _{06,mod} [mm]	V _{08,mod} [mm]	k _i [kN/mm]	k _s [kN/mm]
B1-Z 8/2/1 B1-Z 8/2/2 B1-Z 8/2/3 B1-Z 8/2/3 B1-Z 8/4/1 B1-Z 8/4/2 B1-Z 8/4/3 B1-Z 8/8/1 B1-Z 8/8/1 B1-Z 8/8/2	oben unten oben unten oben unten oben unten oben unten oben unten	0,43 0,49 0,35 0,42 0,45 0,42 0,42 0,42 0,32 0,63 0,64 0,32 0,37 0,50 0,57 0,47	0,37 0,35 0,28 0,32 0,31 0,33 0,37 0,30 0,68 0,66 0,28 0,35 0,47 0,52	$\begin{array}{c} 0,07\\ 0,14\\ 0,08\\ 0,10\\ 0,14\\ 0,09\\ 0,05\\ 0,02\\ -0,06\\ -0,02\\ 0,03\\ 0,02\\ 0,03\\ 0,05\\ 0,03\\ 0,03\\ 0,05\\ 0,03\\ 0,03\\ 0,03\\ 0,05\\ 0,03\\ 0,05\\ 0,03\\ 0,05\\ 0,0$	0,22 0,21 0,19 0,20 0,20 0,20 0,20 0,23 0,19 0,42 0,53 0,30 0,31 0,33 0,33	0,45 0,42 0,37 0,43 0,37 0,39 0,62 0,53 1,26 1,38 0,40 0,46 0,83 0,88	0,74 0,64 0,52 0,60 0,52 0,57 1,12 0,95 1,64 1,85 0,81 0,88 1,51 1,60	3,45 3,03 4,26 3,57 3,34 3,58 4,12 5,49 2,78 2,72 5,51 4,74 6,02 5,24	4,09 4,24 5,41 4,64 4,91 4,57 4,73 5,84 2,56 2,65 6,19 5,07 6,40 5,78 6,09
B1-Z 8/8/2 B1-Z 8/8/3	unten oben unten	0,49 0,53 0,56	0,49 0,50 0,50 0,54	-0,03 -0,01 0,02 0,03	0,32 0,32 0,34 0,34	0,84 0,81 0,93 0,95	1,52 1,44 1,87 1,78	6,41 6,11 5,67 5,32	6,08 6,01 5,94 5,57
B2-Z 8/2/1 B2-Z 8/2/2 B2-Z 8/2/3	oben unten oben unten oben unten	0,47 0,42 0,45 0,44 0,42 0,41	0,36 0,36 0,33 0,34 0,37 0,34	$\begin{array}{c} 0,11\\ 0,05\\ 0,12\\ 0,10\\ 0,05\\ 0,06 \end{array}$	$\begin{array}{c} 0,21\\ 0,20\\ 0,21\\ 0,21\\ 0,23\\ 0,22 \end{array}$	0,51 0,50 0,48 0,49 0,52 0,46	0,75 0,74 0,72 0,77 0,83 0,69	3,17 3,58 3,34 3,41 3,60 3,68	4,17 4,11 4,50 4,41 4,06 4,36
B2-Z 16/2/1 B2-Z 16/2/2 B2-Z 16/2/3	oben unten oben unten oben unten	0,31 0,28 0,37 0,29 0,27 0,31	0,35 0,32 0,39 0,33 0,31 0,33	-0,04 -0,03 -0,03 -0,04 -0,04 -0,02	0,25 0,24 0,29 0,20 0,22 0,29	0,49 0,45 0,55 0,45 0,45 0,48	0,82 0,66 0,93 0,71 0,69 0,76	17,6 9,38 15,0 8,94 10,4 7,78	15,8 7,32 13,9 6,84 7,85 6,76
B2-Z 16/4/1 B2-Z 16/4/2	oben unten oben unten	0,49 0,54 0,48 0,46	0,55 0,60 0,54 0,51	-0,06 -0,06 -0,06 -0,05	0,33 0,37 0,34 0,36	0,99 1,05 0,99 0,89	1,94 2,02 1,97 1,72	17,3 15,7 17,7 18,4	15,4 14,1 15,6 16,7

.

Anlage 121

Tabelle 6.15:	Zusammenstellung der Einzelverschiebungsgrößen der
	(Stabdübel aus St 37-K)
	(Stablador aus brot xx)

Versuch	Anschluß	v _i [mm]	V _{i,mod} [mm]	V _s [mm]	V _e [mm]	V _{06,mod} [mm]	V _{08,mod} [mm]	k _i [kN/mm]	k _s [kN/mm]
C-Z 8/2/1	oben	0,20 0,25	0,21	-0,01 -0.01	0,17	0,30	0,44 0.54	9,22 7,40	8,74 7.00
C-Z 8/2/2	oben	0,18	0,20	-0,02	0,18	0,39	0,84	10,3	9,51
C-Z 8/2/3	oben unten	0,17 0,18 0,17	0,19 0,18 0,18	0,00 -0,01	0,17 0,14 0,16	0,39 0,38	0,84 0,83	10,8 10,1 11,3	10,2 10,6
C-Z 8/4/1	oben	0,26	0,29	-0,02 -0.01	0,21	0,50	0,97	11,4	10,4
C-Z 8/4/2	oben	0,22	0,25	-0,02	0,10	0,54	1,10	12,4	11,6
C-Z 8/4/3	oben unten	0,22 0,26	0,29 0,25 0,28	-0,03 -0,03 -0,02	0,19 0,21 0,26	0,40 0,44	0,70 0,85	13,7 11,6	11,9

Tabelle 6.16:Zusammenstellung der Einzelverschiebungsgrößen der Zug- und
Druckscherversuche mit Buche (A1) und Bongossi (C)
(Gewindestangen Stahlgüte 8.8)

Versuch	Anschluß	v _i [mm]	V _{i,mod} [mm]	V _s [mm]	V _e [mm]	V _{06,mod} [mm]	V _{08,mod} [mm]	k _i [kN/mm]	k _s [kN/mm]
M/A1-Z 8/2/1 M/A1-Z 8/2/2 M/A1-Z 8/2/3	oben unten oben unten oben unten	0,46 0,65 0,57 0,52 0,58 0,56	0,48 0,67 0,60 0,54 0,64 0,61	-0,02 -0,02 -0,04 -0,02 -0,06 -0,04	0,21 0,24 0,23 0,22 0,25 0,23	$1,00 \\ 1,26 \\ 1,03 \\ 0,88 \\ 1,10 \\ 1,02$	1,71 2,09 1,69 1,40 1,75 1,69	3,23 2,31 2,65 2,89 2,59 2,67	3,10 2,24 2,48 2,80 2,34 2,47
M/A1-Z 8/4/1 M/A1-Z 8/4/2 M/A1-Z 8/4/3	oben unten oben unten oben unten	0,80 0,91 0,88 0,82 1,03 0,79	0,90 1,01 0,95 0,91 1,13 0,94	-0,10 -0,11 -0,07 -0,09 -0,10 -0,15	0,32 0,37 0,36 0,36 0,45 0,33	1,78 1,96 2,71 2,56 3,41 2,97	3,54 3,77 6,18 5,55 6,78 6,51	3,13 2,76 2,84 3,06 2,43 3,16	2,79 2,46 2,62 2,75 2,21 2,67
M/A1-Z 8/6/1 M/A1-Z 8/6/2 M/A1-Z 8/6/3	oben unten oben unten oben unten	1,68 1,52 1,00 0,97 0,96 0,96	$2,05 \\ 1,85 \\ 1,09 \\ 1,12 \\ 1,05 \\ 1,12$	-0,37 -0,32 -0,09 -0,15 -0,09 -0,15	0,41 0,38 0,49 0,44 0,48 0,44	5,57 4,85 3,89 4,45 3,89 4,26	9,55 8,73 7,97 7,95 7,83 7,99	1,79 1,97 3,02 3,09 3,14 3,11	1,46 1,63 2,76 2,68 2,85 2,68
M/A1-Z 8/8/1 M/A1-Z 8/8/2 M/A1-Z 8/8/3	oben unten oben unten oben unten	1,92 1,87 1,32 1,68 1,71 1,66	2,16 2,03 1,76 2,24 1,92 1,87	-0,24 -0,16 -0,44 -0,56 -0,21 -0,21	$0,61 \\ 0,62 \\ 0,56 \\ 0,65 \\ 0,63 \\ 0,56$	4,50 4,36 4,91 6,12 4,22 3,96	7,80 8,16 8,11 9,20 7,57 7,32	2,08 2,14 3,04 2,39 2,34 2,41	1,85 1,97 2,28 1,79 2,08 2,14
M/C-D 16/2/1 M/C-D 16/2/2 M/C-D 16/2/3		0,59 0,54 0,64	0,61 0,57 0,68	0,02 0,03 0,04	0,30 0,29 0,34	0,93 0,78 0,97	1,51 1,21 1,55	15,3 16,7 14,1	14,7 15,8 13,3
M/C-D 16/6/1 M/C-D 16/6/2 M/C-D 16/6/3		1,12 1,19 1,05	1,21 1,30 1,13	0,08 0,11 0,08	0,59 0,62 0,53	3,15 3,40 3,25	7,46 7,86 7,93	13,3 12,7 14,3	12,4 11,6 13,3
M/C-D 16/8/1 M/C-D 16/8/2 M/C-D 16/8/3		1,08 0,92 1,01	1,26 1,07 1,13	0,18 0,15 0,11	0,56 0,50 0,50	5,19 5,62 0,59	0,46 1,30 5,86	13,9 16,3 14,8	11,9 14,0 13,3

Tabelle 6.17:Zusammenstellung der Einzelverschiebungsgrößen der Zugscher-
versuche mit Bongossi (C)
(Stabdübel aus Automatenstahl 9 S 20 K)

Versuch	Anschluß	V _i [mm]	V _{i,mod} [mm]	V _s [mm]	V _e [mm]	V _{06,mod} [mm]	V _{08,mod} [mm]	k _i [kN/mm]	k _s [kN/mm]
AS/C-Z 8/4/1 AS/C-Z 8/4/2 AS/C-Z 8/4/3	oben unten oben unten oben unten	0,22 0,23 0,23 0,23 0,23 0,24 0,23	0,25 0,25 0,26 0,25 0,23 0,24	-0,03 -0,02 -0,03 -0,02 0,01 0,00	$\begin{array}{c} 0,19\\ 0,21\\ 0,18\\ 0,22\\ 0,11\\ 0,17\end{array}$	0,40 0,40 0,44 0,44 0,53 0,50	0,70 0,69 0,76 0,79 1,08 0,94	13,5 12,9 13,2 12,8 12,4 12,9	12,0 11,8 11,8 11,9 13,0 12,6
AS/C-Z 8/6/1 AS/C-Z 8/6/2 AS/C-Z 8/6/3	oben unten oben unten oben unten	0,43 0,42 0,47 0,56 0,39 0,45	0,48 0,49 0,52 0,64 0,44 0,50	0,05 -0,06 -0,06 -0,08 -0,06 -0,05	0,35 0,33 0,37 0,36 0,32 0,38	0,97 0,97 0,64 0,78 0,84 0,93	2,41 2,15 0,03 0,05 1,72 1,93	9,34 9,42 8,57 7,10 10,3 8,83	8,35 8,20 7,63 6,24 9,00 8,01
AS/C-Z 8/8/1 AS/C-Z 8/8/2 AS/C-Z 8/8/3	oben unten oben unten oben unten	0,59 0,67 0,61 0,55 0,61 0,59	0,68 0,76 0,68 0,64 0,68 0,68	-0,09 -0,09 -0,07 -0,09 -0,07 -0,08	$\begin{array}{c} 0,45\\ 0,49\\ 0,48\\ 0,42\\ 0,48\\ 0,45\end{array}$	0,93 1,03 0,79 0,75 0,83 0,83	2,01 2,11 1,44 1,38 1,58 1,49	8,47 7,46 8,17 9,05 8,22 8,41	7,41 6,62 7,34 7,77 7,40 7,39

Tabelle 6.18:	Zusammenstellung der Einzelverschiebungsgrößen der
	Druckscherversuche mit Buche (A1) und Eiche (A2)
	(Stabdübel aus St 37-K)

Versuch	v _i	^V i,mod	v _s	v _e	V _{06,mod}	^V 08,mod	k _i	k _s
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kN/mm]	[kN/mm]
A1-D 8/2/1	0,37	0,35	0,01	0,21	0,03	0,83	5,13	5,34
A1-D 8/2/2	0,41	0,42	0,01	0,14	0,58	0,97	4,62	4,50
A1-D 8/2/3	0,37	0,36	0,01	0,18	0,26	0,63	5,09	5,36
A1-D 8/6/1	0,75	0,82	0,07	0,32	2,05	4,77	4,00	3,64
A1-D 8/6/2	0,72	0,80	0,09	0,32	3,72	1,36	4,18	3,73
A1-D 8/6/3	0,72	0,77	0,04	0,34	3,37	9,69	4,14	3,92
A1-D 16/2/1	0,46	0,49	0,03	0,23	0,76	1,43	15,2	14,2
A1-D 16/2/2	0,64	0,71	0,07	0,27	0,74	1,19	10,9	9,84
A1-D 16/2/3	0,68	0,77	0,08	0,28	0,75	1,06	10,2	9,12
A1-D 16/4/1	0,67	0,73	0,06	0,37	2,42	1,15	15,0	13,7
A1-D 16/4/2	0,67	0,75	0,07	0,42	1,47	4,36	14,9	13,4
A1-D 16/4/3	0,69	0,79	0,11	0,37	1,35	3,97	14,6	12,6
A1-D 30/2/1	0,77	0,62	0,15	0,86	0,55	0,93	31,0	38,5
A1-D 30/2/2	0,81	0,68	0,13	0,46	0,93	1,42	29,7	35,2
A1-D 30/2/3	0,86	0,72	0,13	0,47	0,94	1,45	28,0	33,1
A2-D 8/2/1	0,50	0,40	0,09	0,22	0,11	0,65	3,79	4,66
A2-D 8/2/2	0,54	0,48	0,06	0,23	0,51	0,79	3,50	3,91
A2-D 8/2/3	0,56	0,43	0,13	0,25	0,46	0,72	3,35	4,40
A2-D 8/6/1	0,78	0,81	0,03	0,36	1,34	2,69	3,85	3,73
A2-D 8/6/2	0,77	0,82	0,05	0,34	1,06	2,04	3,89	3,64
A2-D 8/6/3	0,63	0,67	0,04	0,28	1,00	2,03	4,80	4,49
A2-D 30/2/1	0,82	0,72	0,10	0,39	0,84	1,16	24,4	27,7
A2-D 30/2/2	0,73	0,63	0,10	0,44	0,72	1,02	27,5	32,0
A2-D 30/2/3	0,77	0,68	0,09	0,47	0,77	1,08	26,0	29,5

	······	<u> </u>							
	Versuch	v _i [mm]	^V i,mod [mm]	V _s [mm]	v _e [mm]	^V 06,mod [mm]	^V 08,mod [mm]	k _i [kN/mm]	k _s [kN/mm]
	B1-D 8/2/1	0,42	0,33	0,08	0,18	0,10	0,44	4,51	5,66
	B1-D 8/2/2	0,36	0,30	0,06	0,17	0,26	0,08	5,28	6,29
	B1-D 8/2/3	0,38	0,28	0,10	0,18	0,12	0,37	4,99	6,70
	B1-D 8/6/1	0,41	0,41	0,00	0,24	0,68	1,17	7,28	7,31
	B1-D 8/6/2	0,44	0,41	0,03	0,33	0,56	1,00	6,85	7,37
	B1-D 8/6/3	0,43	0,39	0,03	0,27	0,63	1,06	7,03	7,62
	B1-D 16/2/1	0,28	0,31	0,02	0,20	0,41	0,63	21,1	19,6
	B1-D 16/2/2	0,29	0,31	0,02	0,16	0,44	0,67	20,6	19,3
	B1-D 16/2/3	0,30	0,33	0,02	0,20	0,45	0,66	19,8	18,4
	B1-D 16/4/1	0,34	0,39	0,05	0,25	0,54	0,91	26,2	22,9
	B1-D 16/4/2	0,47	0,52	0,05	0,27	0,70	1,08	19,1	17,2
	B1-D 16/4/3	0,31	0,34	0,03	0,26	0,48	0,80	29,5	26,6
	B1-D 30/2/1	0,58	0,47	0,11	0,32	0,63	0,87	34,3	42,3
	B1-D 30/2/2	0,58	0,49	0,08	0,35	0,72	0,98	34,7	40,5
	B1-D 30/2/3	0,57	0,50	0,07	0,39	0,65	0,89	35,0	40,1
	B2-D 8/2/1	0,48	0,39	0,10	0,23	0,41	0,63	3,89	4,86
	B2-D 8/2/2	0,55	0,43	0,11	0,21	0,13	0,69	3,43	4,33
	B2-D 8/2/3	0,58	0,37	0,21	0,20	0,40	0,56	3,23	5,06
	B2-D 8/6/1	0,59	0,56	0,03	0,30	0,97	1,74	5,09	5,40
	B2-D 8/6/2	0,47	0,42	0,06	0,40	0,77	1,55	6,34	7,21
	B2-D 8/6/3	0,58	0,59	0,01	0,26	1,02	1,95	5,19	5,10
	B2-D 30/2/1	0,60	0,48	0,12	0,39	0,62	0,90	33,6	41,9
	B2-D 30/2/2	0,56	0,51	0,05	0,35	0,69	0,97	35,8	39,5
	B2-D 30/2/3	0,63	0,56	0,07	0,36	0,73	1,01	31,9	35,9
I							ĺ		1

Tabelle 6.19:Zusammenstellung der Einzelverschiebungsgrößen der
Druckscherversuche mit Merbau (B1) und Afzelia (B2)
(Stabdübel aus St 37-K)

Anlage 126

Tabelle 6.20:Zusammenstellung der Einzelverschiebungsgrößen der
Druckscherversuche mit Bongossi (C)
(Stabdübel aus St 37-K)

Versuch	v _i	^V i,mod	V _S	V _e	^V 06,mod	v _{08,mod}	k _i	k _s
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kN/mm]	[kN/mm]
C-D 8/2/1	0,15	0,16	0,01	0,14	0,29	0,48	12,6	12,0
C-D 8/2/2	0,16	0,16	0,00	0,15	0,34	0,70	11,7	11,8
C-D 8/2/3	0,19	0,18	0,01	0,16	0,41	0,80	9,83	10,5
C-D 8/6/1	0,30	0,32	0,03	0,20	1,15	3,93	11,8	10,8
C-D 8/6/2	0,29	0,31	0,02	0,20	1,05	3,41	12,2	11,3
C-D 8/6/3	0,30	0,32	0,02	0,18	1,12	3,56	11,8	11,1
C-D 16/2/1	0,34	0,35	0,01	0,24	0,59	1,15	23,5	22,6
C-D 16/2/2	0,28	0,29	0,01	0,27	0,44	0,73	28,7	27,5
C-D 16/2/3	0,37	0,33	0,04	0,27	0,53	0,88	21,7	24,0
C-D 30/2/1	0,72	0,69	0,03	0,55	0,89	1,32	44,4	46,2
C-D 30/2/2	0,74	0,70	0,04	0,56	0,95	1,46	43,2	45,7
C-D 30/2/3	0,69	0,68	0,02	0,48	0,88	1,30	46,1	47,3

